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Today, the non-linear finite-element (FE) method is commonly used by practising engineers. Simulating the shear

behaviour and shear failure of reinforced concrete structures, using three-dimensional non-linear finite-element

methods, has shown higher load-carrying capacity due to favourable load distribution, compared to conventional

analyses. However, the modelling method for reinforced and prestressed concrete members subjected to shear and

torsion has not been generally verified. Therefore, the method needs to be investigated further and confirmed to be

practically reliable. The aim of this project is to develop, improve and verify a method to simulate the shear

response of reinforced and prestressed concrete members. The method should be applicable for large structures, for

example box-girder bridges, subjected to various load actions. Experiments with panels loaded in shear and beams

loaded in bending, shear and torsion are simulated by using non-linear FE analysis. The results showed that four-

node curved shell elements with embedded reinforcement could simulate the shear response. It is well known that

the shear sliding capacity is larger than that which can be explained by the reinforcement contribution determined

from a truss model. This increase is due to dowel action and aggregate interlock, and has been accounted for in the

past by modifying the concrete tension response in models—for example, according to the modified compression

field theory (MCFT). Results from the analyses show that without any modification, the capacity was under-

estimated and the average strains—that is, the crack widths—were overestimated. On the other hand, if the concrete

contribution to the shear capacity was considered with the expression from MCFT, the capacity was in many cases

overestimated and the average strains underestimated.

Notation

Ac concrete area (m2)

Ec concrete modulus of elasticity (Pa)

Es reinforcement modulus of elasticity (Pa)

fcm mean compressive cylinder concrete strength (Pa)

fct concrete tensile strength (Pa)

fctm mean tensile concrete strength (Pa)

fu reinforcement ultimate strength (Pa)

fy reinforcement yield strength (Pa)

Gf concrete fracture energy

h characteristic length (m)

sm mean crack spacing (m)

ª shear strain

�1 average principal tensile strain

�2 average principal compressive strain

�x average strain in x-direction

� y average strain in y-direction

r reinforcement amount

�1 principal tensile stress (Pa)

�2 principal compressive stress (Pa)

�c1 average principal concrete tensile stress (Pa)

�s steel stress (Pa)

� shear stress (Pa)

� diameter or reinforcement bar (m)

Introduction

For structural design and assessment of reinforced

concrete (RC) members, the non-linear finite-element

(FE) analysis has become an important tool. However,

design and assessment for shear and torsion are still

made today with simplified analytical or empirical de-

sign methods. In some cases, more enhanced methods

are used, such as the modified compression field theory

(MCFT) of Vecchio and Collins.1 These methods all

use sectional forces and moments, which usually are

determined through elastic beam or frame analysis or
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linear FE analysis. The current calculation method for

RC members subjected to combined shear and torsion,

in the European Standard EC2 CEN/TC250/SC2,2 adds

stresses from shear and from torsion linearly without

taking into account deformations and compatibility

within the member. However, earlier research indicates

that there is a redistribution within concrete members

lacking transverse reinforcement,3,4 and that this could

be modelled with non-linear FE analyses.5,6 It is also

well known that the shear capacity is larger than what

can be explained by the reinforcement contribution

determined from a truss model. Non-linear FE analyses

of concrete members with transverse reinforcement

subjected to shear have been reported by several re-

searchers, for example Ayoub and Filippou,7 Yamamoto

and Vecchio,8 Vecchio and Shim9 and Kettil et al.10 In

recently conducted research projects, failures owing to

shear and torsion were successfully simulated with non-

linear FE analyses, also for members with transverse

reinforcement (see Plos11). A higher load-carrying ca-

pacity compared with conventional analysis was shown.

This can be explained by a more favourable load dis-

tribution, when the structure has been analysed in three

dimensions and by including the fracture energy asso-

ciated with concrete cracking. Here, though, the model-

ling method used for reinforced and prestressed

concrete members subjected to shear and torsion had

not been verified. The modelling method therefore re-

quires further study and verification in order to be

reliable and practically applicable.

The aim of this project is to develop a method to

model and simulate shear-type cracking and shear fail-

ure of reinforced and prestressed concrete members. It

should be possible to use the method for analyses of

more complex structures, for example box-girder

bridges, subjected to bending, shear, torsion and combi-

nations of these load actions. Engineers using commer-

cial non-linear FE programs, not specially designed for

shear analysis, should be able to use the method in their

daily practice. Further aims are to examine and deter-

mine the most important parameters that need to be

accounted for in the material model or in the material

properties used. The mechanisms contributing to the

shear resistance of cracked concrete are explained and

various ways to model these are briefly presented. Tests

of panels loaded in shear and beams loaded in bending,

shear and torsion are simulated by using the non-linear

finite-element method (FEM) and the results are com-

pared.

The non-linear response in shear

Both shear forces and torsional moments cause shear

stresses that can result in cracks in a concrete member.

Cracks owing to shear stresses are usually inclined

relative to the direction of the reinforcement. To satisfy

the new equilibrium after shear cracking, longitudinal

reinforcement and transverse reinforcement or friction

in the crack is required. After cracking, the shear force

is transmitted by compression in the concrete between

the inclined cracks, tension in the transverse reinforce-

ment crossing the inclined cracks, tension in the long-

itudinal reinforcement, compression and shear in the

compressive zone and stresses transferred over the

crack, for example through aggregate interlocking

along the crack. The visual shear cracks are preceded

by the formation of micro-cracks. The micro-cracking

and the following crack formation change the stiffness

relations in the member, and a redistribution of stresses

can occur resulting in strut inclinations smaller than

458 (see Hegger et al.12). Owing to the rotation of the

struts, more transverse reinforcement can be activated.

This behaviour becomes more pronounced when the

transverse reinforcement starts to yield. The rotation of

the compressive struts can continue until failure. Possi-

ble failure modes in shear are: (a) sliding along a shear

crack; (b) crushing of the concrete between two shear

cracks; or (c) crushing of the concrete in the compres-

sive zone. In the case of transverse reinforcement, shear

sliding cannot take place before the transverse reinfor-

cement yields. It is well known that the shear capacity

is larger than what can be explained by the reinforce-

ment contribution determined from a truss model. This

increase in shear capacity is caused by tension stiffen-

ing, compression and shear in the compressive zone

and stresses transferred over the crack, for example

tension softening, dowel action and aggregate interlock-

ing. This increase is also known as the ‘concrete con-

tribution’.

After cracking, concrete can transmit tensile stresses

owing to tension softening, and for RC also owing to

tension stiffening. Tension softening is the capability of

plain concrete to transfer tensile stresses after crack

initiation. In an RC member subjected to tensile forces,

tensile stresses are transferred by bond from the rein-

forcement to the concrete in between the cracks, which

contributes to the stiffness of the member. This is

known as the tension stiffening. The tension stiffening

effect increases the overall stiffness of the RC member

in tension compared with that of the bare reinforce-

ment. Owing to both tension stiffening and tension

softening, there are still significant transverse tensile

stresses in the compressive struts. Cracked concrete

subjected to tensile strains in the direction transverse to

the compression is softer and weaker in compression

than concrete in a standard cylinder test.1,13,14

The complex behaviour of RC after shear crack

initiation has been explained in several papers (see for

example References 1 and 15–20). The equilibrium

conditions can be expressed in average stresses for a

region containing several cracks, or in local stresses at

a crack. The local stresses normal to the crack plane

are carried by the reinforcement and by the bridging

stresses of plain concrete (tension softening). Along the

crack plane, the shear stresses are carried by aggregate
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interlocking and dowel action. The stresses will depend

on the shear slip, the crack width, the concrete compo-

sition (strength, grading curve and maximum aggregate

size) and of course the reinforcement (type, diameter

and spacing).21

Modelling of the non-linear shear

behaviour

Several analytical models that are capable of predict-

ing the non-linear response in shear have been pre-

sented, for example the MCFT of Vecchio and Collins,1

the distributed stress field model (DSFM) of Vecchio,22

the cracked membrane model (CMM) of Kaufmann

and Marti,23 the rotating-angle softened truss model

(RA-STM) of Pang and Hsu,16 the fixed-angle softened

truss model (FA-STM) of Pang and Hsu,24 and the

softened membrane model (SMM) of Hsu and Zhu.25

All these models are based on the smeared crack ap-

proach—that is, the influences of cracks are smeared

over a region and the calculations are made with aver-

age stresses and average strains. Stress equilibrium,

strain compatibility and constitutive laws are used to

predict the shear force for chosen strains. Some models

use a rotating crack concept and thus no relationship

between shear stress and shear strain is needed for the

concrete. Others are based on a fixed crack concept

including a relationship for average shear stresses and

average shear strains. Most of the models are also

implemented in FE programs. Soltani et al.20 propose a

model based on formulations of local stresses and

strains at the crack plane, separating the contributions

from tension softening, tension stiffening, aggregate

interlocking and dowel action, to predict the non-linear

shear response.

If the shear-type cracking and shear failure are mod-

elled and simulated with the non-linear FEM, with an

FE program not specially designed for shear analysis,

parts of the concrete contribution need to be accounted

for by modifying the constitutive relationships used.

The modifications needed depend on the modelling

method, material model, and how the interaction be-

tween reinforcement and concrete is modelled.

Modelling of reinforcement and the interaction be-

tween reinforcement and concrete can be made more or

less detailed. When modelling larger structures—that

is, box-girder bridges—a simple approach is needed

and the reinforcement can be modelled as embedded in

the concrete elements. Embedded reinforcement can be

applied to any type of FE that represents the concrete.

The embedded reinforcement adds stiffness to the FE

representing the concrete, but the reinforcement has no

degree of freedom of its own. Hence, the reinforcement

is perfectly bonded to the surrounding concrete and no

slip can occur. In this case the effects of the concrete

contribution, described above, must be taken into ac-

count in the constitutive relations describing the materi-

als’ behaviour, for example the concrete in tensile

response or in the reinforcement response. Ways of

doing this for the tension stiffening have been proposed

by Kaufmann and Marti23 and Lackner and Mang.26

Relationships between tensile stress and crack opening

in plain concrete are based on fracture mechanics and

related to the fracture energy, Gf ; an example is the

relation proposed by Hordijk, as described in Reference

27. For RC members subjected to shear, the contribu-

tion from dowel action and aggregate interlocking can

also be accounted for in the constitutive relations. Such

relationships that link the average tensile stress to the

average tensile strain for orthogonally reinforced con-

crete have been established on the basis of shear panel

tests. Vecchio and Collins1 suggested

�c1 ¼ f ctm

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
200�1

p (1)

after several tests on thin panels reinforced with smooth

welded wire meshes with close spacing—the ‘Toronto

panels’. Here �c1 is the average principal tensile stress,

fctm is the mean tensile concrete strength and �1 is the

average principal tensile strain. Following tests on

thicker panels reinforced with coarser reinforcement

this was changed to

�c1 ¼ f ctm

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
500�1

p (2)

which is the relationship used in the MCFT of Collins

and Mitchell.28 Bentz29 compared these relationships

with

� c1 ¼ f ctm

0:00008

�1

� �4

(3)

which was suggested for the softened truss model of

Pang and Hsu,16 and evaluated from tests on thick

panels reinforced with widely spaced coarse bar rein-

forcement. In Fig. 1 the relationships by Vecchio and

Collins,1 Pang and Hsu16 and Hordijk27 are compared

for one particular shear panel. By adjusting the ex-

pression by Vecchio and Collins1 to depend on rein-

forcement ratio and rebar diameter, Bentz29 proposed

� c1 ¼ f ctm

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:6M�1

p (4)

where

M ¼ Ac

���
(5)

Here Ac is the concrete area and � is the diameter of

the reinforcement bar. These relationships should be

limited so that no concrete tensile stress is trans-

mitted after the reinforcement has started to yield.

This is a problem when modifying the relationship

for concrete in tension in an FE program, since there

is no obvious link between the steel strain in the

reinforcement direction and the concrete strain in the

Shear-type cracking and failure with non-linear finite-element method
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principal stress direction. Hence, the cracked concrete

can transfer tensile stresses in the principal stress

direction even when the reinforcement in any direc-

tion yields.

The relationships by Vecchio and Collins,1 Collins

and Mitchell,28 Pang and Hsu16 and Bentz29 were

established for analysis of orthogonally reinforced con-

crete panels subjected to shear. However, more general

applicability for members with deviating reinforcement

or specimens subjected to, for instance, bending or

tension is not shown and is rather doubtful. In the

following analyses, the use of the tension–softening

curve by Hordijk and a curve modified according to

MCFT are compared for several RC members.

Modelling technique

The non-linear FE program DIANA and the follow-

ing modelling approach were used to simulate tests of

RC and prestressed concrete members subjected to

bending, shear, torsion or combinations of these. This

included tests on shear panels, the ‘Toronto panels’ of

Vecchio and Collins1 and the ‘Houston panels’ of Pang

and Hsu,16 and beams with various cross-sections and

various load actions according to Karlsson and

Elfgren30 and Magnusson.31

In all analyses the concrete was modelled with four-

node curved shell elements. For the specimens mod-

elled here, plane-stress elements would have been more

appropriate to use, but the aim was to develop an

analysis method that could be used also for more com-

plex structures, for which curved shell elements are

more suitable. Full interaction was assumed between

the reinforcement and the concrete. The concrete was

modelled with a constitutive model based on non-linear

fracture mechanics. In most of the analyses a rotating

crack model based on total strain27 was used. For some

of the analyses this was compared with the use of a

fixed crack model.27 For most analyses the hardening

of concrete in compression was described by the ex-

pression of Thorenfeldt and the reduction of the

strength owing to transverse tensile strains was mod-

elled according to Vecchio and Collins, as described in

TNO;27 when something else is used, this is specifi-

cally pointed out. For the tension softening, two ap-

proaches were compared

(a) the curve by Hordijk,27 where only the fracture

energy of plain concrete is taken into account

(b) a curve modified according to the expression from

the MCFT of Collins and Mitchell,28 which at-

tempts to take into account also the concrete con-

tribution when subjected to shear, see Fig. 1. For

the curve by Hordijk, the fracture energy is

smeared over a length, h, the crack band width,

which corresponds to the mean crack spacing ob-

tained in the test or calculated according to Collins

and Mitchell.28

The concrete material properties used in all analyses

are presented in Table 1. The concrete tensile strength,

fct, the concrete modulus of elasticity, Ec, and the frac-

ture energy Gf were calculated according to fib21 from

the mean cylinder compressive strength, fcm, reported

from the tests. The constitutive relations of the reinfor-

cement and the prestressing steel were modelled by the

von Mises yield criterion with an associated flow law

Hordijk27

MCFT28

Pang and Hsu16

0·000 0·002 0·004 0·006 0·008 0·010
εnn

σ n
n

ct/f

0·0

0·2

0·4

0·6

0·8

1·0

Fig. 1. Different tension-softening relations compared for

Houston panel A3. For the curve by Hordijk the fracture

energy is smeared over a length of 150 mm (the crack band

width, h), which corresponds to the calculated average crack

spacing

Table 1. Material properties for concrete used in the analyses of the Toronto panel tests, the Houston panel tests and the beam

tests

Test fcm: MPa fctm: MPa Ec: GPa Gf : Nm/m2 sm: mm h: m

Toronto panel PV10 14.5 1.04 24.30 32.4 50.0 0.050

PV19 19.0 1.48 26.60 39.2 50.0 0.050

PV20 19.6 1.58 26.90 44.0 50.0 0.050

Houston panel A3 41.6 3.12 34.58 67.8 151.2 0.150

B1 45.2 3.34 35.55 71.9 194.7 0.195

B2 44.0 3.27 35.24 70.6 163.7 0.165

B4 44.7 3.31 35.42 71.3 173.2 0.175

Beams Beam 5 24.9 1.97 29.14 47.3

NSC 3 27.3 2.16 30.05 88.9 107.0 0.107

Broo et al.
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and isotropic hardening. In Fig. 2, definitions of the

mechanical properties for the reinforcement are pre-

sented. The material properties used for the reinforce-

ment in the Toronto panels and the Houston panels are

presented in Table 2. From the test of the Toronto panel

only the reinforcement strength was reported and the

modulus of elasticity was chosen as 200 GPa for all

reinforcement. In Table 3, the material properties of the

reinforcement used for the beam analyses are pre-

sented. No hardening parameters were presented for the

reinforcement used in the box-beam test. Instead, the

values presented in Table 3 are mean values taken from

several other test reports using the same kind of rein-

forcement, from the same laboratory and the same time

period.

Finite-element analyses of shear panel

tests

Tests

Three shear panel tests were simulated out of 30 of

the Toronto panels by Vecchio and Collins,1 labelled

PV10, PV19 and PV20. From the Houston panels by

Pang and Hsu16 and Pang,32 four tests were simulated,

labelled A3, B1, B2 and B4. The specimens tested in

Toronto were 0.89 m square and 0.07 m thick; they

were reinforced with two layers of smooth welded wire

mesh. The specimens analysed here were loaded in

pure shear; see Fig. 3(a). The specimens tested in

Houston were 1.4 m square and 0.178 m thick. They

were reinforced in two layers of deformed bars spaced

at 0.189 m in two directions. The loading, equal in

compression and in tension, was applied in the princi-

pal directions and the reinforcement was orientated

with 458 inclination, resulting in the same stress situa-

tion as in the Toronto panels; see Fig. 3(b). In the

Toronto panel tests as well as in the Houston panel

tests, the loads were applied by hydraulic jacks con-

nected to shear keys that were welded to the reinforce-

ment. It is worth noting that the reinforcement ratios in

the two test series are quite similar, see Table 2. The

Toronto panels are thin with closely spaced reinforce-

ment of small bar diameters and of a low-strength con-

(a)

(b)

f0·05

fy

Ep

Es

εy εh ε0·05

fu

fy

Es

εsy εs2 εsu

Fig. 2. Typical stress–strain relationships for reinforcement.

Definitions of mechanical properties: (a) panels; (b) beams

Table 2. Material properties for reinforcement used in the analyses of the Toronto panel tests (PV10, PV19 and PV20) and the

Houston panel tests (A3, B1, B2 and B4)

Test r fy: MPa Es: GPa f0:05: MPa � y �h Ep: GPa

PV10 Long (x-) 0.01790 276 200 — — — —

Trans (y-) 0.01000 276 200 — — — —

PV19 Long (x-) 0.01790 458 200 — — — —

Trans (y-) 0.00710 299 200 — — — —

PV20 Long (x-) 0.01790 460 200 — — — —

Trans (y-) 0.00890 297 200 — — — —

A3 Long (x-) 0.01789 446 200 625 0.0022 0.0111 4.60

Trans (y-) 0.01789 446 200 625 0.0022 0.0111 4.60

B1 Long (x-) 0.01193 462 192 609 0.0024 0.0144 3.73

Trans (y-) 0.00596 444 181 579 0.0044 — 2.69

B2 Long (x-) 0.01789 446 200 625 0.0022 0.0111 4.60

Trans (y-) 0.01193 462 192 609 0.0024 0.0144 3.73

B4 Long (x-) 0.02982 469 200 629 0.0023 0.0073 3.76

Trans (y-) 0.00596 444 181 579 0.0044 — 2.69

Shear-type cracking and failure with non-linear finite-element method
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crete and could thus be seen as made in a model scale

compared with the Houston panels. This is reflected in

the FE analyses since measured concrete compressive

strength and estimated crack distances determined the

concrete properties used, see above section on model-

ling technique.

FE models

Diagrammatic representations of the FE models

used to analyse the Toronto panels and the Houston

panels are given in Fig. 3. The loads were equally

distributed on each side and applied at each node as

shear, tension or compression in accordance with each

Measuring
point

σ2

σ1

σ2

σ1

Measuring
point

τ

τ

τ

τ

890

τ

τ τ

τ

14
00

σ1

σ2

σ1

σ2

(a) (b)

(c) (d)

Fig. 3. Principal testing arrangement of (a) the Toronto shear panels PV10, PV19 and PV20; (b) the Houston shear panels A3,

B1, B2 and B4. The principle of the FE models used to analyse (c) the Toronto panels; (d) the Houston panels

Table 3. Material properties for reinforcement used in the analyses of the beam tests

Test Dimension and quality fy: MPa fu: MPa �sy: ‰ �s2: ‰ �su: ‰ Es: GPa

Beam 5 1
2

in. St 150/170 1840 — — — — 207.0

� 8 Ks40s 456 600* 2.09 — 150* 218.0

� 16 Ks60 710 900* 3.05 — 110* 233.0

NSC 3 � 8 K500 ST 574 670 3.10 29.3 99 199.8

� 20 K500 ST 468 600 2.40 21.5 132 195.6

*Values taken as a mean value of test values from several other reports using same kind of reinforcement.

Broo et al.
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test procedure respectively. The panels were supported

as shown in Fig. 3. In the analyses, the self-weight

was applied in one step and then the load was

applied in steps of 1 kN for the Toronto panels and

5 kN for the Houston panels. This corresponds to a

shear stress of approximately 16 Pa and 20 Pa respec-

tively.

Results

From the analyses, the shear strains, ª, were calcu-

lated from �x and � y or from �1 and �2 in accordance

with how they were calculated in the Toronto panel

tests and the Houston panel tests respectively; see Fig.

4. In the tests and in the analyses, the elongation be-

tween the measuring points (see Fig. 3) was used to

calculate the average strains. In Figs 5–9, results from

the analysis of tests PV10, PV19 and PV20 are com-

pared with results from the tests as presented in Vec-

chio et al.33 and Vecchio and Lai.34 In Figs 10 and 11,

the results from the analysis of tests A3, B1, B2 and

B4 are compared with results from the tests as pre-

sented in Pang.32

Comparing results such as the applied shear stress

plotted against shear strain shows that four-node curved

shell elements combined with embedded reinforcement

can describe the shear response. Furthermore, with only

fracture energy of plain concrete taken into account,

the capacity was underestimated and the average

strains—that is, the crack widths—were overestimated.

On the other hand, if the concrete contribution was

modelled with a tension-softening curve modified ac-

cording to the expression from MCFT, the capacity was

overestimated and the average strains were underesti-

mated for most panels, except for the Toronto panels. It

should be mentioned that results from the Toronto

panel tests have been included in the test results used

y

x
2

εyεx

ε1
ε2

θ

γ/2

εx

γxy

εy

2θ 1 ε

γlt
ε1 ε

2

1

ε2
ε1

εt εl

θ

γ/2

2θε2

(a)

(b)

Fig. 4. The shear strains from the analyses, ªxy and ªlt , were
calculated from �x and � y or from �1 and �2, respectively,
with Mohr’s strain circle in accordance with how they were

calculated in (a) the Toronto panel tests and (b) the Houston

panel tests

0·0

1·0

2·0

3·0

4·0

5·0 Exp.

MCFT, *fcm,red

MCFT, fcm
Hordijk, *fcm,red

Hordijk, fcm

0·0

1·0

2·0

3·0

4·0

5·0 Exp.

0·0

1·0

2·0

3·0

4·0

5·0

0·0

Exp.

τ:
 M

P
a

0·0 5·0 10·0 15·0 20·0 25·0 30·0 35·0

γxy: ‰

(a)

τ:
 M

P
a

0·5 1·0 1·5 2·0 2·5
εx: ‰

(b)

MCFT, *fcm,red

Hordijk, fcm

MCFT, *fcm,red

Hordijk, fcm

εy: ‰

(c)

τ:
 M

P
a

0 5 10 15 20

Fig. 5. Comparison of results from test and analysis of PV20, applied shear stress plotted against (a) shear strain, (b)

longitudinal strain, �x, (c) transversal strain, � y. *The compressive strength is reduced owing to transverse tensile strains

Shear-type cracking and failure with non-linear finite-element method

Magazine of Concrete Research, 2007, 59, No. 9 679



to calibrate the expression in the MCFT. This means

that the concrete contribution to the shear capacity can

be accounted for by modifying the constitutive relation-

ship used for concrete in tension. However, caution is

recommended in order not to overestimate the capacity.

The modification needs to take the reinforcement (type,

diameter and spacing) and possibly also the concrete

composition (strength, grading curve and maximum

aggregate size) into account. If no modification of the

tension-softening curve is performed, the shear capacity

will at least not be overestimated. Moreover, it was

found that it is important to include the reduction of

compression strength owing to transverse tensile strain.

This influenced the behaviour and, if the failure mode

was crushing of the concrete between the shear cracks,

also the capacity; see Fig. 8.

When the cracking was initiated, the concrete shear

strain started to increase just like the steel stress in the

reinforcement. The steel stresses in the transverse rein-

forcement, which is in the direction with the lowest

reinforcement amount, increased faster than the steel

stresses in the longitudinal reinforcement, see Figs 7–9

and 11. In the tests and the analyses before cracking,

the applied shear stress was equal to the principal

tensile stress. Thus, the cracking was expected to start

when the principal tensile stress reached the concrete

tensile strength. This was also the case for the Toronto

panel tests. However, for the Houston panel tests,

cracking started for a much lower concrete principal

tensile stress than could be expected from the mean

compressive cylinder strength according to fib.21 The

analyses by Soltani et al.20 show much better agree-

ment, since here the concrete tensile strength was cho-

sen as the cracking strength obtained in the tests. In

Fig. 10(c), results from analyses using the cracking

strength instead of the calculated tensile strength are

shown. The tensile strength is an important material

property for prediction of when the cracking starts, but

it is less important for the capacity. The low cracking
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strengths reported from the tests may be attributed to

initial internal stresses caused by shrinkage, or to local

effects introduced by the shear keys.

The stiffness of the panel decreased and the direction

of the principal stress and the principal strain changed

when the panel started to crack. This became even

more pronounced when the weakest reinforcement

started to yield. From the Toronto panel test it was

found that the principal strain direction deviated from

the principal stress direction; see Fig. 6. The direction

of the principal compressive stress in concrete was

calculated from the applied loads and the measured

steel strains. In a rotating crack model that was used

here, the principal strain direction and the principal

stress direction are the same by definition.

Finite-element analyses of a box-beam

FE model

To investigate the general applicability of the above-

used analysis method for members with non-orthogonal
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reinforcement and subjected to mixed loading effects, a

reinforced and prestressed box-beam, beam 5, tested by

Karlsson and Elfgren,30 was analysed. The box-beam

was subjected to bending, shear and torsion and the

final failure was attributed to large opening of a shear

and torsion crack in the loaded web. Fig. 12 shows the

principal arrangement, the dimensions, the support con-

ditions and the FE model of the simulated box-beam.

Owing to symmetry only half of the beam was mod-

elled, as shown in Fig. 12, using curved shell elements

and material properties according to Tables 1 and 3.

The box-beam was reinforced as shown in Fig. 12. The

prestressing strands and the 8 mm longitudinal reinfor-

cement bars were modelled as embedded bars, while

the rest of the reinforcement was modelled as em-

bedded grids; see TNO.27

In the test, the box-beam was supported on roller

bearings with a load-distributing support plate. In the

analyses, the nodes in the centre of the supports were

fixed in the vertical direction. The nodes on each side

of this node were forced to have the same vertical

displacement but in opposite directions, thus enabling a

rotation and simulating a free support with a distribu-

tion length equal to the support plate in the test.

Stiffeners at the support, and at the mid-span where

the load was applied, were taken into account as fol-
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lows. All shell elements for the box wall and flanges in

the area of the stiffeners were given a thickness twice

the thickness of the elements outside these parts. The

density of the concrete was also modified to maintain

the correct self-weight of the box-beam. Furthermore,

all nodes in each cross-section of the stiffened areas

were tied to keep the cross-section plane.

In the box-beam test, the load was applied in steps of

40 kN up to 320 kN. Thereafter, the load was increased

by controlling the mid-deflection in steps of 1–2.5 mm.

In the analyses, the load was applied as a prescribed

deformation of the loading node—that is, the bottom

corner node in the symmetry section. The box-beam

analysis had to be performed in two phases. In the first

phase, the loading node was not supported; here the

prestressing force (110 kN) was released and the self-

weight was applied. In the second phase, the loading

node was supported vertically at the location obtained in

the first phase. Thereafter, the loading was applied by

increasing the vertical displacement of the loading node.

In the analyses of the box-beam, concrete compres-

sive failure was localised into one element. The size of

this element does not correspond to the size of the speci-

mens used to calibrate the compression relationship by

Thorenfeldt as described in TNO.27 Consequently, if the

relationship by Thorenfeldt was used, the model could

not predict the response. This disadvantage was over-

come by modelling the concrete in compression with an

elastic–ideal plastic relationship instead.

Results

The applied load plotted against vertical displace-

ments from the analyses and the test are compared in

Fig. 13. The results show, as expected, that if only the

fracture energy of plain concrete was taken into ac-

count, the capacity was underestimated and the vertical

deflections were overestimated. However, when the

concrete contribution was modelled with the expression

from MCFT, the capacity was still underestimated but

the vertical deflections agreed well.

In the test, the first crack, going in the transverse

direction across the top flange, occurred at a load of

φ8 s200

φ8

φ8 s200-C

φ16

φ8

φ8 s200-N

φ8 s200-C

φ8

800

120 120

1500

350

60
60

40
0

34
0

680

••••••

• •••

••

• •••

Strand

2000 2000

300
4200

450450

2000

Fig. 12. Principal testing arrangement and FE model of the prestressed box-beam, beam 5

y1 y2

0 5 10 15 20 25 30
δ: mm

Q
: k

N

0

100

200

300

400

500

MCFT, y1

Hordijk, y1

Exp. y2

MCFT, y2

Hordijk, y2

Level of max. load
Exp. y1

Fig. 13. Comparison of results from test and analyses of a

prestressed concrete box-beam subjected to bending, shear

and torsion; applied load plotted against mid-deflections

Shear-type cracking and failure with non-linear finite-element method

Magazine of Concrete Research, 2007, 59, No. 9 683



240 kN owing to bending. This crack propagated down

in the most loaded web at a load of 280 kN. At a load

of 320 kN the first shear and torsion crack appeared

near the support. The final failure, at a load of 510 kN,

was attributable to large opening of a shear and torsion

crack in the loaded web. The angle of the cracks in the

most loaded web varied between 45 and 608, while they

remained vertical in the other web. The crack propaga-

tion and the crack pattern from both analyses agreed

well with those observed in the test.

In Fig. 14, the load plotted against steel strains for

one strand and one stirrup, from the test and the ana-

lyses, are compared. The steel strain increased first

when the box-beam started to crack. In the analysis with

the tension softening modelled according to MCFT, the

steel strain increase was slower, which corresponds bet-

ter with the steel strains measured in the test.

FE analysis of a bending beam

FE model

To investigate the general applicability of the above

analysis method for members that do not fail due to shear

cracks, a four-point bending beam, NSC3, tested by

Magnusson,31 was simulated. The bending beam was

subjected to bending and shear, and failed in bending

owing to yielding of the longitudinal reinforcement and

crushing of the concrete in the compressive zone in the

mid-span part of the beam. Fig. 15 shows the dimensions

and support conditions of the simulated bending beam.

Owing to symmetry, only half of the beam was

modelled, as shown in Fig. 16, using curved shell

elements and material properties according to Tables 1

and 3. The beam was reinforced as shown in Fig. 15.

The longitudinal reinforcement and the stirrups

between the support and the load were modelled as

embedded bars, while the stirrups in the middle part of

the beam were modelled as an embedded grid, see

TNO.27 The supports were modelled in the same way

as for the box-beam.

The loading of the bending beam was controlled by

displacement both in the test and in the analysis. In the

analysis, the loading was applied by increasing the

vertical displacement of the loading node in steps of

0.1 mm. In the test, the load was distributed by a load-

ing plate. In the analyses, this was simulated in the

same way as for the box-beam.

Also in the bending beam analyses, compressive fail-

ure was localised in one element. Therefore, the con-

crete in compression was modelled with an elastic–

ideal plastic relationship instead of the curve by Thor-

enfeldt. The element in which high compressive strains

were localised was also subjected to large lateral strains

owing to a flexural shear crack. This flexural shear

crack was also observed in the test, but there it did not

go into the compressive zone. Consequently, reducing

the compressive strength owing to lateral strains re-

sulted in an unreasonable response. Therefore, for these

analyses, the compressive strength was not reduced.

Results

The relations between the applied load and the verti-

cal displacements from the analyses and the test are

compared in Fig. 17. With only the fracture energy of

plain concrete taken into account, the capacity is very

well estimated and the behaviour is just a little bit too

stiff. However, when the tension softening was mod-

elled according to MCFT, the behaviour was too stiff

and the capacity was overestimated. The reason was

that, in this case, the cracked concrete transferred ten-

sile stresses over the bending cracks even after the

longitudinal reinforcement had started to yield.

The conclusion is that if a tension-softening curve

including the concrete contribution to shear capacity is

used, it needs to be modified, so that no tensile stresses

are transferred when the reinforcement yields. Other-

wise the capacity will be overestimated for the parts of

a member which are subjected to tension or bending.

Furthermore, even if the curve is modified with respect

to reinforcement yielding, it will lead to a too stiff

response after cracking and before yielding.
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Conclusions

It is well known that the shear capacity determined

by sliding along inclined cracks is larger than can be

explained by the reinforcement contribution determined

from a truss model. This increase in shear stiffness and

shear capacity is attributable to tension stiffening, dow-

el action and friction owing to aggregate interlock, and

is also known as the concrete contribution. If the shear

response is simulated with non-linear FEM, with a

model not specially designed for shear analysis, the

concrete contribution has in the past been accounted

for by modifying the constitutive relationships used, for

example the tension-softening curve describing the con-

crete behaviour in tension.

In the present study, the commercial FE program

DIANA was used to simulate the non-linear response in

experiments of several shear panels, a prestressed box-

beam subjected to shear, torsion and bending, and an

RC beam subjected to bending and shear. It was shown

that four-node curved shell elements with embedded

reinforcement could describe the non-linear shear re-

sponse for panels loaded in shear and also for pre-

stressed members loaded in bending, shear and torsion.

Results from the analyses showed that, if only the

fracture energy of plain concrete was taken into ac-

count, the capacity was well predicted and the average

strains—that is, the crack widths—were well reflected

for the bending beam and one shear panel. For all other

specimens studied, the shear capacity was underesti-

mated and the average strains were overestimated. On

the other hand, if the concrete contribution to the shear

capacity was considered with the expression from

MCFT, the capacity was in many cases overestimated

and the average strains underestimated, except for the

Toronto panels. It should be mentioned that results

from the Toronto panel tests have been included in the

test results used to calibrate the expression in the

MCFT. This means that the concrete contribution to the

shear capacity can be accounted for by modifying the

constitutive relationship used for concrete in tension.

However, caution is recommended in order not to over-

estimate the capacity. If no modification of the tension-

softening curve is undertaken, the shear capacity will at

least not be overestimated.

The analysis results from the shear panels showed

that it was important to include the reduction of the

compression strength due to transverse tensile strain for

the behaviour, and also for the capacity if the failure

mode was crushing of the concrete between the shear

cracks. Furthermore, it was shown that the stiffness of

the panel decreased and the direction of the principal

stress and the principal strain changed when the panel

started to crack. This became even more pronounced

when the weakest reinforcement started to yield.

The analyses of the box-beam showed that if only
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the fracture energy of plain concrete was taken into

account, the capacity was underestimated and the verti-

cal deflections were overestimated. However, when the

concrete contribution was considered with the expres-

sion from MCFT, the capacity was still underestimated

but the vertical deflections agreed well.

By simulating a test of a four-point bending beam

that failed in bending, it was found that when the

concrete contribution was considered according to

MCFT, the behaviour was too stiff and the capacity

was overestimated. Hence, the cracked concrete trans-

ferred tensile stresses even when the longitudinal

reinforcement yielded. In the analyses of the box-

beam and the bending beam, concrete compressive

failure was localised into one element, whose size did

not correspond to the size of the specimens used to

calibrate the compression relationship used—that is,

the non-linear tension-softening curve by Thorenfeldt.

Hence, if the relationship by Thorenfeldt was used,

the model could not predict the response. This dis-

advantage was overcome by modelling the concrete in

compression with an elastic–ideal plastic relationship

instead. In the bending beam analyses, the element in

which high compressive strains were localised was

also subjected to large lateral strains owing to a

flexural shear crack. This flexural shear crack was

also observed in the test, but there it did not go into

the compressive zone. Consequently, reducing the

compressive strength owing to lateral strains resulted

in an unreasonable response. Therefore, for these

analyses, the compressive strength was not reduced.

In summary, the present study implies that an analy-

sis of a concrete member subjected to shear, torsion

and bending will be on the safe side when evaluating

the load-carrying capacity or crack widths, if only the

fracture energy is used to define the unloading branch

of the concrete in tension.
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