
A presheaf model of parametric type theory

Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin

Chalmers University of Technology and University of Gothenburg

{bernardy,coquand,mouling}@chalmers.se

Abstract

We propose a new type theory with internalized parametricity. Compared to previous similar

proposals, this version comes with a denotational semantics which is a re�nement of the standard

presheaf semantics of dependent type theory. Further, this presheaf semantics is a re�nement of

the one used to interpret nominal sets with restriction. The present calculus is a candidate for the

core of a proof assistant with internalized parametricity.

1998 ACM Subject Classi�cation F.4.1. Mathematical logic. Lambda calculus and related systems.

Digital Object Identi�er 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Reynolds [1983] proved a general abstraction theorem (sometimes called parametricity the-

orem) about polymorphic functions. His argument is about a set theoretic semantic. As

he stated it, the underlying idea is that the meanings of an expression in �related� envi-

ronments will be �related� values. For instance, he proves that if tX is a term of type

X → X and if we consider two sets A0, A1 and a relation R ⊆ A0 × A1 then we have

R([tX]X=A0
(a0), [tX]X=A1

(a1)) whenever R(a0, a1), where [tX]X=A denotes the meaning of

the expression tX where X is interpreted by the set A. As he noted, one can replace in this

statement binary relations by n-ary relations, and in particular unary relations (predicates).

In the latter case, the statement is the following: if A is a set and P is a predicate on A, then

we have P ([tX]X=A(a)) whenever P (a) holds. Wadler [1989] illustrates by many examples

how this result is useful for reasoning about functional programs.

The argument and result of Reynolds are model-theoretic in nature. In lambda-calculi

with dependent types, it is possible to state such an abstraction result in a purely syntactical

way. One states for example that if a function f has type (A : U)→ U → U � the type of

the polymorphic identity � then the following proposition holds:

(A : U)→ (P : A→ U)→ (x : A)→ Px→ P (fAx)

Indeed Bernardy et al. [2012] proves such a result as a (syntactical) meta-theorem about type

systems. However this result is not provable internally, i.e., the following is not provable:

(f : (A : U)→ A→ A)→ (A : U)→ (P : A→ U)→ (x : A)→ Px→ P (fAx)

Several attempts have been made [Bernardy and Moulin, 2012, 2013] � or are currently

developed [Altenkirch and Kaposi, 2014] � for designing an extension of dependent type

theory in which such an internal form of parametricity holds. We propose another such

system here. Our technical contributions are as follows:

We present a type theory (section 2 on the following page) which internalizes para-

metricity (as we show in section 3 on page 5) and can be seen as a simpli�cation and

generalization of the systems of Bernardy and Moulin [2012, 2013]

© J-P. Bernardy, T. Coquand and G. Moulin;
licensed under Creative Commons License CC-BY-ND

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1�14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 A presheaf model of parametric type theory

We provide a denotational semantics, in the form of a presheaf model, for this type

theory (section 4 on page 8). This model is a re�nement of the presheaf semantics used

to interpret nominal sets with restrictions [Bezem et al., 2014, Pitts, 2014].

We conjecture that conversion and type-checking are decidable for this system.

2 Syntax

In this section we de�ne the syntax and typing rules of our parametric type theory, as well

as the equality judgment.

We assume a special symbol `0', and a countable in�nite set of other symbols, called

colors. The metasyntactic variables i, j, . . . range over colors, while I, J, . . . range over �nite

sets of colors. We further assume a �xed function fresh(·) such that fresh(I) 6∈ I for any

�nite color set I. The main innovation of the type theory presented here is that terms may

depend on (a �nite number of) colors.

I De�nition 1 (Syntax of terms and contexts).

t, u,A,B := x variable

| U universe

| |A| code

| El(A) decode

| λx : A.t abstraction

| t u application

| (x : A)→ B product

| (t,i u) colored pair

| (x : A)×i B colored type pair

| 〈t,i u〉 colored function pair

| A 3i u parametricity type

| t·i parametricity proof

Γ,∆ := () | Γ, x : A

We give a few intuitions to interpret the novel syntax, before giving formally the typing

rules of the system.

1. Reynolds [1983] associates each type with a predicate. Here, each type is associated not a

single predicate, but many: one for every color. Furthermore this predicate is accessible

from the logic. The type A 3i u expresses that u satis�es the parametricity predicate

associated with the type A on color i.

2. The term a·i yields a proof of A 3i a (i 0).

3. In the above, the term a (i 0) denotes a realizer of a, obtained by erasing the color i.

(Erasure is detailed in Def. 5.)

4. The forms (t,i u), (x : A)×i B and 〈t,i u〉 allow to locally associate parametricity proofs

with a given realizer.

I De�nition 2 (Typing judgements � à la Tarski). We mutually de�ne three judgments:

Γ `I (Is the context Γ is well-formed, assuming the color set I?).

Γ `I A (Is the type A well-formed in Γ, assuming the color set I?)

Γ `I a : A (Does the term a have type A in the context Γ, assuming the color set I?)

J-P. Bernardy, T. Coquand and G. Moulin 3

Γ `I

Empty

() `I

NewVar

Γ `I Γ `I A
Γ, x : A `I

Γ `I A

Universe

Γ `I U

Decode

Γ `I A : U

Γ `I El(A)

Pi

Γ `I A Γ, x : A `I B
Γ `I (x : A)→ B

Out

Γ `I,i T Γ `I a : T (i 0)

Γ `I T 3i a

In-Pred

Γ `I A Γ, x : A `I B
Γ `I,i (x : A)×i B

Γ `I a : A

Conv

Γ `I t : A A = B

Γ `I t : B

Var

Γ `I x : A ∈ Γ

Γ `I x : A

Code

Γ `I A
Γ `I |A| : U

Lam

Γ, x : A `I b : B

Γ `I λx : A.b : (x : A)→ B

App

Γ `I t : (x : A)→ B[x] Γ `I u : A

Γ `I t u : B[u]

In-Abs

Γ `I a : T (i 0) Γ `I p : T 3i a
Γ `I,i (a,i p) : T

In-Fun

Γ `I t : ((x : A)→ P [x]) (i 0)

Γ `I u : (x : A (i 0))→ (x′ : A 3i x)→ P [(x,i x
′)] 3i tx

Γ `I,i 〈t,i u〉 : (x : A)→ P [x]

Color-Elim

Γ `I,i a : T

Γ `I a·i : T 3i a (i 0)

The parametricity constructions (· and 3) act like color binders (they bring colors into

scope), while the pairing constructs remove colors from scope. The equality relation used in

the Conv rule is detailed below in Def. 8.

Additionally, for the above system to be well-founded, we need to distinguish small and

big types, and allow only small types to be encoded in U . Small types are closed under

product, ×i and 3i. The distinction between big and small types being standard, and to

keep the presentation concise, we leave it implicit in the syntax.

I De�nition 3. A color map f : I → J is a function I → J ∪ {0} such that f(i1) = f(i2)

i�. i1 = i2 whenever f(i1) = f(i2) ∈ J .

I De�nition 4 (Category pI). Let objects be objects be �nite color sets and morphisms be

color maps. If f : I → J and g : J → K, we de�ne the composition fg : I → K as fg(i) = 0

if f(i) = 0 and fg(i) = g(f(i)) if f(i) ∈ J . We write 1I : I → I for the identity map, and

de�ne it as 1I(i) = i for each i ∈ I. It is easy to check that pI is a category (see [Pitts,

2013, ex. 9.7 p. 176] for another description of this category), which is is equivalent to the

category Res of nominal restriction sets [Pitts, 2013, rem. 9.9 p. 161].

4 A presheaf model of parametric type theory

We note

(i 0) : I, i→ I the partial identity: (i 0)(i) = 0 and (i 0)(j) = j for each j ∈ I;
ιi : I → I, i the inclusion: ιi(j) = j for each j ∈ I; and
f ij : I, i → J, j the color map such that f ij(i) = j and f ij(k) = f(k) for all k ∈ I (if

f : I → J with i 6∈ I and j 6∈ J).

I De�nition 5 (Color substitution). We consider a color map f : I → J as a (color)

substitution on terms, and de�ne af by structural induction on a.

xf = x

Uf = U

(λ(x : A).t)f = λ(x : Af).tf

(t u)f = (tf) (uf)

((x : A)→ B)f = (x : Af)→ (Bf)

(a,i p)f = (ag,j pg) if f(i) = j ∈ J , where g = ιif(j 0)

= a(ιif) if f(i) = 0

(A×i B)f = (Ag)×j (Bg) if f(i) = j ∈ J , where g = ιif(j 0)

= A(ιif) if f(i) = 0

〈t,i u〉f = 〈tg,j ug〉 if f(i) = j ∈ J , where g = ιif(j 0)

= u(ιif) if f(i) = 0

(A 3i a)f = (Af ij) 3j (af) where j = fresh(J)

(a · i)f = (af ij) · j where j = fresh(J)

We extend the de�nition to contexts in the obvious way:

()f = ()

(Γ, x : A)f = Γf, x : Af

We leave color substitution unde�ned if a color appears free in the term but is not in the

domain of f .

I Theorem 6.

a1I = a

(af)g = a(fg) for any f : I → J and g : J → K

Proof. By structural induction on a. J

I Theorem 7 (Color substitution preserves typing). If Γ `I a : A then the term af is de�ned

and Γf `J af : Af .

Proof. By induction on the typing judgment. J

I De�nition 8 (Conversion). The convertibility of types used in the Conv rule and written

J-P. Bernardy, T. Coquand and G. Moulin 5

simply (=) is de�ned as the smallest congruence containing the following rules.

Pair-App

〈t,i u〉 a = (t a (i 0),i u a (i 0) (a·i))
Pair-Param

(a,i p)·i = p

Pair-Pred

((x : A)×i B[x]) 3i a = B[a]

El(|A|) = A |El(A)| = A

β

(λx : A.u[x])t = u[t]

η

t x = u

t = λx : A.u

Surj-Param

t (i 0) = a t·i = p

t = (a,i p)

Surj-Fun

t (i 0) = u (t(x,i y))·i = vxy

t = 〈u,i v〉

Surj-Typ

T (i 0) = A T 3i x = B

T = (x : A)×i B

Refl

a = a

Sym

a = b

b = a

Trans

a = b b = c

a = c

I Corollary 9 (Any term can be seen as a pair of a realizer and a parametricity proof).

a = (a (i 0),i a·i)
T = (x : T (i 0))×i (T 3i x)

t = 〈t (i 0),i λxx
′.(t(x,i x

′))·i〉

Our conversion relation is intentional for functions, but extensional when it comes to

dependencies on colors. Because there is at any point only a �nite number of colors to

consider, we conjecture that our conversion relation is decidable.

3 Parametricity

In this section we prove that our system properly internalizes parametricity. We also illus-

trate the system by giving a few simple proofs relying on parametricity (including iterated

parametricity).

Contrary to previous type theories with internalized parametricity [Bernardy and Moulin,

2012, 2013], the system presented here lacks equalities which allow to compute parametricity

types. Expressed in our syntax, those equalities would become the conversion rules:

U 3i A = A→ U

and

((x : A)→ B[x]) 3i f = (x : A)→ (x′ : A 3i x)→ B[(x,i x
′)] 3i (fx).

The absence of the above equalities allows for a simpler system, but how can we ensure

that all parametricity theorems hold? The answer is that the above relationships hold as

isomorphisms.

We say that A is isomorphic to B i�.

1. There exist f : A→ B

2. There exist g : B → A

3. For any x, f (g x) = x

4. For any x, g (f x) = x

This notion of isomorphism is quite strong, because the equality used in its de�nition is the

conversion relation (Def. 8).

I Theorem 10. U 3i A is isomorphic to A→ U .

6 A presheaf model of parametric type theory

Proof.

1. f : (Q : U 3i A)→ A→ U

f Qx = (A,iQ) 3i x
2. g : (P : A→ U)→ U 3i A

g P = ((x : A)×i (Px))·i
3. (A,i ((y : A)×i (Py))·i) 3i x = ((y : A)×i (Px) 3i x = Px By η-contraction we get the

desired result.

4. ((x : A)×i (A,iQ) 3i x).i = Q if (x : A)×i (A,iQ) 3i x = (A,iQ). We then use equality

for ×i. The �rst components are obviously equal. For the second components we are left

with (A,iQ) 3i x = (A,iQ) 3i x, which holds by re�exivity. J

I Theorem 11. ((x : A)→ B[x]) 3i f is isomorphic to

(x : A)→ (x′ : A 3i x)→ B[(x,i x
′)] 3i (f x)

Proof.

1. f : (q : ((x : A)→ B[x]) 3i f)→ (x : A)→ (x′ : A 3i x)→ B[(x,i x
′)] 3i (fx)

f q x x′ = ((f,i q)(x,i x
′))·i

2. g : ((x : A)→ (x′ : A 3i x)→ B[(x,i x
′)] 3i (f x))→ ((x : A)→ B[x]) 3i f

g p = 〈f,i p〉·i
3. ((f,i 〈f,i p〉·i)(x,i x)′)·i = (〈f,i p〉(x,i x′))·i = (f x,i p xx

′)·i = p xx′

4. 〈f,i λxx′.((f,i q)(x,i x′))·i〉·i i�. 〈f,i λxx′.((f,i q)(x,i x′))·i〉 = (f,i q), which is true by the

equality rule for function pairing. J

In practice, when carrying out parametricity proofs, many of the steps of the above

isomorphisms cancel each other and one obtains a simpler proof. This behaviour is illustrated

by the following example: parametricity for Church-encoded natural numbers. (For the sake

of simplicity, in the remainder of this section, we leave out the distinction between types

and their codes.)

I Example 12. Let N = (X : U) → X → (X → X) → X. Proving (unary) parametricity

for N means that, assuming

f : N

A : U

P : A→ U

z : A

z′ : P z

s : A→ A

s′ : (x : A)→ P x→ P (s x)

we can prove P (f A z s).

Indeed, a proof term is the following:

(f((x : A)×i (Px))(z,i z
′)〈s,i s′〉)·i

3.1 Iterating Parametricity

In our system, one can use parametricity generically as follows:

p : (A : U)→ (x : A)→ A 3i x
p x = x·i

J-P. Bernardy, T. Coquand and G. Moulin 7

We have already seen that A 3i corresponds to the parametricity predicate for type A. We

can iterate this operator to construct relations between parametricity witnesses. That is,

given

x : A

y : A 3i x
z : A 3i x

Then the type A 3i (x,j y) 3j z is well formed (3 is left associative), and can be understood

as a relation between the parametricity proofs y and z. The following results about this

relation illustrate the expressivity of our system.

I Theorem 13. If the type A does not depend on either i or j, the relation λyz.A 3i
(x,j y) 3j z is symmetric.

Proof. We �rst construct the proof term:

σ1 : (x : A)→ (y : A 3i x)→ (z : A 3i x)→ (w : A 3i (x,j y) 3j z)→ A 3j (x,i z) 3i y
σ1 x y z w = ((x,j y),i (z,j w))·j ·i

And, by α-equivalence on colors, A 3j (x,i z) 3i y = A 3i (x,j z) 3j y. J

I Theorem 14. The function σ1 (de�ned above) is involutive in its last argument:

σ1 y x z (σ1 x y z w) = w

Proof. Let

t = ((x,j y),i (z,j w))

w′ = t·j ·i
t′ = ((x,i z),j (y,i w

′))

Then

t′ (i 0) = (x,j y) = t (i 0)

t′ (j 0) = (x,i z) = t (j 0)

(t·j) (i 0) = y

We continue to reason by deduction:

w′ = t·j ·i By def

(y,i w
′) = t·j Because (t·j) (i 0) = y

t′ ·j = t·j By def

t′ = t Because t′ (j 0) = t (j 0)

t′ = ((x,j y),i (z,j w)) By def

t′ ·i = (z,j w)

t′ ·i·j = w J

I Corollary 15. The types A 3i (x,j y) 3j z and A 3j (x,i z) 3i y are isomorphic.

8 A presheaf model of parametric type theory

I Remark. At this point one may wonder if the system could have been set up to have

t·i·j = t·j ·i, and the equality between A 3i (x,j y) 3j z and A 3j (x,i z) 3i y rather than

an isomorphism. The answer is that the equation

A 3i (x,j y) 3j z = A 3j (x,i z) 3i y

is inconsistent: in particular for A = U one gets

U 3i (X,j P) 3j Q = U 3j (X,iQ) 3i P

for arbitrary P and Q of type U 3i X. The above equality in turn implies

(x : X)→ Px→ Qx→ U = (x : X)→ Qx→ Px→ U

for arbitrary predicates P and Q over X, which is obviously inconsistent.

I Theorem 16. If the type A and the term a do not depend on either i or j, any proof a′ of

A 3i a (not depending on i or j either) is related to the canonical proof (a·i), i.e., formally

A 3i (a,j a·i) 3j a′.

Proof. We can construct the following closed term:

q : (A : U)→ (x : A)→ (x′ : A 3i x)→ A 3i (x,j x·i) 3j x′

q : (A : U)→ (x : A)→ (x′ : A 3i x)→ A 3i x 3j x′ by Corollary 9

q Axx′ = x′ ·j

The result is obtained by substituting a for x and a′ for x′. J

To conclude the section we note that by iterating parametricity n times, one creates

n-ary relations between proofs of relations of arity n − 1. Furthermore, the above results

carry over to the n-ary case. That is, for each k < n, one can construct a function σk, which

exchanges the arguments k and k+ 1 of a relation. Furthermore, these functions satisfy the

laws of the generators of the symmetric group.

4 Presheaf model

In this section we show how to interpret our type theory by a presheaf model. Recall pI

(Def. 4), the category of color maps.

I De�nition 17 (Projection). We say that a morphism α : I → Iα is a projection if Iα ⊆ I,
α(i) = 0 for each i ∈ I\Iα, and α(i) = i for each i ∈ Iα.

I De�nition 18 (Total maps). Injective morphisms, noted h : I � J , are the total ones,

i.e., those verifying h(i) 6= 0 for all i ∈ I.

I Remark (Morphism decomposition). Any morphism f : I → J has a unique decomposition

into a projection map α : I → Iα and a total map h : Iα� J .

I

Iα J

α
f

h

J-P. Bernardy, T. Coquand and G. Moulin 9

I De�nition 19 (I-set). We call I-element any tuple indexed by the subsets of I: (uJ)J⊆I .

An I-set is a set of I-elements. For instance, the elements of a {i, j}-set are of the form

u = (u∅, ui, uj , ui,j). Alternatively, such an element can be seen as a tuple (uα) indexed by

the projections α : I → Iα.

If a, b are I-elements and j 6∈ I, we de�ne the (I, j)-element (a,j b) as (a,j b)J := aJ if j 6∈ J
and (a,j b)J,j := bJ . Any (I, i)-element can be written u = (uJ)J⊆{I,i} = (uJ)J⊆I∪(uJ,i)J⊆I ;

We can therefore de�ne the I-elements u(i 0) := (uJ)J⊆I and u · i := (uJ,i)J⊆I . (Hence by

de�nition u = (u(i 0),i u · i).)

Recall that a presheaf F on pIop is given by a family of sets F (I) together with restriction

maps F (I) → F (J), u 7→ uf for f : I → J satisfying u1 = u and (uf)g = u(fg). We use a

re�ned presheaf on pIop by requiring two further conditions:

1. for any object I, F (I) is an I-set; and

2. for any projection map α : I → Iα, the restriction map F (I) → F (Iα), u 7→ uα is the

projection operation, i.e., uαJ = uJ for any J ⊆ I.
Seeing an I-element u as a tuple indexed by projection maps α : I → Iα, the second

requirement can be written (uα)β = uαβ .

A context Γ `I is interpreted as a presheaf on the slice category pIop/I, i.e., by a family

of J-sets Γf for any map f : I → J together with restriction maps Γf → Γfg, ρ 7→ ρg

for g : J → K satisfying the conditions ρ1 = ρ and (ρg)h = ρ(gh). Furthermore the map

Γf → Γ(fα), ρ 7→ ρα is the projection operation.

A type Γ `I A is interpreted as follows. For each map f : I → J and ρ ∈ Γf we give

a J-set A(f, ρ) together with restriction maps A(f, ρ) → A(fg, ρg), u 7→ ug if g : J → K

satisfying u1 = u and (ug)h = u(gh) for any h : K → L. Furthermore the map A(f, ρ) →
A(fα, ρα), u 7→ uα is the projection operation.

A term Γ `I a : A is interpreted by a J-element a(f, ρ) ∈ A(f, ρ) for each f : I → J and

ρ ∈ Γf , such that a(f, ρ)g = a(fg, ρg) for any g : J → K.

If Γ `I A we de�ne the interpretation of Γ, x : A `I by taking 〈ρ, x = u〉α = 〈ρα, x = uα〉,
where and ρ ∈ Γf and u ∈ A(f, ρ). The restriction map is de�ned by 〈ρ, x = u〉g = 〈ρg, x =

ug〉.

The above re�nement on presheaves is necessary for the interpretation of some of our

syntactic constructions. Indeed, without this re�nement, it is not clear how to validate the

equality ((x : A)×i B[x]) 3i a = B[a].

The semantics we de�ne satis�es the substitution law. That is, if Γ, x : A `I B and

Γ `I a : A then for any f : I → J and ρ ∈ Γf we have B[a](f, ρ) = B(f, 〈ρ, x = a(f, ρ)〉).
It also satis�es the substitution law on colors, i.e., if Γ `I A and f : I → J then for any

g : J → K we have Γ′g = Γ(fg), where Γ′ is the result of performing the substitution f in Γ,

and if ρ ∈ Γfg we have Af(g, ρ) = A(fg, ρ). For establishing these properties, we proceed

as Aczel [1998].

We proceed to interpret each type construction.

10 A presheaf model of parametric type theory

Pi. Assume f : I → J and ρ ∈ Γf . We de�ne ((x : A)→ B)(f, ρ) as a J-set. A J-element of

((x : A)→ B)(f, ρ) is de�ned as a tuple λ = (λα), where each λα is a family of elements

indexed by a total map g : Jα� K:

λαg ∈
∏

u∈A(fαg,ραg)

B(fαg, 〈ραg, x = u〉)

such that app(λαg, u)h = app(λαgh, uh) for g : J � K total and for any h : K → L.

Because any map J → K has an unique decomposition as a projection and a total map,

we can consider λh for an arbitrary map h : J → K.

If g : J → K is an arbitrary map, we de�ne λg to be the tuple (λgβ) where λgβ is the

family λgβh = λgβh.

With this de�nition, we directly have λαβ = λαβ .

This is similar to the usual interpretation of dependent product in presheaf models

[Hofmann, 1997, Bezem et al., 2014]; but to satisfy our �rst extra condition on presheaves

we present each element as a tuple, which can be done naturally by repartitioning the

family as follows: (λf)f :I→J = (λαg)Iα⊆I,g:Iα�J
∼= ((λαg)g:Iα�J)Iα⊆I

Universe. The universe U is interpreted as a presheaf over pI. An element A of U(I) is

a tuple (Aα) where each Aα is a family of sets Aαf for f : Iα � J total together with

restriction maps Aαf → Aαfg, u 7→ ug for f : Iα � J total and g : J → K arbitrary,

such that u1 = u and (ug)h = u(gh).

As before, such data de�ne a set Af for an arbitrary map f : I → J with restriction

maps Af → Afg if g : J → K.

If g : I → J is an arbitrary map, we de�ne Ag by taking Agβh to be the set Agβh,

together with restriction maps Agβh → Agβhl de�ned as the given maps Agβh → Agβhl.

We can then check, as before, that we have Aαβ = Aαβ
As before, this is similar to the usual interpretation of universe in presheaf models, where

each element is presented as a tuple.

Out. Assume f : I → J and assume ρ ∈ Γf . We need to de�ne the J-set (P 3i a)(f, ρ).

Let j = fresh(J). Recall that we note the inclusions ιi : I → I, i and ιj : J → J, j. By the

induction hypotheses we get a (J, j)-set P (f ij , ριi), and the J-element a(f, ρ) belongs to

P (i 0)(f, ρ) = P ((i 0)f, ρ) = P (ιif, ριj)(j 0). We de�ne (P 3i a)(f, ρ) to be the set of

J-elements v such that (a(f, ρ),j v) ∈ P (f ij , ριj). If v is such an element and g : J → K

and k = fresh(K), then vg is de�ned by the equation (a(f, ρ)g,k vg) = (a(f, ρ),j v)gjk.

In-Pred. Assume f : I, i → J , and ρ ∈ Γ(ιif). We need to de�ne the J-set ((x : A) ×i
B)(f, ρ). Let ιi : I → I, i be the inclusion. There are two cases. If f(i) = 0, then

((x : A) ×i B)(f, ρ) is de�ned to be the J-set A(ιif). Otherwise, if f(i) = j ∈ J , then
we de�ne ((x : A) ×i B)(f, ρ) to be the J-set of (u,j v) where u is a J\{j}-element in

A(ιif(j 0), ρ(j 0)) and v is an element in B(ιif(j 0), 〈ρ(j 0), x = u〉).
Decode. Assume f : I → J and ρ ∈ Γf . We have A(f, ρ) ∈ U(J) and we de�ne

El(A)(f, ρ) to be the set A(f, ρ)1. The restriction map El(A)(f, ρ) → El(A)(fg, ρg),

u 7→ ug is de�ned using the restriction map A(f, ρ)1 → A(f, ρ)g and the fact that we

have A(f, ρ)g = A(fg, ρg)1.

I Remark. Our calculus does not have any base type, but they could be interpreted by

modifying their usual interpretation as a constant presheaf into an isomorphic I-set. For

instance, the base type of natural numbers would be interpreted as the I-set of (nJ)J⊆I
where n∅ ∈ N and nJ = 0 for any non-empty J ⊆ I.

We now describe how to interpret terms.

J-P. Bernardy, T. Coquand and G. Moulin 11

Var. We de�ne x(f, ρ) to be ρ(x)

Lam. We de�ne app((λx : A.b)(f, ρ)g, u) to be b(f, 〈ρg, x = u〉)
App. We de�ne (t u)(f, ρ) to be app(t(f, ρ)1, u(f, ρ))

In-Abs. Let f : I, i→ J and ρ ∈ Γιif be given. We de�ne (a,i p)(f, ρ) by case analysis on

f(i). If f(i) = 0, we take (a,i p)(f, ρ) to be a(ιif, ρ). If f(i) = j ∈ J , we take (a,i p)(f, ρ)

to be (a(ιif(j0), ρ),j p(ιif(j0), ρ))

In-Fun. Let f : I, i → J and ρ ∈ Γιif be given. We de�ne 〈t,i u〉(f, ρ)g by case analysis

on g(f(i)). If g(f(i)) = 0, we take 〈t,i u〉(f, ρ)g to be t(ιif, ρ)g. If g(f(i)) = j ∈ K, we

de�ne w = 〈t,i u〉(f, ρ)g by

app(w, (a,j b)) = (app(t (ιifg(j0), ρg(j0)), a),j app(app(u (ιifg(j0), ρg(j0)), a), b))

Color-Elim. Let f : I → J and ρ ∈ Γf be given. We de�ne (a·i)(f, ρ) to be a(f ij , ριj)·j
where j = fresh(J).

I Theorem 20 (Convertible terms are semantically equal).

If Γ `I A1 and Γ `I A2 with A1 = A2, then A1(f, ρ) = A2(f, ρ) for any f : I → J and

ρ : Γf .

If Γ `I a1 : A and Γ `I a2 : A with a1 = a2, then a1(f, ρ) = a2(f, ρ) for any f : I → J

and ρ : Γf .

Proof. By simultaneous induction on the derivation. We only show the conversion rules

Pair-Param and Pair-Pred here; other rules involving colors can be proven in a similar

fashion, while β and η can be proven in the usual way.

Pair-Param. Let f : I → J and j = fresh(J). We have

v ∈ (((x : A)×i B) 3i a)(f, ρ)

i�. (a(f, ρ),j v) ∈ ((x : A)×i B)(f ij , ριj)

i�. (a(f, ρ),j v) ∈ {(u,j w) | u ∈ A(f, ρ), w ∈ B(f, 〈ρ, x = u〉)}
i�. v ∈ B(f, 〈ρ, x = a(f, ρ)〉)
i�. v ∈ B[a](f, ρ)

Pair-Pred. Let f : I → J and j = fresh(J). We have

((a,i p)·i)(f, ρ)

= (a,i p)(f
ij , ριj) · j

= (a(ιif
ij(j 0), ρ),j p(ιif

ij(j 0), ρ)) · j
= (a(f, ρ),j p(f, ρ)) · j
= p(f, ρ) J

I Remark. As noted earlier, the types U 3i (X,j P) 3j Q and U 3j (X,iQ) 3i P are not

convertible. Their semantic interpretations are not equal either. Indeed taking f = 1∅,

k = fresh(∅) and l = fresh({k}), we have (leaving out the context interpretation ρ for the

sake of readability) on the one hand

v ∈ (U 3i (X,j P) 3j Q)f

i�. (Qf,k v) ∈ (U 3i (X,j P))f jk

i�. ((X,j P)f jk,l (Qf,k v)) ∈ U(l, k)

i�. ((X,k P),l (Q,k v)) ∈ U(l, k)

12 A presheaf model of parametric type theory

and on the other hand

v ∈ (U 3j (X,iQ) 3i P)f

i�. (Pf,k v) ∈ (U 3j (X,iQ))f ik

i�. ((X,iQ)f ik,l (Pf,k v)) ∈ U(k, l)

i�. ((X,kQ),l (P,k v)) ∈ U(k, l)

Hence (U 3i (X,j P) 3j Q)f 6= (U 3j (X,iQ) 3i P)f since the map U(l, k) → U(k, l),

u 7→ ug where g(k) = l and g(l) = k is not the identity.

I Theorem 21 (Validity). For any f : I → J and any ρ ∈ Γf ,

if Γ `I a : A then a(f, ρ) ∈ A(f, ρ).

Proof. By induction on the typing judgment. We only show the cases In-Abs and Color-

Elim. In-Fun is similar to the former, and the other cases match the usual proof (using

Th. 20 for Conv).

In-Abs. Let f : I, i→ J and ρ ∈ Γf . We need to show that (a,i p)(f, ρ) : T (f, ρ). If f(i) =

0, we have by de�nition (a,i p)(f, ρ) = a(ιif, ρ), which by induction hypothesis belongs to

the J-set T (i 0)(ιif, ρ); but by color substitution T (i 0)(ιif, ρ) = T ((i 0)ιif, ρ) = T (f, ρ).

If f(i) = j ∈ J , we have f = gij where g = ιif(j 0); by induction hypothesis p(g, ρ) ∈
(T 3i a)(g, ρ) hence by de�nition (a(g, ρ),j p(g, ρ)) ∈ T (gij , ριj) then (a,i p)(f, ρ) ∈
T (f, ρ).

Color-Elim. Let f : I → J and ρ ∈ Γf . We need to show that (a · i)(f, ρ) ∈ (T 3i
a(i 0))(f, ρ), i.e., that (a(i 0)(f, ρ),j (a·i)(f, ρ)) = (a((i 0)f, ρ),j a(f ij , ριj)·j) ∈ T (f ij , ριj)

where j = fresh(J). By induction hypothesis a(f ij , ριj) ∈ T (f ij , ριj), and because it is

a (J, j)-element we have a(f ij , ριj) = (a(f ij , ριj)(j 0),j a(f ij , ριj) · j) We conclude by

remarking that a(f ij , ριj)(j 0) = a((i 0)f, ρ) holds by color substitution and de�nition of

f ij . J

5 Related Work

5.1 Our own line of work

This work continues a line of work aiming at a smooth integration of parametricity with

dependent types [Bernardy et al., 2010, Bernardy and Lasson, 2011, Bernardy et al., 2012,

Bernardy and Moulin, 2012, 2013]. The present work o�ers two improvements over previous

publications: 1. a denotational semantics, and 2. a much simpli�ed syntax, suitable as the

basis of a proof assistant.

The simpli�cation of syntax is allowed by foregoing the preservation of functions by para-

metricity. We call preservation of functions by parametricity the property that if f were a

function, then the canonical proof that f is parametric (denoted f ·i here) is also a func-

tion. To our knowledge, following Reynolds [1983], all parametric models of parametricity

(both syntactical and semantical ones) have this property. However, having this property

in the syntax implies that certain function arguments must be swapped when performing

the substitution of beta reduction, as identi�ed by Bernardy and Moulin [2012]. In the

present system, the parametric interpretation of functions is instead merely isomorphic to

a function, thanks to the In-Fun rule (Th. 11). This isomorphism (rather than equality)

means on the one hand that the swapping of arguments is handled by the usual rules of

logic, instead of special-purpose ones. On the other hand, obtaining the classical parametric

interpretation of types requires some purely mechanical work by the user of the logic.

REFERENCES 13

5.2 Parametric Models of Type Theory vs. Parametric Type Theories

Two pieces of work propose alternative parametric models of type theory [Atkey et al., 2014,

Krishnaswami and Dreyer, 2013], but do not integrate parametricity in the syntax of the

calculus. This means that, while certain consequences of parametricity can be made available

in the logic, via constants validated by the model, parametricity itself is not available. In

this paper, we not only propose a parametric model, but also show how it can be used to

interpret parametricity straight up in the syntax of the type theory.

5.3 Various kinds of models

Another characterizing feature of proposals for parametricity is the kind of model underlying

the semantics. Krishnaswami and Dreyer [2013] propose a model based on Q-PER. Atkey

et al. [2014] propose a model based on re�exive graphs. The model that we use is based on

cubes (functions from subsets of colors). In our 2012 work the cubes were rei�ed as syntax

in an underlying calculus, while in the present work they re�ne a presheaf structure.

5.4 Presheaf models

The presheaf construction used in this paper follows a known template, used for example by

Bezem et al. [2014], Pitts [2014] to model univalence in type theory. Not only both models

use a presheaf, but they also have the same underlying category pI. This means as all these

models have an additional cubical structure. We �nd remarkable that cubical structures

are useful for modeling both parametricity and univalence. Altenkirch and Kaposi [2014]

give a syntax for Bezem et al.'s Cubical Type Theory, e�ectively modelling univalence by

internalization of their model. The present work further re�nes the model by interpreting

terms as I-elements, which is essential to interpret our special-purpose pairing constructions.

6 Future work and conclusion

We have de�ned a new type theory with internalized parametricity. Thanks to our model

construction, we have proved the consistency of the system. The missing piece to construct

a type-checker is a decision algorithm for the conversion relation. This checker could then

be used as a minimal proof assistant for a type theory with parametricity.

Acknowledgment: The fact that the category of partial bijections pI should be relevant

for internalization of parametricity became apparent through discussions between Thorsten

Altenkirch and the second author about the paper [Bernardy and Moulin, 2012].

References

P. Aczel. On relating type theories and set theories. In Proceedings of TYPES'98, volume

1657 of Lecture Notes in Computer Science, pages 1�18. Springer-Verlag, 1998.

T. Altenkirch and A. Kaposi. A syntax for cubical type theory. 2014. URL http://www.

cs.nott.ac.uk/~txa/publ/ctt.pdf. Draft.

R. Atkey, N. Ghani, and P. Johann. A relationally parametric model of dependent type the-

ory. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL '14, San Diego, CA, USA, January 20-21, 2014, pages 503�516,

2014. 10.1145/2535838.2535852. URL http://doi.acm.org/10.1145/2535838.2535852.

http://www.cs.nott.ac.uk/~txa/publ/ctt.pdf
http://www.cs.nott.ac.uk/~txa/publ/ctt.pdf
http://dx.doi.org/10.1145/2535838.2535852
http://doi.acm.org/10.1145/2535838.2535852

14 REFERENCES

J.-P. Bernardy and M. Lasson. Realizability and parametricity in pure type systems. In

M. Hofmann, editor, Foundations Of Software Science And Computational Structures,

volume 6604 of Lecture Notes in Computer Science, pages 108�122. Springer, 2011.

J.-P. Bernardy and G. Moulin. A computational interpretation of parametricity. In LICS.

IEEE Computer Society, 2012.

J.-P. Bernardy and G. Moulin. Type-theory in color. In Proceedings of the 18th ACM

SIGPLAN international conference on Functional Programming, pages 61�72, 2013.

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Pro-

ceedings of the 15th ACM SIGPLAN international conference on Functional programming,

pages 345�356, Baltimore, Maryland, 2010. ACM. 10.1145/1863543.1863592.

J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free � parametricity

for dependent types. Journal of Functional Programming, 22(02):107�152, 2012.

10.1017/S0956796812000056.

M. Bezem, T. Coquand, and S. Huber. A model of type theory in cubical sets. In 19th

International Conference on Types for Proofs and Programs (TYPES 2013), volume 26,

pages 107�128, 2014.

M. Hofmann. Syntax and semantics of dependent types. In Semantics and Logics of Com-

putation, pages 79�130. Cambridge University Press, 1997.

N. R. Krishnaswami and D. Dreyer. Internalizing relational parametricity in the exten-

sional calculus of constructions. In Computer Science Logic 2013 (CSL 2013), CSL 2013,

September 2-5, 2013, Torino, Italy, pages 432�451, 2013. 10.4230/LIPIcs.CSL.2013.432.

URL http://dx.doi.org/10.4230/LIPIcs.CSL.2013.432.

A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

ISBN 9781107017788.

A. M. Pitts. An equivalent presentation of the bezem-coquand-huber category of cubical

sets. CoRR, abs/1401.7807, 2014. URL http://arxiv.org/abs/1401.7807.

J. C. Reynolds. Types, abstraction and parametric polymorphism. Information processing,

83(1):513�523, 1983.

P. Wadler. Theorems for free! In Proceedings of the fourth international conference on Func-

tional programming languages and computer architecture, pages 347�359, Imperial College,

London, United Kingdom, 1989. ACM. ISBN 0-89791-328-0. 10.1145/99370.99404. URL

http://portal.acm.org/citation.cfm?id=99404.

http://dx.doi.org/10.1145/1863543.1863592
http://dx.doi.org/10.1017/S0956796812000056
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.432
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.432
http://arxiv.org/abs/1401.7807
http://dx.doi.org/10.1145/99370.99404
http://portal.acm.org/citation.cfm?id=99404

	Introduction
	Syntax
	Parametricity
	Iterating Parametricity

	Presheaf model
	Related Work
	Our own line of work
	Parametric Models of Type Theory vs. Parametric Type Theories
	Various kinds of models
	Presheaf models

	Future work and conclusion

