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Abstract 

This thesis will describe an algorithm and experimental work for vehicle detection 
and classification using magnetic sensor data. The ideas are presented in the context 
of treating vehicle as a combination of magnetic dipoles. The key steps in this project 
include noise measurement, velocity estimation, model estimation and classification. 
Algorithms for various tasks are discussed with an emphasis on velocity and model 
estimation. Results based on experiments with real data are also reported. 
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1 Introduction 

In the future, making traffic flows more efficient will be of even greater importance. 
By controlling the traffic (cars, trucks, motorcycles, etc.), both travel time and 
negative impact on the environment can be reduced. However, efficient control 
requires cost-efficient and accurate estimation of traffic parameters, such as the 
number of vehicles passing a certain point per unit time, the current speed of vehicles, 
and their types. We believe that the estimation can be based on data collected from 
magnetic sensors placed close to the road. 
 
A vehicle is built up of several types of magnetic materials; soft magnetic materials 
with no residual magnetization but with high magnetic susceptibility and hard 
magnetic materials with high residual magnetization. All of these materials in the 
vehicle create a disturbance in the earth magnetic field when the vehicle passes a 
specific region. When we place a magnetic sensor system with high enough field 
sensitivity and resolution in this region, it is possible to detect the vehicle. Different 
types of vehicles create a specific magnetic pattern due to different types of magnetic 
material, different amounts of magnetic material and of course different dimensions of 
the vehicles. Then we can figure out different types of vehicles for instance 
motorcycles, cars and trucks, not individual cars. 
 
This report consists of five main parts, Experiment Description, Noise, Velocity 
Estimation, Classification, and Conclusion. In the part of Experiment Description we 
will briefly introduce the magnetic sensor we use and how our experiments were 
performed. In the Noise part we will analyze the background noise of our experiments 
and decide the vehicle presence rule. The Velocity Estimation part will give an 
algorithm of estimation of vehicle speed. In the Classification part, a preliminary 
classification rule will be introduced, on which future work may be based. Finally, the 
Conclusion is a summary of our work, with some suggested future work in this field. 
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program is shown in figure 2.2 and 2.3, on which we can adjust different settings 
within the capability of HM2300 sensor, such as sample rate, display range and 
sample gain. 
 

 
Figure 2.3 Labview program interface for HM2300 sensor, setup page 

 
When the measurement is started, we first come to setup page and choose sample rate 
and zero drifting – zero drifting is a function to compensate the influence of the 
background magnetic field noise – then press “setup HMR”. This is to connect the 
program with sensor. If connection succeeds, the light on the “setup HMR” will come 
dark and the text in “setup status” will display the parameters we just set. Then we 
can come to control panel page to press “start measurement” button to start the 
measurement. 
 
Once the data are obtained by the sensor, the screen will display the wave shapes of 
the data of different dimensions. When the “Start saving” button is pressed, a text 
document will be saved with all data gained until “Stop Measurement” is pressed. 
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Figure 2.4 Labview program interface for HM2300 sensor, control panel page 

2.3 Experiment Setup 

The places we choose to implement our experiment are on Gibraltar Gatan, beside 
Chalmers main library and Sven Hultins Gatan beside V-Huset.  
 

 
Figure2.5 vehicle and sensor orientations 
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Figure2.6 a picture of doing experiment 

 
In our experiment, we set the direction perpendicular to the street, pointing to the 
vehicle is x axis, the direction along the vehicle driving direction is y axis, and the 
direction pointing vertically is z axis. 
 
Below is an introductive picture of the magnetic changes when a car passes by the 
sensor from opposite directions [2], [3], [4], in which the speed is slower for the 
reverse direction. Different peaks come out when the engine passes the sensor. The 
symmetry of the curve is also noticeable. The sensor here is 30cm above ground and 
30cm away from the car. 

 
Figure2.7 the magnetic variations of three axes of a car travelling opposite directions 
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3 Noise 

3.1 Overview 

The purpose of this section is to find a way of defining the threshold of background 
noise, so as to judge the appearance of vehicles. 
 
When measuring the noise, we chose the road in front of the Chalmers library and the 
road in front of EDIT building, Chalmers. The tests were mostly taken in the evening, 
when there is seldom any traffic. 
 
In the early experiments we were always bothered by the sampling rate, which did not 
reach our request: 100 records per second (rps for short). After about two months we 
found out the reason by chance: the Labview software was not able to display 100rps 
but only about around 35 rps on the screen, which jammed the un-displayed data at 
the com1 port from transmitting into the software continuously, resulting in the 
sampling rate falling far behind our expectation. In addition, the jammed data caused 
a more severe problem: when the data were accumulated to a certain number, they 
would be released by the software at the same time. This even affected our test results 
on vehicles: there was often an abnormal peak within the range of the vehicle signal.   
 
Eventually we found a way to solve this problem, which was to give up the display 
function. This way we were mainly using the data recording function of the program, 
and then the sampling rate became 100rps. After this problem was solved, correct 
measurements were taken for several times. 

3.2 Comparisons 

Plots of three typical measurements are shown below. The blue, green and red line 
represent for x, y and z axis respectively. 
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Figure 3.1 magnetic flux versus time, noise1 

 
Figure 3.2 magnetic flux versus time, noise2 
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Figure 3.3 magnetic flux versus time, noise3 

 
We took three experiments at different places and in different time, for about one hour 
for each time. The results of three axes are shown in the table. 
 
 
 

 1 2 3 
meanBx 50.31 38.48 106.5 
meanBy -92.38 21.58 90.31 
meanBz -176.9 -29.59 -252.0 
varBx 847.3 848.0 2802 
varBy 440.3 291.2 459.2 
varBz 1953 1468 1789 

Table 3.1 sample means and variances of three axes, measuring time about 1 hour 
 

Besides, we also studied the magnetic flux on three axes when taking shorter time 
measurements. Below is the table of measurements of one minute’s time, and the 
measurements were taken randomly in different days at the same place. From the 
table we can see the magnetic flux of three axes vary irregularly.  
 

 1 2 3 4 5 6 7 8 
meanBx 17.78 -22.13 41.60 -23.05 61.61 43.67 21.70 23.64 
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meanBz -189.1 -2.048 -145.7 -42.91 -156.6 -137.2 -167.7 -186.4
varBx 174.7 2698 616.0 1255 827.9 419.6 1258 95.52 
varBy 201.5 1800 939.7 288.2 485.2 392.8 546.9 61.54 
varBz 593.6 5590 3303 4240 3109 1081 1004 458.9 

Table 3.2 sample means and variances of three axes, measuring time 1 minute 
 

3.3 Analysis of distribution 

3.3.1 Module 

The histogram of the module, the squared sum (x, y and z axes), of each point of the 
noise compared with normal distribution, is depicted in Figure 3.4. 

 
Figure 3.4 Module of all data points of noise 

 
As is shown in the plot, this module is not well matched with a normal distribution. 

3.3.2 Grouping 

If grouped with 100 samples adding together, the x, y and z axes’ noises can only 
poorly fit the normal distribution, the histograms of which are shown below: 

0 2 4 6 8 10 12 14

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10
-4

Data

D
en

si
ty

sqrr data
fit 1



14 
 

 
Figure 3.5 histogram of y-axis grouping plot compared with normal distribution 

 
Figure 3.6 histogram of x-axis grouping plot compared with normal distribution 

 
Figure 3.7 histogram of z-axis grouping plot compared with normal distribution 
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When adding the three axes together, we found the distribution of the result fits the 
normal distribution fairly well, as shown below: 

 
Figure 3.8 histogram of three axes grouping plot compared with normal distribution 

 
Though figure 3.8 shows a good fit to normal distribution, this way of dealing with 
the noise data is still unacceptable. The reason is, if we want to find out a vehicle’s 
presence, we have to group all the data points of the vehicle like what we have done 
above, and compare it with figure 3.8 to make sure a vehicle appears. But the problem 
is, when is the vehicle’s starting point? Now we have come back to the initial question: 
the threshold. The threshold should be a number that can be used directly for the 
judgment.  
 

3.4 Calculating Threshold 

After the unsuccessful analysis above, we decided to focus on the changing rate of the 
noise. Therefore, we differentiated the noise samples we had, and the density function 
is shown below. 
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Figure3.9 density function of a noise sample, x axis 

 
Figure3.10 density function of a noise sample, y axis 
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Figure3.11 density function of a noise sample, y axis 

 
Figure 3.12 density function of a noise sample, module 

 
From the figures above, we notice from the density function that, nearly 90% of the 
differentiated data are zero, and the largest result is no more than ±30. Therefore we 
set our threshold as 30, which means when the changing rate of the magnetic flux is 
larger than 30, the vehicles is judged to appear. 
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magnetic moments with respect to the vehicle is not changing when passing the 
magnetic sensor system (which is a good assumption). When the vehicle is moving 
relative to the magnetic sensor system, the position vector, ݎపሬሬԦ, will be time dependent. 
Probably it will be easier to work with two coordinate systems; one fixed to the sensor 
system and one fixed to the center point of the moving vehicle. In that case the 
individual magnetic moments building up the vehicle will be constant both in position 
and direction relative to moving vehicle coordinate system. Figure 4.1 shows 
schematically the sensor system and the vehicle with the distribution of individual 
magnetic moments (only six magnetic moments are shown). 

4.2 Estimation 

4.2.1 Theory 

In this part, we study the widely used three estimation algorithms: Minimum Variance 
Unbiased Estimation (MVU), Maximum Likelihood Estimation (MLE) and Least 
Squares (LS), then finally give the most appropriate way solving the model. 
 
In all the three methods, we assume the obtained signal, 

xሾnሿ ൌ  sሾn, θሿ ൅  wሾnሿ 
where θ is the unknown parameter vector and w[n] is some unknown noise. 

Minimum Variance Unbiased Estimation (MVU)[: 

The Cramer-Rao Lower Bound (CRLB) gives a lower bound [6] on the error variance 
of the MVU estimate which is: 

varሺθሻ ൒
1

െE ൤∂
ଶ ln pሺx; θሻ
∂θଶ ൨

  

where it is assumed the PDF pሺx; θሻ satisfies the condition: 

E ൤
∂ ln pሺx; θሻ

∂θଶ ൨ ൌ 0 

However, this lower bound cannot be reached in most cases, so 
Rao-Blackwell-Lehmann-Scheffe (RBLS) gives a method using Sufficient Statistic to 
find the MVU estimator. 
 
In statistics, a statistic is sufficient for the parameter θ, which indexes the distribution 
family of the data, precisely when the data's conditional probability distribution, given 
the statistic's value, no longer depends on θ. 
 
The Neyman-Fisher Factorization theorem shows that if the PDF pሺx; θሻ can be 
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written as 
pሺx; θሻ ൌ gሺTሺxሻ, θሻhሺxሻ 

Where g is a function depending on x only through T(x) and h is a function depending 
only on x, then T(x) is a Sufficient Statistic for θ. Conversely, if T(x) is a sufficient 
statistic for θ, the PDF can be factored as in the equation above. 
 
After deciding the Sufficient Statistic, we can use RBLS to find the MVU estimator. 
If θෘ  is an unbiased estimator of θ  and T(x) is a sufficient statistic for θ, then 

θ෠ ൌ E൫θෘ|Tሺxሻ൯ 
is the MVU estimator. 
 

Maximum Likelihood Estimation (MLE): 

Maximum Likelihood Estimation is an alternative to the MVU estimator, which is 
desirable in situations where the MVU estimator does not exist or cannot be found 
even if it exists. This estimator, which is based on the maximum likelihood principle, 
is overwhelmingly the most popular approach to obtaining practical estimators. 
 
Assume ωሾnሿ is WGN with unknown varianceθ 

pሺx; θሻ ൌ
1

ሺ2πθሻ
N
ଶ
exp ൥െ

1
2θ෍

ሺxሾnሿ െ θሻଶ
Nିଵ

୬ୀ଴

൩ 

Considering this as a function ofθ, it becomes the likelihood function. Differentiating 
the log-likelihood function, we have 

∂ ln pሺx; θሻ
∂θ ൌ െ

N
2θ ൅

1
θ෍

ሺxሾnሿ െ θሻ ൅
1
2Aଶ

Nିଵ

୬ୀ଴

෍ሺxሾnሿ െ θሻଶ
Nିଵ

୬ୀ଴

 

And setting it equal to zero produces 

θ෠ଶ ൅ θ෠ െ
1
N෍ xଶሾnሿ ൌ 0
Nିଵ

୬ୀ଴

 

Solving for A෡ produces the solution 

θ෠ ൌ െ
1
2 ൅

1
N
ඩ
1
N෍ xଶሾnሿ ൅

1
4

Nିଵ

୬ୀ଴

 

 

Least Squares (LS): 

A salient feature of the method is that no probabilistic assumptions are made about the 
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data, only a signal model is assumed. The advantage, then, is its broader range of 
possible applications. On the negative side, no claims about optimality can be made, 
and furthermore, the statistical performance cannot be assessed without some specific 
assumptions about the probabilistic structure of the data. 
 
In LS approach we attempt to minimize the squared difference between the given data 
x[n] and the assumed signal or noiseless data. The signal is generated by some model 
which in turn depends upon our unknown parameter θ. The signal s[n] is purely 
deterministic. The LS estimator of θ chooses the value that makes s[n] closest to the 
observed data x[n]. Closeness is measured by LS error criterion: 

Jሺθሻ ൌ ෍ሺxሾnሿ െ sሾnሿሻଶ
Nିଵ

୬ୀ଴

 

Conclusion: 

The Minimum Variance Unbiased Estimation and Maximum Likelihood Estimation 
give an optimal or nearly optimal estimation by considering the class of unbiased 
estimators and determining the one exhibiting minimum variance. However, in many 
cases such as the project we meet here, the pre-knowledge of probability of the noise 
or parameters can be hardly known. So we choose the Least Squares method to 
estimate the vehicle model in this paper. 
  

4.2.2 Velocity Estimation 

The theoretical model listed above has a high complexity in solving the equation. 
Each dipole has six unknown parameters, three magnetic parameters  ߤ௫,   ,௬ߤ  ,௭ߤ
and three position parameters ݎ௫, ݎ௬, ݎ௭, where ݎ௫ ൌ ݒ ·  To simplify the estimation .ݐ
procedure, we investigate the output signal from the sensor and give a novel way to 
determine the velocity. 
 
The proposed method in [7], [8] uses two sensor nodes with six feet apart along the 
lane. The speed of the vehicle is estimated as the ratio of the distance between the 
sensor nodes to the difference between the detection in two sensors. The sources of 
error in this estimation are the synchronization errors and the different sensitivity of 
the sensors.  
 
In this paper, we propose a single sensor based velocity estimation which will further 
simplify the sensor network system. 
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Theory 

V ൌ
L
T 

Here, V is the vehicle velocity, L is the sensing length and T represents the duration of 
a vehicle passing by the sensor. 
 

The calculation of Duration T 

The output of magnetic sensor Honywell HMR2300 has a data form of four columns 
represent the three position scalar and a time scalar. Once we determine the 
appearance and departure of vehicle from the signal, the duration T can be calculated 
by the time distance between these two points.  
 
Basing on the study of noise feature in chapter 3.3, we propose two algorithms listed 
below: 
 
a) Average Detection (AD) 
The difference of noise signal (y[n] – y[n-1]) mostly concentrates in the area [-25, 
25](Wb), that means once the difference of a signal grows higher than 30(Wb), we 
can announce a detection of the vehicle. In contrast, an absolute value of difference 
goes lower than 30(Wb), it means the departure of a vehicle. 
 
We also find the phenomenon that the appearance of a vehicle in three axes x, y, z 
does not happen simultaneously. That makes us calculate the duration in the three 
axes separately and average them to find a result. 
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Figure 4.2 The received signal for the sensor with velocity 40km/h 

 
Figure 4.3 The result of Average Detection 

 
b) Square Detection (SD) 
The square detection algorithm calculates the square of each signal and adds them all 
together. The threshold of this difference sets as 25000 basing on the noise 
measurement from figure 3.12.  
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Figure 4.4 the result of Square Detection 

From the figure above, the Square Detection makes a better view in the cutting off of 
the origin signal; however, this also contains a period of trash signal in each axis since 
the algorithm does not take the different appearance in to account which will cause 
the duration longer then the method above. 
    

The Calculation of Sensing Length L 

We performed ten experiments with velocity 30, 34, 40 and 60km/h, using the 
algorithms above, and estimated the Sensing Length by Least Squares. In the figures 
below, we can see the Average Detection gives a better overall performance in the ten 
experiments. 
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Figure 4.5 Velocity estimation by Average Detection 

 
Figure 4.6 Velocity estimation by Square Detection 



26 
 

 

4.2.3 Model Estimation 

As long as we estimate the velocity, the freedom of magnetic model reduces to five 
parameters, and now, we give the Least Square procedure below in detail. 
Define: 

U ൌ ሾµ୶  µ୷  µ୸ሿT   
R ൌ ሾ r୶  r୷  r୸ሿT   

M ൌ ሾµ୶  µ୷  µ୸  r୷  r୸ሿT   
Then the model can be written as  

B෡ ൌ
µ଴
4π

3RTUR െ URTR
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Doing the Least Squares estimation for this equation: 
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Here,  
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B is the measured data from the sensor. 
 
The equations can be solved by Matlab, due to the independence among those 
equations, we can only have three independent answer: 
 

µ୶ ൌ K
ሺB୶r୶ଶ ൅ 3r୶r୸B୸ ൅ 3r୷B୷r୶ െ 2r୷ଶB୶ െ 2r୸ଶB୶ሻ√S

4π10ି଻  

 µ୷ ൌ K
ሺെ2B୷r୶ଶ ൅ 3r୷B୶r୶ ൅ B୷r୷ଶ ൅ 3r୷r୸B୸ െ 2r୸ଶB୷ሻ√S

4π10ି଻  

µ୸ ൌ K
ሺ3r୷r୸B୷ െ 2r୷ଶB୸ െ 2r୶ଶB୸ ൅ 3r୸B୶r୶ ൅ B୸r୸ଶሻ√S

4π10ି଻  

K = 6.2831853071795864769252867665590 
S ൌ   r୶ଶ ൅ r୷ଶ ൅ r୸ଶ 

For the other 2 unknown parameters in this model, we run a loop procedure in the 
program searching for the minimum square error ∑ ሺB෡ െ BሻଶN

୬ୀିN  
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4.2.4 Center Point Estimation 

The word center point refers to the point when the vehicle passing by the sensor. If the 
model has a 101 points LS estimation, from N = -50 to N = 50, the center point is set 
as N = 0. The accuracy of determining the central point will highly affect the 
estimation of the model. 
 
Different from what we might think before, the center point neither gives a peak value 
in Y or Z-axis, nor a zero cross in X- axis. Investigating the derivative of the model 
with respect to r୶ . Then set r୶ ൌ 0, we can have the formulas below: 
 

∂ଶB୶
∂r୶ଶ

ൌ
9µ଴
4π

µ୶
൫r୷ଶ ൅ r୸ଶ൯

ଶ.ହ 

∂B୷
∂r୶

ൌ
3µ଴
4π

µ୶r୷
൫r୷ଶ ൅ r୸ଶ൯

ଶ.ହ 

∂B୸
∂r୶

ൌ
3µ଴
4π

µ୶r୸
൫r୷ଶ ൅ r୸ଶ൯

ଶ.ହ 

Obviously, only if µ୶ ൌ 0 , we can make all the three equations equal to zero which 
is not possible in most applications. 
 
With a further observation of derivative of the model, we provide a theoretical 
solution for the center point as well as another two suboptimal methods which have 
good performances as well. 
 

Theoretical Solution (TS) 

When r୶ ൌ 0, we investigate the three equations above together with the equation 
below: 

B୶ ൌ െ
3µ଴
4π

µ୶
൫r୷ଶ ൅ r୸ଶ൯

ଵ.ହ 

It is not hard to get a new equation 

ሺ
∂B୷
∂r୶

ሻଶ ൅ ሺ
∂B୸
∂r୶

ሻଶ ൌ െ
1
3B୶

∂ଶB୶
∂r୶ଶ

 

֜ ሺ
∂B୷
∂t ሻ

ଶ ൅ ሺ
∂B୸
∂t ሻ

ଶ ൌ െ
1
3B୶

∂ଶB୶
∂tଶ  
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This equation gives a relationship among B୶, the derivative of B୷ B୸, and the second 
order derivative of B୶ with respect to r୶ in the center point. And the Theoretical 
Solution is to seek such point where rxሺt଴ሻ ൌ 0. It can be estimated by 

t଴ ൌ arg min ൝ቆ
∂B୷
∂t ቇ

ଶ

൅ ൬
∂B୸
∂t ൰

ଶ

൅
1
3B୶

∂ଶB୶
∂tଶ ൡ 

Square Detection (SD) and Average Detection (AD) 

Although the assumption that the center point presents in the peak of Y, Z axis and the 
zero crossing of X axis has proven to be wrong in the front of this chapter, it does not 
stop us making an investigation in the such algorithms which has a motivation to 
reduce the computing complexity. The following two algorithms are basing on the 
assumption and give an acceptable performance through the measurement. 
The idea of SD is to calculate the square summation of the three axes. According to 
the assumption, the center point will present in the peak of the summation. The 
procedure can be treated as 

arg max൛B୶ଶ ൅ B୷ଶ ൅ B୸ଶൟ 

Different from SD, the AD use only Y and Z axes instead of all the three axes. The 
center point can be located in the middle of the peaks of Y and Z axis. 

 
Figure4.7 signal of X axis 
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Figure4.8 signal of Y axis 

 

Figure4.9 signal of Z axis 

 

Figure4.10 signal of square summation 
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Result and Conclusion 

An experiment of 20 vehicles has been made according to the three methods 
mentioned above. The comparison is basing on the square error between the 
measurement signal and the estimated signal from the model. The Square Detection 
performs as well as the Theoretical Solution and better than Average detection. Due to 
the lower complexity in calculation, we prefer Square Detection in this project. 

 
Figure4.11 Comparison among the three propose algorithms 

4.2.5 Experiment Result   

Two experiments are taken place in front of the V-building and behind the Chalmers 
library. One sensor node was placed aside the lane, 2 meters away from the middle of 
the lane. A total of 80 vehicles are measured, with 78 detected correctly and missing 
two motorcycles. 
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Figure4.12 Estimated vehicle magnetic curve, example 1 
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Figure4.13 Estimated vehicle magnetic curve, example 2 

 

 

 
Figure4.14 Estimated vehicle magnetic curve, example 3 
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Figure4.15 Estimated vehicle magnetic curve, example 4 
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5.3.2 Analysis on Exceptions 

Big vehicles but Uz < 1.0E11 

This kind of outliers appears sometimes, and we haven’t found supportive proof for 
this, but we believe it is due to the lack of our data on big vehicles, and perhaps some 
errors during processing the raw data. However, most of big vehicles can successfully 
be classified. 

Small vehicles but Uz > 1.0E11 

This situation appears regularly, only happens when the vehicles are VOLVO cars, 
and they all looked very old. We can only suppose in early VOLVO cars, perhaps 
before VOLVO sold its car department to Ford, the engines inside VOLVO cars have 
some similarities with their truck or bus engines, which leads to our problem today. A 
picture of this situation is shown below. 
 

 
Figure5.4 an old VOLVO car 

5.4 Summary of Classification 

From the analysis above, we may draw our conclusion on classification. When doing 
classification, we should first take out those vehicles which Uz > 1.0E11. Except for 
the VOLVO cars, we can nearly 100% sure that the vehicles we take out are large 
vehicles. Then we pay our attentions to the remaining vehicles. According to our 
research, 80%-90% of the remaining ones are cars. 
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Regarding the error rate, 80%-90% of classification accuracy is acceptable. However, 
our research has its limited aspect; we can only go as far as the types of car and 
jeep/truck, no more specific. Maybe if we have the relevant data of all the engines, 
then we can make a more detailed classification, but that is outside the scope of this 
master’s thesis. So this can be left for a further study. 
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6 Conclusion and Suggested Future Work 

We have discussed different ways of analyzing the noise data we gained from 
experiments using magnetic sensors, and have given a means of defining the presence 
of vehicles. In the thought of considering the whole vehicle as a magnetic dipole, a 
model is set up to estimate the changing process of magnetic fields, which are used to 
represent for different vehicles. In this process, the vehicle velocity is able to be 
calculated by calculating duration time T and the sensing length L separately. The 
results of model estimation have been shown in the report and the errors have been 
kept in an acceptable range. The last part is a rough classification of the vehicles – 
large and small, by observing the three axes’ magnetic values. 
 
One possible continuation of our work might be the one we mentioned above, giving 
a more precise classification of vehicle types, which will need deeper investigation of 
the vehicles’ magnetic data and perhaps specific engines’ data. Another possible 
development of this report is to use multiple dipoles when doing model estimation. As 
the complexity of calculations will greatly increase when using more dipoles, and the 
time of doing this project is a limited period, we were unable to do any further 
research in our thesis work. 
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