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Abstract

Long range channel prediction is a crucial technology for future wireless
communications. The prediction of Rayleigh fading channels is studied in
the frame of parametric modeling in this thesis.

Suggested by the Jakes model for Rayleigh fading channels, deterministic
sinusoidal models were adopted for long range channel prediction in early
works. In this thesis, a number of new channel predictors based on stochas-
tic sinusoidal modeling are proposed. They are termed conditional and un-
conditional LMMSE predictors respectively. Given frequency estimates, the
amplitudes of the sinusoids are modeled as Gaussian random variables in
the conditional LMMSE predictors, and both the amplitudes and frequency
estimates are modeled as Gaussian random variables in the unconditional
LMMSE predictors. It was observed that a part of the channels cannot be
described by the periodic sinusoidal bases, both in simulations and measured
channels. To pick up this un-modeled residual signal, an adjusted conditional
LMMSE predictor and a Joint LS predictor are proposed.

Motivated by the analysis of measured channels and recently published
physics based scattering SISO and MIMO channel models, a new approach
for channel prediction based on non-stationary Multi-Component Polynomial
Phase Signal (MC-PPS) is further proposed. The so-called LS MC-PPS pre-
dictor models the amplitudes of the PPS components as constants. In the
case of MC-PPS with time-varying amplitudes, an adaptive channel predic-
tor using the Kalman filter is suggested, where the time-varying amplitudes
are modeled as auto-regressive processes. An iterative detection and estima-
tion method of the number of PPS components and the orders of polynomial
phases is also proposed. The parameter estimation is based on the Nonlinear
LS (NLLS) and the Nonlinear Instantaneous LS (NILS) criteria, correspond-
ing to the cases of constant and time-varying amplitudes, respectively.

The performance of the proposed channel predictors is evaluated using
both synthetic signals and measured channels. High order polynomial phase
parameters are observed in both urban and suburban environments. It is
observed that the channel predictors based on the non-stationary MC-PPS
models outperform the other predictors in Monte Carlo simulations and ex-
amples of measured urban and suburban channels.

Keywords: Wireless communications, channel modeling, channel predic-
tion, polynomial phase signal, sinusoidal modeling, MIMO, GLRT, CRLB,
Kalman filter, NLLS, NILS.
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Göteborg, September 2007

viii



Abbreviations and Acronyms

ACF Auto-Correlation Function
ANMSE Adjusted Normalized Mean Square Error
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BF Beam Forming
BS Base Station
CDF Cumulative Density Function
CRLB Cramér-Rao Lower Bound
CSI Channel Status Information
DDSR Double Direction Single Reflection
DFT Discrete Fourier Transform
DOA Direction-Of-Arrival
DOD Direction-Of-Departure
DPS Discrete Prolate Spheroidal
DSR Down Sampling Ratio
ESPRIT Estimation of Signal Parameters via Rotation Invariance Techniques
EV EigenVector
EVD EigenValue Decomposition
FIR Finite Impulse Response
GLRT Generalized Likelihood Ratio Test
HAF High-order Ambiguity Function
HIM High order Instantaneous Moment
IID Independent Identical Distributed
IVM Instrumental Variable Method
JMAS Joint Moving Average and Sinusoidal
LMMSE Linear Minimum Mean Square Error
LMS Least Mean Square
LOS Line-Of-Sight

ix



LP Linear Prediction
LS Least Square
MA Moving Average
MARS Multivariate Adaptive Regression Splines
MC-PPS Multi-Component Polynomial Phase Signal
MIMO Multiple-In-Multiple-Out
MLE Maximum Likelihood Estimation
MMSE Minimum Mean Square Error
MPS MUSIC Pseudo Spectrum
MSE Mean Square Error
MUSIC MUltiple SIgnal Classification
NILS Nonlinear Instantaneous Least Square
NLLS NonLinear Least Square
NLOS Non-Line-Of-Sight
NMSE Normalized Mean Square Error
NSE Normalized Square Error
OFDM Orthogonal Frequency Division Multiplexing
PDF Probability Density Function
PPS Polynomial Phase Signal
PPT Polynomial Phase Transform
PSK Phase-Shift Keying
QAM Quadrature Amplitude Modulation
RELAX RELAXation algorithm
RI Rotation Invariant
RMSE Root Mean Square Error
SAGE Space-Alternating Generalized Expectation-maximization
SAR Synthetic Aperture Radar
SIMO Single-In-Multiple-Out
SISO Single-In-Single-Out
SNR Signal Noise Ratio
SVD Singular Value Decomposition
TOA Time-Of-Arrival
ULA Uniform Linear Array

x



Notations

In this thesis, matrices and vectors are denoted on boldface. The upper-case
letters are assigned to matrices, and lower-case is assigned to vectors. If there
is no explicitly statement, the meaning of these notations are

AT The transpose of A.
AH The Hermitian transpose of A.
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Chapter 1
Introduction

The history of radio communications can be traced back to the begin-
ning of the 20th Century, when Guglielmo Marconi invented the wireless

telegraphy and sent his famous “S” (dit dit dit) in Morse code from England
to Canada in 1901. By the 1940’s, the applications of radio communications
had expanded into radio broadcasting, television, and aircraft navigation etc.
The so-called wireless communications/wireless telephone for civil service was
first introduced in 1946 in the U.S. by Bell Systems. However, the capacity of
the early systems was very limited, and no more than a hundred users could
be in service simultaneously within an area of thousands of square kilome-
ters. The early mobile stations were cumbersome and had to be installed in
the trunks of cars. The real advent of the massive wireless communications
was in the 1980’s, when the frequency reuse techniques1 were invented to-
gether with the development of semiconductor industry. These systems are
usually called the first generation of mobile communications. It took another
10 years for the wireless industry to develop the second generation of mobile
communications. The dominant second generation mobile communication
systems are GSM (Global System for Mobile communications) from Europe
and IS-95 from the U.S.. With the development of digital technologies, the
mobile terminal has become even cheaper, smaller and more power efficient
than analogue ones. It has been a big success for the 2G systems that now
more than two billion of users are using different mobile services every day
and everywhere in the world.

With the aim of providing multimedia services, such as mobile TV, mo-
bile video telephone, and mobile gaming etc., the third generation (3G) mo-
bile communications were launched early in the new millennium, around 100

1The whole coverage area is split into small cells and the same radio frequencies are
reused in non-neighboring cells.
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Figure 1.1: A block diagram of a digital communication system.

years after Marconi’s famous transatlantic transmission. Meanwhile, the re-
search and development of the forth generation (4G) mobile communication
systems began being carried out across the world. The major features of
the new systems are more frequency efficient modulation techniques, such as
Orthogonal Frequency-Division Multiplexing (OFDM), and the Multiple-In-
Multiple-Out (MIMO) technology.

As a part of the 4G study, the radio channel prediction, which helps to
collect channel status information to improve system capacity and frequency
efficiency, is investigated based on parametric modeling in this thesis.

1.1 Digital Communications

In digital communications, an analogue source signal is first quantized and
then mapped into a binary sequence, i.e. a stream containing ones and zeros.
Each of them is called a bit. These binary bits are then sent through a system
and converted back to their original form at the receiver.

A block diagram of a digital communication system is given in Figure
1.1. The whole system includes a transmitter, a receiver and a channel.
The transmitter consists of three basic blocks named source, encoder, and
modulator. The three counterparts host, decoder, and demodulator form the
receiver. The channel provides a physical link between a transmitter and a
receiver.

In such a system, the source collects information-bearing signals and con-
verts them into a stream of bits, where the raw signal might have been
compressed by source coding in order to reduce the consumption of trans-
mission resources. It is also possible to have digital sources of data, such as

2



1.2 Mobile Communications

file transfer or streaming digital video. The encoder is an entity that helps
to improve the reliability of data transmission by adding extra control bits.
This processing is known as channel coding. The resulting bit stream is then
fed into a modulator, which maps the block-wised bit stream into a stream
of symbols, which are selected from a symbol constellation. In a receiver, the
demodulator first performs symbol detection and converts the noise corrupted
symbols back to a binary sequence. The errors made in symbol detection give
rise to bit errors. A part of the bit errors might be corrected by the decoder
using the redundancy bits added by the encoder, while the others remain in
the decoded bit stream. Finally, the received bit stream is forwarded to a
host, and its original form, such as voice, text, or image, is recovered.

In practice, the physical channel can be set up over various media, such
as a wired line, coaxial cable, electromagnetic field, or optical fibre, and its
time-frequency property is described by the channel impulse response h(t),
and

xR(t) = h(t) ⋆ xT (t) + n(t), (1.1)

where t is discrete time, xT (t) and xR(t) are the transmitted and received
signal, n(t) is additive noise, and ⋆ represents convolution. A mathematically
ideal channel allows the signal to pass through without distortion besides
inevitable delay and power attenuation. Neglecting the delay, its impulse
response can be modeled as

h(t) = g · δ(t) =

{

g t=0
0 otherwise

where g is a constant channel gain and δ(t) is a Dirac Delta function. Unfor-
tunately a practical channel can be much different from the ideal case due to
delay spread, and random channel gain, which makes data transmission over
radio difficult.

1.2 Mobile Communications

In mobile communications, the information carrying signal is transmitted
over the air interface, which is formed by a multipath propagation environ-
ment as illustrated in Figure 1.2. In this figure, p dominant paths are present.
The received radio signals which come via different paths suffer independent
or correlated attenuations, phase shifts, frequency drifts and delays. Due to
the relative movement between the Mobile Station (MS), Base Station (BS)
and reflection clusters during the communication, the superimposed radio

3



Chapter 1. Introduction

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

h
1
(t)

h
2
(t)

h
p
(t)

v
BS

MS

Figure 1.2: Multi-path propagation environment.

waves are added constructively or destructively at the locations travelled by
the mobile. This gives rise to the fast fading of a radio channel as seen
in Figure 1.3, where a measured radio channel is presented and the chan-
nel experiences a deep minimum every few portions of the wavelength. In
this measurement, the wavelength is λ = 0.15 m, and the mobile velocity
is around 13 m/s. These deep fades make the data transmission over the
radio channel challenging. When the number of paths, p, is large, the chan-
nel can be modeled as a complex Gaussian random process with a Rayleigh
distributed magnitude. Such a channel is called a Rayleigh fading channel.

1.3 Adaptive Transmissions

In the history of digital wireless communications, a number of techniques
were introduced to combat the deep fades, such as power control and receiver
diversity. The design at the link level was aimed at achieving a certain
desired Bit Error Rate (BER) for a given data transition rate. This implied
that modulation and coding selections were made based on the worst channel
status in terms of a low SNR. These selections did not utilize the advantage of
instantaneous high SNR values during data transmissions. Later, to achieve
the Shannon capacity given by the instantaneous SNR of a channel [Sha48],
adaptive transmissions were proposed [GC98, QC99, KH00, CG01, CEGJ02],
where the transmitter adapts the power, data rate, and coding scheme based
on the knowledge of the fade level. The adaption scheme in space, time, and

4
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Figure 1.3: A measured Rayleigh fading channel, where the speed of the
mobile is 13 m/s and the wavelength is 0.15 m.

frequency on a link level, is called link adaptation.

In the time domain, adaptive transmissions select different modes, which
contain fixed combinations of modulations and coding rates, to send data
depending on the Channel Status Information (CSI). This results in a time-
vary data transmission rate. For example, when the SNR is higher than
a given threshold, a high density symbol constellation is selected, where a
symbol represents more binary bits. Otherwise a symbol constellation with
lower density is used. See Figure 1.4 for an illustration. Together with the
modulation selection, different channel coding schemes can be selected as
well.

In the frequency domain, the fades at different frequency bins in a wide
band channel are selective, which can be seen in the frequency response of
a measured wide band channel shown in Figure 1.5. The adaptive trans-
missions explore the frequency selectivity of the channel, such as Orthogo-
nal Frequency Division Multiplexing (OFDM) techniques, where the data is
transmitted over a set of subcarriers with high instantaneous SNR instead of
the whole bandwidth.

Adaptive transmission in the spatial domain is obtained by employing
multiple antennas at both the transmitter and receiver. This is called a
Multiple-In-Multiple-Out (MIMO) system. Depending on the spatial statis-
tical property of the channel, one can choose to improve the transmission
reliability by utilizing the channel redundancy (existing in highly correlated
subchannels) [Ala98], or by maximizing the data throughput when the sub-
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Figure 1.4: Demonstration example of adaptive modulation. When the chan-
nel is higher than the threshold (dash line), 8-PSK is selected.
Otherwise, QPSK is used.

channels are independent [TSC98].

Besides link adaptation, adaption technique on system level have also
been developed, i.e. multiuser diversity or smart scheduling in [Tse01]. This
method takes the advantage of the independence of the fading statistics be-
tween different users. As seen in Figure 1.6, the channels (the dash curve and
the dash-dot curve) are associated with two different users. They have inde-
pendent channel fades. The BS might allocate the radio resource to the one
with the highest instantaneous SNR (solid curve) to improve the throughput
on the system level as shown in the figure.

1.4 Channel Estimation and Channel Predic-

tion

In the aforementioned adaptive transmissions, good knowledge of the channel
in the future is assumed to be known at the transmitter. In practice, the cur-
rent channel status information is collected at the receiver, which is termed
channel estimation. The CSI is then fed back to the transmitter via an idle
logical uplink channel. If all logical channels are in busy mode, the mobile
station might need to wait until one was allocated. The possible feedback
delay gives rise to an outdated CSI. The remedy is to use channel prediction.
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1.4 Channel Estimation and Channel Prediction

Figure 1.5: Frequency response vs. time for a wide band channel.
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Figure 1.6: Multiuser diversity.

1.4.1 Channel Estimation

Due to the fast fading property of a radio link, knowledge of a channel is
necessary for coherent symbol detection in the demodulator. Channel es-
timation can be made by transmitting pilot symbols, which are known at
the receiver. The channel status is assumed to be constant before the next
channel estimation made [TSD04].

Increasing the number of pilot symbols helps to improve the estimation
accuracy, but it reduces the throughput of the information (payload) symbols.
One of the major tasks of channel estimation is to optimize the quantity
ratio, power ratio, and placement between the pilot symbols and the payload
symbols in a data frame. As an example, the pilot symbol allocation in an
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Figure 1.7: The pilot and control symbol allocation in a time-frequency bin
of size 0.667 ms and 200 KHz, proposed by Wireless IP project.
One time-frequency bin contains 20 subcarriers with 6 symbols
each. Known 4-QAM pilot symbols (black) and 4-QAM control
symbols (rings) are placed on four pilot subcarriers.

OFDM time-frequency bin proposed by the Wireless IP1 project is given in
Figure 1.7. In such a system, each time-frequency bin of size 0.667 ms and
200 KHz contains 120 symbols. Four pilot symbols and eight control symbols
are placed as shown in the plot. The non-pilot subcarriers can be estimated
by interpolation.
Usually an observed channel (channel estimation) is written as

y(t) = h(t) + e(t), (1.2)

where y(t) is the observed channel, h(t) is the true channel, e(t) is the esti-
mation error with zero-mean and variance σ2

e . The h(t) can correspond to a
narrow band Rayleigh fading channel or an FIR tap of a frequency selective
channel.

1.4.2 Channel Prediction

In a real system, the mobile stations in service need to listen to all physical
channels in the down link, and report the measured CSI’s to the BS for
radio resource allocation and adaptive transmissions. In a multiple access
system, it is non trivial to feed back this information from different users
to the BS simultaneously due to the limited bandwidth in the uplink. A
well synchronized and scheduled uplink is necessary. In such a scenario, the

1Wireless IP is a 4G-oriented research project founded by Swedish Foundation for
Strategy Research (SSF).
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1.4 Channel Estimation and Channel Prediction

feed-back delay results in an outdated CSI at the transmitter, which can lead
to uncertainty in the adaptive transmission selection. The influence of the
imperfect channel information was studied in [DHHH00, FSES04]. However,
such a problem might be alleviated by channel prediction using previous
channel observations.

In channel prediction, a finite number, N , of channel estimates is collected
in y, and

y = h + e, (1.3)

where

y = [y(t), y(t− 1), · · · , y(t− N + 1)]T , (1.4)

h = [h(t), h(t − 1), · · · , h(t − N + 1)]T , (1.5)

e = [e(t), e(t − 1), · · · , e(t − N + 1)]T . (1.6)

The value h(t+L) is to be predicted, where L is the prediction horizon. Such
a scenario is shown in Figure 1.8, where N = 100 and t = 0.
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y=h+e 
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Figure 1.8: Channel prediction.

In previous studies, parametric and nonparametric channel prediction
methods were developed in [AJHF99, HW98, DHHH00, Ekm02]. These re-
ported predictors mainly fall into two categories: the classical Linear Predic-
tion (LP) and sinusoidal modeling based prediction. Beside these prediction
methods, a nonlinear prediction of radio channel using Multivariate Adaptive
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Chapter 1. Introduction

Regression Splines (MARS) was studied in [EK99]. Recently, a new channel
estimation and prediction method using Discrete Prolate Spheroidal (DPS)
sequences was proposed in [ZM05]. But it was reported that the radio chan-
nel is only predictable a few portions of wavelength into the future [TV01]. A
long range channel prediction (half a wavelength) is expected to be necessary
to achieve full advantage of adaptive communication.

1.5 Contributions and Thesis Outline

The contributions of the author in the research field of channel modeling and
long range channel prediction based on parametric modeling is summarized
as follows:

Physics based scattering model for narrow band channels

By modeling the radio waves scattered on a rough surface, a physics base scat-
tering channel model is proposed for narrow band SISO channels [CVF07b].
It is extended into MIMO channels following the double directional structure
[SWS03]. In these models, there is no predefined model parameters, such as
Doppler frequencies and amplitudes. These setups are critical for the perfor-
mance evaluation of model based channel predictors.

LMMSE channel predictors based on sinusoidal modeling

A number of LMMSE channel predictors are proposed based on statistical
sinusoidal modeling of Rayleigh fading channels, where both the amplitudes
and frequencies are modeled as Gaussian random variables. These predic-
tors are named conditional LMMSE predictor, adjusted conditional LMMSE
predictor, and unconditional LMMSE predictor respectively. These meth-
ods outperform the deterministic sinusoidal model based channel predictor
and LP using synthetic data, but underperform LP using measured channels
[CV04, CEV05].

Joint Moving Average and Sinusoidal model and Joint LS channel

predictor

By splitting the channel into the sinusoidal (periodic) part and non-sinusoidal

10



1.5 Contributions and Thesis Outline

(non-periodic) part, a Joint Moving Average and Sinusoidal (JMAS) model
for channel prediction is proposed, which leads to a Joint LS predictor. The
prediction is then based on both autoregressive bases and selected sinusoidal
bases. Together with a simple SVD based model selection method, the JLS
predictor outperforms all the LMMSE predictors in performance evaluation
using measured channels [CEV07], but still slightly underperform the LP.

Adaptive channel prediction based on Polynomial Phase Signals

Motivated by the analysis of real world channels and the physics based scat-
tering models, adaptive channel prediction based on a Polynomial Phase
Signal (PPS) model is proposed. To mitigate the influence of the unknown
time-varying amplitudes, an iterative parameter estimation of the polynomial
phases using the Nonlinear Instantaneous LS (NILS) criterion is proposed.
The time-varying amplitude is modeled as an AR(d) process. The new pre-
dictor outperforms the LP in Monte Carlo simulations with known model
orders and number of components [CVF07a, CV07].

Detection of the number of signal components and model order

selection of polynomial phase signals

An iterative procedure to detect the number of signal components and the
order of the polynomial phases is proposed in [CV07]. The detection of the
signal component is based on an examination of the size of the residual signal.
The model order selection of the polynomial phase is based on a Generalized
Likelihood Ratio Test (GLRT) or Wald test. High order parameters of the
polynomial phases are observed in both urban and suburban environments.
The adaptive channel predictors, together with the detection and estimation
method, outperform LP in simulations and examples of measured urban and
suburban channels.

The content in this thesis are partially contained in the following publica-
tions:

• M. Chen, M. Viberg. “LMMSE channel prediction based on sinusoidal
modeling.” In Proc. of 3rd IEEE Sensor Array and Multichannel Sig-
nal Processing Workshop, pp. 377- 381, Barcelona, Spain, Jul. 2004.
[CV04]

• M. Chen, T. Ekman, and M. Viberg, “Two new approaches for channel
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prediction based on sinusoidal modeling.” In Proc. of IEEE Workshop
on Statistical Signal Processing, Bordeaux, France, Jul. 2005.[CEV05]

• M. Chen, T. Ekman, and M. Viberg, “New Approaches for Channel
Prediction Based on Sinusoidal Modeling.” In EURASIP Journal on
Advances in Signal Processing, vol. 2007, Article ID 49393, 13 pages,
2007. doi:10.1155/2007/49393. [CEV07]

• M. Chen, M. Viberg, and S. Felter, “Models and Predictions of Scat-
tered Radio Waves on Rough Surfaces.” In Proc. IEEE ICASSP, vol.
3, pp. 785-788, Honolulu, Hawaii, USA, 2007. [CVF07b]

• M. Chen, M. Viberg, and S. Felter, “Adaptive Channel Prediction
Based on Polynomial Phase Signals.” Submitted to IEEE ICASSP
2008, Las Vegas, USA, Sept. 2007. [CVF07a]

• M. Chen, M. Viberg, “Long Range Channel Prediction Based on Non-
Stationary Parametric Modeling.” Submitted to IEEE Trans. on Signal
Processing, Sept. 2007. [CV07]

Other publications of the author:

• M. Chen, S. Felter, “Feasibility Study of Channel Prediction Based on
Sinusoidal Modeling with Time Variant Model Parameters.” Technical
Report, Ericsson Research, Stockholm, Sweden, Nov. 2005. [CF05]

• S. Felter, M. Chen and M. Viberg, “Method and Arrangement for
Channel Prediction.” Patent application, P22729US1, USA, Sept. 2006.
[FCV06].

• M. Chen, “Channel Prediction Based on Sinusoidal Modeling.” Licenti-
ate Thesis, Chalmers University of Technology, August, 2005. [Che05]

• M. Chen, “Mobile Positioning in Distributed Antenna Systems.” Patent
application, Telefonaktiebolaget LM Ericsson, USA, Dec, 2002. [Che02]

• M. Chen, H. Koorapaty, and A. Kangas, “Enhanced Positioning Method
in Cellular Systems.” In Proc. of IEEE International Conference of
Telecommunications, Beijing, China, June, 2002. [CKK02]

• M. Chen, H. Asplund, “Measurements and Models for Direction of
Arrival of Radio Waves in LOS in Urban Microcells.” In Proc. of the
12th IEEE International Symposium of Personal, Indoor and Mobile
Radio Communications, vol. 1, pp. B100–104, San Diego, USA, 2001.
[CA01]
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A brief introduction to the content in each chapter is given below.

Chapter 2 Channel Modeling

This chapter is devoted to the modeling of narrow band Rayleigh fading
channels. The sinusoidal modeling is introduced first. Then the physics based
scattering model is addressed, followed by the non-stationary polynomial
phase signal modeling. These models are also extended into MIMO scenarios.

Chapter 3 Parameter Estimation

Parameter estimation techniques involved in the predictor design are dis-
cussed in this chapter. These techniques include the classical Wiener fil-
ters and estimators such as LS estimator, MMSE estimator, ML estimator,
NLLS and NILS estimator. A number of frequency estimation algorithms,
such as MUSIC and ESPRIT are introduced as well. To reduce the computa-
tional complexity of the frequency estimate, the well known iterative method
(SAGE/RELAX) is addressed.

Chapter 4 Model Order Selection and Detection of MC-PPS

The detection of the model order of a polynomial phase signal using the Wald
Test is discussed. It is in principle equivalent to the GLRT based detection
method. An iterative detection method based on examination of the size of
residual signal is also introduced in this chapter.

Chapter 5 Model-Based Channel Prediction

This chapter summarizes the predictors proposed by the authors using the
different parametric models.

Chapter 6 Conclusions and Future Works

This chapter contains the conclusions of the thesis. The comments and dis-
cussions on future works are given.
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Chapter 2
Channel Modeling

The study of modeling and characterization of radio channels plays an
important role in the research and development of wireless communica-

tions. It helps to understand the challenge to design a mobile communication
system and it provides a tool for simulation. Serving for different purposes,
numerous publications on this topic can be found in [ECS+98, YO02], and
the references therein. In principle, all these models can be divided into
non-physical models and physical models. The non-physical models charac-
terize only the statistical property of the channels, such as their spatial and
temporal correlations. These models provide a fast and convenient method
to generate radio channels in simulations. However, in some studies, such
as Beamforming (BF) and MIMO etc, not only the statistical property, but
also detailed propagation parameters, such as Direction-Of-Arrival (DOA),
Direction-Of-Departure (DOD), and Time-Of-Arrival (TOA) etc., need to be
characterized. This information can be provided by a physical model, but
a large number of parameters are needed to fully describe the wave propa-
gation scenarios, such as the locations of BS, MS and reflectors, the speed
of the MS, and the configurations and orientations of the antenna arrays.
In this thesis, the physical models are of interest, and the wave propagation
structure is explored for long range channel prediction.

In this chapter, a physical ellipsoidal channel model is presented first.
Then, motivated by the Jakes model [Jak74], a statistical sinusoidal model
is introduced [CEV07]. Later, a physics based scattering model for SISO
channels is discussed [CVF07b], which leads to the Multi-Component Poly-
nomial Phase Signal (MC-PPS) [CVF07a], which is a non-stationary signal.
A discussion on the physics based scattering MIMO channel models is given
at the end of this chapter.
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Chapter 2. Channel Modeling

2.1 Physical Ellipsoidal Models

Radio wave propagation over a local area can be described by an ellipsoidal
model as in Fig. 2.1. In this model, the transmitter and receiver are placed
separately on two foci of a series of ellipsoids. A number of reflection ob-
jects are distributed on these ellipsoids. The inter-distance (resolution) ∆l
between neighboring ellipsoids is limited by the bandwidth of the channel,
B,

∆l ≤ c

4B
, (2.1)

where c is the speed of light. If one assumes that all paths experience no
more than one reflection, then all paths, which pass via reflection objects
that lie on the same ellipsoid, will share the same path length and delay.
The path loss increases exponentially with the increase of the path length.
The signals via reflection objects on outer ellipsoids are weak and could be
neglected.

∆ l

BS MS
v

Figure 2.1: Physical ellipsoidal models.

Mathematically, the channel impulse response of the ellipsoidal model can
be formed as a Finite Impulse Response (FIR) filter,

h(t, τ) =
K−1
∑

k=0

h(t, τk)δ(τ − τk), (2.2)

where τ is the excessive delay, K is the number of taps, h(t, τk) contains all
paths sharing the same delay of τk. When K = 1, the channel has only one
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2.2 The Jakes Model

tap and can be written as

h(t, τ) = h(t, τ0) = h(t)δ(τ − τ0), (2.3)

which is different from the ideal channel by a time-varying scaling factor.
Since its frequency response is constant over the whole bandwidth, it is called
a flat fading channel, or a narrow band channel. For simplicity, the narrow
band channel can be denoted as h(t), where the delay parameter τ is dropped.

When K > 1, the channel introduces inter-symbol interference and the
frequency response becomes selective. Such a channel is termed a frequency
selective fading channel, or a wide band channel. An example of a measured
wide band channel is given in Fig. 2.2, where the channel impulse response
contains 120 taps along the axis of excessive delay, and 143 impulse responses
are plotted along the time axis.
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Figure 2.2: Example of a measured wide band channel. Each channel impulse
response contains 120 taps along the axis of excessive delay, and
143 impulse responses are plotted along the axis of time.

2.2 The Jakes Model

Jakes model is one of the most widely used models for a flat Rayleigh fading
channel [Jak74], in which the second order property of a channel is approxi-
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Chapter 2. Channel Modeling

mated by the tub shape power spectrum as in (2.4) [Rap96],

p(f) =
1

πfm

√

1 − (f−fc

fm
)2

, (2.4)

where fm is the maximum Doppler frequency and fc is the carrier frequency.
Both are in Hz. To complete this definition, define p(f) = 0, when |f −fc| >
fm. Such a spectrum are based on two assumptions:

• Rich scattering environment, where a large number of scatters are uni-
form distributed in the vicinity of the mobile terminal (in the far field);

• The scattered signals from different objects have equal power.

These assumptions are true in statistics, and this model is suitable for gen-
erating channels when only properties over time are required. The Auto-
Correlation Function (ACF) of (2.4) is a zero order Bessel function of the
first kind, i.e.,

rh(τ) = Jo(ωmτ), (2.5)

where rh(τ) = E[h(t)h∗(t − τ)] and ωm = 2πfm is the maximum Doppler
frequency in radian. Since ωdτ

2π
is a distance measured in wavelength, one

can plot (2.5) as a function of distance as in Figure 2.3, where the initial
zero-crossing appears at around 0.5. For this reason, a prediction of such a
channel over a half wavelength is considered difficult [SEA01].

0 1 2 3 4 5
−0.5

0

0.5

1

Distance [λ]

r h(λ
)

Figure 2.3: Auto-Correlation Function (ACF) of Rayleigh fading channels.
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2.3 Sinusoidal Modeling

2.3.1 SISO Channel Based on Sinusoidal Modeling

In a local area, the number of dominant paths are limited [CA01]. This
motivates a deterministic sinusoidal model for a Rayleigh fading channel
[AJHF99, HW98]. Assume p paths contained in a narrow band channel h(t),
and

h(t) =

p
∑

i=1

hi(t), (2.6)

where hi(t) corresponds to the ith path. When the mobile is moving at the
speed of v m/s, we have

hi(t) = sie
jωit, (2.7)

where si is the complex amplitude, and ωi is the doppler frequency, which is

ωi =
2πv

λ
cos θi, (2.8)

where θi is the DOA, the angle between v and the impinging path, and λ is
the wavelength.

Modeling θi as a random variable with uniform distribution, U [−π, π),
the PDF of the normalized Doppler frequency ωi is

p(ωi) =
1

π
√

1 − ω2
i

, −1 < ωi < 1, (2.9)

which is identical (except for a scaling factor) to the expression of the power
spectrum given by the Jakes model [Jak74]. A plot of p(ωi) is shown in
Figure 2.4. In vector form, the model is, given ω = [ω1, · · · , ωp]

T ,

y = A(ω)s + e, (2.10)

where

A(ω) = [a(ω1), · · · , a(ωp)], (2.11)

a(ωi) = [ejωi(t), · · · , ejωi(t−N+1)]T , (2.12)

s = [s1, · · · , sp]
T . (2.13)

2.3.2 MIMO Channel Based on Sinusoidal Modeling

Such a ray tracing based model is extended into the MIMO scenario in
[SWS03, Che05]. In [SWS03], a MIMO channel with nT and nR transmit
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Figure 2.4: PDF of the normalized Doppler frequency.

and receive antennas is modeled as

H(t) =

p
∑

i=1

sie
jωita(θR,i)a

T (θT,i), (2.14)

where θR,i and θT,i are the DOA and DOD associated with the ith path,
and a(θR,i) and a(θT,i) are the array response vector to the ith path at the
transmitter and receiver respectively. In the case of a Uniform Linear Array
(ULA),

a(θT,i) = [1, e−jΩT,i, · · · , e−j(nT−1)ΩT,i ]T , (2.15)

a(θR,i) = [1, e−jΩR,i, · · · , e−j(nR−1)ΩR,i ]T , (2.16)

where the spatial frequencies at the transmitter and receiver are

ΩT,i = 2π∆T sin(θT,i)/λ, (2.17)

ΩR,i = 2π∆R sin(θR,i)/λ, (2.18)

where ∆T and ∆R are the element separations of the transmit and receive
array elements. Note that it is assumed in (2.14) that the observed Doppler
frequencies and amplitudes at different array elements associated with the
same path are identical.

In [Che05], a MIMO channel based on statistical sinusoidal modeling is
proposed as

H(t) =

p
∑

i=1

ejωitSi, (2.19)

where the nR×nT matrix Si contains the random amplitudes associated with
the ith path, and vec(Si) has PDF, CN (0nRnT

, σ2
sInRnT

). The amplitudes
associated with the same path are independent for different subchannels.
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2.4 Physics Based Scattering Models

A number of physical MIMO channel models were published during the last
several years [GBGP02, AK02, SFGK00, Sva01, WJ01, FMB98, Cor01]. The
common feature of these models is to approximate the spatial and temporal
correlation of a MIMO channel by modeling the relative locations of the BS,
MS and a number of distributed reflection clusters. In [AK02, Sva01, Cor01,
FMB98], the time evolution of a MIMO channel is modeled by taking the
mobile velocity into account. However, the reflection of wave propagation in
these models are assumed to be on specular surfaces, i.e. the amplitude to
each path is constant. In [WJ01, FMB98], the scattering effect is modeled
by the angular spread, which corresponds to distributed sources. In this
section, a physics based scattering SISO channel model proposed in [CVF07b]
is addressed. A similar model can be found in [3GP03]. It is also extended
into MIMO channel models with single and double reflections.

2.4.1 Physics Based Scattering SISO Models

In the sinusoidal modeling of a Rayleigh fading channel (2.7), the reflection
is assumed to be on a specular surface, and the DOA is constant. But these
assumptions might not be true in practice. The reflection of radio wave can
be on a rough surface and the DOA will be time-varying when the mobile is
close to the reflection object. In such a scenario, the reflected wave becomes
scattered from a large number of scatters on the surface, which is termed
a cluster as in Figure 2.5, where (xi,c, yi,c) is the center of gravity of the ith

cluster, and

(xi,c, yi,c) =

qi
∑

j=1

(xi,j , yi,j) /qi, (2.20)

where (xi,j , yi,j) is the coordinate of the jth scatter in the ith scattering sur-
face, and qi is the number of scatters in the ith clusters. The radio channel
scattered on the ith rough surface can be approximated as

hi(t) = si(t)e
j2πli,c(t)/λ, (2.21)

si(t) =
si√
qi

qi
∑

j=1

ej2π∆li,j(t)/λ, (2.22)

∆li,j(t) = li,j(t) − li,c(t), (2.23)

where li,c(t) and li,j(t) are the lengths of the propagation path from the
transmitter antenna to the receiver antenna via (xi,c, yi,c) and the scatter at
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BS v

MS

(xi,c , yi,c)

Figure 2.5: Scattered Radio Waves on Rough Surface.

(xi,j, yi,j) respectively, si is the impinging amplitude, which is assumed to be
identical over the scattering surface and time.

Assume a circular reflection area with a radius of γλ as in Figure 2.6, the
degree of scattering or roughness of the surface is determined by γ. According
to the Rayleigh criterion [Sau99], a surface is considered as smooth, if γ is
less than 0.25, which results in the maximum path length difference of a half
wavelength. When γ = 0, this scattering model degenerates to the specular
reflection model. In general, the larger γ is, the larger/rougher the surface is
in this model. Note that it was found that the time-varying amplitude si(t)
in (2.22) has a nonzero mean in general [CVF07b].

2.4.2 Physics Based Scattering MIMO Models

Let a MIMO channel with nT transmit antennas at BS and nR receive anten-
nas at MS, and p clusters be located in the vicinity of the mobile. Following
the idea in [SWS03], a Double-Direction-Single-Reflection (DDSR) MIMO
channel using the physics based scattering scheme is

HDDSR(t) =

p
∑

i=1

si(t)e
j2πli,c(t)/λa(θR,i(t))a(θT,i)

H , (2.24)

where θR,i(t) and θT,i are the time-varying DOA and constant DOD associated
with the ith cluster as in Figure 2.7, and a(θR,i(t)), a(θT,i) are the associated
steering vector of the receive and transmit array. For the Uniform Linear
Array (ULA), a(θT,i) is given in (2.15), and

a(θR,i(t)) = [1, e−jΩR,i(t), · · · , e−j(nR−1)ΩR,i(t)]T , (2.25)
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Figure 2.6: A circular scattering cluster with a radius of γλ, and (xi,c, yi,c) is
the center of gravity.

where

ΩR,i(t) = 2π∆R sin (θR,i(t)) /λ. (2.26)

Note that the time-varying DOA, θR,i(t), is due to the short distance between
the MS and the reflection clusters. When the distance from the BS to the
scattering clusters is large, the DOD is constant over a short observation
interval.

2.5 Polynomial Phase Signal Modeling

The time-varying phase associated with the ith cluster in (2.21) is approxi-
mated by a polynomial of time t with order Mi, i.e.

φi(t) = 2πli,c(t) ≈
Mi
∑

m=1

βi,mtm. (2.27)

Then, the channel is
hi(t) = si(t)e

jφi(t). (2.28)

When Mi = 1, (2.28) becomes a sinusoidal model with time-varying ampli-
tudes [CVF07b]. When Mi = 2, (2.28) is a quadratic phase signal, which has
found an application in Synthetic Aperture Radar (SAR) [CM91].
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1r��
��ith receive cluster
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θR,i(t)

Figure 2.7: Physics Based Scattering DDSR MIMO Model.

In vector form, the MC-PPS signal

y =

p
∑

i=1

ai(θi) ⊙ si + e, (2.29)

where ⊙ is the Hadamard product (elementwise multiplication), and

ai(θi) = [ejφi(t), · · · , ejφi(t−N+1)]T ,

si = [si(t), · · · , si(t − N + 1)]T .

The model parameters are collected in the vectors θ = [θT1 , · · · , θTp ]T , where
θi = [βi,1, · · · , βi,Mi

]T . The time varying amplitudes are considered as un-
known deterministic/stochasitc signals, but not as model parameters.
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Chapter 3
Parameter Estimation

Parameter estimation is one of the typical problems in signal processing,
where the model parameters collected in a vector θ = [θ1, · · · , θp]

T need
to be estimated from a finite number of observations,

y = h(θ) + e, (3.1)

where h in (1.3) is written as h(θ) to emphasize the parametric dependence.
The number of unknown parameters is assumed to be less than the signal
observations, i.e., p < N . The estimate of θ can usually be formed as an
optimization problem as

θ̂ = arg min
θ

V (θ), (3.2)

where V (θ) is the cost function. Various estimators can be obtained by
applying different optimal or suboptimal criterion in (5.48). An extensive
discussion on this topic can be found in [Kay93b]. In this chapter, estimation
techniques related to the channel predictor design are addressed briefly.

After a brief introduction of the Cramér-Rao Lower Bound (CRLB), the
Maximum Likelihood estimator (MLE) is introduced, which is an optimal
estimator when the statistical property of the signal is known. Then the es-
timators for linear models, such as LS and MMSE, are presented. After that,
the celebrated adaptive parameter estimation method using a Kalman filter
is discussed, which is suitable for non-stationary signal processing. Later,
the Non-linear LS (NLLS) and Non-linear Instantaneous LS method is intro-
duced for parameter estimation of MC-PPS signals with time-varying ampli-
tudes. At the end, the subspace based frequency estimation methods, such
as MUSIC and ESPRIT, are presented.
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3.1 Cramér-Rao Lower Bound

Given y, the model parameters in θ need to be estimated. Due to the random
noise, the estimation of θ becomes random variables as well. The mean, E[θ̂],
and the variance, C ˆθ

= E[(θ̂−θ)(θ̂−θ)T ], of θ̂ are usually used to evaluate

the performance of different estimators. The notation E[·] is expectation.
When E[θ̂] = θ, an estimator is unbiased, otherwise it is called a biased
estimator. If a regularity condition is satisfied, for example

E

[

∂ ln p(y, θ)

∂θ

]

= 0, for all θ, (3.3)

where p(y, θ) is the PDF of y, the variance of any unbiased estimator is
bounded by the Cramér-Rao Lower Bound (CRLB), which is

C ˆθ
≥ F−1(θ), (3.4)

where F(θ) is the Fisher information matrix, defined by

[F(θ)]ij = −E

[

∂2 ln p(y, θ)

∂θi∂θj

]

. (3.5)

For the general Gaussian case, where

y ∼ N (µ(θ),C(θ)), (3.6)

the Fisher information matrix is given by, i.e. [Kay93b],

[F(θ)]ij =

[

∂µ(θ)

∂θi

]

C−1(θ)

[

∂µ(θ)

∂θj

]

+
1

2
Tr

[

C−1(θ)
∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

]

, (3.7)

where

∂µ(θ)

∂θi
=

















∂[µ(θ)]
1

∂θi

∂[µ(θ)]
2

∂θi

...
∂[µ(θ)]

N

∂θi

















(3.8)

and

∂C(θ)

∂θi
=

















∂[C(θ)]
11

∂θi

∂[C(θ)]
12

∂θi
· · · ∂[C(θ)]

1N

∂θi

∂[C(θ)]
21

∂θi

∂[C(θ)]
22

∂θi
· · · ∂[C(θ)]

2N

∂θi

...
...

. . .
...

∂[C(θ)]
N1

∂θi

∂[C(θ)]
N2

∂θi
· · · ∂[C(θ)]

NN

∂θi

















. (3.9)
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3.2 Maximum Likelihood Estimation

When the statistical properties of the observed data is known, the MLE
provides the best estimate for the parameter estimate in the sense that the
variance of θ̂ approaches the CRLB as N → ∞ [Kay93b].

Let p(y; θ) be the probability density function of y given parameter θ.
The MLE of θ is

θ̂ML = arg max
θ

p(y; θ). (3.10)

Due to the monotonically increasing property of the logarithm function,
(3.10) is equivalent to

θ̂ML = arg max
θ

ln p(y; θ). (3.11)

When the signal is a complex Gaussian random variable, CN (µy,Cy),

p(y; θ) =
1

πNdet(Cy)
e−(y−µy)

H
C

−1
y (y−µy). (3.12)

Substitute (3.12) into (3.11), and drop the constant term, which leads to

θ̂ML = arg min
θ

lndet(Cy) +
(

y − µy
)H

C−1
y

(

y − µy
)

. (3.13)

This optimization involves a multiple dimension searching procedure, which
is computational intensive. For this reason, some fast and suboptimal search-
ing algorithms, e.g. SAGE/RELAX, are attractive in practice [FH94, LS96,
CB05]. In these methods, only one or a subset of the parameters are op-
timized at a time, and the parameter estimation is performed iteratively.
These methods are much cheaper than MLE, and the price to pay is the risk
to obtain a local minimum instead of a global minimum when the likelihood
function is not convex. Empirically a good initial parameter setting is critical
in order to converge globally.

3.3 Parameter Estimation for Linear Models

A linear signal model is
y = Hθ + e, (3.14)

where H is an N × p known matrix. The observations is a linear function of
the model parameters.
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3.3.1 LS Estimate

When H is a deterministic matrix, the LS estimate of θ is

θ̂LS = arg min
θ

‖y −Hθ‖2. (3.15)

Setting
∂‖y − Hθ‖2

∂θ
= 0, (3.16)

and solving the resulting linear equations, the LS estimate of θ is

θ̂LS = (HHH)−1HHy, (3.17)

= H†y, (3.18)

where H† is the pseudo inverse of H.
For instance, a dth order linear prediction of h(t + L) based on y is

ĥ(t + L) =

d−1
∑

k=0

αky(t − k), (3.19)

= αTd yd, (3.20)

where L is the prediction horizon, αd = [α0, α1, · · · , αd−1]
T is the predictor

coefficient vector, and yd = [y(t), y(t− 1), · · · , y(t− d+1)]T . In vector form,
(3.20) can be written as

yls = Ylsαd, (3.21)

where

yls = [y(t), y(t− 1), · · · , y(t− N + L + d)]T , (3.22)

Yls =







y(t − L) y(t− L − 1) · · · y(t − L − d + 1)
...

...
...

...
y(t− N + d) y(t − N + d − 1) · · · y(t − N + 1)






.

(3.23)

The LS estimate of αd is therefore

α̂d = Y
†
lsyls, (3.24)

where Y
†
ls is the pseudo inverse of Yls. A forward-backward LS estimate of

αd, that takes advantage of the stationary property of the model, can be
found in Appendix A.
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3.3.2 MMSE Estimate

When θ is random, and H in (3.14) may or may not be random, the MMSE
estimate of θ is

θ̂MMSE = arg min
θ

E
[

(y −Hθ)H (y −Hθ)
]

. (3.25)

Similarly setting

∂E
[

(y −Hθ)H (y −Hθ)
]

∂θ
= 0, (3.26)

and solving the resulting linear equations, the MMSE of θ is

θ̂MMSE = R−1
HHrHy, (3.27)

where RHH = E
[

HHH
]

and rHy = E [Hy].
For the linear prediction model in (3.20), the MMSE estimate of αd is

α̂d = arg min
αd

E
[

‖h(t + L) −αTd yd‖2
]

. (3.28)

From (3.27),

α̂d = R−1
d rd, (3.29)

where

Rd =











ryy(0) ryy(1) · · · ryy(d − 1)
ryy(−1) ryy(0) · · · ryy(d − 2)

...
...

...
. . .

ryy(−d + 1) ryy(−d + 2) · · · ryy(0)











, (3.30)

rd =











ryy(L)
ryy(L + 1)

...
ryy(L + d − 1)











, (3.31)

ryy(τ) = E [y(t)y∗(t − τ)] . (3.32)

In practice, Rd might be unknown. It can be estimated from the obser-
vations as

R̂d =
1

N − d + 1
YdY

H
d , (3.33)
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where Yd is a d × (N − d + 1) Hankel matrix as

Yd =











y(t) y(t− 1) · · · y(t− N + d)
y(t − 1) y(t− 2) · · · y(t − N + d + 1)

...
...

. . .
...

y(t− d + 1) y(t− d) · · · y(t− N + 1)











. (3.34)

When N goes to infinite, it can be shown that R̂d → Rd in probability,
i.e. R̂d is a consistent estimator. The correlation coefficients in rd can be
estimated as

r̂yy(k) =
1

N − k

t−N+k+1
∑

l=t

y(l)y∗(l − k). (3.35)

3.4 State Space Model and Kalman Filter

Signals with a non-stationary property exist widely in practice. One of the
most celebrated methods for non-stationary signal processing is the Kalman
filter [Kal60]. Suppose a measured signal y(t), for t = [t, t−1, · · · , t−N+1]T ,
can be written in a state space form as:

x(t + 1) = ΓKx(t) + u(t), (3.36)

y(t) = cT (t)x(t) + e(t), (3.37)

where x(t) is the state vector, ΓK is the state transition matrix, c(t) is the
observation vector. The u(t) is a complex Gaussian noise vector with PDF,
CN (0,Q). The state vector x(t−N) is a complex Gaussian vector with PDF
CN (µx,Cx), and x(t−N) is independent of the u(k) for k ≥ t−N +1. The
observation noise e(t) is a zero-mean white Gaussian noise with variance σ2

e .
We seek x̂(t+1|t) and x̂(t|t), where x̂(t+1|t) is the estimate of x(t+1) until
y(t) is observed, and x̂(t|t) is the estimate of x(t) until y(t) is observed.

Such a problem is solved recursively by the following steps in the Kalman
filter:

• Prediction:

x̂(t|t − 1) = ΓKx̂(t − 1|t − 1). (3.38)

• Minimum Prediction MSE Matrix:

Cx(t|t − 1) = ΓKCx(t − 1|t − 1)ΓH
K + Q. (3.39)
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3.5 Parameter Estimation for Polynomial Phase Signal Models

• Kalman Gain Vector:

K(t) =
Cx(t|t − 1)c(t)

σ2
e + cT (t)Cx(t|t − 1)c(t)

. (3.40)

• Correction:

x̂(t|t) = x̂(t|t − 1) + K(t)(y(t) − cT (t)x̂(t|t − 1)). (3.41)

• Minimum MSE Matrix:

Cx(t|t) = (I− K(t)cT (t))Cx(t|t − 1). (3.42)

where the mean square error matrices are defined as

Cx(t|t) = E
[

(x(t) − x̂(t|t))(x(t) − x̂(t|t))H
]

, (3.43)

Cx(t|t − 1) = E
[

(x(t) − x̂(t|t − 1))(x(t) − x̂(t|t − 1))H
]

. (3.44)

A detailed derivation of these equation systems from (3.38) to (3.42) can be
found in [Kay93b].

3.5 Parameter Estimation for Polynomial Phase

Signal Models

3.5.1 Parameter Estimation of a Single PPS

A PPS signal with constant amplitude is

y1 = h1 + e1 = a1s1 + e1, (3.45)

where

a1 = [ejφ1(t), · · · , ejφ1(t−N+1)]T , (3.46)

φ1(t) =

M1
∑

m=1

β1,mtm. (3.47)

The model parameters are

θ1 = [β1,1, · · · , β1,M1]
T . (3.48)

The estimation of polynomial phase parameters has drawn considerable at-
tractions due to its wide wide applicability, such as in radar, sonar and mobile
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communications. Besides the ML estimate in [LA92], a least square method
was applied to the unwrapped phases in high SNR scenarios [DK90]. Later
estimation methods utilizing the special PPS structure were proposed, such
as the High-order Ambiguity Function (HAF), Polynomial Phase Transform
(PPT), and High order Instantaneous Moment (HIM) method [PF96, PF95,
ZGS96]. All these methods assume the order of the polynomial phase to be
known. The CRLB in case of constant and time-varying amplitudes of pa-
rameter estimation of PPS signal were derived in [PP91a] and [FF95, GNS99]
respectively, where it was shown that the estimation of the parameters of the
polynomial phase is not affected significantly by modulated amplitudes at
high SNR. So that the maximum likelihood type estimators, which optimize
a criterion with respect to only phase parameters, is approximated by the
Nonlinear LS estimate (NLLS), i.e.

θ̂1,NLLS = arg min
θ1

[

(y1 − h1)
H (y1 − h1)

]

. (3.49)

Generally there is no closed form solution to the NLLS optimization problem.
A multiple dimension search is inevitable. In case of MC-PPS, an iterative
parameter estimation of multiple chirp signals was proposed in [IAMH97].

An alternative to the NLLS criterion, a Nonlinear Instantaneous Least
Square (NILS) estimate of θ is, i.e. [GNS99, PZ07],

θ̂1,NILS = arg min
θ

t−N+n
∑

k=t

‖y1(k) − h1(k)‖2, (3.50)

where

y1(k) = [y1(k), · · · , y1(k − n + 1)]T , (3.51)

h1(k) = [h1(k), · · · , h1(k − n + 1)]T , (3.52)

where n is the length of the local interval and is a user’s choice. The LS
estimate of the instantaneous amplitude s1(k) is

ŝ1(k) =
(

âH1,kâ1,k

)−1
âH1,ky1(k), (3.53)

= â
†
1,ky1(k), (3.54)

where

a1,k = [ejφ1(k), · · · , ejφ1(k−n+1)]T . (3.55)

The selection of n depends on the rate of the time variation of the amplitude.
A small n gives a smoother cost function for model parameters compared to
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3.6 Subspace Based Frequency Estimation

those given by a large n [JAG99]. This property makes the convergence of
parameter searching in multiple dimension spaces less sensitive to the initial
parameter setting when n is small. Meanwhile the resolution of the model
parameters is reduced. When n = N , NILS is the same as the standard
NLLS [BW88].

3.5.2 Iterative Parameter Estimation of MC-PPS

In MC-PPS scenarios with p PPS components, the model parameters are

θ = [θT1 , · · · , θTp ]T , (3.56)

θi = [βi,1, · · · , βi,Mi
]T , (3.57)

where θ contains
∑p

i=1 Mi parameters. Motivated by the idea in SAGE/RELAX
[FH94, LS96], an iterative parameter estimation using NILS and NLLS cri-
terion is proposed in [CVF07a] and [CV07] respectively. A block diagram of
the method using NLLS criterion proposed in [CV07] is given in Figure 3.1,
where the number of PPS and the order of the polynomial phase are assumed
to be known.

A demonstration example of the iterative method is given below. The
number of PPS is p = 3, and the signal parameters are given in Table 3.1.

Table 3.1: Parameter of MC-PPS
i = 1 i = 2 i = 3

βi,1 -0.31 0.1 0.2
βi,2 −0.05 × 10−3 −0.3 × 10−3 −0.16 × 10−3

si(t) 1 1 1

The total data length N = 250, the SNR is 10 dB. The power spectrum
of original signal y, the residual signal yr, and the reconstructed signal ĥi
associated with the PPS No. 1, 2 and 3 are plotted in the subplots (a), (b),
and (c) in Figure 3.2 respectively. From these plots it can be seen that the
overlapped spectrum can be classified by the proposed methods. Note that
the number of clusters and the order of the polynomial are assumed to be
known.

3.6 Subspace Based Frequency Estimation

Frequency estimation has been studied extensively in array signal processing
in [KV96] and the reference therein. Subspace based frequency estimation
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Figure 3.1: A block diagram of the iterative parameter estimate of MC-PPS
using NLLS.
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Figure 3.2: Classified power spectrum of a 3-component PPS signal with pa-
rameters given in Table 3.1.

algorithms, such as MUSIC (Multiple Signal Classification) [Sch81] and ES-
PRIT (Estimation of Signal Parameters via Rotation Invariance Techniques)
[PRK85, RPK86] are introduced in this section.

3.6.1 MUSIC Pseudo Spectrum

The MUSIC Pseudo Spectrum (MPS) is defined as

pmu(ω) =
a(ω)Ha(ω)

a(ω)HΠ⊥
a a(ω)

, ω ∈ [−ωm, ωm], (3.58)

where Π⊥
a = UnU

H
n , and the columns of Un are the eigenvectors spanning

the noise space of the covariance matrix of the data sequence y, i.e.,

Ryy = E[yyH]. (3.59)
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It can be obtained by taking eigenvalue decomposition of Ryy as

Ryy = [Us Un]

[

Λs

Λn

] [

UH
s

UH
n

]

, (3.60)

= UsΛsU
H
s + UnΛnU

H
n , (3.61)

where a rank estimation algorithm is necessary, and the eigenvalues are or-
dered in non-increasing order. In practice, an estimate of Ryy similar to (3.33)
is used. In case of high SNR, MPS is not sensitive to under-estimated dimen-
sion of noise subspace, while an over-estimated dimension of noise space will
attenuate certain weak frequency components. The a(ω) is the DFT vector
associated with frequency ω. The frequency estimate can be obtained from
the peaks of pmu(ω).

3.6.2 ESPRIT

ESPRIT utilizes the rotation invariance property of the sinusoidal signal
subspace for frequency estimation. In (2.10), the signal space is spanned by
the columns of A(ω). For convenience, A(ω) is denoted as A in the following
discussion in this chapter. Let

O1 = A1:N−1, (3.62)

O2 = A2:N , (3.63)

which contain the first N −1 and the last N −1 rows of A respectively. Note
that O1 and O2 are two temporally displaced subsets of the basis functions
of A. The rotation invariance property is interpreted as

O2 = O1Φ, (3.64)

where

Φ =











ejω1

ejω2

. . .

ejωp











, (3.65)

The matrix Φ is the rotation operator, which is a diagonal unitary matrix
in this case. Assume a matrix BN×p = [b1, · · · ,bp] contains another set of
basis function spanning the same signal subspace of the sinusoidal subspace,
and

bi = ti,1v1 + ti,2v2 + · · · + ti,pvp, (3.66)

= Ati, (3.67)
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where ti = [ti,1, · · · , ti,p]
T is the coordinates of bi with respect to the basis

in A. So there exists a p × p transform matrix

T = [t1, t2, · · · , tp], (3.68)

which satisfies

B = AT, (3.69)

where T is an invertible matrix [HJ85]. Define two sub matrices

B1 = B(1 : N − 1, :), (3.70)

B2 = B(2 : N, :), (3.71)

which contain the first N − 1 and the last N − 1 rows of B respectively. So

B2 = O2T = O1ΦT = (O1T)(T−1ΦT)

= B1Ψ, (3.72)

where Ψ = T−1ΦT. The matrices Φ and Ψ are similar, and have the same
eigenvalues. So the frequency estimate can be obtained from the phases of
the eigenvalues of Ψ.

Based on (3.64), the frequency estimate can be obtained by the following
steps:

1. Find a set of basis functions which span the signal subspace, i.e. a
similar matrix to O;

2. Forming O1 and O2 as in (3.62) and (3.63);

3. The LS estimate of the rotation matrix Φ is

Φ̂ = (OH
1 O1)

−1OH
1 O2

= O†
1O2; (3.73)

4. The frequency estimate ω̂ can be obtained from the phases of the eigen-
values of Φ̂.

3.6.3 Signal Subspace Estimation Using SVD

The signal subspace estimate method which uses Singular Value Decompo-
sition (SVD) is termed Kung’s algorithm [Kun78]. A Hankel matrix H is
formed by the data sequence as
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H =











y(t) y(t − 1) . . . y(t− N + M)
y(t − 1) y(t − 2) . . . y(t− N + M − 1]

...
...

. . .
...

y(t− M + 1) y(t − M) . . . y(t− N + 1)











, (3.74)

where M is chosen as an integer close to N/2 as a rule of thumb. The SVD
of H is

H = [Us Un]

[

Σs

Σn

] [

VH
s

VH
n

]

, (3.75)

where the singular values are ordered in non-increasing order. The observ-
ability matrix O is formed as

O = Us · Σs
1/2, (3.76)

and O1 and O2 can be obtained as in (3.62) and (3.63). Finally, Φ̂ is obtained
as in (3.73).

3.6.4 Unitary ESPRIT

It was observed that the eigenvalues of Φ have unit norm. To exploit this
property, the Unitary ESPRIT algorithms was proposed in [HN95]. The
Unitary ESPRIT algorithms begin with forming the data matrix Hu,

Hu = [H ΠMH̄], (3.77)

where H is the same as in (3.74). The over bar denotes complex conjugation
without transposition. The ΠM is the M × M exchange matrix with ones
on its anti-diagonal and zeros elsewhere as given in (3.78).

ΠM =









1
1

·
1









. (3.78)

Then the SVD is performed upon Hu instead of on H. The remaining steps
are identical to Kung’s algorithm. It was found that Unitary ESPRIT has
better performance than ESPRIT [HN95].
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Chapter 4
Model Order Selection and Detection

of MC-PPS

Model order selection and detection of MC-PPS is critical for the param-
eter estimation. Such a problem is formulated as the determination

of the number of PPS signals, p, and the orders of polynomial phases of
PPS components, Mi for i = 1, · · · , p. For convenience, the signal model is
repeated below:

y(t) =

p
∑

i=1

hi(t) + e(t), (4.1)

hi(t) = si(t)e
jφi(t), (4.2)

φi(t) =

Mi
∑

m=1

βi,mtm, (4.3)

where e(t) is an additive noise with zero-mean and variance σ2
e . The model

parameters are collected in β as

β =
[

βT1 , · · · ,βTp
]T

, (4.4)

βi = [βi,Mi
, βi,Mi−1, · · · , βi,1]

T , (4.5)

where βi contains the polynomial phase parameters associated with the ith

component, but the parameters are put in a reverse sequence as compared to
(3.57). The orders of the PPS components are mixed and the total number
of model parameters is

∑p
i=1 Mi. The time-varying amplitude si(t) has a low

pass property. In vector form,

y = h + e =

p
∑

i=1

hi + e, (4.6)
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where

y = [y(t), · · · , y(t− N + 1)]T , (4.7)

e = [e(t), · · · , e(t − N + 1)]T , (4.8)

hi = [hi(t), · · · , hi(t − N + 1)]T . (4.9)

Due to the non-stationary property of PPS, the classical nonparametric
model order selection methods, such as Akaike Information Criterion [Aka74]
and Minimum Description Length [Ris83], cannot be used directly. In this
chapter, an iterative model order selection and detection of MC-PPS is in-
troduced. This method does not require the highest model order and the
number of PPS as a priori knowledge. Most of the following content is con-
tained in [CV07], except that a Wald test based model order selection of the
polynomial phases is proposed [Kay93a]. The Wald test based model order
selection in single PPS scenarios is addressed first. Then the detection of the
number of PPS components based on the size of the residuals is presented.
Finally, the iterative detection and estimation method is proposed.

It is worth noting that all the detectors proposed in this chapter assume
that the parameter estimates are correct, i.e β̂ = β. The estimation of β
can be made using the NILS criterion in (3.50) [CVF07a], and the NLLS
criterion in (3.49) [PZ07, CV07]. Using the NILS criterion, the cost function
is smoothed regarding the model parameters, and the local searching of the
optimization is less sensitive to the initial parameter settings. But the resolu-
tion of parameter estimation is reduced. For this reason, a higher resolution
parameter estimation using the NLLS criterion is adopted in this chapter.

4.1 Model Order Selection of Polynomial Phase

Signals Using Wald Test

In this section, a parametric model order selection using Wald test is proposed
[Kay93a]. The highest model order is not required as a priori knowledge. A
detailed description of this method is presented using a toy example of a
single PPS with a real and constant amplitude as follows. Note that the
Wald test is in principle equivalent to the Generalized Likelihood Ratio Test
(GLRT) based detector [Kay93a].

A toy example of model order selection using Wald test

A single PPS corrupted by noise with model order M1 = 2 is

y1(t) = s1e
jφ1(t) + e1(t), (4.10)
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where s1 is a real constant amplitude, e1(t) is an additive noise with zero-
mean and variance σ2

e1
, and φ1(t) is the polynomial phase,

φ1(t) =

M1
∑

m=1

β1,mtm = β1,1t + β1,2t
2. (4.11)

The model parameters are collected in

β1 = [β1,2, β1,1]
T , (4.12)

and y1 = [y1(t), y1(t − 1), · · · , y1(t − N + 1)]T . Note that the amplitude s1

and the noise variance σ2
e1 are not listed as model parameters, although they

are estimated in different places.
The detection problem is:

H0 : β1,m+1 = 0, (4.13)

H1 : β1,m+1 6= 0, (4.14)

where the null hypothesis assumes m is the highest model order, while the
alternative hypothesis assumes the highest model order is at least m+1. The
already detected and estimated parameters under H0 and H1 are collected
in

β̂1,H0
= [0, β̂1,m, · · · , β̂1,1]

T , (4.15)

β̂1,H1
= [β̂1,m+1, β̂1,m, · · · , β̂1,1]

T . (4.16)

Given β̂1,H1
, the Wald test for model order selection is, (see. e.g. [Kay93a]),

TW = β̂1,m+1

(

[

F−1
]

1,1

)−1

β̂1,m+1

m
≶

m+1
γm, (4.17)

where F is the Fisher information matrix, given in Appendix D, and [F−1]1,1
is the element at the first row and first column of F−1.

To complete the design of the detector, the threshold γm can be selected
at a desired level of false alarm according to the following test distribution:
i.e. [Kay93a],

TW = χ2
1 under H1, m = M1, (4.18)

where χ2
1 is a chi-square distribution with one degree of freedom. In prac-

tice, the Fisher information matrix F is heavily ill-conditioned, which makes
difficulty to implement the test in (4.17). An approximation of the CRLB of
the parameter estimation was derived in [PP91b], but it is valid for a small
N only. The remedy is assuming the first m parameter estimate to be exact,
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i.e. [β̂1,m, · · · , β̂1,1]
T = [β1,m, · · · , β1,1]

T , one can use F1,1 as
(

[F−1]1,1

)−1

in

(4.17). In other words, only β1,m+1 is considered as the unknown parameter.
Such an approximation is also motivated by the fact that the CRLB for the
polynomial phase parameters decreases super fast with N , e.g. 1/N3 for the
frequency. So the approximate Wald test is

TW ≈ β̂1,m+1F1,1β̂1,m+1

m
≶

m+1
γm. (4.19)

The detection using (4.19) starts with a test on the first order parameter,
m = 0, βm+1 = [β1,1]. Once H1 is accepted, or β1,1 is estimated and β1,1 6= 0
is detected, a new test on βm+1 = [β1,2] is performed. Such a procedure is
carried out until H1 is rejected, and m = M1 is selected.

In this example, s1 is assumed to be real, and the LS estimate of s1, given
β̂1,H1

, is

ŝ1 = ã
†
β1

ỹ1, (4.20)

where

ỹ1 = [Re
[

yT1
]

, Im
[

yT1
]

]T , (4.21)

ã
†
β1

= (ãTβ1
ãβ1)

−1ãTβ1
, (4.22)

ãβ1 = [Re
[

âTβ1

]

, Im
[

âTβ1

]

]T , (4.23)

âβ1 = [ejφ̂1,m+1(t), · · · , ejφ̂1,m+1(t−N+1)]T , (4.24)

φ̂1,m+1(t) =
m+1
∑

k=1

β̂1,kt
k, (4.25)

where Re [·] and Im [·] are the real part and the imaginary part of the argu-
ment respectively. The ML estimate of σ2

e1
is

σ̂2
e1

=
1

N

∥

∥

∥
Π⊥

ãβ1
ỹ1

∥

∥

∥

2

, (4.26)

where
Π⊥

ãβ1
= IN − ãβ1 ã

†
β1

. (4.27)

The detection statistics of TW in (4.19) is evaluated by simulations:

• The constant amplitude is s1 = 1;

• The order of the polynomial phase is M1 = 2, and the parameters are
β1,1 = 0.41, and β1,2 = 3 × 10−5;

• SNR = 0 dB and 10dB;
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4.2 Detection of the Number of PPS Components

• The estimate of β1 in (4.12) using the NLLS (3.49) is obtained using
the Simplex method [NM65];

• The length of data is N = 100;

• Number of simulation is 200;

• The initial parameter setting for a local search is

Initial β1,1 = arg max
β1,1

F{y1}, (4.28)

where F{y1} is the DTFT of y1. The initial values for β1,m, m > 1,
are taken to be 0.

The Cumulative Distribution Functions (CDF) of TW for different SNR’s are
given in Figure 4.1, together with the CDF of χ2

1. From this figure, it can
be seen that the CDF of TW is close to that of a random variable with χ2

1

distribution.
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Figure 4.1: The CDF’s of the Wald test from Monte Carlo simulations and
χ2

1. In the simulations, p = 1, M1 = 2, β1,1 = 0.41, β1,2 =
3 × 10−5, s1 = 1, N = 100, SNR = 0, 10dB. In total, 200
simulations are performed for each SNR.

4.2 Detection of the Number of PPS Com-

ponents

Detection of the number of MC-PPS, p, in (4.1), without a priori knowledge
of the mixed model orders of the polynomial phases is a nontrivial task.
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Chapter 4. Model Order Selection and Detection of MC-PPS

However, an iterative solution is to detect a single PPS at a time until all
PPS’s are discovered. Assume the model parameters associated with the first
p PPS’s have been detected and estimated, and are put in the vector

θ̂ =
[

θ̂
T

1 , · · · , θ̂
T

p

]T

. (4.29)

Define the residual signal

yr = y −
p

∑

i=1

ĥi, (4.30)

ĥi = [ĥi(t), · · · , ĥi(t − N + 1)]T , (4.31)

ĥi(t) = ŝi(t)e
jφ̂i(t), (4.32)

φ̂i(t) =

M̂i
∑

m=1

β̂i,mtm, (4.33)

where ŝi(t) can be estimated using (3.54). Then the detection problem is
formulated as

H0 : yr = e (4.34)

H1 : yr = e + “Undetected components”. (4.35)

The detector based on the size of residual is

Tp =
2

σ2
e

∥

∥

∥
Π⊥

Âp
y

∥

∥

∥

2 H0
≶
H1

γp, (4.36)

where

Π⊥
Âp

= IN − ÂpÂ
†
p, (4.37)

Â†
p =

(

ÂH
p Âp

)−1

ÂH
p , (4.38)

Âp = [â1, · · · , âp], (4.39)

ai = [ejφ̂i(t), · · · , ejφ̂i(t−N+1)]T . (4.40)

Note that σ2
e is assumed to be known or can be estimated in advance. For

example, one can estimate σ2
e from the out-of-band spectra of a band limited

signal in ωB = [ωl, ωh], as

σ̂2
e =

1

2π − (ωh − ωl)

∫

ω/∈ωB

p(ω)dω, (4.41)
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4.3 Summary of Iterative Model Order Selection and Detection of MC-PPS

where p(ω) is the power spectrum of y(t). When p is the true number of the
MC-PPS, and the parameters in θ̂ are correct, the distribution of Tp is

Tp = χ2
v under H0 and p is true, (4.42)

where v is the degrees of freedom, v = 2N − p. The reduction of degrees of
freedom by p is due to the projection operation. With the distribution in
(4.42), one can select γp at a desired level of false alarm for the detection of
the number of MC-PPS. However, this detector cannot work alone. It has to
be implemented together with the model order selection of the polynomial
phase in (4.19) or the GLRT detector in [CV07].

4.3 Summary of Iterative Model Order Se-

lection and Detection of MC-PPS

An iterative detection and estimation procedure is suggested as follows:

1. Initialize the number of signal components p = 0, and let the residual
signal be yr = y;

2. Decide if any new signal components exist in yr using Tp. If no new
component is detected, Stop. Otherwise go to Step 3);

3. Let p = p+1 and estimate and select the model order using TW , where
the parameter search of βp,1 starts with

Initial βp,1 = arg max
βp,1

F{yr}, (4.43)

where F{yr} is the DTFT of yr. The initial values for βp,m, m > 1,
can be taken to be 0;

4. If p > 1 components are detected, iteratively update the model order
M̂k and re-estimate θ̂k, for k = 1, · · · , p, by setting

yr = y −
p

∑

i=1
i6=k

ĥi. (4.44)

In this step, the old parameter estimation is set to be the initial values
of new NLLS estimate;
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Chapter 4. Model Order Selection and Detection of MC-PPS

5. Let

yr = y −
p

∑

i=1

ĥi, (4.45)

and go to Step 2).

A block diagram of the suggested procedure is given in Figure 4.2. Note that
the initial parameter setting in Step 3) give rise to a local search of the NLLS
criterion, for example the Simplex method [NM65].

The distribution of Tp is investigated using Monte Carlo simulations, with
known p and Mi. The simulation setting-up is:

• The number of PPS is p = 3;

• The signal parameters are given in Table 4.1;

Table 4.1: Parameter of MC-PPS
i = 1 i = 2 i = 3

βi,1 0.41 -0.1 -0.17
βi,2 3 × 10−5 2 × 10−5 −3 × 10−5

si(t) 1 1 1

• SNR = 10 dB;

• The NLLS estimate of θk in (3.49) is obtained using the Simplex method
[NM65];

• The length of data is N = 100;

• Number of simulations is 200;

• The degree of freedom v = 2N − p = 197;

• The orders of the polynomial phases and the noise variance are known.

The other simulation set-up are same as before. The CDF of Tp is given in
Figure 4.3, together with the CDF of χ2

v and v = 197. A good agreement
between these two CDF’s is observed.
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Yes

yr = y − ∑p
i=1 ĥi
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?
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Tp > γp
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p = 0

?

p = p + 1

Detect Mp using TW and estimate θp.

�

End-

Let yr = y − ∑p
i=1
i6=k

ĥi,

for k = 1, · · · , p. Repeat until converge.

and reselect Mk and update θ̂k,

No

Figure 4.2: A block diagram of model order selection and detection of MC-
PPS.
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Figure 4.3: The CDF of Tp from Monte Carlo simulations and χ2
v. In the

simulations, p = 3, the signal parameters are given in Table 4.1,
N = 200, SNR=10 dB and M1 = M2 = M3 = 2 and σ2

e are
known. In total, 200 simulations are performed.
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Chapter 5
Model Based Channel Prediction

T his chapter contains a summary of the channel predictors proposed by
the author based on sinusoidal models and polynomial phase signals.

These predictors are published in [CEV07, CVF07b, CVF07a, CV07]. A
short overview of previous studies of channel prediction is presented as well.

5.1 Previous Studies of Channel Prediction

Early works on radio channel prediction includes [DHHH00, HW98, AJHF99,
EK99]. The Linear Prediction is proposed and investigated in [DHHH00,
Ekm02]. Deterministic sinusoidal modeling based channel prediction is sug-
gested in [HW98, AJHF99]. In [EK99], a nonlinear predictor based on Multi-
variate Adaptive Regression Splines (MARS) is introduced. Recently, a new
channel estimation and prediction method using Discrete Prolate Spheroidal
Sequences was proposed in [ZM05], where the band limited property of radio
channels is utilized.

Linear prediction

A dth order LP of h(t + L), as seen in Figure 5.1, is

ĥ(t + L) =
d−1
∑

k=0

αky(t− k) = αTd yd, (5.1)

where αd is the coefficient vector of the LP, which is estimated from y as in
(3.24). This method is found to be simple and robust in different performance
evaluations [SK03, TV01]. It becomes computationally intensive in MIMO
scenarios [SWS03].
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Figure 5.1: A linear channel predictor with order d.

Channel prediction based on deterministic sinusoidal modeling

Motivated by the Jakes model [Jak74], a radio channel is modeled as super-
imposed complex sinusoids as

y = h + e = As + e, (5.2)

where

A = [a(ω1), · · · , a(ωp)], (5.3)

a(ωi) = [ejωi(t), ejωi(t−1), · · · , ejωi(t−N+1)]T , (5.4)

s = [s1, · · · , sp]
T . (5.5)

Given ω, the LS estimate of s is

ŝLS = A†y, (5.6)

where A† =
(

AHA
)−1

AH . In practice, the frequency vector is estimated
and assume ω̂ is unbiased, (5.6) can be written as

ŝLS = Â†y. (5.7)

In (5.7), Â might be ill-conditional due to closely separated frequency com-
ponents. Such a problem can be solved by regularization.

Since the ill-conditional Â matrix leads to large ‖s‖2, a penalty term
could be added into the LS estimate

ŝReg = arg min
s

{‖y − Âs‖2 + α‖s‖2}, (5.8)
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5.1 Previous Studies of Channel Prediction

where α > 0 is called the regularization parameter. Let

∂{‖y − Âs‖2 + α‖s‖2}
∂s

= 0, (5.9)

the regularized LS estimate of s is

ŝReg = (ÂHÂ + αIp)
−1ÂHy (5.10)

= R−1
RegÂ

Hy, (5.11)

where RReg is the regularized covariance matrix. Its eigenvalues are dis-

placed from those of (ÂHÂ) by the regularization parameter α. So the
ill-conditional problem (zero eigenvalues) is alleviated [Che05].

Channel estimation and prediction method using Discrete Prolate

Spheroidal Sequences

Recently, a new channel estimation and prediction method using Discrete
Prolate Spheroidal Sequences [Sle78] was proposed in [ZM05], where a time-
limited snapshot of bandlimited radio channel observations is expanded using
Slepian basis as

h(t) ≈
D(S)−1
∑

i=0

u
(S)
i (t)γ

(S)
i , (5.12)

where u
(S)
i (t) is the Slepian sequence whose maximum energy concentration

in an interval with length N ,

D′ < D(S)−1 < N, (5.13)

where
D′ = ⌈2ωmN⌉ + 1, (5.14)

where ⌈·⌉ is round towards plus infinity of a real number. In this method only
the maximum Doppler frequency ωm and the length of channel observation
sequence N are required.

A thorough performance evaluation of these sinusoid model based meth-
ods and LP were made in [SK03], where both simulation data and real world
data are used. It was reported that the LP outperforms the other methods
in general. In [TV01], it was claimed that the channel is only predictable a
few portions of wavelength into the future in a SISO channel. The perfor-
mance bound of MIMO channel predictors based on sinusoidal modeling was
derived in [SS03]. A longer range prediction revealing structures in a MIMO
channel is possible. In [ZG04], a study of the required prediction accuracy
was performed at link level.
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Chapter 5. Model Based Channel Prediction

5.2 Channel Prediction Based on Statistical

Sinusoidal Modeling

A stationary sinusoidal model for a Rayleigh fading channel is given in (5.2).
The unknown model parameters are θ = [ωT , sT ]T . In these methods, the
Doppler frequency, ω, is estimated using a high resolution algorithm, i.e.
Unitary-ESPRIT [HN95], while the complex amplitude, s, can be estimated
using different methods [CEV07].

5.2.1 Conditional LMMSE Predictors

Given the unbiased frequency estimate ω̂ = [ω̂1, · · · , ω̂p]
T , the LS estimate

of the complex amplitudes is given in (5.7). Substituting (5.2) into (5.7),

ŝLS =
(

ÂHÂ
)−1

ÂH
(

Âs + e
)

,

= s + Â†e, (5.15)

where Â†e is the estimation error with covariance matrix σ2
e(Â

HÂ)−1. Either
in simulations or measured channels, the doppler frequencies might be closely
separated, which can be seen from the PDF of the Doppler frequency in
Figure 2.4, where the probability in the region close to ±1 in the normalized
spectrum is much higher than other parts. Therefore, the true A matrix
might be ill-conditioned. As a result, the noise will be amplified by the
pseudo inverse matrix Â†. Such a problem is solved by regularization as in
(5.11). To determine the optimal regularization parameter α, the amplitude
s is modeled as a Gaussian random vector with PDF, CN (0p, δ

2
sIp), which is

a stochastic sinusoidal model. The conditional LMMSE estimate of s is, i.e.
[Kay93b],

ŝLMMSE = RsyR
−1
yy y, (5.16)

where

Rsy = E[syH ] = σ2
sÂ

H , (5.17)

Ryy = E[yyH ] = σ2
sÂÂH + σ2

eIN . (5.18)

Therefore,

ŝLMMSE = ÂH
(

ÂÂH + αIN

)−1

y, (5.19)

= (ÂHÂ + αIp)
−1ÂHy, (5.20)

= R−1
RegÂ

Hy, (5.21)
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5.2 Channel Prediction Based on Statistical Sinusoidal Modeling

where RReg is the regularized covariance matrix as in (5.11), α = σ2
e/σ

2
s ,

which is the inverse of SNR, and the matrix inversion lemma1 is used in the
second equation. Then the conditional LMMSE predictor is

ĥ(t + L) = âH(L)ŝLMMSE, (5.22)

where âH(L) = [ejω̂1(t+L), · · · , ejω̂p(t+L)]. Note that for Gaussian signals, the
conditional LMMSE predictor is also an MMSE predictor. The proof is given
in Appendix C.

5.2.2 Unconditional LMMSE Predictors

Since the frequency estimates is subject to errors in practice, ω can be mod-
eled as a Gaussian vector with PDF, N (ω̂, σ2

∆ωIp). The variance σ2
∆ω is de-

termined by the SNR and the number of samples [Kay93b]. Such a problem
was investigated in [SS91]. The unconditional LMMSE predictor is

ĥ(t + L) = RhyR
−1
yy y, (5.23)

where

Rhy = σ2
s â

H(L)ÂH ⊙ γ, (5.24)

γ =

[

e
−σ2

∆ω
2

L2

, · · · , e
−σ2

∆ω
2

(L+N−1)2
]

, (5.25)

Ryy = Rhh + σ2
eIN , (5.26)

Rhh = σ2
sÂÂH ⊙ Γ, (5.27)

[Γ]mn = e−
σ2
∆ω
2

(n−m)2 . (5.28)

Note that the random frequencies are assumed to be independent on the
amplitudes. The unconditional LMMSE predictor is

ĥ(t + L) =
(

σ2
s â

H(L)ÂH ⊙ γ
)(

σ2
sÂAH ⊙ Γ + σ2

eIN

)−1

y,

=
(

âH(L)ÂH ⊙ γ
)(

ÂÂH ⊙ Γ + αIN

)−1

y. (5.29)

So the influence of old observations is reduced by the damping matrix Γ and
the damping vector γ. The damping vector γ is dependent on the prediction
range as well. The way the frequency error is taken into account can be
interpreted as a convolution of the line spectrum of the signal with the error
distribution. The filter design is thus done for distributed sources.

1
(A+BCD)−1=A

−1
−A

−1
B(DA

−1
B+C

−1)−1
DA

−1
.

53



Chapter 5. Model Based Channel Prediction

5.2.3 Adjusted Conditional LMMSE Predictors

Due to the limit on frequency resolution, the frequency estimate ω̂ might be
biased. This gives rise to a colored residual signal, which is

ǫ = y − ĥ = y − Âŝ, (5.30)

where ǫ = [ǫ(t), · · · , ǫ(t−N+1)]T , and ǫ contains both the channel estimation
error e and the prediction error h−ĥ. This residual signal could be predicted
by a low order LP predictor. The adjusted conditional LMMSE predictor is

ĥadj(t + L) = ĥ(t + L) + ǫ̂(t + L), (5.31)

where

ĥ(t + L) = âH(L)ŝ, (5.32)

ǫ̂(t + L) =
dǫ−1
∑

k=0

αǫ,kǫ(t − k) = αTǫ ǫd. (5.33)

Then (5.31) can be rewritten as

ĥadj(t + L) =
[

ǫTd âH(L)
]

[

αǫ
s

]

. (5.34)

5.2.4 JMAS Prediction Model and Joint LS Predictor

Motivated by the real data, a channel can be split into two parts, the periodic
sinusoidal part and the non-periodic autoregressive part. A Joint Moving
Average and Sinusoidal (JMAS) prediction model is

ĥ(t + L) = yTdαJ + âH(L)s + e(t + L), (5.35)

where ω̂ contains only the stable frequencies from some model selection meth-
ods. Given ω̂, (5.35) can be rewritten as

ĥ(t + L) =
[

yTd âH(L)
]

[

αJ
s

]

, (5.36)

where the parameters associated with the two parts can be estimated jointly,
so that this predictor is termed Joint LS predictor. Note that the autore-
gressive basis and the sinusoidal basis in (5.36) are correlated, but not in
(5.34).

54



5.3 Channel Prediction Based on Polynomial Phase Signals

5.3 Channel Prediction Based on Polynomial

Phase Signals

The channel model based on MC-PPS is given in (2.29). To be able to predict
y(t), the time-varying amplitude, si(t) is modeled as AR(d)-processes with
nonzero mean, i.e.

sz,i(t) = si(t) − µs,i(t), (5.37)

where µs,i(t) is the mean of si(t), which should be constant, and sz,i(t) is the
amplitude with zero mean. Further, let

si,z(t + 1) =
d

∑

l=1

αi,lsi,z(t − l + 1) + vi(t), (5.38)

= αTi,dsi,z(t) + vi(t), (5.39)

where vi(t) is a white noise with non-zero mean and variance σ2
v,i.

Then the signal model (2.29) can be expressed in a state-space structure
as

x(t + 1) = Γαx(t) + u(t), (5.40)

y(t) = cT (t)x(t) + e(t), (5.41)

where

x(t) = [xT1 (t), · · · ,xTp (t)]T ,

xi(t) = [sz,i(t), · · · , sz,i(t − d + 1), µs,i(t)]
T ,

Γα =







Γ1

. . .

Γp






, (5.42)

Γi =















αi,1 αi,2 · · · αi,d−1 αi,d 0
1 0 · · · 0 0 0

...
0 0 · · · 1 0 0
0 0 · · · 0 0 1















,

u(t) = [uT1 (t), · · · ,uTp (t)]T ,

ui(t) = [vi(t), 0
T
d−1, wi(t)]

T ,

c(t) = [cT1 (t), · · · , cTp (t)]T ,

ci(t) = [ejφi(t), 0Td−1, e
jφi(t)]T .

55



Chapter 5. Model Based Channel Prediction

The variance of wi(t), σ2
w,i, should be set much smaller than the variance

of vi(t), since wi(t) is the innovation noise for the mean amplitude which is
constant. Then, the prediction of the h(t + L) is

ĥ(t + L|t) = cT (t + L)ΓL
αx̂(t|t), (5.43)

where x̂(t|t) is obtained by the Kalman filter [Kal60].
The initial covariance matrix of the state vector for the Kalman filter is

chosen as

Cx =







Cx,1

. . .

Cx,p






, (5.44)

Cx,i =

[

σ2
s,iId

0

]

. (5.45)

The initial state vector is taken to be xi(t−N + 1|t−N + 1) = [0Td , µi(t)]
T .

The covariance matrix of u(t) is selected as

Q =







Q1

. . .

Qp






, (5.46)

Qi =















σ2
v,i

0
. . .

0
σ2
w,i















. (5.47)

The instantaneous amplitude si(k) can be estimated using (3.54), where
y1(k) is replaced by y(k). Then the AR parameters αi,d in (5.39) can be
estimated using LS as:

α̂i,d = arg min
αi,d

t−N+n+1
∑

k=t

‖ŝi,z(k + 1) −αTi,dŝi,z(k)‖2, (5.48)

where

ŝi,z(k) = ŝi(k) − µ̂i(k), (5.49)

µ̂i(k) =
1

N − n + 1

t−N+n
∑

k=t

ŝi(k). (5.50)
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Estimate θ using NLLS.

Estimate the instantaneous amplitudes using (3.54).

Estimate the parameters of the state space model

i.e. Γα, σ2
s,i, σ2

v,i, and µi(t).

Estimate x(t|t) using Kalman filter.

Set the initial covariance matrix Cx

Predict h(t + L) using

ĥ(t + L|t) = cT (t + L)ΓL
αx̂(t|t).

?

?

?

and x(t − N + 1|t − N + 1).

Figure 5.2: A block diagram of the adaptive channel predictor using the
Kalman filter.

The variance of si,z(t) is

σ̂2
s,i =

1

N − n + 1

t−N+n
∑

k=t

‖ŝi(k) − µ̂i(k)‖2. (5.51)

The variance of vi(t) is

σ̂2
v,i =

1

N − n

t−N+n+1
∑

k=t

‖ŝi,z(k + 1) − α̂Ti,dŝi,z(k)‖2. (5.52)

A block diagram of the adaptive channel predictor is given in Figure 5.2.
Particularly, when the time-varying amplitude si(t) is approximated by

a constant, ŝi, which is reasonable when N is small, the channel prediction
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based on the MC-PPS model is

ĥ(t + L) = aTφ (L)ŝ, (5.53)

where

aφ(L) = [ejφ1(t+L), · · · , ejφp(t+L)]T , (5.54)

ŝ = [ŝ1, · · · , ŝp]
T . (5.55)

This predictor is termed LS MC-PPS prediction.
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Chapter 6
Conclusions and Future Works

An extensive study on radio channel prediction based on parametric mod-
eling is performed in this thesis.

6.1 Conclusions

Motivated by the Jakes model, a number of channel prediction methods
based on stochastic sinusoidal modeling are proposed. Two LMMSE pre-
dictors are proposed, which are termed conditional LMMSE prediction and
unconditional LMMSE prediction. In the conditional LMMSE predictors, the
Doppler frequencies or frequency estimates are given and the amplitudes are
modeled as Gaussian random variables. In the unconditional LMMSE predic-
tion, both the amplitudes and frequency estimates are modeled as Gaussian
random variables. In the conditional LMMSE predictor, the ill-conditioned
LS estimate of the complex amplitudes is alleviated by regularization. While
the uncertainty of the frequency estimate in the unconditional LMMSE pre-
diction is interpreted as distributed sources in the frequency domain, or an
exponential weighting of the channel observations in the time domain. The
unconditional LMMSE predictor outperforms the conditional LMMSE pre-
dictor both in simulations and test using measured channels.

However, it was found that a part of the channels, both in simulations and
measurements, cannot be described using pure periodic sinusoidal models. To
pick-up this part of the channels, an adjusted conditional LMMSE prediction
and JLS prediction are proposed using mixed sinusoidal bases and auto-
regressive bases, where the prediction coefficients are estimated separately
and jointly respectively. These methods approach the compressed CRLB of
channel prediction in simulations, and outperform the other two LMMSE
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predictors in measured channels.
Based on a detailed modeling of the radio wave scattering on rough sur-

faces, a physics based scattering model is proposed to narrow band SISO
channels. It is extended into MIMO scenarios with single reflection. Similar
models are found in 3GPP standards.

Motivated by these physical channel models, a new category of channel
prediction based on the non-stationary Multi-Component Polynomial Phase
Signal with time-varying amplitudes is proposed. An adaptive channel pre-
dictor using the Kalman filter is proposed, where the time-varying amplitudes
are modeled as AR(d) processes. Following the idea in SAGE/RELAX, an
iterative parameter estimation method of MC-PPS is proposed with known
model order and number of PPS components, where a Nonlinear instanta-
neous LS criterion can be used to alleviate the influence of the time-varying
amplitudes on parameter estimation. Alternative to the NILS criterion, the
parameter estimation of the polynomial phases using the standard NLLS cri-
terion is studied as well, where a high resolution on parameter estimation is
obtained.

An iterative detection and estimation method of MC-PPS is proposed.
The detection of the number of signal components is based on examination
of the size of the residual signals with known noise variance. The detection
of the order of polynomial phase is based on GLRT or Wald test.

The channel predictors based on MC-PPS are evaluated using both syn-
thetic data and measured channels. These new methods outperform the
sinusoidal model based predictors and the classical LP in simulations. High
order polynomial phase parameters are observed in both urban and subur-
ban environments. The PPS based channel predictors outperform the other
methods in examples of measured urban and suburban channels.

6.2 Discussions and Future works

In this thesis, the study of channel prediction methods based on parametric
modeling focus on narrow band SISO channels or the channels in a single
frequency bin in OFDM systems.

In a MIMO system, due to the close separation between antenna elements,
the subchannels might share the same or highly correlated model parameters,
which provide two potential benefits: the first one is the improvement of the
accuracy of parameter estimation and channel prediction, and the second
is the reduction on computational complexity of MIMO channel prediction.
These potential advantages are definitely worth to investigate. It is also of
interested to evaluate these models and methods with MIMO systems with
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different polarized antenna elements.
In wide band systems or OFDM system, the channels most likely expe-

rience frequency selective fading. Typical channel estimation techniques in
OFDM systems are allocating pilot symbols in a number of equally sepa-
rated frequency bins. Channel prediction can be performed on these pilot
bins. Then the frequency domain interpolation can be used to predict the
non-pilot bins. Due to the similar wavelengths of the radio signals in different
frequency bins, the channels might have highly correlated model parameters
as well. The same advantages can be taken as in a MIMO system.

Regarding the measured channels, the study has been performed on the
strongest tap in the channel impulse response. It is also interesting to have
similar studies on the following taps. It would of course be beneficial to
take into account the correlation (if any) that exists between the different
taps. This gives a 2D structure, even in the SISO case. It might lead to
very computationally costly algorithms in the SIMO and MIMO case, but it
might improve performance.

An extensive performance evaluation of these parametric model based
channel predictors using measured SISO and MIMO channels is of great
interest.

In the implementation of these parametric modeling based prediction
methods, a good parameter tracking scheme is important, which helps to
reduce the calculation complexity and improve the prediction accuracy. This
aspect should be studied in the future work.
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Appendix A
Forward-Backward LS Estimate of LP

Coefficients

The LS estimate of αd of LP in (3.24) is usually named a forward LS esti-
mation. A backward LP is

ĥ(t − L) = αTd,byd,b,

where yd,b = [y(t), · · · , y(t + d − 1)]T . In vector form,

yb = Ybαd,b, (A.1)

where

yb = [y(t − N + 1), · · · , y(t− L − d + 1)]T , (A.2)

Yb =







y(t− N + L + 1) y(t− N + L + 2) · · · y(L + d)
...

...
...

...
y(t− d + 1) y(t− d + 2) · · · y(t)






,(A.3)

αd,b = [α0,b, · · · , αd−1,b]
T . (A.4)

The backward LS estimate of αd,b is

αd,b = (YH
b Yb)

−1YH
b yb.

It is easy to show that ᾱd,b ≈ αd, where ᾱd,b is the conjugate of αd,b without
transpose, so that the forward-backward LS estimate of αd can be obtained
by solving

[

yls
ȳb

]

=

[

Yls

Ȳb

]







α0
...

αd−1







yfb = Yfbαd. (A.5)
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Then the forward-backward LS estimate of αd is

α̂d = (YH
fbYfb)

−1YH
fbyfb. (A.6)
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Appendix B
Instrumental Variable Method for

Frequency Estimation in Colored Noise

The classical so-called eigenvector (EV) techniques, such as ESPRIT, MUSIC
etc., can produce highly biased frequency estimates in colored noise or inter-
ference. An Instrumental Variable Method (IVM) for frequency estimation
in colored noise is proposed in [SVO94, Gus98].

Assume the noise e in signal model (2.10) is colored with zero mean and
covariance matrix E[eeH ] = Ce, which is a positive definite matrix. Then
the covariance matrix Ryy in (3.59) becomes

Ryy = ASAH + Q. (B.1)

The signal subspace and the noise subspace cannot be separated by the eigen-
value decomposition as in (3.61). However if the colored noise e(t) could be
modelled as a qth order Moving Average (MA) process, which is

e(t) = u(t) + b1u(t − 1) + · · ·+ bqu(t − q), (B.2)

where u(t) is complex white Gaussian noise with zero mean and variance
σ2
u. The noise covariance matrix Q = E[eeH ], which is a banded Hermi-

tian Toeplitz matrix with first row of [q0, q1, · · · , qq, 0, · · · , 0]T , where qk =
E[e(t)e(t − k)∗], and qk = 0, when k > q. Motivated by this property, the
signal subspace can be separated from the noise subspace by using the IVM.

Define the data vector ζy and instrumental vector ψy as

ζy = [y(τ), y(τ − 1), · · · , y(τ − K + 1)]T , (B.3)

ψy = [y(τ − M), y(τ − M − 1), · · · , y(τ − M − L + 1)]T , (B.4)
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where L ≥ K ≥ q, and M is the temporal displacement. The cross-
correlation Rψζ = E[ψyζ

H
y ] is

Rψζ=











ryy(M) ryy(M − 1) · · · ryy(M − K + 1)
ryy(M + 1) ryy(M) · · · ryy(M − K + 2)

...
...

...
...

ryy(M + L − 1) ryy(M + L − 2) · · · ryy(M + L − K)











,(B.5)

=











rxx(M) rxx(M − 1) · · · rxx(M − K + 1)
rxx(M + 1) rxx(M) · · · rxx(M − K + 2)

...
...

...
...

rxx(M + L − 1) rxx(M + L − 2) · · · rxx(M + L − K)











+











ree(M) ree(M − 1) · · · ree(M − K + 1)
ree(M + 1) ree(M) · · · ree(M − K + 2)

...
...

...
...

ree(M + L − 1) ree(M + L − 2) · · · ree(M + L − K)











. (B.6)

Since ree(τ) = 0 for τ > q. It can be seen that when (M − K + 1) > q, the
second term in the last equation in (B.6) becomes zeros. This means that
the sinusoidal signal subspace can be obtained from SVD of Rψζ without
interference of the colored noise.

In practice, assume y = [y(t), y(t − 1), · · · , y(t − N + 1))]T is observed,
the estimate of Rζψ can be obtained as

R̂ζψ =
1

N
ZT Ȳ, (B.7)

(B.8)

where

Z =







y(t − N + L) · · · y(t − N + 1)
...

...
...

y(t − M − 1) · · · y(t − M − L)






, (B.9)

Y =







y(t − N + M + L) · · · y(t − N + M + L − K + 1)
...

...
...

y(t− 1) · · · y(t − K)






.(B.10)

Both Z and Y are Toeplitz matrices. It is worth to note that, with lim-
ited number of observations, the IVM frequency estimate produces unbiased
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frequency estimates, but increased variance due to reduced number of ef-
fective number of observations. The minimum variance is obtained when
M = K + q − 1.
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Appendix C
Equivalence of LMMSE and MMSE

Predictors

For the given signal model in (5.2), the conditional LMMSE predictor of
h(t + L) is given in (5.22). Both the signal model and the predictor are
represented here for convenience.

y = As + e, (C.1)

and

ĥ(t + L) = â(L)HR−1
RegÂ

Hy. (C.2)

In this appendix, the Conditioned LMMSE predictor in (C.2) is shown
to be equivalent to the MMSE predictor given observations y and frequency
estimates ω̂.

Assume that the amplitude vector s is a Gaussian random vector with
PDF, CN (0, σ2

sIp). The MMSE prediction of h(t + L) given y and ω̂ is

ĥ(t + L) = E[h(t + L)|y, ω̂],

= E
[

â(L)Hs|y, ω̂
]

,

= â(L)HE [s|y, ω̂] , (C.3)

where E[s|y, ω̂] is the MMSE estimate of s given y and ω̂. The Bayes’s rule
is used to find the PDF of s conditioned on y and ω̂, f(s|y, ω̂). We write
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f(s|y, ω̂) =
f(s,y|ω̂)

f(y|ω̂)
=

f(y|s, ω̂)f(s)

f(y|ω̂)
. (C.4)

The numerator in (C.4) can be expressed as

f(y|s, ω̂)f(s) =
1

πNσ2N
e

e
−(y−Âs)H (y−Âs)

σ2
e · 1

πpσ2p
s

e
− sHs

σ2
s . (C.5)

Define RReg =
(

ÂHÂ + σ2
e

σ2
s
Ip

)

as in (5.21) and complete the square, (C.5)

can be written as

f(y|s, ω̂)f(s) =
1

πp|σ2
eR

−1
Reg|

e−(s−R
−1
Reg

ÂHy)H(σ2
eR

−1
Reg

)−1(s−R
−1
Reg

ÂHy)

·|αR−1
Reg|

1

πNσ2N
e

e
−(yHy−yH ÂHR

−1
Reg

Ây)

σ2
e , (C.6)

where |RReg| is the determinant of RReg. In (C.6), the first term is the PDF

of a complex Gaussian multivariate s with PDF of CN (R−1
RegÂ

Hy,σ2
eR

−1
Reg),

while the second term is independent on s.
The denominator in (C.4) is

f(y|ω̂) =

∫

f(y|s, ω̂)f(s)ds, (C.7)

where the integrand is the same as the numerator in (C.4). So we have

f(y|ω̂) =

∫

1

πp|σ2
eR

−1
Reg|

e−(s−R−1
Reg

ÂHy)H(σ2
eR

−1
Reg

)−1(s−R−1
Reg

ÂHy)ds

·|αR−1
Reg|

1

πNσ2N
e

e
−(yHy−yH ÂHR

−1
Reg

Ây)

σ2
e , (C.8)

where the first term integrates to one. Finally,

f(y|ω̂) = |αR−1
Reg|

1

πNσ2N
e

e
−(yHy−yH ÂHR

−1
Reg

Ây)

σ2
e . (C.9)

Not surprisingly, this is exactly the second term in (C.6). Substituting (C.6)
and (C.9) into (C.4), we get the complex Gaussian PDF as CN (R−1

RegÂ
Hy, σ2

eR
−1
Reg),

which is given below.
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f(s|y, ω̂) =
1

πp|σ2
eR

−1
Reg|

e−(s−R
−1
Reg

ÂHy)H(σ2
eR

−1
Reg

)−1(s−R
−1
Reg

ÂHy). (C.10)

Then, the conditional expectation of s given y and ω̂ is

E [s|y, ω̂] = R−1
RegÂ

Hy. (C.11)

This is the same as the LMMSE estimate of s as in (5.21). Furthermore, the
MMSE prediction of h(t + L) in (C.3) is

E[h(t + L)|y, ω̂] = â(L)HR−1
RegÂ

Hy, (C.12)

which is identical to the LMMSE prediction (C.2). The MSE of (C.12) is
obtained as

V ar(h(t + L)|y, ω̂) = σ2
e â(L)HR−1

Regâ(L). (C.13)
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Appendix D
CRLB for PPS Parameter Estimation

The CRLB of the model parameter estimation for a PPS signal with a con-
stant amplitude is derived in this appendix. Note that a similar derivation
of the bound can be found in [PP91b].

A single PPS buried in noise is

y(t) = sejφ(t) + e(t), (D.1)

where s is a real amplitude, e(t) is additive Gaussian noise with PDF,
CN (0, σ2

e), φ(t) is the polynomial phase

φ(t) =

M
∑

m=1

βmtm. (D.2)

The model parameters are collected in

θ = [βM , βM−1, · · · , β1, s, σ
2
e ]. (D.3)

The N observed signals are collected in y = [y(0), y(1), · · · , y(N − 1)]T , and
the noise vector e = [e(0), e(1), · · · , e(N − 1)]T .

Let Re [y] and Im [y] be the real part and the imaginary part of y, and

ỹ =

[

Re [y]
Im [y]

]

=

[

s cos(φ)
s sin(φ)

]

+

[

Re [e]
Im [e]

]

, (D.4)

= h̃ + ẽ, (D.5)

where φ = [φ(0), · · · , φ(N − 1)]T , and the PDF of ẽ is N (02N , σ
2
e

2
I2N ). So

that the mean and covariance matrix of ỹ are

µy =

[

s cos(φ)
s sin(φ)

]

, (D.6)

Cy =
σ2
e

2
I2N . (D.7)
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The CRLB is, i.e. [Kay93b],

C ˆθ
≥ F−1(θ), (D.8)

where F is the fisher information matrix, which is

F =





Fββ Fβs Fσσ

Fsβ Fss Fsσ

Fσβ Fσs Fσσ



 , (D.9)

where

[Fβ,β]kl =
2s2

σ2
e

N−1
∑

t=0

t(M−k+1)+(M−l+1), (D.10)

[Fss] =
2N

σ2
e

, (D.11)

[Fσσ] =
N

2σ4
e

, (D.12)

and [Fβs] = [Fβσ] = 0M , [Fsσ] = 0. Note that [Fβs] = [Fsβ]
T , and [Fβσ] =

[Fσβ ]
T .
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[JAG99] M. Viberg J. Ängeby and T. Gustafsson. Non-linear instanta-
neous least squares and its high snr analysis. In Proc. of IEEE
ICASSP 99, volume 3, 1999.

[Jak74] W.C. Jakes. Microwave Mobile Communications. IEEE Press,
Piscataway, NY, USA, 1974.

[Kal60] R.E. Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineer-
ing, 82(D):35–45, 1960.

[Kay93a] S.M. Kay. Fundamentals of Statistical Signal Processing - Detec-
tion Theory. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[Kay93b] S.M. Kay. Fundamentals of Statistical Signal Processing - Esti-
mation Theory. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[KH00] T. Keller and L. Hanzo. Adaptive modulation techniques for du-
plex ofdm transmission. IEEE Transactions on Vehicular Tech-
nology, 49:1893–1906, Sept. 2000.

[Kun78] S. Kung. A new identification and model reduction algorithm via
singular value decomposition. In Proc. of 12th Asilomar Confer-
ence on Circuits, Systems and Computers, Pacific Grove, CA,
1978.

[KV96] H. Krim and M. Viberg. Two decades of array signal process-
ing research-the parametric approach. IEEE Signal Processing
Magazine, pages 67–94, Jul. 1996.

[LA92] R.M. Liang and K.S. Arun. Parameter estimation for super-
imposed chirp signals. In Proc. IEEE International Conference
Acoustics, Speech, and Signal Processing, San Francisco, CA,
USA, Mar. 1992.

[LS96] J. Li and P. Stoica. Efficient mixed-spectrum estimation with
applications to targetfeature extraction. IEEE Trans. on Signal
Processing, 44:281–295, Feb. 1996.

[NM65] J.A. Nelder and R. Mead. A simplex method for function mini-
mization. Comput. J., pages 308–313, Jul. 1965.

[PF95] S. Peleg and B. Friedlander. The discrete polynomial-phase trans-
form. IEEE Transactions on Signal Processing, 43:1901–1914,
Aug. 1995.

79



BIBLIOGRAPHY

[PF96] S. Peleg and B. Friedlander. Multicomponent signal analysis
using the polynomial-phase transform. IEEE Transactions on
Aerospace and Electronic Systems, 32:378–387, Jan. 1996.

[PP91a] S. Peleg and B. Porat. The cramer-rao lower bound for signals
with constant amplitude and polynomial phase. IEEE Transac-
tions on Signal Processing, 39:749–752, Mar. 1991.

[PP91b] S. Peleg and B. Porat. The cramer-rao lower bound for signals
with constant amplitude andpolynomial phase. IEEE Transac-
tions on Signal Processing, 39:749–752, Mar. 1991.

[PRK85] A. Paulraj, R. Roy, and T. Kailath. Estimation of signal param-
eters via rotational invariance techniques - ESPRIT. In Proc. of
19th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, Nov. 1985.

[PZ07] D.S. Pham and A.M. Zoubir. Analysis of multicomponent poly-
nomial phase signals. IEEE Transactions on Signal Processing,
55(1):56–65, Jan. 2007.

[QC99] X. Qiu and K. Chawla. On the performance of adaptive modula-
tion in cellular systems. IEEE Transactions on Communications,
47:884–895, Jun. 1999.

[Rap96] T.S. Rappaport. Wireless Communications Principles and Prac-
tice. Prentice-Hall Inc., 1996.

[Ris83] J. Rissanen. A universal prior for integers and estimation by
minimum description length. The Annals of Statistics, 11(2):416–
431, Jun. 1983.

[RPK86] R. Roy, A. Paulraj, and T. Kailath. ESPRIT - a subspace ro-
tation approach to estimation of parameters of cisoids in noise.
IEEE Transactions on Acoustics, Speech and Signal Processing,
34(4):1340–1342, Oct. 1986.

[Sau99] S. R. Saunders. Antennas and Propagation for Wireless Commu-
nication Systems. Wiley John and Sons, Inc., Philadelphia, PA,
June 1999.

[Sch81] R.O. Schmidt. A Signal Subspace Approach to Multiple Emitter
Location and Spectral Estimation. Nov. 1981.

80



BIBLIOGRAPHY

[SEA01] M. Sternad, T. Ekman, and A. Ahlén. Power prediction on broad-
band channels. In Proc. of VTC Fall, Rhodes, Greece, May 2001.

[SFGK00] D.S. Shiu, G.J. Foschini, M.J. Gans, and J.M. Kahn. Fading
correlation and its effect on the capacity of multielementantenna
systems. IEEE Transactions on Communications, 48(3):502–513,
Mar. 2000.

[Sha48] C.E. Shannon. A mathematical theory of communication. Bell
Syst. Tech. J., 27:379–423, Jul. 1948.

[SK03] S. Semmelrodt and R. Kattenbach. Performance analysis and
comparison of different fading forecast schemes for flat fading
radio channels. In Proc. of COST 273 TD(03)045, 2003.

[Sle78] D. Slepian. Prolate spheroidal wave functions, fourier analy-
sis, and uncertaintyv: The discrete case. Bell Syst. Tech. J.,
57(5):13711430, May-Jun 1978.
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