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Abstract 
The increased demand of power from renewably energy sources has driven the development of wind 
power offshore forward. The power ratio has increased and problems with HVAC cable systems have 
led the industry to look at other options. One way to handle the increased amount of power is to use 
HVDC transmission. However the HVDC technique based on thyristors can not be used since it 
requires a stiff alternating current source at both ends. Instead VSC based HVDC is a possible 
solution. The VSC based HVDC used today has never been optimised regarding volume which is 
needed since offshore platforms are very costly. Therefore a new solution has been developed which 
builds on the idea of connecting a certain number of VSCs in series. In this way harmonic elimination 
by using phase shifting can be used. This technique leads to lower demand for filter capacity, which 
saves volume. In this case the phase reactors have been removed and the needed control inductance is 
obtained from the transformer. 

In this thesis two different control models for the series connected VSCs has been developed and 
tested. The first one, control model A, works by seeing the series connected VSCs as a single large 
VSC. Therefore only one current vector controller and one DC-link voltage controller is needed. The 
other model is control model B and it uses a current vector controller and a DC-link voltage controller 
for each VSC. 

The results from the tests show that control model A works as thought but further tests are needed. 
This is due to problems with the distribution of the DC voltages for the VSC. Control model B on the 
other hand does not work as thought. The current vector controllers have substantial problems with 
step response and the DC-link voltage controllers can not perform a start. This model does also require 
further tests. 

Keywords: Voltage Source Converter (VSC), Pulse Width Modulation (PWM), High Voltage Direct 
Current (HVDC), Control strategies, Series connected VSCs, current vector control 

 





 

 

Acknowledgements 
This work has been carried out at ABB Corporate Research, Västerås. 

I would to special thank my supervisor Dr. Frans Dijkhuizen at ABB Corporate Research for his 
support and encourage during this work. 

I would like to thank my family for their love and support during my studies. 

Mikael Holm 
January 25, 2007 





 

 

Table of Contents 
1 INTRODUCTION........................................................................................................................................ 1 

1.1 BACKGROUND ........................................................................................................................................ 1 
1.2 AIM ........................................................................................................................................................ 1 
1.3 STRUCTURE ............................................................................................................................................ 1 

2 HIGH VOLTAGE DIRECT CURRENT................................................................................................... 3 
2.1 INTRODUCTION....................................................................................................................................... 3 
2.2 HISTORY OF HVDC TRANSMISSION ....................................................................................................... 3 
2.3 HVDC CLASSIC ..................................................................................................................................... 4 

2.3.1 Area of use ........................................................................................................................................ 5 
2.4 HVDC LIGHT® ....................................................................................................................................... 5 

2.4.1 Advantages of the HVDC Light® ....................................................................................................... 6 
2.4.2 Differences between HVDC Light® and HVDC Classic.................................................................... 6 
2.4.3 Area of use ........................................................................................................................................ 7 

2.5 COMPACT HVDC LIGHT ........................................................................................................................ 7 
2.5.1 Research issues ................................................................................................................................. 7 

3 THREE-PHASE VOLTAGE SOURCE CONVERTER........................................................................... 8 
3.1 VOLTAGE SOURCE CONVERTER SCHEME................................................................................................ 8 
3.2 PULSE WIDTH MODULATION.................................................................................................................. 8 

3.2.1 Natural-sampled PWM...................................................................................................................... 8 
3.2.2 Regular-sampled PWM ..................................................................................................................... 9 
3.2.3 Optimized PWM ................................................................................................................................ 9 

3.3 CURRENT VECTOR CONTROLLER ............................................................................................................ 9 
3.3.1 A Simplified model .......................................................................................................................... 10 
3.3.2 Derivation of the PI controller........................................................................................................ 12 

3.4 DC-LINK VOLTAGE CONTROLLER ......................................................................................................... 14 
3.5 SIMULATION......................................................................................................................................... 16 

3.5.1 Current vector controller ................................................................................................................ 16 
3.5.2 DC voltage controller...................................................................................................................... 18 

3.6 SUMMARY ............................................................................................................................................ 20 
4 FOUR VOLTAGE SOURCE CONVERTERS CONNECTED IN SERIES......................................... 21 

4.1 INTRODUCTION..................................................................................................................................... 21 
4.2 CIRCUIT................................................................................................................................................ 23 

4.2.1 PWM................................................................................................................................................ 23 
4.3 CONTROL SYSTEMS .............................................................................................................................. 24 

4.3.1 Control model A .............................................................................................................................. 25 
4.3.2 Control model B .............................................................................................................................. 27 

4.4 SUMMARY ............................................................................................................................................ 29 
5 SIMULATION AND TESTING OF THE DIFFERENT CONTROL MODELS ................................ 30 

5.1 CURRENT VECTOR CONTROL TEST ........................................................................................................ 30 
5.1.1 Control model A .............................................................................................................................. 30 
5.1.2 Control model B .............................................................................................................................. 35 
5.1.3 Conclusions ..................................................................................................................................... 41 

5.2 DC-LINK VOLTAGE CONTROL TEST....................................................................................................... 41 
5.2.1 Control model A .............................................................................................................................. 42 
5.2.2 Control model B .............................................................................................................................. 47 
5.2.3 Conclusions ..................................................................................................................................... 49 

5.3 SUMMARY ............................................................................................................................................ 49 
6 CONCLUSIONS AND FUTURE WORK................................................................................................ 50 

6.1 CONCLUSIONS ...................................................................................................................................... 50 
6.2 FUTURE WORK...................................................................................................................................... 51 

REFERENCES.................................................................................................................................................... 52 



APPENDIX A TRANSFORMATION FOR THREE-PHASE SYSTEMS............................................... 53 
A.1 TRANSFORMATION BETWEEN THREE-PHASE SYSTEM AND ��-FRAME .................................................. 53 
A.2 TRANSFORMATION BETWEEN ��-FRAME AND DQ-FRAME .................................................................... 53 

APPENDIX B IMPLEMENTATION OF A VSC IN PSCAD/EMTDC ................................................... 55 
B.1 SYSTEM ................................................................................................................................................ 55 
B.2 IMPLEMENTATION OF CURRENT CONTROLLER IN PSCAD/EMTDC ..................................................... 56 

B.2.1 Transformation from three-phase system to dq-frame................................................................ 56 
B.2.2 Calculation of transformation angle........................................................................................... 57 
B.2.3 Current vector controller............................................................................................................ 57 
B.2.4 Calculation of modulation index and load angle........................................................................ 58 
B.2.5 Creation of reference signals...................................................................................................... 58 
B.2.6 Creation of gate pulses to the switches ....................................................................................... 59 

B.3 IMPLEMENTATION OF DC-LINK VOLTAGE CONTROLLER IN PSCAD/EMTDC...................................... 59 
B.3.1 DC-link voltage controller without feed-forwarding of the load current ................................... 59 
B.3.2 DC-link voltage controller with feed-forwarding of the load current......................................... 60 
B.3.3 Scaling of the load current.......................................................................................................... 60 

APPENDIX C IMPLEMENTATION OF CONTROL MODEL A IN PSCAD/EMTDC ....................... 62 
C.1 SYSTEM ................................................................................................................................................ 62 
C.2 IMPLEMENTATION OF CURRENT CONTROLLER IN PSCAD/EMTDC ..................................................... 63 

C.2.1 Transformation from three-phase system to dq-frame................................................................ 63 
C.2.2 Calculation of transformation angle........................................................................................... 63 
C.2.3 Current vector controller............................................................................................................ 64 
C.2.4 Calculation of modulation index and load angle........................................................................ 64 
C.2.5 Creation of reference signals...................................................................................................... 65 
C.2.6 Creation of gate pulses to the transistors ................................................................................... 66 

C.3 IMPLEMENTATION OF DC-LINK VOLTAGE CONTROLLER IN PSCAD/EMTDC..................................... 66 
C.3.1 Scaling of DC-link voltage.......................................................................................................... 66 
C.3.2 DC-link voltage controller.......................................................................................................... 66 

APPENDIX D IMPLEMENTATION OF CONTROL MODEL B IN PSCAD/EMTDC ....................... 68 
D.1 SYSTEM ................................................................................................................................................ 68 
D.2 IMPLEMENTATION OF CURRENT CONTROLLER IN PSCAD/EMTDC ..................................................... 69 

D.2.1 Transformation from three-phase system to dq-frame................................................................ 69 
D.2.2 Calculation of transformation angle........................................................................................... 69 
D.2.3 Current vector controller............................................................................................................ 70 
D.2.4 Calculation of modulation index and load angle........................................................................ 70 
D.2.5 Creation of reference signals...................................................................................................... 71 
D.2.6 Creation of gate pulses to the transistors ................................................................................... 72 
D.2.7 Scaling of grid voltages .............................................................................................................. 72 

D.3 IMPLEMENTATION OF DC-LINK VOLTAGE CONTROLLER IN PSCAD/EMTDC..................................... 72 
D.3.1 DC-link voltage controller.......................................................................................................... 72 

 



 

1 

1 Introduction 

1.1 Background 
The demand for renewable energy is rapidly increasing, which is a tendency that is going on since the 
past decades. Offshore wind farms have earlier been relatively small and delivered small amounts of 
power. However the increased demand of power has driven the development forward and this yield for 
wind power offshore a power ratio of up to 160 MW. The method for interconnecting offshore wind 
farms with onshore utility systems is done through alternating current (AC) submarine cable systems, 
usually at 33 kV. This is not a good enough solution when higher power levels are in the picture and 
then a higher wind farm transmission voltage is required, High Voltage Alternating Current (HVAC). 
This requires a substation platform containing step-up transformers. 

The first wind farm with this technique is the 160 MW Horns Rev wind farm, which was taken in to 
use in 2002 outside the west coast of Denmark. One of the problems with HVAC cable is the 
capacitive charging current which sets a limit on the length of the cable. The industry has realised the 
problem and has started to look at another solution, using Direct Current (DC) cable systems when 
long distances are required. High Voltage Direct Current (HVDC) system also demands an offshore 
platform, which contains a converter station. Classic HVDC, with phase commutated thyristors, 
requires a stiff alternating current source at both ends. When there is little or no wind at all the only 
way to maintain a stiff current source is through standby generators. Another disadvantage is the size 
of the converter station. An alternative to classic HVDC is Voltage Source Converter (VSC) based 
HVDC, since its stations are much smaller, though their size have never been optimized. 

The losses in the HVDC cable is much lower compared with HVAC, on the other hand the losses in 
the VSC are 3.2% for both ends. Therefore the VSC based HVDC is interesting when the losses for 
HVAC cable exceeds that value, which happens at long distances. Furthermore, the VSC HVDC has 
not yet been used commercial for offshore wind farms and does not have yet a track record. 
Consequently there are some unique requirements for HVDC offshore, low volume and low losses, 
and in this way reduce the cost of the system. 

Today’s HVDC Light® platform consist of 6 pulse bridge converts up to voltages of ±300 kV and it 
has IGBTs (Insulated Gate Bipolar Transistor) as switching elements. An alternative to offshore is to 
connect several 6 pulse bridge converters in series and connect them directly with a transformer and 
by doing so the converter phase reactor can be omitted. Further, at the AC output a multilevel voltage 
pattern can be obtained with minimum filter requirements. In this way space and volume can be saved 
on the offshore platform. This topology is called compact HVDC Light® by ABB. 

Up to now little work has been done on how the converter control should be done. At the moment the 
converters are used at low pulse number, which has consequences for the control dynamics and for the 
dc bus ripple voltage. 

1.2 Aim 
The aim for this thesis work is to investigate control methods for compact HVDC Light® and 
particularly at low pulse numbers. Control methods for both HVDC Light® and compact HVDC 
Light® are considered in this thesis. The intent for the control methods is to maintain a stable and low 
ripple DC voltage at low converter pulse numbers 

1.3 Structure 
This thesis has the following structure. 

Chapter 2 briefly introduces HVDC as transmission technique, presents its history and also describes 
the different techniques that are used today. 
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Chapter 3 describes how the voltage source converter works and presents a couple of different Pulse 
Width Modulation (PWM) strategies. This chapter also includes derivation of two control systems, 
current vector controller and DC-link voltage controller. Finally some simulation results are presented 
in this chapter. 

Chapter 4 presents a circuit that is a further development of the voltage source converter presented in 
Chapter 3. This chapter also includes two different control models for DC-link voltage control. 

Chapter 5 shows the simulations results from the testing of two control models. 

Appendix A describes how the transformation between three-phase system and ��-frame is done and 
how the transformation between ��-frame and dq-frame is done. 

Appendix B, C and D presents how the simulation model used in Chapter 3 and 5 works. 
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2 High Voltage Direct Current 
This chapter describes what High Voltage Direct Current (HVDC) is, what is used for, why it is used 
and how it works. The brief historical story of HVDC will be told and the different techniques that are 
used today will be described. The chapter ends with a brief presentation of a new technique, which can 
be a reality within a couple of years. 

2.1 Introduction 
Electric energy is produced by power stations in form of AC voltage and current. This energy should 
be transferred from the power station to the location where the load is. Usually this transfer of energy 
is done by using AC system. However, in some cases other techniques are attractive, such as DC 
transmission. 

DC transmission becomes economically interesting when large amount of energy should be 
transmitted over a long distance. Common breakeven distance for profitability for HVDC overhead 
transmission lines is in the range of 300 - 400 km and for underwater cables the breakeven distance is 
much smaller [1]. The HVDC becomes interesting at longer distances since AC lines, especially 
cables, have high capacitance, which limits the lines length. That means that the losses increase when 
the length of the AC line increases which happens more slowly for DC lines. Already at short 
distances under water DC becomes a better choice. 

There are also other benefits with using DC transmission as you get improved transient stability and 
dynamic damping of the electrical system oscillations [1]. This gives increased stability in the grid. 
HVDC also gives the possibility to interconnect two different AC systems, which has different 
frequencies and is not synchronised. For example it is possible to interconnect the Swedish and the 
German electrical grid, despite that they are not synchronised. This is due to the fact that the two 
stations can have phase differences. 

Health aspects need to be taken into account for when choosing transmission technique. There is no 
power frequency magnetic field from DC cables, such as the AC cables have. There is only a static 
magnetic field and it is similar to the magnetic field of the earth. The recommended values for static 
magnetic field strength are much higher than for power frequency magnetic fields, because there is no 
induction effect [2]. At the converter stations the electromagnetic field is kept low due to the fact that 
the stations are enclosed in buildings and designed to be very efficient shielded. The shield is needed 
due to that the converter stations are sensitive to radio interference and they also create radio 
interference for other equipments. 

In highly populated areas today it can be extremely difficult to get permission to build a new AC 
transmission overhead line, both of health reasons and space reasons. The overhead lines occupy 
larger area but DC transmission needs fewer lines and together with benefits of lower electromagnetic 
fields it can be easier to get permission for an HVDC overhead transmission line. 

There are not only advantages with HVDC and drawbacks are that the converter stations are very 
expensive and have constant losses. That makes it in some cases less expensive with common AC 
transmission. 

During the last years new markets for HVDC has start to grow. The number of offshore wind farms is 
rising and it is opening the possibility to use HVDC for transmission of the energy to mainland. 
Another trend is that oil platforms are being connected with the mainland via HVDC. The electricity 
that the oil platform needs to work is normal created by steam turbines. The stream is created by 
burning natural gas. Instead, if the electricity is supplied via HVDC the emission of carbon dioxide is 
reduced. 

2.2 History of HVDC transmission 
ASEA started as early as in end of the nineteen twenties to develop products for HVDC transmission. 
At that time a young man with the name of Uno Lamm, later known as the Father of HVDC, started 
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working at ASEA and with HVDC. The component that ASEA worked with was mercury arc valves 
but it had some problems. The biggest problem was with arc-backs and Uno Lamm worked a lot to 
solve that problem. However it would take some time before the first HVDC transmission line was 
used in normal service. The Swedish utility company Vattenfall and the Swedish government decided 
in 1950 that a DC line between the island of Gotland and the Swedish mainland should be built. In this 
way the local grid on Gotland would be connected to the Swedish grid. A system with capacity of 20 
MW and with transmission voltage of 100 kV has been ordered. However, still there were some 
problems with the HVDC technology and first in 1954 the line could be taken into service. The 
breakthrough for HVDC came in the nineteen sixties when ASEA received four international contracts 
which they worked on in parallel. The largest system that was built with mercury arc valves was at 
Nelson River in Canada and system was built for 150 kV and 2 kA [3]. 

With HVDC mercury arc valves ASEA was the only manufacture but the competitors wanted a piece 
of the HVDC market. The competitors discover that there chance was the new component thyristor. 
The thyristor had the advantage that it did not age and if it failed, it had fail safe, i.e. the thyristor 
would lose its semi-conductor properties but retain its current carrying capability. ASEA was forced to 
start working with the thyristor to keep its strong market position and researching started in the middle 
of the nineteen sixties. In 1970 the first plant with thyristors was taken into service. The thyristors 
operated in series with two mercury arc valves in Gotland. At the same time the mercury arc valves 
started to vanish and in 1971 the research was cancelled but still in 2004 nine systems was in service, 
and total amount of delivered systems were 17 [3]. The development of the thyristors continued and 
ASEA/ABB came to be world leader in this field. Today they can offer HVDC up to 1500 MW [4]. 

A further step in the development of the HVDC was taken in 1997 when ABB introduced voltage 
source converter based HVDC, the HVDC Light®. It is the third generation of HVDC with IGBT 
(Insulated Gate Bipolar Transistor) valves. The first new system was taken into service was in 1999 
and it was a line on Gotland between a wind farm and the local grid. The system was designed for 50 
MW and with voltage at ±80 kV. The latest system was taken into service in 2006 and it is a line 
between Estonia and Finland. The system has a capacity of 350 MW and ±150 kV. 

2.3 HVDC Classic 
A typical single-line diagram of a HVDC Classic transmission system, which interconnects two AC 
systems, is shown in Fig 2.1. Both systems can have independent loads and local generation. It is also 
possible to have power flow in both directions of the HVDC system. 
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Fig 2.1 A typical HVDC Classic system 

Assume that the power flow is from station A to station B. Then the system works in the following 
way, first the grid voltage for system A is transformed up to the transmission level. The converters at 
station A rectify the voltage and apply it to the HVDC transmission line. At station B the voltage is 
inverted by the converters and the voltage is transformed down at the transformers, to match system 
B’s grid voltage. It should be remembered that HVDC Classic is a current stiff system. 

Each converter terminal consists of a positive and negative pole. Each pole consists of two 6-pulse 
line-frequency bridge converters. These two are connected through a y-Y and a y-� transformer and in 
this way a 12-pulse setup is given. 

At each terminal there is an AC filter and its function is to minimise the current harmonics which are 
generated by the converters from reaching the grid. At the AC filter there are also power factor 
correction capacitors, which supply the converters with the reactive power that they need. At the DC 
side there are two DC filters and two smoothing inductors, L. Their function is to minimise the ripple 
in the HVDC transmission line [1]. 

2.3.1 Area of use 
HVDC Classic is used generally when very large amount of power needs to be transmitted over a long 
or very long distance. The losses from an AC system increases with the distance and HVDC Classic 
becomes economically possible when the AC system losses are larger than the losses from the HVDC 
Classic system. 

2.4 HVDC Light® 
HVDC Light® uses IGBT valves instead of thyristors valves, which HVDC Classic is using. A major 
difference between HVDC Light® and HVDC Classic is that the Classic works as a current source 
while the Light works as a voltage source. In other words, the power transmission for HVDC Classic 
is determined from current while for HVDC Light it determined from voltage. 

In Fig 2.2 a single-line diagram over a HVDC Light® terminal is shown. At the end of the DC cable an 
exact same type of terminal can be found. The terminal consists of a power transformer, which 
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transform up the voltage to the transmission level. The voltage is rectified with help from the voltage 
source converter. The VSC works both as a rectifier and inverter, depending of the active power flow 
direction. The VSC consists of six valves and it will later be discussed in detail. After that the voltage 
has been rectified it is connected to the DC cable. At terminal B the voltage is inverted and 
transformed down to the grid voltage level. 

HVDC Light® needs filter to work as thought. There is a Harmonic filter and its purpose is to limit the 
amount of harmonics that can reach the grid. There is one phase reactor per phase, between the power 
transformer and the VSC. The phase reactor works as a series filter. The phase reactor reduces the 
amount of current harmonics that reach the utility grid. By using the phase reactor an almost perfect 
sinusoidal current reaches the grid. At the DC side there is also a filter and it consist of capacitors. 
They keep the voltage at the DC cable as constant as possible [2]. 

 
Fig 2.2 Simplified single-line diagram for HVDC Light 

2.4.1 Advantages of the HVDC Light® 
• Active and reactive power can be controlled independently and rapidly [2]. 
• Black start possible [2] 
• Stabilize the AC grid [2] 
• Possibility to change from full power in one direction to full power in reverse [2] 
• No minimum power is required, can operate down to zero power [2] 
• No need for additional reactive shunt compensation [2] 
• Can work as a STATCOM (Static Synchronous Compensator) even when the DC line is 

disconnected [2] 
• No electromagnetic fields [2] 
• Reduce risk of flashover, due to indoor design [2] 

2.4.2 Differences between HVDC Light® and HVDC Classic 
HVDC Light® 

• Each terminal is a HVDC converter and a SVC (Static VAr Compensator) [2] 
• Suitable both for submarine and land cable connections [2] 
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• Less area needed [2] 
• Forced commutation up to 2000 Hz [2] 
• Power range 50 – 1100 MW [2] 
• IGBT valves 

HVDC Classic 
• Power range up to 3000 MW [2] 
• Most cost effective in the higher power range [2] 
• Thyristor valves 
• Can not be turn off with a control signal 
• Line commutated, 50 / 60 Hz 

2.4.3 Area of use 
Today HVDC Light® can not handle the same power levels as the HVDC Classic can. Therefore 
HVDC Light® is used when smaller amount of power should be transmitted. HVDC Light® is used 
where it would be too expensive to build the transmission line with HVDC Classic. In this way a new 
market for HVDC has been created. For instance HVDC Light® can be used to supply oil platforms 
with power and it can also be used to connect wind farms with the grid. The small size of the terminals 
and the possibility to use cables has made HVDC Light® a reasonable alternative in the transmission 
grid. HVDC Classic demands too high power levels and too long distance to be an economically 
alternative. These obstacles have now diminished with HVDC Light®. 

2.5 Compact HVDC Light 
Compact HVDC Light is based on HVDC Light® but it also includes some improvements. HVDC 
Light® is not optimized regarding size. Additionally, with the Compact HVDC Light efforts has been 
spent on trying to reduce the losses. 

An important improvement is the reduction of the filter size and it has been made by decreasing the 
amount of harmonics in the system. The reduction has been possible by connecting eight voltage 
source converters in series. In this way each voltage source converter can run with a lower pulse 
number, switching frequency divided by the fundamental frequency. These techniques make the 
switching losses of transistors lower. To be able to reduce the harmonics the carrier waves for the 
eight converters are evenly displaced. By using this technique it is possible to remove the phase 
reactors and the only inductances in the circuit are the leakage inductance of the transformer. When 
the amount of harmonics is diminished the harmonic filter and the DC capacitors can be made smaller. 
The phase reactors, the harmonic filter and the DC capacitors occupies more than half of the total 
volume for a normal HVDC station and the phase reactor part is approximately a third of that. 
Therefore it is easy to understand how much volume that it is saved when the phase reactors are 
removed. The reduction of the volume gives lower construction costs, especially when it is used for 
offshore wind farms. 

2.5.1 Research issues 
Compact HVDC Light is not a commercial product and more research is planned. There are some 
technical problems that need to be solved to reach a final product. One problem is whether the 
windings of transformers can handle the stress that arises now that voltage is square-waves, because 
the phase reactors are removed. Also the converter control needs be investigated, since little effort has 
been put into it. The question is if it is possible to have a stable system and at the same time preserve 
the low amount of harmonics. In addition also the capacitors size needs to be investigated more.  
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3 Three-phase Voltage Source Converter 
In this chapter the basics of a Voltage Source Converter (VSC) for High Voltage Direct Current 
(HVDC) will be discussed, control issues are addressed as well. In the first part the operation of VSC 
will be discussed. After that a shorter discussion about different PWM techniques will follow. Then 
the current vector controller is studied, which includes information about how it works and how it is 
designed. The DC voltage controller is then described and finally the chapter ends with a summary. 

3.1 Voltage Source Converter scheme 
VSC is a forced-commutated converter that converts AC voltage into DC voltage or vice versa. The 
VSC has the ability to let the power flow in both direction and can change the power direction in a 
very short time. It can be seen as a controllable voltage source. VSC is for example used in high power 
applications, such as HVDC Light. 

In Fig 3.1 a drawing of a standard VSC is shown. It is a six-pulse forced-commutated converter and it 
consist of six power semiconductors and six anti-parallel connected diodes. The semiconductors are in 
this case of the type Insulated Gate Bipolar Transistor (IGBT). Some alternatives are Gate-Turn-Off 
Thyristors (GTO) and Gate-Controlled Thyristors (GCT). 

 
Fig 3.1 Drawing of a VSC 

The output voltages of the converter can be controlled by modulation techniques and in this thesis 
Pulse-Width Modulation (PWM) will be used.  

3.2 Pulse Width Modulation 
Pulse-Width Modulation (PWM) is used to create a desired signal and in this case a sinusoidal wave 
with determined amplitude and frequency. There are several different modulation methods but they all 
have two objectives. The first is to calculate the on time for the switches and the desired fundamental 
output voltage is obtained. The second objective is to arrange the switching process to minimize the 
harmonic distortion, switching losses or other specified criterion. Three different techniques, natural-
sampled PWM, regular-sampled PWM and optimized PWM, for creating the wanted signal will be 
briefly discussed. 

3.2.1 Natural-sampled PWM 
Natural-sampled PWM, also called sinusoidal PWM, works by comparing a low frequency sinusoidal 
wave with a determined frequency, reference wave, to a high frequent triangular wave, carrier wave. 
The switching instant is determined when the reference signal and the carrier wave intercept with each 
other. In this way, a switching pattern is obtained. If the reference signal has a larger value than the 
carrier wave, the switch signal becomes high and it becomes low when the reference signal has a 
smaller value. The switching frequency for the system is determined by the carrier wave's frequency 
and the created signal's fundamental amplitude is determined according to the following expression 
[1]. 
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22 ⋅
⋅= d

p

V
mV  (3.1) 

where Vd is the DC-link voltage and m is the modulation index. 

The modulation index is usually within the range of zero and one. However, it can have higher value 
than one and then the converter works in overmodulation. Overmodulation creates more harmonics 
comparing to when the modulation index is in the interval of zero and one. The modulation index is 
calculated in the following way [1]. 

tri

control

V
V

m =  (3.2) 

where Vcontrol is the peak-value for the reference signal and Vtri is the peak-value for the carrier wave. 

An advantage with natural-sampled PWM is that it is easy to implement with analogue techniques. A 
simple circuit contains a comparator which detects the intersections between the carrier wave and the 
reference wave [5]. 

3.2.2 Regular-sampled PWM 
Regular-sampled PWM is used with microprocessors or Digital Signal Processors (DSP). It works in 
the following way, samples of the reference signal is taken at regularly spaced intervals, coinciding 
with the carrier wave's peaks. This happens either once or twice in each carrier cycle. If it is done one 
time per cycle it is called symmetric regular-sampled PWM and the sampling frequency is the same as 
the switching frequency (carrier wave frequency). On the other hand, if it is done twice per cycle it is 
called asymmetric regular-sampled PWM and the sampling frequency is the double switching 
frequency. This gives that the sampled signal has constant amplitude during each sampling interval. 
The width of the pulse is proportional to the amplitude of the reference signal at uniformly spaced 
sampling times. After that the sampled signal is compared to the triangular wave and the switching 
pattern is determined. The benefit of using asymmetric regular-sampled PWM is that the sampled 
signal contains more information about the reference signal than what the sampled signal does when 
symmetric regular-sampled PWM is used. 

3.2.3 Optimized PWM 
It is possible to improve the performance for the PWM with help from different sorts of techniques, 
i.e. maximize the output voltage amplitude. One technique is Third Harmonic Injection PWM 
technique. It works by injecting third harmonic component to the reference signal, the sinusoidal 
wave. This can give a performance boost of about 15 % in the gain. But it also leads to third 
harmonics in the line-to-neutral, if not a balanced load with floating neutral point is used [6]. The 
optimised PWM technique is not taken under consideration. 

3.3 Current vector controller 
The current vector controller’s task is to control the currents floating in the grid so that they are equal 
to the reference value. The quantities with a star are reference signals. The controller consists mainly 
of three different parts, current vector controller, transformation blocks and PWM. The transformation 
blocks transform the three-phase quantities to DC quantities and in this way the currents can be 
controlled easier. The block diagram of the controller is presented in Fig 3.2. 
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Fig 3.2 Block diagram of the current vector controller 

The inputs to the current vector controller are the filtered grid voltages and grid currents. They are 
transformed to the ��-frame, and then transformed to the rotating dq-frame. The equations used in the 
transformations of the currents and the voltages are shown in Appendix A. Usually, the transform uses 
a generator magnetic flux vector as reference for the synchronisation of the dq-frame, i.e. dq-frame 
rotates. It makes the voltages and the currents to becoming constant vectors in the dq-frame, when 
steady state is attained. In this thesis however the grid flux is used and also the q axis is set to follow 
the grid voltage vector. In this way the grid voltage vector only consists of a q-component, the d-
component is zero. The reason is that then the q-component of the current is the active part and d-
component is the reactive part. By doing this the power factor is one when the d-component of the 
current is zero. 

The DC quantities are then used as inputs for the PI controller, which task is to control and reduce the 
steady state error. Out from the PI controller comes two voltages, d and q-component of the VSC 
reference voltage. These are then used to calculate the modulation index, m, and the load angle, �. The 
modulation index and the load angle are used to get three-phase voltages, which are used as reference 
voltages for the PWM. Out of the PWM the transistors gate signals are obtained, i.e. the switching 
patterns. The theta block calculates the grids flux angle, which is used in the �� to dq transformation. 

3.3.1 A Simplified model 
Before a controller can be designed a model of the system needs to be derived. In Fig 3.3 a simplified 
model of a grid-connected VSC is shown. The grid and the VSC are modelled as two three-phase 
voltage sources and one RL-filter at each phase. The VSC consist of six IGBTs, six diodes and two 
capacitors. 
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Fig 3.3 A basic model of a VSC 

If the resistor R is neglected the active power P and reactive power Q can be expressed as in Equations 
(3.3) and (3.4). 

δsin⋅
⋅

=
s

ps

X

VV
P  (3.3) 

( )
s

pss

X

VVV
Q

δcos⋅−⋅
=  (3.4) 

where Vs denotes the fundamental component of the AC grid voltage, Vp denotes the VSC 
fundamental voltage, � denotes the phase-angle difference between Vs and Vp and Xs denotes the 
reactance of converter. 

The circuit in Fig 3.3can according to Kirchhoff’s voltage law be mathematically modelled as 
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)()( 1
1

11 tv
dt

tid
LtiRtv sssp +⋅−⋅−=  (3.5) 
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)()( 2
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22 tv
dt

tid
LtiRtv sssp +⋅−⋅−=  (3.6) 
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)()( 3
3

33 tv
dt

tid
LtiRtv sssp +⋅−⋅−=  (3.7) 

where vP1(t), vP2(t) and vP3(t) are VSC output voltages, vS1(t), vS2(t) and vS3(t) are the grid voltages, 
i1(t), i2(t) and i3(t) are the grid currents .The reference direction of the current is from the grid to the 
VSC. 

The grid voltages can be expressed as 

)(cos)(1 tVtvs ⋅= ω  (3.8) 
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2
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πω tVtvs  (3.10) 

Equations (3.5)-(3.7) transformed to the ��-frame, with amplitude invariant transformation, becomes 
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)()( tv
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LtiRtv sssp αβ

αβ
αβαβ +⋅−⋅−=  (3.11) 

where 

)()()( tjvtvtv ppp βααβ +=  (3.12) 

)()()( tjvtvtv sss βααβ +=  (3.13) 

)()()( tjititi βααβ +=  (3.14) 

Equation (3.11) can be transferred into the dq-frame by using the �� to dq transformation, where the q 
axis is synchronised with the grid voltage vector. In this way all the quantities becomes DC quantities 
and it simplifies the design of the controller. 
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Equation (3.15) is split into two equations, representing the d and q-components respectively. 
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LtiRtv sdqs
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sdspd +−⋅−⋅−= ω  (3.20) 
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)()( tvtiL
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LtiRtv sqds

q
sqspq ++⋅−⋅−= ω  (3.21) 

The grid voltages in Equations (3.8) to (3.10) transformed into dq-frame 

jVtjvtvtv sqsdsdq =+= )()()(  (3.22) 

The active and reactive power can also be calculated as 
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titvtitvtitvP qsqdsdqsq ⋅=⋅+⋅=  (3.23) 

)()(
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)()(
2
3

)()(
2
3

titvtitvtitvQ dsqqsddsq ⋅=⋅−⋅=  (3.24) 

From Equations (3.23) and (3.24) it is obvious that the active and reactive power can be independently 
controlled by controlling the q and d-component of the current. 

3.3.2 Derivation of the PI controller 
Equation (3.20) and (3.21) describes the VSC system in the rotating dq-frame. Alternative to the 
simplified circuit a block diagram can be made, seen in Fig 3.4. 
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Fig 3.4 Block diagram for the VSC model 

The input signal is vp, output signal is the current vector and vs is modelled as a load disturbance. By 
applying the Laplace transform to Equation (3.15) the transfer function G(s) is given. 

( ) RLjs
sG

++
=

ω
1

)(  (3.25) 

The term Ljω  in Equation (3.25) is the reason for existence of the cross-coupling between Equations 

(3.20) and (3.21). The cross-coupling is described with the term qsiLω  in Equation (3.20) and with the 

term dsiLω  in Equation (3.21). In Equation (3.15) the term dqs iLjω  is the cross-coupling term, since 

multiplication with j makes the d-axis end up on the q-axis and vice versa. 

The first step is cancelling the cross-coupling. It can easily be done by adding a decoupler, dqs iLjω . 

It is assumed that L is known with rather high accuracy. In Fig 3.5 the complete control system is 
presented as a block scheme. The input signal vp is selected as 

)()()( ' tiLjtvtv dqspdqpdq ω−=  (3.26) 

By doing this Equation (3.15) can now be written as 
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)(

)()(' tv
dt

tid
LtiRtv sdq

dq
sdqspdq +⋅−⋅−=  (3.27) 

This equation does not have any complex valued coefficients and therefore the cross-coupling is 
removed. 

 
Fig 3.5 Block diagram of the current control with decoupling loop 

The system function for the decoupled system is 

RsL
sG

+
= 1

)('  (3.28) 

An ordinary PI controller is sufficient since the system is a first-order complex valued system. 
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The expressions for the constants can be seen in Equation (3.30) to (3.32), in [7] the derivation is 
presented. Equation (3.32) is used when the software for implementing of the PI controller require the 
proportional gain and the integral time constant. 
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Lk p ⋅= α  (3.30) 
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where � is the closed-loop system bandwidth, kp is the proportional gain of the controller, ki is the 
integral constant and Ti is the integral time constant. 

Fig 3.6 shows how the block diagram in Fig 3.5 can be implemented. 
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Fig 3.6 Current control and decoupling network 

3.4 DC-link voltage controller 
The DC-link voltage controller has only one purpose and it is to make sure that the DC-link voltage 
has the correct value. The output from the controller becomes the reference active current iq,ref. 

The block diagram of the DC-link voltage controller is presented in Fig 3.7. The principle of the whole 
control system is that the DC-link voltage controller works as outer control loop and the current vector 
controller works as inner control loop. The bandwidth for the current vector controller is much faster 
than the DC-link voltage controller, usually 10 times higher [7]. The DC-link voltage controller 
method of operation is to take the measured DC-link voltage Vdc and compare it to the reference 
voltage, Vdc,ref. The difference, the error, is the input to a PI controller. The output from the PI 
controller is a reference signal, in this case a current reference. The controller looks a bit different 
depending if feed-forwarding of the load current is used or not. When feed-forwarding is used the load 
current iload, see Fig 3.8, is added together with the output signal from the PI controller. Iload is 
measured at the DC side of the VSC and is scaled and added together with the PI controller’s output. 
The new signal becomes the output signal from the DC-link voltage controller, active current 
reference iq,ref. This signal is fed to the current vector controller. 

When feed-forwarding is not used the output signal from the PI controller becomes the active current 
reference iq,ref and it is fed as input to the current vector controller. 
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Fig 3.7 Block diagram of the whole control system 

Fig 3.8 shows a block scheme over the DC controller and how the controller is build. 

 
Fig 3.8 Block diagram of the DC-link voltage controller 

It is possible to explain what happens at the DC side of the VSC in a mathematical way and following 
expressions describes this. In Section 3.3.1 the VSC is described and the expressions for both active 
and reactive power were derived. Those expressions are written here again to make it easier for the 
following calculations. 

)()(
2
3

titvP qsqac ⋅⋅=  (3.33) 

)()(
2
3

titvQ dsqac ⋅⋅=  (3.34) 

The power on the DC side of system can be written as 

)()( titvP DCDCdc ⋅=  (3.35) 

If the losses in the converter and the RL-filter are neglected and that same amount of power is 
transmitted at both side of the converter it is possible with help from Equations (3.33) and (3.35) to 
write following 

)()(
2
3

)()( titvPtitvP qsqacDCDCdc ⋅⋅==⋅=  (3.36) 

With help from Kirchhoff’s current law the following expression can be written about the currents at 
the DC side. 
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)()()( tititi loadCdc +=  (3.37) 

We also know that the capacitors current can be written as 

)()( tv
dt
d

Cti DCC ⋅=  (3.38) 

By inserting Equation (3.38) into Equation (3.37) the following equation is given 

)()()( titv
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Cti loadDCDC +⋅=  (3.39) 

Equation (3.39) is inserted into Equation (3.36) and that gives 
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It can be rewritten as 
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Equation (3.41) describes the DC voltage variations. 

The current vector controller is much faster than the DC voltage controller and therefore can it be 
assumed that the currents id and iq are equal to its reference values. 

)()( , titi refqq =  (3.42) 

By rewriting Equation 3.41, the reference active current iq,ref can be calculate as 
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3.5 Simulation 
In this section the results concerning controllers’ performance will be presented. To verify the 
controllers’ performance the simulation program PSCAD/EMTDC was used. In Appendix B the 
simulation models are described together with pictures. The purpose of the simulations was to test the 
controllers’ dynamics and it was done by exposing them with step response test. 

3.5.1 Current vector controller 
In this section the results for the current vector controller, which is described in Section 3.3, is 
presented. The parameters of the system and the control parameters that were used in the simulation 
can be seen in Table 3.1 and Table 3.2. 
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Table 3.1 System parameters used in the simulation model 

Source Voltage (line-to-line RMS) Vs 41.3 kV 

DC-link Voltage Vdc 75 kV 

Filter Resistance  Rs 2 m� 

Filter Inductance Ls 0.02 H 

Capacitance C 500 �F 

Grid frequency f 50 Hz 

Switching frequency fsw 2 kHz 

Table 3.2 Parameters of the current vector controller used in step response simulation 

Proportional gain Kpi 15 

Integral time constant Ti 0.002 s 

A step pulse, the amplitude varies between 0 A and 1 kA and the step length is 0.2 s, is given to the 
active current reference iq,ref while the reactive current reference id,ref is kept constant at 0 A. The 
response of the active and reactive currents, iq and id, are shown in Fig 3.9. 

Another step pulse, with amplitude varying between 0 A and 1 kA and with step length of 0.2 s, is 
given to the reactive current reference id,ref while the active current reference iq,ref is kept constant at 
zero A. The response of the active and reactive currents, iq and id, is shown in Fig 3.10. 

 
Fig 3.9 Responses of the real and reactive current, id and iq, with a step pulse given to active current reference 

*
qi . The magnitude varies between 0 and 1 kA and the pulse width is 0.2 s, while the reactive current reference 

*
di  is kept at 0 A. 
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Fig 3.10 Responses of the real and reactive current, id and iq, with a step pulse given to reactive current reference 

*
di . The magnitude varies between 0 and 1 kA and the pulse width is 0.2 s, while the reactive current reference 

*
qi  is kept at 0 A. 

As shown in Fig 3.9 and Fig 3.10 the current vector controller works as expected. In both cases the 
current reach the reference values within reasonable time. A small cross-coupling can be seen and also 
some oscillations, which is a consequence of the switch devices. The harmonics lie around the 
switching frequency and can be reduced with an ac filter. However, there will always be a small 
amount of harmonics in the signals.  

3.5.2 DC voltage controller 
In this section the results for the DC-link voltage controller, which was derived in Section 3.4, is 
presented. In this simulation a DC current source is used instead of the two voltage sources, which was 
used in the simulation in Section 3.5.1. The current source is used to simulate the load current and by 
changing its value a load disturbance is received. The system parameters and the control parameters 
were used in the simulation can be found in Table 3.3 and Table 3.4. 

Table 3.3 System parameters used in the simulation model 

Source Voltage (line-to-line RMS) Vs 41.3 kV 

DC-link Reference Voltage Vdc ref 75 kV 

Filter Resistance  Rs 2 m� 

Filter Inductance Ls 0.02 H 

Capacitance C 500 �F 

Grid frequency f 50 Hz 

Switching frequency fsw 2 kHz 
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Table 3.4 Parameters of the Current Vector Controller (CVC) and DC-link controller used in step 
response simulation 

Proportional gain, CVC Kpi 15 

Integral time constant, CVC Ti 0.002 s 

Proportional gain, DC-link Kpdc 0.1 

Integral time constant, DC-link Tidc 0.1 s 

The simulation was done by changing the current value from 0.1 kA to 0.5 kA when t=0.3. In this way 
a load change was simulated and this tested if the controller’s dynamic could handle it. The simulation 
was done in two different ways, the first simulation had no feed-forwarding of the load current and the 
second simulation feed-forwarding of the load current was used. In Fig 3.11 the DC-link voltage is 
shown, when no feed-forwarding is used and Fig 3.12 shows the DC-link voltage then feed-forwarding 
is used. 

 
Fig 3.11 Dynamic response of the DC-link voltage controller at load current step from 0.1 kA to 0.5 kA, without 

feed-forwarding. 
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Fig 3.12 Dynamic response of the DC-link voltage controller at load current step from 0.1 kA to 0.5 kA, with 

feed-forwarding. 

In Fig 3.11 and Fig 3.12 it can be seen that there is a difference whether feed-forwarding of the load 
current is used or not. Without feed-forwarding, Fig 3.11, a deeper dip is given and it reaches down to 
approximately 71.5 kV. When feed-forwarding, Fig 3.12, is used the dip reaches to approximately 
76.5 kV but now there is also an overshoot in the DC-link voltage. The demand of the system decides 
what variant should be used. If an overshoot can be acceptable perhaps feed-forwarding of the load 
current would be a good choice. It will result in a smaller dip but with larger oscillations in the 
voltage. The most likely choice is without feed-forwarding, due to the fact that oscillations in the DC-
link voltage are not wanted. The voltage dip in this case is also relative small. 

3.6 Summary 
In this chapter a three-phase voltage source converter has been discussed. This has included 
information about how it works and control issues have been addressed. Furthermore a current vector 
controller and a DC-link voltage controller have been derived and these systems have then been tested 
with simulations in PSCAD/EMTDC. 

The performance for the control system has been tested by studying the step response for the current 
vector controller. It was shown that the current vector control functioned as expected. The vector DC-
link voltage controller’s dynamic was tested through shifting the load current and studying the voltage 
variations. This test was done with two different control systems, with and without feed-forwarding of 
the load current. It was shown that the result was better without feed-forwarding, since with feed-
forwarding the DC-link voltage had both a dip and an overshoot. 
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4  Four voltage source converters connected in 
series 

4.1 Introduction 
In Chapter 3 one voltage source converter was presented that could be used for transfer of power. It 
consisted of six transistors interconnected together with three series RL filters, see Fig 3.1. This setup 
works very well when the demand regarding volume is small but in some cases volume cost a lot of 
money. If it is possible to decrease the volume new market will be open. 

In this chapter a different technique which is a further development of the VSC in Chapter 3 is 
presented. Instead of having a single VSC per terminal now Nm numbers of converters are connected 
in series. In this thesis Nm is equal to four. In Fig 4.1 such a circuit can be seen and in Fig 4.2 the VSC 
that is used can be seen. The transformer is series connected on the grid side and that creates a 
multilevel voltage waveform. The multilevel voltage waveform gives the benefit that filter rating can 
be kept low and it saves volume. Furthermore the converters are directly interconnected with the 
transformer, which can be seen in Fig 4.2. In this way the phase reactor has been eliminated and it 
saves space and footprint. The drawbacks of this connection are: 1) Square Voltage waveforms, 2) 
Transformer stresses, 3) DC-link voltage balance. 
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Fig 4.1 Circuit with four VSC connected in series together with transformers and grid source 
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Fig 4.2 Voltage source converter which is used in the circuit 

By connecting the VSC in series harmonic elimination by phase shifting can be used. With phase 
shifting means that the carrier wave for the PWM’s is evenly phase shifted. This lead to less THD 
(Total Harmonic Distortion) for the system and it saves filter rating. There are also other advantages 
with this series connection. The PWM technique has always been associated with high switching 
frequency causing higher switching losses. This connection makes it possible to reduce the switching 
frequency for each converter since the equivalent carrier wave frequency for the whole system is equal 
to cm KN ⋅ , where Kc is the carrier wave frequency for the converters [9]. For example, if an 
equivalent carrier wave frequency of 2 kHz for the whole system is wanted and the number of 
converters is four, then the carrier wave frequency for each converter is equal to 0.5 kHz. This results 
to a significant reduction of the switching losses and it is possible to increase the number of 
converters, Nm, and decrease the converters carrier wave frequency, Kc, even more. 

Fig 4.3 shows one of the grid currents when four VSC connected in series and a single VSC are used 
respectively. 

 
Fig 4.3 Grid currents 

Upper figure: Grid current for four VSC connected in series 
Lower figure: Grid current for a single VSC 

In both simulations the same phase reactor value has been used and the reduction of THD is easily 
seen in fig x. The current seen in the lower figure contains more oscillations than the current in the 
upper figure. 
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4.2 Circuit 
The circuit in Fig 4.1 has some similarities with the circuit that is used in Chapter 3. Each voltage 
source converter looks the same except from the phase reactor. The needed inductance for the circuit 
is supplied by the leakage inductance of the transformer and the mathematical expressions are the 
same. A distinction can be seen on the DC side of the circuit. The voltage source converters are 
connected in series resulting to a bit different expressions for the DC quantities. The total DC-link 
voltage can be expressed as 

�
=

=
mN

n
ndctotdc VV

1

 (4.1) 

where Vdcn is the DC voltage across the capacitor of the converter. 

Applying Kirchhoff’s Current law results 

nnndcn iiV
dt
d

C 21 −=⋅  (4.2) 

where i1n is the current through the transistors and i2n is the current output from each VSC. 

The output current i2n is common through each unit [8]. 

mdcn Nnii ...,,2,1,2 ==  (4.3) 

The power from the DC side is calculated as 

�
=

⋅=
mN

n
ndcdcdc ViP

1

 (4.4) 

4.2.1 PWM 
In this circuit Sinusoidal PWM (SPWM) is used and it is described in Section 3.2. In this case there 
are four converters, i.e. 24 transistors. This can be seen as twelve transistor pairs and these should be 
controlled with PWM technique. Each transistor pair needs a PWM module to determine the switching 
pattern for the two transistors. As mentioned in paragraph 4.1 a technique called phase shifted carriers 
are used. This technique works by phase shifting the carrier wave for each converter. For converter 1 
the phase shifting is zero, converter 2 has a phase shifting of 90 degrees, converter 3 has a phase 
shifting of 180 degrees and converter 4 has a phase shifting of 270 degrees. Fig 4.4 shows how the 
four carrier waves for one of the phases and the phase shift can easily be seen. 
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Fig 4.4 Phase shifted carrier waves for harmonic elimination 

This phase shifting can be described mathematically as 

( ) m
m

i Nii
N

,...,2,1,1
360 =−⋅=θ  (4.5) 

where Nm is the total number of converters. 

To get the most out of this PWM technique a low as possible Kc value should be chosen, reducing the 
switching losses. Thus the ratio Kc/Km, there Km is the fundamental sinus wave, should be as low as 
possible. 

Comparably low value creates lower sideband harmonics that can appear in the DC voltage [9]. In [9] 
a bench marking between the different Kc/Km ratios is presented and the merits of the demerits of the 
different ratios are stated. High Kc/Km ratio will lead to filter reduction but to keep the advantages with 
switching losses the ratio must be kept to a minimum. A lot of factors are necessary to take in to 
account when choosing switching frequency, for instance how many converters Nm should be used, 
the equivalent switching frequency for the whole system, Kc/Km ratio, switching losses. 

To each PWM module a reference signal is compared with Kc. In Fig 4.5 it can be seen how the 
switching pattern is determined. It is possible to increase the performance of the PWM by adding third 
harmonic content, if the three-phase system is with floating neutral. Since zero sequence components 
in the output voltage of a converter do not result in corresponding currents. This can give an increase 
of 15 percent in performance but is not used in this thesis. 

 
Fig 4.5 SPWM control of a phase and nth converter. 
Upper figure: Carrier wave and modulation signal.  

Lower figure: Switching function 

4.3 Control systems 
The purpose of the control system is to control the DC-link voltage and it is done by controlling the 
transistors, as mentioned in Chapter 3. The control system should have an inner control loop that 
controls the d and q-component of currents and an outer control loop which controls the DC-link 
voltage. There is a difference with control system used now compared to the system described in 
Chapter 3. There are 24 transistors and also the connections are different and this makes the control 
system more complex. Two different control systems will be discussed, control model A and control 
model B. Control model A is build in way that only one controller for the currents and one for the DC 
voltages is needed. Control model B on other hand consist of four controllers for the currents and four 
for the DC voltages, i.e. the converters are controlled individually. 



 

25 

4.3.1 Control model A 
Control model A consists of a single control system for the whole converter circuit. It works in such a 
way that the four converters are seen as a single large converter. The only thing that is of interest for 
the control system is the inputs and the outputs from the converter circuit, i.e. grid voltage, grid 
currents and DC-link voltage. The control system described in Chapter 3 is used in this model but the 
series connected transformer must be considered. There are 24 transistors that need to be controlled 
and it is done by comparing all PWM modules with the same reference voltage. The carrier waves for 
the PWM modules are of course still evenly distributed, see Section 4.2.2. With only one controller the 
complexity of the control system is reduced and only two currents, Isd and Isq, and one DC-link 
voltage, Vdc_tot, should be controlled. A drawback of this control model is that is not possible to control 
the DC voltage for each converter. This can lead to unbalance at the DC side of the circuit. The DC-
link voltage may be following the reference value but is not uniformly distributed over the four 
converters. The DC voltage for one converter may increase and another decrease with the same 
amount. It is possible that the unbalance affects the whole circuit and its performance needs further 
investigation. The control model consists of two parts, a current vector controller and a DC-link 
voltage controller, as shown in Fig 4.6. 

 
Fig 4.6  Block scheme over control model A 

Inputs to the current vector controller are the filtered grid voltages, grid current and reference currents 
*
sdI  and *

sqI . The grid currents and the grid voltages go through two processes before becoming inputs 

to the current vector controller. First they are transformed to the ��-frame and after that they are 
transformed to the rotating dq-frame. The filtered grid voltages are also inputs to the Phase-Locked 
Loop (PLL) and can determine the vector which is used for the synchronisation of the dq-frame. In 
this case the synchronisation is done in such a way that the grid voltage vector follows the q-axis. The 
grid voltage vector consists of only the q-component. The q-component of the current is the active part 
and the d-component is the reactive part. 

The outputs from the current vector controller are two signals, *
pdV  and *

pqV . It is the d and q-

component of the VSC reference voltage. They are inputs to the block which calculates the modulation 
index, m, and the load angle, �. The modulation index and the load angle are used in the calculation of 
the reference three-phase voltages that is used to determine the switching pattern. The reference 
voltages compared to the PWM block and transistors gate signals are created. 

The second part of the control system is the DC-link voltage controller and its inputs are the reference 
DC-link voltage and the actual DC-link voltage. The signals are scaled and fed to the controller due to 
the transformer which is used in the circuit. Both the grid voltages and the grid currents are measured 
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at the grid side of the transformer. The DC-link voltage is measured at the converter side of the 
transformer and therefore needs to be scaled. The scaling factor consists of two parts, the transformer 
ratio and a connection factor. The connection factor depends on how the transformer is connected. If 
the converter side of the transformer is connected in a delta connection the connection factor becomes 

3 . 

The output from the DC-link voltage controller is the reference grid current *
sqI . 

The blocks in Fig 4.6 exist in only one copy beside the blocks that calculates the three-phase voltages 
reference and the PWM block. These two blocks exist in four copies, since every VSC needs an 
individual PWM module. 

Current vector control 
The task for the current vector controller is to control the grid currents so that they follow the 
reference values. Fig 4.7 shows the block diagram for the current vector controller, which has a 
decoupling term. There is no difference with this controller compared to the one described in Section 
3.3. 

 
Fig 4.7 Block diagram for the current vector controller used in control model A 

The two inputs to the current vector controller are compared and the difference is fed to the PI 
controller. A decoupling term and the grid voltage are then added to the PI controller’s output. The 
new signal is the current vector controller’s output. 

The implementation of the current vector controller in this case is presented in Fig 4.8. 

 
Fig 4.8 Implementation of the current vector controller used in control model A 

DC-link voltage control 
The DC-link voltage controller’s purpose is to control the DC-link voltage so that the reference value 
is reached. Fig 4.9 shows the block diagram for the DC-link voltage controller and it does not differ 
from the DC-link voltage controller which was presented in Section 3.4. 
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Fig 4.9 Block diagram for the DC-link voltage controller used in control model A 

The DC-link voltage controller output is the reference grid active current *
sqI , which is the input to the 

current vector controller. The controller’s input is the reference DC-link voltage and the measured 
DC-link voltage. 

4.3.2 Control model B 
Control model B is slightly different from the control model A. This gives a more complex system and 
everything should in this case be done four times. In the control model A the four converters was seen 
a single converter but not here. This makes it possible to control the DC voltage for each converter 
individually and avoiding the unbalance that can arise in the control model A. However the grid 
currents are not controlled directly since the converter currents are controlled. 

This model has similarities with the model in Chapter 3 but now four of those models are used. Fig 
4.10 shows the block scheme for the control model B. 

 
Fig 4.10 Block scheme for control model B 

As can be seen in Fig 4.10 there are some similarities between control model A and B. Still the filtered 
grid voltages are inputs to the PLL, which calculates the synchronisation vector that is used in the dq 
transformation. The synchronisation is done so that the grid voltage vector follows the q-axis and 
therefore consists of the q-component. The inputs to the current vector controller are the converter 
currents, the filtered grid voltages and the reference converter currents. Both the converter currents 
and the grid voltages are transformed twice, first to the ��-frame and secondly transformed to the dq-
frame. 

The outputs of the current vector controller are the d and q-components reference voltage. Those are 
inputs to the block where the modulation index, m, and the load angle, �, are calculated. They are then 
inputs to calculation of the three-phase voltages that are inputs to the PWM module. From the PWM 
module the gate signals are calculated and the switching pattern of the system is determined. 
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The second part of the control system is the DC-link voltage controller and its inputs are the reference 
voltage and the measured DC voltage. The output from the controller is the active converter current 
reference. 

The majority of the blocks in Fig 4.10 are needed for each converter and exist in this case in four 
copies. The only blocks that are needed in one copy are the grid voltage blocks and it is the PLL-block 
and the blocks where the calculation of the DC quantities of the grid voltages is done. 

Current vector controller 
The purpose of the current vector controller is to control the converter currents so that the reference 
value is always kept. In Fig 4.11 the block diagram for the current vector controller can be seen and it 
has a decoupling part. This current vector controller has no difference with the controller presented in 
Chapter 3.3. 

 
Fig 4.11 Block diagram for the current vector controller used in control model B 

The input to the PI controller is the current error and to the output from the PI controller a decoupling 
term and the gird voltage are added. The implementation of the current vector controller is this case 
can be seen in Fig 4.12. 

 
Fig 4.12  Implementation of the current vector controller used in control model B 

DC-link voltage controller 
The purpose for the DC-link voltage controller is to control the DC voltage for the converter so that 
the reference value is reached. A block diagram of the DC-link voltage controller can be seen in Fig 
4.13 and is explained in Chapter 3.4. 

 
Fig 4.13 Block diagram for the DC-link voltage controller used in control model B 
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The input signal to the DC-link voltage controller is the reference DC voltage and the measured DC 
voltage of the converter. The difference between them is the input to the PI controller and out from the 
PI controller comes the reference active current of the converter. That is also the output from the DC-
link voltage controller. 

4.4 Summary 
In this chapter a further development of the VSC from Chapter 3 has been presented. Instead of have 
only one single VSC per terminal there is now a number of VSCs connected in series. This gives the 
possibility to minimise the volume of the system since the required filter capacity is minimised. In this 
case the volume is reduced when no phase reactors are used. The PWM technique that is used was also 
described. Finally two different control methods were presented. The first control model disregards the 
fact that there are several converters connected in series and instead the whole circuit is treated as a 
big VSC. In this way the control system only consist of one current vector controller and one DC-link 
voltage controller. The second control model uses a current vector controller and a DC-link voltage 
controller for each VSC. 
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5 Simulation and testing of the different control 
models 

In Chapter 4 a circuit with four VSCs connected in series and two control models were presented. The 
response of the two control systems are tested by using the simulation program PSCAD/EMTDC. The 
test is divided in two parts: First test of the current vector controller and, 2) test of the DC-link voltage 
controller. The current vector controller must work as thought otherwise the DC-link voltage 
controller will not work. The current vector controller is the inner controller. The simulation models 
can be seen in Appendix C, control model A, and Appendix D, control model B. The system 
parameters used in the simulations are presented in Table 5.1. 

Table 5.1 System parameters used in the simulation 

Source Voltage (line-to-line RMS) Vs 16.48 kV 

DC-link Voltage Vdc 300 kV 

Winding number 1 N1 5 

Winding number 2 N2 86.76 

Filter Inductance Ls 0.0001 H 

Converter capacitance Cn 100 �F 

Grid frequency f 50 Hz 

Converter Switching frequency fsw 450 Hz 

5.1 Current vector control test 
The idea with this test is to see if the controller can handle step pulses. It is interest to see how quickly 
the reference values is reached and also if there are some problems with overshoot and oscillations. 
Step pulses will be applied to both *

di  and *
qi  to study the response of the control system works. 

5.1.1 Control model A 
Table 5.2 shows the parameters used in the current vector controller in these step response 
simulations. 

Table 5.2 Parameters of the current vector controller used in step response simulation 

Proportional gain Kpi 5 

Integral time constant Ti 0.003 s 

The first test is a step pulse added to the active current reference and the magnitude is 1 kA and the 
pulse length is 0.1 s. The reactive current reference is kept constant at zero during the simulation. The 
response of the active and reactive current is shown in Fig 5.1 and the grid currents are shown in Fig 
5.2. 
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Fig 5.1 Responses of the real and reactive current, id and iq, with a step pulse given to active current reference 

*
qi . The magnitude varies between 0 and 1 kA and the pulse width is 0.1 s, while the reactive current reference 

*
di is kept at 0 A. 

 

Fig 5.2 Currents Isa, Isb, Isc during a step pulse given to active current reference *
qi  

The current vector controller works and the reference value is reached within reasonable time. Some 
cross-coupling can be seen in Fig 5.1 but it is rather small. 

Another step pulse is given to the active current reference but now the magnitude is larger. The 
reactive current reference is still kept constant at zero during the simulation. In Fig 5.3 the response of 
the active and reactive current is shown and in Fig 5.4 the corresponding grid currents are presented. 
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Fig 5.3 Responses of the real and reactive current, id and iq, with a step pulse given to active current reference 

*
qi . The magnitude varies between 0 and 3 kA and the pulse width is 0.1 s, while the reactive current reference 

*
di is kept at 0 A. 

 

Fig 5.4 Currents Isa, Isb, Isc during a step pulse given to active current reference *
qi  

The current vector controller works and the reference values are reached. Since the step is now higher 
the cross-coupling becomes larger, especially when the active current goes from 3 kA to 0 kA. At that 
time the reactive current is higher than 1 kA, which is a large amount reactive power. 

The step response for the reactive current should now be tested. The first test is a step pulse with 
magnitude of 1 kA and pulse length of 0.1 s. Fig 5.5 shows the active and reactive current response 
and Fig 5.6 shows the grid currents during the step pulse. 
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Fig 5.5 Responses of the real and reactive current, id and iq, with a step pulse given to reactive current reference 

*
di . The magnitude varies between 0 and 1 kA and the pulse width is 0.1 s, while the active current reference *

qi  

is kept at 0 A. 

 

Fig 5.6 Currents Isa, Isb, Isc during a step pulse given to reactive current reference *
di  

The current vector controller handles also reactive current step as expected. Almost no cross-coupling 
can be seen and the reference value is reached in reasonably time. 

The next test is to increase the reference reactive current step and the magnitude is now 3 kA. The 
response of the active and reactive current is shown in Fig 5.7 and the grid phase currents are shown in 
Fig 5.8. 
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Fig 5.7 Responses of the real and reactive current, id and iq, with a step pulse given to reactive current reference 

*
di . The magnitude varies between 0 and 3 kA and the pulse width is 0.1 s, while the active current reference *

qi  

is kept at 0 A. 

 

Fig 5.8 Currents Isa, Isb, Isc during a step pulse given to reactive current reference *
di  

The current vector controller has for the first time problems. The reference value is reached after some 
time and the cross-coupling is the reason for that. In Fig 5.7 it can be seen that the active current 
changes more than expected. These problems are still small and the performance is satisfactory. 

The last test of the current vector controller is more advanced. Both reference currents will have steps 
and this simulates a normal usage of circuit, because both active and reactive power is changed and 
that is expected in normal operation. The reference active current makes a step from 0 to 1 kA at t 
equal to 0.2 s. It stays at that value until t equals 0.35 s, then it changes to -1, simulates power reversal. 
The reference reactive current makes a step pulse at t equals 0.25, magnitude is 1 kA and pulse length 
0.05 s. The active and reactive current can be seen in Fig 5.9 and the grid phase currents can be seen in 
Fig 5.10. 
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Fig 5.9 Responses of the real and reactive current, id and iq, with a step pulse given to active current reference 

*
qi . The magnitude varies between 1 and -1 kA and the pulse width is 0.15 s. A step pulse is also given to the 

reactive current reference *
di . The magnitude varies between 0 and 1 kA and the pulse width is 0.05 s. 

 

Fig 5.10 Currents Isa, Isb, Isc during steps in active current reference *
qi  and reactive current reference *

di  

The step response is good and the controller works as expected. Problem with cross-coupling occur at 
t equals 0.35 when step in reference active current is made. Otherwise the cross-coupling is small and 
can almost not be seen. The three-phase currents look also as expected with some harmonic content. 

5.1.2 Control model B 
Table 5.3 shows the parameters used in the current vector controller used in these step response 
simulations. 
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Table 5.3 Parameters of the current vector controller used in step response simulation 

Proportional gain Kpi 25 

Integral time constant Ti 0.0001 s 

A step pulse, magnitude 0.1 kA and pulse length 0.1 s, is given to the active current reference while 
the reactive current reference is kept constant at zero. In Fig 5.11 the response of the active and 
reactive currents are shown. In Fig 5.12 the grid phase currents and currents of the converter 1 can be 
seen. 

 
Fig 5.11 Responses of the real and reactive currents, idn and iqn, with a step pulse given to active current 

reference *
qi . The magnitude varies between 0 and 0.1 kA and the pulse width is 0.1 s, while the reactive current 

reference *
di  is kept at 0 A. 

 

Fig 5.12 Currents Ia1, Ib1, Ic1 and currents Isa, Isb and Isc during step in active current reference *
qi  
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As seen in Fig 5.11 the step response is not as good as in Fig 5.1, control model A. There is more 
oscillations and cross-coupling with this control model. The result is also seen in Fig 5.12 as the 
currents are not completely sinusoidal. The amplitude for the different phases is also different. 

Another step pulse, with amplitude varying between 0 and 0.3 kA and step length of 0.1, is given to 
the active current reference. During the simulation the reactive current reference is kept constant at 
zero. The response of the active and reactive currents is presented in Fig 5.13. The converter current 
for converter 1 and the grid currents are presented in Fig 5.14 

 
Fig 5.13 Responses of the real and reactive currents, idn and iqn, with a step pulse given to active current 

reference *
qi . The magnitude varies between 0 and 0.3 kA and the pulse width is 0.1 s, while the reactive current 

reference *
di  is kept at 0 A. 

 

Fig 5.14 Currents Ia1, Ib1, Ic1 and currents Isa, Isb and Isc during step in active current reference *
qi  
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Also for this step pulse the response is not as good as the respective test for control model A. 
Oscillations occur in both active and reactive current and the cross-coupling can easily be seen. The 
converter currents and the grid currents also here have problems with different amplitude for the 
phases. 

A step pulse is given to the reactive current reference and its magnitude is 0.1 kA and pulse length of 
0.1 s. The active current reference is in this case kept constant at zero. In Fig 5.15 the response of the 
active and reactive currents are shown. In Fig 5.16 the converter currents for converter 1 and the grid 
currents is shown. 

 
Fig 5.15 Responses of the real and reactive currents, idn and iqn, with a step pulse given to reactive current 

reference *
di . The magnitude varies between 0 and 0.1 kA and the pulse width is 0.1 s, while the active current 

reference *
qi  is kept at 0 A. 

 

Fig 5.16 Currents Ia1, Ib1, Ic1 and currents Isa, Isb and Isc during step in reactive current reference *
di  
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The step in reactive current reference does also lead to worse results than when control model A is 
used. There is noticeable overshoot for the reactive current together with oscillations. In the active 
current can cross-coupling be seen, which lead to oscillations in active current. These oscillations are 
seen in Fig 5.16 as the amplitudes for the different phases can easily be seen. 

Another step pulse is given to the reactive current reference, the magnitude is now 0.3 kA and the 
pulse length is kept at 0.1 s. The active current reference is still kept constant at zero. The response of 
the active and reactive currents can be seen in Fig 5.17. The converter currents for converter 1 and the 
grid currents can be seen in Fig 5.18. 

 
Fig 5.17 Responses of the real and reactive currents, idn and iqn, with a step pulse given to reactive current 

reference *
di . The magnitude varies between 0 and 0.3 kA and the pulse width is 0.1 s, while the active current 

reference *
qi  is kept at 0 A. 

 

Fig 5.18 Currents Ia1, Ib1, Ic1 and currents Isa, Isb and Isc during step in reactive current reference *
di  
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The result of the step pulse given to the reactive current reference is remarkable. The peak value for 
the active current is over 0.2 kA but it should be zero. Also the overshoot for the reactive current is 
high, is peaks around 0.5 kA. Oscillations are seen both the reactive and active current and there 
amplitude varies rather much. These problems are easily seen in Fig 5.18 as the currents in the 
beginning of the step do not look like sinusoidal waves. There are also problems with amplitude 
difference between the phases. 

The last step test for the control model B is a little bit advanced than other tests. In this case both 
reference currents will have steps. The first step is for the active current reference, which at t=0.2 
makes a step from zero to 0.1 kA. It stays at 0.1 kA until t=0.35 and then it makes a step to -0.1 kA. 
The reactive current reference is kept at zero until t=0.25 and then a step pulse is given. The 
magnitude for the pulse is 0.1 kA and the pulse length is 0.05 s. These steps simulate changes in both 
the active and reactive power. During normal operation the controller must be able to handle steps in 
both currents. In Fig 5.19 the response of the active and reactive currents is shown. In Fig 5.20 the 
converter currents for converter 1 and the grid currents are shown. 

 
Fig 5.19 Responses of the real and reactive current, id and iq, with a step pulse given to active current reference 
*
qi . The magnitude varies between 0.1 and -0.1 kA and the pulse width is 0.15 s. A step pulse is also given to the 

reactive current reference *
di . The magnitude varies between 0 and 0.1 kA and the pulse width is 0.05 s. 
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Fig 5.20 Current Ia1, Ib1 and Ic1 and currents Isa, Isb, Isc during steps in reference active current *
qi  and reference 

reactive current *
di  

Fig 5.20 shows the problems that now occur. The currents are not smooth sinusoidal waves and the 
amplitude for the phases also differs. The reason for these is the oscillations that occur in the active 
and reactive currents. The active and reactive current oscillates all the time during the steps and that is 
due to cross-coupling. The overshoot for the currents are also high which leads to too high power. 

5.1.3 Conclusions 
From the simulation results of the current vector controller conclusions can be made. By comparing 
the results from the test with control model A and B it is seen that the current vector controller for 
control model A works better. Still the current vector controller is not perfect but the cross-coupling 
for control model A is compared to those in control model B are insignificant. The oscillations seen in 
the step responses for control model B are not seen in responses for control model A. The difference 
between the two models is best seen in the last test when both active reference and reactive current 
reference exposed to steps. Control model A handles it very well and only once of cross-coupling term 
can be seen. Control model B can not handle the steps and both reactive and active current oscillates. 
The resulting three-phase currents are not sinusoidal waves as when control model A is used. From 
this test it can be concluded that the current vector controller in model B does not work properly. It is 
maybe possible to do some changes to it to get it to work better. The result from model A is 
satisfactory. Model B seems to be the worst alternative. 

For both control models more tests are needed. These tests have been run but further tests are needed. 
The control parameters need some more investigation and it most likely that the performance for both 
control models can be increased when adjusting the control parameters. 

5.2 DC-link voltage control test 
This test is used to test the control models to see if they can control the DC-link voltage. The test is 
performed by simulating a load current at the DC side of the converters. The control dynamics are 
tested by changing the load current. Additionally, a step has been added to the reactive current 
reference and the response of the system has been studied. The results are divided in two parts, one 
part for results from the control model A and another part for results from the control model B. 
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5.2.1 Control model A 
Table 5.4 shows the control parameters used in the current vector controller and the DC-link voltage 
controller in these simulations. 

Table 5.4 Parameters of the Current Vector Controller (CVC) and DC-link controller used in the 
simulations 

Proportional gain, CVC Kpi 5 

Integral time constant, CVC Ti 0.003 s 

Proportional gain, DC-link Kpdc 1 

Integral time constant, DC-link Tidc 0.01 s 

The first test is done by changing the load current, Idc, and at t=0.3 it changes from 0.05 kA to 0.2 kA. 
This simulates an increase of active power transmission and in Fig 5.21 the resulting DC-link voltage 
and the load current are shown. In Fig 5.21 the DC voltage for the converters is shown and in Fig 5.22 
the active current reference and the response of active current are shown. 

 

 
Fig 5.21 DC-link voltage Vdc and current Idc during step in load current, from 0.05 kA to 0.2 kA 
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Fig 5.22 Voltages Vdc1, Vdc2, Vdc3 and Vdc4 during step in load current, from 0.05 kA to 0.2 kA 

 

Fig 5.23 Current Iq and active current reference *
qi  during step in load current, from 0.05 kA to 0.2 kA 

The result shows that the DC-link voltage controller works and the reference DC voltage are reached 
after the step in the load current is made. The DC voltage dips at approximate 280 kV and that can be 
seen as a rather big dip. The DC voltage does not have an overshoot when it tries to reach the 
reference value. The DC voltages for the converters show on the other hand some problems. The DC-
link voltage is not distributed uniformly on the DC voltages for the converters. They are also not 
constant and increasing and decreasing respectively. The step response for the active current does 
show some good results. The active current is able to follow the active current reference which means 
that the control system can provide the circuit with the amount of active power that it needs. 

The next test involves power reversal since the load current is changed from 0.2 kA to -0.2 kA at 
t=0.35. The resulting DC-link voltage and the DC load current are presented in Fig 5.24. The DC 
voltages for the converters are presented in Fig 5.25 and in Fig 5.26 the reference active current and 
the response of the active current are presented. 
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Fig 5.24 DC-link voltage Vdc and current Idc during step in load current, from 0.2 kA to -0.2 kA 

 
Fig 5.25 Voltages Vdc1, Vdc2, Vdc3 and Vdc4 during step in load current, from 0.2 kA to -0.2 kA 
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Fig 5.26 Current Iq and active current reference *
qi  during step in load current, from 0.2 kA to -0.2 kA 

The result shows that the DC-link voltage controller can control the DC-link voltage during a power 
reversal. The DC-link voltage peaks at approximate 345 kV but after that it returns to the reference 
value. The individual DC voltages for converters shows some unbalance and the voltages are not kept 
constant. While the current response is working well and the reference value is followed by the active 
current. 

The last test of the DC-link voltage performance is to make a step in the reference reactive current 
before a power reversal. The reference reactive current makes a step at t=0.3 and the amplitude 
changes from 0 kA to 1 kA. At t=0.35 the DC load current changes polarity, from 0.2 kA to -0.2 kA. 
In Fig 5.27 the DC-link voltage is shown together with the DC load current. The DC voltages for the 
converters are shown in Fig 5.28 and in Fig 5.29 the response of the active and reactive current is 
shown. 
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Fig 5.27 DC-link voltage Vdc and current Idc during step in load current, from 0.2 kA to -0.2 kA, and step in 

reactive current reference *
di  

 

 
Fig 5.28 Voltages Vdc1, Vdc2, Vdc3 and Vdc4 during step in load current, from 0.2 kA to -0.2 kA, and step in 

reactive current reference *
di  
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Fig 5.29 Current Iq and Id and reference active current *
qi  and reactive current reference *

di  during step in load 

current, from 0.2 kA to -0.2 kA, and step in reactive current reference *
di  

The DC-link voltage controller works as expected and the DC-link voltage is almost none affected by 
the step in the reactive current reference. The change of polarity of the DC load current leads to a peak 
in the DC-link voltage. It peaks is at approximate 348 kV and after it goes back to the reference value. 
The DC voltages for the converters are also here unbalanced and the same phenomena with increasing 
respectively deceasing voltages are also seen. The step response for the active and the reactive current 
is looking good. The only problem is a peak at t=0.35 for the reactive current, probably some sort of 
cross-coupling happening there. 

5.2.2 Control model B 
Table 5.5 shows the control parameters used in the current vector controller and the DC-link voltage 
controller in these simulations. 

Table 5.5 Parameters of the Current Vector Controller (CVC) and DC-link controller used in the 
simulations 

Proportional gain, CVC Kpi 25 

Integral time constant, CVC Ti 0.0001 s 

Proportional gain, DC-link Kpdc 0.001 

Integral time constant, DC-link Tidc 1 s 

Problems occur during start of the DC-link voltage controller in control model B. Therefore it is not 
possible to run the tests which were used for control model A. In Fig 2.1 the four active converter 
currents are shown and it is during the start of the DC-link voltage controller. In Fig 5.31 the DC-link 
voltage and the DC voltages for the converters are shown and it is also during the start up. 
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Fig 5.30 Currents Iq1, Iq2, Iq3 and Iq4 and active currents reference *
1qi , *

2qi , *
3qi  and *

4qi  during start up of DC-

link voltage controller 

 
Fig 5.31 DC-link voltage Vdc and converter DC voltages Vdc1, Vdc2, Vdc3 and Vdc4 during start of DC-link voltage 

controller 

The problem that can be seen is that the active converter currents are not able to follow the reference 
active currents, which are fed from the DC-link voltage controller. Two of the currents increase 
rapidly while the other two decreases. This results in problems for the DC voltages. As can be seen in 
Fig 5.31 the DC-link voltage reaches the reference value once but is not able stay at the value. Instead 
it decrease and varies a lot. The DC voltage for the converters shows some differences. Two of the 
voltages become zero after some time and the other two varies a lot. This variation in the DC voltages 
makes it impossible to simulate DC load current changes. This result also demonstrates how important 
the current vector controller is for the DC-link voltage controller. 
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5.2.3 Conclusions 
From the results of the DC-link voltage control test some conclusions can be made. The first thing is 
that the DC-link voltage control in control model B is not working at all. It is able to reach the 
reference value but it is not able to keep the DC-link voltage at the reference value. The reason for this 
is probably the connection of the transformer. The transformer is series connected on the grid side and 
therefore the same current is floating all the windings. The current controller can not control the 
converter currents individually which is seen in Fig 5.30. The reference currents are different but the 
active currents for the converters are the same. The idea with DC-link voltage control in model B is to 
control DC voltage for each converter and then the active currents reference should and are not the 
same. Therefore control B is not working and probably it is not possible to get to work. 

The DC-link voltage control in control model A on the other hand work very well. Maybe the peaks 
and the dips are a bit large but still the control brings the voltage back to the reference value. 
However, it is not working without problems. The unbalance of the DC voltage for the converters may 
cause some problems with instability. The constant increase and decrease of the voltage may also be a 
problem. To be able to say that control model A is working correctly more tests need to be done. 
Especially long time tests were the unbalance in the DC voltage for the converters are investigated. 
Perhaps it is possible to make some changes to the control model so the unbalance can be limited. 

The control parameters for the control models need more investigation. Very little time has been spent 
on adjusting the parameters and it is very likely that performance can be increased with changes made 
to the control parameters. 

5.3 Summary 
The simulations presented here have tested the two control models that were described in Chapter 4. 
The first part of simulations was test of the current vector controller for the two models. It has been 
shown that the current vector controller for the control model A could handle the step responses better 
than the current vector controller for control model B. The step response for control model A did not 
include as much oscillations as the step response for control model B. Almost no cross-coupling was 
seen in the response for model A but was easily seen in the response for model B. It was concluded 
that the current vector controller in model A was working much better. 

The second part of the simulations was to test the DC-link voltage control for the control models. 
Rather quickly it was seen that the DC-link voltage control in control model B was not working at all. 
It was assumed that the cause for this was the transformer connection on the grid side. The connection 
makes it impossible to individually control the different converter currents. 

The DC-link voltage control in control model A on the other hand worked well and was able to control 
the DC-link voltage. It could also keep the DC-link voltage during load current disturbances. It was 
concluded that only one of the control models was able to fulfil the objective of the thesis. The control 
model A did also have some problems. The DC voltage for each converter was not evenly distributed 
and that may lead to instability in the whole system. More tests are needed before it is possible to say 
that the control model A works in all cases. These simulations have had short durations, none of them 
exceeded 0.5 seconds. Therefore long time tests are required before it can be said that the models work 
correctly. 
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6 Conclusions and future work 
In this thesis the voltage source converter was discussed. The background and the aim of the thesis 
were briefly discussed. HVDC was presented in Chapter 2 and it contained information what it is, how 
it works and also its history. Different kinds of HVDC technologies were discussed and theirs 
differences, advantages and disadvantages were also discussed. 

The next part of the thesis was a presentation of the voltage source converter in detail. First the circuit 
was discussed and how it can be used to get the signal that is wanted. This is done by using pulse 
width modulation and three different PWM techniques were presented. A control system for a voltage 
source converter was derived. It was divided into two parts, one current controller and one DC-link 
voltage controller. For the current controller a simplified model of the voltage source converter was 
derived and it was used for the derivation of the PI controller. For the DC-link voltage controller 
expressions for the DC quantities were derived. A control system for the DC-link voltage control was 
derived and the chapter ended with simulation test of the two control parts. The first simulation test 
was to check if the current controller could handle step pulses and see how the system performed. It 
was seen that the control system had no problems with the step pulses and the control system 
performed as thought. The other simulation test was a test of the DC-link voltage controller and it was 
performed on two different controllers, one without feed-forwarding of the load current and one with 
feed-forwarding of the load current. Both control systems were exposed to load disturbances and they 
were able to control the DC-link voltage. 

Chapter 4 contained a further development of the voltage source converter that was presented in 
Chapter 3. Instead of having one voltage source converter the circuit contained four voltage source 
converter connected in series. Between the grid and the converters a transformer was connected and 
the transformer was connected in series on the grid side. The reason for the connection was that a 
multilevel grid voltage waveform was created. In this way the filter rating can be reduced. The series 
connection of the converters gave the possibility to use harmonic elimination by phase shifting. It is a 
technique that works by phase shifting the carrier waves for the converters PWM modules. This leads 
to less harmonic content and the filter capacity can be reduced. That was done when the phase reactor 
from Chapter 3 was removed from the circuit. The used PWM technique was briefly discussed and 
two different control models were derived. Their aim was to control the active current, the reactive 
current and the DC-link voltage. Control model A worked by seeing the four converters as one large 
converter and the same reference signals are fed to the converters. In this way only one current 
controller and one DC-link voltage controller was needed. The control system from Chapter 3 was 
used. Control model B on the other hand worked by controlling each converter independent. That gave 
four current controllers and four DC-link voltage controllers, which made the system more complex 
but also makes it possible to control the DC voltages for the converters. 

In Chapter 5 simulations were performed for both control models. The tests were divided into two 
parts, step response test and DC-link voltage test. The step response test was performed first and it was 
shown that control model A worked better than control model B. The DC-link voltage test was 
performed on both control models but here unexpected result was obtained. Control model B was not 
able to control the DC-link voltage and the reason for that is transformer connection on the grid side. It 
is impossible to control the converter currents individually since the current is flowing through the 
transformer windings is the same. But control model A was able to control the DC-link voltage and 
worked as thought. The conclusion after the simulation tests was that more testes are needed to draw 
the conclusion that control model A works in all cases. 

6.1 Conclusions 
First of all control model A works as thought during the tests that have been performed. The step 
response for the currents is good and a small amount of cross-coupling could be seen. Probably is it 
possible to get even better performance out from the current controller if further time is spent on 
choosing the control parameters. To be able to say that the current controller can handle all kind of 
steps further tests must be performed, especially for high step values. 
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Secondly, the DC-link voltage control in control model A manages the task but questions regarding 
the unbalance of the DC voltages for the converter were emerged. This unbalance and the increase and 
the decrease of the voltages may lead to stability problems for the controller. Therefore it is not 
possible to say that the DC-link voltage controller works as thought. Further test and especially long 
time tests of the DC-link voltage controller need to be performed. The capacitance value for the 
converters can maybe diminish these problems. 

Control model B works not satisfactory. The step response for the current controller is not as good as 
when control model A is used. Problems with cross-coupling occur and both signals have problems 
with oscillations. Perhaps it is possible to make some changes and in that way make the current 
controller to work better. The limit of time has made it impossible in this thesis to look at it. 

The DC-link voltage controller in control model B does not work at all. It was seen it could not even 
make a start. The control system was designed to control the DC voltage for each converter 
individually. However it is impossible to control the converter currents independently. The series 
connection of the transformer leads to that the same currents floats in the transformer windings. 
Therefore the converter currents for the converters are all the same. Converter current A for converter 
1 is the same as the converter current A for converter 2, 3 and 4. This makes the whole idea of the 
control system to fail. The thought was that the converter currents for the converters should be 
different and in this way control the DC voltages for the converters. Perhaps a change to circuit can 
make the control system work but at this time it seems unlikely. 

Finally, another problem with control model B needs to be addressed. The transformer makes that 
there is a phase difference between the grid currents and the converter currents. This is not so 
important for control model A but for control model B it is. When looking at the active and reactive 
currents for the converters and comparing these to the active and reactive current of grid currents, the 
phase difference is seen. The current controller in control model B does what it is supposed to do and 
both currents are equal to the reference value. Then the active and reactive current of the grid current 
are not having the same load angle. The control system is supposed to control the system so that only 
active current is transmitted. Since load angle difference will result to a different load angle for the 
grid currents are not the same as the load angle for the converter currents. In reality the system 
delivers both active and reactive current. 

6.2 Future work 
Due to the limited time of the thesis work some parts have not been investigated. The most important 
thing needs to be looked at is the unbalance of the DC voltages for the converters when control model 
A is used. It was seen that the DC-link voltage was not uniformly distributed over the converter 
capacitances. This should be looked at to see if this lead to stability problems for the control system 
and if it is possible to diminish the unbalance. Maybe the capacitor value can be changed so that the 
unbalance becomes less. 

Secondly, the control parameters have not been optimised and perhaps it is possible to increase the 
controllers performance is this way. Feed-forwarding of the load current should be tested in the DC-
link voltage controller to see if this also leads to better performance. 

In all simulation tests SPWM has been used and the optimised PWM has not been tested. This should 
also be tested to see if the control performance can be improved. 

A further look at control model B should be done to verify if it is possible to increase the performance. 
Perhaps some changes to the circuit can optimise the control system. At the moment it is too early to 
disregard it, just based on this first, initial investigation. 

The control models need to be tested for eight converters connected in series. 
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Appendix A   
 
Transformation for Three-phase systems 
This appendix describes how the voltages and the currents are transformed between a three-phase 
system and a ��-frame, and between a ��-frame and a dq-frame. This is an important tool that is used 
in the controller. The dc quantities that are obtained are easier to control. 

A.1 Transformation between three-phase system and ��-
frame 

The three-phase quantities xa(t), xb(t) and xc(t) can be transformed into a vector αβx  in the fixed two-

axis coordinate system, called ��-frame. The vector is defined as 
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where K is a scaling constant and in this thesis its equal to 2 divided by 3. 

The transformation is described in a matrix form in Equation A.2. 
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The inverse transformation matrix is described in Equation A.3. 
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The active power is calculated be using Equation A.4. 

( )ββαα iuiuP ⋅+⋅=
2
3

 (A.4) 

A.2 Transformation between ��-frame and dq-frame 
Vector αβx  rotates in the ��-frame with the angular frequency 	(t) in the positive direction, 

anticlockwise. A dq-frame is placed in the ��-frame and synchronised with a vector that is rotating 
with the same angular frequency as the vector αβx . In this way the vector αβx  will appear as fixed 

vector in that frame. The components of αβx  in the dq-frame are given by the projection of the vector 

on the synchronisation vector and the orthogonal projection, seen in Fig A.1. 
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Fig A.1 Relation between ��-frame and dq-frame 

The transformation written in vector form 

αβ
θ xex j

dq ⋅= − )(  (A.5) 

where the angle 
(t) is given by 

dt�= ωθ  (A.6) 

The inverse transformation from dq-frame to ��-frame is given by 
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αβ  (A.7) 

The transformation from ��-frame to dq-frame matrix is written as 
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And the inverse matrix is 
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Appendix B   
 
Implementation of a VSC in PSCAD/EMTDC 
The objective of this chapter is to describe how a control system for a VSC has been implemented in 
PSCAD/EMTDC. The different parts in the simulation model are described one by one. 

B.1 System 
Figure below shows how the simulation model looks like, the model consist of a grid, a RL filter and a 
VSC. This model is used in simulation of the current vector controller. 

 
Fig B.1 The simulation model used for the simulation. 

For the simulation of the DC-link voltage controller the VSC below, Fig B.2, is used. The difference 
compared to Fig B.1 is that the two voltage sources are replaced with a current source. 

 
Fig B.2 The VSC used for the simulation of the DC-link voltage controller. 
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B.2 Implementation of current controller in 
PSCAD/EMTDC 

The simulation model which is shown in Fig B.1 has been used and the controller that was presented 
in Chapter 3 has been built. Fig 3.2 shows an overview of the current controller and below the 
implementation of the different blocks is presented. 

B.2.1 Transformation from three-phase system to dq-frame 
The transformation of the three-phase quantities into the dq-frame is done in two steps. The first step 
is to transform the quantities to the ��-frame and then from the ��-frame to the dq-frame. The phase 
voltages and the currents in Fig B.1 are transformed to the dq-frame. That is done be implementing 
Equations (A.2) and (A.8). Fig B.3 shows how the d-component of the phase voltages have been 
calculated and Fig B.4 shows how the q-component was calculated. The transformation of the currents 
is done in the same way. The only thing that is done is that the voltages in the figures are changed to 
respective current. 

 
Fig B.3 Creation of d-component 

The transformation is made as can seen in the figures in two steps. First an amplitude invariant 
transformation from the three-phase system to the ��-frame, it creates the quantities Vs� and Vs�. That 
is then followed by a transformation from ��-frame to dq-frame. In figures that is the change from Vs� 
and Vs� to Vsd and Vsq. 

 
Fig B.4 Creation of q-component 

In Section B.2.2 the calculation of the transformation angle is described. 
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B.2.2 Calculation of transformation angle 
The transformation angle is very important in the controller and its object is to make the 
synchronisation with the grid correct. It is used when the transformation from ��-frame to the dq-
frame is done and in that way the dq-frame is synchronised with the grid. In this simulation the voltage 
vector V�� is defined to be parallel with the q axis in the dq-frame and the transformation angle is 
defined as 
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V
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How the implementation in PSCAD/EMTDC is done can be seen in Fig B.5. Vs� and Vs� are the phase 
voltages which have been transformed to the ��-frame. 

 
Fig B.5 Implementation of calculation of transformation angle in PSCAD/EMTDC 

B.2.3 Current vector controller 
The heart in the whole current controller is the current vector controller with PI controller, decoupling 
and feed-forwarding of the voltage. It is presented in Fig B.6 and it is divided into two parts, one for 
the d-component and one for the q-component. 

 
Fig B.6 The current vector controllers, the upper is the controller for the current Id and lower is the controller for 

the current Iq. 
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Id_ref and Iq_ref are reference currents that the controller is thought to follow. The decoupling terms are 
the signals that are received when the currents are multiplied with reactance XL, the grids reactance. 
The feed-forwarding is simply done by adding Vsq and Vsd to respective output signal. The output 
signal consists of two voltages. They represent the phase voltages at the AC side of the VSC in the dq-
frame. These goes then into the modulation index and load angle block. 

B.2.4 Calculation of modulation index and load angle 
The signals that are received from the vector controller, voltages in the dq-frame, must be transformed 
to three-phase signals. In this simulation this is done in two steps, first the modulation index and the 
load angle are calculated and after that the three-phase reference voltages are created. This is presented 
in Fig B.7 and Fig B.8. The other part is presented in Section B.2.5. 

 
Fig B.7 Calculation of the load angle is implemented 

Fig B.7 shows how the load angle is calculated and the mathematical expression is 
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Besides calculating the load angle there is a hard-limit avoiding high angle values. Through this way 
the possibility to transfer a high amount of power is limited, which could otherwise damage the circuit. 

 
Fig B.8 Calculation of modulation index 

Fig B.8 shows how the calculation of the modulation index is implemented in PSCAD/EMTDC and 
below is the equation that is used in the implementation. 
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Also for the modulation index there is a hard-limit and its purpose is to avoid a to high and low 
modulation index. If the modulation index would have a value higher than one then overmodulation is 
reached and a too low value leads to more harmonic contents. The goal is to have the modulation 
index within a span and in that way have a good operation of the system. Both the modulation index 
and the load angle are then input signals to the block which creates the three-phase reference voltages. 

B.2.5 Creation of reference signals 
To be able to create signals to the transistors some reference signals to the PWM is required. These are 
created from the modulation index and the load angle, and the calculations can be seen in Section 
B.2.4. In Fig B.9 the creation of the reference signals are presented. 
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Fig B.9 Creation of three-phase reference voltages 

Input signal to the block are modulation index m and load angle � and out from the block comes three 
reference signals with peak value of one. The three signals represent the fundamental phase voltages at 
the AC side of the VSC. Thus there is a phase difference of 120 degrees between them and the output 
signal then goes to the PWM block. 

B.2.6 Creation of gate pulses to the switches 
The creation of gate pulses is done in a following way, each reference signal is compared to a 
triangular wave. The triangular wave has a predetermined frequency, which also determines the 
switching frequency for the transistors. If the reference signal has a higher value than the triangular 
wave then the output is high. Instead if the reference signal has a lower value than triangular wave the 
output is low. When the output is high this means that the output signal has a value of one and with 
low is means that the output signal is zero. In this way a pulse train is created and it decides if the 
transistor should be on or off. In Fig B.10 it is shown how the implementation in PSCAD/EMTDC is 
done and there are three of these blocks, one for each phase. The output signal pwmA is taken to a 
block which creates the digital signals that the IGBTs use. 

 
Fig B.10 The creation of the gate pulses 

B.3 Implementation of DC-link voltage controller in 
PSCAD/EMTDC 

As mentioned earlier, in this part the VSC in Fig B.1 has been changed to the VSC shown in Fig B.2. 
The controller is described in detail in Chapter 3.4 and an overview of the controller can be seen in Fig 
3.7. Below the different parts of the controllers are presented. 

B.3.1 DC-link voltage controller without feed-forwarding of the load 
current 

The DC-link voltage controller in this case consists of only a PI controller and it is shown in Fig B.11. 
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Fig B.11 Without feed-forwarding of the load current 

Vdc_ref is the DC reference voltage that the controller is supposed to track and it is compared to the 
measured voltage Vdc. The output signal from the controller is the reference current Iq_ref and it is then 
fed into the active current Iq’s controller, which can be seen in Fig B.5. The block which is in between 
the PI controller and the subtraction is used during start of the controller. During a short time the 
parameter block has the value zero and at that time the output from the controller is also zero. After 
that the parameter has the value one and does not affect the behaviour of the controller. 

B.3.2 DC-link voltage controller with feed-forwarding of the load 
current 

This controller is used when feed-forwarding of the load current is desired and differs on one point 
from the controller in B.3.1. That is Iload is added together with the output signal from the PI controller. 
In Fig B.12 the controller can be seen.  

 
Fig B.12  With feed-forwarding of the load current 

Vdc_ref is the DC reference voltage that the controller is supposed to follow and it is compared to the 
measured voltage Vdc. The output from the PI controller is add together with the signal Iload and the 
sum of these signals becomes the output from the controller, the reference current Iq_ref. It is then fed to 
the active current Iq’s current vector controller, which can be seen in Fig B.5. In Section B.3.3 the 
calculation of Iload is described. The block which is in between the PI controller and the subtraction is 
used during start of the controller. During a short time the parameter block has the value zero and at 
that time the output from the controller is also zero. After that the parameter has the value one and 
does not affect the behaviour of the controller. 

B.3.3 Scaling of the load current 
Equation (B.5) and (B.6) express the active power at respective side of the VSC. If it is assumed that 
the power transmitted on the ac and dc side is the same and those losses in the converter and the filters 
are neglected. 
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The load on the DC side is only an active power load and therefore iq is written as 

)()( titi loadq =  (B.8) 

Inserting (B.8) into (B.7) and after some rewriting following expression is given 
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The implementation of Equation (B.9) is shown in Fig B.13. 

 
Fig B.13  The scaling of the load current 

Vdc1 is the measured DC-link voltage, Vsq is the q-component of the grid voltage and Idc is the current 
measured at the DC side of the VSC. 
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Appendix C   
 
Implementation of control model A in PSCAD/EMTDC 
The objective of this chapter is to describe how the control system for control model A, described in 
Chapter 4, have been implemented in PSCAD/EMTDC. The different parts in the simulation model 
are described one by one. 

C.1 System 
In Fig C.1 the circuit that is used for the simulation test of the current vector controller is shown. For 
the simulation test of the DC-link voltage control the circuit differs on one point. The two voltage 
sources on the DC-link are removed and instead there is a current source. The current source is used to 
simulate load disturbances. 

 
Fig C.1 Simulation circuit used when testing control model A 
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C.2 Implementation of current controller in 
PSCAD/EMTDC 

The simulation model which is shown in Fig C.1 has been used and the controller that was presented 
in Chapter 4 has been built. Fig 4.6 shows an overview of the current controller and below the 
implementation of the different blocks is presented. 

C.2.1 Transformation from three-phase system to dq-frame 
The transformation of the three-phase quantities into the dq-frame is done in two steps. The first step 
is to transform the quantities to the ��-frame and then from the ��-frame to the dq-frame. The phase 
voltages and the currents in Fig C.1 are transformed to the dq-frame. That is done be implementing 
Equations (A.2) and (A.8). Fig C.2shows how the d-component of the phase voltages have been 
calculated and Fig C.3shows how the q-component was calculated. The transformation of the currents 
is done in the same way. The only thing that is done is that the voltages in the figures are changed to 
respective current. 

 
Fig C.2 Creation of d-component 

The transformation is made as can be seen in the figures in two steps. First an amplitude invariant 
transformation from the three-phase system to the ��-frame, it creates the quantities Vs� and Vs�. That 
is then followed by a transformation from ��-frame to dq-frame. In figures that is the change from Vs� 
and Vs� to Vsd and Vsq. 

 
Fig C.3 Creation of q-component 

In Section C.2.2 the calculation of the transformation angle is described. 

C.2.2 Calculation of transformation angle 
The transformation angle is very important in the controller and its object is to make the 
synchronisation with the grid correct. It is used when the transformation from ��-frame to the dq-
frame is done and in that way the dq-frame is synchronised with the grid. I this simulation the voltage 
vector V�� is defined to be parallel with the q axis in the dq-frame and the transformation angle is 
defined as 
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How the implementation in PSCAD/EMTDC is done can be seen in Fig C.4. Vs� and Vs� are the phase 
voltages which have been transformed to the ��-frame. 

 
Fig C.4 Implementation of calculation of transformation angle in PSCAD/EMTDC 

C.2.3 Current vector controller 
The heart in the whole current controller is the current vector controller with PI controller, decoupling 
and feed-forwarding of the voltage. It is presented in Fig C.5 and it is divided into two parts, one for 
the d-component and one for the q-component. 

 
Fig C.5 The current vector controllers, the upper is the controller for the current Id and the lower is the controller 

for the current Iq 

Id_ref and Iq_ref are reference currents that the controller is thought to follow. The decoupling terms are 
the signals that are received when the currents are multiplied with XL, the grids reactance. The feed-
forwarding is simply done by adding Vsq and Vsd to respective output signal. The output signal consists 
of two voltages. They represent the phase voltages reference for the VSC in the dq-frame. These two 
are then fed into the modulation index and load angle block. 

C.2.4 Calculation of modulation index and load angle 
The signals that are received from the vector controller, voltages in the dq-frame, must be transformed 
to three-phase signals. In this simulation this is done in two steps, first the modulation index and the 
load angle are calculated and after that the three-phase reference voltages are created. This is presented 
in Fig C.6 and Fig C.7. The other part is presented in Section C.2.5. 
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Fig C.6 Calculation of the load angle is implemented 

Fig C.6 shows how the load angle is calculated and the mathematical expression is 
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Besides calculating the load angle there is a hard-limit, avoiding high angle values. Through this way 
the possibility to transfer a high amount of power is limited, which could otherwise damage the circuit. 

 
Fig C.7 Calculation of modulation index 

Fig C.7 shows how the calculation of the modulation index is implemented in PSCAD/EMTDC and 
below is the equation that is used in the implementation. 
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Also for the modulation index there is a hard-limit and its purpose is to avoid a to high and low 
modulation index. If the modulation index would have a value higher than one then overmodulation is 
reached and a too low value leads to more harmonic contents. The goal is to have the modulation 
index within a span and in that way have a good operation of the system. Both the modulation index 
and the load angle are then input signals to the block which creates the three-phase reference voltages. 

C.2.5 Creation of reference signals 
To be able to create signals to the transistors some reference signals to the PWM is required. These are 
created from the modulation index and the load angle and the calculations can be seen in Section 
C.2.4. In Fig C.8 the creation of the reference signals are presented. 

 
Fig C.8 Creation of three-phase voltages 
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Input signal to the block are modulation index m and load angle � and out from the block comes three 
reference signals with peak value of one. The three signals represent the fundamental phase voltages at 
the AC side of the VSC. Thus there is a phase difference of 120 degrees between them and the output 
signal then goes to the PWM block. 

C.2.6 Creation of gate pulses to the transistors 
The creation of gate pulses is done in a following way, each reference signal is compared to a 
triangular wave. The triangular wave has a predetermined frequency, which also determines the 
switching frequency for the transistors. If the reference signal has a higher value than the triangular 
wave then the output is high. Instead if the reference signal has a lower value than triangular wave the 
output is low. When the output is high this means that the output signal has a value of one and with 
low is means that the output signal is zero. In this way a pulse train is created and it decides if the 
transistor should be on or off. In Fig C.9 it is shown how the implementation in PSCAD/EMTDC is 
done and there are three of these blocks, one for each phase. The output signal pwmA is taken to a 
block which creates the digital signals that the IGBTs use. 

 
Fig C.9 The creation of the gate pulses 

C.3 Implementation of DC-link Voltage Controller in 
PSCAD/EMTDC 

As mentioned earlier, in this part the circuit in Fig C.1 has been changed. The controller is described 
in detail in Chapter 4 and an overview of the controller can be seen in Fig 4.6. Below the different 
parts of the controllers are presented. 

C.3.1 Scaling of DC-link voltage 
The scaling of the reference DC-link voltage and the measured DC-link voltage can be seen in Fig 
C.10. 

 
Fig C.10 Calculation of scale factor and vector scaling 

The scaling is need since the DC-link voltage is measured on the converter side of the transformer. 
The scaling factor is 
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C.3.2 DC-link voltage controller 
The DC-link voltage controller in this case consists of a PI controller and it is shown in Fig C.11. 
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Fig C.11  DC-link voltage controller 

Vdc_ref is the DC reference voltage that the controller is supposed to track and it is compared to the 
measured voltage Vdc. The output signal from the controller is the reference current Iq_ref and it is then 
fed into the active current Iq’s controller, which can be seen in Fig C.5. The block which is in between 
the PI controller and the subtraction is used during start of the controller. During a short time the 
parameter block has the value zero and at that time the output from the controller is also zero. After 
that the parameter has the value one and does not affect the behaviour of the controller. 
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Appendix D   
 
Implementation of control model B in 
PSCAD/EMTDC 
The objective of this chapter is to describe how the control system for control model B, described in 
Chapter 4, have been implemented in PSCAD/EMTDC. The different parts in the simulation model 
are described one by one. 

D.1 System 
In Fig D.1Fig C.1 the circuit that is used for the simulation test of the current vector controller is 
shown. For the simulation test of the DC-link voltage control the circuit differs on one point. The two 
voltage sources on the DC-link are removed and instead there is a current source. The current source is 
used to simulate load disturbances. 

 
Fig D.1 Simulation circuit used during test on control model B 
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D.2 Implementation of current controller in 
PSCAD/EMTDC 

The simulation model which is shown in Fig D.1 has been used and the controller that was presented 
in Chapter 4 has been built. Fig 4.10 shows an overview of the current controller and below the 
implementation of the different blocks is presented. 

D.2.1 Transformation from three-phase system to dq-frame 
The transformation of the three-phase quantities into the dq-frame is done in two steps. The first step 
is to transform the quantities to the ��-frame and then from the ��-frame to the dq-frame. The phase 
voltages and the currents in Fig D.1 are transformed to the dq-frame. That is done be implementing 
Equations (A.2) and (A.8). Fig D.2 shows how the d-component of the phase voltages have been 
calculated and Fig D.3 shows how the q-component was calculated. The transformation of the currents 
is done in the same way. The only thing that is done is that the voltages in the figures are changed to 
respective current. 

 
Fig D.2  Creation of d-component 

The transformation is made as can seen in the figures in two steps. First an amplitude invariant 
transformation from the three-phase system to the ��-frame, it creates the quantities Vs� and Vs�. That 
is then followed by a transformation from ��-frame to dq-frame. In figures that is the change from Vs� 
and Vs� to Vsd and Vsq. 

 
Fig D.3 Creation of q-component 

In Section D.2.2 the calculation of the transformation angle is described. 

D.2.2 Calculation of transformation angle 
The transformation angle is very important in the controller and its object is to make the 
synchronisation with the grid correct. It is used when the transformation from ��-frame to the dq-
frame is done and in that way the dq-frame is synchronised with the grid. In this simulation the voltage 
vector V�� is defined to be parallel with the q axis in the dq-frame and the transformation angle is 
defined as 
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How the implementation in PSCAD/EMTDC is done can be seen in Fig D.4Fig B.5. Vs� and Vs� are 
the phase voltages which have been transformed to the ��-frame. 

 
Fig D.4 Implementation of calculation of transformation angle in PSCAD/EMTDC 

D.2.3 Current vector controller 
The heart in the whole current controller is the current vector controller with PI controller, decoupling 
and feed-forwarding of the voltage. It is presented in Fig D.5, the d-component, and Fig D.6, the q-
component. 

 
Fig D.5 The current vector controller for the current Id 

 
Fig D.6 The current vector controller for the current Iq 

Id_ref and Iq_ref are reference currents that the controller is thought to follow. The decoupling terms are 
the signals that are received when the currents are multiplied with XL, the grids reactance. The feed-
forwarding is simply done by adding Vsq and Vsd to respective output signal. The output signal consists 
of two voltages. The represent the phase voltages at the AC side of the VSC in the dq-frame. These 
goes then into the modulation index and load angle block. 

D.2.4 Calculation of modulation index and load angle 
The signals that are received from the vector controller, voltages in the dq-frame, must be transformed 
to three-phase signals. In this simulation this is done in two steps, first the modulation index and the 
load angle are calculated and after that the three-phase reference voltages are created. This is presented 
in Fig D.7 and Fig D.8. The other part is presented in Section D.2.5. 
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Fig D.7 Calculation of load angle 

Fig D.7 shows how the load angle is calculated and the mathematical expression is 
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Besides calculating the load angle there is a hard-limit avoiding angle values. Through this way the 
possibility to transfer a high amount of power is limited, which could otherwise damage the circuit. 

 
Fig D.8 Calculation of modulation index 

Fig D.8 shows how the calculation of the modulation index is implemented in PSCAD/EMTDC and 
below is the equation that is used in the implementation. 
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Also for the modulation index there is a hard-limit and its purpose is to avoid a to high and low 
modulation index. If the modulation index would have a value higher than one then overmodulation is 
reached and a too low value leads to more harmonic contents. The goal is to have the modulation 
index within a span and in that way have a good operation of the system. Both the modulation index 
and the load angle are then input signals to the block which creates the three-phase reference voltages. 

D.2.5 Creation of reference signals 
To be able to create signals to the transistors some reference signals to the PWM is required. These are 
created from the modulation index and the load angle and the calculations can be seen in Section 
D.2.4. In Fig D.9 the creation of the reference signals are presented. 

 
Fig D.9 Creation of three-phase reference voltages 
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Input signal to the block are modulation index m and load angle � and out from the block comes three 
reference signals with peak value of one. The three signals represent the fundamental phase voltages at 
the AC side of the VSC. Thus there is a phase difference of 120 degrees between them and the output 
signal then goes to the PWM block. 

D.2.6 Creation of gate pulses to the transistors 
The creation of gate pulses is done in a following way, each reference signal is compared to a 
triangular wave. The triangular wave has a predetermined frequency, which also determines the 
switching frequency for the transistors. If the reference signal has a higher value than the triangular 
wave then the output is high. Instead if the reference signal has a lower value than triangular wave the 
output is low. When the output is high this means that the output signal has a value of one and with 
low is means that the output signal is zero. In this way a pulse train is created and it decides if the 
transistor should be on or off. In Fig D.10Fig B.10 it is shown how the implementation in 
PSCAD/EMTDC is done and there are three of these blocks, one for each phase. The output signal 
pwmA is taken to a block which creates the digital signals that the IGBTs use. 

 
Fig D.10 The creation of the gate pulses 

D.2.7 Scaling of grid voltages 
The scaling of the grid voltages can be seen in Fig D.11. 

 
Fig D.11 Calculation of scale factor and vector scaling 

The scaling is done because the grid voltages are measured on the grid side of the transformer while 
the other quantities are measured on the converter side of the transformer. 

The scaling factor is 
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D.3 Implementation of DC-link Voltage Controller in 
PSCAD/EMTDC 

As mentioned earlier, in this part the circuit in Fig D.1 has been changed. The controller is described 
in detail in Chapter 4 and an overview of the controller can be seen in Fig 4.10. Below the part of the 
controller is presented. 

D.3.1 DC-link voltage controller 
The DC-link voltage controller in this case consists of a PI controller and it is shown in Fig D.12. 
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Fig D.12 DC-link voltage controller 

Vdc_ref is the DC reference voltage that the controller is supposed to track and it is compared to the 
measured voltage Vdc. The output signal from the controller is the reference current Iq_ref and it is then 
fed into the active current Iq’s controller, which can be seen in Fig D.6. The block which is in between 
the PI controller and the subtraction is used during start of the controller. During a short time the 
parameter block has the value zero and at that time the output from the controller is also zero. After 
that the parameter has the value one and does not affect the behaviour of the controller. 


