
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Shared Resources in Distributed Systems:
Analytical Tools for Evaluation and

Self-stabilizing Provisioning

IOSIF SALEM

Division of Networks and Systems

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2018

Shared Resources in Distributed Systems: Analytical Tools for Evaluation and Self-

stabilizing Provisioning

Iosif Salem

Copyright c© Iosif Salem, 2018.

Technical report 152D
Department of Computer Science and Engineering
Distributed Computing and Systems Group
ISBN: 978-91-7597-682-2
Series number: 4363
in the series Doktorsavhandlingar vid Chalmers tekniska högskola.
Ny serie (ISSN0346-718X)

Division of Networks and Systems
Chalmers University of Technology
SE-412 96 GÖTEBORG, Sweden
Phone: +46 (0)31-772 10 00

Author e-mail: iosif@chalmers.se

Printed by Chalmers Reproservice
Göteborg, Sweden 2018

Shared Resources in Distributed Systems:
Analytical Tools for Evaluation and
Self-stabilizing Provisioning
Iosif Salem
Division of Networks and Systems, Chalmers University of Technology

ABSTRACT
Distributed computing is an established computing paradigm of modern com-
puting systems. The nodes of a distributed system interact either by sharing re-
sources or via a communication network. In both cases, provisioning of shared
resources is a challenge, for example when resource demand and supply varies
or when the system is prone to failures. Analytical tools for evaluating system
performance and for provisioning shared resources enhance system design and
implementations.

In this thesis, we develop analytical tools for the evaluation and self-
stabilizing provisioning of shared-resources in distributed systems. We first
focus on systems where resource demand and supply varies, and study cases of
reusable and non-reusable resources. We study shared-object systems, where
system nodes demand mutually exclusive access to a number of objects in a con-
tinuous fashion. We develop analytical tools for computing the expected delay
and throughput of such systems, in a wide range of system utilization scenar-
ios, including saturation points. Moreover, we study systems where nodes share
energy resources, and focus on optimizing the available resources on a system-
level. We develop online algorithms that use the flexibility on resource demand,
to optimize the utilization of the available supply, and prove their competitive
ratios.

Recovery from failures is necessary for provisioning shared resources. Dy-
namic and complex systems are often designed based on a failure model, but
it is important that they recover even after the occurrence of unexpected fail-
ures, outside the failure model. Such failures can include topological changes
in the network, stale information in the nodes’ memory, communication fail-
ures, etc. These failures are further amplified by the system’s asynchrony. In

ii

these settings, we first focus on provisioning of network resources, in terms
of network control and ordering of distributed events. We study Software-
Defined Networks (SDNs) and specifically their control planes. We provide
a self-stabilizing distributed algorithm for a fault-tolerant SDN control plane,
that deals with communication failures, topological changes, as well as, with
transient faults, that can bring the system in an arbitrary state. Moreover, we fo-
cus on ordering distributed events in asynchronous message-passing systems, in
the absence of execution fairness. In these extreme asynchronous settings, we
provide a practically-self-stabilizing distributed algorithm, that uses bounded
memory and yet, can tolerate concurrent counter overflows, when counting dis-
tributed events, as well as transient faults.

Keywords: resource sharing, shared object systems, online algorithms, smart grid, dis-

tributed algorithms, self-stabilization, software-defined networks.

List of appended papers

Parts of the contributions presented in this thesis have previously appeared in
the following manuscripts.

. Iosif Salem, Elad M. Schiller, Marina Papatriantafilou, Philippas
Tsigas, “Shared-object System Equilibria: Delay and Throughput
Analysis,” in Proceedings of the 17th International Conference on

Distributed Computing and Networking (ICDCN), Singapore, Jan-
uary 2016, pp. 30:1–30:10, ACM.
The technical report of this paper appeared under the same title in
CoRR, abs/1508.01660,
http://arxiv.org/abs/1508.01660, 2015.

. Giorgos Georgiadis, Iosif Salem, Marina Papatriantafilou, “Tai-
lor your curves after your costume: Supply-following demand in
Smart Grids through the Adwords problem,” in Proceedings of the
31st Annual ACM Symposium on Applied Computing (SAC), Pisa,
Italy, April 2016, p.p. 2127-2134.
The technical report of this paper appeared as Technical Report

2015:01, Department of Computer Science and Engineering,
Chalmers University of Technology, Göteborg, Sweden, 2015.

. Marco Canini, Iosif Salem, Liron Schiff, Elad M. Schiller, and Ste-
fan Schmid, “Renaissance: Self-Stabilizing Distributed SDN Con-
trol Plane”, technical report in CoRR, abs/1712.07697,
http://arxiv.org/abs/1712.07697, 2017.

iii

iv LIST OF APPENDED PAPERS

An earlier version of this work appeared as:
Marco Canini, Iosif Salem, Liron Schiff, Elad M. Schiller, and
Stefan Schmid, “A Self-Organizing Distributed and In-Band SDN
Control Plane”, in the Proceedings of the 35th International Con-

ference on Distributed Computing Systems (ICDCS), Atlanta, GA,
USA, June 2017, p.p. 2656-2657, IEEE.

. Iosif Salem and Elad M. Schiller, “Practically-Self-Stabilizing Vec-
tor Clocks in the Absence of Execution Fairness”, technical report
in CoRR, abs/1712.08205,
http://arxiv.org/abs/1712.08205, 2017.

in memory of Guido I. Salem

Acknowledgments

Reaching the point of finishing a PhD thesis requires the support of many peo-
ple, to whom I express my deepest gratitude. It would be impossible to complete
this thesis and bear the turbulent journey of a PhD without this support.

First, I would like to thank my thesis supervisor Assoc. Prof. Elad M.
Schiller and my coadvisor Assoc. Prof. Marina Papatriantafilou for their sup-
port and influence, as well as for the opportunities that they gave me during my
studies. I thank my research collaborators Prof. Philippas Tsigas, Dr. Geor-
gios Georgiadis, Assoc. Prof. Stefan Schmid, and Dr. Liron Schiff. Also, I
thank Asst. Prof. Pierre Leone for the opportunity of a research visit in the
University of Geneva. I thank Assoc. Prof. Chryssis Georgiou, Assoc. Prof.
Vana Kalogeraki, and Prof. Shlomi Dolev for the opportunity of presenting my
work in their research groups and getting valuable feedback. I thank Prof. Peter
Damaschke who was the CSE department’s examiner of my thesis.

I am honored to have an excellent group of external faculty members acting
as examiners in the public defense of this thesis. I would like to thank Prof. Dr.
Christian Scheideler (University of Paderborn) for being the faculty opponent,
as well as the members of the grading committee; Prof. Roman Vitenberg (Uni-
versity of Oslo), MCF Lélia Blin (CNRS, Univ. d’Evry-Val-d’Essonne, LIP6),
and Assoc. Prof. Ioannis Chatzigiannakis (Sapienza University of Rome).

Special thanks go to Yiannis Nikolakopoulos for the numerous discussions
about more or less everything, as well as to Georgios Georgiadis for being a
collaborator and a good friend (feel free to construct Venn diagrams Giorgo).
My time in Chalmers would have been much different if I didn’t have the luck

vii

viii ACKNOWLEDGMENTS

of sharing an office with Thomas Petig and Valentin Tudor; unfortunately, most
of our great office plans (e.g. installing a hammock) didn’t go through. I thank
the (past and present) colleagues in the Network and Systems division for a
friendly and warm working environment. I thank Ali, Amir, Aras, Babis, Bapi,
Beshr, Boel, Carlo, Daniel, Dimitris, Elena, Farnaz, Fazeleh, Georgia, Hannah,
Ivan, Katerina M., Magnus, Mohamed, Nasser, Nhan, Oliver, Oscar, Paul, Peter
L., Romaric, Tomas O., Tomas R., Valentin P., Vincenzo, Zhang, as well as the
other members of the CSE department. Also, I thank Eva, Marianne, Tiina,
Rolf, Peter H., and Rebecca for providing friendly and efficient administration.

I would like to thank the faculty members Olaf Landsiedel, Erland Jonsson,
Raffaella Negretti, and Linda Bradley for our excellent collaboration in my TA
duties. Also, I thank the students Michael Tran, Christos Profentzas and Rafael
Constantinou, Emil Kristiansson and Johan Persson, and Guillermo Barredo for
our collaboration in MSc theses or projects. I thank the projects KARYON (EU),
Chameleon-MAC (VR) and CHRONOS steg1 (Vinova) for funding my research.

Life in Göteborg would have been much different without the good friends
I made here. I thank Stavros, Yiannis S., Petros, Vaggelis, Chloe, Vasilis, Suvi,
Maria K. & Anton, Simona and little Mara, Christine L., Angelos, Christina and
little Sia. Extra credits should go to Manos, for the numerous discussions about
life, math, objectively bad jokes, etc. I must thank Marianne Pleen-Schreiber
and her family for their great hospitality. Also, I thank the fellows from the PhD
Pub; Eoin, Isabel, Aljoscha, Elke, Sigrid, Alla, Siavash, and Niklas.

I thank my good friends Dimitra, Eirik, Harris T., Harry M., Kanellos, Ka-
terina K., Katerina S. Marilena, Nikos, Tina, and Vasiliki, that bear with me all
the way back from our years in the Math department in Athens. I thank Zak
and Eva for decades of discussions and support, and for pushing me to think
in different perspectives. Also, I thank my family, my parents Guido and Sara,
and my sister Louiza for their unconditional love and for never compromising
their support. I thank Maria for her love and endless support, and for sharing
all the good and hard times in these years and the years to come.

Iosif Salem
Göteborg, January 2018

Contents

Abstract i

List of appended papers iii

Acknowledgments vii

I INTRODUCTION 1

1 Introduction 3
1.1 Motivation . 3

1.1.1 Shared-resources systems 4

1.1.2 Provisioning shared resources in distributed systems . . 6

1.1.3 Thesis organization . 7

1.2 Background . 7

1.2.1 Software-defined networks 7

1.2.2 Self-stabilization . 8

1.3 Analytical performance evaluation 9

1.3.1 Analytical performance evaluation of shared-object sys-
tems . 9

1.3.2 Optimizing resource allocation on a system level: the
smart grid case . 10

1.4 Self-stabilizing provisioning 11

1.4.1 Fault-tolerant Software-Defined Network control planes 11

ix

x CONTENTS

1.4.2 Ordering distributed events in asynchronous systems that
are prone to failures 13

1.5 Research questions . 14

1.6 Thesis contribution . 14

1.6.1 Analytical performance evaluation of resource alloca-
tion systems (RQ 1) 14

1.6.2 Analytical tools for self-stabilizing provisioning of dis-
tributed systems (RQ 2) 16

1.7 Conclusion and future directions 18

II PAPERS 27

2 PAPER I 31
2.1 Introduction . 32

2.1.1 Related Work . 34

2.1.2 Our contribution . 35

2.2 Preliminaries . 36

2.2.1 Acquisition paths, periods and requests 36

2.2.2 Job arrival rates . 37

2.2.3 Work cycles: demand, supply and release 37

2.2.4 Subpaths and acquisition graph 38

2.2.5 Conditional and consecutive events 39

2.2.6 Pairwise states and request probabilities 40

2.2.7 Item inter-demand period 44

2.2.8 Shared-object system equilibria 44

2.3 The solution outline . 45

2.3.1 Estimating c[s, d] and R(s, d) 45

2.3.2 Resolving interdependencies 48

2.3.3 Finding approximate equilibria 48

2.4 Background knowledge . 49

2.4.1 Idle thread probability 51

2.4.2 Baynat-Dallery framework 52

CONTENTS xi

2.5 Request probabilities . 55

2.6 Blocking periods . 58

2.6.1 Job Completion Periods 59

2.6.2 Acquiring the remaining objects 59

2.7 Item inter-demand periods . 60

2.7.1 Object inter-demand period 60

2.7.2 Thread inter-demand period 61

2.8 Resolving dependencies . 63

2.8.1 Contention subsystems 63

2.8.2 The case of systems with M = 3 objects 65

2.8.3 The case of systems with M objects 70

2.9 Finding an ε-OSE . 79

2.9.1 The ε-OSE solver . 80

2.9.2 The initializeSystemState() function 83

2.9.3 The updateStates() function 84

2.9.4 The recalcB() and recalcT () functions 84

2.9.5 Running time . 85

2.10 Conclusions and future work 86

3 PAPER II 91
3.1 Introduction . 92

3.1.1 Related work . 95

3.2 Background and system model 96

3.2.1 The ADWORDS problem 97

3.2.2 Online scheduling for Smart Grids: Energy utilization . 98

3.2.3 On-line algorithms and competitive ratio 100

3.3 Online scheduling with budgets 102

3.3.1 Connecting supply utilization with the ADWORDS prob-
lem . 103

3.4 The SGSUPPLYADWORDS algorithm 106

3.5 Extended modeling and the algorithm SGSUPPLYGREEDY . . . 111

3.6 Experimental study . 115

xii CONTENTS

3.6.1 Experiment setup . 115

3.6.2 FULLBUDGETS . 117

3.6.3 SIMPLEBUDGETS . 119

3.7 Discussion . 120

3.8 Conclusion . 123

4 PAPER III 129
4.1 Introduction . 130

4.2 The System in a Nutshell . 133

4.2.1 Switches and Rules . 136

4.2.2 Building Blocks . 139

4.3 Models . 140

4.3.1 The Communication Channel Model 141

4.3.2 The Execution Model 142

4.3.3 The Network Model 142

4.3.4 Self-Stabilization . 144

4.4 Renaissance: A Self-Stabilizing SDN Control Plane 146

4.4.1 High-level Description of the Proposed Algorithm . . . 147

4.4.2 Refining the Model: Variables, Building Blocks, Inter-
faces . 150

4.4.3 Algorithm Details . 155

4.5 Correctness Proof . 157

4.5.1 Overview . 158

4.5.2 Analysis of Memory Requirements 160

4.5.3 Bounding the Number of Illegitimate Deletions 162

4.5.4 Recovery From Transient Faults 166

4.5.5 Returning to a legitimate state after topology changes . . 171

4.6 Evaluation . 175

4.6.1 Setup . 175

4.6.2 Results . 176

4.7 Related Work . 184

4.8 Conclusion . 188

CONTENTS xiii

5 Paper IV 195
5.1 Introduction . 196
5.2 System Settings . 202
5.3 Background . 208

5.3.1 The case of no concurrent overflow events 210
5.3.2 The case of concurrent overflow events 211

5.4 Composition and interface . 214
5.5 Vector Clock Pairs . 220

5.5.1 Merging two vector clock pairs 222
5.5.2 Event counting and causal precedence 225

5.6 Vector Clock Algorithm . 227
5.7 Correctness Proof . 234

5.7.1 The proof in a nutshell 234
5.7.2 Convergence of the labeling algorithm in the absence of

wrap around events . 235
5.7.3 Local and global invariants and their relation to Re-

quirement 1 . 237
5.7.4 Pair evolution graph and function causality 246
5.7.5 Bounding the number of deviations from the abstract

task in an LS -scale execution 256
5.8 Conclusion . 268

III DISCUSSION 273

6 Discussion 275
6.1 Paper I . 275
6.2 Paper II . 277
6.3 Paper III . 278
6.4 Paper IV . 279

xiv CONTENTS

List of Figures

2.1 The thread work cycle . 38

2.2 An acquisition graph, G . 40

2.3 (s, d)’s inter-demand period, s.T [k], d = object[k], i.e., the
period between two consecutive δ(d|s) events. 41

2.4 (s, d)’s delay s.D[k] and blocking s.B[k] start from δ(d|s),
and respectively, σ(d|s), and both end at φ(d|s), d = object[k] 42

2.5 Estimating R(s, d), s.B[k] and Td when M = 2. 46

2.6 Request generation (Markov) process 62

2.7 The contention graph for C S (thread, 2) and the work cy-
cles partitions, P(s, d) = ∪`∈[1,3]P`, of (s, •) paths, where
P1 = {χ|χ = (s, d, •)}, P2 = {χ|χ = (s, object[1], d, •)},
P3 = {χ|χ = (s, •) ∧ d /∈ χ}, s = thread[n] and d =

object[2]. 66

2.8 The contention graph for C S (Sk, k) and the work cycles par-
titions, P(s, d) = ∪`∈[1,3]P`, of (•, s, •) paths, where P1 =

{path | path = (•, s, d, •)}, P2 = {path | path = (•, s,
object[i], •, d, •) ∧ i ∈ Rel(Sk, k) \ [k + 1,M]}, P3 =

{path | path = (•, s, •) ∧ d /∈ path}, Rel(thread, k) = [1,
M] \ {k} and d = object[k]. 70

3.1 A schematic representation of the ADWORDS problem in graph
form . 97

xv

xvi LIST OF FIGURES

3.2 An example of the online load balancing problem for electri-
cal and thermal energy requests with storage capabilities (cf.
notation in Table 3.1). 101

3.3 Relationship between budget and spend of OPT and SGSUP-
PLYGREEDY algorithms of node u at the time of node v’s ar-
rival (left), and the corresponding metrics at the end of the
algorithms’ run (right). The differences δv = Su − S̃u,v and
εv = Ou − Õu,v are also shown. 114

3.4 Unused storage per timeslot for the FULLBUDGETS set. A
point (x, y) in the graph denotes the amount of unused storage,
y, at the (100 − x + 1)-th percentile. ADAPTIVEFULL and
ADAPTIVESIMPLE keep more unused storage than BAU to
have more flexibility in their scheduling, but ADAPTIVEFULL

uses storage more efficiently than ADAPTIVESIMPLE. 120

3.5 Peak reduction per peak amplitude for the SIMPLEBUDGETS

set. 121

3.6 Unused storage per timeslot for the SIMPLEBUDGETS set. A
point (x, y) in the graph denotes the amount of unused stor-
age, y, at the (100 − x + 1)-th percentile. We observe that
ADAPTIVEFULL utilizes storage in a more smooth way that
ADAPTIVESIMPLE, and they both have better storage utiliza-
tion than BAU. 122

4.1 The system architecture, which is based on self-stabilizing
versions of existing network layers. The external building
blocks for rule generation and local topology discovery ap-
pear in the dotted boxes. The proposed contribution of self-
stabilizing SDN controller and self-stabilizing abstract switch
appear in bold. 134

4.2 Abstract SDN switch illustration. 137

4.3 System execution, faults, and recovery guarantees of the pro-
posed self-stabilizing algorithm. 145

LIST OF FIGURES xvii

4.4 Abstract switch pj’s control module interface, for each con-
troller pi ∈ PC . 154

4.5 Bootstrap time for the networks using 3 controllers. The net-
work diameters are 4, 5, 8, 10 and 11 (left to right order). . . . 176

4.6 Bootstrap time for Telstra (T), EBONE (E) and Exodus (X)
for 1 to 7 controllers. 177

4.7 Bootstrap time for Telstra, EBONE and Exodus using 7 con-
trollers, as a function of query intervals. 178

4.8 Communication complexity per node needed from a max loaded
global controller to reach a stable network. 179

4.9 Recovery time after fail-stop failure for a controller. 180

4.10 Recovery time after fail-stop failure for 1-6 controllers in Tel-
stra (T), EBONE (E) and Exodus (X). 181

4.11 Recovery time after permanent switch-failure. 182

4.12 Recovery time after permanent link-failure. 183

4.13 Recovery time after multiple (2,4,6) permanent link-failures
at random for B4 (B), Clos (C), Telstra (T), EBONE (E) and
Exodus (X). 184

4.14 Throughput for the different networks using network updates
with tags. 185

4.15 Throughput for the different networks using no recovery after
link-failure. 186

4.16 Retransmission percentage rate for packets sent at each second. 187

5.1 Illustration of the failure model and of transient faults. 204

xviii LIST OF FIGURES

5.2 Composition of the server and the client algorithms. The nor-
mal lines denote the composition parts that are common in
both strong and practically-self-stabilizing algorithms. The
dotted blue lines show the computations in the composition
of practically-self-stabilizing algorithms, that are additional to
the normal lines. We refer to the computations done in a step
excluding the send or receive operation as the (server or client)
invariant check and updates. 216

5.3 Conditions for merging two given (vector clock) pairs; Z (on
the left) and Z ′ (on the right). 224

5.4 Illustration of a legal execution (cf. Lemma 31). The horizon-
tal line denotes an execution R and the vertical lines highlight
specific steps of R. The vertical lines that are marked with r,
denote a step in which a processor called restartLocal(). The
vertical lines that are marked with vx denote a step in which
a processor px called revivex(). In this example for the seg-
ment of R, marked as R∗, the following hold: (i) no processor
called restartLocal(), and (ii) pi (and every other active pro-
cessor) called revive() at most once. Thus, by Lemma 31, R∗

is a legal execution, i.e., R∗ ∈ LE. 243
5.5 Pair evolution graph example. 251
5.6 Vector clock pair recycling. 264

Part I

INTRODUCTION

1
Introduction

1.1 Motivation

Overview Distributed systems are prevalent in our society. We interact with
services that base on distributed systems through many computing devices that
we use, and in turn these services require interaction of these devices with other
systems (even though we, as users, are usually oblivious to these processes).
This computing paradigm scales from smartphone applications communicating
with servers or collaborative document editing, to the operation of a data center,
where for example, your favorite social media host your data. Systems that are
inherently distributed include nodes that need to interact via a network or by
sharing resources in order to provide services.

For each service, each node of the system runs a program which determines

3

4 CHAPTER 1. INTRODUCTION

the local actions of the node, as well as, the interaction with other nodes, to
the end of providing the service. This interaction, may include coordination
for sharing the system’s resources, exchange of a node’s state, discovering a
change in the system’s topology, etc. The complexity for the nodes to collec-
tively achieve their tasks depends on a number of factors. Some of these factors
are the architectural limitations of the system, faults that occur or have occurred
in the past, the system’s asynchrony (e.g. communication delays), the num-
ber of times a node needs to interact with other nodes for retrieving necessary
information, the nodes’ inability to predict the future system state (e.g. node
additions or failures), the availability of resources, etc. [1].

This thesis aims to address challenges related to resource sharing in dis-
tributed systems by taking an analytical approach. We develop analytical tools
for problems related to performance evaluation of shared resources systems, as
well as for provisioning of shared resources in the presence of failures.

1.1.1 Shared-resources systems

A main paradigm of node interaction in a distributed system is the one in which
the system’s nodes interact by sharing resources [2, 3]. We refer to resources
in an abstract manner, since in practice they can be, for example, the shared-
memory of a single computer, distributed storage over multiple computers, en-
ergy resources that are generated in different sites of the power grid, cloud re-
sources, network resources, etc. [1, 4]. Designing solutions for handling these
shared resources in a distributed system is a challenge in an online setting,
where future resource demand and availability is usually not known in advance.
It is often the case that these solutions are evaluated experimentally, depending
on a set of available data. Thus, analytical tools for studying the performance
of such systems provide more flexibility both in the evaluation but also in the
solution design. In this thesis we study two problems related to this context;
one related to shared objects and another related to sharing energy resources.

Shared-object systems Consider a system that includes shared objects and
nodes that interact by gaining and releasing access to subsets of these objects.

1.1. MOTIVATION 5

This abstraction can, for example, relate to shared-memory, where threads in-
teract for gaining access to memory locations. The more the system is utilized,
the higher the contention among its nodes, i.e., the events where more than one
node needs to access a single object at the same time.

Contention management algorithms determine access to a shared object
among a set of competing nodes [5–7]. The criteria for determining the node
(or process) that will gain access to the shared object can rely on the number
of objects that each competing node holds, an assignment of priorities over the
nodes, a first-come first-serve order, a random choice, etc. A contention man-
agement scheme comes with some guarantees for the system’s progress (e.g.
how much a node can be stalled from gaining access to an object), throughput,
and delay. Moreover, these algorithms are mostly evaluated experimentally and
few analytical results exist in the literature (e.g. [8]).

Sharing energy resources Consider a system in which some nodes demand
(non-reusable) resources and some nodes supply (and possibly demand) re-
sources. In this system producing and consuming resources comes at a cost,
resource demand and supply varies, and consumer nodes issue demands subject
to a number of constraints (e.g. temporal or cost related). An example of such
systems is the power grid, when considering energy resources and nodes of the
grid that produce and consume energy.

The increasing inclusion of renewable energy generation in the power grid,
the use of different energy carriers, the ability of the end-user to choose among
different utility companies, as well as new consumption monitoring technolo-
gies are factors that are changing the traditional operation of the power grid [9].
Nodes of the grid can be both producers and consumers of energy (e.g. end
users or companies that own an installation of renewables), and decide among
different energy supply options for covering their energy demand. Even though
energy supply is usually not a challenge (except for high demand peaks), using
the grid’s energy resources efficiently to reduce the production or consumption
cost is non-trivial. That is, costs can be optimized by individual nodes, subsets
of nodes, or in a system-level, by taking into account the varying supply and

6 CHAPTER 1. INTRODUCTION

demand (and optionally the ability to forecast the future demand and supply).
Solutions to the latter problem are nowadays supported by the ability to collect
frequently consumption data from smart meters, i.e., metering devices that can
connect remotely with the utility company (hence the term smart grid [9]).

1.1.2 Provisioning shared resources in distributed systems

Another prominent way of viewing distributed systems is to consider nodes that
are interconnected via a network in order to provision resources, such as net-
work resources or shared object replicas. For any task that the nodes need to
solve, they need to communicate via the network, thus facing a list of chal-
lenges. Some of them are the number of times that each node needs to com-
municate with its neighbors, communication delays, the system’s asynchrony,
changes in the network topology, faults that occur or stale information that re-
sides in the network, byzantine nodes, etc. [1, 2]. Here we mainly focus on the
effect of stale information in asynchronous distributed systems in problems re-
lated to provisioning network resources and to ordering events in asynchronous
distributed systems.

Provisioning network resources Since distributed systems lack central co-
ordination (before any communication among the nodes occurs), distributed
algorithms that run on these systems are dependent on the network’s limitations
and state. Most models of distributed computation in a network of nodes (e.g.
local, congest, interleaving models [10–12]) use assumptions on the topology
(e.g. fully connected graph, ring, arbitrary graph, etc.), the level of synchrony
(i.e., how often nodes interact with the network), the delay in communication,
the presence or not of distinct node identifiers, the fault model of the system,
etc. These challenges are further amplified by limitations that come from the
network’s architecture, when we deploy distributed algorithms in practice.

Ordering events in asynchronous distributed systems A desirable property
for any distributed system is the ability to argue about the order in which dis-
tributed events occurred. To that end, various notions of clocks have been used,

1.2. BACKGROUND 7

e.g. clocks that count time [1] or distributed events [13–15]. Of course, nodes
need to communicate in order to have both a common reference in their clock
values, but also to learn about the local events that occurred in neighboring
nodes. Such tasks become more challenging in the presence of failures, and
various fault-models exist in the literature [1, 10, 16].

1.1.3 Thesis organization

This thesis consists of three parts and is organized as follows. We continue Part I
(Introduction) by giving the background for the sections to follow (Section 1.2).
Then, we present the two areas of focus of the thesis, including challenges and
related work (sections 1.3 and 1.4). In the following, we formulate the two
research questions that this thesis aims to address in each of the two areas of
focus (Section 1.5), and explain how we contribute to these research questions
through the appended papers, i.e., papers I–IV (Section 1.6). In Section 1.7 we
conclude and discuss future directions.

In Part II of the thesis we append the complete technical reports of papers
I–IV. In Part III, we discuss the technical contributions of the thesis and the an-
alytical tools that we developed, which can be also used for relevant problems.

1.2 Background

In this section we give the necessary background, before proceeding with the
overview of this thesis in the following sections. In Section 1.2.1 we give an
introduction to Software-Defined Networks (SDNs) and in Section 1.2.2 we
introduce Self-stabilization.

1.2.1 Software-defined networks

Computer networks (the Internet, data-center networks, enterprise networks,
etc.) are a critical infrastructure. However, today’s computer networks are of-
ten inflexible, complex and error-prone, raising concerns regarding their de-
pendability. Recently, leading tech companies have reported major issues with

8 CHAPTER 1. INTRODUCTION

their networks, due to misconfigurations [17–19]. Software-Defined Networks
(SDNs) have emerged as a promising alternative, providing new opportunities
for designing more dependable networks [20]. By outsourcing and consoli-
dating the control over the data plane devices (switches, routers, basic middle-
boxes) to a logically centralized controller software, SDNs introduce interesting
new flexibilities. In particular, the decoupling of the control plane from the data
plane allows to innovate the former independently of the latter. Moreover, SDNs
enable a principled and formal specification of the network configuration, also
enabling an automated verification [21].

1.2.2 Self-stabilization

Consider a message-passing system, i.e., a set of nodes connected via a network,
such that each node can be modeled as a finite-state machine and the network’s
communication channels have finite capacity. Message-passing systems can be
designed to tolerate failures based on a fault model [16], such as topological
changes (node or link failures) or communication failures. In addition to these
failures, it is possible that failures outside the fault model can occur. We con-
sider transient faults, i.e., any temporary violation of assumptions according to
which the system and network were designed to behave, e.g., the corruption of
the system state due to soft errors. We assume that these transient faults ar-
bitrarily change the system state in unpredictable manners (while keeping the
nodes’ program code intact). Since these transient faults are rare, a common
assumption is that all transient faults occurred before the start of the system
execution.

Self-stabilization is a design criterion that requires a system, which may
start in an arbitrary state, to return to a correct behavior within a bounded period
and was introduced by Dijkstra [22]. That is, for any execution, the system is
guaranteed to reach a legitimate state (according to a task’s specification) within
a bounded time, and continue being in a legitimate state for the remainder of
the execution. Self-stabilizing (distributed) algorithms have been developed
for a large variety of systems, e.g. self-stabilizing algorithms for peer-to-peer

1.3. ANALYTICAL PERFORMANCE EVALUATION 9

networks [23], mobile robots [24], etc. [10].

Asynchronous message-passing systems cannot always fulfill Dijkstra’s sta-
bilization requirements (often referred to as strong self-stabilization). Adversar-
ial schedulers can allow stale information (e.g. due to transient faults) to reside
in the system for an unbounded prefix of any execution, and then appear to
violate the system’s safety requirements. Thus, research has focused on more
relaxed stabilization criteria. Pseudo-stabilization [10, 25] deals with the above
inability by bounding the number of times the system violates safety in an in-
finite system execution. Moreover, practically-self-stabilizing systems [26–29]
require a bounded number of safety violations during any practically infinite

period of a system execution. A practically infinite execution [28, 29] is an
execution of bounded but extreme size, say, of 2b sequential processor steps,
where b = 64 or an even a larger integer, as long as a constant number of bits
can represent it. These relaxed notions of self-stabilization are relevant for this
thesis, however more proposals exist in the literature, e.g. the ones in [30–32].

1.3 Analytical tools for evaluating the performance
of distributed systems

Overview In this section we focus on analytical tools that evaluate algorithms
for sharing resources in dynamic distributed systems. We present the motiva-
tion, challenges, and related work in the context of relevant problems that we
study in this thesis.

1.3.1 Analytical performance evaluation of shared-object sys-
tems

Motivation, challenges, and related work Consider a system that consists
of a set of computing entities, which we call threads and a number of reusable
objects. Each thread runs a sequential program (a job), for which it has to
acquire a subset of these objects in order to perform an operation for a bounded

10 CHAPTER 1. INTRODUCTION

time. Once the operation completes, the thread releases access to the job’s
objects and waits until another job is assigned to it (e.g. by a scheduler).

The order of object acquisition plays a crucial role in the progress of such
systems. For example, it is important to avoid deadlocks or livelocks, i.e., situa-
tions in which two or more processes make no progress with or without chang-
ing their state, unless they are interrupted. A simple solution for avoiding such
race conditions is to force the threads to follow the same order (e.g. ascend-
ing or descending) when acquiring their jobs’ objects. Also, as the workload
of threads increases, it is more probable that threads compete for accessing the
same objects.

Working systems that follow the discussed paradigm include multi-word
compare-and-swap (CASN) operations and fine-grained locking implementa-
tions in shared-memory systems [33–36], as well as transactional memories [37,
38]. A common way to model such systems is to consider a generalization of the
dining philosophers problem, as in [39, 40], in which every job includes a fixed
set of objects that it may need. This problem has well-known results studying
the worst-case job delays, which may even be exponential on the system’s size,
i.e., the chromatic number of the resource graph [8, 39]. In this graph, the ver-
tices (objects) are connected if there is, at least, one thread that may request
them both at any point in time. In practice, the expected delay and throughput
is rather different than the worst case and, therefore, computer experiments are
the common way for evaluating the system performance.

1.3.2 Optimizing resource allocation on a system level: the
smart grid case

Motivation, challenges, and related work The power grid is rapidly shifting
nowadays towards a dynamic market of energy resources. Until recently, util-
ity companies were the main suppliers of energy and their operation followed
the utility service paradigm, i.e., all demands must be satisfied irrespective of
the available supply (demand-following supply [41]). However, this paradigm
becomes very costly for the utility companies in very high demand peaks, since

1.4. SELF-STABILIZING PROVISIONING 11

they need to maintain their production in higher levels than the average con-
sumption. This need to reduce high production costs, can be achieved by shift-
ing the demand curve to follow the supply curve, as much as possible.

From a consumer point of view, there is a wide range of available energy
supply services, either from different utility companies, or from local-scale en-
ergy production and brokering, or from own generated resources (e.g. photo-
voltaic arrays). The choice between all of these options is based on information
about the sources, usually price-related (pricing signal [42]). The common
thread underlying both real world practice and relevant research is that no sin-

gle actor has full control over all pricing signals [9]. Therefore, the standard
model of energy utilization can no longer guarantee an efficient system-level
utilization.

1.4 Analytical tools for self-stabilizing provision-
ing of distributed systems

Overview In this section we focus on analytical tools for self-stabilizing pro-
visioning of resources in distributed systems. We present the motivation, chal-
lenges, and related work in the context of relevant problems that we study in
this thesis.

1.4.1 Fault-tolerant Software-Defined Network control planes

Motivation, challenges, and related work Software-Defined Networks
(SDNs) have emerged as a promising alternative, providing new opportunities
for designing more dependable networks. SDNs outsource the control over the
data plane devices (switches, routers, basic middleboxes) to a logically cen-
tralized software entity. We refer to that entity as the SDN control plane. This
decoupling allows a more flexible network design, by enabling the development
of the control plane independently of the data plane (e.g. automated verifica-
tion [21]).

12 CHAPTER 1. INTRODUCTION

Since control is logically centralized, designing fault-tolerant SDN control
planes is crucial. To that end, it is important that the control plane is physi-
cally distributed, in order to provide robustness. That is, a decentralized control

plane can tolerate controller failures by relying on multiple and redundant con-
trollers. Moreover, decentralized control planes can improve scalability and
performance (latency).

Decoupling the control plane from the date plane raises the challenge of
the control plane quickly reacting to data plane events. This becomes more
challenging when control is done in-band, i.e., the control plane is part of the
network (e.g. network attached servers). Even though most deployments of
SDNs rely on out-of-band control [43–45], where control plane packets are car-
ried by a dedicated management network, in-band control is desirable for many
reasons. Except for the economical and connectivity benefits, as well as the
benefit of not having to maintain a separate management network, they enhance
fault-tolerance (by redundancy). That is, control traffic can also be forwarded
with data plane traffic, instead of using only the dedicated management ports
of the switches (as in out-of-band). Of course, these benefits come with the
challenge of demultiplexing control and data traffic at the switches.

While the benefits of separating the control plane with the data plane have
been well founded in the literature [43, 44, 46–48], the question of how connec-
tivity between these two planes is maintained (i.e., the communication channels
from controllers to switches and between controllers) has not received much at-
tention. This raises several concerns regarding the availability of the SDN archi-
tecture. For example, it is a challenge to guarantee that the SDN control plane
can always establish a route between any pair of switches and controllers, given
a physically connected data plane. To that end, connections can be made with
the fault-tolerance literature, in order to guarantee the provisioning of network
resources.

1.4. SELF-STABILIZING PROVISIONING 13

1.4.2 Ordering distributed events in asynchronous systems
that are prone to failures

Motivation, challenges, and related work Self-stabilizing systems [10, 22]
recover to a legitimate state after the occurrence of an arbitrary combination of
failures. Distributed systems that are self-stabilizing rely on fairness assump-
tions regarding communication and scheduling (execution fairness), as well as
on assumptions regarding synchrony. Communication is fair when a message
that is sent infinitely often is received infinitely often [10]. Similarly, an ex-
ecution is fair when every step that is applicable infinitely often is executed
infinitely often [10] (hence no processor can crash after the start of the sys-
tem’s execution). In asynchronous systems, recovery is often designed and
measured based on synchronization rounds or similar notions [39]. However,
when studying systems in which any of these assumptions do not hold, more re-
laxed notions of stabilization are often used, such as pseudo-stabilizing [10, 25]
or practically-self-stabilizing algorithms [26–29] (cf. Section 1.2.2).

Providing solutions in asynchronous distributed systems, in the absence of
mechanisms for synchronization or roll-back is a challenge, especially in the
presence of failures. For example, when ordering distributed events, it is im-
portant to develop algorithms that use bounded storage, and tolerate failures
(whether they are included in the failure model [16] or not) as well as arbitrary
processor rates. In the absence of execution fairness, processors may crash even
after the starting configuration, hence relying on synchronization rounds is no
longer possible. Therefore, standard solutions for ordering distributed events,
such as vector clock algorithms [13, 15], need to be redesigned to cope with
these extreme asynchronous settings. Since vector clocks include a wide range
of applications, such as constructing distributed snapshots [3] or using them
as building blocks in various conflict-free replicated data types (CRDTs) [49],
it is important to provide vector clock algorithms that overcome the discussed
challenges.

14 CHAPTER 1. INTRODUCTION

1.5 Research questions

We consolidate and position the challenges of sections 1.3 and 1.4 in two re-
search questions that we present in the following. In Section 1.6 we discuss
how this thesis addresses these research questions.

Research question 1 (RQ 1). How to evaluate analytically the performance
of algorithms for resource-sharing in distributed systems, in which resource
demand and supply varies?

Research question 2 (RQ 2). How to deal effectively with the effect of tran-
sient faults in an asynchronous message-passing system, in which changes in
the topology can occur at any time?

1.6 Thesis contribution

Overview We present the contributions of this thesis with respect to the chal-
lenges and the related work (sections 1.3 and 1.4), as well as, the research ques-
tions in Section 1.5.

1.6.1 Analytical performance evaluation of resource alloca-
tion systems (RQ 1)

Analytical performance evaluation of shared-object systems (Paper I) We
study shared-object systems, which consist of a fixed number of threads and ob-
jects. Threads carry out jobs by acquiring access to subsets of objects, on which
they perform operations of bounded time. We assume that jobs are assigned to
the threads following known exponential distributions (arrival rates) and thre-
ads acquire their jobs’ objects in an ascending (object) order. For such systems
we estimate analytically the expected job delay and throughput.

We estimate the system’s performance in a wide range of scenarios. Our
analysis provides estimates of the job delay and throughput, when the job ar-
rival rates match the job completion rates. In these cases, the system is in a
shared-Object System Equilibrium (OSE). The existing literature often focuses

1.6. THESIS CONTRIBUTION 15

on peak utilization scenarios, i.e., saturation points. However, saturation points
are special cases of OSEs, where (1) the system is in equilibrium and (2) any
increase in the job arrival rates cannot increase any further the job completion
rates. Thus, our analysis covers a wider range of system equilibria.

For a given ε > 0 and an OSE, we say that the system is in an ε-OSE when
the completion rate of any job differs from the one of an OSE by at most ε. We
develop (polynomial-time) algorithms for estimating delay and throughput in ε-
OSEs. To that end, we study the conditions for a given shared-object system to
be in an OSE as well as contention-related properties of OSEs, i.e., the expected

job delay and completion rate, as well as the time in which each thread blocks
other threads and by that prevents them from making progress. We then propose
a procedure for finding ε-OSEs, if such exist in the given system.

Optimizing resource allocation on a system level: the smart grid case (Pa-
per II) We consider the energy dispatch problem, where energy demands are
issued by consumer sites (at arbitrary intervals) and must be satisfied within a
certain time range (timeslot) by the energy supply sites. These demands can
have flexibility regarding the timeslot in which they must be satisfied, restric-
tions on the energy carrier to satisfy them (e.g. thermal or electric), and (op-
tionally) produce energy storage for later use.

To the end of shaping the demand curve to follow the supply, we introduce
the concept of energy budget (or simply budget) for every timeslot, by com-
bining energy and price information. Intuitively, budgets reflect the ability and
cost of supplying energy for every timeslot. With this approach, we reformu-
late the energy utilization problem as a budget utilization problem. That is, by
maximizing the utilization of the available budget we achieve both to force the
demand curve to follow (as much as possible) the supply curve, and also to
reduce high demand peaks through adaptive scheduling.

This modeling approach allows us to connect to research fields such as bi-
partite matching and scheduling, and to use these tools for solving the budget
utilization problem. In fact, we propose a novel modeling of the energy dis-
patch problem based on the Adwords problem [50], in which a set of bidders

16 CHAPTER 1. INTRODUCTION

with given budgets, place bids for a newly revealed adword. To that end, we
utilize a proposed modeling from previous work [51] that maps the energy dis-
patch problem to an online scheduling problem. We provide solutions that are
orthogonal to pricing schemes and prove their online guarantees (competitive
ratio [52]). Moreover, we identify an extension of the ADWORDS problem that
includes dynamic budgets, and address it through our algorithms.

In this modelling, bids for adwords (that utilize the budget) reflect the cur-
rent ability and cost to serve a demand in a specific timeslot. When the bids
are very small compared to the budgets, we solve the utilization problem with
(1 − 1

e)-competitive ratio. When the bids can be comparable to the budgets
(e.g. due to local-scale generation), we solve the energy utilization problem
with 1

2 -competitive ratio.

1.6.2 Analytical tools for self-stabilizing provisioning of dis-
tributed systems (RQ 2)

Bootstrapping the control-plane of a software-defined network in the pres-
ence of failures (Paper III) We design a self-stabilizing software-defined
network control plane, i.e., an SDN that recovers from controller, switch, and
link failures, as well as a wide range of communication failures. To that end, we
model the SDN control plane as an asynchronous distributed system and rely on
message passing for communication. We consider a failure model that includes
fail-stop failures of controllers, link failures, and a wide range of communica-
tion failures, including omission, packet duplication, and packet reordering. We
assume that up to κ concurrent link failures can occur at any point in time, for
some parameter κ ∈ Z+, as well as access to a (link) failure detector. More-
over, we also assume that transient faults (e.g., the corruption of the packet
forwarding rules or malicious changes to the availability of links, switches, and
controllers) can bring any execution of the system to an arbitrary starting system
state (while keeping the program code intact).

We develop an algorithm to bootstrap and maintain connectivity in an in-
band and distributed SDN control plane, in the presence of the failures men-

1.6. THESIS CONTRIBUTION 17

tioned above. Our algorithm maintains control flows between any controller
and any other node in the network (switch or controller). In fact, in the pres-
ence of at most κ link failures, we achieve bounded communication delays. We
assume no external (out-of-band) support of the control plane, controllers that
can fail-stop, and yet provide bounded time recovery after the occurrence of
an arbitrary combination of failures. Once the control plane exhibits bounded
communication delays, the controllers can coordinate their network operations
(e.g. traffic balancing or installing data-flows between hosts).

To that end, we provide a (distributed) self-stabilizing algorithm for decen-
tralized SDN control planes, that recovers from arbitrary combinations of fail-
ures, given that the network topology is (κ + 1)-edge-connected and includes
at least one (non-failed) controller. First, we show that our algorithm recov-
ers from transient faults. Starting from an arbitrary state, the system recovers
within time O(D2N) to a legitimate state, where N is the number of nodes in
the system and D is the maximum system diameter (regardless of link failures).
In a legitimate state, no stale information exists in the memory of the system
nodes (e.g. regarding unreachable controllers or stale rules) and the switches
store rules that (1) facilitate O(D) flows between any controller and any other
node in the network, and (2) maintain bounded communication delays in the
event of at most κ concurrent link failures.

We show bounds on the memory requirements of the controllers and the
switches. In a legitimate state, the number of packet forwarding rules at every
switch are at mostNC times the optimal, whereNC is the number of controllers.
We also show that starting from a legitimate state, the system can recover from
a wide range of topological changes within O(D) time.

Ordering events in asynchronous systems that are prone to failures (Paper
IV) We design a highly fault-tolerant distributed algorithm for vector clocks,
in the absence of execution fairness. We consider asynchronous message pass-
ing systems, in which node and communication failures, as well as transient
faults can occur. Specifically, we assume crash failures of nodes, that can op-
tionally perform undetectable restarts (i.e., resume with the same state as before

18 CHAPTER 1. INTRODUCTION

crashing, possibly having lost incoming messages and without being aware that
a crash occurred), as well as packet failures, such as omission, duplication, and
reordering [16]. Moreover, we assume that transient faults can bring the system
in an arbitrary starting state, while leaving the program code intact. Since tran-
sient faults are rare, we assume that they occur before the beginning of a system
execution.

We present a practically-self-stabilizing vector clock algorithm that deals
with the failures mentioned above and does not require synchronization guar-
antees, nor uses mechanisms for synchronization or roll-back, even during the

period of recovery from failures not included in the failure model. To that end,
we interpret the requirements of practically-self-stabilizing algorithms, by de-
manding that for every practically-infinite [29] system execution, the number
of safety violations is insignificant with respect to the the execution size. We
use existing practically-self-stabilizing labeling schemes [26, 28] for construct-
ing a data structure of O(N3) size (where N is the number of processors) that
supports the vector clock functionalities, and yet tolerates the studied failures.

Our solution uses bounded memory for every processor in the system. Our
proposed vector clock data structure considers 3N integers and two labels [28]
per vector, where each label’s size is in O(N3). We rely on bounded counters
for recording the system’s events, and present elegant techniques for dealing
with concurrent counter overflows, such that counter increments (i.e. events)
are never lost, even though vector clocks with different labels might exist in
the system. Hence, by counting events correctly, we show that it is possible
to reason about causality, during a legal execution. We show that for every
practically-infinite execution, at most O(N8C) safety violations occur, where
C is a bound on the capacity of the communication channels.

1.7 Conclusion and future directions

This thesis focuses on the research area of sharing resources in distributed sys-
tems. We focus on problems that relate to analytical tools for evaluating the per-
formance of resource allocation algorithms in such systems, as well as, for pro-

BIBLIOGRAPHY 19

visioning shared resources in a self-stabilizing manner. Regarding the first area
of focus, we provide performance guarantees for systems in which resources are
allocated in an online fashion, in terms of expected and worst case performance.
Regarding the second area of focus, we provide algorithms for overcoming the
effects of transient faults, in addition to those of the failure model, even in the
presence of topological changes that occur in the system.

Some areas and problems that connect to the ones studied in this thesis
are, for example, (i) the analytical performance evaluation of shared-object sys-
tems that follow acquisition schemes different than the sequential one that was
studied in Paper I, (ii) scheduling solutions for matching energy supply and
demand in the smart grid that study the effect of price fluctuations in comput-
ing the load allocation, as well as, connections to smart city frameworks and
infrastructures [53] (cf. Paper II), (iii) combining in-band and out-of-band con-
trol depending on network sub-regions (cf. Paper III), and (iv) practically-self-
stabilizing algorithms related to other CRDT primitives than vector clocks (cf.
Paper IV).

Bibliography

[1] Andrew S. Tanenbaum and Maarten Van Steen, Distributed systems: prin-

ciples and paradigms, Prentice-Hall, 2007.

[2] Hagit Attiya and Jennifer Welch, Distributed computing: fundamentals,

simulations, and advanced topics, vol. 19, John Wiley & Sons, 2004.

[3] Maurice Herlihy and Nir Shavit, The art of multiprocessor programming,
Morgan Kaufmann, 2011.

[4] Vinay Setty, Roman Vitenberg, Gunnar Kreitz, Guido Urdaneta, and
Maarten Van Steen, “Cost-effective resource allocation for deploying pub-
/sub on cloud,” in Distributed Computing Systems (ICDCS), 2014 IEEE

34th International Conference on. IEEE, 2014, pp. 555–566.

20 BIBLIOGRAPHY

[5] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon, “Towards a the-
ory of transactional contention managers,” in Proceedings of the Twenty-

Fifth Annual ACM Symposium on Principles of Distributed Computing,

PODC 2006, Denver, CO, USA, July 23-26, 2006, Eric Ruppert and Dahlia
Malkhi, Eds. 2006, pp. 316–317, ACM.

[6] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N
Scherer III, “Software transactional memory for dynamic-sized data struc-
tures,” in Proceedings of the twenty-second annual symposium on Princi-

ples of distributed computing. ACM, 2003, pp. 92–101.

[7] Virendra J. Marathe and Michael L. Scott, “A qualitative survey of modern
software transactional memory systems,” University of Rochester Com-

puter Science Dept., Tech. Rep, 2004.

[8] Nancy A. Lynch, “Upper bounds for static resource allocation in a dis-
tributed system,” Journal of Computer and System Sciences, vol. 23, no.
2, pp. 254–278, 1981.

[9] Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and
Nicholas R. Jennings, “Putting the ‘smarts’ into the smart grid: a grand
challenge for artificial intelligence,” Communications of the ACM, vol.
55, no. 4, pp. 86–97, 2012.

[10] Shlomi Dolev, Self-stabilization, MIT press, 2000.

[11] Laurent Feuilloley and Pierre Fraigniaud, “Survey of distributed deci-
sion,” CoRR, vol. abs/1606.04434, 2016.

[12] Jukka Suomela, Distributed Algorithms, Aalto University, Finland, 2016,
Available at: https://users.ics.aalto.fi/suomela/da.

[13] Colin J Fidge, “Timestamps in message-passing systems that preserve the
partial ordering,” 1987.

[14] Leslie Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

BIBLIOGRAPHY 21

[15] Friedemann Mattern et al., “Virtual time and global states of distributed
systems,” Parallel and Distributed Algorithms, vol. 1, no. 23, pp. 215–
226, 1989.

[16] Chryssis Georgiou and Alexander A Shvartsman, “Cooperative task-
oriented computing: Algorithms and complexity,” Synthesis Lectures on

Distributed Computing Theory, vol. 2, no. 2, pp. 1–167, 2011.

[17] GitHub, “github.com/blog/1346networkproblemslastfriday,” in The

GitHub Blog, 2016.

[18] Joab Jackson, “Godaddy blames outage on corrupted router tables,” in
PC World, 2011.

[19] Ram Mohan, “Storms in the cloud: Lessons from the amazon cloud out-
age,” in Security Week, 2011.

[20] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Chris-
tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig,
“Software-defined networking: A comprehensive survey,” Proceedings

of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[21] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,
Dexter Kozen, Cole Schlesinger, and David Walker, “NetkAT: semantic
foundations for networks,” in The 41st Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’14, San

Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter
Sewell, Eds. 2014, pp. 113–126, ACM.

[22] Edsger W. Dijkstra, “Self-stabilizing systems in spite of distributed con-
trol,” Communications of the ACM, vol. 17, no. 11, pp. 643–644, 1974.

[23] Thomas Clouser, Mikhail Nesterenko, and Christian Scheideler, “Tiara: A
self-stabilizing deterministic skip list and skip graph,” Theoretical Com-

puter Science, vol. 428, pp. 18–35, 2012.

22 BIBLIOGRAPHY

[24] Lélia Blin, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil, “On
the self-stabilization of mobile robots in graphs,” in International Confer-

ence On Principles Of Distributed Systems. Springer, 2007, pp. 301–314.

[25] James E. Burns, Mohamed G. Gouda, and Raymond E. Miller, “Stabiliza-
tion and pseudo-stabilization,” Distributed Computing, vol. 7, no. 1, pp.
35–42, 1993.

[26] Noga Alon, Hagit Attiya, Shlomi Dolev, Swan Dubois, Maria Potop-
Butucaru, and Sébastien Tixeuil, “Practically stabilizing swmr atomic
memory in message-passing systems,” Journal of Computer and System

Sciences, vol. 81, no. 4, pp. 692–701, 2015.

[27] Peva Blanchard, Shlomi Dolev, Joffroy Beauquier, and Sylvie Delaët,
“Practically self-stabilizing paxos replicated state-machine,” in Networked

Systems - Second International Conference, NETYS 2014, Marrakech,

Morocco, May 15-17, 2014. Revised Selected Papers, Guevara Noubir
and Michel Raynal, Eds. 2014, vol. 8593 of Lecture Notes in Computer

Science, pp. 99–121, Springer.

[28] Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad Michael
Schiller, “Practically stabilizing virtual synchrony,” CoRR, vol.
abs/1502.05183, 2015. An earlier version appeared in the Proceedings of
the 17th International Symposium Stabilization, Safety, and Security of
Distributed Systems, SSS 2015, Edmonton, AB, Canada, August 18-21,
2015.

[29] Shlomi Dolev, Ronen I. Kat, and Elad Michael Schiller, “When consensus
meets self-stabilization,” Journal of Computer and System Sciences, vol.
76, no. 8, pp. 884–900, 2010.

[30] Alain Bui, Ajoy K Datta, Franck Petit, and Vincent Villain, “Snap-
stabilization and pif in tree networks,” Distributed Computing, vol. 20,
no. 1, pp. 3, 2007.

BIBLIOGRAPHY 23

[31] Stéphane Devismes, Sébastien Tixeuil, and Masafumi Yamashita, “Weak
vs. self vs. probabilistic stabilization,” in Distributed Computing Systems,

2008. ICDCS’08. The 28th International Conference on. IEEE, 2008, pp.
681–688.

[32] Mohamed Gouda, “The theory of weak stabilization,” Self-Stabilizing

Systems, pp. 114–123, 2001.

[33] Phuong Hoai Ha and Philippas Tsigas, “Reactive multiword synchroniza-
tion for multiprocessors,” in Parallel Architectures and Compilation Tech-

niques, 2003. PACT 2003. Proceedings. 12th International Conference on.
IEEE, 2003, pp. 184–193.

[34] Phuong Hoai Ha, Philippas Tsigas, Mirjam Wattenhofer, and Rogert Wat-
tenhofer, “Efficient multi-word locking using randomization,” in Pro-

ceedings of the twenty-fourth annual ACM symposium on Principles of

distributed computing. ACM, 2005, pp. 249–257.

[35] Timothy Harris, Keir Fraser, and Ian Pratt, “A practical multi-word
compare-and-swap operation,” Distributed Computing, pp. 265–279,
2002.

[36] Hakan Sundell, “Wait-free multi-word compare-and-swap using greedy
helping and grabbing,” International Journal of Parallel Programming,
vol. 39, no. 6, pp. 694–716, 2011.

[37] Maurice Herlihy and J Eliot B Moss, Transactional memory: Architec-

tural support for lock-free data structures, vol. 21, ACM, 1993.

[38] Nir Shavit and Dan Touitou, “Software transactional memory,” Dis-

tributed Computing, vol. 10, no. 2, pp. 99–116, 1997.

[39] Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

[40] Marina Papatriantafilou and Philippas Tsigas, “On distributed resource
handling: Dining, drinking and mobile philosophers,” in On Principles Of

Distributed Systems, Proceedings of the 1997 International Conference,

24 BIBLIOGRAPHY

Chantilly, France, December 10-12, 1997, Alain Bui, Marc Bui, and Vin-
cent Villain, Eds. 1997, pp. 293–308, Hermes.

[41] Randy H. Katz, David E. Culler, Seth Sanders, Sara Alspaugh, Yanpei
Chen, Stephen Dawson-Haggerty, Prabal Dutta, Mike He, Xiaofan Jiang,
Laura Keys, et al., “An information-centric energy infrastructure: The
berkeley view,” Sustainable Computing: Informatics and Systems, vol. 1,
no. 1, pp. 7–22, 2011.

[42] Wenxian Yang, Rongshan Yu, and Milashini Nambiar, “Quantifying the
benefits to consumers for demand response with a statistical elasticity
model,” IET Generation, Transmission & Distribution, vol. 8, no. 3, pp.
503–515, 2014.

[43] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer, “Achieving High Utiliza-
tion with Software-Driven WAN,” in SIGCOMM, 2013.

[44] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,
Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat, “B4:
Experience with a Globally-Deployed Software Defined WAN,” in SIG-

COMM, 2013.

[45] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam
Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha Gude, Paul
Ingram, Ethan Jackson, Andrew Lambeth, Romain Lenglet, Shih-Hao Li,
Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv Ramanathan, Scott
Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan Wendlandt,
Alexander Yip, and Ronghua Zhang, “Network Virtualization in Multi-
tenant Datacenters,” in NSDI, 2014.

[46] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker, “Ethane: Taking Control of the Enterprise,”
in SIGCOMM, 2007.

BIBLIOGRAPHY 25

[47] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and
David Walker, “Abstractions for Network Update,” in SIGCOMM, 2012.

[48] Nedeljko Vasić, Dejan Novaković, Satyam Shekhar, Prateek Bhurat,
Marco Canini, and Dejan Kostić, “Identifying and Using Energy-Critical
Paths,” in CoNEXT, 2011.

[49] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski,
“Conflict-free replicated data types,” in Stabilization, Safety, and Security

of Distributed Systems - 13th International Symposium, SSS 2011, Greno-

ble, France, October 10-12, 2011. Proceedings, 2011, pp. 386–400.

[50] Aranyak Mehta, “Online matching and ad allocation,” Foundations and

Trends in Theoretical Computer Science, vol. 8, no. 4, pp. 265–368, 2013.

[51] Giorgos Georgiadis and Marina Papatriantafilou, “Dealing with stor-
age without forecasts in smart grids: Problem transformation and online
scheduling algorithm,” in Proceedings of the 29th Annual ACM Sympo-

sium on Applied Computing, New York, NY, USA, 2014, SAC ’14, pp.
518–524, ACM.

[52] Allan Borodin and Ran El-Yaniv, Online computation and competitive

analysis, cambridge university press, 2005.

[53] Evangelos Theodoridis, Georgios Mylonas, and Ioannis Chatzigiannakis,
“Developing an iot smart city framework,” in Information, intelligence,

systems and applications (iisa), 2013 fourth international conference on.
IEEE, 2013, pp. 1–6.

26 BIBLIOGRAPHY

	Abstract
	List of appended papers
	Acknowledgments
	I INTRODUCTION
	Introduction
	Motivation
	Shared-resources systems
	Provisioning shared resources in distributed systems
	Thesis organization

	Background
	Software-defined networks
	Self-stabilization

	Analytical performance evaluation
	Analytical performance evaluation of shared-object systems
	Optimizing resource allocation on a system level: the smart grid case

	Self-stabilizing provisioning
	Fault-tolerant Software-Defined Network control planes
	Ordering distributed events in asynchronous systems that are prone to failures

	Research questions
	Thesis contribution
	Analytical performance evaluation of resource allocation systems (RQ 1)
	Analytical tools for self-stabilizing provisioning of distributed systems (RQ 2)

	Conclusion and future directions

	II PAPERS
	PAPER I
	Introduction
	Related Work
	Our contribution

	Preliminaries
	Acquisition paths, periods and requests
	Job arrival rates
	Work cycles: demand, supply and release
	Subpaths and acquisition graph
	Conditional and consecutive events
	Pairwise states and request probabilities
	Item inter-demand period
	Shared-object system equilibria

	The solution outline
	Estimating c[s,d] and R(s,d)
	Resolving interdependencies
	Finding approximate equilibria

	Background knowledge
	Idle thread probability
	Baynat-Dallery framework

	Request probabilities
	Blocking periods
	Job Completion Periods
	Acquiring the remaining objects

	Item inter-demand periods
	Object inter-demand period
	Thread inter-demand period

	Resolving dependencies
	Contention subsystems
	The case of systems with M=3 objects
	The case of systems with M objects

	Finding an -OSE
	The -OSE solver
	The initializeSystemState() function
	The updateStates() function
	The recalcB() and recalcT() functions
	Running time

	Conclusions and future work

	PAPER II
	Introduction
	Related work

	Background and system model
	The Adwords problem
	Online scheduling for Smart Grids: Energy utilization
	On-line algorithms and competitive ratio

	Online scheduling with budgets
	Connecting supply utilization with the Adwords problem

	The SGSupplyAdwords algorithm
	Extended modeling and the algorithm SGSupplyGreedy
	Experimental study
	Experiment setup
	FullBudgets
	SimpleBudgets

	Discussion
	Conclusion

	PAPER III
	Introduction
	The System in a Nutshell
	Switches and Rules
	Building Blocks

	Models
	The Communication Channel Model
	The Execution Model
	The Network Model
	Self-Stabilization

	Renaissance: A Self-Stabilizing SDN Control Plane
	High-level Description of the Proposed Algorithm
	Refining the Model: Variables, Building Blocks, Interfaces
	Algorithm Details

	Correctness Proof
	Overview
	Analysis of Memory Requirements
	Bounding the Number of Illegitimate Deletions
	Recovery From Transient Faults
	Returning to a legitimate state after topology changes

	Evaluation
	Setup
	Results

	Related Work
	Conclusion

	Paper IV
	Introduction
	System Settings
	Background
	The case of no concurrent overflow events
	The case of concurrent overflow events

	Composition and interface
	Vector Clock Pairs
	Merging two vector clock pairs
	Event counting and causal precedence

	Vector Clock Algorithm
	Correctness Proof
	The proof in a nutshell
	Convergence of the labeling algorithm in the absence of wrap around events
	Local and global invariants and their relation to Requirement 1
	Pair evolution graph and function causality
	Bounding the number of deviations from the abstract task in an LS-scale execution

	Conclusion

	III DISCUSSION
	Discussion
	Paper I
	Paper II
	Paper III
	Paper IV

 HistoryItem_V1
 Nup

 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 6.772 x 9.528 inches / 172.0 x 242.0 mm
 Sheet orientation: tall
 Scale by 87.00 %
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 0
 0
 1
 0
 0.8700
 0
 0
 1
 0.0000
 0

 D:20180105132417
 685.9843
 G5
 Blank
 487.5591

 Tall
 289
 191

 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

