

Software Process
Notations
The Role and Quality of
Described Processes

Per Johansson

DISSERTATION

International Project Management
CHALMERS UNIVERSITY OF TECHNOLOGY
NORTHUMBRIA UNIVERSITY
Göteborg, Sweden 2007

Dissertation for the degrees

MSc in International Project Management
Teknologie magisterexamen i International Project Management

Software Process Notations
The Role and Quality of Described Processes

Per Johansson

International Project Management
CHALMERS UNIVERSITY OF TECHNOLOGY

NORTHUMBRIA UNIVERSITY
Göteborg, Sweden 2007

“If you can't describe what you are doing as a process,
you don't know what you're doing.”

 W. Edwards Deming (American Consultant, Statistician and Educator, 1900-1993)

Acknowledgements

This master’s thesis that forms my dissertation is the final step in my academic studies at
Chalmers University of Technology and Northumbria University. The work that this
dissertation is based upon was carried out at Ericsson AB during spring of 2007. There are
several people that I wish to express my appreciation to and who are a part in that this
dissertation exits.

First, I would like to thank my supervisor at Ericsson AB, Dr. Anna Börjesson and Carl-
Magnus Olsson at the IT-University, Gothenburg for their support, suggestions and directions
to keep me on the right track during all moments forming this long winding process writing a
master´s thesis.

Secondly, I would like to thank Bengt Jansson at Gothenburg University for feedback and I
will also thank all participants taking part in the interviews at Ericsson AB.

Last, but not least, I would like to express my gratefulness to my lovely wife Elin, for your
love, support, and encouragement during the period when I was occupied with this master´s
thesis.

Per Johansson Gothenburg, in April 2007

P. JOHANSSON MSc 2007

1

Table of Contents

1 Introduction ... 4

2 Literature Review: Dominating Process Notations 7
2.1 Why Described Software Processes? .. 7

2.2 Three Main Modelling Techniques ... 9

2.2.1 Activity-oriented Technique .. 10

2.2.2 Notation and Principles for BPMN .. 10

2.2.3 Example on a Process Model in Business Process Modelling Notation 11

2.2.4 Object Oriented Techniques ... 13

2.2.5 Notation and Principles for UML ... 15

2.2.6 Example on a Software Process in UML 2.0 Activity Diagram 17

2.2.7 Role-oriented Technique .. 19

2.2.8 Notation and Principles for RAD ... 19

2.2.9 Example on a Process Model in Role Activity Diagramming 20

3 Assessing Described Software Processes ... 22
3.1 Quality in Described Processes ... 22

3.1.1 Quality in Process Modelling ... 23

4 Method ... 26
4.1 Participants .. 26

4.2 Design .. 26

4.3 Research Instruments ... 26

4.4 Procedure ... 27

5 Result .. 28
5.1 Quantitative Data ... 28

5.1.1 Roles of the Described Process .. 28

5.1.2 High Process Quality .. 29

5.2 Qualitative Data ... 30

5.2.1 The Role of Described Software Processes .. 30

5.2.2 Quality in Described Processes .. 32

5.2.3 Tools and the Importance of them .. 34

5.2.4 Qualitative Review of Preferred Process Notation .. 35

6 Discussion ... 37

P. JOHANSSON MSc 2007

2

6.1 Knowledge of Described Process .. 37

6.2 Roles of Described Software Processes ... 38

6.3 Quality of Described Processes ... 39

6.4 Implication for Future Research .. 40

7 Conclusions .. 42

8 References .. 43

9 Appendix A .. 47

10 Appendix B .. 49

11 Appendix C .. 51

12 Appendix D .. 53

 Table of Figures
Figure 1. Software processes as subset .. 7
Figure 2. Interrelationships in a process ... 8
Figure 3. Basic elements of BPMN .. 11
Figure 4. Software process in BPMN ... 12
Figure 5. Sub process System Analysis and Design in BPMN ... 12
Figure 6. BPMN diagram based on roles. .. 12
Figure 7. UML Activity Diagram according to ISO. .. 14
Figure 8. UML Activity Diagram according to RUP. ... 15
Figure 9. Elements of UML 2.0 Activity Diagram notation. ... 16
Figure 10 . Method framework .. 16
Figure 11. Software process in UML ... 18
Figure 12. The sub process System Analysis and Design in UML Activity Diagram 18
Figure 13. Roles, tasks and artifacts according to RMC. ... 18
Figure 14. Main elements in RAD notation. ... 19
Figure 15. ALFA overall process in RAD ... 20
Figure 16. The sub process “System Analysis and Design” in RAD. 21
Figure 17. Role Activity Diagram .. 21
Figure 18. Quality factors ... 23
Figure 19. Quality factors with goals and means ... 24
Figure 20. Roles of the described process .. 28
Figure 21. Importance of attributes for high quality in described processes 29

P. JOHANSSON MSc 2007

3

Software Process Notations
The Role and Quality of Described Processes

Per Johansson

Abstract. In today’s competitive market for software developing organisations
it is of high importance that businesses are effective in their development
projects in order to deliver products with high quality at the right time and at
a low cost. One way to enable this effectiveness is to describe software
development processes in a coherent way to increase understanding between
different target groups affected by the process. Ellmer and Merkl (1996)
call the described development process for “organisational memory” and
argue that this is highly important for successful software development.
In this study, we look at what process notations to use that can facilitate the
described process. The study sets out by conducting a literature review of
described software processes and notations. Specifically, this is done by
reviewing two main questions: (1) what role the described software process
serves and (2) what quality attributes are important to the specific
organisation in the described software process. With that understanding in
mind, we proceeded by reviewing the use of tools for modelling software
processes. Based on the reviewed literature, a questionnaire withholding
statements about the two questions was created. The empirical data for the
study was collected in face to face interviewees with 12 employees working
at senior management and senior engineer level at Ericsson (Lindholmen) in
Sweden. At the interviews, the questionnaires were used to gather
quantitative data and to get more depth to the study - qualitative data was also
gathered during interviews. The result from our study reveals that main
reasons identified for the role of the described process are in coherence with
the reviewed literature. ‘Storing organisational knowledge’, ‘discussing
improvements’ and ‘communicating knowledge and competence’ are features
identified in the literature as well as during the interviews. Furthermore,
analyses from our literature study conclude that there is no obvious common
standard for process notations and process modelling. This was confirmed in
our interview study as more or less none of the interviews had the same view
on what process notation to use. Finally, the result from our study also reveals
that main attributes for reaching high quality in the described process differs
between what we found in the literature study and in the interview study.
Literature promotes the importance of clearly defined roles, which was not
promoted by our interviewees. On the contrary, our study indicates a need for
presenting clear and understandable deliverables in the described software
processes, which is not promoted in the literature.

Keywords: Software process, process modelling, process descriptions, process
notations

P. JOHANSSON MSc 2007

4

1 Introduction

For an organisation, the process how to develop software and products is of high importance
in today competitive market. Software process modelling tries to capture the main
characteristics of the set of activities performed to obtain a software product (Acuna and
Ferré, 2006). If the software processes are well documented and distributed among the
organisation (i.e. in form of a process model), it is possible to reuse the described processes
from earlier successfully projects into future projects and by this improving both the
efficiency and productivity in order to achieve lower production costs. Ellmer and Merkl
(1996, p. 60) argue that “a process model is an explicit representation of process knowledge
and may thus serve as a means for storing and retrieving organisational knowledge about
software process execution”. While software development today makes considerable use of
varying degrees of formalized described software processes to give guidance to their work,
the increasing interest in distributed and global software development has brought the matter
of relying on more control oriented processes.

 As an effect of the distributed development interests, the question of how to effectively
describe the software processes becomes equally important. Somewhat surprising, while both
control oriented approaches such as, Capability Maturity Model (CMM) and ISO 9000 (Paulk
et al. 1993; Mcmanus and Wood-Harper, 2003) and Agile approaches such as, Scrum and XP
(Abrahamson et al. 2003; Nerur et al. 2005) describe ways of working, there is little to no
help for organisations from either approach in selecting the appropriate process notation.
Inevitably, this is likely to be one of the reasons why arbitrarily defined bubbles and arrows,
using tools such as Microsoft Power Point or Microsoft Visio, has emerged as one of the most
common ways to describe software processes. For instance, Davies et al. (2006) show that in
process modelling two of the most frequent techniques used today are workflow modelling
and Unified Modelling Language (UML) and that the most frequent tools used for this
modelling are Microsoft Visio and Power Point. Disadvantages (Ellmer and Merkl, 1996)
with these ad hoc descriptions are: (1) the creator of a software process model is the
individual that knows how to interpret the bubbles and arrows and it might be hard for other
users to understand the process, (2) the knowledge of a software process model might be
hidden and other users can’t find it and therefore it is not possible to reuse it, and thus may
become an obstacle for sharing the organisational knowledge.

 Commonly, documenting software processes is associated with management of personnel
but should be seen as a way to help and support software developers in their work (Davies et
al. 2006). Well functional described software processes are a base as presented above to
increase efficiency as well as to increase product quality. To implement what Ellmer and
Merkl (1996) call “organisational memory” they argue that there need to be a process model
library implemented and mechanisms have to be provided for retrieving and tailoring process
models. An example of a tool for keeping a model library is the portfolio management tool
‘Rational Method Composer’ which gathers and distributes the organisational knowledge
within an organisation. With this tool it is possible for projects and project managers to reuse
already proven methods and software processes. However, Iivari (1995) have studied the

P. JOHANSSON MSc 2007

5

perceptions of effectiveness of tools for modelling processes and he found that these were
considerably low.

 Large organisations are generally good in documenting the developed product and
modelling the software code is but the process how to develop the software could be better
documented. Usually an organisation has one standard to document a process for each
department which causing problems when resources move between departments. To share the
described software processes an organisation needs common techniques, principles, and tools
that support this work. According to Davies et al. (2006, pp. 361) comparatively little
empirical work has been undertaken on modelling in practice. Both Floyd (1986) and Necco
et al. (1987) have conducted empirical work on modelling techniques in practice but this work
is now out of date (Davies et al. 2006). Responding to this, we review how organisations can
reach an understanding of what software process notations to use. Specifically, this is done by
assessing two main questions: (1) what role the described software process serves and (2)
what quality attributes are important to the specific organization in the described software
process. With that understanding in mind, we proceed by reviewing the use of tools for
modelling software processes. Conducting this three folded review is not a straightforward
task, as related research reveals an array of potential roles for describing software processes
and an equally mixed range of important matters to achieve high quality in the described
software processes. On top of this, the mapping of what quality attributes are important for
specific roles that the described software process plays is far from clear. Thus, it becomes
evident that a case study where a particular organization and its’ viewpoints on the use and
usefulness of described software processes is called for. Only once we have such
understanding does it become feasible to elaborate on what tools may be appropriate to use
for a particular organization. One suitable area to find organisations that operate largely on a
global software development level is the telecom sector, and upon inquiries it became
apparent that Ericsson was indeed highly interested in assessing the described software
process work they have initiated. For Ericsson, the study represents a valuable opportunity to
get a formal review of the main options for software process modelling, as their work in that
area so far has been done using a tool from a supplier based on an existing business deal
rather than a strategic decision.

 Our approach to this research was to make an extensive literature survey (see chapter four
for how the survey was carried out) for different process modelling techniques and notations.
We found that the existing business process modelling techniques are dominated by three
different techniques; activity process oriented techniques, object-oriented techniques and role
oriented techniques, these will be presented in more detail at the literature review chapter.
Knowledge about the role of described software processes and the attributes leading to high
process quality was also obtained during the literature review. From this review, we created
questions and gathered empirical data of senior managements and senior engineers view on
described software processes. The data was gathered in semi-structured interviews with the
participants. All participants were chosen based on their will to participate and in order to
map a good combination of managers, senior development engineers and process engineers.

P. JOHANSSON MSc 2007

6

 The continuing two chapters that follow in this study withhold a literature review (i.e. the
theoretical framework). A description about the method that is used in the study can be found
in chapter four. In chapter five we present the result from interviews (empirical data) in form
of quantitative data and qualitative data. With both the reviewed literature and the empirical
data at hand a discussion is made in chapter six, where the theoretical framework is applied on
the empirical data. Chapter six is also containing an implication to further research. This study
ends with chapter seven summarising this work with our conclusions and contributions.

P. JOHANSSON MSc 2007

7

2 Literature Review: Dominating Process Notations

To be able to describe software processes, we need a good modelling technique that includes
‘modelling tools’ and notations. For this Kueng et al. (1996) proposes a taxonomy of business
modelling techniques (used for describing business processes) and they classifies the
techniques into four groups:

• Activity-oriented techniques. These techniques are focusing on the definition of
business processes as a sequence of activities. Examples on Activity-oriented
techniques are further discussed by Owen and Raj (2005), and White (2004).

• Object-oriented techniques. These techniques are leveraging the more comprehensive
modelling constructs of object-orientation to capture business processes. Object-
oriented techniques are further discussed by Kalnins and Vitolins (2006), Haumer
(2006), and Russel et al. (1994).

• Role-oriented techniques. These techniques describes modelling business processes
based on the specific organisational roles and responsibilities involved and these
techniques are discussed by Ould & Huckvale
(1995), and Ould (1995).

• Speech-act oriented techniques. The Speech-act
oriented techniques are viewing business processes
in the context of the speech-act language action
paradigm. These techniques are more discussed by
Kueng et al. (1996).

It is not obvious whether speech-act oriented techniques
are primarily dedicated to analysing existing processes or
for creating new processes (Kueng et al. 1996), and due to
this unclearness there is few articles to be found about this
technique. As a consequence, this study will focus on the
first three techniques and leave the Speech-act approaches as a subject for further research to
be done.

 When we discuss business processes further on in this study we will assume that software
development processes is a subset of business processes as shown in Figure 1. The software
development processes will therefore in this study further on be referred to as software
processes.

2.1 Why Described Software Processes?
In these days the described software process is a critical factor for businesses to deliver
quality in software systems. A software process model can be seen as an abstract
representation of the architecture, design or definition of the software process (Acuna and
Ferré, 2006). In this study a software process is defined by the set of activities required to
produce a software system. The definition of a software process usually specifies the actors
executing the activities, their roles and the artefacts produced. This is defined by Finkelstein
et al. (1994) who see a process model as the description of process expressed in a suitable
process modelling language. Software process modelling tries to capture the main

Figure 1. Software processes as subset

P. JOHANSSON MSc 2007

8

characteristics of the set of activities
performed to obtain a software product.
Different elements of a process can be
activities, artefacts (products), resources
(personnel and tools) and roles which all can
be modelled. There several proposals of what
kind of main elements that can be modelled
(Acuna and Ferré, 2006). In the Software
Process Engineering Meta-model (SPEM)

standard (Haumer, 2006) the suggested elements
in a process are role, task and work-product.
Figure 2 show the elements and their interrelationships according to Haumer (2006). A role
represents a set of skills, competences and responsibilities. In order to create or to modify
work products a role is assigned to perform a task. The tasks can have both inputs and outputs
in form of artefacts.

 There are different kinds of information that people want to retrieve from a process model
(Curtis et al. 1992, pp.77) such as what is going to be done, who is going to do it, when and
where will it be done, how and why will it be done, and, who is dependent on its being done.
The software processes can be described in a model so that it becomes clear in what order
they should be performed and as presented above. If a described process model is used there
are according to Ould and Huckvale (1995) several ways that this model can help
organisations to be more effective. A described process model can be used in several roles;

• As a focus for discussion. If we use a good modelling technique that have a clear
syntax and semantics together with a disciplined process (modelling guidelines) for
creating the model, it will help the organisation to ask the right questions and bring
important points in focus for discussion.

• As a means for communicating a process to others. In this way other people can use
the process as a guide. In this way they will save valuable time since they don’t have
to develop a new process over and over again. The means of communicating is also
mentioned by Curtis et al. (1992) where they also add “ease of understanding” as a
means to other users.

• As a basis for analysis. It is possible by analysing the model for users to find possible
weaknesses in the processes or to identify if certain processes don’t give any value and
therefore can be deleted or replaced.

• For designing a new process. When creating different process models that are based
over the same process and comparing these it is possible to find the best solution and
to use this.

• As a baseline for continuing process improvement. It is possible that the process
models can be used to find different measures in how well the process works and in
this way start working with improvements to the process. This can be used as a
program for controlling the ‘real world’ process. If the process model is formal
enough it can be used in a workflow management system and later be executed in a

Figure 2. Interrelationships in a process

P. JOHANSSON MSc 2007

9

computer system. This view ‘process improvement support’ is also supported by
Curtis et al. (1992).

Additional goals and benefits of modelling the software process (Curtis et al. 1992, pp.77)
are; Support process management that requires a project-specific software process and
monitoring, management and co-ordination. Automated guidance in performing process, this
requires a definition of effective software development environment, providing user
orientations, instructions and reference material, retain reusable process representation in
repository. Provision for automated execution support: requiring “automated process parts,
support co-operative work, automatically collect measurement data reflecting actual
experience with a process”.

 For the benefits of reusing software process models in a repository mentioned by Curtis et
al. (1992) as a sort of “organisational learning” Ellmer and Merkl (1996) gives several
arguments and a couple of them are; (1) It is possible that the knowledge gained during years
of using the processes can be lost if for instance an engineer leaves and in storing the
knowledge the risk losing it are reduced.. (2) The amount of time that can be saved by reusing
already well functional processes are significant and in this way costs can be reduced and the
productivity increased. (3) Since the processes that are reused already are tested it will
increase the quality of the products since the quality of the development process is increased.
(4) When reusing parts of the software process this might be an important step towards
implementing and using a software process improvement standard such as Capability
Maturity Model (CMM).

 A common problem in organisations today is that there are discrepancies between the
actual behaviour (daily work) and a stated process in an organisation. Reasons for this
discrepancy might be high-level prescriptive processes that are unrelated to actual project
activities, imprecise, ambiguous, incomprehensible or unusable descriptions of processes to
be performed, and there might be a failure to update the documentation as the processes
changes (Curtis et al. 1992).

 There are as presented above several reasons for organisations or business to use process
modelling (Davies et al. 2006; Ellmer and Merkl (1996) in their work of documenting and
describing all software processes. Katzenstein and Lerch (2000) claims that previous research
shows that the representation of a problem in form of a modelling language can affect the
quality at the solutions created. It is therefore very important to be able to judge the quality at
the models that are created, not least models of processes.

2.2 Three Main Modelling Techniques
The following text in this section will describe the three modelling techniques presented
above. The first technique to be described is the Activity-oriented technique this is followed
by the Object-oriented technique and the section ends with a description of Role-oriented
techniques. In each section there will also be examples on a notation for each modelling
technique presented. The software process that is presented in the examples is describing the
development of product (including both software and hardware) Alfa at Ericsson.

P. JOHANSSON MSc 2007

10

2.2.1 Activity-oriented Technique
Business Process Modelling Notation, BPMN is a notation that can be used in Activity-
oriented techniques. BPMN is a notation that is issued from Business Project Management
Initiative (BPMI, 2007) and the BPMN standards can be found at BPMN (2007).When using
BPMN a Business Process Diagram (BPD) is constructed and this diagram is based on a flow
charting technique that is tailored for creating graphical models of business process
operations. The BPMN is designed to be easy to use and easy to understand, but it also was
created to provide the ability to model complex business processes. Further BPMN is also
designed having webServices (Wikipedia, 2007) in mind and BPMN is the standard notation
for how to develop webServices that are based on business processes. The procedure is that
processes are described with BPMN that produces as BPD and this is then published in a
Business Process Execution Language, BPEL (Owen and Raj, 2005). There are however
competing standards proposing a BPEL. Large corporations such as Microsoft, IBM, and
BEA have with a joint venture together created an industry standard named Business Process
Execution Language for webServices (BPEL4WS). It is also possible for BPMN to be used
only as a notation describing a process and it don’t have to be executed in an execution
language.

 There are several Computer-Aided Software Engineering tools (CASE-tools) that support
BPMN and this is due to that it can be used to model webServices and deliver them running
on BPEL and BPEL4WS platforms. The largest vendors are Borland (product: Together),
BEA (product: Fuego5), IDS-Sheer (product: Aris), IBM (product: WBI Modeler), Telelogic
(product: System Architect) and Proforma (product: ProVison). More CASE-tools can be
found at http://www.bpmn.org/BPMN_Supporters.htm.

2.2.2 Notation and Principles for BPMN
BPMN has been designed for doing two things well (Owen and Raj, 2005) - BPMN should be
easy to use and it should be understandable for non-technical users (usually management).
BPMN was designed in order to offer expressiveness for modelling highly complex business
processes and to be mapped against business execution languages (Owen and Raj, 2005). The
main principle in BPMN is to use a single business process diagram and in BPMN there are
four categories of elements, these are according to Wang et al. (2006).

•
• Flow objects

o Event
o Activity
o Gateway

• Swim lanes
o Pool
o Lane

• Connecting objects
o Sequence flow
o Message flow
o Association

• Artifacts
o Data object
o Group
o Annotation

P. JOHANSSON MSc 2007

11

 In BPMN the concept of “sequence flow” is used. This means that a process is described
in” a flow” where we model the events that occur to start a process, the process that get
performed, and the results of the process flow. A gateway is then used to control the
divergence and convergence of the sequence flow in the diagram. A process in the flow can
contain a sub-process and if so this is marked with a + character as an indication of this. This
sub-process can be shown by another BPD (the sub-processes in BPD is connected via a
hyperlink). The lowest level of a process in BPMN is called a task and a task cannot be de-
composed (Owen and Raj, 2005). If desirable there are group and annotation which are used
for documentation to make the BPD better understandable and they do not affect the flow of
the process.

 According to Owen and Raj (2005) the BPMN have advantages over UML as a notation for
modelling processes because that BPMN offers a process flow modelling technique that is
more conductive to the way business analysts model. Secondly BPMN has mathematical
foundation that makes it possibly to map it to a BPEL. In UML this is not possible to do
according Owen and Raj (2005).

Figure 3. Basic elements of BPMN

In Figure 3 the main elements of BPMN is briefly presented and for a more comprehensive
description we refer to Appendix A where a description of each of the elements in Figure 3 is
presented. For a more comprehensive description for all available elements we refer to Owen
and Raj (2005) or to BPMN (2007).

2.2.3 Example on a Process Model in Business Process Modelling Notation
Presented below in this section is a software process described using BPMN, the same
software process will later be described in a UML 2.0 Activity Diagram and partly in Role
Activity Diagram. The process is adapted from the RMC and shows the development of the
product Alfa at Ericsson. In the software process model there are four levels in describing the

P. JOHANSSON MSc 2007

12

development which are used where Figure 4 shows the first level, Figure 5 shows the second
level, and Figure 6 shows the third level. Figure 5 is the sub-process for ‘System Analysis and
Design’ in Figure 4 and Figure 5 is the sub-process for ‘Analyse the System’ in Figure 5. The
following abbreviations are used in the figures presented below CPI- Customer Product
Information, FB - Functional Block, RBS – Radio Base System, SW- Software, and HW-
Hardware.

Figure 4. Software process in BPMN

Figure 5. Sub process System Analysis and Design in BPMN

Figure 6. BPMN diagram based on roles.

P. JOHANSSON MSc 2007

13

2.2.4 Object Oriented Techniques
Unified Modelling Language (UML) is an example of an object-oriented modelling language.
UML is a visual language for specifying, constructing and documenting artefacts of systems
and UML is being seen as the de-facto standard for software modelling and design (Russel et
al. 2006), (Tilley and Huang, 2003). UML is a language that is developed by OMG (OMG,
2007a) that is an international, open membership, not-for-profit computer industry
consortium. UML is a general purpose language which means that UML can be used for
modelling in different domains such as software, business processes and requirements.
Generally UML is used when designing software developing projects using object oriented
techniques. Today UML is in version 2.0 and the major releases of UML have been, UML
1.0, UML 1.3, UML 1.4 and UML 1.5.

 There are several related notations included in UML, including Use Case, Class,
Interaction, State and Physical Diagrams as well as Activity Diagrams. UML 2.0 consists of
thirteen types of diagrams, divided into three categories: Six diagram types represent static
application structure; three represent general types of behaviour; and four represent different
aspects of interactions (Holt, 2004):

• Structure Diagrams include the class diagram, object diagram, component diagram,
composite structure diagram, package diagram, and deployment diagram. Structure
diagrams capture the underlying static structure of a software system at various levels
from individual objects to overall application packages (Russel et al. 2006).

• Behaviour Diagrams include the use case diagram (used by some methodologies
during requirements gathering). Activity Diagram and state machine diagram.
Behaviour diagrams describe the overall functionality of the software at a relatively
high level of abstraction (Russel et al. 2006).

• Interaction Diagrams, all derived from the more general behaviour diagram which
include the sequence diagram, communication diagram, timing diagram, and
interaction overview diagram. Interaction diagrams further augment the behaviour
diagrams and present a more detailed description of system functionality in terms of
object interactions (Russel et al. 2006).

 UML 2.0 Activity Diagrams are the object oriented equivalent of flow charts and data-flow
diagrams from structured development. In UML 1.X, UML Activity Diagrams were a
specialization of UML state machine diagrams but in UML 2.0 those have been replaced with
activity invocations (Holt, 2004). Activity Diagrams are not an original part of UML and they
were added later, and draw on a number of earlier techniques for modelling events, states, and
workflows (Odeh et al. 2006). UML 2.0 Activity Diagrams can be used to explore the logic of
(Ambler, 2005) a complex operation, a complex business rule, a single use case, several use
cases, a business process, concurrent processes, and software processes. Activity Diagrams
appear to be an attempt to project or extrapolate an object-oriented approach into the
organizational context of the software development process (Odeh et al. 2006). UML 2.0
Activity Diagram describes sequencing of activities and they supports conditional and parallel
behaviour. This is useful for analysis of workflow and parallel processes. Holt (2004) claims

P. JOHANSSON MSc 2007

14

that there are two main uses for UML 2.0 Activity Diagrams which are to model workflows
and operations, mostly UML 2.0 Activity Diagrams are used to model workflows. The term
workflow can according to Holt (2004) be a little confusing since the word workflow is
widely associated with the Rational Unified Process (RUP) and Holt gives two examples of
how to use UML 2.0 Activity Diagrams, one interpretation according to RUP and one
interpretation according to ISO. Examples on this can be seen in Figure 7 as the ISO-
interpretation is used and in Figure 8 where the RUP-interpretation is used.

Figure 7. UML Activity Diagram according to ISO. Source: (Holt, 2004)

P. JOHANSSON MSc 2007

15

Figure 8. UML Activity Diagram according to RUP. Source: (Holt, 2004)

It is the UML 2.0 Activity Diagram according to RUP that should be used to model
workflows (Holt, 2004).

 There are several arguments in favour for to use UML as a modelling language for software
processes and what to think about when choosing a notation for software process modelling.
First point is that UML have robustness, it provides functionality for a graphical
representation of various software processes and needs. Secondly UML is a flexible notation
because it can be used on all stages of a software process improvement project. Third point is
that UML is widely recognised and that it provides support for software process analysis as
well as technical support (Lyalin and Williams, 2006). UML also provides a large set of
diagrams that can be used to define both structure and behaviour of dynamic software
processes (Jäger et al. 1999).

 There are a high number of vendors for CASE- tools that support software process
modelling with UML. The largest vendors are IBM (product: Rational Software Architect and
Modeller), Borland (product: Together), Telelogics (products: TauDeveloper and
TauArchitect) and Altova (product: UModel - UML 2.1). More CASE-tools supporting UML
can be found at OMG (2007b). What to take notion about is that most of the presented CASE-
tools don’t have support for modelling with UML 2.0 Activity Diagram since Activity
Diagram is the least used of all UMLs diagrams (Holt, 2004).

2.2.5 Notation and Principles for UML
In Figure 9 the graphical representation of the UML 2.0 Activity Diagram most common
elements can be seen. At Appendix B a description of the symbols can be found. If a more
comprehensive description of the elements is preferred, study (Holt, 2004) or (Ambler, 2005).

P. JOHANSSON MSc 2007

16

It is possible to show partitions in two ways, either in swim-lanes or by writing the partition
name in brackets above the activity name in the activity invocation symbol, see Figure 7 and
Figure 8 for example on this.

Figure 9. Elements of UML 2.0 Activity Diagram notation.

In Appendix B there is a brief explanation of each of the different elements based on Figure 9.

Software Process Engineering Meta-model (SPEM) is a current OMG industry standard that
was originally developed by IBM and given to OMG. SPEM is process engineering meta-
model as well as a conceptual framework. SPEM supports concepts for modelling,
documenting, presenting, managing, interchanging and enacting development methods and
processes (Haumer, 2006). The most current release of SPEM is version 2.0.

 The idea of SPEM is to separate reusable method content from the described software
processes which can be seen in Figure 10. Because of this the processes that are contained are
reusable i.e. role, artefacts, tasks etc. The word “artefacts” has in SPEM version 2.0 been
changed to “Work Product”.

Figure 10 . Method framework. Source: (Haumer, 2006)

As an example SPEM 2.0 make it possible to reuse described software processes or described
software process patterns and tailoring those described software processes allowing users or
projects to define their own extensions and variability. This is helpful for an organisation

P. JOHANSSON MSc 2007

17

using CMM (Haumer, 2006). Several described software processes can refer to the same
method content and changes made in the method will be reflected in all described software
processes that using it. For instance it is possible to share described software processes
between different methodologies such as RUP and Agile methods (Haumer, 2006). The
Guidance area is between method content and described software process and is additional
information such as templates, checklists and tool mentors.

 The Unified Method Architecture (UMA) is developed by IBM and its intention is that it
shall be used to model software processes and be used to develop tools that support software
process engineering, e.g. RMC (Software from IBM for portfolio management). UMA is an
evolution of the Software Process Engineering Meta-model (SPEM). According to Haumer (
2006, p. 23) it should be possible to use both UML 2.0 and BPMN to describe an actual
development software process and then execute the software process in a BPEL-based
workflow engine. In RMC it is possible to use plug-ins such as an Agile plug-in that makes it
possible to use RMC in a company using agile methods in development of software.

 UMA (SPEM 2.0) consist of three different diagrams based on UML 2.0-diagrams. A
Workflow Diagram that represents a flow of activities. Activity Detail Diagram that includes
the element tasks, role and work product. This diagram has it focus in the details of an
activity, what outputs the tasks produced, the input that the task requires and the role that
performs the work. The third diagram is the Work Product Diagram and this diagram shows
the work products dependencies.

2.2.6 Example on a Software Process in UML 2.0 Activity Diagram
Presented below is a model of a software process how to develop the Ericsson product Alfa
described by using UML 2.0 Activity Diagram (RUP-interpretation). The same process is
described earlier in the section when discussing the same software processes described in
BPMN. The same abbreviations as used in BPMN earlier presented are also used in the
diagrams presented in Figure 11 and Figure 12.

P. JOHANSSON MSc 2007

18

Figure 11. Software process in UML

Figure 12. The sub process System Analysis and
Design in UML Activity Diagram

Both the Activity Diagrams presented in Figure 11 and Figure 12 has the SPEM 2.0 notation
but the logic is the same as in the original UML 2.0 Activity Diagram. The diagram in Figure
13 is decomposed from “System Analysis and Design” in Figure 12. Figure 13 is decomposed
from “Analyze the System” in Figure 12 and this shows the tasks in the activities and what the
roles associated to this task should produce in form of artefacts. The artefacts can be both
input and output from the tasks.

Figure 13. Roles, tasks and artifacts according to RMC.

P. JOHANSSON MSc 2007

19

2.2.7 Role-oriented Technique
Role Activity Diagramming (RAD) is developed as a notation for describing different kinds
of processes. The language has been developed by Praxis Inc. and it is included in a
modelling technique that is called Systematic Technique for Role and Interaction Modelling
(STRIM). STRIM was originally developed by Praxis Inc. to support business process
reengineering.

 Examples in how to use diagrams created in RAD for modelling software processes can be
found in Murdoch and McDermid (2000) and Nandish (2000). Nandish shows that RAD is
well suited as a “socio-technical” method to be used in the National Health Care in United
Kingdom (NHS) and that it brings forth the important roles in a process and the interaction
and collaboration required achieving the goals of the process. Murdoch and McDermid (2000,
p.64) concludes in their article that “the RAD and Role Context Chart notations are readily
understandable by engineers from a range of disciplines and provide a means of linking
business, management, and engineering processes”.

2.2.8 Notation and Principles for RAD
In Figure 14 the graphical representation of the Role Activity Diagrams most common
elements can be seen. In Appendix C a description of the symbols can be found.

Figure 14. Main elements in RAD notation.

Role Activity Diagramming is described by Ould (1995) and the RAD notation according to
Ould is summarized in Figure 14. A more comprehensive information how and when to use
RAD, can be found at Ould and Huckvale (1995) and Ould (1995).

P. JOHANSSON MSc 2007

20

RAD is used to model what will perform certain activities in a process but also what the
resources do and how they do it and according to Ould and Huckvale (1995, p.337) there are
five key concepts that have to be modelled for a business processes in STRIM and those are:

1) How activities are divided amongst roles
2) What the organisation is trying to achieve with the process: the process goals.
3) What people do to achieve the goals: activities
4) How people within groups interact collaboratively to get the job done
5) What constraints the organisation puts on what people can do and how they should

operate: the business rules.

In Appendix C there is a description of the RAD notation and the symbols used in this
notation (Ould and Huckvale, 1995).

2.2.9 Example on a Process Model in Role Activity Diagramming
The example below is the same described software process that has been modelled in UML
and BPMN in earlier examples but now it is modelled in Role Activity Diagramming. It
shows the described software process developing the Ericsson product Alfa. Figure 14 is the
sub-process of ‘System Analysis and Design’ in Figure 15 and Figure 17 is the sub-process of
‘Analyse the System’ in Figure 16. The same abbreviations as used earlier in the BPMN
section are also used in this model.

Figure 15. ALFA overall process in RAD

P. JOHANSSON MSc 2007

21

Figure 16. The sub process “System Analysis and Design” in RAD.

Figure 17. Role Activity Diagram
The example in Figure 17 is the same process that is described in Figure 6 and Figure 13.

P. JOHANSSON MSc 2007

22

3 Assessing Described Software Processes

As looking back to the two main research questions, we are now faced with the task of
making sense out of the three dominating process notations reported on in the literature
review (section 2) in relation to the role and quality of described software processes.
Presented below is thus an outline of the relevant research that later will serve as foundation
to the questions directed at our 12 respondents during the interviews.

3.1 Quality in Described Processes
Some of the benefits from modelling software processes in a large software developing
organization are that parts of the software development process can be reused (Haumer, 2006)
and thus time is saved at design phase when it is not necessary to invent the same things over
and over again. This is an example on that the organisational knowledge can be shared
according to Ellmer and Merkl (1996). In this way it is possible for projects to start quickly in
that project managers can reuse already tested and refined parts/processes of earlier
successfully projects.

 There are according to Ould and Huckvale (1995, p.334) some features that must be met to
obtain a high-quality process modelling notation:

• The concepts, objects and relationships represented in the model should be intuitively
familiar, so that people can readily understand and talk about them.

• The notation should be easy for readers to grasp, after (say) a fifteen minutes verbal
introduction.

• The notation should be unambiguous (another way of saying that it should have formal
syntax and semantics) so that it can be analysed and, possibly enacted.

• It should be possible for the notation to draw attention to the purposes of what people
do rather than the detail of how they do it; this requires a concept for relationships
between people.

• The notation should be possible to handle complexity.

Most of the methods for business and software process models and notations are based on
standards from independent non-profit organisations such as BPMI (Business Process
Modelling Initiative), WfMC (Workflow Management Coalition) and OMG (Object
Management Group). There has recently risen work for a new OMG initiative to join UML
2.0 Activity Diagram and BPMN under one integrated meta-model (Kalnins and Vitolins,
2006). This is due to that BPMI has become a part of OMG (Owen and Raj, 2005).

 There are articles comparing different kinds of notations that state different positions of
which of the standard notations that will become the common standard for business and
described software processes. Kalnins and Vitolins (2006) claims in a study that UML 2.0
Activity Diagram are best suited as the standard as a notation for business processes whereas
Wang et al. (2006) in another study claims that BPMN is the best suited notation for
modelling business processes because UML 2.0 Activity Diagram is a heavy weight tool. A
study (White, 2004) looked at 21 different workflow patterns in comparing BPMN and UML
2.0 Activity Diagram. The study found and concluded that both notations provide similar

P. JOHANSSON MSc 2007

23

solutions to the most of the patterns. Other comparisons have also been done e.g. with RAD
and UML (Odeh et al. 2006) where the conclusion was that translation from RAD to UML 2.0
Activity Diagram is likely to be feasible in particular cases, but it will rely on the ability of the
translators to establish and maintain the equivalence between the two notations. In a study
made by Kawalek (cited in Ould and Huckvale, 1995) he argue for that some modellers think
it might be valuable to have a combination of notations at different levels when describing
software processes.

3.1.1 Quality in Process Modelling
In today’s literature there are few articles that discuss the question about quality in software
process models (Moody et al. 2002.) The process models are according to Lindland et al.
(1994) important in early development phases of information systems. A framework for
evaluating the quality in modelled processes is proposed by Lindland et al. (1994). In this
framework they identified three main factors that to be aware of when analysing a process
model. The three main factors are; Syntax quality which represents how well the model and
the common rules for the notation in the chosen modelling language correspond to each other.
Semantic quality represents how well the model of processes corresponds to the ‘real world’
(the domain). Pragmatic quality that is about the use and understanding of the model, how
usable it is and how well the users (anyone involved) will understand it. Lindland et al. (1994,
p.45) is also mentioning three other factors that can influence quality on a model; Language-
domain appropriateness which is about how well the language fit to the domain. Are there
expressions needed to describe the domain? Language-audience appropriateness that is about
to the extent the user of the model can understand, learn and use the language of the model.
Audience-domain appropriateness that is about to what extent the audience already is familiar
with the domain. All the factors can be seen in Figure 18.

Figure 18. Quality factors according to Lindland et al. (1994, pp.44)

P. JOHANSSON MSc 2007

24

In order to reach a good quality Lindland et al. (1994) stated goals for each of the factors
mentioned and they also suggested activities (means) to do for achieving the goals.

Figure 19. Quality factors with goals and means by Lindland et al. (1994, pp. 45)

According to Lindland et al. (1994) syntactic correctness is the goal for achieving syntactic
quality. To achieve semantic quality the goal is to have a feasibly validity and feasible
completeness. Validity means that all the statements made by the model are correct and
relevant to the problem. Completeness means that the model contains all the statements about
the domain that are correct and relevant. It is hard to achieve total completeness so Lindland
et al. (1994, p.46) states that “the time to terminate a modelling activity is thus not when the
model is perfect (which will never happen) but when it has reached a state where further
modelling is less beneficial than applying the model in its current state”. To achieve
pragmatic quality the goal is to reach feasible comprehension and the means for this are
executability, expressive economy and structuredness. Feasible comprehension is about that
all parts involved should be able to understand the model. Since total understanding not can
be achieved (e.g. large models) it is enough that feasible understanding is achieved. There is
other means to achieve quality such as different modelling activities mentioned by Lindland et
al. (1994) e.g. consistency checking and simulation, see Figure 19.

 In order to evaluate process models Teeuw and van den Berg (1997) has developed a
framework in which they propose nine criteria‘s divided in four dimensions (general (e.g. the
price of a tool and customer support), BPR trajectory, functionality and “ease of use”) that are
usefully when evaluating process modelling concepts. The dimensions General and BPR
trajectory are only important when purchasing a tool and not for evaluating therefore these
two are not needed when evaluating models. The first criteria of the five in the dimension
functionality is expressive power/descriptive power is about how easy it is to modelling
aspects like reactivity (relationships between activities), data, data manipulation, repetition,
time and probabilistic behaviour. Comparisons made with Lindland et al. (1994) shows that
this criterion can be comparable to Lindland et al’s (1994) criteria Semantic quality. The

P. JOHANSSON MSc 2007

25

second criterion is structuring which imply at what degree the concept offer structuring
techniques such as composition and decomposition, abstraction and refinement, and
modularity and encapsulation? Comparing this criterion to Lindland et al. (1994) this can also
be found in Semantic quality. Third criterion is formal and methodological support - does the
concepts have a formal foundation (syntax and semantics), and is it accompanied by a method
to construct models? Formal support can be found in can be found in the mean formal syntax
according to Lindland et al. (1994). The methodological support doesn’t have a corresponding
area in to Lindland et al’s (1994) framework. Fourth criterion is possibilities for analysis
which intentions are what types of (functional or quantitative) analysis that theoretically can
be performed on a model. There are similarities to semantic quality according to Lindland et
al’s (1994) framework in this criterion. The fifth and last of the criterions in this dimension is
relevance of concepts that is about how appropriate are the offered concepts in the context of
modelling (business) processes, and how generic are they? Compared to Lindland et al’s
(1994) framework this criterion has similarities with the goals feasible validity and
completeness.

 A modelling concept not used is worthless and spoiled work therefore Teeuw and van den
Berg (1997) propose an “ease of use” dimension is important and the last criteria’s are
connected to the usability. Accessibility: are the concepts and modelling methods
comprehensible, is documentation available and sufficient? This criterion can be found in
feasible comprehension in Lindland et al. (1994). Usability describes how easily a process can
be modelled, if the language environment does offer pre-defined constructs, libraries of high-
level concepts etc and has similarities in Lindland’s goal feasible comprehension. The third
criteria adaptability is about how easily the concepts can be adapted to individual needs and
compared to Lindland et al (1994) it has similarities with pragmatic quality. Final criteria
openness describes if a language or tool based on these concepts can be used in combination
with other languages and tools and also this criterion have similarities with to Lindland et al’s
(1994) pragmatic quality.

P. JOHANSSON MSc 2007

26

4 Method

In this chapter the methods used in order to conduct the present study are presented. The study
embrace the review of the two main questions: (1) what role the described software process
serves and (2) what quality attributes are important to the specific organization in the
described software process. It also embraces a review of the use of tools for modelling
software processes. The purpose with this chapter is to present the participants, the methods,
the research instruments and the data gathering process in order to attain a high validity and
reliability of the study.

 An extensive literature review was conducted to find information and earlier research done
on major software process modelling and standard notations. Parallel ongoing with the
database searches a review of information available at the Internet was also conducted. This
was primarily done with the search engines Goggle and Wikipedia. The databases , Institute
of Electrical and Electronics Engineers database (IEEE Xplore), Science Direct database
(including Elsevier), Association for Computing Machinery database (ACM) and Springer
Link database were searched with combinations of the following keywords; modelling,
software, diagram, workflow, visual, notation, diagram, business, description, activity,
process, definition, language, software, adaption, and tailoring. The same key words were also
used when searching the Internet with the Goggle search-engine and Wikipedia for
information.

4.1 Participants
The work as presented in this study comprises employees at senior management level and
employees at senior engineer level representing all disciplines in the development process e.g.
software and hardware integrators at Ericsson Lindholmen (Sweden). All together 12
participants were invited to take part in the study. All 12 participants accepted to participate in
the study. The participants were chosen by the author and the supervisors based on the will to
map a good combination of managers, senior development engineers and software process
engineers.

4.2 Design
In this study both quantitative and qualitative data was gathered. The quantitative data was the
basis of the study in evaluating the believed roles of described software processes, high
quality in described software processes and the need for tools and their importance in
describing or modelling software processes. In order to provide a more depth to the study
qualitative data gathered during the interviews was used. The interviews where performed
face to face during a period of two weeks.

4.3 Research Instruments
The instruments used in the study were questionnaires together with face to face interviews.
The questionnaire consisted of three parts and it can be seen in Appendix D. First part
consisted of six statements regarding the interviewees view on the reasons of having a
described software process in a software development organisation. All the statements were
graded in a six-degree scale from strongly disagrees to strongly agree. The second part

P. JOHANSSON MSc 2007

27

consisted of nine statements regarding the attributes for reaching high quality in a described
software process. Also these statements were graded in a six-degree scale ranging from
strongly disagrees to strongly agree. In the third and last part the interviewees was asked in an
open question to name all tools that they knew about or had used in modelling software
processes. The participants were also in this part asked to value the importance of such tool in
modelling software processes with the same scale as used earlier. In each of the statements the
interviewees where asked why they for instance had replied strongly agree, what had
influenced their answer. They were also asked to prioritize the most important statements if
several statements were given the same degree. As a final question the participants was
presented four illustrations in different notations describing the same software process and
they were asked to suggest the one that they intuitively preferred.

4.4 Procedure
First step in the study was to define and delimit the problem. After this had been done
literature written about standard notations and software process modelling was reviewed. To
get empirical data we used a questionnaire which was based upon information from the
theoretical framework. The questionnaire was designed and approved at a meeting in
February. The questionnaire was written in English but the interviews were held in Swedish.
Each of the identified interviewees was selected by the author’s supervisor Anna Börjesson.
After the selection the interviewees the author contacted each person proposing date and time
for an interview and all of the interviewees accepted. All interviews were done over a period
of two weeks in February/Mars and lasted for an hour. At all the interviews field notes were
taken and data was later manually analysed by the author. The reviewed literature and
assessment of described software processes are used in the empirical study and this lead to
those findings could be identified. By comparing findings identified in the empirical study
with reviewed literature we could analyse and discuss the result and draw conclusions.

P. JOHANSSON MSc 2007

28

5 Result

This chapter presents the results given in questionnaires (quantitative) and interviews
(qualitative). The first section begins with presentations of diagrams based on the answers
given by the interviewees in questionnaires. All grades given in each statement in the
questionnaires the scores were summed and diagrams based on the answers were created. The
result chapter continues with presenting the qualitative result from the interviews that was
conducted in the study.

5.1 Quantitative Data
The following two sections will present the result from the quantitative data gathered the
questionnaires given during the interviewees. The first section presents the quantitative data
given about the roles for the described process and the second section presents the
quantitative data in the attributes for reaching high process quality.

5.1.1 Roles of the Described Process
This section describes how the 12 interviewees graded importance for reasons to use
described software processes. The six-degree scale given for each statement was in range
from strongly disagrees to strongly agree. All grades for each role given by the interviewees
were added and a diagram created based on the answers that can be seen in Figure 20. Legend
for staples in the diagrams is presented below.

Strongly Disagree 2 3 4 5 Strongly Agree

Figure 20. Roles of the described process

0

1

2

3

4

5

6

7

8

Storing
organisational
knowledge

Discussing
improvements

Communicating
knowledge and
competence

Finding
Weaknesses or

problems

Increasing
product quality

Measuring
improvements

P. JOHANSSON MSc 2007

29

The result in Figure 20 shows on a strong support in ‘storing organisational knowledge’ as a
reason for using described software processes due to that more than 50% of the interviewees
strongly agreed on the reason and more than 30 % almost strongly agreed for the reason. As
the second and third reason for using described software processes are ‘discussing
improvements’ and ‘communicating knowledge and competence’. The least important reason
for using described software processes is ‘measuring improvements’.

5.1.2 High Process Quality
This section describes how the interviewees valued attributes that make a high quality in
described software processes. The scale given for each statement was from strongly disagrees
to strongly agree. All grades for each attribute given by the interviewees were added and a
diagram created based on the interviewees answers that can be seen in Figure 21.

Figure 21. Importance of attributes for high quality in described processes

As the far most important attribute for reaching high quality in described software processes
are clearly shown deliverables due to that more than 90 % strongly agreed on its importance.
As the far most unimportant attribute for achieving high quality in described software
processes are a low number of levels.

0

2

4

6

8

10

12

Cl
ea
rl
y
sh
ow

n
de

liv
er
ab
le
s

Fl
ow

s
ar
e
ea
si
ly
 u
nd

er
st
oo

d

Co
rr
es
po

nd
an
ce
 to

 r
ea
l w

or
ld

Sy
m
bo

ls
 a
re
 e
as
ily
 u
nd

er
st
oo

d

Cl
ea
rl
y
sh
ow

n
ac
tiv

iti
es

Co
m
m
on

 p
ro
ce
ss
 m

od
el
lin
g
gu
id
el
in
es

Cl
ea
rl
y
sh
ow

n
ro
le
s

U
se
 o
f s
ta
nd

ar
d
no

ta
tio

n

Lo
w
 n
um

be
r o

f l
ev
el
s

P. JOHANSSON MSc 2007

30

5.2 Qualitative Data
The following four sections will present the qualitative result from the interviews performed.
First section present the result handling the reasons for having a described software process
and the second section will present the result from the interviews regarding the attributes for
reaching high quality in described software processes. The third section present the result
from the interviews regarding tools used for modelling and the interviewees opinion of the
importance in usage of tools. The fourth and final section presents the result regarding the
preferred notation among the interviewees.

5.2.1 The Role of Described Software Processes
The interviewees see many roles for describing software processes and, in an open question
the interviewees mentioned 11 new different reasons for using described software processes
in addition to those we identified in the literature review. There is a strong agreement among
the interviewees for primary reasons in describing software processes as a way for storing
organisational knowledge, followed by discussing improvements, and communicating
knowledge and competence. Several of the interviewees speak of these three reasons as a
combination where it all starts with storing of the organisational knowledge. Respondent 8
stated “it starts with that the software process needs to be stored, somewhere in order to be
able to be used for communicating knowledge. If used as the later it is possible to find
weaknesses and problems and with this the discussion for improvements follows”. When
organisational knowledge is stored it is later used for discussing improvements and
communicating knowledge and competence. For instance both Respondent 7 and 8 sees that
storing organizational knowledge and communication of knowledge and competence are
connected to each other in that they will lead to discussion of improvements.

 While the interviewees largely agree on the usefulness of described software processes as a
means for storing organisational knowledge, experience has taught the participants of the risks
involved when time pressure otherwise may tempt improvements to be initiated solely based
on weaknesses or problems found rather than first mapping these issues with the bigger
organisational picture. Aside from this risk of sub-optimization, Respondent 5 also reflects on
how large scale use of stored organisational knowledge may kill creativity among employees
and thus argues for a balanced use of this stored knowledge. There are also problems in
getting people to read other peoples documents in order to learn, this according to Respondent
4.

 Regarding the role for discussing improvements, 7 out of 12 interviewees see various
aspects of using described software processes as baselines for improvement. Primarily, a well
described software process is argued to provide a common language and shared view for
discussions. Respondent 1 argues that it is easy to take for granted that we talk about the same
things when in fact we talk about different things. It is first when the software process is
described we can be sure we talk about the same thing. Described software processes also
play a role when initiating change (provides a given starting point) and enables comparison
with actual events. Both Respondents 5 and 10 stress the importance to describe the software
processes in order to have a base level so that it is possible to know what to improve against.

P. JOHANSSON MSc 2007

31

Finally, described software processes are by one interviewee also seen as hands-on
specifications for what to do.

 In the role for communicating knowledge and competence, if we ignore one interviewee
who discusses software processes more on a project level than on organisational level and
thus ranks this construct low, the elaborations given by the participants talk strongly about the
value in using described software processes to communicate knowledge and competence.
Respondent 2 captures the essence of this by arguing that the described software processes
provide legitimacy for the communication. There is, however, knowledge that can’t be
transferred by reading described p software rocesses and therefore person-to-person transfer is
argued to add the last bit of knowledge transfer by Respondent 5. Respondent 4 provides a
slight warning, though, that it is often easy to talk about experiences, but hard to actually see
people listening and making use of this. “Today we are not so good in storing organizational
knowledge – it is boring to read documents created by other people, the problem is that it is
easier said than done to adapt the information” states Respondent 4.

 When it comes to the role of finding weaknesses and problems, using root cause analysis to
improve the described software processes is of major importance, especially for those
working with Japanese customers. Two interviewees talk, however, about already knowing
problems prior to describing software processes. This appears to be a sign of maybe not
having all software processes quite as well established as in the case of the Japanese
customer. One of these interviewees (Respondent 6) argues that the next step for handling
known problems is not necessarily describing the software process. Instead, he argues for that
the weaknesses are found pretty easily since they are clearly visible; there is no need to use a
described software process to find these. This argument is contrary to the risk for sub
optimization that Respondent 8 argues strongly about. This respondent (8) argues for that it is
only when using a described software process description in order to find a weakness or a
problem these can be found, otherwise the risk is high for sub optimisation.

 The participants do not see a described software process to be used for measuring
improvements, instead they see other things. Two of the participants stress the need for the
data to be used when measuring to be repeatable.

 Further, the participants don’t see the role for describing a software process as major driver
for increasing product quality. There are according to several interviewees the skills and
knowledge that employees possess that decides product quality, not the described software
process. Respondent 10 argues that the product quality is decided by employees that in the
end make the difference. According to the respondent, this is due to that a limit in how much
and how detailed instructions that a person can capture until it suffocates the creativity and in
this way may decrease the product quality. According to Respondent 9, too little efforts are
spent in described software processes on the “soft values”. Soft values are according to the
respondent defined as the attributes that makes people work effective together in a project
group. When roles are appointed in projects it is often up to the ‘discipline managers’ to see to
that the “soft values” are taken care of. One of the interviewees (Respondent 11) claimed that
to reach an increased product quality, it is better to focus on describing the product instead of
processes, in this way it is easier to make improvements. This respondent said that his

P. JOHANSSON MSc 2007

32

department is now trying to use an Agile way of working where they put more focus on the
product than on processes.

5.2.2 Quality in Described Processes
In order to reach high process quality, the interviewees see the flow where deliverables,
activities and roles should be clearly shown. The interviewees strongly agreed that the most
important for having a high potential of quality in described software processes is a clear view
of deliverables. This is far highest graded attribute of all that the interviewees valued. All
interviewees apart from one (this interviewee had it graded as five in the six-degree scale)
strongly agreed to the importance of clear and visible deliverables. Respondent 10 claimed
“when deliverables are made visible in a flow it is possible to find where it is missing
deliverables which has been proven. With described software processes it becomes obvious
what shall be achieved with what deliverables to people it is also possible to use deliverables
as a measurement in progress”. Another interviewee (Respondent 2) agrees and claims “that
the deliverables are clearly shown is very important for software process quality; it is in the
interfaces between deliverables that product quality is created and the deliverables should be
well defined in order to reach high quality in software processes”.

 Some of the interviewees also talked about visible and clear roles as an attribute for high
quality in described software processes but only two of the interviewees strongly agreed to
this attribute and the spread in grades is large while the overall grade is second lowest of all
attributes the interviewees had to value importance of. Respondent 12 argued a problem with
a role-focus as “it might be a benefit that it is possible to say who shall do what but it might
also be a drawback since the flows in a certain discipline can be connected more to an
individual (or group) rather than a role”. This will lead to that how the organization is set-up
will rule on behalf of requirements. Respondent 12 continued arguing that “focus on roles
often give negative effect in that often when we start projects we begin with plan what roles
we need and not what shall do. We don’t have the free mind set about what roles are in
software processes instead we locks a role to a certain position and this makes more damage
than benefit”. This view on risks with roles is also supported by Respondent 8. According to
Respondent 7 roles come naturally when identifying activities and deliverables and this
opinion is also supported by Respondent 1. An example of this is verification where the
activity “verification” first is identified and this leads to that a role “verifier” is created. In the
hardware discipline synchronization roles have been created that follow the deliverables in
time. An example on this is a role “board-responsible” that follow a circuit-board over time
from creation to maintenance and synchronize different disciplines that are connected to the
creation of the board. Respondent 7 concluded that “it is nice that the roles are visible but the
most important is activities and that their input and outputs are visible”.

 A low number of levels are the attribute which is lowest graded of all attributes by the
interviewees in order to reach a high quality in a described software process. The common
opinion by the interviewees seems to be that there need to some kind of trade-off in how
many levels that should be included in a described software process. Respondent 9 states that
when it comes to the question about number of levels/clicks in order to reach information
there must be a trade-off, it has to do with what the organisation will manage. If there is not
relevant and enough information on the higher levels the process will not be used. There must

P. JOHANSSON MSc 2007

33

be enough keywords on the higher levels to attract the users to use the software process. One
of the interviewees argues that it’s a stakeholders’ concern and if there are too few levels,
there is a risk that important information is missed. There is a need to take in consideration,
who that shall use the described software process and what degree of experience this user has.
In a model or description that has too many levels there is a risk to get stuck in a detail level
and it is hard to get the ‘big picture’. The risk if the levels are flattened out is that the flow
becomes lost, leaving the users with a feeling of ‘too many arrows’ to make the flow visible.
According to respondent 10 this quality attribute might be the hardest to achieve.

 The importance in that flows are easily understood is graded second most important closely
followed by the correspondence to the real world. According to one interviewee (Respondent
7), in a project the hardware discipline follows one flow and the software discipline follows
another flow, and these disciplines do not use the same vocabulary. People ask bout
information from the software process in how to use this usually because we miss to show
overlaps and increment in the flows therefore the reality often doesn’t match the described
software process. Both Respondents 5 and 11 claims a importance of the flows in that if a user
can’t understand the flows in a described software process this will function as a threshold
and he or she will not then be able to understand anything at all of the described software
process. Respondent 4 states that the flow is important since “it tells us what comes out in the
end, what the result is”.

 The described software process correspondence to the real world influence as a quality
attribute are according to the participants up to who is using the described software process.
The importance is higher graded when it comes to new employees or inexperienced people.

 When it comes to a standard notation and common modelling guidelines the interviewees
grade the importance of these low. Some of the interviewees see these as a form of restriction
that might suffocate people’s creativity if they are too rigorous and on the other side some of
the interviewees see it as mandatory that there is a restriction in how to describe or model a
software process. Since some of the interviewees argue that product quality comes from the
creativity people posses in solving problems, if users get too restricted from common
modelling guidelines in their work with software process modelling the product quality will
decrease since creativity will be suffocated. Respondent 8 on the other hand sees a common
software process modelling guideline as a support in to creating flows that are easy to
understand. A standard notation is seen by several interviewees as a way to have a common
vocabulary in the organisation. According to Respondent 9 “it is only when standard notations
is used that users can talk the same language and understand each other. Usually there is a
problem when different disciplines talk to each other (i.e. hardware and software
disciplines).” Two of the respondents (2 and 7) see a standard notation as the next step after
understanding of symbols and flows is reached. There are many other things to work with
before you start work with the notation. One of the interviewees strongly disagrees to a
standard notation with the argument that often we follow RUP (the interviewee sees RUP as
a standard notation) but sometimes we do deviations from this and it works anyway therefore
it can’t be so important. The interviewee however sees that it has obvious benefits using a
standard notation i.e. to transfer knowledge to new employees.

P. JOHANSSON MSc 2007

34

5.2.3 Tools and the Importance of them
On an open question to name tools that the interviewees have come in contact with, used or
have heard that are used for describing or modelling software processes, the interviewees
named 14 variants of tools. This gave the result with the 14 variants and the six most named
tools were Rational Method Composer (11), Microsoft PowerPoint (6), HWDP (5) (an
Ericsson developed tool), HTML (4), PLCM (3) (the method how Ericsson centrally describe
the software development process), and Microsoft Visio (3). The most mentioned tool was
RMC developed and sold by IBM. The tool RMC was mentioned by all apart from one of the
interviewees.

 The interviewees agree strongly, that it is of high importance to use a tool in describing and
modelling software processes. This is showed in that more than half of the interviewees
strongly agree on its importance of using a tool for describing or modelling software
processes. This depends on that the interviewee’s sees today’s described software processes as
very complex and withholds a large number of deliverables and roles. This leads to that the
information that can be extracted from the processes is detailed and intense. To support this
Respondent 7 stressed “today we have so advanced and complex software processes that we
must use a high-quality tool to be able to control them, Microsoft PowerPoint won’t do the
job anymore and we cannot do it on free-hand.” In order to check that all deliverables and
roles are essential and to find potential gaps or discrepancies in the need of deliverables or
roles, a tool making this visible is very much needed. That a tool needs a consistency check
function is of most importance if it is to be used for describing complex software processes,
this opinion are stressed among several of the interviewees. Respondent 1 argues that tools
give us good opportunities to find gaps in missing or unnecessary roles, or troubles with
deliverables. With the use of a tool that brings all to a total unit (a whole) it will be possible to
find these gaps. This is self experienced from the latest project the respondent was involved
in. In this project they used RMC when describing a software process where it became clear
to the project that deliverables was missing. Many interviewees spoke about using Microsoft
PowerPoint or Microsoft Visio for describing software processes but only in presentations
because these tools cannot be used describing software processes that are to be used in daily
work because they lack the consistency check on deliverables and roles, and therefore should
not be used in other ways than for presentations. This is summed by Respondent 10 who said
that “when using Microsoft PowerPoint though it is up to good reviews by the projects in
order to find gaps in the deliverables or roles. With a tool such as Microsoft PowerPoint it is
hard to keep updated described software process models and updated links to the processes”.

 Another aspect given is that tools for describing software processes are necessary but there
is mandatory that we have the possibility to adapt the tool in to how we work daily and not the
other way around. The tool is there to serve the organisation and examples on the opposite
was discussed by Respondent 3 that also talked from earlier experience where the tools had
steered how the daily work was done because an extra moment was added when the
production teams tool couldn’t use the material the design team created based on their tool.

P. JOHANSSON MSc 2007

35

5.2.4 Qualitative Review of Preferred Process Notation
When presented the same software process that describes the development of Alfa, an
Ericsson product that is described in four different notations the interviewees preferred
different notations describing different levels of the software process. The favourite notation
to the interviewees when it came to the top levels was SPEM (UML Activity Diagram) and at
the lower levels it was BPMN or HWDP (at document level).

 The RAD was not a favourite among the interviewees; it was only one of the interviewees
that argued for the favouritism for this notation. Several of the interviewees thought this
notation had similarities with the SPEM notation and the later is preferred because of the
inheritance in working with similar notation. Arguments against the RAD as notation among
the interviewees are given by Respondent 11 “it is not intuitive to med how to interpret the
symbols” and by Respondent 5 that states “this model is unclear, there are no obvious flows
and it is not obvious where the end is.” Only one of the interviewee’s favourites this notation
(after discussing for a long time) and this is at the third level. The interviewee sums when
discussing the third level that “RAD becomes much better at third level because it has an
intuitive role and flow description that can’t be found in the other notations (it has a high
potential)”.

 All participants except one instantly recognized the SPEM notation this due to that it looks
the same as the well known UML notation with it is based on. A dilemma with Activity
Diagrams like the one in SPEM is according to the interviewees to get a clear understanding
when in time, and if activities shall be finished before the following activity can start, this is
hard to communicate to the users with this notation. It is also difficult to show the iterative
activities in the models. Today Microsoft PowerPoint is used to show and clarify the flows;
this is a weakness in all models. Respondent 11 argue for that the models are too strict and
forcing, more adaptability is needed – much should be more optional. According to this
interviewee “we need more Agile-thinking in the process descriptions. Today we see more to
the need of tools for describing software processes than to the business case”. Even at the
third level the order of when activities should be executed and the deliverables used was
unclear to the interviewees i.e. by Respondent 1 that stated “the order on the deliverables and
the activities working with these is missing at third level”.

 The BPMN notation was by a couple of the interviewees seen as to technical, it reminded
of blueprints describing a circuit-board to them. The ‘plus signs’ in the activity boxes at the
higher levels in the model was also irritating which caused this notation to become disliked by
several interviewees. At the higher levels this notation is not a favourite, instead it is at the
lower levels that it is one of two favourite and this is due to the clearly shown roles and
clearly shown order in deliverables. Respondent 1 states that “the order of deliverables
missing in SPEM model is well described in third level in this model”. Respondent 5 argue
that “this model is good in that the flow among deliverables is clear. I have never seen it
before but it is easy to understand the flows”.

 Most of the interviewees recognized the HWDP notation presented to them quite fast. This
notation is preferred as one of two at the lower levels due to the clearness of deliverables and
the status of these. This model lacks the ability to see which role shall handle specific

P. JOHANSSON MSc 2007

36

deliverable but this is not a problem to the interviewees. Respondent 1 sums the thoughts
saying that the described software process is a placeholder for guidelines, templates and
checklists.

P. JOHANSSON MSc 2007

37

6 Discussion

In this chapter we present the result from the study on described software processes and
notations. First the result from analysing the knowledge of described software processes and
tools is presented. This is followed by the result from analysing the roles of described
software processes and the result of what is of importance for high quality in described
software processes. The discussion chapter ends with suggestion for future research.

6.1 Knowledge of Described Process
From this study we have learned that there are no obvious standard notations or tools for
software process descriptions. The literature argues there are four main modelling techniques,
i.e. Activity-oriented techniques, Object-oriented techniques, Role-oriented techniques, and
Speech-act oriented techniques. We decided, as described in chapter two, not to discuss
Speech-act oriented techniques in this study as this approach is only vaguely described in the
literature with rather few references. It is clear that none of (1) Activity-oriented techniques -
focusing on the definition of business processes as a sequence of activities discussed by Owen
and Raj (2005), and White (2004), (2) Object-oriented techniques - leveraging the more
comprehensive modelling constructs of object-orientation to capture business processes
discussed by Kalnins and Vitolins (2006), Haumer (2006), and Russel et al. (1994) or (3)
Role-oriented techniques - modelling business processes based on the specific organisational
roles and responsibilities involved discussed by Ould & Huckvale (1995), and Ould (1995) is
dominated in the reviewed literature.

 The interviews supported what was already known to us from the literature study. The
interviewees had no common picture of a standard tool to use for modelling software
processes (Davies et al. (2006). This was verified as all 12 of the interviewees gave 14
different variants of a software modelling tool, e.g. RMC, Microsoft PowerPoint, HMTL, and
Microsoft Visio.

 Our interviewees show, however, a considerable interest to both notations and tools for the
described software process since they agree that there is of high importance to them to use a
tool in modelling software processes. This goes against the findings of Iivari (1995) that
found that perception of effectiveness of CASE-tools rather low. The favour for CASE-tools
in this study is motivated with that today software processes are highly complex containing
and usage of a high number of deliverables. In order to control all deliverables there is a need
of a tool with consistency check. Some of the interviewees preferred simpler tools such as
PowerPoint and Visio but due to the lack of consistency checking, they at the end argued for
more advanced tools containing a consistency check, such as Rational Method Composer.
Arguments given by interviewees for the importance in reaching high quality using described
software processes with a low number of levels (few clicks) also support the need for more
advanced tools. It is clear that the advanced tools are needed in order to handle a high number
of levels in a correct way since this not will made with simpler tools like Microsoft
PowerPoint.

 After analysing the illustrations showing the software process for developing the product
ALFA for a while almost all of the participants preferred different notations at higher levels

P. JOHANSSON MSc 2007

38

compared to the lower levels. This is due to the clear presentation of deliverables at the lower
levels in BPMN and HWDP. The interviewees want to see the deliverables, who they will get
them from and to whom they shall deliver to. Respondent 11 argues for that BPMN “is the
preferable notation because of that this is best on the third level and it clearly shows the flow
of deliverables and who’s using them”. Also Respondent 6 support this when saying “this
model is good in that the flow among deliverables is clear. I have never seen it before but it is
easy to understand the flows”. The interviewee’s intuitive preferred notation shows that there
is not one notation that suits all levels of a described software process. At higher levels the
interviewees preferred SPEM/UML but at lower level they preferred Business Process
Modelling Notation (BPMN). This supports Kawalek (cited in Ould and Huckvale, 1995) who
in a study also found that there usually is a need for different kinds of notations describing
different levels in a software process model. In order for the employees to make out what to
do with what the deliverables need to be clear and visible. Because that different notation is
good at different levels the preferred illustration became a combination of different notations
by most interviewees. What to take notice about is that no one of the interviewees tended to
have a high preference for a described software process in Role Activity Diagramming (RAD)
which is in line with interviewee’s non-focus on roles.

 We summarize the general learning of knowledge of described software processes as
“described software processes are of high interest, but there are no obvious standards for how
to do it”.

6.2 Roles of Described Software Processes
The role of described software processes is thoroughly discussed in research by Ould and
Huckvale (1995), Ould (1995), Ellmer and Merkel (1996), and Curtis et al. (1992). While
Ould and Huckvale (1995) argues for the use of described software processes as a focus for
discussion, means for discussions and basis for analysis , Curtis et al. (1992) focus on the
automation of described software processes. Common for Curtis et al. (1992) and Ellmer and
Merkel (1996) are that they all argue for storing organisational knowledge in a repository
forming an organisational memory.

 Our interviews revealed a great interest in reasons for having described software processes
in that we got 11 different roles on our open question, I believe described processes are
important for other reasons (which?). The most highly valued reason to use a described
software process was for ‘storing organisational knowledge’ closely followed by ‘discussing
improvements’ and ‘communicating knowledge and competence’. For instance one
interviewee stressed that ‘storing organisational knowledge’ is a fundamental role for
describing software processes, “[w]hen this is done it is possible to communicate knowledge
and competence and these two fundamental roles will lead to that improvements are
discussed”. The opinion of ‘storing organisational knowledge’ as a fundamental role is
supported by one interviewee who also connects the use of a ‘stored organisational
knowledge’ to gaining market shares in a competitive market. According to the same
interviewee, if the knowledge is stored it is later possible to show the customers what is done
in error prevention and error correction. In this way customers trust is gained and it is possible
to use it as an advantage to competitors and a way to win market-shares. Importance for

P. JOHANSSON MSc 2007

39

storing of organizational knowledge in form of an organizational memory discussed by the
interviewees is argued by Ellmer and Merkel (1996) and is supported in our study.

 We summarize the general learning for roles of described software processes as “there are
many good reasons for having described software processes and we conclude our findings to
be in coherence with the reviewed literature”.

6.3 Quality of Described Processes
High quality of described software processes is necessary for promoting actual use of the
described process. The attributes used to describe ‘qualities of described software processes’
are quite many. Ould and Huckvale (1995) brings up that the described process must be
intuitive and easy to read, have a real world correlation, relate to roles and handle complexity.
Lindland et al. (1994) argues that syntactic (symbols and flows), semantics (real world
correlation and pragmatics (actual understanding of users). Tuuew and van der Berg (1997)
focuses on function and ease of use which is similar to Lindland et al’s (1994) syntactic and
semantics.

 From our interviewees, we did however find a major interest of a quality attribute that
renders little attention in the reviewed literature. Almost all interviewees strongly argued for
the need of clearly shown deliverables in the described software process. Respondent 1 states
“within ‘Ericsson product’ process the flow of deliverables are prioritized and usually the
most common question. It is a strong focus among employees that the deliverables is visible
in time tables”. Respondent 9 claims that “the deliverables are of high importance - it should
be clear what deliverables shall be transferred between activities”. Further Respondent 9
argues that “it should in the flow be possible to see what to do, with what deliverables and in
what time and this should not be placed in different documents”. It is the deliverables that is
used in work every day and it is of highest importance that an employee knows who is doing
what with what; this is what Curtis et al. (1992) argues for. The deliverables are not a main
focus discussed among either in Ould and Huckvale (1994), Lindland et al. (1994), and
Tuuew and van der Berg (1997) where primary the first authors instead focus on importance
of roles. The interview study revealed on the other hand a rather big uninterested focus for
roles in described software processes which have a strong focus at Ould (1995). I.e.
Respondent 8 argue for the risk in matching roles with a need of competence making it as a
form of work description and Respondent 12 states that “focus on roles often give negative
effect in that often when we start projects we begin with plan what roles we need and not
what shall do. We don’t have the free mind set about what roles are in described software
processes instead we locks a role to a certain position and this makes more damage than
benefit”. That the roles are unfavoured is also shown when the participant’s decided a
preferred notation in that described software processes described in Role Activity
Diagramming solely based on roles quite fast was rejected by the interviewees during
discussions.

 Closely related to the focus on deliverables, the interview study also reveals a major
interest for interfaces between software processes (i.e. input and output) which also shows no
attention in the reviewed literature. Several of the interviewees argue for that the product
quality is dependent by the skills that the employees possess and not by described software

P. JOHANSSON MSc 2007

40

processes. The product quality is then created in the interfaces between hand-over of
deliverables between the employees and is influenced by the skills that the employees
possesses. One of the interviewees stated that there today are roles created explicitly for
supporting the hand-over’s of deliverables during a products phases (different disciplines) in a
development cycle. This interface-attribute isn’t mentioned in any of the related literature
reviewed.

 Our study also shows that the importance for a low number of levels in a described
software process is rated as the least important among the interviewees in creating high
quality in described software processes. The interviewees show a strong disagreement about
the importance of this, see section 5 and Figure 21. Arguments for a low number of levels are
the same as for the correspondence to real-world in that a complex solution has many details
which need a high number of levels to cover all details and not miss important information.
The supporters against a low number of levels in described software processes sees a risk in
having many levels in that users bookmarks lower levels and always use the bookmarks and
misses changes that happens at higher levels, this is supported by Curtis et al. (1992) as a
problem causing discrepancies between actual behaviour and a stated software process in an
organisation due to that users don’t look at high-level software processes. One interviewee
thought the number of levels was irrelevant, it was more important with a stable structure so
that it is possible to find the information needed at the same location every time.

 We summarize the general learning of attributes for reaching high quality in described
software processes as “there are differences between user’s demands in what described
software processes should present and what can be found in the literature”.

6.4 Implication for Future Research
It is likely that the increasing interest in distributed and global software development will
further increase the need of software process control. Many different individuals, distributed
over many different countries, with different cultures and in different time zones working
together to produce one release of a software product need to be coordinated. A described
software process is one possible tool to manage this coordination. The described software
process needs however to be interpreted in one common way to be useful. It is likely a world-
wide software process notation standard could facilitate this need. UML has facilitated the
understanding of software product descriptions. A similar standard focused on software
process descriptions is likely to be useful for the body of knowledge in the area. We
encourage students, researchers and practitioners to further study the role of software process
descriptions and quality attributes for software process description. These types of studies will
likely push for a standard for software process notations and descriptions.

Organisations working in a global software development environment with agile approaches
will lead to a new focus in what is seen as reasons for using described software processes and
attributes for reaching high quality in these describes software processes. A suggestion for
future research is to analyse these reasons and attributes from an Agile point of view.

 In our open question given to the interviewees to propose other reasons for using software
process descriptions 11 new reasons not mentioned in the reviewed literature was given us.

P. JOHANSSON MSc 2007

41

An implication for future research is to analyse the importance to these new reasons contrary
to the ones indentified in the reviewed literature.

P. JOHANSSON MSc 2007

42

7 Conclusions

One way to enable effectiveness in software development organisations is to describe
software processes in coherent ways to enable understanding between different target groups
using the same software process. The increasing interest in distributed and global software
development has made the matter of described software processes even more important as
well described (and used) processes increase control.

 This study sets out by performing a literature review of current software process notations
followed by an interview study with senior managers and senior engineers at an organisation
working extensively on a global level. In doing so, we focused on two questions: what role
the described software process serves, and what quality attributes are important to the specific
organisation in the described software process?

The contributions made from this work are:

(1) Overall support for the many different reasons for describing software processes.
However, we can see a clear focus on priority of three roles; like ‘storing organisational
knowledge’, ‘discussing improvements’, and ‘communicating knowledge and competence’.
We also notice a risk in using to strict modelling guidelines or standard notations in that it
might lead to a decreased product quality since it will suffocate employee’s creativity in
finding the best solutions.
In addition, it is noteworthy that the participants in the study added 11 (!) additional reasons
for using described software processes.

(2) In terms of attributes for achieving high quality in describing software processes, the study
reveals two surprising findings, as roles are argued well against by several interviewees (i.e.
contrary to what our literature review suggested) and that clearly and understandable
deliverables are strongly argued for by all interviewees (not mentioned in the reviewed
literature). Also, it appears that low number of levels is not an obviously desired criterion in
reaching high quality in a described software process.

(3) The literature review in itself can be considered a third contribution made particular as this
study constitutes a richer and more complete mapping of different process notations, and the
roles and quality attributes that are relevant to the area.

(4) Finally, this work also contributes by elaborating on what will be of importance for future
research in order to respond to the once again increasing need to understand the interplay
between control and agile oriented approaches for software development.

P. JOHANSSON MSc 2007

43

8 References

Abrahamson, P., Warsta, J., Siponen, M. T., and Ronkainen, J. (2003). ’New Directions on
Agile Methods: A Comparative Analysis’ IEEE Computer Society, pp. 244-254.

Acuna, T., S., and Ferré X., (2001). 'Software Process Modelling', In Proceedings of the
World Multiconference on Systemics, Cybernetics and informatics: information Systems
Development-Volume I - Volume I, pp. 237-242

Ambler, S. W. (2005). The Elements of UML 2.0 Style. New York, USA: Cambridge
University Press.

Arlow, J., Emmerich, W., and Quinn, J. (2004). Literate Modeling - Capturing Business
Knowledge with the UML. Lecture Notes in Computer Science , 1618 (1), pp. 189-199.

BPMN, (2007), OMG Specifikations [Online]. Available at:
http://www.omg.org/technology/documents/spec_catalog.htm (Accessed: 12 January).

BPMI, (2007). Business Process Management [Online]. Available at: http://www.bpmi.org/
(Accessed: 12 January 2007).

Connel, C. J. (2001). SW-CMM. [Online]. Available at: http://www.chc-
3.com/cs511/fall2001/lectures/cmm_intro.htm Accessed: 1 February 2007).

Curtis, B., Kellner M., I., and Over, J., (1992), 'Process Modeling', Communications of the
ACM, 35(9), pp. 75-90

Davies, I., Green, P., Rosemann, M., Indulska, M., and Gallo, S. (2006). ‘How do
practitioners use conceptual modelling in practice?’, Data & Knowledge Engineering, 58 (1),
pp. 358-380.

Ellmer, E., and Merkl, D. (1996). Considerations for an Organizational Memory in Software
Development. Software Process Workshop, 1996. ‘Software Process Workshop, 1996.
'Process Support of Software Product Lines'., Proceedings of the 10th International’ , 1(1),
pp.60-62.

Floyd, C., (1986). ‘A Comparative Evaluation of System Development Methods’. Information
and Software Technology, 37(2), pp. 119-126.

P. JOHANSSON MSc 2007

44

Haumer, P. (2006). Software & Systems Process Engineering Meta-Model (SPEM 2.0).
Available at: http://www.omg.org/cgi-bin/doc?ad/06-11-03 (Accessed: 10 January 2007).

Holt, J. (2004). UML for Systems Engineering: Watching the Wheels. E-book [Online].
Available at: http://library.books24x7.com.proxy.lib.chalmers.se (Accessed: 7 January 2007).

Jäger, D., Schleicher, A., and Westfechtel, B. (1999). ‘Using UML for Software Process
Modelling’. ACM SIGSOFT Software Engineering Notes’, ACM SIGSOFT Software
Engineering Notes , 24 (6), pp. 91-108.

Iivari, J., (1995). ‘Factors affecting perceptions of CASE effectiveness’, IEEE Software 4, pp.
143-158.

Kalnins, A., and Vitolins, V. (2006). ‘Use of UML and Model Transformations for Workflow
Process Definitions’, [Online] Available at: http://arxiv.org/abs/cs.SE/0607044 (Accessed at:
16 January 2007)

Katzenstein, G., and Lerch, J. F. (2000). ‘Beneath the Surface of Organizational Processes: A
Social Representation Framework for Business Process Redesign’. ACM Transactions on
Information Systems , 18(1) , pp.383-422.

Kueng, P., Bichler, P., Kawalek, P., and Schrefl, M. 1996. How to compose an object-
oriented business process model? In Proceedings of the IFIP Tc8, Wg8.1/8.2 Working
Conference on Method Engineering on Method Engineering: Principles of Method
Construction and Tool Support: Principles of Method Construction and Tool Support
(Atlanta, Georgia, United States). S. Brinkkemper, K. Lyytinen, and R. J. Welke, Eds.
Chapman & Hall Ltd., London, UK, 94-110.

Lindland, O., Guttorm, S., and Sölvberg, A. (1994). ‘Understanding Quality in Conceptual
Modelling’, IEEE Software, 11(2), pp. 42-49.

Lyalin, D., and Williams, W. (2006). ‘Practical Considerations when Selecting a Notation for
Business Modeling’, [Online], Available at: http://www.bptrends.com/publicationfiles/09-06-
ART-Counterpoint-LyalinWilliams1.pdf . (Accessed: 16 January 2007).

Mcmanus, J., and Wood-Harper, T. (2003). Information Systems Project Management:
Methods, Tools and Techniques. Harlow: Prentice Hall.

P. JOHANSSON MSc 2007

45

Moody, D. L., Sindre, G., Brasethvik, T., and Sölvberg, A. (2003). ‘Evaluating the Quality of
Information Models: Empirical Testing of a Conceptual Model Quality Framework’, IEEE
Computer Society, pp. 295-305.

Murdoch, J., and McDermid, J. A. (2000). ‘Modelling Engineering Design Processes with
Role Activity Diagrams’. Journal of Integrated Design and Process Science, 4 (2), pp. 45-65.

Nandish, P. V. (2000). ‘Healthcare Modelling through Role Activity Diagrams for Process
Based Information Systems Development’. Requirements Engineering, 5 (1), pp. 83-92.

Necco, C., R., Gordon, C., L., and Tsai N., W., (1987) ‘Systems Analysis and Design: Current
Practises’, MIS Quarterly (Dec.), pp. 461-475

Nerur, S., Mahapatra, R., and Mangalaraj, G. (2005). ‘Challenges of Migrating to Agile
Methodologies’. Communications of the ACM , 48 (5), pp. 73-78.

Odeh, M., Beeson, I., Green, S., and Sa, J. (2006). ‘Modelling Processes Using RAD and
UML Activity Diagrams’, [Online] Available at: http://www.cems.uwe.ac.uk/
~sjgreen/RAD&AD_V2.pdf, (Accessed: 16 January 2007).

OMGa, (2007). Object Management Group [Online] Available at: http://www.omg.org/
(Accessed at: 12 January 2007)

OMGb, (2007). Object Management Group [Online] Available at. http://www.u
ml.org/#Links-UML2Tools (Accessed at: 12 January 2007)

Ould, M. A. (1995). Business Processes. Bath, United Kingdom: John Wiley & Sons Ltd.

Ould, M., and Huckvale, T. (1995). Process Modelling - Who, What and How; Role Activity
Diagramming, in W. Kettinger, & V. Grover, Business Process Change: concepts, methods
and technologies. London, United Kingdom: Idea Group Publishing, pp. 330-349.

Owen, M., and Raj, J. (2005, July 26). ‘BPMN and Business Process Management’. [Online]
Available at: http:// www.telelogic.com (Accessed: 16 January 2007).

Paulk, M. C., Curtis, B., Chrissis, M.-B., and Weber, C. V. (1993). ‘Capability Maturity
Model, Version 1.1.’ IEEE Computer Society Press, 10 (4), pp.18-27.

P. JOHANSSON MSc 2007

46

Russel, N., ter Hofstede, A. H., van der Aslst, W. M., and Wohed, P. (2006).’On the
Suitability of UML 2.0 Activity Diagrams for Business Process Modelling’, Australian
Computer Society, pp. 95-104.

Siegel, D. J. (2007). Introduction to OMG´s Unified Modelling Language. . [Online]
Available at: http:// www.omg.org/gettingstarted/what_is_uml.htm (Accessed: 16 January
2007)

Teeuw, W. B., and van den Berg, H. (1997). On the Quality of Conceptual Models. [Online]
Available at: http://osm7.cs.byu.edu/ER97/workshop4/tvdb.html (Accessed: 20 January 2007)

Tilley, S., and Huang, S. (2003). ‘A Qualitative Assessment of the Efficacy of UML
Diagrams as a Form of Graphical Documentation in Aiding Program Understanding’, ACM
Press, pp. 184-191.

Wang, W., Ding, H., Dong, J., and Ren, C. (2006). ‘A Comparison of Business Process
Modelling Methods’. IEEE Xplore , pp. 1136 - 1141.

White, S. (2004). ‘Process and Modelling Notations and Workflow Patterns’. [Online]
Available at: BP Trends: http://www.bptrends.com/publicationfiles/03-

04%20WP%20Notations%20and%20Workflow%20Patterns%20-%20White.pdf (Accessed:
15 January 2007)

Wikipedia, (2007). webServices [Online]. Available at: http://en.wikipedia.org
/wiki/Web_services (Accessed: 12 February 2007).

P. JOHANSSON MSc 2007

47

9 Appendix A

A start event starts the process flow and is described as a circle.

An intermediate event occurs during the course of a process flow and is described as two
circles.

An end event stops a process flow and is described as a bold circle.

An activity is represented with a rounded-corner rectangle and shows us the kind of work
which must be done. It can be a task or a sub-process. If it is a sub-process it has a plus sign in
the bottom line of the rectangle.

A sequence flow is represented with a solid line and arrowhead and shows in which order the
activities will be performed. A diagonal slash across the line close to the origin indicates a
default choice of a decision.

A message flow is represented with a dashed line and an open arrowhead. It tells what
messages flow between two process participants.

An association is represented with a dotted line and a line arrowhead. It is used to associate an
artifact, data or text to a flow object.

A gateway is represented with a diamond shape and will determine different decisions. It will
also determine forking, merging and joining of paths.

An annotation is used to give the reader of the model/diagram an understandable impression.

P. JOHANSSON MSc 2007

48

A group is represented with a rounded-corner rectangle and dashed lines. This symbol is used
to group different activities and it does not affect the flow in the diagram.

Data Objects are used to show the reader which data is required or produced in an activity

A swim lane is a visual mechanism of organizing different activities into categories of the
same functionality. There are two different swim lanes, and they are:
Pool: A Pool is represented with a big rectangle which contains many flow objects,
connecting objects and artifacts.
Lane: A lane is represented as a sub-part of the pool. The lanes are used to organize the flow
objects, connecting objects and artifacts more precisely.

P. JOHANSSON MSc 2007

49

10 Appendix B

Activity initial node starts the process in the Activity Diagram and it is represented by a black
circle.

Activity final node shows where the process stops in the Activity Diagram at it is represented
with a black circle with a white circle outside of the black one.

The decision or merge elements makes it possible to make a choice between different options.
The different options are written next to the element.

This symbol shows the activity and the name of the activity is written inside the symbol.

The control or object flow shows in which order the activities will be executed

The control fork element is used to show that the activities that follow can be executed
parallel or in different orders.

The control join element is used to show that the previous activities must be finished before
they can be joined. The joining activities can be executed in whatever order but they must be
finished before they can join.

P. JOHANSSON MSc 2007

50

With a swim lane it is possible to organise an Activity Diagram so it shows that different
resources are responsible for different activities. A swim lane is named after the resource
responsible and then is the activities that the resource is responsible for placed inside the
swim lane. For an example see Figure 12 earlier in this study.

P. JOHANSSON MSc 2007

51

11 Appendix C

A role is a collection of activities that when they are executed together achieve a goal

Activity is what people do and it is shown with a black box. An activity is placed inside the
role that shall execute the activity.

Part interaction is when different roles are interacting with each other, e.g. get an approval for
something. The meaning with the interaction is written between the two parts as in the
example above.

The roles that start or initiate an activity are marked with a striped box. The white box is thus
the receiver.

The activities are organised in states. When an activity is executed and finished it will enter
the next state that for instance can be another activity. A state is described by a vertical line
that connect activities.

Alternative paths are leading to different paths depending on the answer for the condition
stated at the start.

P. JOHANSSON MSc 2007

52

Concurrent paths can be executed parallel and the order they are executed don’t matter.

State description is used to describe the condition between two activities or to label certain
states. It can also be used to label the goal with a task.

This symbol marks where a process starts or it can be used as a trigger for a new action inside
a process. It can also be used as a “wait” signal.

This symbol is used to mark where a process or activity stops.

P. JOHANSSON MSc 2007

53

12 Appendix D
The role of described processes
I believe described processes are important for discussing improvements.

Strongly disagree Strongly agree
I believe described processes are important for communicating knowledge and competence.

Strongly disagree Strongly agree
I believe described processes are important for storing organisational knowledge.

Strongly disagree Strongly agree
I believe described processes are important for finding weaknesses or problems.

Strongly disagree Strongly agree
I believe described processes are important for measuring improvements.

Strongly disagree Strongly agree
I believe described processes are important for increasing product quality.

Strongly disagree Strongly agree
I believe described processes are important for other reasons (which?).

Strongly disagree Strongly agree

P. JOHANSSON MSc 2007

54

Attributes for Process quality
I believe it is important for high process quality that the model corresponds to “the real
world”.

Strongly disagree Strongly agree
I believe it is important for high process quality with a low number of levels (clicks) to reach
information.

Strongly disagree Strongly agree
I believe it is important for high process quality that the symbols are easily understood.

Strongly disagree Strongly agree
I believe it is important for high process quality that the flows are easily understood.

Strongly disagree Strongly agree
I believe it is important for high process quality that a standard notation is used.

Strongly disagree Strongly agree
I believe it is important for high process quality that common process modelling guidelines
are used.

Strongly disagree Strongly agree
I believe it is important for high process quality that roles are clearly shown.

Strongly disagree Strongly agree
I believe it is important for high process quality that deliverables are clearly shown.

Strongly disagree Strongly agree
I believe it is important for high process quality that activities are clearly shown.

Strongly disagree Strongly agree
I believe something else (what?) is important for high process quality.

Strongly disagree Strongly agree

P. JOHANSSON MSc 2007

55

Modelling tools

What tools for modelling software processes do you know of?

I believe tools for modelling software processes are important.

Strongly disagree Strongly agree

Which of the modelled processes do you prefer?

A B C D

