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Abstract 
In the Mechatronics division of the department of Machine and Vehicle Systems at 
Chalmers University of Technology, research related to hybrid electric vehicles (HEVs) is 
performed. This master thesis is part of a project which is proposed to develop a HEV 
prototype, and it is to be done in the form of a 1:5 scale model car (SMC). The specific 
task of this thesis is to design and construct a control system for the SMC, including the 
necessary means to control the energy management of the powertrain. Several modules 
for the SMC were determined and acquired outside the boundaries of this thesis, 
namely: digital signal processor (DSP), electric motor, DC-converter, buffer and primary 
power unit (PPU). The different modules had to be integrated and put under software 
control of the DSP. 
 
The SMC is equipped with a brush-less DC-motor which can regenerate kinetic energy. 
The regenerated energy is stored both in the PPU-batteries and in the buffer which 
consists of super capacitors. Through the use of a DC-converter connected to the buffer 
the energy level of the buffer can be regulated. Two analogue servos control the front 
mechanical disc brakes and the steering. The actuators of the SMC are controlled by a 
TMS320LF2407A DSP from Texas Instruments which is integrated in the control system. 
The control system of the SMC incorporates ideas regarding generic control architecture 
developed within the Mechatronics division at Chalmers. An operator controls the 
prototype with a 4-channel RC-transmitter, and the requested actions are interpreted 
and processed by the DSP according to a downloaded program. The DSP receives and 
interprets sensor signals regarding power flow within the powertrain, as well as motor 
rotational speed, rotational speed on the right front wheel and lever positions on the RC-
transmitter. The modular computerized SMC control system offers a highly functional, 
and yet low-budget HEV for educational purposes and future developments.  
 
 
 
 
 
 

 



 
Abbreviations 
 
ADC – Analogue-to-Digital Converter 
BLDC – Brush-Less Direct Current      
CPU – Central Processor Unit 
DAC – Digital-to-Analogue Converter 
DC – Direct Current 
DSP – Digital Signal Processor 
EMI – Electro Magnetic Interference 
EMS – Energy Management Strategy 
FM – Frequency Modulated      
GP – General Purpose 
HEV – Hybrid Electric Vehicle 
IO – In/Out 
LED – Light Emitting Diode 
OP – Operation  
PC – Personal Computer 
PPU – Primary Power Unit 
PWM – Pulse Width Modulated 
QEP – Quadrature Encoded Pulse 
RC – Radio Control 
SMC – Scale Model Car 
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1. Introduction 
In a world of limited resources and many petroleum users and emission sources, the 
policy question is whether the best use of resources is to build hybrid electric vehicles 
(HEVs), to improve the fuel economy and environmental emissions of other mobile 
sources, or to devote the resources to other environmental projects, see [1].  
 
In the Mechatronics group of the Department of machine and vehicle systems at 
Chalmers University of Technology, research related to HEVs is performed. Currently 
computer based modeling and simulation of such vehicles has been used for evaluation. 
However, it is desirable to get more practical insight and experience by building a real 
prototype of a hybrid electric vehicle.  
 
The step from computer based modeling and simulation to a full scale prototype is a 
gigantic leap, which is bound to include many unforeseen problems. Since money is an 
issue in science research, as well in the rest of society, the costs of a full scale HEV 
prototype appears as daunting. Therefore, as a part of the HEV research at Chalmers, 
this project is proposed to develop a prototype in a 1:5 scale of a full scale series HEV.  
 
The prior theories that the SMC incorporates mainly comes from three fields of the HEV 
research at Chalmers: powertrain design, energy management and control system 
architecture. These theories have influenced the design of the SMC on various levels 
and of various degrees. 
 
Powertrain design  

• The sizing of hardware components such as motor, DC-converter, buffer and 
PPU-batteries. 

 
Energy management 

• Sensors and actuators to offer the necessary means for the DSP to control the 
power flow.  

 
Control system architecture 

• Software structure and communication within the control system. 
 
The scaled model car (SMC) should be constructed to represent a real vehicle in as 
many aspects as possible. Basically it should feature the same functionality, 
controllability, and behavior as a full scale model and this has been considered during all 
parts of the project. The reason for this is that the experience derived from designing the 
SMC, and the knowledge gained by testing it ought to be transferable to a full scale 
model. 
 
The process of designing a SMC has been divided amongst the members in the project 
group, and this thesis is focused on the development and construction of the control 
system. The control system is incorporating ideas regarding control architecture 
developed within the Mechatronics group. It is designed and equipped with sensors and 
actuators to monitor and control the powerflow within the powertrain (motor, PPU and 
buffer), as well as the physical behavior of the SMC. A digital signal processor (DSP) 
controls the SMC according to a downloaded program and the requested actions from 
the real-time operator. The control system offers the necessary means to test different 
energy management strategies that has been developed within the Mechatronics group.  
 

 



One guiding principle during the design and construction of the control system has been 
advanced simplicity. By avoiding complex solutions to individual problems the integration 
of the various solutions and components is facilitated, since there is less risk of conflicts.  
The advanced functionality of the prototype is gained by combining the simple solutions. 
 

1.1 Thesis Objectives 
The objective of this thesis is to design, develop and implement a computerized control 
system for a scaled HEV prototype. The control system should be able to monitor and 
control the power flow of the SMC, as well as basic motion control of the vehicle (velocity 
and steering). The work includes the design and construction of hardware and software 
necessary to perform these actions. In order to do this the status of the prototype should 
be available through sensor signals for the DSP to read and interpret, and the DSP will 
also generate control signals for the actuators of the prototype. 
  

1.2 Limitations 
Following limitations have been made: 
 

• DSP, electric motor, DC-converter, buffer and primary power unit (PPU) were 
determined and acquired outside the boundaries of this thesis.  

 
• This thesis does not include the design of any regulatory systems for the 

prototype, and neither does it include the mechanical aspects of the prototype.  
 

• The prototype software is not optimized considering factors like DSP memory or 
run-time efficiency. 

 
• Equations and calculations used to size electric components in prototype circuits 

are not presented.   
 
 

 

1.3 Contributions 
The work of project group leader Jonas Hellgren, PhD student at the Department of 
Machine and Vehicle Systems, regarding energy management strategies has been a 
contributing factor in the design of the powertrain. His work has also influenced the 
design of the control system since it is crucial that the power flow within the system can 
be monitored and controlled. 
 
The control system is structured and put under software control of the DSP following 
ideas regarding control architecture developed by project group member Leo Laine, PhD 
student at the Department of Machine and Vehicle Systems.  
 
Project group member and Master thesis student Dennys Gomez is responsible for the 
mechanical design of the prototype and the construction of the buffer. It is presented in 
his thesis report Design and Development of a Hybrid Electric Scale Model Car, see [3]. 
 

 



The contribution of this thesis is a computerized control system for the SMC. It features 
integrated sensors and actuators that the DSP can use to monitor and control the power 
flow in the powertrain of the SMC, as well as the physical behavior of the vehicle. The 
control system (hardware and software) is designed in a modular fashion, which 
facilitates modifications and further developments.  
 

1.4 Thesis Outline 
Chapter 1 gives an introduction to the problem, with objectives and limitations of the 
thesis. Chapter 2 presents the complete vehicle control system, and briefly describes the 
different parts and their functions. In chapter 3 the hardware of the control system is 
presented more thoroughly. It is also described how the hardware components are 
connected, monitored and controlled. Chapter 4 presents basic functions of the DSP for 
interfacing hardware with software. The functional structure of the program and the 
various sub-programs are also described. Chapter 5 gives a summary of the sensors 
and actuators of the control system. Conclusions and discussions regarding the control 
system are presented in chapter 6. In chapter 7 some suggestions are presented about 
future work on the SMC. Circuit diagrams, prototype software and additional information 
can be found in the Appendix.  
 

1.5 Acknowledgments 
The knowledge and experience of Hans Sandholt, Assistant Professor at the 
Mechatronics Division, regarding DSP-applications has been a valuable resource in the 
design and development of the SMC control system. 
 
When difficult challenges arose in the field of electronics the wisdom of Jan Möller, 
Research Engineer at the Department of Machine and Vehicle Systems, seemed 
endless. His advice has been inspiring as well as the seed for many good solutions.  
  
The senior members of the project group, Jonas Hellgren and Leo Laine, have 
contributed with support during all phases of this thesis, and their ideas have had much 
influence on the design and construction of the prototype.  
 
Master thesis student Aizezi Abuding joined the project group in the latter part of the 
work of this master thesis. His arrival was much appreciated as he had the patience and 
ability to probe the control system, which proved to be valuable during the writing of this 
thesis report.    
 
 
 

 



2. The Complete Vehicle Control System 
 

2.1 Overview 
The prototype is built on a modified chassis of a 1:5-scaled remote controlled vehicle, or 
RC-vehicle. The mechanical design and physical features of the prototype is described 
in the master thesis of Dennys Gomes, see [3], while the focus of this report is placed on 
the SMC control system. Most of the electronics of the prototype are part of the control 
system, but there are a couple of passive components, namely PPU and buffer, that 
don’t participate in the dynamic control of the prototype. However, both PPU and buffer 
are interfaced to the control system by the use of sensors.  
    
 

 
                     
                Fig 1. The communication between PC and DSP is done via a parallel  

     cable and an emulator connected to the DSP. 
 
The prototype PPU consists of two 12 Volt lead-acid batteries connected in series (see  
Fig 2) resulting in a 24 Volt power source. The PPU is directly connected to the electric 
motor, and also connected to the buffer via a DC-converter. The buffer consists of eight 
super capacitors (2.5 V, 50 F) in a 2-in-parallel and 4-in-series configuration. This 
particular powertrain configuration, with PPU and buffer (via DC-converter) directly 
connected to the motor, makes the prototype a series HEV.   
 
The programming is done with a PC and the operator downloads the code to the DSP 
via a parallel cable and an emulator (see Fig 1). When the program runs the operator 
controls the actions of the SMC with a 4-channel RC-transmitter (see Appendix XX for 
operational procedure). The FM-signal from the transmitter is received and translated 
into four PWM-signals by a RC-receiver which the DSP then interprets.   
 

 



             

                                        
    
          Fig 2. Top view of prototype showing buffer box (with DC-converter),  
          DSP-box, external circuit box, PPU and 12 Volt batteries.  

 
Control of the system is achieved by the integrated DSP (see Fig 3), which receives 
sensor signals, processes data and sends out control signals to the actuators on the car. 
The actuators (steer servo, mechanical brake servo, motor and DC-converter) controls 
the physical behavior of the SMC, as well as the power flow within the powertrain. 

         

                  
                          Fig 3. Left side of prototype showing the DSP-box and motor. 
 
In order to achieve the complete control system, additional circuits has been developed 
and integrated into the system. The additional circuits are responsible for interfacing 
actuators with the DSP, as well as monitoring the status of the system in the form of 
sensors. They are mainly placed in the external circuit box (see Fig 4). 
                                          

 



                      
      

Fig 4. Right side of prototype showing the external circuit box with switches on  
top of the box. The buffer box is placed in the rear of the car. 

 

 



3. Control System Hardware 
The vehicle control system consists of seven hardware modules (see Fig 5): DSP, RC-
system (transmitter and receiver), mechanical brake servo, steer servo, electric motor, 
DC-converter, and the external circuits. The communication within the control system is 
done by electrical signals (analogue and digital).   
 

               
Fig 5.  The control system modules and the communication within the control system. The  
arrows show the paths of the control signals (out from DSP) and sensor signals (in to DSP).   

 
The DSP is the central unit of the control system hardware, but it also operates 
according to the downloaded prototype software. The defining borderline between these 
separate sub-systems can be seen in Fig 6, where Functional level 3 is part of the 
hardware, and Functional level 2 is where the software begins (Fig 6 will be further 
explained in chapter 4.2). 
 

       
   Fig 6. The borderline between control system hardware and software is between functional level 2 and 3. 

 



The DSP (see chapter 3.1) receives reference signals from RC-receiver, and sensor 
signals from the external circuits. The sensors give information to the DSP regarding: 
 

• Buffer (voltage and current) 
• Motor (voltage, current and rotational speed) 
• Front wheel rotational speed 

 
The DSP then processes the sensor information and generates control signals to the 
actuators on the car (motor, DC-converter and servos).     
 
The prototype is equipped with a RC-system (see chapter 3.2) through which the 
operator can control the actions of the car. The RC-system (transmitter and receiver) 
handles the communication from driver to car, and signals from the RC-receiver are 
interpreted by the DSP.   
 
A brushless DC-motor (see chapter 3.3) is used to propel the car, and it is also 
responsible for regenerating kinetic energy to electric energy. The DSP generates 
control signals for the motor, and it receives sensor signals regarding voltage, current, 
rotational speed and rotational direction.  
 
The DC-converter (see chapter 3.4) is the actuator for power management on the 
prototype, where it shifts power between, on one side, the buffer and on the other side 
PPU and motor. The actions of the DC-converter are controlled by the DSP, which also 
monitors relevant sensor signals such as buffer current and buffer voltage. 
 
The two servos, mechanical brake (see chapter 3.5) and steer (see chapter 3.6), receive 
control signals from the DSP. The brake servo is connected to both front wheel disc 
brakes, and offers a non-regenerative braking mode, while the steer servo controls the 
steering angle of the front wheels. 
 
The external circuits (see chapter 3.7) are components that have been integrated in the 
system in order to handle various tasks, e.g. signal amplification, sensor readings and 
voltage regulation.  

 
3.1 Digital Signal Processor (DSP) 
The CPU-core of the prototype consists of a TMS320LF2407A processor from Texas 
Instruments, and it is mounted on an evaluation module from Spectrum Digital (see 
Appendix I). The DSP receives and sends signals through four expansion connectors.  
  
The DSP is interfaced with a PC via the parallel port and a J-tag emulator. The emulator 
is a hardware development system that emulates device operation, and it gives access 
to internal and external memory when CPU is running, see [4]. This is an efficient way to 
monitor variables and registers on the PC in real-time operation of the DSP-program. 
 
Software for the DSP is written in C, which is supported by the development 
environment Code Composer from Texas Instruments, see [5]. Code Composer features 
compiler, assembler and linker for C-language.  
 

 



3.2 Radio Control (RC) system 
The RC-system consists of a Hitec Laser 4 FM transmitter, and a HFS-04MG receiver, 
also from Hitec (see Appendix II). The RC-system has four available channels, where 
each channel can be individually adjusted by the levers of the RC-transmitter. The RC-
receiver translates the FM-signal from the transmitter into four separate 50 Hz PWM- 
signals. The pulse peak-width of each PWM-signal holds information about the position 
of corresponding lever on the transmitter. The receiver creates pulses for the four 
channels and sends them out in subsequent order (channel 1-2-3-4), where each pulse 
is between 0.9 and 2.1 milliseconds long, see [6], depending on the lever positions, and 
have a peak voltage of 3.6 Volts.  
 
The RC-transmitter is a handheld device with two levers for controlling the four channels. 
Both levers can be adjusted in a two-dimensional fashion (X-Y), and each channel has a 
calibration dial for tuning. Channel designation is shown in Fig 7. 
 

 
Fig 7. RC-transmitter and channel designation. The type of braking (mechanical or regenerative) is here 
determined by the lever position, but in future versions of the SMC it is intended to be done by the software.  
 
Channel 1, 2 and 4 are equipped with springs which makes the levers to return to neutral 
(middle) position when released. To put the prototype in reverse the operator needs to 
put the channel 3 lever in the bottom position and then use the calibration dial for the 
channel to control the reverse speed.  
 

3.3 Electric Motor 
The motor is a brush-less permanent-magnet DC-motor (BLDC) from Östergrens Motor 
(see Appendix II), with a nominal operational voltage of 24 Volts. It is equipped with an 
internal control circuit which allows motor control to be done through the use of 10 
external motor pins (see Appendix III). A key feature of the motor is the regenerative 
braking, where it transforms kinetic energy into electric energy.  
 
The operational mode of the motor depends on the configuration of motor pins #6 and 
#7, which controls regenerative brake or traction mode, and also rotational direction 
(forward/reverse). Both pins can be put in two different states: Open or connected to 
ground, which will determine the operational mode (see Fig 8). 
 

 



 
Fig 8. The operating mode of the motor is controlled by pin#6 and pin#7. In configuration A pin#6 is 
connected to ground and pin#7 is open, resulting in motor propelling vehicle forward. In configuration B both 
pins are connected to ground, resulting in motor propelling car backwards. In configuration C both pins are 
open, resulting in regenerative braking when car is moving forward. In configuration D pin#6 is open and 
pin#7 is connected to ground, resulting in regenerative braking when car is moving backward.  
 
The motor also requires an analogue control signal between 0-5 Volts to motor pin#4 as 
a reference value for either speed or regenerative brake current.   
 

3.4 DC-converter   
The DC-converter, manufactured by ZAPI (see Appendix II), is arranged in the 
powertrain of the SMC according to Fig 9. It is a bi-directional unit responsible for shifting 
energy between the buffer on one side (out-port), and the PPU and the motor on the 
other side (in-port).  
 

    
Fig 9. The powertrain configuration of the SMC. The PPU voltage (Uppu) determines the voltage over the 
motor and the DC-converter in-port. The relationship between buffer voltage (Ub) and DC-converter out-port 
voltage (Udc) affects the power flow between the two modules, as the voltages strive to reach the same 
potential.  
 
The DC-converter is originally designed to be used as a driver circuit for a DC motor, 
and the full-bridge configuration of the unit results in different ground potentials for the 
buffer and the PPU (and motor, see Fig 10), see [8]. An analogue control signal to the 
DC-converter controls the switching characteristics of the circuit, which affects the 
voltage over the out-port of the unit. The DC-converter is designed to be used with an 
inductive load, see [7], and since the buffer is a capacitive load an inductor was placed 

 



between the positive out-port of the DC-converter and the positive pole of the buffer (see 
Appendix V).  
 

        
Fig 10. The DC-converter has a full-bridge configuration, resulting in separate ground potentials for buffer 
and PPU/motor. The switching characteristic of S1, S2, S3 and S4 is controlled by an analogue control 
signal to the DC-converter.      
 
The out-port voltage of the DC-converter depends on two variables: PPU voltage and 
the analogue control signal (see Fig 11). To produce the desired out-port voltage a 
proper control signal is calculated with an algorithm (see Fig 12). The Matlab-file used to 
derive the algorithm can be found in Appendix IV.   
 

                              
Fig 11. The out-port voltage depends on two variables: PPU-voltage and control  
signal voltage. The dotted line shows the relationship when PPU has a voltage  
of 28 volts, and the solid line when it is 24 volts. The same control signal will  
result in different out-port voltages, depending on the PPU-voltage. 

 

    Fig 12. To get the desired out-port voltage from the DC-converter the control signal is calculated with an 

 
Control Signal = (DCout * 0.0869) * (1 + (28 – PPU_volt) / 28) + 0.95 

    algorithm which uses the measured PPU-voltage and the desired out-port voltage as input variables. 
 
Depending on the relationship between buffer voltage and DC-converter out-port voltage 
the energy will be shifted either in or out of the buffer (see Fig 13). The in-port of the DC-

 



converter is connected to the PPU and motor, which allows the buffer to be charged by 
energy from the PPU, but also from the motor when it is in regenerative brake mode.  
 

 
Fig 13. In case A, when the buffer voltage is higher than the out-port voltage of the DC-converter, the buffer 
will discharge. In case B, when the out-port voltage is higher than the buffer voltage, the buffer will be 
charged. In case C, when voltages are even, there will be no power flow between the buffer and the DC-
converter. 
 

3.5 Mechanical Brake Servo 
The prototype is equipped with a small, analogue Hitec HS-322HD servo (see Appendix 
II) as an actuator for mechanical braking. The servo is connected to both frontal disc 
brakes, and the action of it is controlled by a 50 Hz PWM signal with an amplitude 
between 3-5 Volts, see [6].  
 

3.6 Steer Servo 
The steering is performed by an analogue Hitec HS-805BB mega quarter scale servo 
(see Appendix II), which offers enough torque to turn the front wheels of the prototype 
even at low or no speed. This servo is also controlled by a 50 Hz PWM signal with an 
amplitude between 3-5 Volts, see [9].  
 

3.7 External Circuits 
The integration of the control system modules, and to put them under the software 
control of the DSP, requires additional circuits. It was also necessary to add various 
sensors in order to make the status of the system available for the DSP to read and 
interpret. All external circuits, except the QEP and motor voltage sensor (see chapter 
3.7.5) and the buffer voltage sensor (see chapter 3.7.6), are placed in the external circuit 
box (see Fig 14).  
 

 



                        
 
        Fig 14. The external circuit box holds most of the external circuits of the prototype.  

       More information about the specific components is available in corresponding chapters. 

3.7.1 Current sensors 
The prototype is equipped with two current sensors. One is measuring the current going 
in/out from the buffer, and the other is measuring the current going in/ out from the 
motor. Both sensors are configured for a measurable range from -6 Ampere to 6 
Ampere. The sensor generates a signal voltage between 0.25 - 4.75 Volts that is 
proportional to the current. However, the analogue-to-digital converter (ADC) of the DSP 
can only interpret signals between 0-3.3 Volts (see chapter 4.1.2), and the sensor 
signals need to be downscaled before the DSP can interpret them. The downscaling is 
achieved by connecting a pair of resistors in series from the signal port of the current 
sensor to ground potential. The proportion of the resistors was chosen so the voltage at 
the probe point between the resistors came within the limits of the ADC, while keeping 
the full measurable range of the current sensors. The drawback of this solution is a lower 
resolution of the sensor signal, but an advantage of connecting resistors between the 
signal port and ground potential is that it increases the sensor signal current, which in 
turn makes it more resilient to outside interference, see [10]. 
 
Since current ripple is produced by the armature phase current commutation in the 
BLDC-motor, see [2], the motor current sensor will give the same ripples in the sensor 
signal. It is a high frequency ripple generated by the motor inductance components in 
stator windings and back-EMF, see [2], and the noisy sensor signal leads to poor 
precision of the signal interpretation in the DSP. By connecting a capacitor in parallel 
with a resistor the sensor signal is low-pass filtered (see Appendix VI and VII).   

 



3.7.2 Optic connectors 
Two optic connectors are used to switch between the different operational modes of the 
motor (see Appendix VI and VII). By connecting a digital out-port of the DSP to the diode 
side of the optic connector (through a 1 kohm resistor), and then have ground potential 
and motor pin connected to the collector ports, the DSP-signal can either connect or 
disconnect the collector ports (see Fig 15). The chosen IO-ports can source a current of 
8 mA, see [11], which is sufficient for good switching capabilities.  
 
The same solution is used to perform the software switch of the DC-converter (see 
chapter 4.3.1), which also offers the means to shut down the DC-converter in case of 
operational failure, e.g. if current through the buffer exceeds a tolerated limit (however, 
this is not yet implemented). 
 

 
Fig 15. If the digital out-port of the DSP writes low it results in a broken connection between the motor pin 
and ground potential. When the digital out-port writes high current flows through the diode which emits light 
that is received by the photosensitive collector side. This results in the two collector ports being connected. 

3.7.3 OP-amplifier 
The motor expects an analogue control signal voltage between 0-5 Volts to motor pin#4 
as a reference value (see chapter 3.3). However, since the maximum output from the 
digital-to-analogue converter (DAC) on the DSP is 3.3 Volts (see chapter 4.1.3) the 
signal needs to be amplified in order to get the full range of control. Therefore the DAC 
signal is connected to an OP-amplifier which gives a 1.7 amplification of the signal 
voltage (see Appendix VI and VII). 

3.7.4 Voltage regulator for 5 Volt circuitry 
The 5 Volt switch regulator supplies all parts of the control system (except motor, DC-
converter and OP-amplifier) with power. The regulator is mounted on the external circuit 
board and it uses a 12 Volt lead-acid battery as power source and regulates it down to 5 
Volts (see Appendix VI and VII).  

3.7.5 QEP and motor voltage sensor circuit 
Quadrature encoded pulses (QEP) are two sequences of pulses with a variable 
frequency and a fixed phase shift. When generated by an optical encoder on a motor 
shaft, the direction of rotation of the motor can be determined by detecting which of the 
two sequences is the leading sequence (see Fig 16 and 17). The angular position and 
speed can be determined by the pulse count and pulse frequency, see [13]. 
 

 



       
Fig 16. Transition of the signal level occurs when the optic sensor detects the transitions of dark/transparent 
fields of the rotating optical encoder disc. The distance between the optic sensors determines the phase 
shift between the pulse sequences. With a counter-clockwise rotation sensor signal 2 is the leading 
sequence.   
 

     
Fig 17. With a clockwise rotation of the optic encoder disc sensor signal 1 is the leading sequence.  
 
The QEP-signals from motor pins #9 and #10 have a peak voltage of approximately 12 
Volts. Since the QEP circuit on the DSP tolerates a 5 Volt input maximum, see [12] the 
signals need to be downscaled. This is done by connecting a pair of resistors in series 
between the QEP-ports on the motor and ground potential (see Appendix VIII). 
 
As the motor is directly connected to the PPU, motor voltage and PPU voltage are the 
same. In order to measure the motor voltage a pair of resistors is connected in series 
between motor pins #1 and #3. The resistors are dimensioned to produce a sensor 
signal, within the range of the ADC, which is proportional to the measured voltage. The 
sizes of the resistors are also chosen to minimize the current while keeping the current 
large enough for steady readings, see [10]. The motor has the same ground potential as 
the DSP (see chapter 3.8) and therefore an ADC channel on the DSP can be directly 
connected to measure the voltage at the probe point between the two resistors.  

3.7.6 Buffer voltage sensor 
The buffer does not share the same ground potential as the DSP (see chapter 3.4 and 
3.8), and therefore the buffer voltage sensor calls for a solution where the two different 
ground potentials are kept separated. The voltage sensor has to measure the buffer 
voltage and send a corresponding sensor signal to the DSP with the DSP ground 
potential as a reference value in order for the DSP to be able to interpret it correctly (see 
chapter 4.1). This was achieved by using an optic connector where the diode side is 
connected to the buffer, and the collector side is connected to the DSP (see Appendix 
IX). The communication between the two sides is done through light emitted by the 
diode and received by the photo-sensitive collector side. Depending on the diode 
current, which is proportional to the buffer voltage, the intensity of the emitted light will 

 



vary accordingly. The light intensity will result in certain conductivity on the photo-
sensitive collector side, and when the current is affected by the conductivity, so is the 
voltage over the collector pins. This voltage is then measured by an ADC-channel on the 
DSP, but since the measured sensor voltage doesn’t have a linear relationship with the 
buffer voltage (see Fig 18) an algorithm was developed in Matlab for calculating the 
buffer voltage (see Fig 19). The Matlab-file used for the buffer voltage sensor algorithm 
can be found in Appendix X.  
 

                
        Fig 18. The solid line shows the actual relationship between buffer voltage and  

       sensor voltage. The dotted line shows the DSP-calculated buffer voltage derived  
       from the algorithm with the measured sensor voltage as an input variable. 
 

        Fig 19. The algorithm calculates the buffer voltage with the buffer sensor voltage (bsV) as an input   

 
                    Buffer Voltage = a1 + a2*(bsV) + a3*(bsV)² + a4*(bsV)³ 

        variable. The constants a1, a2, a3 and a4 are derived from Matlab in order to approximate the 
        non-linear relationship between buffer voltage and sensor voltage. 
 
The positive collector pin of the optic connector is connected via a resistor to a voltage 
regulator which supplies a reference voltage of 3.3 Volts (see Fig 20). The buffer voltage 
sensor is placed in the buffer box (see Fig 21), and the DC-converter is used as power 
source for the 3.3 Volt regulator.        

        
         Fig 20. The 3.3 volt regulator (Vr) gets power from port B6 on the DC-converter. The buffer voltage 
         is transferred to the ADC sensor signal voltage while the two sides are kept electronically separated.   
 
                                     

 



                                                     
     Fig 21. The buffer box with the buffer voltage sensor circuit circled in the bottom. To 
     the left is the buffer and above the buffer voltage sensor circuit is the DC-converter. 

3.7.7 Optic rotational sensor 
The prototype is equipped with an optic rotational sensor circuit (see Appendix XI), 
mounted at the right front wheel (see Fig 22). The mechanical brake disc is used as an 
encoder disc due to the suitable design with pre-drilled cooling holes. There are 16 holes 
at the outer rim of the disc that are used by the rotational sensor to produce a pair of 
phase-shifted QEP signals. These signals are received and interpreted by two QEP 
channels on the DSP to calculate the speed and direction (forward/backward) of the 
vehicle. 

                                  
                Fig 22. The optic rotational sensor circuit mounted at the brake disc  

 of the right front wheel of the prototype. 
 

3.8 Connecting the System 
The DSP-board is connected to the system through a 37-wire flat cable going from the 
expansion connectors on the DSP-board to a 37-pin data port on the inside of the DSP-
box. The wires are connected to the expansion connectors according to Appendix XVII. 

 



Another 37-wire flat cable is connected to the data port on the outside of the DSP-box 
carrying signals between the DSP and peripheral modules (see Appendix XVIII).  
 
Table 1 shows the different modules of the control system with references to 
corresponding wiring diagram in the Appendix.  
 
Module Appendix 
DSP I, XVII, XVIII 
PPU and 12 Volt battery XII 
External circuit box XIII, XV 
Buffer box V 
Motor XIV 
QEP and motor voltage sensor circuit VIII 
RC-receiver, brake servo, steer servo XVI 
Optic rotational sensor circuit XI 
Buffer voltage sensor circuit IX 
Table 1. Control system modules and the corresponding wiring diagrams in the Appendix. 
 
When the control system is connected every module except the buffer shares the same 
ground potential (see chapter 3.4). This common ground is used as a reference value for 
the DSP when it interprets sensor signals and generates control signals (see chapter 
4.1). 

3.8.1 Wiring and shielding 
There are several sources of electro magnetic interference (EMI) on the SMC. EMI can 
cause corrupted signals within the control system since every wire serves as an antenna 
by picking up interference from the surrounding. The EMI of primal concern comes from 
flowing currents in wires and components, such as: 
 

• Motor  
• RC-receiver  
• DC-converter 
• Buffer 
• Power wires (carrying high currents) between modules 
 

The best method to avoid interference in general is distance to the source, see [10]. 
Therefore the power wires are mainly situated in the rear half of the prototype (together 
with motor, DC-converter and buffer) and the signal wires are kept in the front half.  
    
However, the RC-receiver is placed in the front of the SMC, and since it is functioning as 
a power relay station for the servos the power wires to the RC-receiver can carry 
currents up to 3 Ampere, see [6] and [9]. In order to minimize the emitted EMI the 
positive and negative power wire are coupled and twisted. This results in the electro 
magnetic fields of the wires annulling each other, see [10].  
 
Another source of EMI is wires carrying pulse signals (QEP- and PWM-signals to and 
from the DSP) where the alternating signal levels causes fluctuating electromagnetic 
fields around the wires. By coupling these signal wires with ground wires the emitted 
EMI is reduced, see [10].  
 

 



The wires that are most sensitive to EMI are the sensor signal wires to the ADC-ports on 
the DSP. The sensitivity is due to the analogue nature of these signals where 
surrounding interference affects the signal voltage, which results in poor precision of the 
DSP-readings. To protect analogue wires from EMI they are grouped and placed inside 
metallic mesh covers, which are connected to ground potential at both ends (see Fig 
23). The metallic mesh covers are then insulated with electric tape to avoid involuntary 
connections and short-circuit within the system. This method shields the wires from EMI 
between 10 kHz and 20 GHz, see [10], which effectively protects them from the RC-
transmitter FM-signal at 35 MHz, see [6].   
 

         
Fig 23. The metallic mesh cover is connected to ground potential at both ends, and the signal wires are 
protected inside the cover from a wide spectrum of EMI. 

 



4. Control System Software 
 

4.1 DSP functionality 
For the proper DSP functionality, it is necessary that the DSP and the modules it 
communicates with are sharing the same ground potential. This common ground is used 
as a reference value by the DSP when it interprets sensor signals and generates control 
signals.    
 
There are a number of DSP functions that integrates hardware signals to digital control 
by software, and these functions are briefly described in this chapter.  

4.1.1 Quadrature Encoded Pulse Circuit (QEP) 
The DSP has two QEP-circuits with two channels each, and each circuit is connected to 
a separate general purpose (GP) timer which counts every incoming flank (positive and 
negative) on the corresponding channels. Depending on which sequence is leading the 
counter either counts up or down, see [13].  
 
One QEP-circuit is used to determine the rotational speed of the motor (see chapter 
3.7.5), and the other for the rotational speed of the right front wheel (see chapter 3.7.7). 

4.1.2 Analogue to Digital Converter (ADC) 
The DSP has 16 ADC channels, which convert analogue signal voltages to digital 
values. They are used for interpreting sensor signals, such as current and voltage 
sensors. The limits of the possible conversions are set to a minimum of 0 Volts and a 
maximum of 3.3 Volts. The ADC works with a resolution of 10 bits, which corresponds to 
an analogue resolution of approximately 3.2 mV.  

4.1.3 Digital to Analogue Converter (DAC) 
The DAC-circuit mounted on the DSP-board is a four channel, 12 bit, double buffered 
DAC. This means that data is written to holding registers before it is transferred to the 
actual converters. In this manner all four channels can be loaded separately and then 
converted at the same time. The minimum output voltage is 0 Volts and the maximum 
voltage is 3.3 volts. 
 
Two DAC channels are used in the software: One sends an analogue control signal to 
the motor, and the other sends it to the DC-converter. 

4.1.4 Pulse Width Modulated (PWM) signals 
A pulse width modulated (PWM) signal is a sequence of pulses with changing pulse 
widths. The pulses are spread over a number of fixed-length periods so that there is one 
pulse in each period. The fixed period is called the PWM (carrier) period and its inverse 
is called the PWM (carrier) frequency. The widths of the PWM pulses are determined, or 
modulated, from pulse to pulse according to another sequence of desired values, the 
modulating signal. 
 
To generate a PWM signal, an appropriate timer is needed to repeat a counting period 
that is the same as the PWM period. A compare register is used to hold the modulating 

 



values, and the value of the compare register is constantly compared with the value of 
the timer counter (see Fig 24). When the values match, a transition from low (0 Volt) to 
high (3.3 Volt) happens on the associated output. When the end of a timer period is 
reached, another transition (from high to low) happens on the associated output. In this 
way, an output pulse is generated where the ON duration is proportional to the value in 
the compare register. This process is automatically repeated and generates a PWM 
signal at the associated output, see [13].  
 

 
Fig 24. The figure shows how a PWM-signal is created with a PERIOD-value of 10 and a COMPARE-value 
of 5. The signal level remains low until the value of the counter matches the COMPARE-value, and then a 
transition occurs to high signal level. The signal level will now stay high until the counter reaches the 
PERIOD-value, and the signal goes low again. This is automatically repeated and results in a PWM-signal. 
 
Two PWM-channels are used by the software to control the brake servo (see chapter 
3.5) and the steer servo (see chapter 3.6). 

4.1.5 Digital IO-ports 
The DSP has up to 40 multi-purpose digital IO-ports depending on the setup and 
configuration of the system, see [11]. Each IO-port can be used as either an in- or out-
port, and they are controlled by 5 registers with 8 IO-ports assigned to each register. The 
register controls individual data direction for the IO-ports and the current value written to 
them. 
 
The software uses two digital out-ports to control the modes of the motor (see chapter 
4.2.7) and one out-port for the software switch of the DC-converter (see chapter 4.3.1). 
One digital in-port is used to determine the position of the manual buffer switch (see 
chapter 4.3.1 and Appendix XV) 
 

4.2 The Functional structure of the code 
The SMC software (see Appendix XIX) is developed according to generic control 
architecture principles, see [14], with specific functions of the program allocated in three 
different functional levels (see Fig 25). The third level, or the lowest, consists of sensors 
(e.g. current sensors) and actuators (e.g. motor, steer servo) on the SMC. They can be 
seen as the interface between the digital realm of the software and the actions and 
status of the SMC.  
 
 
 

 



      
             Fig 25. The program structure has three functional levels, with level 1 being the highest.  
 
Functional level 2 interprets sensor signals through the ADC, QEP and digital in-ports of 
the DSP. It translates the incoming signals to generic values representing the status of 
the SMC (e.g. buffer current, velocity), and makes them available for processing in level 
1. Functional level 2 is also responsible for the generation of control signals to the 
actuators according to decisions taken by functional level 1. 
 
The highest functional level (level 1) collects data from the various subprograms, and 
orders performed by level 2 and 3 have their origin in level 1. The SMC software 
presented in this thesis is simplified in functional level 1, though it is designed to be 
equipped and tested with energy management strategies developed at the Chalmers 
Mechatronics Department.   

4.2.1 Driver Interface     
Driver Interface is responsible for reading the PWM-signals from the RC-receiver and 
making the extracted information available for other parts of the program. Since it is the 
pulse peak-widths that hold the information about lever positions on the RC-transmitter, 
it is a matter of measuring the elapsed time between the positive flank and the negative 
flank of the PWM-signals. This is done by connecting a digital in-port on the DSP to each 
of the four channels of the receiver.  
 
In order to start the detection of the information bearing channels (2, 3 and 4, see 
chapter 3.2) in an appropriate sequence, the first channel is used as a trigger signal. The 
program will not measure the elapsed time between the positive and negative flanks of 
channel 1. Instead the program waits for the signal to go high, and when it occurs a 
counter is set to 0 and starts counting while the program waits for the next incoming 
pulse (see Fig 26). 

 



 
 
 
 
 
 
 
 

trigg = *PBDATDIR & 0x0010;  // mask everything but bit 4 (ch 1 signal info) 
 
while(trigg == 0)   // waits for ch 1 signal from receiver to go high 
{ trigg = *PBDATDIR & 0x0010; } 
 
*T3CNT = 0;     // reset GP-timer 3  

Fig 26. Excerpt from Driver Interface showing the while-loop for detection of the positive flank of channel 1 
PWM-pulse, and the reset of the GP-timer after that occurs. Then the program is ready to enter another 
while-loop as it waits for the positive flank of the channel 2 PWM-pulse.   
 
When the PWM-signal from information bearing channel 2 (brake) goes high the 
program detects it and stores the value of the counter as the time stamp for the positive 
flank (see Fig 27). When the same signal then goes low again the counter value is 
stored as the time stamp for the negative flank. The difference between the two time 
stamps is then used to calculate the corresponding lever position on the transmitter, and 
it is translated into a normalized value [-1, 1]. This procedure is then repeated for 
channel 3 (normalized value [-0.2, 1]) and channel 4 (normalized value [-1, 1]). 
 
 
 
 
 
 
 
 
 
 
 
Fig 27.  Excerpt from Driver Interface showing the detection of the positive and negative flanks of channel 2 
PWM-pulse, and the storing of the time-stamps according to the GP-timer. 

ch2 = *PBDATDIR & 0x0020;  // mask everything but bit 5 (ch 2 signal info) 
 
while(ch2 == 0)  //waits for ch 2 signal from receiver to go high  
{ ch2 = *PBDATDIR & 0x0020; } 
 
pos_flank2 = *T3CNT; // stores time-stamp for positive flank  
 
while(ch2 == 0x0020) // waits for ch 2 signal from receiver to go low 
{ ch2 = *PBDATDIR & 0x0020; } 
  
neg_flank2 = *T3CNT; // stores time-stamp for negative flank  

4.2.2 Driver Interpreter 
Driver Interpreter interprets the normalized values from Driver Interface, regarding 
requested actions by the operator. In the present version of the software only the 
normalized value for channel 3 (longitudinal) is interpreted to a corresponding requested 
speed in meters per second.  

4.2.3 Vehicle Motion Control 
Vehicle Motion Control is intended to control and regulate the physical behavior of the 
vehicle after interpreting the status of the system. VMC can then suggest appropriate 
measures to be taken, e.g. in case of spinning wheels when accelerating, in order to 
avoid loss of control of the vehicle. This is to be implemented in later versions of the 
SMC.  

4.2.4 Energy Management 
Energy Management is intended to control and regulate the power flow within the 
powertrain (PPU, motor and buffer) of the prototype. However, this is not implemented in 
the present version of the SMC software. 

 



4.2.5 Operative Decision  
Operative Decision is responsible for deciding how the motor pins should be configured 
depending on the normalized values from DIF. There are two decisions being taken in 
Operative Decision and they affect the motor rotational direction and whether the motor 
should be put in traction mode or regenerative brake mode (see chapter 3.3).  
 
The decision regarding rotational direction considers two variables: the normalized value 
for channel 3 (longitudinal) and the motor rotational speed. The rotational speed is of 
importance since changing the rotational direction of the motor while it is still turning 
could damage the stator windings (see Appendix III). Therefore the motor rotational 
speed is checked to be zero before a decision to change the direction can be made. The 
decision regarding motor rotational direction is communicated through the forward_mode 
variable (see Fig 28).    
 
 
 
 
 
 
 
 

if(ps->rot_speed == 0 && od->speed >= 0)     // check motor speed and 
  requested speed  

{ od->forward_mode = 1; }     // put motor in forward mode  
 
else 
  od->forward_mode = 0;           // put motor in reverse mode 

Fig 28. Excerpt from Operative Decision showing how the forward_mode variable is set.  
 
Traction mode or regenerative brake mode is controlled by the normalized brake 
variable derived from Driver Interface (see chapter 4.2.1). The program checks the brake 
variable, and if it exceeds the threshold value the brake_mode bit is set to 1 (see Fig 
29). This will affect the operational mode of the motor, as the motor pin configuration is 
set in Power Supply (see chapter 4.2.7) according to the values of forward_mode and 
brake_mode. 
 
 
 
 
 
 
 
Fig 29. Excerpt from Operative Decision showing how the brake_mode variable is set. 

if(em->brake > 0.02) // check if requested brake signal exceeds  
                              threshold value    
{ od->brake_mode = 1; } // put motor in regenerative brake mode 
   
else 
  od->brake_mode = 0;   // put motor in traction mode 

4.2.6 Chassis 
Chassis generates control signals to the brake servo and the steer servo. This is done 
by loading the compare registers (see chapter 4.1.4) of the PWM-channels with the 
values derived from the equations shown in Fig 30. However, the compare-register for 
the PWM-signal to the brake servo will not be updated if the brake_mode variable (see 
chapter 4.2.5) is set to 1. In that case the operator requests regenerative braking, and 
the mechanical brake is disengaged.   
 
 
 
 
 

*CMPR1 = per_50Hz - (od->steer * 548) * steer_scaling - 1882; // set PWM1  
   
if(od->brake_mode == 0)    // set PWM3 if mechanical brake is requested 
{ *CMPR2 = per_50Hz - (od->brake_signal * 375) * brake_scaling - 1380; } 

Fig 30. Excerpt from Chassis showing how the PWM-compare registers are loaded. The two scaling 
constants (both are set to 1.35) are used to increase the movement of the servos.  
 

 



Chassis also calculates the rotational speed of the right front wheel. It uses two QEP-
channels to receive and interpret the QEP-signals from the optic rotational sensors 
mounted on the brake disc of the wheel (see chapter 3.7.7).  

4.2.7 Power Supply 
Power Supply, or PS, is handling sensor readings regarding motor and buffer, and the 
generation of control signals to motor and DC-converter. The first part of the program 
uses the ADC-unit of the DSP to translate sensor signals and making them available for 
processing in the code. Power Supply monitors motor current and voltage, as well as 
buffer current and voltage. 
 
The rotational speed of the motor is calculated by using two QEP-channels connected to 
the QEP and motor voltage sensor circuit (see chapter 3.7.5), and it is updated with a 
frequency of 5 Hz. The reason for using 5 Hz as the update frequency is the low 
resolution of the QEP-signals from the motor, which only gives 2 pulses per revolution of 
the motor axis. 
 
When all sensor readings have been performed the program generates control signals to 
the motor depending on the decisions that were taken in Operative Decisions (see 
chapter 4.2.5). The operational mode of the motor is controlled by a pair of digital out-
ports, which in turn are controlled by the forward_mode and brake_mode variables (see 
Fig 31). If brake_mode is set to 0 the motor will be put in traction mode, the DAC1 
control signal to motor pin#4 (see chapter 3.3) corresponds to RC-channel 3 
(longitudinal). When brake_mode is set to 1 the motor will be put in regenerative brake 
mode and DAC1 will be set according to channel 2 (brake). In terms of conventional 
vehicles this functionality is similar to the gas and brake pedal, where one foot controls 
them both.  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

if(od->brake_mode)          // regenerative brake mode is requested   
{  
  DAC1 = od->brake_signal * 4000;    // perform DAC   
  DAC_XFER = 1;      // transfer (write) to DAC1  
  *PADATDIR = *PADATDIR & 0xFFFE;   // write low on IOPA0 (reg. brake mode) 
} 
   
else                           // traction mode is requested  
{  
  if(od->forward_mode)     // forward mode is requested  
  { 
    DAC1 = (od->speed * 4000) / Cspeed_max;    // perform DAC 
    DAC_XFER = 1;           // transfer (write) to DAC1 
    *PADATDIR = (*PADATDIR & 0xFFFB)| 0x0001; // high on IOPA0 (traction  

                       mode), low on IOPA2 
                       (forward mode)   

  } 
 
  else        // reverse mode is requested  
  { 
    DAC1 = (od->speed * -8000) / Cspeed_max;  // perform DAC 
    DAC_XFER = 1;          // transfer (write) to DAC1  
    *PADATDIR = *PADATDIR | 0x0005;     // write high on IOPA0 (speed mode) 

   and high on IOPA2(reverse mode) 
 } } 

Fig 31. Excerpt from Power Supply showing how the motor pin configuration is controlled and altered 
according to the variables brake_mode and forward_mode. 
 

 



The rotational direction of the motor is controlled by the variable forward_mode as long 
as the motor is in traction mode.   
 
Power Supply also generates the control signal (DAC2) to the DC-converter in order to 
shift energy in or out from the buffer (see chapter 3.4). However, this is not implemented 
in the present version of the SMC software.  
 

4.3 Program execution 
The core program consists of a main file which calls the different sub-programs in a 
never ending loop, and the main file also determines which variable structures each sub-
program has access to (see Fig 32). The duration of a single loop is 20 milliseconds, and 
this time is determined in Driver Interface (see chapter 4.2.1) as the program holds until 
it detects the 50 Hz PWM-pulse train from the RC-receiver.  

Fig 32. The main file of the SMC software consists of a never ending loop after system initiation has been 
performed. The sub-programs only have access to the variable structures determined in the main file.  

main()  
{ 
    system_init();       /* system initiation called  */ 
 
    
    for(;;) 
    {  
      dif_fcn(&bus.dif);         /* dif function called */ 
 
 dip_fcn(&bus.dip, &bus.dif);       /* dip function called */ 
 
 vmc_fcn(&bus.vmc, &bus.dip, &bus.ch);      /* vmc function called */ 
 
 em_fcn(&bus.em, &bus.dip, &bus.ps, &bus.ch);  /* em function called */ 
 
 od_fcn(&bus.od, &bus.vmc, &bus.em, &bus.ps);  /* od function called */ 
 
 ch_fcn(&bus.ch, &bus.od);              /* ch function called  */ 
 
 ps_fcn(&bus.ps, &bus.od);        /* ps function called  */ 
   
     } 
} 

4.3.1 System Initiation 
The first step in execution of the program is the System Initiation, where DSP functions 
are configured and prepared for use. It includes settings for clock frequency, timers, 
ADC-units, event managers and other peripherals of the DSP evaluation module. 
 
The last part of the initiation routine handles the start-up of the DC-converter, and the 
initial charging of the buffer.  
 
The DC-converter needs to receive certain control signals in a specific order in order to 
function. As out-going signals from the DSP retain the values they had at the end of the 
prior execution of the program (unless a soft- or hardware reset is performed) the 
software switch of the DC-converter is first used to turn off the unit, and then the control 
signals are set to their proper initial values (see Fig 33). 

 



 

Fig 33. Excerpt from the system initiation program showing how the software switch of the DC-converter is 
first used to turn off the DC-unit as the DAC2 control signal is adjusted. After the loop the DC-unit is turned 
on again. 

*PBDATDIR = *PBDATDIR & 0xFFBF;  // write low on IOPB6 to turn off DC/DC unit  
 DAC2 = 0;    // write low on DAC2 to enable startup    
 DAC_XFER = 1;                   // transfer (write) to DAC2  
  
 while(in_q)          // quick loop to make sure DAC2 gets low 
 {in_q--;}  
 in_q = 10000;   // reload queue variable  
   
 *PBDATDIR = *PBDATDIR | 0x0040; // write high on IOPB6 to turn on DC-unit 

 
The analogue control signal to the DC-converter (DAC2) is set to 0 and then the 
program spins in a short loop in order to give the outgoing signal enough time to get low 
(the DAC-circuits are equipped with capacitors which limits the speed of transition 
between high and low signal voltages). This is done since the DC-converter will not 
function unless the DAC2 signal voltage is below a threshold value of 0.95 V. When the 
program exits the short loop the DC-unit is ready to be turned on, which is done by 
toggling the software switch. 
 
When DC-converter has been turned on the program will read the motor voltage (=PPU 
voltage when motor switch is turned on) and buffer voltage in order to calculate a proper 
value for the DAC2. It is important that the DAC2, or control signal to the DC-converter, 
is adjusted to a level where the DC-unit out-port voltage is close to the buffer voltage 
before the buffer switch is turned on. If the voltage difference is too great it may result in 
a charge, or discharge, current that exceeds the tolerated limits of wires and circuits of 
the buffer. When DAC2 has been adjusted to an appropriate level two LEDs will be 
turned off to indicate that the manual buffer switch can be turned on. 
 
When the manual buffer switch is turned on the DSP receives a signal from the switch 
(see Appendix XV), and the buffer charging commences. The DAC2 will now increase 
gradually until the buffer is charged to a predefined voltage. 
 
 
 

 



5. Control System Summary 
The work consisted of developing a control system that could monitor and control the 
energy management (power flow) of the SMC, as well as basic motion control of the 
vehicle. The use of sensors, actuators and interfacing external circuits offers the DSP 
the necessary means to control following aspects of the prototype: 
  
Steering: The DSP interprets corresponding RC-receiver signal (channel 4) and   
                generates control signal to the steer servo. The responsible sub-programs are 
     Driver Interface and Chassis. 

 
Mechanical brake: The DSP interprets corresponding RC-receiver signal (channel 2) and  

generates control signal to the brake servo. The responsible sub- 
programs are Driver Interface, Operative Decisions and Chassis.  

 
Regenerative brake: The DSP interprets corresponding RC-receiver signal (channel 2) 
                                 and generates control signals to the motor which puts it in  
                                 regenerative brake mode. The responsible sub-programs are Driver 
                                 Interface, Operative Decisions and Power Supply. 

 
Buffer power flow: The DSP generates analogue control signal to the DC-converter  
                              which affects the power flow to/from the buffer. In present version the 
                              only responsible sub-program is System Initiation. 

 
Motor direction: The DSP interprets corresponding RC-receiver signal (channel 3) and 
                          monitors the rotational speed of the motor. If there is no conflict the DSP  
                          generates control signal to the motor which alters the rotational  

  direction. The responsible sub-programs are Driver Interface, Operative 
  Decisions and Power Supply.  

 
Motor rotational speed: The DSP interprets corresponding RC-receiver signal (channel  
                                      3) and generates an analogue control signal to the motor. The  

  responsible sub-programs are Driver Interface, Driver Interpreter  
  and Power Supply. 

 
The DSP updates all sensor readings with a frequency of 50 Hz, except the motor 
rotational speed readings which are updated at 5 Hz (see chapter 4.2.7). Following 
sensor feedback is available to the DSP: 
 

• Motor voltage (performed in System Initiation and Power Supply) 
• Motor current (performed in Power Supply)  
• Motor power flow (voltage and current can be used to calculate the power flow 

in/out from the motor according to P = U * I) 
• Buffer voltage (performed in System Initiation and Power Supply) 
• Buffer current (performed in Power Supply)  
• Buffer power flow (voltage and current can be used to calculate the power flow 

in/out from the buffer according to P = U * I) 
• Motor rotational speed (performed in Power Supply) 
• Right front wheel rotational speed (performed in Chassis) 
• Lever positions on RC-transmitter (performed in Driver Interface) 

 



6. Discussion and Conclusions 
There are a number of questions to consider when evaluating the control system of the 
SMC, and they have been divided in three groups: the development process, the result 
and the possibilities.   
 
The development process 
What was most demanding during the design and development of the control system?  

• The initial tests of the DSP, and the possibilities it offered, consumed a lot of time 
in the beginning. However, this had to be done thoroughly since implementing a 
control system without proper knowledge of the DSP functionality would have 
been like laying a puzzle blindfolded.  

 
Were there any major modifications of the control system during the process? 

• There were several minor changes which resulted in major improvements of the 
control system. Particularly the DSP-readings of the motor current sensor signal 
was an enduring problem as the readings fluctuated wildly due to the phase 
current commutation of the motor (see chapter 3.7.1). When the reason was 
identified the solution only called for a capacitor as a low-pass filter for the sensor 
signal. 

     
The result 
How well does the control system of the SMC work considering the stated objectives? 

• The basic motion control of the SMC (velocity and steering) is fully controllable. 
With the RC-transmitter the operator can directly control the mechanical brake, 
regenerative brake, steering, vehicle speed and direction (forward/reverse). 
Considering the energy management of the prototype, the DSP has access to 
the necessary sensor information and it can also control the actuators of the 
powertrain (motor and DC-converter). In this regard the stated objectives have 
been fulfilled. However, since no energy management strategy has been tested 
yet it is too soon to determine if the performance of the control system is 
adequate in this aspect.  

   
Are there any drawbacks or limits of the control system? 

• The maximum program frequency is 50 Hz (see chapter 4.3), which could prove 
to be insufficient for the software to properly detect fast transitions and spikes on 
sensor signals.  

 
The possibilities 
What can the SMC be used for?  

• The cost of the SMC and the accessibility of the control system should make it 
appealing for educational purposes. The fundamental design of the control 
system is simple enough to be understood by master students with basic 
knowledge of electronics and programming. Yet, it offers plenty of possibilities for 
further development and advanced functionality.   

 
• The present version of the SMC is the first step towards a low-budget test 

platform useable for research in the field of HEV. However, for research 
purposes the performance of the SMC would have to be enhanced in some 
aspects.  

 



7. Suggestions for Future Work  
This chapter presents suggestions for future developments of the SMC. The suggestions 
are not ranked in order of importance, but modifications that improve the stability and 
reliability of the system could be considered of higher priority since every pyramid relies 
on a solid base.  
  

• When the buffer is being charged (or discharged) in the System Initiation routine 
(see chapter 4.3.1) there is no feedback to the DSP regarding the buffer current. 
In order to make the procedure safer and more efficient the DSP can monitor the 
buffer current sensor and adjust the control signal to the DC-converter so the 
current is regulated. This will protect components in the buffer box that otherwise 
might be damaged by high currents, and it is a step towards finding an optimal 
buffer charging routine. 

 
• An additional 5 Volt switch regulator could be advisable to install since if the 

maximum current supply limit of a single regulator (about 3 Ampere) is exceeded, 
and the power drops, there is an imminent risk of DSP system breakdown. The 
servos are the prime consumers of power among the 5 Volt components, and 
when they are operating at their maximum ability simultaneously they can sink 
currents up to 3 Ampere together.      

 
• During regenerative braking the energy from the motor is divided between the 

PPU and the buffer. However, since the PPU is intended to be replaced by a 
fuelcell in later versions of the SMC it will not be able to be charged during 
regenerative braking. In order to simulate the fuelcell in this aspect the PPU-
batteries can be equipped with a diode at the positive pole. By doing this the 
batteries will not be charged during regenerative braking and all the regenerated 
power will be diverted to the buffer.  

 
• Since a fuelcell has an upper limit regarding the power it can provide, the PPU-

batteries could be fitted with a current limiter in order to make them simulate a 
fuelcell more closely. Otherwise, due to the low inner resistance of the batteries, 
the present PPU can supply almost infinite power.    

 
• By adding a voltage sensor for the 12 Volt battery (supplying the 5 Volt circuits) 

the DSP can monitor the condition of the battery, and the program can detect 
and enter a safe mode if the voltage drops below a certain level.  

 
• In order to collect data from the SMC after test runs, it is necessary to implement 

a log-function that saves information regarding the system (e.g. sensor values 
and control signals) during program execution. The data can then be down-
loaded and analyzed afterwards. 
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Appendix II 
 
 
Module  Model    Manufacturer 
 
DSP    TMS320LF2407A  Texas Instruments 
 
Evaluation module TMS320LF2407A EVM Spectrum Digital 
 
Motor   BLDC3, 57ZWX03  Östergrens Motor 
 
Steer servo  HS-805BB    Hitec 
 
Brake servo  HS-322HD    Hitec 
 
RC-receiver  HFS-04MG   Hitec 
 
RC-transmitter  Laser 4 FM   Hitec 
 
DC-converter  4Q DC-controller  ZAPI 
 
 



    Appendix III 
           (connector pin functions for BLDC electric motor) 
 
 
 
Pin Type  Description 

Pin#1 
 

Power high +24 Volt DC power input 

Pin#2 
 

Power ground 0 Volt power ground 

Pin#3 
 

Signal ground Signal ground for all control signals. 
Internally connected to power ground. 

Pin#4 
 

Control signal Analogue control signal 0-5 Volt for speed and 
current control during regenerative braking. 

Pin#5 Potentiometer 
supply 

+5.7 Volt via 1 kohm if used with 5k potentiometer 
0-5 Volt from pot to control pin#4. 

Pin#6 Regenerative brake When open the motor is braking. Braking current 
controlled via pin#4, 0-5 Volt, where 5 Volt gives 
shorted motor without current limit. To enable speed 
control of motor pull to pin#3 (signal ground).  

Pin#7 Direction When pulled to pin#3 (signal ground) this input 
changes motor rotation direction. Operate with no 
rotation in motor, since if used when motor is 
rotating at high speed it will result in high current in 
motor winding. 

Pin#8 Enable When connected to 5-24 Volt DC this input enables 
all control functions. 

Pin#9 QEP output pulse 2 pulses per motor revolution 
Pin#10 QEP output pulse 2 pulses per motor revolution (60 degrees phase 

shifted from pin#9 pulse) 
 



                     Appendix IV 

               (DC-converter control signal algorithm) 
 

% PPU = 24 Volt 

cntl_sgnl_1 = [0.95 0.96 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9    
               1.97 2]; 
DCout_1 = [0.1 0.42 0.84 1.68 2.74 3.48 4.64 5.38 6.65 7.38 8.54  

     9.28 10.03 10.03]; 
 

% PPU = 28 Volt 
cntl_sgnl_2 = [0.95 0.96 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.81  
               1.84 1.9 2]; 

DCout_2 = [0.12 0.49 0.98 1.96 3.19 4.05 5.4 6.26 7.74 8.6 9.95 
           10.03 10.33 10.82 12.2]; 

 
% plot sampled data 
plot(cntl_sgnl_2, DCout_2,':', cntl_sgnl_1, DCout_1); 

hold on; 
grid on; 

 

The relationship between DC-converter control signal and DC out-port voltage is shown 
in the Matlab-plot below. The dashed line is with a PPU voltage (=motor voltage) of 28 
Volt, and the solid line shows the relationship at 24 Volt. 
 

                               
 
The algorithm for calculating the DC-converter control signal has two variables: PPU 
voltage (measured) and DC out-port voltage (desired).  
 

ControlSignal = (DCout * 0.0869) * (1 + (28 – PPU_volt) / 28) + 0.95 
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List of components for external circuit board

R1 = 8 kohm

R2 = 4.3 kohm

R3 = 1 kohm

R4 = 15 kohm

R5 = 20 kohm

C1 = 4.7 µF

C2 = 1000 µF

C3 = 100 µF

L = 100 µH

Sd = 1N5822 

Cs = LTS6-NP (current sensor)

Oc = PC817 (optic connector)

Sr = LM2576-5.0 (switch regulator)

Op = CA3140 E (operation amplifier)

Etch-mask for external circuit board

Appendix VII
(external circuit board)



Appendix VIII

List of components for QEP and motor voltage sensor circuit

R1 = 16 kohm

R2 = 8.2 kohm

R3 = 16 kohm

R4 = 2 kohm
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Etch-mask for buffer voltage sensor

Appendix IX

List of components for buffer voltage sensor
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    Appendix X 
       (buffer voltage sensor algorithm) 
 
BuffV = [0:0.5:14]';  
SensV = [3.28 3.28 3.28 3.27 3.24 3.19 3.13 3.06 2.98 2.9 2.8 

         2.71 2.61 2.51 2.4 2.3 2.19 2.08 1.96 1.86 1.75 1.64 
         1.55 1.48 1.44 1.4 1.36 1.34 1.31]'; 

 
% Plot sampled data 
 

plot(BuffV, SensV); 
hold on; %break; 

 
Ss = [ones(size(SensV,1),1), SensV, SensV.^2, SensV.^3]; 
A = inv(Ss'*Ss)*(Ss'*BuffV) 

 
BV = Ss*A; 

plot(BV, SensV, 'g.') 
grid on 
hold off 

 
The Matlab-program gives a matrix A which is used to calculate the buffer voltage in the 
prototype software. 
 

A = [a1; a2; a3; a4] 
 

Buffer Voltage = a1 + a2*(bsV) + a3*(bsV)² + a4*(bsV)³ 
 
The variable bsV is the measured buffer sensor voltage. 
 

        
  Graph is showing the relationship between buffer voltage and sensor 
   voltage (which is read by the DSP) as a solid line. The dotted line is 
   the calculated buffer voltage derived by the DSP.  



Appendix XI

List of components for optic rotational sensor circuit

R1 = 1 kohm

R2 = 68 ohm

Etch-mask for optic rotational circuit

The optic sensors is mounted on 

the back side of the circuit with

the emitter ports (E) and the 

sensor ports (S) placed as shown

on the figure. 

R1

R2

R1

E S

SE

O1      QEP1 (pin#21, P1, DSP)

O3      QEP2 (pin#22, P1, DSP)

O2      L2 (External circuit board)

O4      L1 (External circuit board)

(optic rotational sensor circuit)
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Appendix XIV

1
G1 (External circuit board)

PPU -

K11 (External circuit board)

K2 (External circuit board)

K4 (External circuit board)
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G1 - Motor pin#1

G2 - Motor switch 2 (External circuit box)

G3 - Buffer switch 2 (External circuit box)

G4 - F2 (Buffer box)

G5 - 12 Volt battery -

G6 - 12 Volt battery +

H1 - 5 Volt switch 2 (External circuit box)

H2 - 5 Volt switch 1 ( External circuit box)

H3 - 5 Volt switch 3 (External circuit box)

I1 - DSP switch 1 (External circuit box)

I2 - DSP power - (DSP)

J1 - RC-receiver 1 (External circuit box)

J2 - RC-receiver power - (RC-receiver)
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K2 - Motor pin#6
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Appendix XVII 
               (DSP I/O-communication) 
 
 
signal    type  pin  port  to/from 
- Steer servo control signal   PWM1     pin#3   P1 (*)        SS 
- Brake servo control signal        PWM3     pin#5   P1 (*) BS 
- RC-receiver channel 1  IOPB4  pin#12   P1 (*) RC 
- RC-receiver channel 2  IOPB5   pin#13  P1 (*) RC 
- RC-receiver channel 3  IOPB1   pin#7  P1 (*) RC 
- RC-receiver channel 4  IOPB7  pin#16  P1 (*) RC 
- Optic rotational sensor 1 QEP1  pin#21  P1 (*)        OpRoSe 
- Optic rotational sensor 2 QEP2  pin#22  P1 (*) OpRoSe 
- Motor pulse 1   QEP3     pin#24   P1 (*) QMoVoSe 
- Motor pulse 2   QEP4  pin#20  P4 (*) QMoVoSe 
- Motor voltage sensor signal ADCIN5 pin#8  P2  QMoVoSe 
- Motor brake mode signal IOPA0  pin#27  P1  X 
- Buffer switch signal  IOPA1  pin#28  P1  X 
- DC-converter soft switch IOPB6  pin#15  P1  X 
- Motor direction signal  IOPA2  pin#16  P4  X 
- Buffer current sensor signal ADCIN0 pin#23   P2  X 
- Motor current sensor signal ADCIN1 pin#24  P2  X 
- Motor control signal  DAC1  pin#25  P2  X 
- Buffer voltage sensor signal ADCIN6 pin#9  P2  BufVoSe 
- DC-converter control signal DAC2  pin#26  P2  BufVoSe 
 
(*) coupled with ground-wire  
 
 
SS = Steer Servo 
BS = Brake Servo 
RC = RC-receiver 
OpRoSe = Optic Rotational Sensor circuit 
QMoVoSe = QEP and Motor Voltage Sensor circuit 
X = External circuit box 
BufVoSe = Buffer Voltage Sensor circuit  
 

  

 
 
 
 
 



Appendix XVIII 
(DSP-bus) 
 
 

  
wire#  from  port & pin  to   port & pin 
1  DSP  P1, pin#3  SS    control 
2  wire#12     SS    ground 
3  DSP  P1, pin#5  BS    control 
4  wire#8     BS    ground 
5  RC   ch 1 control  DSP   P1, pin#12  
6  RC   ch 1 ground  DSP    ground 
7  RC   ch 2 control  DSP   P1, pin#13  
8  RC   ch 2 ground  wire#4   
9  RC   ch 3 control  DSP   P1, pin#7  
10  RC   ch 3 ground  DSP    ground   
11  RC   ch 4 control  DSP   P1, pin#16  
12  RC   ch 4 ground  wire#2 
13  OpRoSe O1   DSP   P1, pin#21  
14  OpRoSe O4   DSP    ground  
15  OpRoSe O3   DSP   P1, pin#22  
16  OpRoSe  O4   DSP    ground 
17   QMoVoSe N3   DSP   P1, pin#24  
18  QMoVoSe  N2   DSP    ground 
19  QMoVoSe N5   DSP   P4, pin#20  
20  QMoVoSe  N4   DSP    ground 
21  QMoVoSe  N1   DSP   P2, pin#8 
22  DSP  P1, pin#27  X   K1 
23  X   buffer switch  DSP               P1, pin#28 
24  DSP  P1, pin#15  X   K5 
25  DSP  P4, pin#16  X   K3  
26  X   K4    DSP   P2, pin#23  
27  X  K13   DSP   P2, pin#24  
28  DSP  P2, pin#25  X   K9 
29  BufVoSe E1   DSP   P2, pin#9  
30  DSP  P2, pin#26   BufVoSe  E3 
31 
32 
33 
34 
35 
36 
37 
 
 
DSP = Digital Signal Processor board 
SS = Steer Servo 
BS = Brake Servo 
RC = RC-receiver 
OpRoSe = Optic Rotational Sensor circuit 
QMoVoSe = QEP and Motor Voltage Sensor circuit 
X = External circuit box 
BufVoSe = Buffer Voltage Sensor circuit  
 



Appendix XIX 
     (Main header file)  
  

/****************************************************************************** 

*             

* Main file 

* - Core program for 1:5 SMC  

* 

*   Authors: Leo, Magnus, Jonas          

* 

*--------------------------------------------------------------------------------------------------------------------- 

*  

* Structures 

* 

*    BUS            

*  Nested structures  

*  DIF 

*  DIP 

*  VMC 

*  OD 

*  Ch     

* 

******************************************************************************/ 

 

/* Link all header files to main.h */ 

#include "init.h" 

#include "dif.h" 

#include "dip.h" 

#include "vmc.h" 

#include "od.h" 

#include "ch.h" 

#include "em.h" 

#include "ps.h"  

  

typedef struct bus { 

 DIF dif; 

 DIP dip; 

 VMC vmc; 

 OD od; 

 CH ch; 

 EM em; 

 PS ps;  

}BUS; 

                 



Appendix XIX 
      (Main source file) 
 

/****************************************************************************** 

*             

* Main file  

* - Core program for 1:5 SMC  

* 

******************************************************************************/ 

 

#include "main.h" 

 

main() 

 

{ 

 

/****************************************************************************** 

* Variable declaration  

******************************************************************************/ 

BUS bus = {0, 0, 0, 0, 0}; 

 

/****************************************************************************** 

* Core program 

******************************************************************************/ 

 

 

 system_init();                   * system initiazation called  */ 

 

    

 for(;;) 

 {  

        

  dif_fcn(&bus.dif);       /* dif function called */ 

 

  dip_fcn(&bus.dip, &bus.dif);    /* dip function called */ 

 

  vmc_fcn(&bus.vmc, &bus.dip, &bus.ch);              /* vmc function called */ 

 

  em_fcn(&bus.em, &bus.dip, &bus.ps, &bus.ch);            /* em function called  */ 

 

  od_fcn(&bus.od, &bus.vmc, &bus.em, &bus.ps);  /* od function called  */ 

 

  ch_fcn(&bus.ch, &bus.od);    /* ch function called  */ 

 

  ps_fcn(&bus.ps, &bus.od);    /* ps function called  */ 

   

 }  

     

} 

 

 



Appendix XIX 
        (System Initiation header file) 
 

/****************************************************************************** 

*             

* Initiation (init)  

*   - System initiation and configuration 

* 

*   Authors: Magnus, Leo          

* 

*--------------------------------------------------------------------------------------------------------------------- 

* 

* - Steer servo control signal        PWM1     pin#3   P1   

* - Brake servo control signal        PWM3    pin#5   P1 

* - RC-receiver channel 4  IOPB7   pin#16  P1   

* - RC-receiver channel 2  IOPB5  pin#13   P1  

* - RC-receiver channel 3  IOPB1  pin#7   P1   

* - RC-receiver channel 1  IOPB4  pin#12   P4 

* - Optic rotational sensor 1 QEP1  pin#21   P1 

* - Optic rotational sensor 2 QEP2  pin#22   P1   

* - Motor pulse 1   QEP3     pin#24   P1 

* - Motor pulse 2   QEP4  pin#20  P4 

* - Motor brake mode signal IOPA0  pin#27  P1 

* - Motor direction signal  IOPA2  pin#16  P4 

* - Buffer current sensor signal ADCIN0  pin#23   P2 

* - Motor current sensor signal ADCIN1  pin#24  P2 

* - Buffer voltage sensor signal ADCIN6  pin#9  P2 

* - Motor voltage sensor signal ADCIN5  pin#8  P2 

* - Motor control signal  DAC1  pin#25  P2 

* - DC/DC software switch IOPB6  pin#15   P1 

* - DC/DC control signal  DAC2  pin#26  P2 

* - Buffer switch status  IOPB2  pin#7  P1 

* 

*--------------------------------------------------------------------------------------------------------------------- 

* 

* Initiation Routine and Function Configuration 

*  - System Control (enable peripheral modules) 

*  - Clock frequency (40 MHz) 

*  - Wait-state setup for external memory interface 

*  - Disable watchdog 

*  - Setup shared I/O-pins 

*  - GP timer configuration (1, 2, 3, 4) 

*  - PWM-configuration (PWM1 & PWM3) 

*  - Capture Unit and QEP configuration  

*    (QEP1, QEP2, QEP3, QEP4) 

*  - ADC configuration (enable software trigger)   

* 

******************************************************************************/ 

 

 

 

 



/****************************************************************************** 

*        Hardware-defined addresses for TMS320LF2407A           * 

******************************************************************************/ 

 

/******************  System Control and Status registers  ****************************/ 

#define SCSR1        (volatile unsigned int *)0x7018           /* System control & status reg 1 */ 

#define SCSR2        (volatile unsigned int *)0x7019           /* System control & status reg 2 */ 

#define WDCR         (volatile unsigned int *)0x7029           /* WD timer control reg             */ 

 

/*************************  Digital I/O registers  **********************************/ 

#define MCRA         (volatile unsigned int *)0x7090                     /* I/O mux control reg A */ 

#define MCRB         (volatile unsigned int *)0x7092           /* I/O mux control reg B */ 

#define MCRC         (volatile unsigned int *)0x7094           /* I/O mux control reg C */ 

#define PADATDIR     (volatile unsigned int *)0x7098      /* I/O port A data & dir reg */ 

#define PBDATDIR     (volatile unsigned int *)0x709A      /* I/O port B data & dir reg */ 

 

/*********************  Event Manager A (EVA) registers   ***************************/ 

#define GPTCONA      (volatile unsigned int *)0x7400           /* GP timer control reg A */ 

#define T1CNT        (volatile unsigned int *)0x7401          /* GP timer 1 counter reg */ 

#define T1PR         (volatile unsigned int *)0x7403            /* GP timer 1 period reg */ 

#define T1CON        (volatile unsigned int *)0x7404          /* GP timer 1 control reg */ 

#define T2CNT        (volatile unsigned int *)0x7405          /* GP timer 2 counter reg */ 

#define T2PR         (volatile unsigned int *)0x7407          /* GP timer 2 period reg */ 

#define T2CON        (volatile unsigned int *)0x7408          /* GP timer 2 control reg */ 

#define CAPCONA      (volatile unsigned int *)0x7420          /* Capture control reg A */ 

#define COMCONA      (volatile unsigned int *)0x7411          /* Compare control reg A */ 

#define ACTRA        (volatile unsigned int *)0x7413           /* Compare action control reg A */ 

#define DBTCONA      (volatile unsigned int *)0x7415         /* Dead-band timer control reg A */ 

 

/*********************  Event Manager B (EVB) registers  ***************************/  

#define GPTCONB      (volatile unsigned int *)0x7500           /* GP timer control reg B */ 

#define T3CNT        (volatile unsigned int *)0x7501         /* GP timer 3 counter reg */ 

#define T3PR         (volatile unsigned int *)0x7503           /* GP timer 3 period reg */ 

#define T3CON        (volatile unsigned int *)0x7504         /* GP timer 3 control reg */ 

#define T4CNT        (volatile unsigned int *)0x7505         /* GP timer 4 counter reg */ 

#define T4PR         (volatile unsigned int *)0x7507           /* GP timer 4 period reg */ 

#define T4CON        (volatile unsigned int *)0x7508          /* GP timer 4 control reg */ 

#define CAPCONB      (volatile unsigned int *)0x7520           /* Capture control reg B */ 

 

/****************  Analog-to-Digital Converter (ADC) registers   ***********************/ 

#define ADCTRL1      (volatile unsigned int *)0x70A0      /* ADC control reg 1 */ 

#define ADCTRL2      (volatile unsigned int *)0x70A1      /* ADC control reg 2 */ 

#define MAX_CONV     (volatile unsigned int *)0x70A2           /* Max conversion channels reg */ 

#define CHSELSEQ1    (volatile unsigned int *)0x70A3              /* Ch select seq control reg 1 */ 

#define CHSELSEQ2    (volatile unsigned int *)0x70A4               /* Ch select seq control reg 2 */ 

#define CHSELSEQ3    (volatile unsigned int *)0x70A5     /* Ch select seq control reg 3 */ 

#define CHSELSEQ4    (volatile unsigned int *)0x70A6     /* Ch select seq control reg 4 */ 

#define AUTO_SEQ_SR  (volatile unsigned int *)0x70A7       /* Autosequence status reg */ 

#define RESULT0      (volatile unsigned int *)0x70A8         /* Conv result buffer reg 0 */ 

#define RESULT1      (volatile unsigned int *)0x70A9        /* Conv result buffer reg 1 */ 

#define RESULT2      (volatile unsigned int *)0x70AA         /* Conv result buffer reg 2 */ 

#define RESULT3      (volatile unsigned int *)0x70AB         /* Conv result buffer reg 3 */ 

#define RESULT4      (volatile unsigned int *)0x70AC         /* Conv result buffer reg 4 */ 



 

#define  WSGR   portFFFF                /* Wait-state generator reg */ 

ioport unsigned int portFFFF;                                 /* C2xx compiler specific keyword */ 

#define  DAC2   port0001                                          /* DAC2 register */ 

ioport unsigned int port0001; 

#define  DAC_XFER port0004                    /* DAC Transfer register  */ 

ioport unsigned int port0004; 

 

#define  STR(x)  #x 

#define  _TI_LED 000ch 

#define  OUTMAC(address,data)  \ 

   asm("        LDPK    _"STR(data));  \ 

   asm("        OUT     _"STR(data) "," STR(address))   

  

 

/******************  Constant Definitions and Configurations  *************************/ 

 

#define  initial_SoC 7                            /* initial State of Charge Voltage */ 

#define  per_50Hz 25000           /* 20ms GP timer 1 period, with a x/32 timer  

                              prescaler and 40MHz CPUCLK, to produce 50  

  Hz PWM-signals           */ 

 

#define  SCSR1_set 0x00AD      

                     /*   0000 0000 1010 1101 

    bit 15   0: reserved 

    bit 14   0: CLKOUT = CPUCLK 

    bit 13-12  00: IDLE1 selected for low power mode 

    bit 11-9  000: PLL x4 mode (gives 30 MHz CPUCLK frequency)  

    bit 8   0: reserved 

    bit 7   1: 1 = enable ADC module clock 

    bit 6   0: 1 = disable SCI module clock 

    bit 5   1: 1 = enable SPI module clock 

    bit 4   0: 1 = disable CAN module clock 

    bit 3   1: 1 = enable EVB module clock 

    bit 2   1: 1 = enable EVA module clock 

    bit 1   0: reserved 

    bit 0   1: clear the ILLADR bit 

  */  

  

#define  WDCR_set  0x00E8 

   /*  0000 0000 1110 1000 

    bits 15-8  0’s: reserved 

    bit 7   1: clear WD flag 

    bit 6   1: disable the dog 

    bit 5-3   101: must be written as 101 

    bit 2-0   000: WDCLK divider = 1 

   */      

  

#define  WSGR_set 0x0040 

   /*     0000 0000 0100 0000 

    bit 15-11  0’s: reserved 

    bit 10-9  00: bus visibility off 

    bit 8-6   001: 1 wait state for I/O space 



    bit 5-3   000: 0 wait state for data space 

    bit 2-0   000: 0 wait state for program space 

   */ 

 

#define  PADATDIR_set 0x0500 

   /*   0000 0101 0000 0000 

    bit 15-8 0: pin set as an input 

     1: pin set as an output 

    bit 7-0  if pin is input,    0: reads as low 

                                                   1: reads as high 

                                     if pin is output,  0: writes low 

                                        1: writes high 

                       */  

#define  PBDATDIR_set  0xC000  

   /*   1100 0000 0000 0000 

    bit 15-8 0: pin set as an input 

      1: pin set as an output 

    bit 7-0  if pin is input,  0: reads as low 

                                                        1: reads as high 

                                      if pin is output,  0: writes low 

                                        1: writes high 

                      */  

 

                                           

#define  MCRA_set 0x0158     

   /*   0000 0001 0101 1000 

    bit 15   0: 0=IOPB7, 1=TCLKINA 

    bit 14   0: 0=IOPB6, 1=TDIRA 

    bit 13   0: 0=IOPB5, 1=T2PWM/T2CMP 

    bit 12   0: 0=IOPB4, 1=T1PWM/T1CMP 

    bit 11   0: 0=IOPB3, 1=PWM6 

    bit 10   0: 0=IOPB2, 1=PWM5 

    bit 9   0: 0=IOPB1, 1=PWM4 

    bit 8   1: 0=IOPB0, 1=PWM3 

    bit 7   0: 0=IOPA7, 1=PWM2 

    bit 6   1: 0=IOPA6, 1=PWM1 

    bit 5   0: 0=IOPA5, 1=CAP3 

    bit 4   1: 0=IOPA4, 1=CAP2/QEP2 

    bit 3   1: 0=IOPA3, 1=CAP1/QEP1 

    bit 2   0: 0=IOPA2, 1=XINT1 

    bit 1   0: 0=IOPA1, 1=SCIRXD 

    bit 0   0: 0=IOPA0, 1=SCITXD 

   */ 

  

#define  MCRB_set 0xFE00     

   /*     1111 1110 0000 0000 

    bit 15   1: 0=reserved, 1=TMS2 (always write as 1) 

    bit 14   1: 0=reserved, 1=TMS (always write as 1) 

    bit 13   1: 0=reserved, 1=TD0 (always write as 1) 

    bit 12   1: 0=reserved, 1=TDI (always write as 1) 

    bit 11   1: 0=reserved, 1=TCK (always write as 1) 

    bit 10   1: 0=reserved, 1=EMU1 (always write as 1) 

    bit 9   1: 0=reserved, 1=EMU0 (always write as 1) 



    bit 8   0: 0=IOPD0, 1=XINT2/ADCSOC 

    bit 7   0: 0=IOPC7, 1=CANRX 

    bit 6   0: 0=IOPC6, 1=CANTX 

    bit 5   0: 0=IOPC5, 1=SPISTE 

    bit 4   0: 0=IOPC4, 1=SPICLK 

    bit 3   0: 0=IOPC3, 1=SPISOMI 

    bit 2   0: 0=IOPC2, 1=SPISIMO 

    bit 1   0: 0=IOPC1, 1=BIO* 

    bit 0   0: 0=IOPC0, 1=W/R* 

   */   

  

#define  GPTCONA_set  0x0000  

   /* 

    bit 15   0: reserved 

    bit 14   0: T2STAT, read only 

    bit 13   0: T1STAT, read only 

    bit 12-11  00: reserved 

    bit 10-9  00: T2TOADC, 00 = no timer2 event starts ADC 

    bit 8-7   00: T1TOADC, 00 = no timer1 event starts ADC 

    bit 6   0: TCOMPOE, 0 = Hi z all timer compare outputs 

    bit 5-4   00: reserved 

    bit 3-2   00: T2PIN, 00 = forced low 

    bit 1-0   00: T1PIN, 00 = forced low 

   */ 

        

#define  GPTCONB_set  0x0000  

  /* 

    bit 15   0: reserved 

    bit 14   0: T4STAT, read only 

    bit 13   0: T3STAT, read only 

    bit 12-11  00: reserved 

    bit 10-9  00: T4TOADC, 00 = no timer2 event starts ADC 

    bit 8-7   00: T3TOADC, 00 = no timer1 event starts ADC 

    bit 6   0: TCOMPOE, 0 = Hi z all timer compare outputs 

    bit 5-4   00: reserved 

    bit 3-2   00: T4PIN, 00 = forced low 

    bit 1-0   00: T3PIN, 00 = forced low 

   */ 

  

#define  ACTRA_set  0x0022  

   /* 

    bit 15   0: space vector dir is CCW (don’t care) 

    bit 14-12  000: basic space vector is 000 (dont’ care) 

    bit 11-10  00: PWM6/IOPB3 pin forced low 

    bit 9-8   00: PWM5/IOPB2 pin forced low 

    bit 7-6   00: PWM4/IOPB1 pin forced low 

    bit 5-4   10: PWM3/IOPB0 pin active high 

    bit 3-2   00: PWM2/IOPA7 pin forced low 

    bit 1-0   10: PWM1/IOPA6 pin active high 

   */ 

 

#define  COMCONA_set  0x8200  

   /* 



    bit 15   1: 1 = enable compare operation 

    bit 14-13 00: 00 = reload CMPRx regs on timer 1 underflow 

    bit 12   0: 0 = space vector disabled 

    bit 11-10  00: 00 = reload ACTR on timer 1 underflow 

    bit 9   1: 1 = enable PWM pins 

    bit 8-0   0’s: reserved 

   */ 

 

 

#define  T1CON_set  0x9540  

   /*   1001 0101 0100 0000 

    bit 15-14  10: no stop on emulator suspend 

    bit 13   0: reserved 

    bit 12-11  10: continuous-up count mode 

    bit 10-8  101: = x/32 prescaler 

    bit 7   0: reserved in T1CON 

    bit 6   1: TENABLE, 1 = enable timer 

    bit 5-4   00: 00 = CPUCLK is clock source 

    bit 3-2   00: 00 = reload compare reg on underflow 

    bit 1   0: 0 = disable timer compare 

    bit 0   0: reserved in T1CON 

   */ 

 

#define  T2CON_set  0x9870          

   /*   1001 1000 0111 0000 

    bit 15-14  10: no stop on emulator suspend 

    bit 13   0: reserved 

    bit 12-11  11: directional-up/down count mode 

    bit 10-8  000: prescaler doesn't work in QEP counting 

    bit 7   0: reserved in T1CON 

    bit 6   1: TENABLE, 1 = enable timer 

    bit 5-4   11: QEP-circuit is clock source 

    bit 3-2   00: 00 = reload compare reg on underflow 

    bit 1   0: 0 = disable timer compare 

    bit 0   0: use own period register 

   */   

 

#define  T3CON_set  0x9540  

  /*   1001 0101 0100 0000 

    bit 15-14  10: no stop on emulator suspend 

    bit 13   0: reserved 

    bit 12-11  10: continuous-up count mode 

    bit 10-8  101: = x/32 prescaler 

    bit 7   0: reserved in T1CON 

    bit 6   1: TENABLE, 1 = enable timer 

    bit 5-4   00: 00 = CPUCLK is clock source 

    bit 3-2   00: 00 = reload compare reg on underflow 

    bit 1   0: 0 = disable timer compare 

    bit 0   0: reserved in T1CON 

   */ 

 

#define  T4CON_set  0x9870  

   /*   1001 1000 0111 0000 



    bit 15-14  10: no stop on emulator suspend 

    bit 13   0: reserved 

    bit 12-11  11: directional-up/down count mode 

    bit 10-8  000: prescaler doesn't work in QEP counting 

    bit 7   0: reserved in T1CON 

    bit 6   1: TENABLE, 1 = enable timer 

    bit 5-4   11: QEP-circuit is clock source 

    bit 3-2   00: 00 = reload compare reg on underflow 

    bit 1   0: 0 = disable timer compare 

    bit 0   0: use own period register 

   */ 

 

#define  CAPCONA_set  0x6400 

    /*  0110 0100 0000 0000 

    bit 15   0: clears all registers of CAP1-3  

    bit 14-13  11: enables QEP. Bits 4-7 & 9 are ignored 

    bit 12   0: enables CAP3 

    bit 11   reserved 

    bit 10   1: selects timer 2 for CAP3 

    bit 9   ignored 

    bit 8   0: no action on CAP3 

    bit 7-6   ignored 

    bit 5-4   ignored 

    bit 3-2   00: no detection on CAP3 

    bit 1-0   reserved 

                        */ 

 

#define  CAPCONB_set  0x6400 

    /*  0110 0100 0000 0000 

    bit 15   0: clears all registers of CAP4-6 

    bit 14-13  11: enables QEP. Bits 4-7 & 9 are ignored 

    bit 12   0: enable CAP6 

    bit 11   reserved 

    bit 10   1: selects timer 3 for CAP6 

    bit 9   ignored 

    bit 8   0: no action on CAP6 

    bit 7-6   ignored 

    bit 5-4   ignored 

    bit 3-2   00: no detection on CAP6 

    bit 1-0   reserved 

                        */                         

 

#define  ADCTRL1_set  0x2FA0          

  /*  0010 1111 1010 0000 

   bit 15  0: reserved  

   bit 14  0: don't reset ADC module software 

   bit 13-12 10: complete current conversion before stopping 

   bit 11-8  1111: 32xTclk for acquisition portion of conversion 

   bit 7  1: ADC logic clock prescale 2:1 

   bit 6  0: sequencer stops after reaching EOS 

   bit 5  1: ADC interrupt request priority low 

   bit 4  0: SEQ1 & SEQ2 not cascade connected 

   bit 3  0: (reserved) calibration mode disabled 



   bit 2  0: (reserved) full ref.voltage to ADC input 

   bit 1  0: (reserved) Vreflo is used as precharge value 

   bit 0  0: (reserved) self-test mode disabled        

  */ 

   

#define  ADCTRL2_set  0x4202 

  /* 0100 0010 0000 0010 

   bit 15  0: reserved 

   bit 14  1: reset sequencer (SEQ1) 

   bit 13  0: no effect  (SEQ1) 

   bit 12  0: reserved  (status SEQ1) 

   bit 11-10 00: interrupt disabled  (SEQ1) 

   bit 9  1: clear interrupt flag  (SEQ1) 

   bit 8  0: SEQ cannot be started by EVA trigger 

   bit 7  0: external trigger disabled 

   bit 6  0: no action  (SEQ2) 

   bit 5  0: no effect  (SEQ2) 

   bit 4  0: reserved  (status SEQ2) 

   bit 3-2  00: interrupt disabled (SEQ2) 

   bit 1  1: clear interrupt flag (SEQ2) 

   bit 0  0: SEQ cannot be started by EVB trigger 

  */                         

                        



Appendix XIX 
        (System Initiation source file) 
 

/****************************************************************************** 

* 

* Initiation Routine and Function Configuration (INIT) 

* - System Control (enable peripheral modules) 

* - Clock frequency (40 MHz) 

* - Wait-state setup for external memory interface 

* - Disable watchdog 

* - Setup shared I/O-pins 

* - GP timer configuration (1, 2, 3, 4) 

* - PWM-configuration (PWM1 & PWM3) 

* - QEP configuration (QEP1, QEP2, QEP3, QEP4)   

* - ADC configuration (enable software trigger)  

* 

******************************************************************************/ 

 

#include "main.h" 

 

/*****************************  INIT   *****************************************/   

extern void system_init() 

 

{ 

  

/**********************  Variable declaration   ************************************/ 

int in_q = 10000;     /* que constant gives 8 ms wait time */ 

unsigned int WAIT_image; 

int bs_OFF, DAC2_var=0, DAC2_target=0;   

double dig_val, bs_Volt, buff_Volt, mot_Volt; 

 

/**************************  Configurations   ************************************/ 

 *SCSR1 = SCSR1_set; 

  

 *SCSR2 = (*SCSR2 | 0x000B) & 0x000F; 

  /* 

   bit 15-6  0’s: reserved 

    bit 5   0: do NOT clear the WD OVERRIDE bit 

    bit 4   0: XMIF_HI Z, 0=normal mode, 1=Hi Z’d  

    bit 3  1: disable the boot ROM, enable the FLASH 

    bit 2   no change MP/MC* bit reflects state of MP/MC* pin 

   bit 1-0   11: 11 = SARAM mapped to prog and data 

   */ 

   

 *WDCR = WDCR_set;                    /* Disable the watchdog timer  */ 

  

 WSGR = WSGR_set;       /* Setup external memory interface for LF2407A EVM */ 

  

 /**************************  Setup shared I/O pins  ******************************/ 

 *MCRA = MCRA_set;               /* group A pins */ 

 *MCRB = MCRB_set;               /* group B pins */ 

 *PADATDIR = PADATDIR_set;              /* set IOPA0 and IOPA2 as out-ports */ 



 *PBDATDIR = PBDATDIR_set;    /* set IOPB6 and IOPB7 as out-ports, and IOPB2 as in-port */ 

 

 /******************  Setup GP timers and PWM configuration  ************************/ 

 *T1CON = 0x0000;               /* disable timer 1 (EVA) */ 

 *T2CON = 0x0000;              /* disable timer 2 (EVA) */ 

 *T3CON = 0x0000;             /* disable timer 3 (EVB) */  

 *T4CON = 0x0000;              /* disable timer 4 (EVB) */ 

  

 *GPTCONA = GPTCONA_set;              /* configure GPTCONA */ 

 *GPTCONB = GPTCONB_set;              /* configure GPTCONB */ 

  

 *T1CNT = 0;          /* GP timer 1 works to produce PWM1 and PWM3 on COMPARE */   

 *T1PR = per_50Hz;     /* with x/32 prescaler the counter is full after 20 ms */ 

  

 *T2CNT = 0;                      /* GP timer 2 is QEP-counter for QEP1 & QEP2*/ 

 *T2PR = 0x1000;         /* maximum period register */ 

  

 *T3CNT = 0;       /* GP timer 3 provides time base to interpret RC-receiver signals   */ 

 *T3PR = 0xFFFF;        /* maximum period register */ 

 

 *T4CNT = 1000;            /* GP timer 4 is QEP-counter for QEP3 & QEP4 */ 

 *T4PR = 0xFFFF;        /* maximum period register */ 

  

 *DBTCONA = 0x0000;     /* set dead-band of PWM-signals to 0 */ 

 *ACTRA = ACTRA_set;               /* PWM1 & PWM3 pins set active high */ 

 

 *COMCONA = COMCONA_set;              /* configure COMCON register */ 

  

 *T1CON = T1CON_set;        /* configure T1CON register */ 

 *T2CON = T2CON_set;        /* configure T2CON register */ 

 *T4CON = T4CON_set;        /* configure T4CON register */ 

  

 *CAPCONA = CAPCONA_set;                      /* configure QEP1, QEP2 in EVA */ 

 *CAPCONB = CAPCONB_set;                 /* configure QEP3 and QEP4 in EVB */ 

  

 /**********  Setup up ADC-unit, and prepare for software triggers  *********************/ 

 *ADCTRL1 =  ADCTRL1_set;         /* configure ADC control register 1 */ 

 *ADCTRL2 = ADCTRL2_set;          /* configure ADC control register 2 */ 

  

 /********************  Start DC/DC controller  ************************************/ 

 WAIT_image = 0x0F; 

 OUTMAC(_TI_LED, WAIT_image);     /* turn on all 4 LEDs */ 

 *PBDATDIR = *PBDATDIR & 0xFFBF;             /* write low on IOPB6 to turn off DC/DC unit */ 

 DAC2 = 0;              /* write low on DAC2 to enable startup */ 

 DAC_XFER = 1;                             /* transfer (write) to DAC2 */ 

  

 while(in_q)                 /* quick loop to make sure DAC2 gets low */ 

 {in_q--;}  

 in_q = 10000;                 /* reload que variable */ 

 

 *PBDATDIR = *PBDATDIR | 0x0040;            /* write high on IOPB6 to turn on DC/DC unit */ 

  

 while(in_q)                /* quick loop to make sure electronic switch on DC-converter turns ON */ 



 {in_q--;}      

 in_q = 10000;                /* reload que variable */ 

 

 *CHSELSEQ1 = 0x0058;       /* conversions on channel 5 and 8 */ 

 *MAX_CONV = 0x0001;                      /* total of 2 conversions */  

 *ADCTRL2 = *ADCTRL2 | 0x2000;           /* software trigger for ADC (set bit 13) */ 

   

 while(in_q)                             /* quick loop while ADC conversion is finishing */ 

 {in_q--;} 

 in_q = 10000;                  /* reload que variable */ 

  

 dig_val = *RESULT1;     /* ADC value from channel 5 (motor voltage) */ 

 mot_Volt = dig_val / 2142 ;          /* calculate motor voltage */ 

  

/****************************************************************************** 

*   Here, the program calculates the buffer voltage from the buffer voltage sensor reading.          

******************************************************************************/ 

 dig_val = *RESULT0;        /* ADC value from channel 6 (buffer sensor voltage) */ 

 bs_Volt = dig_val / 19776;          /* calculate buffer sensor voltage */ 

 buff_Volt = 49.33 - 47.81*bs_Volt + 19.42*bs_Volt*bs_Volt - 2.85*bs_Volt*bs_Volt*bs_Volt; 

      

  

/****************************************************************************** 

* DAC2_var is the digital value corresponding to an output control signal voltage, from the DSP 

* to  the DC-unit, which will give a DC-unit output voltage adjusted to the present voltage of the 

* buffer. DAC2_target is the digital value corresponding to an output control signal voltage, from 

* the DSP to the DC-unit, which will charge the buffer to the desired initial State of Charge. 

******************************************************************************/ 

   

 DAC2_var = 1241 * ( (buff_Volt * 0.0869) * (1 + (28 - mot_V) / 28) + 0.95); 

 DAC2_target = 1241 * ( (initial_SoC * 0.0869) * (1 + (28 - mot_V) / 28) + 0.95);   

  

 DAC2 = DAC2_var;  /* load DAC2 with the value that, when transferred,               */ 

 DAC_XFER = 1;  /* gives an output voltage from the DC-unit which is          */ 

    /* approximately the same as the buffer voltage.          */ 

  

 WAIT_image = 0x03; 

 OUTMAC(_TI_LED, WAIT_image); /* indicates that buffer switch now can be turned ON */ 

 

 bs_OFF = *PBDATDIR & 0x0004;     /* mask everything but bit 3 (buffer switch status) */ 

  

 while(bs_OFF) 

 { 

 bs_OFF = *PBDATDIR & 0x0004;    /* mask everything but bit 3 (buffer switch status) */ 

 } 

 

 WAIT_image = 0x01; 

 OUTMAC(_TI_LED, WAIT_image);            /* indicates buffer switch is turned ON */ 

 

/****************************************************************************** 

* In order to charge the buffer to the initial SoC the DAC2 value should increase gradually. When 

* DAC2 has reached a value in the vicinity of the DAC2_target value, the program will exit the  

* WHILE-loop and the remaining LED will be turned off, and that indicates that the car is ready  



* to run.  

******************************************************************************/ 

 if(DAC2_var < DAC2_target)             /* charge buffer */ 

 { 

 while(DAC2_var < 0.98 * DAC2_target) 

 { 

  DAC2_var = DAC2_var + 2; 

  DAC2 = DAC2_var; 

  DAC_XFER = 1; 

   

  while(in_q)                    /* quick loop while buffer is charging */   

  {in_q--;} 

  in_q = 6000;                /* reload que variable */ 

 } 

 } 

 

 else            /* discharge buffer */ 

 { 

 while(DAC2_var > 1.02 * DAC2_target) 

 { 

  DAC2_var = DAC2_var - 2; 

  DAC2 = DAC2_var; 

  DAC_XFER = 1; 

 

  while(in_q)                          /* quick loop while buffer is discharging */ 

   

  {in_q--;} 

  in_q = 6000;               /* reload que variable */ 

 } 

 } 

 

 DAC2 = DAC2_target;                /* charge buffer to initial SoC */ 

 DAC_XFER = 1;         /* transfer (write) to DAC2 */ 

 

 WAIT_image = 0x00; 

 OUTMAC(_TI_LED, WAIT_image);     /* turn off all 4 LEDs */ 

 

 *ADCTRL2 = *ADCTRL2 | 0x4000;        /* reset sequencer (SEQ1) */ 

}             



Appendix XIX 
         (Driver Interface header file)  
   

/****************************************************************************** 

*             

* Driver Interface (DIF) 

* - Extracts information from RC-receiver (4 PWM-signals, 50 Hz) regarding  

*   requested actions by driver. 

*  

*   Authors: Magnus, Leo          

* 

*--------------------------------------------------------------------------------------------------------------------- 

* Structures 

* 

*   DIF             

* 

*   Converted sensor signals:          

* name:    description:   values: 

* longitudinal   desired long. motion  [-0.3, 1]   

* lateral    desired lat. motion  [-1, 1]  

*    brake                     reg.brake or mech.brake      [-1, 1] 

* 

*--------------------------------------------------------------------------------------------------------------------- 

* Routines/Functions 

* - DIF uses (4) digital in-ports connected to the PWM-signals from RC-receiver to read  

*   and interpret the signals. When the signal goes high on an in-port the current value 

*   of GP timer 3 is stored as time-stamp for the positive flank of the PWM-signal. The  

*   time-stamp for the negative flank is stored in the same way when the signal goes low. 

*   The difference of the positive and negative flanks gives the pulse width, which  

*   corresponds to the lever position on the RC-transmitter.    

* - Captured peak widths are translated to generic values. 

* 

* IOPB4 pin#12 P1  RC-receiver channel 1 (trigger signal) 

* IOPB5 pin#13 P1  RC-receiver channel 2 (brake) 

* IOPB6 pin#15 P1  RC-receiver channel 3 (longitudinal) 

* IOPB7 pin#16 P1  RC-receiver channel 4 (steering) 

* 

******************************************************************************/ 

 

/**************************  Addresses  *****************************************/ 

#define PBDATDIR     (volatile unsigned int *)0x709A       /* I/O port B data & dir reg  */ 

#define T3CNT        (volatile unsigned int *)0x7501          /* GP timer 3 counter reg */ 

 

/******************  Declare variable structure   ************************************/ 

typedef struct dif { 

 double longitudinal; 

 double lateral; 

 double brake;  

}DIF; 

 

/***********************  Declare functions  **************************************/ 

extern void dif_fcn(DIF *dif); 



Appendix XIX 
         (Driver Interface source file) 

 
/****************************************************************************** 

*             

* Driver Interface (DIF)  

* - Extracts information from PWM-signals from RC-receiver (4 channels, 50 Hz) by  

*   measuring the individual pulse peak widths. 

* - Each receiver channel is connected to a digital in-port that can detect 

*   signal transitions. 

* - DIF uses rising edge of channel 1 pulse as trigger for peak width detection on 

*   channel 2, 3 and 4.  

* - By using a GP-timer the timestamps for positive and negative flanks are stored  

*   and used to calculate the peak widths. 

* - Measured peak widths are translated to generic values and put on the BUS. 

* 

******************************************************************************/ 

 

#include "main.h" 

  

/**********************************  DIF  **************************************/ 

extern void dif_fcn(DIF *dif) 

{   

                                                                

/***************************  Variable declaration  ********************************/ 

double pos_flank2, neg_flank2, pos_flank3, neg_flank3, pos_flank4, neg_flank4; 

double lat_count, br_count, long_count; 

int trigg, ch2, ch3, ch4; 

 

/************************  handling channel 1 trigger signal  ************************/ 

trigg = *PBDATDIR & 0x0010;     /* mask everything but bit 4 */ 

 

while(trigg == 0)           /* waits for ch 1 signal from receiver to go high */ 

 { 

 trigg = *PBDATDIR & 0x0010; 

} 

 

/************************  reading information on channel 2  ************************/  

*T3CNT = 0;           /* reset GP timer 3 */ 

  

ch2 = *PBDATDIR & 0x0020; 

 

while(ch2 == 0)            /* waits for ch 2 signal from receiver to go high */ 

{ 

 ch2 = *PBDATDIR & 0x0020; 

} 

 

pos_flank2 = *T3CNT;                         /* stores time-stamp for positive flank */ 

 

while(ch2 == 0x0020)                       /* waits for ch 2 signal from receiver to go low */ 

{ 

 ch2 = *PBDATDIR & 0x0020; 



} 

  

neg_flank2 = *T3CNT;                        /* stores time-stamp for negative flank */ 

/*****************************************************************************/ 

 

/************************  reading information on channel 3  ************************/  

ch3 = *PBDATDIR & 0x0040; 

 

while(ch3 == 0)                      /* waits for ch 3 signal from receiver to go high */ 

{ 

 ch3 = *PBDATDIR & 0x0040; 

} 

 

pos_flank3 = *T3CNT;                         /* stores time-stamp for positive flank */ 

 

while(ch3 == 0x0040)                        /* waits for ch 3 signal from receiver to go low */ 

{ 

 ch3 = *PBDATDIR & 0x0040; 

} 

  

neg_flank3 = *T3CNT;             /* stores time-stamp for negative flank */ 

 

/*****************************************************************************/ 

 

/************************  reading information on channel 4  ************************/  

ch4 = *PBDATDIR & 0x0080; 

 

while(ch4 == 0)            /* waits for ch 4 signal from receiver to go high */ 

{ 

 ch4 = *PBDATDIR & 0x0080; 

} 

 

pos_flank4 = *T3CNT;                         /* stores time-stamp for positive flank */ 

 

while(ch4 == 0x0080)             /* waits for ch 4 signal from receiver to go low */ 

{ 

 ch4 = *PBDATDIR & 0x0080; 

} 

  

neg_flank4 = *T3CNT;             /* stores time-stamp for negative flank */ 

 

/*****************************************************************************/ 

 

 

/****************************************************************************** 

* Use time stamps to calculate peak widths of RC-channels (2,3,4). Translate peak widths  

* to generic values responding to lever position of corresponding RC-transmitter channel. 

******************************************************************************/  

     

br_count = neg_flank2 - pos_flank2; 

if(br_count < 2433 && br_count > 1431)           /* is brake signal valid? */ 

{ 

     dif->brake = (1931 - br_count) / 500;                   /* translate to normalized value [-1; 1] */ 



}     

       

  

lat_count = neg_flank4 - pos_flank4; 

if(lat_count < 2605 && lat_count > 1098)           /* is lateral signal valid? */ 

{ 

        dif->lateral = (lat_count - 1882) / 548;               /* translate to normalized value [-1; 1] */  

} 

     

 

long_count = neg_flank3 - pos_flank3; 

if(long_count < 2610 && long_count > 1050)   /* is longitudinal signal valid? */ 

{ 

      dif->longitudinal = (long_count - 1370) / 960;    /* translate to normalized value [-0.3; 1] */   

} 

     

} 

 

 

 

 

 

     

 

 

 



Appendix XIX 
           (Driver Interpreter header file) 
 
/****************************************************************************** 

*             

* Driver Interpreter (DIP) 

* - Interpret the signals from Driver Interface to physical motion  

* 

*   Authors: Magnus, Leo          

* 

*--------------------------------------------------------------------------------------------------------------------- 

*  

* Structures 

* 

*   DIP             

* 

*   Variables used to describe the desired motion:       

* name:     description:   values: 

* speed     desired speed   [m/s]  

*          brake         desired brake action  [0,1] 

*--------------------------------------------------------------------------------------------------------------------- 

* 

* Routines/Functions 

* - Calculates corresponding physical values from the generic values from DIF 

*   (however, at this point it is only done for longitudinal -> speed) 

* 

******************************************************************************/ 

 

/******************  Declare variable structure   ************************************/ 

typedef struct dip { 

 double speed; 

 double steer; 

 double brake; 

}DIP; 

 

/***********************  Declare functions  *************************************/ 

extern void dip_fcn(DIP *dip, DIF *dif); 



Appendix XIX 
        (Driver Interpreter source file) 
 

/****************************************************************************** 

*             

* Driver Interpreter (DIP)  

* - Interpret the signals from Driver Interface to physical motion  

* 

******************************************************************************/ 

 

#include "main.h" 

 

/**********************************  DIP   *************************************/  

extern void dip_fcn(DIP *dip, DIF *dif) 

{ 

 

/***************************  Variable declaration   *******************************/ 

const Cspeed_max=6;   

    

/********************************  dip_fcn  *************************************/  

  dip->speed = dif->longitudinal * Cspeed_max; 

  dip->steer = dif->lateral;     

  dip->brake = dif->brake; 

} 

 



Appendix XIX 
   (Vehicle Motion Control header file)  
  

/****************************************************************************** 

*             

* Vehicle Motion Control (VMC) 

* - Desired motion from Driver Interpreter is applied  

*   on Wheel Unit actuators.  

* 

*   Authors: Magnus, Leo          

* 

*--------------------------------------------------------------------------------------------------------------------- 

*  

* Structures 

* 

*   VMC             

* 

*   Variables generated by VMC:          

* name:     description:   values:  

*     

* 

*--------------------------------------------------------------------------------------------------------------------- 

* 

* Routines/Functions 

* 

* vmc_fcn 

* 

* 

******************************************************************************/ 

 

/******************  Declare variable structure  ************************************/ 

typedef struct vmc { 

 double steer;  

}VMC; 

 

/***********************  Declare functions  *************************************/ 

extern void vmc_fcn();  



Appendix XIX 
   (Vehicle Motion Control source file) 
 

/***************************************************************************** 

*             

* Vehicle Motion Control (VMC)  

* - Desired motion from Driver Interpreter is applied on Wheel Unit actuators.  

* 

******************************************************************************/ 

 

#include "main.h" 

 

/**********************************  VMC   *************************************/  

extern void vmc_fcn(VMC *vmc, DIP *dip, CH *ch) 

 

{ 

 

/********************************  vmc_fcn   ************************************/  

  vmc->steer=dip->steer; 

   

} 

   



Appendix XIX 
    (Energy Management header file) 
 

/****************************************************************************** 

*             

* Energy Management (EM) 

* - The desired vehicle motion is performed in a energy efficient way 

* 

* 

*   Authors: Magnus, Jonas, Leo          

* 

*--------------------------------------------------------------------------------------------------------------------- 

*  

* Structures 

* 

*   EM             

* 

*   Generated variables from (EM):         

* name:     description:    values:  

* 

*--------------------------------------------------------------------------------------------------------------------- 

* 

* Routines/Functions 

* 

******************************************************************************/ 

 

/******************  Declare variable structure   ************************************/ 

 

typedef struct em{ 

 double speed;     

 double brake; 

}EM; 

 

/***********************  Declare functions  **************************************/ 

extern void em_fcn();  



Appendix XIX 
     (Energy Management source file) 
 

/****************************************************************************** 

*             

* Energy Management (EM) 

* - The desired vehicle motion is performed in a energy efficient way 

*     

******************************************************************************/ 

 

#include "main.h" 

 

/**********************************  EM   **************************************/  

extern void em_fcn(EM *em, DIP *dip, PS *ps, CH *ch) 

 

{ 

 

   

/********************************  em_fcn  *************************************/  

  em->speed = dip->speed;    

  em->brake = dip->brake;             

} 

   



Appendix XIX 
     (Operative Decisions header file)   
 

/****************************************************************************** 

*             

* Operative Decisions (OD)  

* - Finalization of orders from Vehicle Motion Control (VMC) and Energy  

*   Management (EM). Handles conflicts between VMC and EM. 

*     

* 

*   Authors: Leo, Magnus           

* 

*--------------------------------------------------------------------------------------------------------------------- 

*  

* Structures 

* 

*   OD             

* 

*   Variables used for orders:          

* name:     description:   values:  

* forward_mode    motor forward or reverse 1 or 0 

* brake_mode    regenerative brake or not 1 or 0   

* 

*--------------------------------------------------------------------------------------------------------------------- 

* 

* Routines/Functions 

* 

* od_fcn 

* - Finalization of orders to Chassis and Power Supply   

* 

******************************************************************************/ 

 

/******************  Declare variable structure   ***********************************/ 

typedef struct od { 

 double steer; 

 double speed;      

 double brake_mode;   

 double forward_mode; 

 double brake_signal; 

}OD; 

 

/***********************  Declare functions   *************************************/ 

extern void od_fcn(); 



Appendix XIX 
     (Operative Decisions source file) 
 

/****************************************************************************** 

*             

* Operative Decisions (OD)  

* - Finalization of orders from Vehicle Motion Control (VMC) and Energy  

*   Management (EM). Handles conflicts between VMC and EM. 

* 

******************************************************************************/ 

 

#include "main.h" 

 

/*****************************  OD   ******************************************/ 

extern void od_fcn(OD *od, VMC *vmc, EM *em, PS *ps) 

 

{ 

 

  od->steer=vmc->steer; 

   

  od->speed = em->speed;     

  od->brake_signal = em->brake; 

   

 

/****************************************************************************** 

* Regenerative brake request from driver enables regenerative braking mode  

******************************************************************************/ 

  

  if(em->brake > 0.02)    

  { 

    od->brake_mode = 1;     /* regenerative brake request */ 

  } 

   

  else 

   od->brake_mode = 0;   

    

/******************************************************************************  

* If car is standing still, AND reverse motion is requested, motor rotation direction is altered and 

* kept until car is standing still again, AND forward motion is requested once more.  

******************************************************************************/ 

  

  if(ps->rot_speed == 0 && od->speed >= 0)          /* motor is put in forward direction mode */ 

  { 

   od->forward_mode = 1;             

  } 

 

  else    

    od->forward_mode = 0;          /* motor is put in reverse direction mode */ 

   

}  

 



Appendix XIX 
  (Chassis header file) 

 

/****************************************************************************** 

*             

* Chassis (Ch)  

* - Generates 50 Hz PWM-signals to control brake and steer servos. 

* - Calculates rotational speed of (right) front wheel. 

* 

*   Authors: Magnus, Leo          

* 

*--------------------------------------------------------------------------------------------------------------------- 

*  

* Structures 

* 

*   CH  

* 

*    Converted sensor signals:          

* name:   description:    values:    

* fw_rot_speed  Front wheel rotational speed  [rps] 

*--------------------------------------------------------------------------------------------------------------------- 

* 

* Routines/Functions 

* - Generates PWM-signals to control brake and steer servos. 

* - Calculates rotational speed of (right) front wheel. DSP interprets QEP-signals from 

*   optic rotational sensors. 

* 

* PWM1 pin#3 P1  (steer servo, channel 4) 

* PWM3 pin#5 P1  (brake servo, channel 2) 

* QEP1 pin#21  P1  (optic rotational sensor 1) 

* QEP2 pin#22  P2  (optic rotational sensor 2) 

* 

******************************************************************************/ 

 

/***************************** Addresses  **************************************/ 

#define CMPR1        (volatile unsigned int *)0x7417           /* compare reg 1 */ 

#define CMPR2        (volatile unsigned int *)0x7418           /* compare reg 2 */ 

#define T2CON        (volatile unsigned int *)0x7408           /* GP timer 2 control reg */  

 

/**********************  Constant Definitions   ************************************/ 

#define  per_50Hz 25000              /* 20ms timer1 period with a 1/32 timer  

           prescaler and 40MHz CPUCLK                  */ 

 

/******************  Declare variable structure    **********************************/ 

typedef struct ch { 

double fw_rot_speed; 

}CH; 

 

/************************  Declare functions  ************************************/ 

extern void ch_fcn(CH *ch, OD *od);             

      



Appendix XIX 
   (Chassis source file) 

 

/****************************************************************************** 

*             

* Chassis (Ch)  

* - Generates PWM-signals to control brake and steer servos.  

* - calculates (right) front wheel rotational speed. 

* - Applies scale factors to increase, or decrease, brake and steer servo movements. 

* 

******************************************************************************/ 

 

#include "main.h" 

 

/**************************  CH   *********************************************/ 

extern void ch_fcn(CH *ch, OD *od) 

{ 

 

/**********************  Variable declaration   ************************************/ 

static double steer_scaling = 1.5;  

static double brake_scaling = 1.5;  

double alfa_pulse = 1000; 

 

/******************  Front wheel rotational sensor readings  *************************/ 

fw_rot_speed = ((*T2CNT - alfa_pulse) * 0.015625) / 0.02;                  /* 64 flanks per turn */ 

*T2CNT = alfa_pulse;                                          /* re-load QEP-counter */ 

 

/****************************************************************************** 

* By loading COMPARE-register 1 (PWM-signal to steer servo), and COMPARE-register 2  

* (PWM-signal to brake servo), 2 separate PWM-signals are generated to control the  

* servos.  

******************************************************************************/ 

   

  *CMPR1 = per_50Hz - (od->steer * 548) * steer_scaling - 1882;        /* set PWM1 */     

   

  if(od->brake_mode == 0)                 /* set PWM3 if mechanical brake is requested */  

  {                                                                  

    *CMPR2 = per_50Hz - (od->brake_signal * 375) * brake_scaling - 1380;       

  } 

    

} 

  



Appendix XIX 
          (Power Supply header file) 
 

/****************************************************************************** 

*             

* Power Supply (PS) 

* - Handles sensors and actuators for Power Supply. Functional partitioning 

*   is made at differential.   

* - Calculates buffer current 

* - Calculates buffer voltage 

* - Calculates motor current  

* - Calculates motor voltage 

* - Calculates motor rotational speed  

* - Generates motor control signals (direction, and brake or speed)   

* - Generates DC-converter control signals 

* 

*   Authors: Magnus, Leo          

* 

*--------------------------------------------------------------------------------------------------------------------- 

*  

* Structures 

* 

*   PS             

* 

*   Converted sensor signals:          

* name:     description:   values: 

* rot_speed    Motor rotational speed  [rps] 

* buff_I     buffer current   [A] 

* mot_I     motor current   [A] 

* buff_V     buffer voltage   [V] 

* mot_V     motor voltage   [V] 

*--------------------------------------------------------------------------------------------------------------------- 

* 

* Routines/Functions 

* - Uses pulses from pin#9 and pin#10 on the motor to calculate the rotational speed. 

*          - Interprets signals from buffer current sensor, and motor current sensor, 

*   and calculates currents and directions.  

* - Interprets signals from buffer voltage sensor, and motor voltage sensor, and  

*   calculates corresponding voltages. 

* - Generates control signals for motor with DAC1, IOPA0 and IOPA2. 

* - Generates control signal to DC-converter with DAC2 (not used in this version).  

* 

* DAC1 pin#25 P2 (out-port for motor control signal, motor pin#4) 

* DAC2 pin#26 P2 (out-port for DC-converter control signal) 

* QEP3 pin#24 P1 (in-port for pulse from motor pin#9) 

* QEP4 pin#20 P4 (in-port for 90 degrees phase-shifted pulse from motor pin#10) 

* ADCIN0 pin#23 P2 (in-port for Buffer Current Sensor) 

* ADCIN1 pin#24 P2 (in-port for Motor Current Sensor) 

* IOPA0 pin#27 P1 (control brake/drive mode of motor) 

* IOPA2 pin#16 P4 (control forward/backward direction of motor)  

* 

******************************************************************************/ 



 

/**************************  Addresses   ****************************************/ 

#define T4CNT        (volatile unsigned int *)0x7505          /* GP timer 4 counter reg */  

#define PADATDIR     (volatile unsigned int *)0x7098        /* I/O port A data & dir reg */ 

#define MAX_CONV     (volatile unsigned int *)0x70A2            /* Max conversion channels reg */ 

#define CHSELSEQ1    (volatile unsigned int *)0x70A3     /* Ch select seq control reg 1 */ 

#define ADCTRL2      (volatile unsigned int *)0x70A1       /* ADC control reg 2 */ 

#define RESULT0      (volatile unsigned int *)0x70A8         /* Conv result buffer reg 0 */ 

#define RESULT1      (volatile unsigned int *)0x70A9        /* Conv result buffer reg 1 */ 

#define RESULT2      (volatile unsigned int *)0x70AA         /* Conv result buffer reg 2 */ 

#define RESULT3      (volatile unsigned int *)0x70AB         /* Conv result buffer reg 3 */ 

 

/*****************  I/O space mapped registers   ***********************************/ 

#define DAC1 port0000                                   /* DAC1 register */ 

ioport unsigned int port0000;                                            

#define DAC2 port0001              /* DAC2 register */ 

ioport unsigned int port0001; 

#define DAC_XFER port0004                            /* DAC Transfer register */ 

ioport unsigned int port0004; 

 

 

/******************  Declare variable structure  ***********************************/ 

typedef struct ps { 

 double rot_speed; 

}PS; 

 

 

/**********************  declare functions  **************************************/ 

extern void ps_fcn();  



Appendix XIX 
          (Power Supply source file) 
 

/****************************************************************************** 

*             

* Power Supply (PS)  

* - Handles sensors and actuators for Power Supply. Functional partitioning 

*   is made at differential. 

* - Uses QEP-pulses out from motor pins #9 and #10 to calculate motor rotational speed. 

*   - Interprets signals from buffer current sensor, and motor current sensor, 

*   and calculates current and direction.  

* - Interprets signals from buffer voltage sensor, and motor voltage sensor, and  

*   calculates corresponding voltages. 

* - Generates control signals for motor with DAC1, IOPA0 and IOPA2. 

* - Generates control signal to DC-converter with DAC2 (not used in this version).    

* 

******************************************************************************/ 

 

#include "main.h" 

 

/********************* Speed check variable declaration   ***************************/  

unsigned int speed_check = 0 

 

/*******************************  CH   *****************************************/   

extern void ps_fcn(PS *ps, OD *od) 

{ 

 

/**********************  Variable declaration  *************************************/ 

double buff_I, mot_I, bs_V, buff_V, mot_V; 

double dig_value; 

unsigned int ps_q = 500; 

float time; 

const Cspeed_max = 6;   

 

/******************  Current and Voltage sensor readings  ***************************/    

  *CHSELSEQ1 = 0x5810;           /* conversions on channel 0, 1, 8 and 5 */ 

  *MAX_CONV = 0x0003;            /* total of 4 conversions */  

  *ADCTRL2 = *ADCTRL2 | 0x2000;           /* software trigger for ADC (set bit 13) */ 

   

  while(ps_q)                               /* quick loop while ADC conversion is finishing */ 

 {ps_q--;} 

  ps_q=500;   

   

  dig_value = *RESULT3;              /* ADC value from channel 5 (motor voltage) */ 

  mot_V = dig_value / 2216;            /* calculate motor voltage */ 

    

  dig_value = *RESULT2;     /* ADC value from channel 6 (buffer voltage sensor)*/ 

  bs_V = dig_value / 19776;            /* calculate buffer sensor voltage */ 

  buff_V = 49.3318 - 47.8193*bs_V + 19.4343*bs_V*bs_V - 2.8473*bs_V*bs_V*bs_V;    

   

  dig_value = *RESULT1;    /* ADC value from channel 1 (motor current) */ 

  mot_I = (dig_value / 19556 - 1.87) * 4.2307;          /* calculate motor current */ 



    

  dig_value = *RESULT0;              /* ADC value from channel 0 (buffer current) */ 

  buff_I = (dig_value / 19718 - 1.86) * 4.2716;                  /* calculate buffer current */ 

   

  *ADCTRL2 = *ADCTRL2 | 0x4000;          /* reset sequencer (SEQ1) */ 

 

/*****************************************************************************/   

 

/****************** Motor rotational speed   ***************************************/ 

  if(speed_check == 10)               /* update with a frequency of 5 Hz */ 

  {  

   time = speed_check * 0.02;          /* elapsed time in seconds */ 

   ps->rot_speed = ((*T4CNT - 1000)*0.125) / time;        /* 8 flanks per turn */ 

    *T4CNT = 1000;                            /* set QEP-counter */ 

    speed_check = 0;       /* reset speed_check variable */    

  } 

  speed_check++;           /* increase speed_check variable */  

 

/*****************************************************************************/  

   

/***********************  DC-converter control ************************************   

* set DAC2 to control DC-converter. The analogue signal voltage should be between 

* 0.95 and 2.00 V, which gives DC-converter output voltage between 0.1 and 10 V. 

******************************************************************************/  

   

/***********************  Motor control  *****************************************/   

  if(od->brake_mode)                /* set motor brake control signal with DAC 1 */ 

  { 

    DAC1 = od->brake_signal * 4000;     /* do digital to analogue conversion */ 

    DAC_XFER = 1;         /* transfer (write) to DAC1 */ 

    *PADATDIR = *PADATDIR & 0xFFFE;      /* write low on IOPA0 (brake mode) */ 

  } 

   

  else                                /* set motor speed control signal with DAC 1 */ 

  { 

   if(od->forward_mode)        /* motor drives car forward */ 

 { 

   DAC1 = (od->speed * 4000) / Cspeed_max;       /* do digital to analogue conversion */ 

     DAC_XFER = 1;         /* transfer (write) to DAC1 */ 

     *PADATDIR = (*PADATDIR & 0xFFFB)| 0x0001;  /* write high on IOPA0 (speed 

    mode) and low on IOPA2  

    (forward).          */ 

 } 

 

 else                  /* motor drives car backward */ 

 { 

   DAC1 = (od->speed * -8000) / Cspeed_max;     /* do digital to analogue conversion */ 

     DAC_XFER = 1;        /* transfer (write) to DAC1 */ 

     *PADATDIR = *PADATDIR | 0x0005;  /* write high on IOPA0 (speed mode) 

             and high on IOPA2 (backward).     */ 

 } 

  } 

} 



Appendix XX 
            (operational procedure) 

 
• Check the condition of PPU (range: 20-28 Volt) and 12 Volt battery (range: 11-14 

Volt). Connect the positive wires to PPU and 12 Volt battery if conditions are OK. 
• Check frequencies of RC-system crystals. Make sure they are the same. 
 
1) Connect PC to DSP on SMC via parallel cable and J-tag emulator. 
2) Turn ON the RC-transmitter. 
3) Make sure all switches on external circuit box are OFF. 
4) Turn ON following switches in order: 

PPU 
Motor (a green LED on motor indicates power is ON) 
DC-converter (a red LED on DC-converter indicates power is ON)   
5 Volt 
DSP (a green LED on DSP indicates power is ON) 
RC (a green LED on RC-receiver indicates power is ON) 
 

IMPORTANT! Buffer switch is to remain OFF. Otherwise there is a risk of burning 
circuits on SMC as the buffer discharges without the DC-converter to 
control it.  
 

5) Start Code Composer, open project file, compile, build and download code to 
DSP. 

6) Run code. 
7) Four red LEDs on the DSP will display the status of the System Initiation routine.  

4 LEDs ON: DC-converter start-up routine has commenced. 
2 LEDs ON: Buffer switch on external circuit box can now be turned ON. 

The program has now measured the buffer voltage and 
adjusted the control signal to the DC-converter accordingly 
(see chapter 4.3.1). 

  1 LED ON: The buffer switch has been turned ON, and the buffer is 
charging (or discharging) in order to reach the predefined   
voltage. 

  All LEDs are OFF: The buffer has reached the desired voltage, and  
       System Initiation is finished.   

8) The SMC can now be controlled by the RC-transmitter. 
................................................................... 

9) When the J-tag is connected to the DSP the program execution can be stopped 
at any time through Code Composer. 

10) Before another test-run turn OFF buffer switch on external circuit box. 
11) Compile, build and download code to the DSP. 
12) Resume procedure at step 6. 

 
When last test-run has been made: 

13) Stop program execution and exit Code Composer. 
14) Turn OFF RC-transmitter and all switches on external circuit box (no particular 

order). 
15) Before leaving the SMC for the night: disconnect the positive wires to PPU and 

12 Volt battery, since sneak-currents can discharge the batteries. 



 
Charging 
• PPU is charged with a maximum current of 0.92 Ampere at 29.8 Volts. When 

charge current drops below 0.1 Ampere the battery is ready for use.  
• 12 Volt battery is charged with a maximum current of 0.92 Ampere at 14.9 Volts. 

When charge current drops below 0.1 Ampere the battery is ready for use.  
• RC-transmitter is charged using an adapter. Do not charge for more than 24 

hours. 
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