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RODRIGO MARTÍNEZ REDONDO 
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Chalmers Room Acoustics Group 
Chalmers University of Technology 
 

Abstract 
The Distributed Mode and Bending Waves Loudspeakers are recent 
developments that have provoked much interest over the past few years. The 
papers published on the subject have highlighted the differences between 
these classes of loudspeakers comparing them to a conventional pistonic 
radiator. 

In this project, a flat Bending Wave Panel Loudspeaker (BWL) was built. The 
aim of this project is to combine a BWL with a passive projection screen. 
Employing Hamada’s “Stereo Dipole” we should be able to create very 
convincing virtual images around a single listener for Virtual Reality 
applications.    

 First, an introduction into this technology will be presented where some 
theoretical concepts will be explained to provide in-depth understanding.  

Secondly, all the measurements that have been carried out to optimize the 
behaviour of the panel, regarding different structures and excitation methods 
will be presented showing the best solution found. Damping mechanism will 
allow us to simulate the desired infinite behaviour, which will facilitate the 
“Stereo Dipole” technique. Finally, we will introduce the final configuration 
of the panel. 

Keywords: Bending Waves, Critical Frequency, Virtual Source Imaging, 
Damping, Piezoelectric sensor, NXT technology, Manger transducers, 
Mechanical Impedance. 
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 Chapter One 
 

Introduction 

 
The permanently ongoing search for new kind of acoustic transducers 

which can improve the radiation characteristics and response for audio 
applications lead the researchers to the bending wave radiation. The excitation 
of bending waves on plates or panels results in significant sound radiation 
with valuable qualities such as a diffuse sound field and a wide directivity 
which is largely independent of frequency. Therefore, vibrating panel 
loudspeakers find their development in more and more areas, such as 
displays, car audio and communication devices.  

These kinds of structures can be supported by a flat panel or plate, with 
very low mass and rigidity. The aim of this work is to build a  flat Bending 
Wave panel using the Hamada’s “Stereo Dipole” which can create virtual 
images around a single listener, and it can also act as a passive screen where 
images can be projected, simulating then a virtual reality environment for 
binaural applications. It will be optimized in terms of critical frequency and 
sound radiation features. 

The theory involved in the vibrational behaviour of flat structures and the 
associated important theoretical facts that will be investigated empirically such 
as critical frequency, point impedance or damping, as well as it sound 
radiation characteristics will be presented at Chapter 2. 

Chapter 3 will show some model simulations that have been carried out in 
order to find out the most important parameters that might influence sound 
radiation and critical frequency. The exciter technology has been modeled as 
well to see the influence of the moving-coil system into the whole structure. 

Section 4 is focused on the measurements that allowed us to decide which 
was the best solution in terms of optimization. Several material and 
thicknesses were tested, as well as three different excitation methods, to see the 
influence in the behavior of the panel. The Transfer Function for each 
alternative is included. 

The last chapter introduces the final configuration. The “Stereo Dipole” 
technique will be explained in detail, as well as the features of the line 
configuration. The damping concept that was introduced at chapter 2 is now 
tested in the real structure, to see its performance and characteristics. Finally, 
the structure will be presented and its transfer function measured. 

The last part will draw some conclusion of the work. Further procedures 
that could not be done in the time of the work will be introduced as well. 
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Chapter Two 
 

Bending waves theoretical behavior 

 
2.1 Introduction 

In contrast to sound in gas fluids, which only allow one type of wave, i.e. 
longitudinal wave, there is a large variety of structure borne sound waves. The 
most important group regarding sound radiation, which we are dealing in this 
work, are bending waves, also called flexural waves. 

First of all, they are mainly responsible for the radiation of sound from 
vibrating plate-like structures. The reason for this can be explained in the 
displacement of the elements in the wave. This displacement component 
appears in the normal direction to the surface of the structure. 

In Figure 2.1 the vibration pattern of bending waves is shown. As we can 
see, it combines both longitudinal and transversal motion. As we see, the cross 
sections are moving perpendicularly to the equilibrium line, rotating around 
the normal axis. 

 

 
Figure 2.1 Illustration of bending waves in a beam. The bending wave amplitudes 

have been highly exaggerated. 

 
It is also important to note that bending waves are waves that appear in 

thin media, since one or two of the cross-sectional dimensions are smaller than 
the governing wavelength for plates and beams, pure longitudinal waves 
cease to exist in these structures. 

This chapter is focused on give a wide knowledge of the theory involving 
bending waves, in order to be able to control them with sound radiation 
purposes. First, the main features will be presented, giving special attention to 
the general laws and equations which govern infinite one dimensional 
propagation on beams, called the Euler-Bernoulli theory. Secondly, the same 
will be show for two dimensional media on plates, using the Kirchoff’s theory. 
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We will see that the velocity of the wave is different at each frequency in the 
same medium. This phenomenon is called dispersion. 

The final part is focused mainly on bending wave sound radiation and its 
quantities. Critical frequency will be introduced, as well as the concept of 
damping, useful when we deal with infinite plates such as bending wave 
loudspeakers. 

 
 

2.2 One and two-dimensional Bending Waves 
Bending waves are associated with comparably large transverse vibration 

amplitudes leading to a significant disturbance of the adjacent fluid, and 
therefore, a change also in the sound radiation. The good coupling between 
bending structures and fluids indicates that the impedance of the transversal 
motion and the sound waves in the fluid are of similar magnitude [1]. 

On the contrary to the other structure-borne sound waves, bending waves 
are represented by four field variables instead of two: the transversal velocity 
vy, the angular speed � z , the bending moment Mz , and the force Fy. To make it 
clearer, the four field variables and their positions are illustrated on a single 
beam element. 

 

 

Figure 2.2      Indication of the field variables and their directions of bending waves. 

 

 
Between these four variables there are four differential relations cyclically 

related, which are used to find the wave equation that governs the motion. 
Moreover, the boundary conditions become more difficult when we work with 
this type of waves. A wider description can be found at [2]. 
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In the following two subsections the wave equation is presented for one-
dimensional case on beams and two dimensional cases on plates. Both theories 
contain simplifications, which are mainly the assumption of a non-deformed 
cross section (i.e. infinite high shear stiffness) and the cancellation of rotational 
inertia. When the bending wavelength becomes comparable with the thickness 
of the plate or beam, these two facts lead to erroneous results. Therefore, it 
yields an upper frequency limit. To compensate this, extended theories, i.e. 
Timoshenko or Mindlin theories are developed which hold further up in 
frequency. However, in most cases the simple Euler-Bernoulli theory is 
sufficient and therefore preferable for the scope of this work. 

 
 

2.3 Bending Wave’s Equations 

2.3.1 One dimensional case (Euler-Bernoulli theory for beams) 

A beam is shown in Figure 2.3 where bending waves are propagating. 
We consider beams with thickness and height much smaller than its 
length and also than the associated wavelength. 

 

Figure 2.3     Variables and deformation of a beam element in bending motion. 

 

 

Analysing the figure, one can conclude that the bending wave angle �  is 
related to the displacement in the normal direction �  by the equation: 
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Differentiation with respect to time the leads: 

x

v
y

z
!

!
=" .                                                                                                             (2.2) 

As shown in [3], the rate of change of the angular velocity with distance is 
given by: 
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The bending angle will cause a certain bending moment Mz,  which depends 
on the bending stiffness of the material B and the change of the bending angle 
over x: 
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Where B is known to be the bending stiffness, which is the product of the 
modulus of elasticity (which is a material property) and of the moment of 
inertia (which is a characteristic of the cross-section): 

EIB = .            Being      3
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1
bhI = .                                                                (2.5) 

The expression which relates the shear force Fy to the bending moment Mz 
may also be obtained from static bending theory [2]: 
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Now, applying Newton’s second law of motion, over a force changing over 
x: 
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Where m’ the mass per unit length of the bar, 

whm !=' . 

Where �  is the density, w the width and h the height of the beam. 
Substituting the force in Eq.2.6 one finally obtains the wave equation for 
bending waves in one dimension and assuming that the bending stiffness is 
constant (which is correct in most of the cases) the equation can be simplified 
to: 
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This wave equation differs substantially from the longitudinal and 
transversal wave equations due to a fourth derivative in space instead of the 
usual second derivative. However, the resulting solution will have the form of 
a simple harmonic wave: 

jwtjkx

A eetx !
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If one substitutes this equation into (2.8) then one finds that this expression 
satisfies the differential equation, as long as the radial frequency and the wave 
number obey: 
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We can see clearly that the wave number on a beam is frequency 
dependant, following: 
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Knowing that
v

w
k = , it will lead to: 
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On the contrary of velocity of sound of air, when we are dealing with beams 
or plates, the velocity is frequency dependant. This important effect is called 
dispersion, where we will be discussing it in another section. 

Taking into account the boundary conditions, the complete solution of the 
bending wave equation can be found in some literature, such as [1]. 
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The four exponential terms represent four different waves. The first two are 
waves propagating in the positive and negative x-directions. The other two 
solutions are so-called bending near fields, which are deformations of the 
beam decaying exponentially with the distance to the excitation point and 
oscillating with the excitation frequency. These near fields can be caused by an 
excitation but also by the presence of boundary conditions. 
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2.3.2 Two dimensional case ( Kirchoff theory for plates)  

The Kirchoff theory for bending waves in plates is based on the same 
simplifications as the Euler-Bernoulli theory, that is, assumptions of infinite 
shear stiffness and negligible rotational inertia. The wave equation is: 
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Bx and Bz are the bending stiffness in the x-and-z directions. Bxz is a mixed 
term. For isotropic plates, Bx and Bz are identical whilst for orthotropic plates 
they can differ. Isotropic plates will be considered throughout the whole of this 
investigation. Therefore, B’ is defined as the two-dimensional bending stiffness 
per unit length: 

,
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Where �  is the Poisson constant and I is the cross section moment of inertia 
per unit length for a plate of thickness h. The bending stiffness of the plate 
differs from that of a beam due to the constraint in the z-direction. 
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We can draw an analogy for the resolution of the one dimensional case in 
Sec.2.3.1, finding: 
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The bending wave number kb can be written as: 

222

zxb
kkk +=                                                                                                         (2.18) 

Inserting Eq. 2.17 into the general solution 2.14 will lead to: 

."'
24 !mkB

b
=                                                                                                      (2.19) 

In this case, the velocity is also frequency dependant which will be 
discussed later. Note here we use B’ and m” instead B and m’.  Like in the one 
dimensional case, the Kirchhoff theory also requires a fourth partial 
differential equation of difficult resolution, with more complicated boundary 
conditions. This is the reason for using another method to calculate the modal 
density and behaviour of a plate, such as Finite Element Analysis. The modal 
density has to be sufficiently large to produce a superposition of modes with 
different amplitudes, producing a continuous spectrum. 
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2.4 Bending Wave’s Behaviour 

2.4.1 Dispersion 

As we discussed in the previous sections, both one-dimensional and two-
dimensional bending wave numbers are frequency dependent. Is easy to infer 
in Equation 2.11 that it is dependant on the square root of the angular 
frequency, unlike the usual linear frequency dependence in air, according to k 
=� /c. 

This fact leads to a “phase velocity” on bending waves which is also 
frequency dependant, according to Equation 2.12.  

For plates of thickness h, it may be simplified to: 

mat

matb

h
cc

!

8.1
=                                                                                                    (2.20) 

 

 

 
Figure 2.4    Bending wave velocity on plates made with different material, with the 
reference of the velocity on air. Data for the iron plate: ciron=517 m/s, h=10mm; 
Concrete: c = 370 m/s, h = 4cm; Brick: c=235m/s, h = 4 cm. 

As we can see in figure 2.4, there is no upper limit for the phase speed of 
bending waves, which violates physics. The reasons for this failure are the 
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certain simplifications that were introduced when deriving the bending wave 
equation; at high frequencies, the bending waves are transformed into 
transversal waves, which are non dispersive, and therefore has a constant 
velocity above the transition point. The limit of applicability of the analytical 
representation is defined in [2] as: 

h6=!  

There is a 10% error in equation 2.20, when the wavelength is on the order 
of six times the thickness of the beam. 

Another interesting effect of dispersion is the distortion of the signals 
travelling in dispersive medium. For a non-dispersive medium, all frequencies 
travel with the same speed. Since the phase speed in this case is frequency 
dependent, higher frequencies will propagate faster than lower frequencies 
and the form of the signal will therefore be distorted. This effect can clearly be 
seen in the figure below. 

 
 
 

 

 

Figure 2.5   Pulse distortion due to dispersion effect of a beam. 

 

 

2.4.2 Driving point impedance of Homogeneous Plates 

One of the most important concepts when we work with waves is the 
Impedance Z, which relates the force over the velocity in a specific area. 

Specification of the excitation region when we are dealing with impedances 
is needed to define it. It is clearly easier for the case where the exciting force 
acts only at one point. – Or in practical terms, on a region whose dimensions 
are considerably smaller than the wavelength of interest. In this case, the 
impedance is determined at the excitation point, and it is called “Driving point 
impedance”. 

The most straightforward method for deriving the driving-point impedance 
of a plate consists of solving the differential equation 2.14. A complete 
guideline is given in [2], being finally found that: 
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This simple result, which has been well validated by experimental 
measurements in [4] is rather surprising. The input impedance of a plate seems 
to be real, and frequency independent. Thus, could be considered in an electric 
analogy like a resistor with a value given by 2.21. 

It can be useful in further sections to find an expression for the velocity 
distribution on a plate [2], being: 
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Where )2(

0H  is the Hankel function of the second kind. For further 
simplifications, one may use the asymptotic expressions for the Hankel 
function, instead of a more exact representation. 
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2.4.3 Critical frequency 

As already pointed out in section 2.4.1, the dispersive behaviour of bending 
waves play a significant role in the fluid-structure interaction. 

Looking at figure 2.4, we can easily infer that there is a point where the 
bending wave velocity is equal to that of sound waves in the surrounding fluid 
at the so-called critical frequency, fc. The critical frequency is sometimes also 
called the coincidence frequency. Using the condition cB=c one finds the 
expression for the critical frequency as: 

hc
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l

c
8.12

22
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"
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Where c is the sound velocity of the surrounding medium, cl the 
longitudinal wave velocity in the plate material and h is the plate thickness.  

For any material we deal with, this is only possible for one single frequency 
for which � B = � , since the bending wavelength increases following: 
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While the wavelength of air increases inversely with the angular frequency: 

!

"
#
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One may note from eq.2.26 that the critical frequency only depends on the 
stiffness of the plate and the mass per length, and hereby increasing the mass 
or decreasing plate stiffness we can get higher critical frequency, and the other 
way around to decrease fc. 

As it is outlined in [2], there are some important insights concerning the 
strength and direction of sound radiation from bending waves.  One can 
divide the frequency range into two different regions: 

Bending waves that are longer than the wavelength in the ambient medium, 
� B > � , or in other words, bending waves having a frequency above fc (fast 
waves) causes a directionality effect, which is associated with relatively strong 
radiation.  

On the other hand, for � B < � , where waves are propagated at smaller 
velocities, (slow waves), the hydrodynamic short-circuit effect results in a 
considerable reduction of radiation, and consequently, efficiency is also 
reduced. Nevertheless, this working range is chosen instead to achieve a 
diffuse sound field of low directivity. 

Therefore, the critical frequency is one of the most important parameter 
related to sound radiation, which can easily be determined just by the ratio of 
mass and bending stiffness. 

 
 

  2.4.4 Modal Vibration of Bending Waves 

When dealing with finite structures, the requirement for the existence of 
standing wave patterns is already fulfilled, due to the termination of the 
structure.  

In the boundaries, the travelling wave and the reflections can interfere. At 
certain frequencies, all waves travelling on the beam will be in phase, 
generating a pure standing wave pattern which is called modal pattern or 
natural mode. Each modal pattern has natural frequency associated to it, 
which defines the frequencies at the structure would cause vibrating after an 
excitation. In contrast to infinite structures which can vibrate freely at any 
frequency, finite systems can only vibrate freely at its natural frequencies.  

A finite structure which is exposed to a continuous signal will vibrate at the 
excitation frequencies, but the spatial distribution will consists of a 
superposition of many modes with different amplitudes. 

In a sound radiation point of view, if the infinite structure is not excited at a 
natural frequency, the response of the structure will consist of a superposition 
of many modes.    
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Therefore, vibrating patterns involving only a few modes can also result in 
less sound radiation than each individual mode would produce. 

Furthermore, when many modes are excited, the interference pattern will 
again lead to an interruption of the cancellation since the modes will be 
decorrelated some degrees. Hence, it is desired to excite as many modes as 
possible by the source. Therefore, it is of importance to have a high modal 
density in the frequency range of operation.  

The bending wave modal density however turns out to be constant, 
irrespective of frequency because of the frequency dependent phase velocity of 
the bending waves.  

At high frequencies, the average number of modes for bending waves in a 
sheet having a surface area of S in a frequency band of width � f is: 

f
B

mS
N !

"

""
#!
2

 

Typically at least 10 modes have to be present in the frequency range of 
interest. 

But since the human perception of frequency is logarithmic, a constant 
modal density in reality leads to a lack of modes per frequency band at low 
frequencies. 

To avoid this effect, several measurements could be done. The positions of 
the excitation points can be chosen in a way to excite as many modes as 
possible, that it is, the positions have to be placed where no node line of a 
mode is present.  

This is the working principle of Distributed Mode Loudspeakers, which will 
be presented in the next chapter.  

  
 

2.4.5 Bending wave’s attenuation 
As we can infer with the content of the previous sections, there are two 

different parameters, related with structural properties of the plate, which 
strongly determine the sound radiation and the available frequency range: 
mass and stiffness. In this section, we will introduce the concept of damping, 
which has capital importance when we want to simulate infinite plates, as in 
the scope of the work.  

With damping mechanism we mean all mechanism which transform 
vibration energy, which implies some kinetic and some potential energy, into a 
different form of energy,  for instance, heat. This energy is then losses in the 
vibrating system. 

There are different methods to describe damping processes. The main 
difference between these models is their frequency dependency, which leads to 
different values of the complex modulus. Normally, we can expect a quite 
constant loss factor, therefore, the lost factor model is chosen, which is defined 
in [3] as: 

rev

loss

E

E
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Where Eloss is the lost energy per period and Erev  the reversible energy.  

There are several ways to damp a material, divided in two main categories: 
Non material damping mechanism and material damping mechanism. In this 
work, we will follow the procedure on [5], since we use the damping material 
to simulate an infinite plate, which can be achieved cancelling the reflections at 
the edges. Therefore, an attached layer of damping material will lead to absorb 
the waves at the boundaries. Usually, the lost energy of the single plate can be 
neglected. Then, an expression for Eloss and Erev for the attached layer is given in 
[3]: 
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#$                                                                                        (2.30) 

 

Where h2 is the thickness of the material, E2 its Young’s modulus, and d2 its 
loss factor. � m is the displacement of the neural axis line of the attached layer, 
which can be expressed by the bending angle �  and the distance a between the 
neural axis of the coupled system and the middle line of the attached layer.  

!" a
m
=                                                                                                               (2.31) 

 

 

 

 

Figure 2.6      Deformation of a beam with viscoelastic layer. 
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The reversible energy is given by the potential energy stored in the bending 
of the whole structure.  
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With the equations 2.31 and 2.32 we can express the loss factor of the 
complete structure for bending waves: 

.

2

22

2

B

ahE

b
!! =                                                                                                   (2.33) 

The expression above still contains two quantities which have to be 
determined: a and B. Only if the stiffness of the attached layer is small in 
comparison with the stiffness of the plate the neural axis will still equal the 
middle line of the plate. Then the distance: 
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=                                                                                                           (2.34) 

The derivation of the bending stiffness is more complicated, but it is shown 
in [3] that yields: 
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B +!                                                                                           (2.35) 

 As a conclusion, it is therefore important that the elastic layer is as thick as 
possible (the total damping increases with increasing thickness h2), and the 
damping layer therefore should have a high loss factor 

2
h  present in equation 

2.33. It should have high modulus of elasticity as well. Useful damping 
materials generally consist of filled high-polymer plastics, with modulus of 
elasticity greater than 1010 dyn/cm2 and with as high loss factor as possible. 

    

 

2.5 Bending Wave’s Sound Radiation 

2.5.1 Introduction 

For comparison and optimization purposes of the built loudspeaker 
structure, a deep understanding of the airborne sound radiation is required. 
The sound radiation behaviour depends to a great extent of the characteristics 
of the loudspeaker. So the geometric forms, material properties and kind of 
excitation are of great importance to determine the sound radiation of the 
plate. 

In this section, the basic mechanisms of the air-interaction will be discussed 
for infinite structures, which are what we are dealing for. Since the medium 
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where the radiation will interact is air, we can disregard the radiation loading 
and damping quantities. Moreover, the sound radiation below the critical 
frequency yields to diffuse behaviour, the radiation directivity will not be 
mentioned deeply since it is out of the scope of the work. 

The discussion of radiation and general remarks for simple configurations 
such as spherical point sources, monopole and dipole sources, can be found at 
[3]. This method describes the sound pressure of the vibrating plate summing 
up the contributions of all equal monopoles. The disadvantage of this method 
is that one has to know the velocity of the plate very well.  Due to the 
difficulties to determine that value, can be useful so to describe the radiation in 
another terms, especially for a quasi-infinite plate excited for both point source 
and line source.  

An infinite structure excited by a point source create free bending waves on 
the far field, but it also entail a flexural near field close to the source. The 
radiation of this near field constitutes almost all the sound power radiation 
when we are at sub-critical frequencies, where we are dealing for. For that 
reason, it is strongly important to find an expression for that sound radiation. 

 

 

2.5.2 Point excitation  

In this sub-section, an expression to determine the sound power level of 
plate excited by a point source will be developed. Again, radiation loading is 
disregarded.  

The sound power radiated by the point source can be written after further 
simplifications as: 
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For k<<kB, that is, for bending wavelengths that are smaller than the 
wavelength in the ambient medium, into another words, below the critical 
frequency, one can rewrite: 
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That means that for sub-critical frequencies, the radiation of sound power of 
point-excited infinite plates is independent of frequency. The flat frequency 
response that can be achieved is evidently the most important feature on 
loudspeaker design. Furthermore, we just need the input force and the mass 
per unit area to calculate it. This independence of stiffness is due because an 
increase in stiffness leads to longer wavelengths, and thereby to an increase in 
sound radiation, but it also results in a decrease of the excitation. 

One can realize this fact easily rewriting the equation 2.37 using the driving 
point impedance (Eq. 2.21): 
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Expressing the ratio B’/m’’ in terms of the critical frequency, it will lead to 
the following relation: 
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With  
c
!  = c/fc the critical wavelength. Thus, the radiated power decreases 

as the plate stiffness decreases, and with higher critical frequency.   
One can compare this value with the radiation of a baffled piston moving 

with the same velocity as the plate, driving a homogeneous plate. This 
comparison shows that the flexural near field radiates as much sound as the 
mentioned baffled piston with radius 3

/2 !"
B

, which is roughly a quarter 
wavelength.                

This theoretically constant radiated power for sub-critical frequency is not 
achieved empirically. We are dealing with a quasi-infinite structure, which is 
not entire real. When the acoustic wavelength becomes of the order of the 
characteristic dimensions of the panel, an interaction between the front and 
backside occurs. For that reason, at very low frequencies, the radiation 
characteristics of the structure changes to a dipole behaviour, with and 
associate lower efficiency.       

  One may use this simple result to estimate the radiation when the source 
in not a point source anymore, but rather a circle with radius a. The flexural 
nearfield will act like a piston with radius= 4/

B
a !+ resulting in a radiated 

power: 
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In practice it is usually much more convenient to use the sound power level, 
instead of absolute units. This level is defined as: 
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P

P
L

ref

P =                                                                                              (2.41)    

Where Pref = 10-12  watts.  

Finally, the following equation allows us to get the desired sound pressure 
level at a distance R from the source, assuming uniform propagation in all 
directions: 
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Where R!2 is the surface area of the hemisphere where the sound passes 
though at a distance R from the source.  

 

 

2.5.3 Line excitation 

As we will see in the next section, a line excitation may be a good choice in 
terms of Sound power radiated for the bending plate. For that reason, in terms 
of optimization of the present structure, the line excitation might be of interest. 
Therefore, brief understanding of its basic principles and equations is required. 
The complete derivation can be found at [7]. 

A plate drives with a line-shape excitation of force Fl with length l, which is 
large enough compared to the wavelength of the sound in the air can be 
expressed in terms of Sound power by the following equation: 
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Where Fl is the force per unit length l. As is easy to infer, an increase on the 
frequency will lead to a decrease in sound power. As in the foregoing section, 
we may rewrite the equation 2.43 in terms of velocity:           
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 Again, comparing the sound power emitted for the near field of a “quasi-
infinite” structure with the one obtained when we are dealing with a baffled 
piston with the same particle velocity as the excitation line, one can found that 
the plate can radiate as much sound power as a piston of area 33

/4 !" lS = . 
Here again, we must assume a frequency range below the critical frequency fc. 

   

 

2.5.4 Radiation ratios 

One generally desires to know not only the radiated power, but also the 
relation between the structural vibrations and that power. This relation is 
usually described in terms of the so-called radiation efficiency, defined as:   
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                                                                                                       (2.45) 

To find the value of this radiation efficiency one must know the average 
root-mean-square velocity of the radiating surface. When we are dealing with 
highly damped structures as in the purpose of this work, it is really difficult to 
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measure the velocity, because that velocity can vary considerably from point to 
point. Thus, one may not be able to define a meaningful average velocity or the 
corresponding radiation efficiency.    

As defined in [6], a more meaningful radiation ratio in the scope of this 
thesis could be the radiated power of the optimized structure under treatment 
related with the original structure before the optimization treatment: 

!
!

"

#

$
$

%

&
=

prev

opt

inc
P

P
SPL log10                                                                                         (2.46)            

 Now, it is possible to define and analyze the results of the optimization 
easily. 
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Chapter Three 
 

Simulation Models 

 
3.1 Introduction 

The foregoing section have established the basic principles and behavior of 
bending waves, their sound radiation and damping processes. Focusing the 
purpose of this work, a model based on the previous work [5] is presented, in 
order to find the critical features and constants that define the sound radiation 
when we are dealing with this kind of loudspeakers. The following section will 
treat with the selection of the plate material, in order to improve its sound 
radiation. 

After this selection, some MATLAB calculations will be presented to see the 
influence of the material parameters in its efficiency and working range. 

 

3.2 Bending Waves Loudspeakers parameters 

3.2.1 Working principles 

    The Distributed Mode and Bending Wave Loudspeakers is a recent 
development that has provoked much interest over the past few years [8-10]. 
These papers published on the subject have highlighted the differences of this 
class of loudspeaker to a conventional pistonic radiator. 

In general, we can subdivide the loudspeakers which work with the 
bending wave principle in two principal groups: 

DM Loudspeakers concerns a flat, thin, and light panel that radiates 
acoustics energy efficiently by exciting bending wave modes, and designed in 
such a way to obtain optimal modal distribution and where the driving point 
is also selected for optimal modal coupling. Therefore, reflections at the 
boundaries are produced and they will lead to pure standing wave patterns. 
The radiation produced is considered spatially diffuse, and it tends to a 
smooth function of frequency, combined with a pretty constant directivity. 

In contrast, Bending Waves Loudspeakers are sufficiently damped at the 
edges so that the bending wave reflections as well as the radiation from the 
edges are neglible. This idea was developed by Manger Sound Transducer [A]. 
Josef W. Manger relied on the principle of bending waves, which starting from 
the centre of a plate-like diaphragm, travel to the outside. The rigidity of this 
thin flexible panel increases from the centre to the outside at an equal ratio, 
very similarly to the basilar membrane in our ear. High frequencies quickly 
run out in the inner area of the membrane, whereas long waves (low 
frequencies) concentrically reach right to the edge at the star-shaped damper. 
There they are absorbed so that no reflections can come from the edge. 
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Therefore, it behaves as an infinite surface, as it was stated in the previous 
chapter. 

The previous structure was designed following the manger transducer 
principle, that it is, to build a pseudo-infinite plate, due to the easier way to 
control sound radiation in that way. Therefore, we will follow the same 
procedure. 

 
   

3.2.2 Parameters 

Bending wave loudspeakers can be made from a number of materials 
enabling a range of both acoustic and mechanical properties to be realised. By 
carefully selecting materials one can control the main parameters such as: 

• Surface density. 
• Bending Stiffness. 
• Location of the Drive point. 
• Damping and its function with frequency. 

 As we stated before on subsection 2.4.3, the critical frequency is the most 
important parameter, since we want to avoid strong directional radiation, 
which occurs above the critical frequency.  Hence, we want to drive the plate 
below that frequency, which can be easily determined from a simple static 
measurement of the ratio of the mass per area unit to the bending stiffness, 
following Eq.2.26. For the purposes of the loudspeaker, it might be sufficient to 
achieve a critical frequency around 16 kHz. 

 This parameter is directly proportional to the Young Modulus and the 
thickness h. Therefore, a low rigidity of the material may yields to a higher 
critical frequency. But, in addition, to that, the rigidity is important in terms of 
visualization: Using a very elastic material will lead to unwanted vibration of 
the plate and it may also influence the visualization and the image might 
become bleary. Moreover, the unwanted vibration will disturb the intentional 
vibration of the exciters.  

In terms of sound radiation, and according to Eq.2.37, the mass per unit 
area takes a capital role in the near-flexural field radiation. The less mass the 
higher SPL can be achieved. This mass is function of the thickness and the 
material density. Thus, a light and very thin material has to be used. 

Concerning the loss factor, which must be necessary high, in order to absorb 
the reflections at the boundaries; it affects the bending stiffness according to 
Eq.2.35. Nevertheless, it is not taken into account into this modelling. The 
localization of the driving point is not really important, since we are dealing 
with an infinite plate, and no modal node will be matched.       
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3.2.3 Sound Power level calculations 

Some calculations regarding Sound Power level have been made with 
different materials, to see the influence of the parameters mentioned above.  

There are several ways to characterise a source. The most common and 
representative way is the Sound Pressure Level as a function of frequency. As 
we can see at Eq.2.42, this parameter is just a function of the Sound Power 
Level and the distance from the source, hence, characterising this Power one 
can obtain immediately the Sound Pressure Level at the desired point, and it 
will show the same behaviour. 

The following calculations correspond to Eq.2.36. It describes the sound 
Power radiated by one side of the plate, and assuming it to be infinite.                      

The screen of the previous work has the aspect ratio of 140x165 cm. The 
original plate, which is used at this moment, is made by an expanded plastic, 
bounded between two paper layers. Hereafter the most important 
characteristics regarding the foregoing sound radiation and critical frequency 
are presented: 

• Thickness plate: 5mm. 
• Density plate: 110 Kg/m3. 
• Young Modulus: 3.456 x 108 N/m2. 

Table 3.1 shows the same parameters for some sample materials. They can 
be found at [B-C]. 

 

Table 3.1 Flexural Stiffness and density for different materials. 

Material Young’s Modulus 
[GPa]  

Density [kg/m3] 

Steel 190-210 7850 

Glass 72 2400-2800 

Concrete 17-31 2300-2400 

Aluminium 70 2710 

Polyethylene 0.2-0.7 900-950 

Polyether foam 0.2-0.5 25-28 

Natural Rubber 0.05 920 

Polymides 3-5 1140 

Polystyrene 2-2.5 1000 

 

Figure 3.1-3.3 shows the Sound Power Level obtained for some of these 
sample materials. As it is obvious, for an increasing value of the Young 
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modulus will lead to a decrease in the critical frequency, and the other way 
around. In the other hand, an increase in the material density gives us a 
decrease in the Sound Power level. The peak corresponds to the critical 
frequency, which is higher when the rigidity decreases, according to Eq.2.26. 

 

Figure 3.1             Sound power level of a steel and aluminium material.  

 

Figure 3.2             Sound power level of a Polyethylene and rubber material. 
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Figure 3.3            Sound power level of a Polystyrene and foam material. 

These previous figures show up the capital importance of the plate material. 
As we can see on figure 3.3, the best results can be achieved with thin 
polyether foam, obtaining pretty flat frequency response. The next figure 
shows a comparison with the previous structure. An increase in the critical 
frequency is achieved, as well as higher Power radiation. This is due to the 
material parameters, as it was discussed before. Furthermore, the frequency 
response seems to be even flatter. 

Another point to consider is the rigidity. If the material is very elastic, it 
may lead to unwanted vibrations on the plate that will difficult the vision 
purposes. But, the Elasticity Modulus is around the previous plate, so we don’t 
have to concern about this fact a priori. 

For those reasons, a thin, rigid and very light Polyether material will be 
chosen instead for optimization purposes.          
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Figure 3.4        Sound power level of the previous structure and polyether foam plate. 

Figure 3.5 shows the radiation after the optimization material process, 
according with Eq.2.46. 

 

Figure 3.5             Radiation ratio after material optimization 

 

We can see, as it was easily to infer looking at Figure 3.4, that we obtained a 
big increase in the SPL, since this parameter is higher at all frequencies in the 
new theoretical structure.        
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3.2.4 Commercial Materials 

As one can find at United States Patent 6031926 [D], the panel is defined as 
a rigid lightweight panel having a core of a rigid plastics foam e.g. cross linked 
polyvinylchloride or a cellular matrix, i.e. a honeycomb matrix of metal foil, 
plastics or the like, with the cells extending transversely to the plane of the 
panel, and enclosed by opposed skins e.g. of paper, card, plastics or metal foil 
or sheet. Where the skins are of plastics, they may be reinforced with fibres e.g. 
of carbon, glass, Kevlar (RTM) or the like in a manner known per se to increase 
their modulus. 

Envisaged core layer materials include fabricated honeycombs or 
corrugations of aluminium alloy sheet or foil, or Kevlar (RTM), Nomex (RTM), 
plain or bonded papers, and various synthetic plastics films, as well as 
expanded or foamed plastics or pulp materials, even aero-gel metals if of 
suitably low density.  

Again, the material that will be chosen depends of the availability of itself.     

 

 

 3.3 Exciter model for Bending Wave Loudspeakers     

It is possible to energise, or excite, A BWL in a variety of ways, depending 
on the application to which the loudspeaker will be put. However, in most 
cases, a simple electro-dynamic exciter will suffice.  

A universal type of exciter can be built around the “inertial” principle [11], 
this type of exciter has its magnet assembly freely suspended from the panel 
rather that being fixed as in the bender type. The lower limiting frequency is 
given by the fundamental resonance between the magnet assembly mass and 
its suspension stiffness. 

 

 

Figure 3.6                  Inertial Type electro-dynamic exciter 

 

 Now it is possible to use standard equivalent circuit analysis techniques to 
model the behaviour of the combination of exciter and distributed mode panel 
in the same manner as for conventional loudspeakers. Figure 2.7 shows the 

Panel 

Coil 

Compliant suspension 

Magnet 
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basic mechanical arrangement for a BWL with inertial type exciter which is 
converted to the equivalent circuit in figure 2.8: 

 

Figure 3.7                     Mechanical analogy of the exciter 

 

 

 

Figure 3.8             Equivalent Circuit for exciter and panel (impedance analogy) 

 
Although a full analysis would yield a complex expression for Zm, in most 

cases we can approximate its value to being purely resistive with a value given 
by Eq.2.21. 

The diagram above shows us a second-order high-pass filter, and it will 
therefore be possible to calculate a system fundamental resonance in the same 
way as for a conventional loudspeaker. The electrical impedance of the exciter 
and panel combination is given by: 
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After further simplifications, we will lead to the expression below for the 
total impedance: 
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  Examining the circuit, one can note that the coil mass appears in series 
with the panel impedance, and this will contribute to a slight reduction of high 
frequencies.    

Sometimes it is more useful to handle the inverse of the impedance, which 
is termed mobility, defined as the complex ratio of velocity and force taken at 
the same point during simple harmonic motion [12].  The use of the mobility 
usually facilitates the process of evaluating the vibrating structures.  
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The applied force is given by the magnet and voice coil and can be 
expressed as: 
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Since the electro dynamic exciter is a type of moving coil system we can 
express the high frequency coil impedance as [9]: 
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If we were modelling a mass controlled device such as a conventional 
moving-coil loudspeaker, we would examine diaphragm acceleration since 
this is proportional to radiated SPL. A BWL, however, it has instead 
substantially resistive mechanical impedance, therefore we must inspect the 
velocity to characterize it.     

Figure 3.9 below can be considered as a good indication of the bandwidth 
available from the BWL, which is approximately 30Hz-20 kHz, more than 
sufficient for our purposes. A further discussion can be found at [8]. The 
parameters used have been taken from [11].        
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Figure 3.9             Velocity at the driving point for the moving-coil system. 

Referring to Figure 3.8, we can see that coil mass is in series with Zm, and it 
contributes to a slight decrease in high frequencies. However, due to its almost 
uniform power in all frequencies, this energy reduction at very high 
frequencies may prevent the loudspeaker sounding too bright. 

Nevertheless, some assumptions have been made that can jeopardize the 
validity of the model. The most important is the approximation of the panel 
impedance as a pure resistance. As it is found in [2], only a small error will be 
introduced, especially at low frequencies. 

Moreover, this result assumes a point driving, which is not entirely real. We 
have a small radius around the exciter. Additionally, no terms for the radiation 
impedance of the panel have been included.   

  

 

3.4 Moving-Coil Driving Technology 
   A new transducer technology has been developed recently by Sonic 

Impact technologies [F], which can be used as a first driving option for our 
optimization purposes.  

The design-patented by NXT Audio transducers produces high-quality 
sound when placed against a wide range of materials including glass, plastics, 
metals, wood, composites and even some fibrous materials. 
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Figure 3.10                                Sonic Impact NXT driver  
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Chapter Four 
 

Material Testing 

 
4.1 Introduction 

In order to find the optimum material speaking in terms of sound radiation 
and frequency response as it was discussed previously; four different sample 
materials with different thicknesses were tested. Again, we guided our 
research taking into account the availability of the material.  

Moreover, three different driving technologies were tried, according with 
subsection 3.4.  

To perform the measurements, a vibro-acoustics lab was used. With the aid 
of a Maximum Length Sequence System Analyzer [G], one can measure and 
analyze many types of linear systems within audio and acoustics area. In 
addition, the XY-control machine [13] allows us to scan and measure the 
impulse response of the surface of the bending plate when we excited it using 
a Sonic-audio [H] driver, (a commercial exciter with NXT driving-based 
technology).          

The MLS technique, in contrast with the well-known white noise FFT 
analyzers, employs a special type of test signal called maximum-length 
sequence which is in the other hand deterministic and periodic but retains 
most of the desirable characteristics of white noise. It measures the impulse 
response – the most fundamental description of any linear system- from which 
a wide range of important functions are derived through computer-aided 
MATLAB® post-processing. The transfer function, which allows us to 
characterize each material and its sound radiation properties, is obtained by 
applying an FFT to the impulse response measured [14].  

       

 

4.2 Set-up 
The four plated structures are composed of a kind of polyether foam 

material, which essentially has the desired characteristics of low weight and 
rigidness. At this moment, values for the Young modulus or density were not 
measured or provided by the manufacturer. Three of them have a paper layer 
covering their surfaces, providing a smooth, bright surface. On the other hand, 
the last one is just the foregoing material, which may give us a more diffuse 
sound field. The dimensions are the same in all the samples, being 70x100 cm. 
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Figure 4.1                            Panel dimensions and thickness 

The MLSSA system was connected by a parallel port to the XY system, 
which scans the surface and measures the impulse response for each point 
defined for the control software. The measurement matrix grid was composed 
by twenty points. An electrets microphone is in charge of collecting the signal 
provided by the panel, where a Sonic-Impact® exciter is attached on the back 
center. This exciter is fed by a Yamaha MS-35 Power amplifier, which gives us 
the sufficient driving power to be ahead of background room noise. Further 
information about the equipment can be found in Appendix 1.  

The panel is hung up over the ceiling with a fish nail. In order to disturb as 
less as possible the panel behavior, small springs support it on the corners.  
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Figure 4.2                        Anechoic measurement set-up.  

Two different approaches were used to obtain the correspondent transfer 
function: Simulate anechoic measurements and Near-field measurements. 

 The “anechoic” response of the panel is determined by first measuring the 
combined room/panel response at 1m and then using the markers to select out 
only the initial “anechoic” segment of the impulse response, where just the 
initial transient is taken into account, and therefore no reflections of the room 
are included. This interval is referred to as the time window. The true 
frequency resolution using a rectangular time window of T is 1/T, i.e. if 
T=5ms, the frequency resolution will be then 200Hz. The frequencies below 
this factor cannot be considered as valid and should be ignored. 

As we can see in the anechoic measurements on appendix 2, the true 
frequency resolution given by the time window is not enough to characterize 
properly the transfer function in the low frequency range. The room’s 
dimension and its absorption are not sufficiently large to spread and attenuate 
the reflections from the ceiling and walls, which leads to a short time between 
the arrival time of the first room reflection relative to the arrival time of the 
direct sound, and therefore a short time window, which leads to a poor 
frequency resolution. 

On the other hand, one can measure and combine individual points of near 
field measurement to obtain the correct overall low frequency anechoic panel 
frequency response. This method was originally proposed in an award 
winning AES paper [15]. In this case, the microphone is positioned as close as 
possible to the panel. Near-field loudspeaker measurements correctly predict 
the true anechoic response only below roughly 4290/d, where d is the diameter 
of the exciter.          
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Therefore, the resulting frequency response will be a combination of the 
“anechoic” transfer function for the frequency range above the true frequency 
resolution, and Near-field measurements in the low frequency range.    

 

 

4.3 Results and discussion 
In this subsection, the transfer functions obtained applying the combined 

method are presented and discussed for all the sample panels. A comparison 
with simulation is also given to verify that this model is accurate and it can be 
taken into account.  

Figures 4.3-4.6 show the transfer function for each structure. 

 

Figure 4.3 Transfer function magnitude for Polyether foam with and attached paper 
of h=0.3 cm 
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Figure 4.4 Transfer function magnitude for Polyether foam of h=0.4 cm 

 

 

Figure 4.5 Transfer function magnitude for Polyether foam with and attached paper 
of h=0.5 cm 
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Figure 4.6 Transfer function magnitude for Polyether foam with and attached paper 
of h=1 cm 

Analyzing the results, we can infer that the measured transfer functions 
compares well with the analytical solution given by Eq.2.36. As we said, the 
Sound Power Level, and therefore the Transfer Function follows 
approximately the model of subsection 3.2.3.  

The following plot shows the foregoing comparison between the model and 
the measured transfer function for h=3mm. We must say that they fit each 
other reasonably well, so the model can be considered a good approximation 
to the real behaviour. The slight decrease at high frequencies in the measured 
function may be due to the load of the coil exciter. When a small area is used to 
drive the panel instead of a point source, then the diameter of the drive patch 
will decrease the response at high frequencies.   
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Figure 4.7 Measured and calculated Transfer Function comparison.  

For an increasing thickness, the transfer function gives us lower values, due 
to the quadratic inverse relation between m’’ and SPL, related by Eq.2.37    

Moreover, the frequency response becomes rougher when the thickness 
increases, which can be due to a decrease in the critical frequency, since we can 
just consider valid the results of Eq.2.36 when  f<<fc. 

In all the plots we can see a peak in about 2300Hz. This is probably due to 
some exciter resonance. It also appears in the previous structure, whose 
transfer function can be seen on Appendix B. The manufacturer does not 
provide any further information.  

For these reasons, the best choice can be the polyether foam material with 
thickness=3mm. It provides the flattest and the highest Transfer Function for 
the same set-up conditions. 

Since our aim is to drive the panel below the critical frequency about fc= 
15kHz, we must characterize it, which cannot be observed just by looking at 
the transfer function. Therefore, we will measure the Young modulus for the 
two different samples material and the critical frequency will be obtained.    
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4.4 Panel mechanical measurements 

4.4.1 Young Modulus measurement  

In order to find if we can achieve the desired critical frequency with the 
available materials, measurement of Young Modulus is required. This can be 
done by the Complex modulus apparatus 3930, provided by Brüel&Kjaer. The 
apparatus is composed of two Magnetic Transducers MM0002, one Capacitive 
Transducer Type MM0004, and a special test jig which provides firm clamping 
of the samples with very low parasite losses, and precise mounting of the 
transducers with respect to the sample [16]. 

    A bar shaped material sample is clamped at one end. The electronic 
equipment consists of an MLS sequence driving the exciting transducer and an 
amplifier to amplify the signal picked up by the pick-up transducer. Samples 
cut from non-magnetic materials have to be made susceptible to magnetic 
fields by fastening a small ferro-magnetic disc.  Photograph of the set-up is 
included in Appendix C. 

Young Modulus is determined by reading the resonant frequency fn on the 
transfer function measured and measuring the constants of the sample bar, 
following the expression:  
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Where l is the free length, h the thickness, �  the density in g/cm3, and kn the 
coefficient given by table 1 in [16]. 

 
Figure 4.8 Transfer function magnitude of paper foam as a function of frequency. 

The resonant frequencies were found by Matlab® processing, and the 
material constants for the two different samples were measured: 
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Table 4.1                                        Material parameters 

 

 Sandwich material  Polyether foam 

Density 0.11 g/cm2 0.08 g/cm2 

Length 18.3 cm 22.1 cm 

Thickness 0.5 cm 0.4 cm 

2nd Resonance freq. 218 Hz 80 Hz 

k2 value 22 22 

 

The equation above gives us the value for the modulus of elasticity E of the 
sandwich material and polyether foam material: 
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 Inserting it into Eq.2.5 and 2.26, it yields to the following critical 
frequencies for the different structures. 

Table 4.2          Critical frequency for different sample materials. 

 

  Critical frequency 

  Polyether sandwich of h = 0. 3 cm fc= 17379 Hz 

  Polyether foam of h=0.4 cm  fc= 16007 Hz 

  Polyether sandwich of h= 0. 5 cm fc= 8566 Hz 

  Polyether sandwich of  h= 1 cm fc= 4083 Hz 

  Previous structure h=0.5 cm fc= 6981 Hz 

 

 

As we expected looking at foregoing equations, the thickness takes a capital 
role defining critical frequency. This parameter modifies the stiffness-mass per 
length ratio, lessening it when the thickness decreases, since there is an inverse 
relation between them. 

Furthermore, comparing with the previous structure, a substantial critical 
frequency increase can be achieved. Indeed, all the sound power will be 
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radiated by the near-field in the range of interest, which means that higher 
diffuse field is obtained. 

We can conclude then that for our optimization purposes, polyether foam of 
thickness h=0.3 cm will be chosen instead. 

 

 

4.4.2 Determination of the mechanical impedance 

In order to characterize and validate the vibrating panel with the theoretical 
model, the mechanical impedance was measured, both for the damped and the 
un-damped plate. Ideally, the mechanical impedance of the un-damped plate 
should show the panel modality, while the resonances and anti-resonances of 
the modes in the damped plate should be strongly attenuated, due to the 
quasi-infinite behaviour of the damped panel. 

It is possible to use a direct dynamic measurement of the panel mechanical 
impedance with an impedance head. Two transducers are used together. A 
force transducer measures the force applied to the panel, and an accelerometer 
measures the movement of the panel. The transfer function of force/velocity is 
directly related to the mechanical impedance. Both outputs are charge, which 
is therefore conditioned by a charge amplifier that filters and amplifies the 
charge from a transducer to a voltage signal output that can be acquired by the 
VXI acquisition station, which comprises the FFT analyser. The transfer 
function is therefore: 
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However, the force measured by the force transducer is not the true force, 
bus has added to it the inertial forces of the sensing tip. This force needs to be 
subtracted when calculating the mechanical impedance: 
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Where m is the mass of the sensing tip. The velocity is found from the 
acceleration by scaling by j� -method. 
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Finally the mechanical impedance is therefore obtained: 
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Figure 4.9 Schematic for impedance measurement set-up.  

The mechanical impedance can easily be obtained from a measurement of 
the transfer function and knowledge of the tip mass, which can be seen at the 
calibration chart of the transducer. 

The tip mass also determines the upper frequency limit of the measurement. 
When the inertial forces of the tip are comparable to the forces of interest, then 
it becomes progressively more difficult to extract the true force from the 
combined force. An estimate of the upper frequency limit is given by: 

m

Z
F m

upper 2=                                                                                                          (4.6) 

 Figure 4.10 illustrate the comparison of the measured mechanical 
impedance of the chosen panel and the theoretical value for the same panel 
obtained by Equation 2.21. 
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Figure 4.10 Comparison between measured mechanical impedance and infinite 
impedance at the drive point up to Fupper. 

Analysing the graphic, we can see that although the measured mechanical 
impedance shows the panel modality in the resonance and anti-resonance 
peaks, the value of the impedance settles to that of the infinite plate. This 
confirms that the value for an infinite plate can be conveniently used as the 
load for the electrical equivalent circuit, and it is a good approximation of the 
real value. Furthermore, in the very low frequency range we can see the 
expected compliance control, due to the suspension of the exciter. 

This measurement has an upper frequency limit, and it is only accurate up 
to about 2500 Hz, due to the finite size and effective mass at the measuring 
point. The measured impedance compares well with the analytical solution, 
since it is taken over a small area.  

 

 

4.5 Driving Alternatives Transfer Function Measurements 

4.5.1 Introduction 

Usually, Bending Wave Loudspeakers and DM loudspeakers are drived by 
the popular NXT-patented technology, which essentially consists of a magnet-
voice coil system. Such an exciter works on the same principle as an ordinary 
moving coil loudspeaker.   

But, however, it is possible to energise, or excite, a DML in a variety of 
ways, depending on the application to which the loudspeaker will be put. 
Especially in the last years, when the DML established more and more, the 
development of exciters increased rapidly. These different exciters vary in size, 
mass and working principle, as well as in the efficiency of sound radiation. 
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In the purpose of the work, it is important that the mass of the exciter is as 
low as possible, for several reasons: to attenuate the reduction at high 
frequencies due to coil mass and to reduce the load of the panel. 

Therefore, a brass exciter and a piezoelectric driver were tested. The circle 
brass driver has an extremely low mass, with theoretically will give us a better 
response at high frequencies. The piezoelectric exciter, due to its momentum 
working principle might   minimize the interaction between the two line 
exciters, which possibly allow us to remove the damping material between 
lines.  

 

 

4.5.2 Results and discussion 

In this subsection, the results of the measurements that were performed will 
be presented. In order to keep this section reasonably long, we will show the 
best results for each driver. The results for the other panels are included at 
Appendix B.  

 

Figure 4.11 Transfer Function Magnitude for the brass exciter, panel of 0.5cm 
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Figure 4.11 Transfer Function Magnitude for the piezoelectric exciter, panel of 0.3 
cm 

As we can infer looking at the results, the piezoelectric driver turns into a 
perfectly valid driving alternative. We must say that the results are 
surprisingly good, achieving a considerable flat frequency response at almost 
every single frequency. Moreover, the NXT exciter resonance is strongly 
attenuated. The decay at high frequencies starts in about 20 kHz, which is 
more than sufficient for our purposes.   

As we said, due to the extremely low mass loading, the slight decay at high 
frequencies cannot be considered. 

The main drawback is the lower Transfer Function level comparing with 
the NXT transducer. This could be a great disadvantage in sound 
reinforcement and PA systems [18], but, since our aim is to set the 
loudspeaker 1.5 meter from the listener position, it doesn’t seem to be so critic. 
Moreover, this level will be increased in about 10 dB when we drive the panel 
with a line, due to the quasi-cylindrical spreading.  

The brass exciter provides us a higher level, and it also get rid of the NXT 
exciter resonance, showing a pretty flat frequency response as well. 
Nevertheless, there is a reduction in radiation of about 20dB at low 
frequencies, so it will be disregarded. 

So, as a conclusion of all the material testing that has been carried out, we 
may say that a panel of thickness h = 0.3cm allow us to work at the desired 
frequency range, and a piezoelectric driver gives us the best features in terms 
of sound radiation.  

 
 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:38  44 

Chapter Five 
 

Performing the Loudspeaker 

 
5.1 Introduction 

At this point, the best material and driving technology have been selected.  
This chapter will be focused on the construction and design of the final 

vibrating panel.  
The first part will explain the loudspeaker set-up, where our aim is to build 

a Stereo Dipole system for the virtual reality environment.  
Secondly, the damping properties and configuration that will allow us to 

simulate the desired infinite plate will be established. 
To conclude, the line-shaped excitation will be constructed by a row of 

piezoelectric drivers, and finally, the Transfer Function will be analyzed and 
presented. The loudspeaker will be settled on our virtual reality environment, 
where the panel would act as passive screen at the same time. 

 

 

5.2 The Bending Wave Line Stereo Dipole – Final 
Application 

The final aim of the loudspeaker that has been designed is to provide the 
sound radiation acting as a “Stereo Dipole” that can simulate virtual images 
around a single listener position for virtual reality applications. Moreover, the 
loudspeaker will act as a passive screen where images can be projected.  

To understand it in a global point of view, it would be necessary to explain 
what means “Stereo Dipole” and its features and applications. 

Hamada’s researches [19] demonstrated that a system comprising only two 
closely spaced loudspeakers can create very convincing virtual images around 
a single listener. Under certain circumstances, it is possible to give a listener 
the impression that there is a sound source, referred to as a “virtual source”, at 
a given position in space where no real sound source exists. One way to 
achieve this is to ensure that the sound pressures that are reproduced at the 
listener’s ears are the same as the sound pressures that would have been 
produced there by a real source at the same position as the virtual source.  

In practice, however, it is advantageous that the desired signals be 
reproduced accurately not only at the listener’s ears, but also in the vicinity of 
those two points since this will allow moderate head movement without 
letting the illusion of the virtual image break down. 

Hamada showed that the area which the sound field can be controlled is 
larger when the two loudspeakers are close together. So, reducing the 
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loudspeaker span into about 10º, we may improve the system’s robustness 
with respect to head movement.  

The geometry and solution of the problem can be found at [19]. We can say 
here that to implement a virtual source there are two main ways: Crosstalk 
cancellation and Virtual source imaging. Both can be implemented by Digital 
Signal Processing adding a variable gain and a positive delay corresponding to 
the time it takes the sound to travel the path length difference. 

   

 

Figure 5.1                       Picture showing the final configuration 

 

The foregoing plot illustrates the final configuration, where an “optimized” 
panel, in terms of critical frequency and sound radiation will provide the 
sound towards the listener. This radiation is provided by two lines of 
piezoelectric sensors, giving us a pseudo-cylindrical wave front, increasing the 
sound level and the degree of freedom of the head in the vertical direction.  

That listener will be sit 1.3 meters away from the sound source, and the 
lines are separated 10º from respect to the listener position acting as the 
mentioned “Stereo Dipole”. As we said, the bending wave panel will act as a 
passive screen at the same time. 

So, combining the passive screen and the virtual source imaging we can 
simulate virtual reality environments. The design of the DSP depends on the 
desired application. 
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5.3 Simulating an Infinite Plate - Damping 
As we stated before, the Damping mechanism will allow us to modify the 

behaviour of the plate, eliminating the unwanted reflections at the edges and 
boundaries, so the plate can be finally seen as an infinite structure which 
vibrates freely instead of a superposition of modes.  

In our damping mechanism, we will follow the Manger transducer 
principle, where the edges are covered by a star-shaped damping material. The 
waves will therefore be absorbed and no reflection will stand.  

Swedac Acoustic [H] supports our work providing us some of their 
damping samples and helping us to select the optimum material. 

Finally we used two layers of viscoelastic damping layer DG A2, which 
gives us an averaged lost factor around 0.2-0.3. Usually a lost factor of 0.1-0.2 is 
sufficient for our purposes. 

The next picture shows the final appearance of the loudspeaker. As we can 
see, the damping layer includes a thin metal foil to constrain it, since it can 
improve the response for wide frequency range applications. 

 

    Figure 5.2                         Loudspeaker with Damping layer. 

 

To probe if the damping mechanism worked in the desired way, we 
performed two different tests: 

• Finite Element Modelling. 
• Mechanical Impedance Measurement. 
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In the first case, we modelled the vibrating surface of the plate by Finite 
Element Modelling for both cases, un-damped and damped plate. Ideally, the 
un-damped plate should show the modal distribution, since the oncoming 
waves are still acting. Adding a damping structure with the same lost factor 
that the material used, we can see theoretically how the vibration pattern 
changes to a “quasi-infinite” structure.  

 

 

 

Figure 5.3                   Vibration pattern of the un-damped structure. 
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Figure 5.4                         Vibration pattern of the damped structure. 

As we can see in the previous plots, the vibration of the un-damped 
structure shows the expected random behaviour, since there is still modes 
acting on the surface and superimposing each other.  Moreover, stronger 
radiation is achieved due to the foregoing superposition. 

Otherwise, for the damped plate, lower radiation is obtained, since the most 
of the waves are absorbed by the damping mechanism. But, the radiation 
pattern show almost perfect spherical movement. Hence, looking at the FEM 
result, we can say that the damping mechanism seems to work in the desired 
way.  

But we haven’t test the behaviour in the real structure yet, since the FEM 
just gives us a computer simulation. So, measuring the mechanical impedance 
measurement we can determine the damping performance. As we explained at 
subsection 4.4.2, the mechanical impedance of the un-damped plate should 
show the panel modality, while the resonances and anti-resonances of the 
modes in the damped plate should be strongly attenuated, due to the quasi-
infinite behaviour of the damped panel. The same set-up was used, and the 
result is plotted in the following figure. 
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Figure 5.5          Drive point mechanical impedance of the Damped plate. 

Comparing with figure 4.10, we can easily see how the resonances are 
strongly attenuated by the damping layer actuation, so both tests gives 
positive results, and therefore we can rely that an infinite structure was 
achieved.   

 

5.4 Line Shaped Stereo System 
After adding the damping mechanism, the line of piezoelectric sensors was 

built. Since we need special high-voltage amplifiers to drive the line and we 
had just one available at the department, just one line of twenty piezo-sensors 
was attached and measured. The next picture shows the final appearance of 
the panel, where another line should be attached on the other side. The FEM 
shows also how the “pseudo-cylindrical” wave front looks like.   

 

The next plot shows the Transfer function for the final configuration.  
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Figure 5.7 Transfer Function magnitude for piezo-line exciter, panel of h=0.3 cm 

As we can see, it keeps essentially the valuable flat frequency response, 
with an increase of about 8-12 dB due to the piezo-line excitation, giving us 
higher values at every frequency.   

Another feature is that, when we measured the near-field scanning in the 
vertical direction, the Transfer Function doesn’t vary noticeable, so we can 
consider a sort of cylindrical spreading in the vertical direction.     

Another important fact is that we obtained lower values at low frequencies. 
Usually, when we drive a structure with an array of exciters, better low 
frequency response is achieved. Again, the decay starts over 20 kHz, which 
allows us to work in the whole audio range. 

 We had no more time when the work had to be ready, and this fact should 
be investigated further.  
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Chapter Six 
 

Conclusions and further procedures 

 
The main objective of this thesis work was to build an optimized bending 

wave panel in terms of sound radiation and critical frequency. Moreover, a 
line-shaped piezoelectric exciter is responsible for the pseudo-cylindrical wave 
front of the structure. As we explained before, our final aim was to build a 
“Stereo Dipole” where virtual images can be created around a single listener 
using Digital Signal Post-Processing. 

The radiation of sound from vibrating panels appeared very dependant of 
the material properties of the plate, such as density, rigidity and thickness. 
Therefore, as it was showed, a very light and thin material has to be used.  

After finding the best solution in theoretical terms, some sample materials 
were tested. As we inferred, the thinnest one gave us the highest value in 
terms of critical frequency, and its Transfer Function appeared reasonably flat. 

Three different excitation methods were tested, and we found that a 
piezoelectric film can be considered as a perfectly valid alternative, with a 
pretty flat Transfer Function and very low mass, which reduces the load of the 
panel. Moreover, due to its momentum working principle, no damping might 
be needed between lines to keep the infinite behavior, since the interaction 
between them is almost neglected and it can be disregarded.  

Finally, the whole structure was built, with a damping layer attached on the 
top to provide the desired infinite behavior. As we saw, the performance of the 
damping seems to be good. Its transfer function was measured, showing again 
a pretty flat response. 

Our last aim was to build the two stereo lines, and measure the combination 
of Transfer Function and Sound pressure level from the listener’s position. 
Since we had shipping problems during the time of the procedure, and only 
had one High-voltage amplifier available, the experiment could not be carried 
out. Thus, the results are just due to one line of piezoelectric sensors. The 
response of this system can be analyzed further. 

Hence, future steps of the work may concern the stereo system. Another 
line has to be attached, and its combined Transfer function should be 
measured and analyzed. It would be interesting to investigate if any damping 
should be added between lines to keep the infinite behavior. 

When both lines will be ready, it would be necessary to identify and solve 
the “Stereo Dipole” problem, using either Crosstalk cancellation or Virtual 
Image sourcing for the specific application where the panel would like to be 
settled. Some psycho-acoustics test can be done to see if the panel can be 
reliable as a “Stereo Dipole” source. 

As we tested, the panel can act as a passive screen, but the size might not be 
properly selected. Therefore, if the system seems to work fine, it would be nice 
to re-build the system in a bigger panel.     
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Appendix 

 
A. Equipment list 
 
B. Anechoic Measurements results. 

 
C. Set-up photos  

 
D. MATLAB® routines 
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A. Equipment list 
 

Transfer function measurements: 
• X-Y system: 

- Control module GS-C200 

- Driving unit control 

- Network card 

- Macintosh plus with X-Y control software 

- Toshiba 5200/100 with MLSSA system  

 
• Yamaha M-35 Power Amplifier. 
• Omnidirectional Electret Condenser microphone WM-60A. 

- Sensitivity: -62 ± 3dB  
• Sonic Impact Soundpads. 

- Impedance: 8 Ohms 

- Power rating: 6W according to IEC 268-5 

- Weight: 80 grams 

    

Young modulus measurements: 
• Brüel&Kjaer Complex Modulus Apparatus type 3930 
• Larson & Davis Power Amplifier 2200C 
• Yamaha M-35 Power Amplifier. 
 

Mechanical impedance measurement: 
• Brüel&Kjaer Force Transducer Type 8203. 
• Yamaha M-35 Power Amplifier. 
• ENDEVCO Accelerometer Model 25B. 
• Brüel&Kjaer Nexus Conditioning Amplifier. 
• VXI acquisition station.  
• TriggerHappy integrated software. 

 

 

Piezoelectric Transfer Function measurements: 
• Hitachi Oscilloscope V-212. 
• High voltage Amplifier LE 150/025. 
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• X-Y system: 
- Control module GS-C200 

- Driving unit control 

- Network card 

- Macintosh plus with X-Y control software 

- Toshiba 5200/100 with MLSSA system  
• Omnidirectional Electret Condenser microphone WM-60A. 

- Sensitivity: -62 ± 3dB 
• Piezoelectric Exciter. 
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B. Material testing complementary results 
 

 
Figure B.1    Anechoic Transfer function magnitude for Polyether foam of h=0.4 cm 

 
Figure B.2          Anechoic Transfer function magnitude for Polyether foam with and 

attached interlayer of h=0.3 cm 
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Figure B.3:            Transfer function magnitude for Polyether foam with and attached 

interlayer of h=0.5 cm 

 
Figure B.4         Anechoic Transfer function magnitude for Polyether foam with and   

attached interlayer of h=1 cm 
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Figure B.5        Transfer Function Magnitude for the brass exciter, panel of 0.3 cm 

 

Figure B.6            Transfer Function Magnitude for the brass exciter, panel of 0.4cm  
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Figure B.7               Transfer Function Magnitude for the brass exciter, panel of 1 cm  

 

Figure B.8    Transfer Function Magnitude for the piezoelectric exciter, panel of 0.4 cm. 
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Figure B.9  Transfer Function Magnitude for the piezoelectric exciter, panel of 0.5 cm 

 

Figure B.10     Transfer Function Magnitude for the piezoelectric exciter, panel of 1 cm 
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C. Set-up photos 
 

 

Figure C.1                     Near-field transfer function measurements 

 

 

Figure C.2                   Anechoic transfer function measurements 
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Figure C.3                  Young modulus apparatus measurements 

 

 

Figure C.4                        Mechanical impedance measurements. 
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D. MATLAB®  routines 
 

Sound Power level code 

 
clear all 
clc 
 
 
rho = 1.21 ;                      % Density of air. [Kg/m^3] 
f = 20:10:20000;                  % Frequency vector. 
h = 0.003;                        % Thickness plate [m] 
mat_density_1 = 163;              % Material density [Kg/m^3] 
 
m = mat_density_1*h;              % Mass per area [kg/m^2] 
 
c_air = 343;                      % Velocity of air. [m/s] 
w = 2*pi*f;                       %  [rad] 
k = w/c_air; 
 
E_mat = 2.29e8;                   % Modulus of elasticity [N/m^2] 
poisson = 0.3;                    % Poisson constant 
 
B = E_mat*h^3/(12*(1-poisson^2)); % Bending Stiffness 
 
k_b = (m/B)^0.25*sqrt(w); 
 
 for i = 2:length(f) 
 
 k_r = 0:k(i)/1000:k(i-1); 
 constant = rho*c_air*w(i)^2/(4*pi*B^2); 
 integral = k(i)*k_r./((k_r.^4-k_b(i)^4).^2.*sqrt(k(i)^2-k_r.^2)); 
 Power(i) = constant*trapz(integral); 
 
 end 
 
  W_ref =1e-12;                  % Reference power level.[Watts] 
  L_p = 10*log10(Power./W_ref); 
 
  figure(1) 
  semilogx(f,L_p,'k') 
  grid on 
  axis([100 20000 40 150]) 
  title('Sound power level of a Polyethylene structure of h=0.3') 
  xlabel('Frequency [Hz]') 
  ylabel('Sound power level [dB re 1e-12 Watts]') 

 

  

 

 

 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:38 65 

 

Driving point mobility code 

 
clear all 
clc 
 
rho = 1.21 ;                    % Density of air. [Kg/m^3] 
f = 1:2:20000;                  % Frequency vector. 
h2 = 0.003;                     % Thickness of the panel [m] 
mat_density = 163;              % [Kg/m^3] 
m = mat_density*h2;             % Mass per unit area [Kg/m^2] 
c_air = 343;                    % Velocity of air. [m/s] 
w = 2*pi*f;                     %  [rad] 
 
E_mat = 2.29e8; 
poisson = 0.3; 
B = E_mat*h2^3/(12*(1-poisson^2)); 
 
Z_m = 8*sqrt(B*m);             % Purely resistive panel impedance 
bl = 2; 
 
i = 1/8^0.5; 
 
M_mag = 60e-3; 
M_coil = 0.25e-3; 
R_m = 50; 
C_sus = 1.17e-4; 
Ree = 7.21; 
fre = 71500; 
ExpoRe = 1.164; 
Le = 62.07e-6; 
ExpoLe = 0.875; 
 
Z_par = (Z_m + j*w*M_coil)*M_mag/(Z_m + j*w*M_coil+M_mag); 
Z_e = Ree.*(1+f./fre).^ExpoRe + 
(j.*w.*Le).^((1+ExpoLe.*(w.*Le./Ree).^2)./(1+(w.*Le./Ree).^2)); 
Z_tot = Z_par +R_m + 1./(j*w*C_sus); 
 
F = bl*2.83./Z_e; 
Y_tot = 1./Z_tot; 
v3 = 20*log10(abs(Y_tot.*F)); 
 
  figure(3) 
  semilogx(f,v3,'k') 
  grid on 
  title('Driving Point velocity') 
  xlabel('Frequency [Hz]') 
  ylabel('[dB]') 
  axis([1 20000 -65 -30]) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:38  66 

Critical frequency code   

 

             
[mlsvec,mlsfs,stimulus_amp,mlsdf] = readmls('EV-84.frq','EV-84','Withir') 
inc = mlsdf; 
f = 0:inc:mlsfs/2; 
f1 = 20:10:20000; 
db = 20*log10(abs(mlsvec')); 
 
%Finding the resonance frequencies 
f_res2 = inc*find(db==max(db)); 
f_res3 = inc*find(db==max(db(400/inc:700/inc))); 
f_res4 = inc*find(db==max(db(1000/inc:1500/inc))); 
 
length1 = 18.3;   % [cm] 
density1 = 0.11;  % [gr/cm^3] 
h1 = 0.5;         % [cm] 
Kn_2 = 22;               
 
E = (48*pi^2*density1*((length1^2/h1)*(f_res2/Kn_2))^2)*1e-1;  %[N/m^2] 
 
h_2 = 0.003                    %[Thickness in meters] 
density_2 = 163;               %[Kg/m^3] 
m_l = density_2*h_2;           %[Kg/m^2] 
poisson = 0.3;                 % Poisson constant 
 
B = E*h_2^3/(12*(1-poisson^2)); 
critical_f = (343^2/(2*pi))*sqrt(m_l/B); 
 
semilogx(f,db,'k') 
hold on 
grid 
axis([0 2000 -80 10]) 
title('Transfer function Magnitude') 
xlabel('Frequency [Hz]') 
ylabel('dB [volts/volts]') 
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