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Master’s Thesis in the International Master’s programme Structural Engineering 
ANDREAS KARLSSON AND ANDREAS NILSSON 
Department of Civil and Environmental Engineering 
Division of Structural Engineering 
Concrete Structures 
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ABSTRACT 

In today’s quest of creating more efficient railway transportations, the desire to 
increase the train velocities arise. The increased speeds will subject railway bridges to 
dynamic loads far greater than previously considered. In traditional design of railway 
bridges, static load cases are calculated and amplified to represent the dynamic 
effects. The limitations to this procedure are obvious due to the resonance peaks not 
captured in static analysis. The resonant effects are substantial for train velocities 
greater than 200 km/h and the need for a detailed dynamic analysis is necessary. A 
dynamic analysis, using the finite element method, can be carried out by applying 
direct transient integration schemes or by performing a modal analysis using mode 
superposition. When applying mode superposition, a linear combination of the 
structure’s natural modes is representing the dynamic response. A natural mode is 
describing a structure’s behaviour when subjected to harmonic load. The number of 
natural modes of large complex bridge structures can be very extensive, making the 
dynamic analysis time consuming. A reduction of the full system of governing 
equilibrium equations is therefore desirable. A suggested parameter when determining 
which modes to exclude is the mass participation factor (MPF). The MPF describes 
the amount of the structure’s mass excited in each mode. 

The purpose of this project is to investigate if a high MPF can be considered as a 
measure of good convergence. A parameter study of a previously analysed railway 
bridge, showing lack of convergence even though high MPF is provided, is 
performed. The results of the analysis indicate that MPF is not a suitable parameter to 
study when determining the cut-off frequency for accelerational response. The 
accelerational response is greatly influenced by the choice of boundary conditions. 
The boundary conditions are modelled to represent the soil conditions present at the 
bridge site. If the soil is modelled with flexible translational springs, the bridge is 
allowed to have eigenmodes with a significant rigid body component. The rigid body 
modes will have large contributions to the total MPF without any structural 
deformations occurring. The MPF will therefore be extremely high for narrow 
frequency ranges, making the parameter unsuitable as a convergence criterion. On the 
contrary, if the soil is modelled as too stiff the maximum accelerations will be 
underestimated, preventing an accurate analysis. However, the results are indicating 
that MPF may be used as a convergence criterion when analysing section forces. 

Key words: dynamics, mode superposition, MPF, high-speed railway bridges
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Dynamisk analys av järnvägsbroar med hjälp av modsuperpostion 

Mass Participation Faktorn som konvergens kriterium 
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Avdelningen för Konstruktionsteknik 
Betongbyggnad 
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SAMMANFATTNING 

För att möta samhällets krav på effektivare järnvägstransporter har ett behov av att 
öka linjehastigheten på svenska broar uppstått. De ökade tåghastigheterna kommer att 
utsätta brokonstruktionen för större dynamiska laster vilket medför betydligt större 
påfrestningar än tidigare. I traditionell brokonstruktion har dynamiska laster beaktats 
genom att förstora det statiska lastfallet med en dynamisk faktor. Begränsningen med 
denna metod är uppenbar då en statisk analys inte kan fånga resonansfenomen. Risker 
för resonanseffekter är påtagliga för tåghastigheter över 200 km/h varför en mer 
detaljerad dynamisk analys blir nödvändig. Den dynamiska analysen kan utföras 
antingen genom direkt-tidsintegration eller med modsuperposition. När 
modsuperposition används representerar en linjärkombination av brons egenmoder 
den dynamiska responsen, där egenmoderna beskriver strukturens beteende när den 
blir utsatt för en harmonisk last. En komplex brokonstruktion har ett stort antal moder 
vilket medför en stor tidsåtgång vid dynamiska analyser. Det är därför önskvärt att 
reducera det fulla systemet av jämviktsekvationer. En föreslagen parameter för att 
bestämma vilka moder som ska trunkeras är den så kallade ”mass participation factor” 
(MPF), vilken kortfattat beskriver andelen massa som är aktiv i en mod. 

Målet med projektet är att undersöka om en hög MPF kan anses vara en garant för 
konvergens. För att undersöka detta har en parameterstudie på en nyligen analyserad 
bro utförts. Bron visade brist på konvergens för maximal acceleration trots att en hög 
MPF var uppnådd. Resultaten av studien pekar på att MPF inte är en lämplig 
parameter för att bestämma vilket frekvensintervall som bör beaktas när den 
maximala accelerationen ska bestämmas. Accelerationerna är mycket beroende på 
valet av randvillkor. Randvillkoren är modellerade för att beskriva 
grundläggningsförutsättningarna på den aktuella platsen. Om grunden modelleras med 
flexibla fjädrar tillåts bron att translatera relativt odeformerat i en så kallad 
stelkroppsrörelse. Dessa stelkroppsmoder har stor inverkan på den totala MPF:en utan 
att bron deformeras, detta medför i sin tur att den totala MPF:en kommer att vara 
extremt hög även om moder med hög frekvens inte beaktas. Om grunden istället 
modelleras för styv, visar studien att de maximala accelerationerna underskattas, 
vilket förhindrar en korrekt analys. Resultaten av parameterstudien visar dock att 
MPF kan användas som ett konvergenskriterium när snittkrafter ska bestämmas. 

Nyckelord: dynamik, modsuperposition, MPF, järnvägsbroar för höghastighetståg 
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Notations 

Roman upper case letters 

A  Amplitude [m] 
A  Area [m2] 
C  Amplitude [m] 
C  Damping matrix 
D  Dimensions 
D  Bending stiffness [Nm] 
D  Coach length [m] 
D  Dynamic magnification factor, total 

sD  Dynamic magnification factor, steady state 

DOF  Degree-of-freedom 
E  Modulus of elasticity [N/m2] 
EOM  Equation of motion 
F  External force [N] 

xF  External force in x-direction [N] 
*

x
F  Force including inertia [N] 

DF  Damping force vector 

EF  Elastic force vector 

IF  Inertia force vector 
HHT  Hilber-Hughes-Taylor 
HSLM  High-speed load model 
I  Moment of inertia [m4] 
I  Identity matrix 
K  Modal stiffness 
K  Stiffness matrix 
L  Length [m] 
M  Modal mass 
M  Mass [kg] 
M  Mass matrix 
MDOF  Multi degree-of-freedom 
MPF  Mass participation factor 
N Number of axles 
P  Participation factor 
Q  Equivalent load [kN/m] 
R  Load vector 
R  Wilson’s load vector 
RBM  Rigid body mode 
SDOF  Single degree-of-freedom 
SMPF  Sum of MPF 
T  Kinetic energy [J] 
T  Rigid body response vector 

n
T  Natural period [s] 

U  Translational degree-of-freedom 
U  Amplitude [m] 
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U  Scaled mode 

0U  Static displacement [m] 
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V  Strain energy [J] 
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X  Rigid body response vector 
 

Roman lower case letters 

a  Coefficient 

x
a  Acceleration in x-direction [m/s2] 

c  Viscous damping coefficient [Ns/m] 
c  Constant 
d  Boogie axle spacing [m] 
f  Force [N] 
f  Frequency [Hz] 

D
f  Damping force [N] 

S
f  Spring force [N] 

g  Gravity [m/s2] 
h  Plate thickness [m] 
k  Stiffness [N/m] 
l  Span length [m] 
m  Mass [kg] 
m  Truncated number of eigenvalues 
n  Total number of eigenvalues 
p  Load [N] 
p  Pressure [N/m2] 
p  External load vector 

0p  Force amplitude [N] 

q  Load [kN/m3] 
r  Frequency ratio 
t  Time [s] 
u  Vertical deflection [m] 
u  Displacement [m] 
u  Degree-of-freedom 
u  Displacement vector 

0u  Initial displacement [m] 

c
u  Complementary solution 

p
u  Particular solution 

x
u  Displacement in x-direction [m] 

u&  Velocity [m/s] 
u&  Velocity vector 
u&&  Acceleration [m/s2] 
u&&  Acceleration vector 
û  Truncated displacement vector 
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u%  Displacement approximation vector 

0v  Initial velocity [m/s] 
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v  Velocity in x-direction [m/s] 

w  Vertical deflection [m] 
x  Space coordinate 
y  Space coordinate 
z  Space coordinate 
z  Depth [m] 
 

Greek lower case letters 

α  Arbitrary out of phase angle [rad] 
α  Hilber-Hughes-Taylor parameter 
β  Mode shape ratio 
β  Displacement to height ratio 
β  Newmark’s parameter 
γ  Density [kg/m3] 
γ  Newmark’s parameter 
δ  Displacement [m] 

m
ε  Truncation error 
ζ  Modal damping factor 
η  Modal displacement 
η  Modal coordinates 
η&  Modal velocity 
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θ  Wilson’s parameter 
θ  Rotational degree-of-freedom 
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ξ  Damping parameter 
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ϕ  Mode shape 
φ  Mode shape element 

n
ω  Un-damped natural frequency [rad/s] 

b
ω  Circular frequency of viscous damping [rad/s] 
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Greek upper case letters 

Γ  Participation factor 
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1 Introduction 

1.1 Background 

In today’s quest of creating more efficient railway transportations the desire to 
increase the train velocities arises. The moving train will subject the bridge to 
dynamic loads which are amplified by increasing velocities. In traditional design of 
railway bridges static load cases are calculated and amplified to represent the dynamic 
effects. The limitations to this procedure are obvious due to the resonance peaks not 
captured in static analysis. The resonant effects are substantial for train velocities 
greater than 200 km/h and the need for a detailed dynamic analysis arises. 

A dynamic analysis, using the finite element method (FEM), can be carried out by 
applying direct transient integration schemes or by performing a modal analysis using 
mode superposition. When applying the mode superposition method, a linear 
combination of the structure’s natural modes is representing the dynamic response. A 
natural mode is describing a structure’s behaviour when subjected to harmonic load. 
The number of natural modes of large complex bridge structures can be very 
extensive making the dynamic analysis time consuming. A reduction of the full 
system of governing equilibrium equations is therefore desirable to minimise the 
computational effort. A suggested parameter to study when determining which modes 
to exclude, without substantial effect of the accuracy, is the mass participation factor 
(MPF). The MPF describes the amount of the structure’s mass that is active in each 
mode. The translation or deformation of the associated mass is thus enabled to be 
represented by a linear combination of the structural response. A frequently used 
praxis is to include the modes, with the lowest natural frequencies, until 90 % of the 
total mass can be excited. 

The Swedish consultant company ELU Konsult has recently experienced lack of 
accelerational convergence of an analysed bridge, even though high total mass 
participation is ensured. Doubts have therefore been expressed concerning the 
correlation between high total MPF (SMPF) and good accuracy. 

 

1.2 Aim 

The aim of this project is to determine if the MPF is a reliable criterion when 
choosing a cut-off frequency for the modal superposition method. If concluded that 
the use of MPF as a convergence criterion is limited, the goal is to identify the 
problematic situations to allow further use of the parameter. Furthermore, the 
objective is to identify, if possible, additional parameters indicating good accuracy. 

 

1.3 Method 

The effectiveness of applying MPF as a frequency cut-off criterion will be studied by 
performing a parameter study of a bridge model, provided by ELU Konsult. The 
bridge is modelled as a three-dimensional (3-D) structure accompanied by appropriate 
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boundary conditions, using the general finite element software LUSAS. The objective 
of the parameter study is to identify the critical values of the input parameters, i.e. 
mesh density, load step increment, time-step increment and truncation of modes. 

A literature study of the MPF and the fundamental of dynamics is performed to obtain 
deeper knowledge of their theoretical formulations. The theoretical knowledge will 
create a better understanding of the physical behaviour of the bridge structure. 

 

1.4 Limitations 

Due to the extensive computational time needed to perform the dynamic analyses, a 
few limitations are needed: 

• The parameter study will be limited to the bridge model previously developed 
by ELU Konsult. 

•  Only one train model will be included, i.e. the load model that generates the 
greatest dynamic response. 

• Only the vertical accelerations will initially be studied. The accelerations are 
very sensitive to the magnitude of the natural frequencies corresponding to the 
modes included in the dynamic analysis. 

• Track irregularities and interaction between rail and train wheels will, in 
accordance to specification acknowledged in the Swedish railway bridge code 
BV BRO, Banverket (2006), not be considered. 

• Idealised material behaviour is assumed, i.e. linear and viscoelastic materials. 
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2 Dynamics of single degree-of-freedom systems 

The behaviour of a complex multi-degree-of-freedom (MDOF) system can be 
described as a system of coupled single-degree-of-freedom (SDOF) systems. To 
achieve better understanding of the dynamic response of a structure, a SDOF system 
will be studied and the knowledge will be generalised to a MDOF system. 

 

2.1 Un-damped mass-spring model 

The mass-spring system is the simplest structure that can be analysed dynamically. 
The structure must have an elastic component which can store and release potential 
energy and a mass able to store and release kinetic energy. The structure will be 
subjected to the simplest forms of vibrations, creating a mass-spring oscillator 
illustrated in Figure 2.1.  

 

Figure 2.1 Mass-spring oscillator. 

The potential energy stored in the linear spring is called strain energy, which is 
defined as: 

21
2

V ku=          (2.1) 

where u is the relative elongation/contraction of the spring. 

The kinetic energy due to inertia forces is given by: 

21
2

T mu= &          (2.2) 

where m is the mass and u& is the velocity of the mass. 

 

2.1.1 Assumptions 

To simplify the prototype model a few assumptions are made: 
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1. No friction will affect the point mass when moving in the horizontal direction. 
The displacement of the mass in the studied direction is designated the 
variable u(t). The initial position of the mass is defined where the spring is un-
deformed.  

2. The connection between the fixed base and the mass consist of an idealised 
massless linear spring. Figure 2.2 describes the linear relationship between 
elongation and contraction of the spring and the force fs(t) acting on the mass. 
Tension of the spring will result in a positive value of fs and compression of 
the spring to a negative value of fs.  

3. An external force p(t) acts on the mass according to Figure 2.1. 

 

Figure 2.2 Free-body diagram of the oscillator and the linear relation between 

force and elongation of a spring. 

The instantaneous position of the mass can be described with one variable, u(t), and is 
therefore called a single degree-of-freedom system. 

 

2.1.2 Equation of motion 

To obtain a mathematical model able to describe the behaviour of the mass-spring 
oscillator, the system is studied by drawing a free-body diagram of the mass (Figure 
2.2) and applying Newton’s second law: 

x xF ma=∑          (2.3) 

where m is the mass, ax is the acceleration and Fx is the external forces acting on the 
mass. The acceleration ax is given by the second time derivative of the displacement, 

( )xa u t= && . The velocity is similarly defined by the first time derivative of the 

displacements, ( )xv u t= & . By assuming that the mass is displaced in positive ux 

direction the spring will be in tension, producing a spring force acting on the left side 
of the mass (Figure 2.2). Equation (2.3) can now be rewritten as: 

( )sf p t mu− + = &&        (2.4) 
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The relation between the force in the spring and the displacement can be rewritten as: 

sf ku=          (2.5) 

where k is the stiffness of the spring.  

By combining equations (2.4) and (2.5) the equation of motion (EOM) for the un-
damped SDOF model is obtained: 

( )mu ku p t+ =&&         (2.6) 

The equation is a second order ordinary differential equation that governs the SDOF 
mass-spring oscillator’s behaviour. To determine the response of the system, initial 
conditions of the displacement and velocity at t = 0 are required.  

( ) 00u u= =  initial displacement  ( ) 00u v= =& initial velocity  (2.7) 

 

2.1.3 Free vibration 

If the external force acting on the mass-spring oscillator is equal to zero, i.e. p(t) = 0, 
and at least one of the initial conditions stated in equation (2.7) is non-zero, the 
system will be at free vibration. This will enable the equation of motion to be 
rewritten as a homogenous second-order differential equation: 

0mu ku+ =&&          (2.8) 

The general solution to this equation is: 

( ) 1 2cos sinn nu t A t A tω ω= +        (2.9) 

where ωn is the un-damped circular natural frequency defined as: 

n

k

m
ω =          (2.10) 

The natural frequency is of the unit radians per second (rad/s). 

The constants A1 and A2 are chosen so that the initial conditions in equations (2.7) are 
satisfied. The time dependent displacement of a free vibrating un-damped mass-spring 
oscillator is characterised by: 

( ) 0
0 cos sin

n n

n

v
u t u t tω ω

ω
= +        (2.11) 

The response of the mass-spring oscillator released from a resting state, v0 = 0, with 
an initial displacement of u0 = 1 is depicted in Figure 2.3. The motion of the response 
is given by: 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:115 6 

( )
2

cos cos
n

n

t
u t t

T

π
ω= =        (2.12) 

The free vibration presented in Figure 2.3 consists of harmonic motion that repeats 
itself with a period given by: 

2
n

n

T
π

ω
=          (2.13) 

The amplitude of the vibration is defined as the maximum displacement experienced 
by the mass. For an un-damped free vibration system the amplitude is equal to u0.  

 

Figure 2.3 Free vibration of mass-spring oscillator, u0 = 1 and T = 4s. 

 

2.1.4 Forced vibration 

If the excitation force is non-zero, i.e. p(t) ≠ 0, the system is considered to undergo 
forced vibration. The solution of the differential equation of motion (2.6) consists of a 
complementary and a particular solution. The displacement is thus defined as: 

( ) ( ) ( )c pu t u t u t= +         (2.14) 

 

2.1.5 Harmonic excitation 

As noted in Section 2.1.4 the total response of a linear system consists of a forced 
motion, up, and a natural motion uc. The forced motion occurring in case of harmonic 
excitation is referred to as the steady-state response. The un-damped mass-spring 
SDOF system illustrated in Figure 2.4 is assumed to be linear and the excitation force 
amplitude p0 and the driving frequency Ω are constants. The equation of motion for 
the described system is: 

0 cosmu ku p t+ = Ω&&         (2.15) 
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Due to the fact that only even-order derivatives appear on the left hand side, the 
steady-state response has the following form: 

cos
p

u U t= Ω          (2.16) 

where U is the amplitude of the steady-state response. Equation (2.16) is substituted 
into the equation of motion in (2.15), producing the following expression: 

0
2

p
U

k m
=

− Ω
         (2.17) 

provided that 2 0k m− Ω ≠ . 

 

Figure 2.4 Harmonic excitation of an un-damped SDOF system. 

The static displacement is the displacement that the mass will sustain if a force with a 
magnitude p0 is applied statically and is defined as: 

0
0

p
U

k
=          (2.18) 

allowing equation (2.17) to be reformulated as: 

2
0

1
, 1

1
U

r
U r

= ≠
−

        (2.19) 

where r is the frequency ratio between the forcing frequency and the un-damped 
natural frequency. The steady-state magnification factor provides the magnitude and 
sign of the steady-state motion as a function of the frequency ratio r and is defined: 

( )
0

s

U
D r

U
≡          (2.20) 

The variation of the magnification factor is plotted in Figure 2.5. 
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Figure 2.5 Dynamic magnification factors of an un-damped SDOF system: Ds 

(steady-state) and D (total magnification). 

The presented equations are combined to formulate the steady-state response: 

0
2 cos , 1

1p

U
u t r

r
= Ω ≠

−
       (2.21) 

The total response due to the harmonic excitation ( ) 0 cosp t p t= Ω  is given by: 

( ) 0
1 22 cos cos sin

1 n n

U
u t t A t A t

r
ω ω= Ω + +

−
     (2.22) 

where A1 and A2 are constants determined by the initial conditions. Equation (2.22) is 
not valid when r = 1. When r = 1, the forcing frequency and the natural frequency are 
equal, i.e. Ω = ωn. When studying Figure 2.6 it should be noticed that the response 
when the excitation frequency is close to the natural frequency becomes very large. 
This phenomenon is called resonance, and it is of great importance to control the 
response of the structure in order to avoid the resonance condition, where large 
amplitude motion may occur. When the forcing frequency is equal to the un-damped 
natural frequency it is necessary to replace equation (2.16) with the assumed 
particular solution: 

sin
p n

u Ct tω=         (2.23) 

By substituting equation (2.23) into equation (2.15) the following expression of C is 
obtained: 

0

2
n

p
C

mω
=          (2.24) 
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producing the particular solution for the cosine-type excitation at resonance: 

( ) ( )0 sin
2p n n

U
u t t tω ω=        (2.25) 

Figure 2.6 illustrates the response plotted with time. The amplitude of the particular 
solution increases constantly with each period. 

 

Figure 2.6 Response up(t)at resonance: p(t)=p0 cos(ωnt). 

 

2.2 Damped mass-spring model 

A viscous damping element serves as an additional energy storage device when 
introduced to a system. The energy is dissipated from the vibrating SDOF system. 
Previous researches, e.g. Bathe (1996), have proposed several techniques to describe 
material damping mathematically, but due to the complicated nature of damping it is 
usually impossible to determine it for a real structure. Figure 2.7 illustrates the 
simplest analytical model of damping used in structural dynamic analyses. The 
damping force is for this model a linear function of the relative velocity between the 
two ends of the damper: 

2 1( )
D

f c u u= −& &         (2.26) 

The constant c is called the coefficient of viscous damping and is of the unit Newton 
seconds per metre (Ns/m). 
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Figure 2.7 Un-deformed and deformed viscous dashpot with a force versus 

elongation rate. 

 

2.2.1 Equation of motion 

The equation of motion for this simple mass-spring-dashpot system can be derived 
using several different methods. In this section, the equilibrium equation for the 
example illustrated in Figure 2.8 will be determined in two ways independently, by 
using Newton’s Laws and d’Alembert Force Method, respectively. 

 

Figure 2.8 Mass-spring-dashpot SDOF system. 

In the example, the spring and dashpot are assumed to be linear with a spring constant 
k and a damping coefficient c. The system is set up in such a way that only horizontal 
motion is allowed with the relative displacement to a fixed surface, denoted u(t). 
When u is equal to zero the spring and damping forces are zero. 

 

2.2.1.1 Newton’s Laws 

To determine the equation of motion of the mass m a free-body diagram is used 
(Figure 2.9). 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:115 11 

 

Figure 2.9 Free-body diagram of SDOF system (Newton's Laws). 

The free-body diagram of the mass includes the external forces acting on the mass. 
Newton’s second Law is applied generating the following horizontal equilibrium 
equation: 

xF mu=∑ &&          (2.27) 

The forces acting on the mass can be determined by studying Figure 2.9, which 
enables equation (2.27) to be rewritten: 

( ) S Dp t f f mu− − = &&         (2.28) 

The forces in equation (2.28) can be related to the motion variables as: 

S

D

f ku

f cu

=

= &
         (2.29) 

Combining and simplifying equations (2.28) and (2.29) generates the second order 
differential equation known as the fundamental equation in structural dynamics and 
linear vibration theory: 

( )mu cu ku p t+ + =&& &         (2.30) 

 

2.2.1.2 d’Alembert force method 

The d’Alembert force method includes inertia forces along with all real forces acting 
on the mass. The free-body diagram will therefore have a different appearance (Figure 
2.10). 

 

Figure 2.10 Free-body diagram of SDOF system (d’Alembert force method). 

By studying the free-body diagram and considering the dynamic horizontal 
equilibrium equation the following expressions can be derived: 

* 0xF =∑          (2.31) 
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( ) 0S Dp t f f mu− − − =&&        (2.32) 

Equation (2.32) combined with the motion variables stated in equations (2.29) enables 
the following definition of the equation of motion: 

( )mu cu ku p t+ + =&& &         (2.33) 

The equation is identical to equation (2.30) indicating that the choice of method is 
arbitrary. 

The d’Alembert force method is especially useful when describing support excitation 
by including the use of inertia forces. 
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3 Mathematical models of MDOF systems 

Although SDOF models are able to describe the dynamical behaviour of some 
systems, it is in most cases necessary to expand the model to more complex MDOF 
models. The theory on which MDOF systems are based on is very similar to the 
theory presented in the previous chapter concerning SDOF systems. 

 

3.1 Newton’s Laws to describe the equation of motion 

To derive the general form of the governing equations of motion for a linear MDOF 
system a lumped parameter model consisting of a mass-spring and a mass-spring-
dashpot will be studied respectively. The lumped parameter model is a system of 
connected rigid bodies in general motion. 

 

3.1.1 Un-damped MDOF system 

Figure 3.1 illustrates a 3-DOF un-damped system of rigid bodies, each subjected to an 
external load pi(t).  

 

Figure 3.1 Mass-spring model. 

The displacements, ui, of the rigid bodies are defined relative the position where the 
forces in the springs are zero, i.e. the springs are neither in contraction nor elongation. 
The spring stiffnesses are denoted k and the masses are denoted m. Free-body 
diagrams of each individual mass are drawn according to Figure 3.2. 

 

Figure 3.2 Free-body diagrams of the masses. 

By applying Newton’s second law for each mass the following equilibrium equations 
are obtained: 
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1 1 1 1 2 1

2 2 2 2 3 2

3 3 3 3 3

F m u p f f

F m u p f f

F m u p f

= = + −

= = + −

= = −

∑
∑
∑

&&

&&

&&

       (3.1) 

The linear elastic forces in the springs are related to the relative deformation of the 
springs, i.e. the difference between two adjacent masses. 

1 1 1

2 2 2 1

3 3 3 2

( )

( )

f k u

f k u u

f k u u

=

= −

= −

        (3.2) 

The equations (3.1) and (3.2) are combined and simplified to create three differential 
equations: 

( ) ( )

( ) ( )

( )

1 1 1 2 1 2 2 1

2 2 2 1 2 3 2 3 3 2

3 3 3 2 3 3 3

m u k k u k u p t

m u k u k k u k u p t

m u k u k u p t

+ + − =

− + + − =

− + =

&&

&&

&&

     (3.3) 

The equations (3.3) can be written in matrix form according to: 

( )
( )
( )

1 1 1 2 2 1 1

2 2 2 2 3 3 2 2

3 3 3 3 3 3

0 0 0

0 0

0 0 0

m u k k k u p t

m u k k k k u p t

m u k k u p t

 + −       
        + − + − =         
        −         

&&

&&

&&

  (3.4) 

which in symbolic matrix notation is represented by: 

( )Mu + Ku = p t&&         (3.5) 

The set of coupled ordinary differential equations represent the 3-DOF mathematical 
model of the lumped mass system. 

The matrices notated M and K are the system’s mass and stiffness matrices, while p is 
the external load vector. 

 

3.1.2 Damped MDOF system 

Also for the MDOF model the system can be expanded to include dampers. Figure 3.3 
illustrates a 2-DOF mass-spring-dashpot system. The equations of motion can be 
derived similarly to previous examples. 
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Figure 3.3 2-DOF mass-spring-dashpot system. 

The notation of spring stiffnesses and masses is analogous to the example presented in 
Figure 3.2, with the addition of the damping coefficients c. 

A free-body diagram for each mass in Figure 3.3 is drawn, where the internal and 
external forces are identified. 

 

Figure 3.4 Free-body diagrams of the masses. 

Newton’s second law is applied to generate the equations of motion: 

1 1 1 1 2 3 4 1

2 2 2 3 4 2

F m u f f f f p

F m u f f p

= = − − + + +

= = − − +

∑
∑

&&

&&
      (3.6) 

The linear elastic spring forces (f1 and f3) are related to the displacements, and the 
damping forces (f2 and f4) are related to the velocities. 

( )

( )

1 1 1

2 1 1

3 2 2 1

4 2 2 1

f k u

f c u

f k u u

f c u u

=

=

= −

= −

&

& &

        (3.7) 

The equations (3.6) and (3.7) can be simplified and combined into a set of equations 
of motion: 

( )
( )

11 1 1 2 2 1 1 2 2 1

22 2 2 2 2 2 2 2

0

0

p tm u c c c u k k k u

p tm u c c u k k u

 + − + −           
+ + =             − −             

&& &

&& &
 (3.8) 

Equation (3.8) can be written in symbolic matrix notation as: 
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( )Mu + Cu + Ku = p t&& &        (3.9) 

where C is the damping matrix. The stated expression is the generalised fundamental 
equation of motion using matrix notation. 

 

3.2 Vibration of un-damped MDOF system 

The most important dynamic parameter of a structure is its natural frequency. The 
natural frequency determines the level of vibration for a given excitation, and is 
defined as the number of oscillations per second during harmonic motion. Each 
natural frequency oscillates with a specific configuration that describes the 
deformation of the structure. The deformation configuration corresponding to a 
natural frequency is called natural mode. 

To present the derivation of the natural frequency and natural modes, an un-damped 
2-DOF system is the most instructive example. The equations of motion for an un-
damped 2-DOF system are of the form: 

( )
( )

111 12 1 11 12 1

221 22 2 21 22 2

p tm m u k k u

p tm m u k k u

        
+ =         

         

&&

&&
     (3.10) 

where ui may be physical displacement or generalised coordinates. The solution to 
equation (3.10) will consist of a complementary and particular solution. The 
complementary solution is obtained by setting the external load vector to zero and 
involves the system’s dynamical properties; natural modes and natural frequencies. 
By examining the response of the system subjected to harmonic excitation an 
important analysis method in structural dynamics is made possible, namely the mode 
superposition method (Section 6.2). 

 

3.2.1 Free vibration of 2-DOF system 

To solve the equations of motion for a system that is at free vibration the applied 
loads pi are set to zero: 

11 12 1 11 12 1

21 22 2 21 22 2

0

0

m m u k k u

m m u k k u

         
+ =         

        

&&

&&
     (3.11) 

assuming that the system undergoes harmonic motion of the form: 

( ) ( )

( ) ( )
1 1

2 2

cos

cos

u t U t

u t U t

ω α

ω α

= −

= −
       (3.12) 

where Ui are the amplitudes of the sinusoidal motions. The assumed solutions in 
equation (3.12) are substituted into the equations of motion (3.11) forming the 
algebraic eigenvalue problem: 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:115 17 

11 12 11 12 12

21 22 21 22 2

0

0i

k k m m U

k k m m U
ω

        
− =        

       
     (3.13) 

The set of homogenous linear algebraic equations only has one non-trivial solution 
corresponding to the values of ω2 that satisfy the characteristic equation: 

11 12 11 122

21 22 21 22

0i

k k m m

k k m m
ω

   
− =   

   
      (3.14) 

The polynomial equation is of the second order in the unknown parameter 
ω2 indicating that the characteristic equation (3.14) has two roots labelled 2

1ω and 2
2ω . 

In mathematical terminology the roots are called eigenvalues and are organised in an 
increasing order such that 2

1ω  < 2
2ω . In structural dynamics the parameters are called 

circular natural frequencies and describe the rate of oscillation in harmonic motion. 
The parameters are sometimes modified and referred to as natural frequencies (fi) of 
the system, expressed in Hertz: 

2
i

i
f

ω

π
=          (3.15) 

The eigenvalue 2
1ω  is substituted into the first of the equations in (3.13) to obtain the 

ratio β1 = (U2/U1)
(1), defining the mode shape corresponding to the first natural 

frequency. In literature the mode shape is sometimes referred to as the natural mode. 
The procedure is repeated for the second eigenvalue enabling β2 = (U2/U1)

(2) to be 
determined. The mode shapes, or eigenvectors, are often notated as ϕϕϕϕr and are written 
as: 

1

2

1
,                      r 1, 2

r

φ

φ β

   
≡ = =   
   

rφ      (3.16) 

where r indicates the identity of each mode shape. The procedure using β to determine 
the mode shapes is only applicable for 2-DOF systems. For larger MDOF systems the 
governing equations are solved simultaneously. Using the presented expression of the 
mode shapes and the natural frequencies the general un-damped algebraic eigenvalue 
problem can be satisfied by the following equation, expressed with matrix notation: 

2 0
r

ω − =  rK M φ         (3.17) 

Free vibration will only occur at the frequencies corresponding to ω1 and ω2. The 
general solution of equation (3.11) is a linear combination of the two expressions: 

( ) ( ) ( )

( ) ( ) ( )
1 1 1 1 2 2 2

2 1 1 1 1 2 2 2 2

cos cos

cos cos

u t A t A t

u t A t A t

ω α ω α

β ω α β ω α

= − + −

= − + −
    (3.18) 

where A1, A2, α1 and α2 are constants determined from initial conditions. 
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3.2.2 Procedure to determine natural frequencies and mode shapes 

The derivation of the natural frequencies and mode shapes of a vibrating structure is 
the most important procedure in structural dynamic analysis. As an example, the 
procedure is demonstrated for the 2-DOF system illustrated in Figure 3.5. The 
equations of motion for free vibration are: 

1 1 2

2 1 2

2 0

2 0

mu ku ku

mu ku ku

+ − =

− + =

&&

&&
        (3.19) 

 

Figure 3.5 Symmetric 2-DOF mass-spring system. 

The harmonic solution can be assumed to be identical to equation (3.12). This means 
that when the 2-DOF system vibrates at a natural frequency, u1 and u2 have the same 
time dependence, i.e. constant amplitude ratio. 

The algebraic eigenvalue problem is obtained by substituting the harmonic solution 
into the equation of motion: 

2
1

2
2

02

02
i

i

Uk m k

Uk k m

ω

ω

 − −    
=     

− −    
      (3.20) 

The characteristic equations are obtained by the determinant of the coefficient matrix 
in equation (3.20): 

( )
2

22 2
2

2
0 2 0

2
i

i

i

k m k
k m k

k k m

ω
ω

ω

− −
= ⇔ − − =

− −
    (3.21) 

where the roots are solved using factorisation. 

2
1 1

2
2 2

3 3

k k

m m

k k

m m

ω ω

ω ω

= ⇒ =

= ⇒ =

       (3.22) 

The eigenvalues are substituted into (3.20), generating the mode shape ratios: 
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( ) 2 2
2

1

2
2

i

i i
i

k m mU

U k k

ω ω
β

  −
≡ = = − 
 

      (3.23) 

For the studied example the mode shape ratios are: 

1

2

2 1 1

2 3 1

β

β

= − =

= − = −
 

giving the following appearance to the mode shapes with corresponding eigenvectors: 

 

Figure 3.6 Mode shapes of the 2-DOF system. 

1 1
                      

1 1

   
= =   −   

1 2φ φ  

It should be noticed that the system is symmetric about the centre of the middle 
spring, resulting in mode shapes with both symmetric (mode 1) and asymmetric 
(mode 2) configurations. This is an important result since many structures possess 
such a physical symmetry, e.g. many railway bridges.  

The derivation of mode shapes for a general MDOF system is analogous to the 
described example. The expansion of the system is relatively uncomplicated, but 
involves more unknown variables needed to be solved simultaneously. 
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4 Vibration properties of MDOF systems 

As mentioned in Section 3.2 the natural modes and natural frequencies are two very 
important dynamic parameters. This chapter will be focused on describing the 
properties of these dynamic parameters and the coefficient matrices encountered in 
structural dynamics. 

 

4.1 Properties of stiffness and mass matrices 

The stiffness matrix K and the mass matrix M can be related to the strain and kinetic 
energy similarly as for the SDOF system described in Section 2.1. The quadratic 
potential and kinetic energy formulations using matrix notation are: 

 

1

2
1
2

V

T

=

=

T

T

u Ku

u Mu& &

         (4.1) 

where u(t) is the displacement vector, K is the symmetric stiffness matrix and M is 
the symmetric mass matrix. Due to the symmetry of the coefficient matrices they 
possess the property X

T = X. For most structures, M and K are positive definite 
resulting in positive values of V and T using arbitrary displacement vectors. 

If a system has rigid body freedom an exception from the positive definiteness of K 
occurs, allowing rigid body displacement vectors. The stiffness matrix is in this case 
considered semi-definite, permitting the strain energy to be zero for rigid body 
displacement. A semi-definite matrix has a determinant equal to zero and is called 
singular. The singularity of the stiffness matrix is avoided by introducing proper 
boundary conditions. Also the mass matrix can diverge from the positive definiteness. 
Examples of this are when degrees-of-freedom (DOF) are not associated with inertia 
(Figure 4.1). 

 

Figure 4.1 Beam with a positive semi-definite mass matrix. 

In Figure 4.1, no mass is associated with the rotational degrees of freedom (u3 and u4) 
making M a positive semi-definite matrix. 
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4.2 Normalisation of modes 

The system’s natural modes are describing the deformation shapes with a specific 
ratio between the individual nodal points. The modes can be multiplied with any 
constant, keeping the ratio intact. Due to this property, a normalisation of the modes is 
possible and is commonly utilised to reduce extreme magnitudes of the nodal 
elements: 

rc=r rU φ          (4.2) 

where Ur is the scaled r:th normal mode and ϕϕϕϕr is the corresponding arbitrary modal 
vector. 

The three most commonly employed normalisation procedures of modes are: 

1. Scale the r:th mode such that the i:th nodal element of the vector is unity, i.e. 
( ) 1=

riφ . 

2. Scale the r:th mode such that the length of the vector is unity, i.e. 1
r

=ϕϕϕϕ . 

3. Scale the r:th mode so that its generalised mass, or modal mass, defined by: 

rM = T

r rφ Mφ         (4.3) 

is assigned a specific value, commonly Mr = 1. The generalised stiffness, or modal 
stiffness, is similarly defined according to the following expression: 

rK = T

r rφ Kφ         (4.4) 

This normalisation is convenient when the solution to the algebraic eigenvalue 
problem is sought. The natural frequency is related to the modal stiffness and 
modal mass by: 

r

r
r

M

K
=ω         (4.5) 

 

4.3 Orthogonality of natural modes 

One of the most important properties of the natural modes is the orthogonality 
between arbitrary vectors. By pre-multiplying the algebraic eigenvalue problem and 
evaluating the results it can be proven that two arbitrary eigenmodes, φr and φs are 
orthogonal with respect to the stiffness matrix and mass matrix: 

0

0

=

=

T

s r

T

s r

φ Mφ

φ Kφ
 for s ≠ r       (4.6) 
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4.4 Generalisation of matrices 

Generalised matrices are often used to simplify the computation by decreasing the 
number of non-zero elements included in the calculations. To enable these 
simplifications the modal and eigenvalue matrices are introduced. The modal matrix 
Φ is a matrix consisting of the natural modes sorted in increasing order, Φ≡[φ1 

φ2…φN]. The eigenvalue matrix Λ is a diagonal matrix of eigenvalues, 
Λ≡diag( 2

1ω 2
2ω  … 2

Nω ). The variable N is determined by the number of degrees-of-
freedom assumed to represent the system. 

By utilising the definitions of the modal mass and modal stiffness matrices together 
with the orthogonality property, the diagonal modal mass matrix and modal stiffness 
matrix are obtained. 

( )

( ) ( )
1 2

2 2 2
1 2 1 1 2 2

, ,...,

, ,..., , ,...,

N

N N N

diag M M M

diag K K K diag M M Mω ω ω

=

= =

T

T

M = φ Mφ

K = φ Kφ
  (4.7) 

If the natural modes are normalised so that Mr = 1 the modal mass matrix becomes a 
N x N unit matrix: 

TΦ MΦ = I          (4.8) 

with the corresponding modal stiffness matrix equal to the eigenvalue matrix: 

TΦ KΦ = Λ          (4.9) 

 

4.5 Damping in MDOF systems 

Determining a structure’s true physical damping is very complex. To obtain a 
simplified model it is therefore often assumed that the damping of a structure can be 
represented by viscous damping. This assumption enables the following 
representation of the MDOF system’s equations of motion to be stated: 

Mu + Cu + Ku = p(t)&& &         (4.10) 

where C is the systems viscous damping matrix in physical or generalised coordinates 
u. By utilising a mode superposition solution based on free vibrational modes of an 
un-damped structure the equations of motion can be expressed in principal 
coordinates as: 

TMη+ Cη+ Kη =Φ p(t)&& &        (4.11) 

where ηηηη are called the modal or principal coordinates, and M and K are normalised 
according to equation (4.7). Typically, the generalised damping matrix: 

T
C =Φ CΦ          (4.12) 
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is not diagonal. Material damping properties are normally not defined well enough to 
permit a derivation analogous to the finite element procedures used to obtain the 
stiffness and mass matrices. Damping of a structure is therefore usually defined at 
system level rather than employing individual element properties. In the following 
sections, procedures leading to a diagonal arrangement of the generalised damping 
matrix are presented. 

 

4.5.1 Difficulties of expressing the damping matrix 

As previously mentioned there are a number of situations in which damping can not 
be properly represented by an un-coupled modal damping model. An example of this 
is a structure and its surrounding soil. The damping level of the structure’s rigid 
foundation is far less than the level possessed by the soil, leading to off-diagonal 
coupling terms in the combined soil and structure model. There are two methods to 
solve systems with this type of general viscous damping; mode superposition using 
complex modes of the damped systems and direct integration of the coupled equations 
of motion. Both procedures are presented in Chapter 6. 

 

4.5.2 Rayleigh damping 

A method to define the viscous damping matrix in terms of the diagonal generalised 
damping matrix C is to employ Rayleigh or proportional damping, defined by: 

0 1a a= +C M K         (4.13) 

The damping matrix is proportional to a linear combination of the mass and stiffness 
matrices. The constant coefficients a0 and a1 are usually chosen to produce specified 
modal damping factors for two critical modes. By combining the equations in (4.7) 
with the definition presented in (4.13) the following result is obtained: 

( ) ( ) ( )2
0 1 2r r r r r rdiag C diag a a M diag Mω ζ ω= = + =TC =Φ CΦ   (4.14) 

where the modal damping factor ζr is defined as: 

0
1

1

2r r

r

a
aζ ω

ω

 
= + 

 
        (4.15) 

By using this definition it is easy to describe the Rayleigh damping by choosing ζr for 
two modes and solving the corresponding damping coefficient a0 and a1. 
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4.5.3 Modal damping 

The type of damping most frequently used in structural dynamic computations is 
modal damping. Modal damping is assumed to satisfy orthogonality, allowing the 
following formulation of equation (4.14): 

( ) ( )2r r r rdiag C diag Mζ ω= =TC =Φ CΦ      (4.16) 

By utilising this diagonalised form of the modal damping, the set of coupled equations 
of motion (4.10) are transformed into N un-coupled equations of motion in modal 
coordinates: 

22 ( ) 1, 2,...,T

r r r r r r r r r rM M M p t r Nη ω ζ η ω η φ+ + = =&& &    (4.17) 

Unlike Rayleigh damping, the modal damping allows all N damping factors to be 
assigned individual values. The values of the modal damping factors ζr are assumed 
on the basis of providing damping that is characteristic for the type of structure 
considered. Typical values of ζr are in the range of 1 % to 10 %. 
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5 Dynamics of railway bridges 

A railway bridge can be represented with a MDOF system consisting of an immense 
amount of degrees-of-freedom. The choice of model should be determined by the 
complexity of the actual structure and the desired accuracy of the results. The 
equations of motion which governs the bridge’s dynamic behaviour can in theory be 
derived similarly as described in Chapter 4. 

The solution to a dynamic analysis is influenced by a dynamic load with magnitude, 
direction and position varying with time. Therefore, also the structural response will 
be time dependent, which introduces a higher level of complexity compared to the 
static analysis. The dynamic analysis will, in contrary to the static analysis, not have 
one single solution but rather a succession of solutions established to correspond to all 
time instances of interest.  

A dynamic load introduces an addition of inertia and damping to the elastic resistance 
force, generated to resist the accelerations of the structure. The structure will therefore 
not only equilibrate to the externally applied loads but also with the internal forces. If 
the internal forces are negligible compared to the total load, the solution can be 
considered similar to the static response, using a dynamic amplification factor to 
represent the maximum structural response. Studies are indicating that trains 
travelling with a velocity greater than 200 km/h will generate internal stresses great 
enough to produce problems of dynamic character, requiring more detailed analyses. 

 

5.1 Theoretical bridge models 

The theoretical models can be divided into two categories; models with continuously 
distributed mass and those with mass concentrated in the modelled nodal points. The 
choice of model should be made to suit the specific structure and the purpose of the 
analysis. 

 

5.1.1 Beams 

The most frequently utilised model applied on railway bridges is the beam model 
which often can characterise the structure in a simple way due to the small transverse 
dimension compared to the total length. 

 

5.1.1.1 Beam with continuously distributed mass 

The mass of medium span and large span bridge structures are generally greater or 
similar to the mass of the vehicle travelling on the structure and can therefore not be 
neglected. To model these bridges, the use of beams with continuously distributed 
mass is required. The equation of motion for the beam expresses the force equilibrium 
per unit length: 
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( ) ( ) ( )
( )

4 2

4 2

, , ,
2 ,b

u x t u x t u x t
EI f x t

x t t
µ µω

∂ ∂ ∂
+ + =

∂ ∂ ∂
   (5.1) 

where the cross section is assumed to be constant and the damping is considered to be 
proportional to the velocity of the vibration. The notation used is: 

 u(x,t) vertical deflection of the beam at the point x and time instance t 
 E modulus of elasticity       
 I moment of inertia       
 µ  mass per unit length of the beam     
 ωb circular frequency of viscous damping    
 f(x,t) load at point x and time t per unit length of the beam 

 

Figure 5.1 Beam with continuously distributed mass and a span length l. 

The differential equation (5.1) applies to Bernoulli-Euler beams and is derived 
assuming the theory of small deformations, Hooke’s law, Navier’s hypothesis and the 
Saint-Venant principle. The formulation presented in equation (5.1) is utilised in all 
analytical and numerical methods of applied mathematics. 

 

5.1.1.2 Massless beams 

The alternative to the beam with distributed continuous mass is the massless beam 
which is possible to employ when the mass of the bridge structure is substantially 
lower than the vehicle’s mass. This idealisation is commonly used for bridges with 
short spans and longitudinal or transverse girders, fulfilling the stated conditions. The 
equation of motion is derived by letting 0µ →  in equation (5.1) generating the 
following expression: 

( )
( )

4

4

,
,

u x t
EI f x t

x

∂
=

∂
        (5.2) 

with analogous notation. The load f(x,t) is in this case considered to include both the 
external load and inertia effects making the solution more difficult to obtain. 
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5.1.2 Plates 

Railway bridges are often consisting of reinforced or pre-stressed concrete plates. The 
governing differential equation of plates can be derived by applying the same 
assumptions made for equation (5.1): 

( ) ( ) ( ) ( )
( )

4 4 4 2

4 2 2 4 2

, , , , , , , ,
2 , ,

w x y t w x y t w x y t w x y t
D f x y t

x x y y t
µ

 ∂ ∂ ∂ ∂
+ + + = 

∂ ∂ ∂ ∂ ∂ 
(5.3) 

where, 

 w(x,y,t)  vertical deflection of the plate at the point (x,y) and 
    time instance t     

 
( )

3

212 1

Eh
D

ν
=

−
 bending stiffness of the plate    

 E   modulus of elasticity     
 h   plate thickness      
 µ    mass per unit area of the plate    
 ν   Poisson’s number     
 f(x,y,t)   load per unit area of the plate 

 

Figure 5.2 Geometrical properties of plate. Adapted from Frýba (1996). 

Even though plates are commonly used when constructing railway bridges, the use of 
plates while modelling the bridges is limited. 

 

5.2 Natural frequencies of railway bridges 

The most important dynamic characteristic of a railway bridge trafficked by trains 
with velocities exceeding 200 km/h is the natural frequency, characterising the extent 
of the bridge’s sensitivity to dynamic loads. A mechanical system with continuously 
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distributed mass has an infinite number of natural frequencies, all determined using 
previously presented methods. In practical application, only the lowest frequencies 
will influence the structural response. The external excitation generated by the 
moving train is commonly applied to the system over a wide spectrum of frequencies. 
The structure will react stronger to the dynamic loads with a driving frequency near 
the natural frequencies of the bridge, enhancing its influence on the total response. 

 

5.3 Resonance of railway bridges 

Resonance of a railway bridge may occur when a train with equally spaced axle 
groups is travelling over the bridge at high speeds. Resonance is a precarious 
phenomenon endangering the structural stability. The risk of resonance occurring 
arises when the excitation frequency, or a multiple of it, coincides with the natural 
frequency of the structure. Resonance will generate a rapid increase of the structure’s 
response and may cause the maximum allowed stress levels to be exceeded. The main 
factors influencing the occurrence and magnitude of the resonant peaks are; load 
duration, damping of the structure and characteristic properties of the load and 
structure. The magnitudes of the resonant peaks are highly dependent on the level of 
structural damping. A low structural damping generates high resonant peaks that may 
compromise the safety of the bridge. Figure 5.3 illustrates the dynamic amplification 
effects for different damping ratios. 

 

Figure 5.3 Relation between dynamic amplification and driving frequency of the 

load for different damping ratios. 

 

5.4 Damping of railway bridges 

Damping is, as previously described, a key parameter governing the total response of 
a structure. During the vibration phase, a part of the energy is converted between 
potential and kinetic energy, while another part is utilised to sustain irreversible 
plastic deformation or is lost to friction and dissipates into the surrounding 
environment. 
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There are two types of damping present in a bridge structure; internal and external 
damping. The internal damping occurs during the deformation of the building 
material, producing viscous internal friction due to non-homogenous properties and 
cracks. The external sources include friction at the supports, bearings, ballast material, 
joints of the structure and viscoelastic properties of the soil in contact with the bridge 
and abutments.  

It is obvious that the number of sources influencing the damping makes it virtually 
impossible to determine the actual level of damping for a structure. The damping 
depends on material parameters and the state of the structure, but is also influenced by 
the amplitude of the vibrations. 

Damping is a desirable property of a structure, able to reduce the dynamic response 
and cause a bridge to reach equilibrium faster. 
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6 Methods of dynamic analysis 

The equilibrium equations, stated in Section 4.5, governing the response of a linear 
dynamic system of finite elements are: 

Mu + Cu + Ku = p(t)&& &         (6.1) 

where M, C and K are the mass, damping and stiffness matrices. The externally 
applied loads are incorporated in the vector p, while u, u&  and u&&  represent 
displacements, velocities and accelerations. The externally applied loads will give 
raise to internal forces which can be described as: 

( ) ( ) ( ) ( )I D EF t + F t + F t = p t        (6.2) 

The reaction forces are time dependent. Therefore, the dynamic analysis is in 
principle static equilibriums at an arbitrary time t, which includes the effects of 
acceleration dependent inertia forces ( )IF t = Mu&& , velocity dependent damping forces 

( )DF t = Cu&  and elastic forces ( )EF t = Ku . 

Mathematically, equation (6.1) represents a system of linear differential equations of 
second order with a solution that can be obtained using standard procedures of solving 
differential equations. For large structural systems the coefficient matrices M, C and 
K contains an extensive number of differential equations, leading to a time consuming 
analysis to obtain the exact solutions. In finite element analysis, the two mainly 
utilised integration techniques are; direct integration and mode superposition. 

 

6.1 Direct integration methods 

By applying a direct integration scheme, equation (6.1) is integrated using a numerical 
step-by-step procedure. The methods do not require any transformations of the 
equations into different forms and are therefore considered as direct. Direct numerical 
integration is based on fulfilling two fundamental conditions, (1) instead of satisfying 
equation (6.1) at any time t the aim is to satisfy it only at discrete time intervals 
separated by an increment ∆t. The result of this is that static equilibrium, which 
includes the effect of inertia and damping forces, is sought at discrete time instances 
within the studied time interval. The second condition (2) is that the variation of 
displacements, velocities and accelerations within each time interval ∆t is assumed. 
These assumptions will determine the accuracy and stability of the solution procedure. 

In linear analysis, it is common to apply a constant time-step, but it is fairly easy to 
extend the complexity of the analysis by introducing varying time-steps. Direct 
integration must be applied to solve non-linear problems. 

There are numerous methods for direct integration, all based on the presented 
essential conditions. The derivations of a selection of algorithms are presented in the 
following sections. 
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6.1.1 Central difference method 

The central difference method is an explicit integration method, meaning that it does 
not require any factorisation of the stiffness matrix in the step-by-step solution. The 
integration scheme considers the equilibrium equations as a system of ordinary 
differential equations with constant coefficients. The method assumes the following 
acceleration at time-step t: 

( )2

1
2

t
= − +

∆
t t-∆t t t+∆t
u u u u&&        (6.3) 

To have the same order of error on the velocity and the acceleration the following 
expression is used: 

( )1
2 t

= − +
∆

t t-∆t t+∆t
u u u&        (6.4) 

By inserting equations (6.3) and (6.4) into the equilibrium equations (6.1), the 
displacement solution for time t+∆t is obtained. 

2 2 2

1 1 2 1 1
2 2t t t t t

     
+ = − − − −     

∆ ∆ ∆ ∆ ∆     

t+∆t t t t-∆t
M C u p K M u M C u  (6.5) 

Due to the fact that the algorithm involves t-∆t
u  to determine the displacement at the 

sought time-step, t
u , a special initiation procedure must be utilised. The initial 

conditions 0
u , 0

u&  and 0
u&&  can be derived using equation (6.1). The results from the 

derivations, combined with equations (6.3) and (6.4) will produce an expression for 
the displacement -∆t

u : 

2
0 0 0

2
t

i i i i

t
u u t u u

−∆ ∆
= − ∆ +& &&        (6.6) 

where i denotes the i:th element of the considered vector. 

The central difference method is very effective since each time-step solution can be 
performed efficiently, i.e. a small time-step will require a larger number of time-steps 
to be analysed. For this reason, the method should only be applied when a lumped 
mass matrix can be assumed and the velocity dependent damping can be neglected.  

 

6.1.2 Wilson’s θ method 

The theory supporting the formulation of the Wilson θ method is essentially the same 
as the Newmark method, described in Section 6.1.3, assuming a linear variation of 
acceleration between the time-steps. In order to obtain an unconditionally stable result 
θ needs to be assigned a value of 1.37 or higher. 
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Figure 6.1 Linear acceleration assumption of the Wilson θ method. 

With τ denoting the time increase, 0 ≤ τ ≤ θ∆t, it is assumed that for the time interval 
from t to t+θ∆t, the following variation occurs (Figure 6.1): 

( )
t

τ

θ
= +

∆
t+τ t t+θ∆t t

u u u - u&& && && &&        (6.7) 

By integrating equation (6.7), the velocities and the displacements are obtained. 

( )
2

t

τ
τ

θ
=

∆
t+τ t t t+θ∆t tu u + u u - u& & && && &&       (6.8) 

( )2 31 1
2 6 t

τ τ τ
θ

= + + −
∆

t+τ t t t t+θ∆t t
u u + u u u u& && && &&     (6.9) 

By combining equations (6.8) and (6.9) the velocities and displacements at t+ θ∆t can 
be expressed as: 

( )
2

tθ∆
= +t+τ t t+θ∆t t

u u u - u& & && &&        (6.10) 

( )
2 2

2
6

t
t

θ
θ

∆
= + ∆ + −t+θ∆t t t t+θ∆t tu u u u u& && &&      (6.11) 

Equations (6.10) and (6.11) can be used to express the velocities and accelerations in 
terms of the displacements. 

( )2 2

6 6
2

t tθ θ
= − −

∆ ∆
t+θ∆t t+θ∆t t t t

u u - u u u&& & &&      (6.12) 

( )3
2
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θ

∆
= − −

∆
t+θ∆t t+θ∆t t t t

u u - u u u& & &&      (6.13) 
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To obtain the displacements, velocities and accelerations at t+∆t the equations of 
motion are used. Since the accelerations are assumed to vary linearly, a linear load 
vector is extrapolated. 

t+θ∆t t+θ∆t t+θ∆t t+θ∆t
M u + C u + K u = R&& &       (6.14) 

where ( )θ+t+θ∆t t t+θ∆t tR = R R - R  

By inserting equations (6.12) and (6.13) into equation (6.14), the displacements at t+ 
θ∆t can be solved. Knowing the displacements will enable equation (6.12) to solve the 
accelerations. By setting the evaluated time τ equal to the time-step ∆t the 
accelerations, velocities and displacements at the sought time t+ ∆t are obtained. 

It should be noticed that the Wilson θ method is an implicit integration method, with 
the stiffness matrix K acting as a coefficient matrix to the unknown displacement 
vector. 

 

6.1.36.1.36.1.36.1.3 Newmark’s ββββ method    

The Newmark integration scheme is an extension of the linear acceleration method 
and showcase obvious similarities to the Wilson θ method. The following 
assumptions are made: 

( )1 tγ γ + − + ∆ 
t+∆t t t t+∆tu = u u u& & && &&       (6.15) 

21
2

t tβ β
  

= ∆ + − + ∆  
  

t+∆t t t t t+∆tu u + u u u& && &&     (6.16) 

where β and γ are parameters that can be determined to obtain integration accuracy 
and stability. The Newmark method is an unconditionally stable implicit integration 
scheme, with an assumed accelerational variation illustrated in Figure (6.2). 

 

Figure 6.2 Newmark’s constant-average acceleration scheme. 

If the parameters β and γ is set to 0.25 and 0.5 respectively, the Newmark’s method 
will be identical to the trapezoidal method. 
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6.1.4 Hilber-Hughes-Taylor method 

The Hilber-Hughes-Taylor (HHT) method, Hilber, Hughes, Taylor (1977), is an 
implicit continuation of the Newmark β method and is widely used in structural 
dynamics for the numerical integration of the equations of motion presented in 
equation (6.1). One of the limitations with the trapezoidal formula, used in the 
Newmark method, is that it does not introduce any numerical damping in the solution. 
This makes the method impractical for problems that have high frequency oscillations 
that are of no interest. Thus, the major disadvantage possessed by the Newmark 
method is that it can not provide a formula that is stable and display a desired level of 
numerical damping. The HHT method is providing a stable solution and allows an 
introduction of numerical damping by reformulating the Newmark method. The 
second order ordinary differential equations introduced by the HHT method are: 

( ) ( ) ( )( )1 1 1t tα α α α α+ + − + + − = + ∆ +t+∆t t+∆t t t+∆t tM u C u C u K u K u p&& & &  (6.17) 

in which equations (6.15) and (6.16) are substituted into. The HHT method possesses 
the advertised stability if α belongs to the interval [-1/3, 0] and: 

( )
2

11 2
2 4

αα
γ β

−−
= =        (6.18) 

A small value of α provides greater numerical damping. It should be noticed that the 
limit case where α = 0 provides the trapezoidal method. 

 

6.2 Mode superposition 

This section will show how it is possible to express and approximate the 
displacements using a linear combination of a system’s natural modes. The mode 
superposition method is commonly utilised when a reduction of large MDOF systems 
is needed. The approximated displacements are obtained using only a few modes to 
approximate the true solution. A reduced system is often pursued to minimise the 
usage of computer capacity and thus enabling more simulations to be performed. Due 
to the properties of the method it is not possible to integrate non-linear behaviour or 
un-coupled damping into the model. 

If the coefficient matrices in the equations of motion for MDOF systems are assumed 
to be of the dimensions n x n with non-zero coupling terms, it requires a simultaneous 
solution of n equations. The analysed MDOF system will have n natural frequencies 
with corresponding natural modes. The natural eigenmodes for an un-damped system 
are obtained by solving equation (3.17). The basic procedure of mode superposition is 
to introduce a coordinate transformation into principle coordinates: 

( ) ( ) ( )
1

n

r r

r

tφ η
=

= =∑u t Φη t        (6.19) 
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By substituting the displacement in equation (3.5) with equation (6.19) and 
multiplying the expression by ΦT the equations of motion in principle coordinates are 
obtained according to equation (4.11) as: 

TMη+ Cη+ Kη =Φ p(t)&& &        (6.20) 

where M and K are the diagonal modal mass and modal stiffness matrices, indicating 
that equation (6.20) only is coupled through non-zero off-diagonal coefficients in the 
generalised damping matrix. By applying modal damping according to Section 4.5.3 
the coupled equations of motion are reduced to a set of n un-coupled modal equations. 

 

6.2.1 Model reduction 

The coordinate transformation relating the physical coordinates u and the modal 
coordinates ηηηη stated in equation (6.19) includes all n modes of the system. As 
previously stated, this analysis is very time consuming for large finite element models 
and a truncation of modes is often desired. The reduced analysis will only include a 
fraction of the modes and will therefore provide an approximation of the original 
MDOF system’s solution. The choice of the number of modes to include in the 
analysis is crucial. Factors ensuring that acceptable accuracy is provided are discussed 
in Section 6.2.3. 

If instead a truncated form of equation (6.19) is used, a solution that completely 
ignores the contribution of the excluded modes is obtained: 

( ) ( ) ( )
1

ˆ ˆˆ
m

r r

r

tη
=

=∑u t =Φη t ϕϕϕϕ        (6.21) 

where m is a constant representing the number of modes considered (m < n). The 
truncated modal matrix is given by: 

[ ]1 2
ˆ , ,..., m=Φ ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ         (6.22) 

This method of limiting the number of equations included is called the mode 
displacement method. The choice of modes is not limited to only include the lowest 
frequency modes but allows any selection of mode shapes considered to be of 
importance. 

A similar method providing a more accurate solution called the mode acceleration 
method, can be utilised to solve systems with viscous damping. The solution is 
obtained by rearranging equation (6.1): 

( )  
-1u = K p t - Cu - Mu& &&        (6.23) 

and incorporating the coordinate transformation in equation (6.19): 

( )  
-1u = K p t - CΦη - MΦη& &&        (6.24) 
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If the conditions for modal damping are satisfied by C, the two right most terms in 
equation (6.24) can be simplified. The final mode acceleration approximation is 
obtained by letting the velocity and acceleration be approximated by m mode 
displacement approximations: 

( ) ( ) ( ) ( )2
1 1

2 1m m
r

r r r r

r rr r

t t
ζ

φ η φ η
ω ω= =

− −∑ ∑-1u t = K p t & &&%     (6.25) 

The mode displacement method may in some cases fail to provide an accurate 
solution. A result of this is that convergence is relatively slow due to the extensive 
modes needed to ensure sufficient accuracy. A solution to this problem is to extend 
the analysis to the mode acceleration method with superior convergence properties. 
The improved convergence rate is proven by studying the two right most terms of 
equation (6.25) where ωr is present in the denominator. 

A level of good engineering judgement is required when determining which modes to 
include in the analysis. However, it is especially important to incorporate natural 
modes with a frequency in the vicinity of the driving load frequency, as they will have 
a greater impact on the total response. 

 

6.2.2 Error estimation 

Due to the reduced number of equations of motion included in the simplified analysis 
and numerical errors there will be a deviation from the exact solution, obtained when 
all natural modes are included. Generally, the following errors are considered to have 
a substantial effect on the result, Dutta and Ramakrishnan (1995): 

• Domain discretisation errors 

• Modal truncation errors 

• Numerical errors in eigenmodes and eigenvalues 

• Truncation errors in numerical integration 

The magnitude of the error is mainly influenced by the extent of the modal truncation 
made and the accuracy of the orthogonal eigenmodes used. The level of 
approximation made and which modes relevant for the particular model are highly 
case specific, but in general they depend on the size of the original model and the type 
of excitation acting on the structure. Generally, a linear variation of stresses and 
displacements are assumed within the elements, but a greater accuracy can be 
obtained by introducing a higher order of the interpolating polynomial at element 
level. 

A finite element analysis is normally carried out by dividing the domain into a 
number of subdomains, each of which is further subdivided into elements. The 
division of the structure creates a mesh on which the variation of displacements and 
stresses are calculated. To find an optimal mesh density is therefore a key factor for a 
successful analysis. A too coarse mesh will generate large errors as the variation of 
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the stresses and displacements between the nodal points cannot be properly described. 
However, if the applied mesh is too dense the time needed to perform the analysis will 
be very extensive. An error criterion which considers the error variation as a function 
of time may therefore be introduced. By using an error measurement, an adaptive 
mesh refinement strategy enabling good control of the discretisation errors in transient 
dynamic analysis using modal superposition is obtained. 

Since the dynamic equilibrium in the equations of motion (6.1) will not be fully 
satisfied an approximation of the modal truncation error can be estimated by the 
following equation: 

( )
( ) ( ) ( )

( )

  
m m

m
p t - Mu t + Ku t

ε t =
p t

&&

     (6.26) 

where m denotes the number of included modes and u
m is the predicted response 

using mode superposition with m modes in consideration. The error measure εεεεm 

determines how well equilibrium, including inertia forces, can be satisfied by a linear 
combination of the included modes. Modal truncation errors are a serious problem for 
the modal superposition method that can only be studied after obtaining an optimal 
mesh. Using a large number of modes to control truncation errors without using an 
optimal mesh can lead to incorrect results due to discretisation errors. 

An improper choice of time increment leads to truncation errors during the numerical 
integration, producing a misrepresentation of modes. Numerical integration errors of 
eigenmodes and eigenvalues, as well as numerical truncation errors can be avoided by 
a proper choice of the time-step and an effective control of tolerances. 

 

6.2.3 Mass participation factor 

A parameter often studied when trying to determine which modes to include in modal 
analysis is the mass participation factor. The MPF provides an indication of how large 
the fraction of the total mass that is active in a specific direction for a given mode is. 
Modes with a large MPF are assumed to have a greater influence on describing the 
structure’s response to a dynamic load. In some commercial FE software, e.g. 
LUSAS, MPF is  defined as: 

2
T

, i; ; , ,i
i j i

P
MPF P j x y z= = =

T
MX

X MX
ϕϕϕϕ      (6.27) 

where ϕϕϕϕi is the i:th eigenvector and X is a vector defining the magnitude of the rigid 
body response of a DOF in the model to imposed rigid body motion in each direction. 
The vector is generated by letting the components of X, associated with translation in 
a specific direction, to be equal to 1 with the remaining components set to 0. Many 
national building codes, e.g. Uniform Building Codes (UBC), Seismological 
Committee of the Structural Association of California (SEAOC) and Chile Seismic 
Code (CHSC), require that all significant modes until the total sum of MPF is greater 
than 90 % are included in the analysis, López O.A., Cruz M. (1996): 
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,
1

0.90; , ,
m

j i j

i

SMPF MPF j x y z
=

= ≥ =∑      (6.28) 

Equation (6.28) is stating that the total translational mass of the considered modes 
must be greater than 90 %. A disadvantage relating the MPF to a converging result is 
that the contribution to the response generated by asymmetric modes is disregarded. 
The MPF for the asymmetric modes are infinitesimal and will thus not contribute to 
the SMPF. By studying the definition presented in equation (6.27), the active mass of 
the asymmetric modes is cancelled out by the equal deformations in positive and 
negative direction. Figure 6.3 illustrates an asymmetric mode of a 3-DOF system. The 
positive mass contribution active in the mode is approximately equal to the negative 
mass contribution and the MPF for the mode is thus infinitesimal. 

 

Figure 6.3 Example of asymmetric mode of a 3-DOF system. 

 

6.2.4 Mode superposition method in commercial FE-software 

6.2.4.1 LUSAS 

LUSAS is using the mode superposition method in the IMDPlus module. The 
recommendation is to include enough modes so that the SMPF is greater than 90 %. 
The MPF is defined according to equation (6.27). However, a LUSAS representative 
admits that MPF is not always an appropriate criterion to ensure that enough modes 
have been included in the analysis if the asymmetric modes are contributing to an 
increased acceleration of the structure. In these situations a convergence study based 
on the number of modes analysed is advised. 

 

6.2.4.2 TDV 

The Austrian software developer TDV is using the mode superposition method for 
earthquake analysis, advanced wind buffeting and analysis of forced vibrations. 
However, in case of dynamic analysis of railway bridges they rely on direct time 
integration. TDV’s opinion is that mode superposition is not suitable for train passage 
problems due to the different load effects on the superstructure depending on the 
position of the loads. The benefits of applying time integration is increased quality of 
the results and the possibility to solve non-linear problems. To reduce the increased 
amount of computer capacity required, numerous matrix reduction methods are 
utilised for faster data processing. 
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6.2.4.3 Scanscot Technology 

Swedish software developer Scanscot Technology is offering the mode superposition 
method in the Brigade Plus module. The general advice is to consider all modes so 
that 90 % of the total mass is excited. The participation factor of the α:th mode is 
defined as: 

1
i i

m
α α

α

Γ = φ MT         (6.29) 

where Ti defines the magnitude of the rigid body response of a degree-of-freedom in 
the model to imposed rigid body motion in the i-direction. 

 

6.2.4.4 ADINA 

ADINA is an American software, initially developed by Klaus-Jürgen Bathe. Their 
recommendation is to only apply the mode superposition method when very long time 
histories, or special demands on the damping, are present. If the use of proportional or 
Rayleigh damping is desired it is a necessity to utilise mode superposition. ADINA is 
using the Lanczos method to solve the eigenvalue problem. MPF is available in the 
software, but is not suggested as a convergence criterion. ADINA recommends that a 
Fourier analysis of the loading is performed and modes with a natural frequency up to 
three times the dominating frequencies are included in the modal analysis. 

 

6.2.4.5 Risa Technologies 

Risa’s FEM software is currently not capable of performing transient analysis or time 
history analysis. 

 

6.2.4.6 GTS Cadbuild 

GTS Cadbuild is offering STRAP to perform dynamic analyses. The mode 
superposition method is utilised in the DYNAM2 module, while time history analysis 
is used in the DYNAM3 module. DYNAM2 is advised to use for seismic loading 
while DYNAM3 is applicable to any generalised dynamic loading, e.g. train loading. 

STRAP is using a mathematical procedure called missing mass correlation (MMC) to 
include a correction mode, representing the contribution of higher order mode shapes 
and thus providing greater accuracy with reduced calculation time. The program 
solves a set of equations for the missing mass mode shape such that its modal mass 
will be equal to the difference between the structures total mass and the sum of the 
mass included in known mode shapes. This provides a unique solution called the 
missing mass mode shape which represents an approximation of all modes that were 
not computed. 
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6.2.4.7 TNO Diana 

TNO Diana’s software MIDAS is able to perform a dynamic analysis by applying 
either the mode superposition method or a transient direct integration algorithm. 
Representatives from TNO Diana are claiming that their software is so memory 
efficient that an exact direct integration is preferred for dynamic analyses. If a longer 
time history is desired the modal superposition method may be applied. The MPF is 
defined as “The fraction of the mass that is active for a given mode with a given 
distribution of dynamic loads”. However, TNO Diana insists that, due to their 
memory management, more modes can be included while keeping the duration of the 
analysis relatively short. The use of MPF as cut-off criterion is therefore excessive 
since the large amount of modes included always ensures that most of the mass can be 
excited. 
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7 The finite element method and LUSAS 

The finite element method is a numerical methodology to approximately solve general 
differential equations, which often are too cumbersome to solve in a classical 
analytical fashion. This is an important method since basicly all physical phenomena 
encountered in structural engineering are described by differential equations. 

A characteristic feature of the FEM is that the analysed structure is divided into 
smaller parts, i.e. elements, for which a relatively simple approximation is 
implemented. So, instead of seeking approximations that holds directly for the entire 
structure the approximations are carried out over each element. The collection of all 
elements is called a mesh, the mesh size is arbitrary but it can, as described in section 
6.2.2, effect the accuracy of the final results. 

The approximations for each element are in fact an interpolation over the element, 
requiring known variables at certain points in the element, nodal points. The nodal 
points are often located at the boundaries of each element and consist of a number of 
degrees-of-freedom, which states the way in which the nodes are free to displace. 

 

Figure 7.1 Beam element with denoted nodal degrees-of-freedom. 

The next step is to determine the corresponding behaviour of each element and then 
merge them together to form the whole structure. 

While studying the results produced by the finite element analysis it is important to 
remember that the output data is only an approximation reflecting the predetermined 
geometry and boundary conditions. To determine the quality of the results obtained a 
convergence study and a certain level of engineering judgement are required.  

 

7.1 Modelling procedures in LUSAS 

The finite element software LUSAS was used to perform the dynamic analyses in this 
project. This section describes how the modelling procedures are performed for both 
static and dynamic analysis.  
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7.1.1 Elements 

The LUSAS element library contains several different element types, classified into 
groups according to their function. The available element groups in LUSAS are; bar 
elements, beam elements, continuum elements (2-D and 3-D), plate elements, shell 
elements, membrane elements, joint elements, field elements and interface elements. 
This section is providing a brief description of the element types important for bridge 
modelling. A more detailed element description can be studied in the LUSAS Theory 
Manual and in the LUSAS Element Reference Manual. 

 

7.1.1.1 Beam elements 

There are numerous types of beam elements available in the beam section of the 
LUSAS element library. The beam elements are commonly used to model plane and 
space frame structures, both in 2-D and 3-D. In addition to the standard thin and thick 
beam elements, LUSAS offers specialised elements for modelling of grillage and 
eccentrically ribbed plate structures. The beam elements are able to transfer axial, 
bending and torsional forces. The beam elements can be modelled as either straight or 
curved. The force variation along the beam is assumed to be constant for axial and 
torsional forces, linear for shear forces and quadratic for moments. The corresponding 
displacements will thus vary linearly for axial and rotational displacements while the 
transverse displacement varies cubically. The formulation of the beam elements are 
based on a 3-D thick beam element which can conveniently be used to model 3-D 
frame structures or stiffeners. The geometrical properties are assumed to be constant 
along the length of the beam, preventing the strains to be obtained within the element. 
Beam elements are not able to described non-linear behaviour, but can if combined 
with other elements be included in a non-linear analysis. The beam elements are 
advantageous while performing linear, eigenvalue or dynamic analyses. 

 

7.1.1.2 Shell elements 

Shell elements can be used to model 3-D structures, capturing both flexural and 
membrane effects. The element can either be thick or thin, flat or curved, with a 
triangular or quadrilateral shape, illustrated in Figure (7.2). The elements, on which 
the formulation is based on, are 3-D thick shell elements that can be used to analyse 
flat and curved 3-D shell structures. Shell elements are especially good to describe 
structures where transverse shear deformations have a considerable influence on the 
response. The elements may be used for modelling intersecting shells or branched 
shell junctions as well as stiffened shell structures, where shells are connected to 
beam elements. 

The elements can be equipped with an arbitrary thickness and composite non-linear 
material properties. A common shell element is often modelled with two rotational 
degrees-of-freedom and a common nodal normal degree-of-freedom associated with 
each node. However, if higher flexibility is desired additional rotational degrees-of-
freedom may be incorporated. 
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The element formulation relies on an isoparametric approach with consideration to 
membrane, shear and flexural deformations. Quadrilateral shell elements assume a 
strain field to define transverse shear and provides a good representation of bending 
deformations. Thick shell elements offer a consistent formulation of the tangent 
stiffness, enabling the elements to be effective in geometrically non-linear application. 

 

Figure 7.2 Quadrilateral and triangular shell elements with denoted degrees-of-

freedom. 

 

7.1.1.3 Joint elements 

Joint elements may be used to connect nodes of different element with elastic springs. 
The springs can be given any desired configuration concerning translational and 
rotational stiffness. The joint elements will, via an interface mesh, connect nodes of 
different elements. An initial gap between the nodes is allowed, but to maximise the 
efficiency of the joint element and capture the time variation the gap should be 
minimised. 

The stiffness matrix corresponding to the joint element does not rely on engineering 
beam theory, implying that joint elements are independent of both shear forces and 
joint length. Even though the joint elements remain geometrically linear, they are able 
to be included in non-linear analyses due to assumed infinitesimal strains and the 
neglecting large deformations effects. 

Joint elements are valid for both 2-D and 3-D modelling. The connection is 
represented by a line joint in 2-D while modelling in 3-D requires a surface joint mesh 
to be generated. There are two methods of applying the surface joint mesh, either by a 
single joint where the joint mesh is assigned to a single line or by connecting the 
elements with multiple nodes by means of a joint mesh interface. The method using a 
single line is more suitable when only a few joints are desired due to the required 
definition of each joint. 

The joint mesh interface utilise a master and slave connection to tie the desired lines 
or surfaces together. The joint properties are applied by assigning them to the selected 
master feature, describing the behaviour of the joint. To create a joint with rotational 
degrees-of-freedom, the geometric properties of the joint are required to be assigned 
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due to the eccentricity present. Additionally, the joint mesh requires that material 
properties are defined. 

 

Figure 7.3 Joint three-dimensional element for plate bending elements. The joint 

element consists of rotational springs in x- and y-direction and a 

translational spring in z-direction. 

 

7.1.1.4 Slidelines 

Slidelines are attributes that may be utilised to model contact or impact problems, or 
to tie dissimilar meshes together. Slidelines are a useful alternative to joint elements 
and are advantageous when there is no prior knowledge of the contact point. The user 
is allowed to define the important properties of the slidelines, such as stiffness scale 
factor, friction coefficient and pre-contact behaviour. When applying slidelines 
between multiple features of the model, one feature is assigned master while the 
others are assigned slave. To increase the convergence rate and reduce the solution 
time, the general advice is to set the feature with the greater stiffness as master. 

There are several different types of slidelines: 

• Null – Utilised to perform linear analysis while ignoring the slide definition. 

• No friction – Used for contact analyses with ignored friction between the  
           surfaces. 

• Friction – Used for constant or intermittent contact and impact problems.  

• Tied – Used to tie dissimilar meshes together. 

• Sliding – Used for problem where surfaces are kept in contact, allowing  
     sliding without friction. 

The tied slideline option eliminates the requirement of a transition zone in the mesh 
discretisation. This feature is extremely useful while creating localised meshes in 
regions of high stress gradients. 
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7.1.2 Damping 

LUSAS enables the application of both viscous damping and structural modal 
damping ratios when defining the bridge structure’s total damping. A combination of 
the two types of damping is also allowed. However, structural damping cannot be 
used in modal response analysis in the time domain. The damping ratio, expressed 
with a percentage of the critical damping, can either be user specified or automatically 
calculated by the software. The provided estimation of the modal damping is only 
available if relevant damping data is included in the eigenvalue analysis. Any 
arbitrary damping ratio can be individually assigned to each mode. However, a 
maximum damping ratio of 10 % is commonly regarded for bridge structures in order 
to efficiently use the modal superposition method and to avoid coupling between 
modes. For dynamic analysis of structures with a damping greater than the prescribed 
maximum ratio a direct step-by-step integration is suggested. 

 

7.1.3 Loads 

The external loads acting on the model are in LUSAS represented by loading datasets. 
With the exception of discrete loads all loads available in LUSAS are feature based. 
Feature based loads are assigned to a specific instance of the model geometry and is 
thus only effective on the selected areas. The loads can either be assigned to act in 
local or global element directions. The magnitude of the load will by default be 
defined as constant for all the nodes in the feature, unless a variation is specified. 
Variations can be applied to all feature type loads except for beam distributed loads, 
where a variation is present in the definition. The feature based loads includes: 

• Structural loads, e.g. body force, distributed, face, concentrated, temperature, 
stress/strain and beam loads. 

• Prescribed loads, used to specify initial conditions on displacement, velocity 
or acceleration of a specific node. 

• Thermal loads, used to describe temperature or heat input to a thermal 
analysis. 

The discrete, or general, loads are assigned to points in the finite element model. The 
points do not have to belong to the surface on which it is applied, as the patch is 
projected onto the surface in a normal direction to the patch definition. The main 
difference between discrete and structural loads is that the discrete loads are not 
limited to application on the structure and are thus independent of the model 
geometry. The two types of general loads available are:  

• Patch Load, where in general 2 or 3 points are used to define a straight or 
curved continuous line load in space. It is also possible to express the 
geometry of a straight sided or curved patch by increasing the number of 
selected points. 

• Point Load, assigned to a single or general set of discrete points. Each 
individual point can have separate load values. 

For a more detailed description of the loads and their applicability, the LUSAS 
Modeller User Manual can be referred. 
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7.2 Dynamic analysis 

When the loading cannot be considered instantaneous or where inertia and damping 
forces are significant a dynamic analysis is required. Generally, the dynamic solution 
is obtained by performing numerical step-by-step integration in the time domain. A 
variation of the displacements and the velocities are assumed as the solution progress 
with each time increment. The simultaneously solved set of equations within each 
time-step represents the response at discrete time instances when dynamic equilibrium 
is fulfilled. When the initial conditions are known, successive application of the 
procedure produces the dynamic response of the structure. 

 

7.2.1 Direct integration 

There are several different methods able to solve the dynamic equilibrium equations 
by using direct integration. The algorithms are further described in Section 6.1. The 
choice of which integration scheme to apply onto a specific model is highly dependent 
on the complexity of the structure and the type of analysis required. 

An explicit integration scheme will only generate a stable result if the time-step is 
shorter than the critical length. Explicit algorithms permit de-coupling of the 
equilibrium equations which implies that an inversion of the stiffness matrix is not 
needed. This characteristic makes the explicit algorithms more suited for analyses 
which require small time-steps, irrespective of the stability requirements. When an 
explicit direct integration is desired, LUSAS applies the central difference integration 
scheme, described in Section 6.1.1. The central difference method is particularly 
effective when a uniform discretisation of lower order elements is used. 

The implicit algorithms are unconditionally stable allowing the time-step to increase 
with a retained convergence. The total number of time instances where equilibrium is 
calculated can therefore be reduced. The computational effort at each time-step is 
more extensive due to the required inversion of the stiffness matrix. Generally, an 
implicit integration is preferred for inertial problems where the total response is 
governed by relatively low frequencies. The main reason for this is that the time-step 
is commonly set to be greater than the critical length preventing optimal accuracy for 
the higher modes. The higher modes have less influence on the total response 
implying that the total accuracy is condensated. The Hilber-Hughes-Taylor implicit 
integration scheme, described in Section 6.1.4, is the default implicit algorithm of 
LUSAS. 

 

7.2.2 Eigenvalue analysis 

If solving the dynamic problem by means of modal analysis, the extraction of natural 
frequencies and natural modes are required. The natural frequencies and eigenmodes 
are determined by an eigenvalue analysis. To solve a moving load problem in LUSAS 
the first step is to provide the eigenvalues as input data to the dynamic analysis. This 
procedure is also needed for other dynamic applications, e.g. when determining the 
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buckling load which estimates the maximum load that can be supported prior to 
structural instability.  

There are different methods available in LUSAS to extract the eigenvalues and 
eigenvectors from large systems of equations. The algorithms of the methods have 
several common features. The algorithms initially determine which degrees-of-
freedom that will provide the greatest contribution to the structural response. 
Thereafter, a transformation matrix and a reduced set of equations are assembled. 
Finally, the eigenvalues and eigenvectors of the reduced system are extracted and are 
thereafter transformed to represent the complete system. 

The solution is completed by calculating error estimations of the precision provided 
by the eigenvalues and corresponding eigenvectors. A normalisation of the 
eigenvectors is recommended in order to decrease the duration of the dynamic 
analysis. 

 

7.2.2.1 Subspace iteration 

The subspace iteration procedure is utilised to solve eigenvalue problems of the form: 

KΦ = ΛMΦ          (7.1) 

where Λ is a diagonal matrix containing the eigenvalues λi and Φ contains the 
corresponding eigenvectors, φi. 

To efficiently obtain the lowest m eigenvalues and corresponding eigenvectors a 
simultaneous inverse iteration, utilising a set of iterational vectors followed by a 
subspace projection of the problem matrices, is performed. This procedure generates a 
reduced eigenvalue problem that is solved using Jacobi iteration. A transformation of 
the eigenvectors corresponding to the reduced problem is thereafter performed to 
obtain the full space iteration vectors. This process is repeated until convergence of 
the lowest m eigenvectors of the full problem is obtained. The procedure can be 
divided into three principle steps: 

1. Establish initial iteration vectors. 

2. Extract the optimal eigenvalue and eigenvector approximations by using 
simultaneous inverse iteration and Ritz analysis. 

3. Verify the generated eigenvalues and eigenvectors by utilising the Sturm 
sequence. 

The main advantage of the subspace iteration method is that the iterative vector is 
improved with each update of the subspace, making the method very stable. 
Consequently, the method will converge even with a bad selection of master degrees-
of-freedom but will require more iteration. The subspace iteration is considered to be 
the most effective iteration algorithm available. 
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7.2.2.2 Guyan reduction 

When searching a finite element approximation a condensation of the full discrete 
model to a reduced system is often utilised. A structure subjected to low frequency 
natural vibrations, often has degrees-of-freedom whose contribution is of a higher 
significance to the oscillatory structural behaviour. This characteristic allows a 
significant reduction of the total problem. Such a reduction procedure is often called 
Guyan reduction or Guyan condensation. 

To obtain acceptable accuracy of the Guyan reduction the selection of the significant 
degrees-of-freedom, denoted master freedoms, is central. In typical Guyan reduced 
eigenvalue extraction the mass contribution of the degrees-of-freedom whose inertia 
effect are relatively insignificant to the structural response, denoted slave freedoms, is 
therefore condensated from the system. It is assumed for the lower frequencies that 
the inertia forces of the slave degrees-of-freedom are insignificant when compared to 
the elastic forces transmitted by the master degrees-of-freedom. 

The remaining m x m condensed system is solved by using implicit QL or Jacobian 
iteration for the master degrees-of-freedom. 

 

7.2.2.3 Inverse iteration with shift 

To determine eigenvalues and corresponding eigenvectors within a specific frequency 
range of interest, it can be useful to employ inverse iteration with shift. The method is 
especially effective to produce convergence of an eigenvalue other than the 
fundamental. By letting the shift µ be in the vicinity of the frequency of interest the 
eigenvalue problem can be modified to locate the eigenvalue closest to the value of 
the shift: 

( ) ( )i iµ λ µ − − − = K M M 0ϕϕϕϕ       (7.2) 

Inverse iteration with spectrum shift is a commonly used procedure to find 
eigenvectors after the eigenvalues have been determined using a different method. 
The method can also be utilised to avoid problems associated with the singularity of 
K for a system with rigid body modes. 

 

7.2.2.4 Lanczos method 

In contrary to the vector iterative methods, i.e. the subspace iteration method and the 
inverse iteration method, the Lanczos method is considered as a transformation 
algorithm. The algorithm transforms a given real and symmetric matrix into a 
tridiagonal matrix. The transformation to the tridiagonal form is achieved by a 
recurrence relation generating an orthogonal basis for certain Krylov subspaces. 
Though the method is practical from a mathematical perspective, the recurrence 
relation is numerically unstable. Still, the Lanczos method has several desirable 
features making it well suited for treating large sparse matrix eigenvalue problems. 
The Lanczos method is considered to be one of the fastest and most robust methods. 
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7.2.3 Modal analysis 

There are two types of modal analyses available in LUSAS to solve a linear system of 
equations, spectral response analysis suitable during e.g. earthquake analysis and 
harmonic response analysis which is preferred for arbitrary periodic loading. Modal 
analysis techniques reduce the number of unknowns to represent the global behaviour 
of a structure rather than solving a full set of n unknown displacement. The results 
from a modal analysis are highly dependent of the type of problem analysed. The 
efficiency rate is greatly improved when the problem is dominated by global 
displacement rather than local displacement. 

 

7.3 Moving load analysis 

The module, integrated in LUSAS, able to perform a dynamic analysis of the 
structural response caused by a moving load is called IMDPlus. The module provides 
the linear dynamic response of the structure subjected to a passing train load. Prior to 
the dynamic analysis an eigenvalue analysis is required, as the eigenvalues and 
eigenvectors are required as input parameters to IMDPlus. To obtain correct results, 
the eigenvalue analysis must be performed using mass normalised eigenvectors.  

The moving load analysis requires that the magnitude and configuration of the load 
remains constant throughout the analysis to provide the response of the structure. The 
load is applied to each individual mode separately and the frequency dependent 
response of the structure is obtained by summarising each modes contribution using 
superposition techniques. The summation of the modes is made possible due to the 
assumption of linear structural behaviour. 

There are two methods to define the path and the magnitude of a moving load 
travelling along the structure. The load configuration can either be defined explicit 
with a discrete load definition in the modeller, or by a composite axle where a single 
unit axle is defined as a discrete load in the modeller and the axle configuration 
defined separately. The explicit definition is preferred when only a single passage of a 
load configuration occurs. 

When for example multiple train rolling stock configurations passing a bridge 
structure is to be analysed the composite axle definition is preferred. The method 
enables a more rapid analysis where the initial steps do not have to be repeated to 
obtain the solution. The composite axle definition allows complex loading 
configurations from a single axle with different spacing and magnitudes to be 
analysed. The moving load analysis requires that the equivalent modal forces for the 
moving load path are determined prior to the analysis. 

 

7.3.1 IMDPlus assumptions 

The assumptions for the IMDPlus modal dynamics facility are: 
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• The system is linear in terms of geometry, material properties and boundary 
conditions. 

• No cross-coupling of modes due to the damping matrix is assumed. This 
assumption is reasonable for most structures with the exception of highly 
damped structures or applications. 

• The lowest modes dominate the response. 

• Damping ratios are required to be less than the critical damping due to the 
solution of the time domain response using Duhamel’s integral. 

 

7.3.2 Definition of required input 

A moving load generator is used to automatically calculate the structural response of a 
selected number of static load cases at prescribed locations along a load path, 
represented by a continuous line or arc. The load cases can thereafter be imported into 
IMDPlus where modal forces, equivalent to the applied loading are determined. 

The load path has to be selected prior to entering the moving load generator and a 
discrete load representing the load configuration, moving across the structure must be 
defined. There are different requirements for the discrete load depending on what the 
input of the moving load used in IMDPlus is. If the entire load configuration is 
represented by the discrete load, the load is required to contain all the loading 
associated with the configuration. However, if a composite axle definition is desired 
the discrete load should represent a subset of the total load configuration. The discrete 
load will accompany a composite axle definition file to complete the configuration 
imported into IMDPlus. 

If the load path is defined above several planes of the model on which the discrete 
load could be applied, a definition of search area is required. The search area will 
determine on which of the planes the static load will act while calculating the desired 
load cases. The static load cases will be calculated incrementally, separated by a 
distance sufficiently small to provide an accurate movement of the load. 

The discrete loads are required to be converted into equivalent modal forces before 
they are imported into the module. A modal force calculator is utilised to perform the 
required conversion from eigenvalues and static load cases into modal forces. 

 

7.3.3 Running moving load analysis 

Following the calculation of the modal forces, the moving load analysis can be 
performed. The analysis uses the modal force history file and the composite axle 
definition as input parameters. LUSAS enables the number of modes included in the 
analysis to be restricted to a defined interval, or by a specified subset. The default 
setting is to include all modes in the analysis. When deselecting modes the total mass 
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participation factor decreases. LUSAS advice is that the total mass participation factor 
should exceed 90 % in any given direction to guarantee sufficient accuracy. 

The damping ratio of the modes can be defined by selecting a default value applying 
to all modes using the damping control feature. By applying viscous damping in the 
eigenvalue analysis it is also possible to ignore or limit the influence of overdamped 
modes by assigning mode specific damping ratios. 

Before the input data is submitted for analysis the speed and time-stepping 
information are defined. The speed input consists of a range in which the speed varies 
and a speed increment length. If the aim of the analysis is to study the decay of the 
structural vibration a quiet time can be added after the passage of the load. The length 
of the time-step can either be defined by the user or calculated by the Nyquist time-
step, which is dependent of the maximum frequency included in the analysis.  
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8 Code requirements in BV BRO 

The design procedure for any type of structure is regulated by national and 
international building codes. The building codes describe both limit values and design 
procedures required to consider. The codes are provided to ensure that quality and 
safety requirements are obtained. The Swedish railway bridge code, regulating the 
dynamic analyses of railway bridges, BV BRO is almost identical to the European 
standard code Eurocode. The content of BV BRO will therefore be the only code 
presented in this chapter. 

The Swedish railway bridge code, BV BRO, is issued by the Swedish Rail 
Administration. The code requires that dynamic analyses of bridges with train 
velocities exceeding 200 km/h are performed at the design stage. The considered 
interval of velocities should range from 100 km/h to 120 % of the theoretical 
maximum velocity expected on the bridge. 

 

8.1 High-speed load models 

The code provides different load models that should be applied when performing the 
dynamic control. The high-speed load models HSLM-A and HSLM-B are 
representing the loads generated by the wheel axels of the train in contact with the 
rail. The most commonly used load model is HSLM-A which contains 10 load cases 
representing theoretical idealisations of real trains. All load cases are required to be 
controlled in order to determine the maximum structural response. 

 

Figure 8.1  Load distribution of train model HSLM-A. 
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Table 8.1 Load model for HSLM-A. 

 

The load model HSLM-B should only be applied on simple bridge structures, i.e. 
simply supported beam or slab bridges, with one span less than 7 m. HSLM-B 
consists of N point loads with a magnitude of 170 kN evenly spaced by the distance d 
according to Figure 8.2. 

 

Figure 8.2 Load distribution of train model HSLM-B. 
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Figure 8.3 The spacing and number of loads for HSLM-B. 

 

8.2 Damping 

When dynamic analysis of a bridge structure is performed, a damping factor needs to 
be caculated. Appropriate values of the damping factors are suggested in Table 8.2, 
which should be applied unless more accurate values can describe the structural 
damping. 

Table 8.2 Values of damping to be assumed for design purposes. 

 

 

8.3 Speed increment 

The speed increment in the analysed velocity range cannot be greater than 5 km/h 
between each analysed velocity. If resonant effects are expected in the vicinity of a 
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specific velocity, the speed increments of the adjacent speed steps cannot exceed 2.5 
km/h to ensure that the critical response is captured. 

 

8.4 Vertical accelerations 

To ensure the safety and comfort of the passengers travelling with trains passing the 
bridge, a maximum magnitude of the vertical acceleration is stated. If the track is 
placed on ballast, the maximum acceleration cannot exceed 3.5 m/s2 within the ballast 
area. The maximum acceleration allowed for slabtrack or bridges with its track placed 
directly on top of the bridge deck is set to 5.0 m/s2. The vertical accelerations should 
at least be analysed for modes with natural frequencies up to 30 Hz. 

 

8.5 Choice of model 

The model should be created to reflect the structure’s behaviour during the passage of 
a high-speed train. The soil conditions are, for most bridges, not required to be 
included in the model. The soil can therefore be considered as un-deformable. 
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9 The Norra Kungsvägen bridge 

9.1 Bridge description 

The Norra Kungsvägen bridge is situated 60 km south of Umeå, Sweden. The 
construction of the bridge was completed in August 2007 and is an essential element 
of the Bothnia line, which will span from Ångermanälven to Umeå. Figure 9.1 
illustrates the elevation of the bridge. 

 

Figure 9.1 Elevation of the Norra Kungsvägen bridge, 1:200. 

By studying Figure 9.2, illustrating the plan of the bridge, it should be noticed that the 
bridge is oriented perpendicular to the longitudinal direction of the bridge. 

 

Figure 9.2 Plan of the Norra Kungsvägen bridge, 1:200. 

The Swedish consultant company ELU Konsult was contracted to design the bridge 
structure. The bridge’s structural system consists of a reinforced concrete frame with a 
trough constituting of a slab and two edge beams. The bridge is required to withstand 
the loads caused by high-speed trains according to BV BRO’s guidelines. The use of 
dynamic amplification factors was therefore not sufficient to determine the dynamic 
effects and a detailed dynamic analysis was required. 
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9.2 Previous analyses 

The dynamic analysis was performed using the finite element software LUSAS. To 
enable a reduction of the computational effort consumed by the dynamic analysis the 
mode superposition method was applied. This feature is available in the LUSAS 
application IMDPlus. To determine the required number of eigenmodes included in 
the analysis the SMPF, described in Section 6.2.3, was used as a cut-off criterion. 
LUSAS encourage its clients to include all significant modes so that SMPF > 90 %, to 
ensure acceptable accuracy of the results. 

The eigenvalue analysis produced the following results, with corresponding MPF and 
accumulated SMPF, for frequencies within the interval 0-35 Hz: 

Table 9.1 Results from eigenvalue analysis of the Norra Kungsvägen bridge. 

Mode Eigenfrequency [Hz] MPF [-] SMPF [-] 

1 1.49118 0.112681E-06 0.112681E-06 

2 1.88860 0.170320E-10 0.112698E-06 

3 1.90369 0.599213E-10 0.112758E-06 

4 4.67282 0.526882E-10 0.112810E-06 

5 5.12425 0.242511E-04 0.243639E-04 

6 5.59383 0.117250E-07 0.243756E-04 

7 6.62900 0.380217E-01 0.380461E-01 

8 7.03100 0.248871E-08 0.380461E-01 

9 7.89094 0.651799E-04 0.381112E-01 

10 8.72788 0.557924 0.596036 

11 10.8917 0.266391 0.862426 

12 11.1584 0.171011E-04 0.862443 

13 12.5246 0.937943E-08 0.862443 

14 13.1837 0.513373E-05 0.862448 

15 16.3357 0.133091 0.995539 

16 20.6331 0.317391E-03 0.995857 

17 22.2921 0.845095E-08 0.995857 

18 23.1194 0.179468E-03 0.996036 

19 23.2370 0.806814E-06 0.996037 
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20 23.3240 0.113182E-04 0.996048 

21 25.3131 0.467518E-08 0.996048 

22 25.6966 0.200645E-07 0.996048 

23 26.3531 0.735210E-07 0.996049 

24 28.0076 0.258756E-04 0.996074 

25 29.1470 0.119101E-06 0.996074 

26 29.4116 0.102497E-05 0.996076 

27 29.8438 0.945006E-10 0.996076 

28 32.9046 0.667766E-05 0.996082 

29 32.9458 0.250655E-02 0.998589 

30 34.1755 0.120306E-03 0.998709 

Table 9.1 indicates that, in accordance with the criterion stated in equation (6.28), 
only the first 15 modes are needed to fulfil the requirement concerning SMPF. The 
maximum acceleration occurred at the quarter point (X = 4.71 m) of the bridge 
according to Figure 9.3. 

 

Figure 9.3 Maximal vertical acceleration of the bridge deck’s middle section. 

Figure 9.4 indicates that resonance appears at a speed of 79 m/s, or 285 km/h. The 
first dynamic analysis performed, included modes with corresponding 
eigenfrequencies belonging to the interval 0-30 Hz which generated a SMPF of 99.6 
%, according to Table 9.1. In the second dynamic analysis only the 15 lowest 
eigenmodes were included, with a corresponding SMPF of 99.5 %. The 15 lowest 
modes’ contribution to the SMPF is well above the suggested criterion. However, 
Figure 9.4 clearly indicates large deviations between the maximum vertical 
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accelerations calculated. This would indicate that MPF is not a reliable convergence 
criterion when determining the appropriate cut-off frequency. In a third analysis mode 
16 and the asymmetric modes 21 and 25 were included, and the maximum peak 
accelerations were captured. The analyses are indicating that asymmetric modes 
indeed have an influence on the accelerational response of a structure. Table 9.1 
shows that the additional modes do not have any significant contribution of the MPF. 
This would also indicate that MPF is not a sufficient parameter to study when 
determining a cut-off frequency. 

Vertical acceleration at point X=4.7 m ; Y=2.55
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Figure 9.4 Vertical accelerational response for different cut-off frequencies. 

The appearances of the critical eigenmodes are illustrated in Figure 9.5, 9.6 and 9.7. 
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Figure 9.5 Eigenmode 16 with the natural frequency 20.63 Hz. 

 

Figure 9.6 Eigenmode 21 with the natural frequency 25.31 Hz. 

 

Figure 9.7 Eigenmode 25 with the natural frequency 29.15 Hz. 
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This specific error would never appear in a real design situation as the bridge code 
requires that at least the modes with a corresponding eigenfrequency less than 30 Hz 
are included in the modal superposition analysis. 

 

9.3 Finite element model 

To execute the dynamic analysis the constructural drawings were interpreted to 
represent the bridge’s structural characteristics. 

9.3.1 Geometry 

The railway bridge was required to have a free opening of 15.0 m in longitudinal 
direction and a 4.7 m vertical opening. The free width of the bridge deck is 7.47 m. To 
connect the two footings, concrete truss elements were placed in between the 
fundaments. This makes the structure stiffer and enables the portal walls to act as one 
unit instead of two separate members. The modelling of the edge beams were of great 
importance since they contribute to much of the bridge’s total stiffness. The Norra 
Kungsvägen bridge was designed to have two different edge beams with individually 
assigned cross-sections. The cross-sections of the edge beams were defined 
eccentrically with respect to their nodal lines. This eccentricity was necessary to 
obtain the correct geometrical positioning in the bridge’s transversal direction. Figure 
9.8 illustrates bridge model used for the dynamic analysis. 

 

Figure 9.8 Finite element model of the Norra Kungsvägen bridge. 

Figure 9.9 illustrates the north and the south edge beams of the bridge. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:115 62 

 

Figure 9.9 Geometry of the edge beams. 

By utilising the section geometry of the edge beams the input parameters were 
calculated and are presented in Table 9.2. 

Table 9.2 Cross-sectional constants of edge beams. 

 North edge beam South edge beam 

Area [m2] 0.537225 0.4861 

Moment of inertia Ix [m
4] 0.018415 0.0165739 

Moment of inertia Iy [m
4] 0.0390646 0.0331055 

Torsional stiffness Kv [m
4] 0.0302085 0.0221848 

Shear area Asx [m
2] 0.431559 0.405273 

Shear area Asy [m
2] 0.459993 0.418893 

 

9.3.2 Element types and mesh 

The bridge was modelled with shell elements of Mindlin type (QTS4 thick shell 
elements) that are able to represent shear deformations. The edge beams were 
represented by Timoshenko beam elements (BRS2 thick beam 3D). Due to the 
bridge’s geometry an irregular mesh was required on the wing walls and parts of the 
foundation. Figure 9.10 illustrates the mesh assignment selected for the bridge. 
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Figure 9.10 Element assignment. 

The element assignment can be summarised as: 

Trough 

Bridge deck – regular mesh assembled of 10 x 40 shell elements with a thickness of 
0.5 m. 

South beam – regular mesh assembled of 4 x 40 shell elements with a thickness of 0.8 
m. 

North beam – regular mesh assembled of 4 x 40 shell elements with a thickness of 0.8 
m. 

Edge beams 

15+40+15 Timoshenko beam elements with sectional constants according to Table 
9.2. 

Wing walls 

Irregular mesh with a characteristic size of 0.5 m. Element thickness of 0.8 m. 

Portal walls 

Regular mesh assembled of 10 x 13 shell elements with a thickness of 0.7 m. 
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Footings 

Regular and irregular mesh with a characteristic element size of 0.5 m. Constant 
element thickness of 1 m. 

 

9.3.3 Boundary conditions 

The soil condition present at the site of the bridge consists of a top layer of sand with 
an underlying layer of clay. To ensure the stability of the bridge structure, the 
concrete footings are placed on a layer of compacted filler material. The settlements 
of the bridge are minimised by supporting the fundaments with concrete piles. The 
present soil conditions were modelled by inserting very stiff bar elements at the base 
of the portal walls. The stiff elements were forming a cross, which allowed the 
boundary conditions to be applied in the focal point. The stiff elements are, combined 
with appropriate boundary conditions, mimicking the actual structure’s behaviour 
accurately. The footings will behave as stiff elements with translation and rotation 
only about their respective central points, where springs were applied. Figure 9.11 
shows the stiff elements at the footings and the applied boundary conditions. 

 

Figure 9.11 Boundary conditions. 

The springs were assigned the following properties: 
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Translation 

X-axis (longitudinal) – elastic springs placed in the centre of the forces acting on the 
fundament. Spring constant kx = 120.48 MN/m. 

Y-axis (transversal) – elastic springs placed in the centre of the acting on the 
fundament. Spring constant ky = 60.241 MN/m. 

Z-axis (vertical) – elastic springs placed in the centre of the forces acting on the 
fundament. Spring constant kz = 2.882 GN/m. 

Rotation 

Rotation about X-axis (transversal to the bridge) – rotational elastic springs placed in 
the centre of the forces acting on the fundament. Spring constant krx = 10.0 MN/m. 

Rotation about Y-axis (longitudinal to the bridge) – rotational elastic springs placed in 
the centre of the forces acting on the fundament. Spring constant kry = 2.091 MN/m. 

Rotation about Z-axis (transversal to the bridge) – fixed torsional movement. 

 

9.3.4 Loading 

The train load, moving along the bridge structure, was modelled according to BV 
BRO’s, Banverket (2006), 10 high-speed load models presented in Section 8.1.1. In 
order to capture the critical response of the bridge, each train model was analysed. 
The considered speed interval was ranging from 27.75 m/s (100 km/h) to 84.535 m/s 
(304 km/h) with a speed increment of 1.385 m/s (5 km/h). The train load was 
represented by point loads advancing along a path located 1 m above the bridge deck. 
The bridge deck is the primary member subjected to the load and was therefore 
selected as the load search area. Figure 9.12 illustrates the track search area and the 
train path. 
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Figure 9.12 Train load definition. 

The incremental distance, of which the discrete load progresses with, needs to be 
positive and sufficiently small to capture the movement of the load. Ideally, the 
distance increment used along the path should obey the following equation, LUSAS 
(2005): 

Dist 3 minimum speed tδ δ≤ × ×       (9.1) 

If the condition stated in equation (9.1) is not fulfilled, the accuracy of the dynamic 
solution decreases with increasing oversampling ratio. The oversampling ratio 
decreases with increasing moving load speed and higher oversampling ratios are 
therefore allowed for lower speed where the dynamic amplification is reduced. As 
default values the incremental distance of the train load was set to 0.075 m and the 
time-step was set to 0.001 s. 

The damping of the bridge was calculated according to Table 8.2 for reinforced 
concrete structures: 

1.5 0.07(20 )
1.78%

16

L

L m

ξ
ξ

= + − 
⇒ =
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9.3.5 Material properties 

The bridge was constructed using C35/45 reinforced concrete. The material was 
assumed to be un-cracked during the analysis and elastic material behaviour was 
therefore applied. The effective modulus of elasticity was reduced by 40 % to account 
for the cracking of the concrete. The favourable dynamic effects allowing the Young’s 
modulus to be increased were disregarded. The material parameters of the concrete 
are presented in Table 9.3. 

Table 9.3 Material parameters C35/45. 

Material parameters C35/45 

Young’s modulus 20.4 GPa 

Poisson’s ratio 0.2 

Mass density 2.5 kN/m3 

Thermal expansion coefficient 0.00001 

 

Since the original model of the bridge was not containing any ballast, sleepers or rails 
the extra weight corresponding to the simplifications made was added as an increased 
density of the bridge deck. A similar procedure was utilised to account for the weight 
of the filler material on top of the footings. By increasing the density of the concrete, 
instead of altering the thickness, the correct mass of the bridge was obtained without 
adding stiffness. This assumption is un-favourable from a design perspective. 

 

9.3.5.1 Calculation of equivalent densities 
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Edge beams 

The edge beams have a total cross-sectional area of 1.023 m2. The equivalent density 
of the beam elements was set to ρeq,concrete = 2600 kg/m3, which includes an additional 
mass of 102.3 kg/m corresponding to the weight of the parapets per metre. 

Footings 

The equivalent densities of the footings were not considered constant over the entire 
surface area. Therefore, two separate densities were assigned to the footings. The first 
density was equivalent to the weight of the concrete and the additional mass of the 
filler material between the wing walls. The height assumed was equal to the distance 
between the top of the footing to the top of the ballast material. 

,1

3
1

,1
,1 3

1

Equivalent density 1:

4.3 1.45 7.325 1800 82208.5

Corresponding volume in model: V 5.1 1.8 1 9.18

2500 11455.7
V

filler

filler

eq

M kg

m

M kg

m
ρ

= × × × = 
⇒

= × × = 

⇒ = + =

 

The second density was equivalent to the remaining part of the footings. The footings 
were assumed to be covered by 1 m of filler material.  

( )

( )
,2

3
2

,2
,2 3

2

Equivalent density 2:

7.7 3.6 5.9 2.15 1 1800 27063.5

Corresponding volume in model: V 7.7 3.6 5.1 1.8 1 18.54

2500 3959.71
V

filler

filler
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M kg

m

M kg

m
ρ
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⇒
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The concrete density assignments are illustrated in Figure 9.13. 
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Figure 9.13 Concrete density assignments. 
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10 Result of analyses 

10.1 Static analysis 

To determine the consistency of the model, a static analysis of the bridge was 
performed. The static analysis only considered the bridge’s self weight which should 
correspond to the material and geometrical properties assigned to the model. 

Expected mass of the bridge: 

Trough, bridge deck  5.8162·15·2500=218107.5 kg 

Ballast material  4.3·0.75·15.7·2000=101265 kg 

Rails, sleepers and parapets (385+120) 15.7+100·34.6=11388.5 kg 

Edge beams   1.023325·2·8.7·2500=44515 kg 

Portal walls   6.075·0.7·5.9·2500·2=125449 kg 

Wing walls   (2.08·8.7+5.165·4.56+1.085·1.63)0.8·4·2500=347335 kg 

Footings   2·7.7·3.6·1·2500=138600 kg 

Filler material   2·82208+2·27063=218542 kg 

Concrete truss elements 2·0.25·12.1·2500=15125 kg 

Total mass   1220327 kg 

When the expected mass was compared to the static analysis performed in LUSAS 
(1208335.8 kg), the deviation was about 1 %. The difference is acceptable as it can be 
considered an error due to the numerical simplifications made. 

The static deformations were analysed and compared to the expected response. Figure 
10.1 indicates that the static deflections were reasonable. The consistency of the 
model was therefore assumed. 
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Figure 10.1 Static deflection of the bridge due to gravity load. 

 

10.2 Parameter study 

To find the optimum parameters for the dynamic analyses, a parameter study was 
performed. This procedure is very important as a too refined model will lead to 
prolonged analyses, while a too simplified model will produce great discretisation and 
integration errors. 

The parameter study was only considering the influence of the HSLM-A2 high-speed 
train model, as additional models should generate similar behaviour. The 
displacements of the bridge are proportional to a cosine function containing the 
natural frequency, similarly to equation (2.12): 

( )0 cos nDisplacement U tω=        (10.1) 

However, the accelerations of the bridge are defined by the second time derivative of 
the displacements, and are therefore proportional to the natural frequency squared: 

( )2
0 cosn nAcceleration U tω ω= −       (10.2) 

Due to the relations presented in equations (10.1) and (10.2) the response of the 
accelerations will be more sensitive to the changes made in the parameter study. 
Therefore, the acceleration was the main parameter studied. 
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10.2.1 Load step increment 

To ensure that the default load step increment was sufficiently small, the acceleration 
of the critical node was examined for different lengths. In the analyses all modes in 
the interval 0-30 Hz were considered. Figure 10.2 show that even sparse increments of 
0.1 m produce acceptable results. 
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Figure 10.2 Parameter study of the load step increment. 

Due to the risk of oversampling, the shorter load step increment of 0.025 m was used 
for further analyses. 

 

10.2.2 Time-step increment 

The influence of the time increment, separating the time instances on which the 
structural response is calculated, was studied to determine whether it had any 
substantial effect on the accelerational response. The moving load analyses were 
performed for different magnitudes of time-step increments with the remaining 
parameters kept constant. All modes in the interval 0-30 Hz were considered in the 
analyses. Figure 10.3 indicates that the accelerations are converging for a time-step 
increment of 0.001 s. This increment was therefore used for further analyses. 
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Time-step increment

0

0,5

1

1,5

2

2,5

3

3,5

4

27
,7

5

31
,9

05

36
,0

6

40
,2

15

44
,3

7

48
,5

25

52
,6

8

56
,8

35

60
,9

9

65
,1

45
69

,3

73
,4

55

77
,6

1

81
,7

65

Speed (m/s)

A
c

c
e

le
ra

ti
o

n
 (

m
/s

^
2

)

dt = 0,01s

dt = 0,001s

dt = 0,0001s

 

Figure 10.3 Parameter study of the time step duration. 

 

10.2.3 Mesh density 

An important procedure included in the convergence study of a finite element model 
is to determine the optimal mesh density. If a dense mesh is applied to the model, the 
representation of the actual structural behaviour is of higher accuracy. Since linear 
variation between the nodal points of intersecting mesh elements generally is 
assumed, it is of great importance to provide enough points on which the structural 
response is calculated. Three different mesh densities were analysed, using the 
original parameter values, to determine which mesh provided an result with 
acceptable accuracy. The negative aspect of using a too dense mesh is the amount of 
computer capacity required to solve the system of equations generated by the model. 
The objective was therefore to find an optimum mesh density. Figure 10.4 shows the 
absolute peak accelerations of point for different meshes; the original, a finer mesh 
(0.5 x element size) and a coarser mesh (2 x element size). 
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Figure 10.4 Parameter study of the mesh density. 

The figure indicates that the original mesh provides results that capture the highest 
resonance peaks while limiting the usage of computer capacity. 

 

10.2.4 Truncation of modes 

The benefit of truncating the number of modes, included in the modal analysis, is 
obvious. By reducing the number of modes the amount of computer capacity required 
can be limited. To obtain results that are accurate enough while minimising the 
amount of time needed to perform the analysis is therefore highly desirable in today’s 
increasingly competitive industry. 

Figure 10.5 illustrates the maximum accelerations obtained by including different 
frequency ranges in the modal analysis. 
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Figure 10.5 Parameter study of mode truncation. 

The figure indicates that the maximum accelerations are successively increasing as 
more modes are accounted for in the analysis. Convergence to a stable solution cannot 
be assumed until all eigenmodes in the frequency range 0-200 Hz are considered. 
Even though the train load is clearly capable of exciting the higher frequency modes, 
the mode’s actual influence on the performance of the bridge, i.e. ballast stability and 
comfort conditions, is questionable. The maximum driving frequency of the train can 
roughly be estimated by: 

[ ]
[ ],max

Maximum train speed m s 84.535
42.27 Hz

Minimum axle spacing m 2train
f = = =   (10.3) 

indicating that the driving frequency of train load is probably coinciding with 
multiples of the high frequency modes, Frýba (1996). 

 

10.3 Patch load 

The reason for the model’s sensitivity to higher frequencies may be that neither the 
actual track nor the ballast were modelled. This could result in a discontinuous load 
transfer to the structure as the train moves onto the bridge and might cause higher 
frequency modes to be excited. In the original analysis, which had sustained 
convergence issues, unit point loads were utilised to represent the train load. The unit 
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point loads were representing an axle of the moving train. Since the bank was not 
modelled the loads will be projected on the bridge deck in the two progressing points. 
In reality, the load will be transferred through the rail, via the sleepers, into the ballast 
and finally subjecting the bridge deck to a uniform pressure. The most simplified 
procedure to model this phenomenon is to represent the train by a unit patch load, 
designed to mimic the actual load distribution. Figure 10.6 illustrates how the load 
distribution was assumed. The total patch area is 3 x 0.95 m. 

 

Figure 10.6 Assumed load distribution of patch load. 

The parameter study indicates that applying patch loads are generating lower 
accelerations making the utilisation of point loads the more conservative method. 
Figure 10.7 illustrates the results from the sensitivity analysis performed. 
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Figure 10.7 Sensitivity analysis of patch load. 

Though modelling the train load as distributed patch loads may be a more accurate 
representation, the stability of the analysis was not increased. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:115 77 

10.4 Modelling of ballast and track 

As explained in Section 10.3, the discontinuous load transfer occurring when the train 
model is initially introduced to the bridge may explain the structure’s sensitivity to 
high frequency modes. In an attempt to resolve this issue, the bank on the bridge was 
modelled and added to the original model configuration. The bank segment was 
connected to the bridge deck using slidelines, with the bank assigned as the slave 
feature and the bridge deck designated as the master. The bank was modelled using 
weightless volume and beam elements to represent the ballast material, rails and 
sleepers. The reason for this choice was to maintain the appearance of the original 
model as constant as possible. The increased density of the bridge deck was thus 
preserved, with the bank only contributing with stiffness able to transfer the induced 
train loads. The sleepers were equally spaced with a distance of 0.65 m along the 
bridge, according to the bridge code specifications. To ensure that the load was acting 
on the rail, and not directly on the bridge deck, the load search area was assigned to 
thin weightless shell elements located between the rails. The partitions of the bank 
which were not in contact with the bridge deck were assumed to have fixed 
translational and rotational degrees-of-freedom. Figure 10.8 illustrates the bridge with 
the modelled the ballast and track included. 

 

Figure 10.8 Model of the bridge with included bank representation. 

An eigenvalue analysis was performed to determine the un-coupled eigenmodes in the 
interval 0-100 Hz. Figure 10.9 shows the variation of peak accelerations obtained 
when different intervals were considered. 
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Figure 10.9 Vertical acceleration with ballast and track included in the model. 

Figure 10.9 indicates that the model’s behaviour is completely different from the 
previous performed analyses. The resonance peaks are located at considerably lower 
speeds and the maximum accelerations are of lower magnitudes. This behaviour can 
be explained by major differences in the boundary conditions introduced to the model. 
The result from this analysis is therefore not comparable to the other analyses 
performed and should be studied separately. 

By studying Figure 10.9 it was noticed that the model showcase similar behaviour for 
all the studied intervals. However, the maximum peak accelerations were not captured 
in the analysis including eigenmodes in the interval 0-17 Hz, even though the MPF 
was well above 90 % at 99.53 %. With the soil, in contact with the bridge foundation, 
modelled as deformable, the bridge is allowed to have modes with a significant rigid 
body component with a great contribution to the total MPF. The rigid body modes 
(RBM) are allowing the whole structure to translate in a principle direction without 
deforming its members. Using MPF as a cut-off criterion may therefore be highly 
unsuitable for this configuration of boundary conditions. The maximum vertical 
acceleration is considerably lower than for previously performed analyses, indicating 
that the modelling of the ballast and track is an even less conservative choice if 
compared to patch loads. 

 

10.5 Modelled soil pressure 

A common simplification made while modelling bridge structures is to exclude the 
pressure acting on the portal walls due to movement of the bridge relative the adjacent 
filler material. This pressure can be modelled by inserting springs with varying 
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stiffnesses on the shell elements representing the portal walls highlighted in Figure 
10.10. 

 

Figure 10.10 Soil pressure representation. 

Due to temperature movements and vibrations, the bridge was assumed to always be 
in contact with the filler material and the presence of the additional pressure is 
therefore constant. This assumption is only valid when the portal walls have similar 
geometry and the eigenfrequencies are only effected by the change of the loads acting 
on the structure, and are not influenced by the introduction of a static load. 

The pressure variation is defined by the bridge code as: 

[ ]
h

zc
k

m
N

h

zc
zcp spring

⋅⋅
=⇒⋅

⋅⋅
=⋅⋅⋅=∆

γ
δ

γ
βγ 2    (10.4) 

where γ = 18 kN/m3 is the density of the filler material, c = 300 or 600 is a case 

specific constant and
h

δ
β =  where δ is the relative displacement and h is the height of 

the portal wall. The spring stiffness kspring is determined as a linear function of the 
depth z, defined according to Figure 10.11. 
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Figure 10.11 Soil pressure variation according to Bro 2004. 

Figure 10.12 is illustrating the vertical acceleration when the soil pressure was 
incorporated into the model. 
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Figure 10.12 Vertical accelerations with modelled soil pressure. 

The figure is indicating that the modelling of the soil pressure has a minor effect of 
the total structural response. The maximum accelerations are almost identical to the 
response of the original model. Additionally, it was noticed that convergence is not 
obtained even though SMPF > 90 %. 

Figure 10.13 is illustrating the displacements obtained from the analysis. 
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Figure 10.13 Vertical displacements with modelled soil pressure. 

The maximum displacements obtained were providing non-converging results for 
frequency intervals with SMPF > 90 %. This is indicating that MPF not always is an 
appropriate convergence criterion when calculating displacements, and should 
perhaps be accompanied with requirements on the assignment of boundary conditions. 

 

10.6 Different boundary conditions 

To determine the effects on the structural response caused by the selected boundary 
conditions, modal analyses were performed with various configurations. By 
increasing the stiffness of the support, the speeds at which resonance peaks occur, will 
move up in the frequency spectrum and possibly be situated outside of the speed 
range expected on the bridge. This behaviour can be explained by studying the 
definition of the natural frequency presented in equation (2.10). 

 

10.6.1 Fixed vertical translation 

By not allowing the footings to move vertically, rigid body modes were prevented in 
the prescribed direction. The prevented translation, forces a wider frequency range to 
be analysed in order to obtain SMPF > 90 %. The remaining spring stiffnesses were 
assigned values consistent with the original model. Figure 10.14 illustrates the vertical 
accelerations calculated with the specific boundary conditions. 
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Figure 10.14 Vertical acceleration when translation in z-direction is prevented. 

The increased vertical stiffness caused the maximum vertical accelerations to 
decrease, possibly underestimating the response. By studying the figure, one can 
assume that a resonant peak is located just outside the analysed speed interval. 

The figure also indicates that MPF may be unsuitable as a convergence criterion since 
the maximum accelerations for the intervals with a SMPF > 90 % were not 
converging. Due to the relation between acceleration and eigenfrequency, presented in 
equation (10.2), the accelerations are possibly overestimated for the frequency ranges 
required to generate high SMPF. 

 

10.6.2 Increased spring stiffness 

The spring stiffnesses used, were derived from calculations of the level of support 
provided statically by the piles. A common assumption made is that springs are stiffer 
when subjected to dynamic loading, compared to static loading. To obtain 
intermediate boundary conditions, the spring stiffnesses were multiplied with constant 
factors with the objective to locate the critical point where the spring stiffnesses are 
large enough to resist excessive translations. To illustrate that the convergence of 
displacements is less sensitive to the number of included eigenmodes, presented in 
equation (10.1), the maximum displacements are also presented for the following 
analyses. The maximum accelerational response will, according to Tavares (2007), 
decrease with increased vertical stiffness and underestimate the actual response. 
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10.6.2.1 Original stiffness x 3 

Figure 10.15 illustrates the vertical acceleration when the spring stiffnesses were 
multiplied by 3. 
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Figure 10.15 Vertical acceleration with spring stiffness multiplied by 3. 

By studying the figure, it is clear that the MPF does not provide any indication of 
convergence as there is a wide scatter of accelerational response. Figure 10.16 shows 
the variation of the displacements for different intervals of eigenmodes. 
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Figure 10.16 Vertical displacement with spring stiffness multiplied by 3. 

Figure 10.16 indicates that the accuracy of the results produced was substantially 
better for the displacements when compared to the accelerations. The results are 
consistent with the assumption that MPF is a useful convergence criterion when 
calculating the deformations, if accompanied with boundary conditions that are 
minimising the influence of the RBM. 

 

10.6.2.2 Original stiffness x 5 

Figure 10.17 indicates that the magnitude of the accelerations decreases as the 
stiffnesses increase. This behaviour was expected as a stiffer structure is more 
difficult to excite. 
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Figure 10.17  Vertical acceleration with spring stiffness multiplied by 5. 

Similarly to the analysis where the spring stiffnesses were multiplied by a factor of 3, 
it is impossible to notice any correlation between convergence and SMPF > 90 % by 
studying the maximum accelerations. 
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Figure 10.18  Vertical displacement with spring stiffness multiplied by 5. 

Figure 10.18 indicates that the use of MPF as a convergence criterion to determine the 
maximum displacements for this configuration is conservative, as acceptable accuracy 
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is obtained prior to SMPF = 90 %. As expected, the resonance peaks occurred at 
higher speeds when the stiffness was increased. 

 

10.6.2.3 Original stiffness x 10 

Figure 10.19 illustrates the vertical acceleration when spring stiffnesses were 
increased by a factor of 10. 
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Figure 10.19  Vertical acceleration with spring stiffness multiplied by 10. 

The results are indicating that the increased stiffness does not improve the usage of 
MPF as a convergence criterion when determining the maximum accelerations. 

The assumption regarding improved accuracy of the result, produced by the modal 
analysis when increasing the frequency range, can be proven theoretically. However, 
to include more modes might not be an appropriate procedure when determining the 
maximum acceleration in a design situation. 
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Figure 10.20  Vertical displacement with spring stiffness multiplied by 10. 

Figure 10.20 indicates good accuracy of the displacements when the SMPF is greater 
than 90 %. The displacements stands in direct relation to the section forces and MPF 
might therefore be a useful criterion when determining forces present in the structure. 

 

10.6.3 Fixed translations 

According to the code requirements, Banverket (2006), the soil in contact with the 
foundation of the bridge is allowed to be modelled as un-deformable. However, this 
might not be the most accurate representation of the actual soil conditions. The 
structure will most likely sustain rotational and translational movement during its 
service life. By providing the boundary conditions with fixed translations and 
rotational springs around the x-axis and y-axis, the desired model was obtained. The 
maximum accelerational response for the different speed increments are presented in 
Figure 10.21. 
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Figure 10.21 Vertical acceleration with fixed translations. 

Figure 10.21 indicates, in accordance with previous analyses, that the maximum 
accelerations are increasing when wider ranges of natural frequencies are considered. 
It should be noticed that the frequency range 0-300 Hz, which generates SMPF = 
92.37 %, is not converging to the more accurate solution provided by the wider 
frequency range of 0-400 Hz. The time required to calculate and analyse eigenmodes 
generating SMPF > 90 % is for this configuration of boundary conditions very 
extensive. It is therefore not advantageous nor time efficient to perform analyses 
including a too wide frequency range to determine the accelerational response. 
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11 Conclusions 

11.1 General 

The accelerational response of a bridge structure subjected to a dynamic loading is 
greatly influenced by the soil conditions present at the location of the bridge. The 
modelling of the boundary conditions in a finite element model is therefore extremely 
important as the magnitude of the response will be greatly effected. When the vertical 
stiffnesses of the supports, dictated in the boundary conditions, are increased the 
resonance peaks are moved to higher speeds, and may occur outside of the speed 
range expected on the bridge. The analyses performed indicate that the maximum 
accelerations are underestimated by stiff support conditions. However, if the assumed 
supports are flexible the resonance peaks are captured but the SMPF is allowed to 
increase rapidly, due to eigenmodes with a significant rigid body component. The 
RBM are allowing the whole structure to translate in a principle direction without 
deforming its members. The RBM will maximise the mass participation for the 
effected modes and will thus undermine the usage of MPF as a convergence criterion.  

Another disadvantage of MPF is that the parameter does not provide any indication of 
how many asymmetric modes that are required in the analysis. Due to the definition of 
MPF, the contribution to the total fraction of mass active in the asymmetric modes is 
cancelled out by the equal deformations in positive and negative direction. 

The main objective of the project has been to conclude whether the MPF is a reliable 
criterion to determine a cut-off frequency when analysing the accelerational response 
of a bridge. Due to the relation between the acceleration and the structure’s 
eigenfrequency, presented in equation (10.2), the accelerational response is amplified 
by the magnitude of the eigenfrequencies included in the modal analysis. The total 
response is contained by the decreased magnitude of the initial amplitudes 
corresponding to the higher frequency eigenmodes. The results of the analyses are 
indicating that the high frequency modes are greatly contributing to the total 
accelerations of the bridge structure. In reality the higher order acceleration 
components are not of any significance for the bridge performance i.e. ballast 
instability, comfort conditions etc. This property prevents the use of MPF as a 
convergence criterion for bridges with stiff support conditions, where the maximum 
accelerations are analysed, as higher frequency modes are required to obtain the 
suggested value of 90 %. The usage of MPF as a cut-off criterion in a modal analysis 
is therefore not applicable for some structures: 

• Bridges with flexible support conditions. 

• Any bridge where the maximum accelerations are analysed. 

However, the MPF is a useful parameter when analysing the sectional forces. The 
section forces are proportional to the deformations which have been proven to 
converge for rather narrow frequency ranges. The MPF should when utilised be 
accompanied with appropriate boundary conditions that prevents rigid body modes. 
The suggested cut-off criterion of MPF > 90 % may, if used properly, be considered 
as conservative when determining deformations as convergence often is achieved for 
lower values. 
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As a final conclusion, the proposed procedure to calculate the accerational response is 
to determine at which frequency range the deformations are converging and thereafter 
apply the same cut-off frequency to the analysis of the accelerations, regardless of the 
MPF. The accelerations obtained from the analysis will theoretically possess 
sufficient accuracy as the deformations are converging, and an overestimation of the 
maximum accelerations is thus prevented. 

 

11.2 Further investigations 

The influence of the modelled soil conditions has often proved to dictate the structural 
response. A study investigating possible methods of how the soil can be represented 
and incorporated into a finite element model is therefore a natural continuation to this 
project. A comparison between recorded acceleration data of real bridge structures 
and the modelled response would be interesting in order to determine the correlation 
between the results. 

Another interesting aspect would be to compare the results from dynamic analyses 
performed using the mode superposition method to the exact solution obtained using a 
direct transient integration scheme. The comparison could determine the relation 
between the computational time gained and accuracy lost, and thus conclude whether 
the mode superposition method is the optimal analysis method. 

To confirm our conclusions the research can be extended to include more bridges, of 
various types. It would be interesting to include for example a multi span bridge or a 
frame bridge with a shorter span. Furthermore, analyses including additional train 
vehicles should be performed to investigate the effects that different types of load 
models have on the structural response. 
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