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Analytical Tools for Evaluation and
Self-stabilizing Provisioning
Iosif Salem
Division of Networks and Systems, Chalmers University of Technology

ABSTRACT
Distributed computing is an established computing paradigm of modern com-
puting systems. The nodes of a distributed system interact either by sharing re-
sources or via a communication network. In both cases, provisioning of shared
resources is a challenge, for example when resource demand and supply varies
or when the system is prone to failures. Analytical tools for evaluating system
performance and for provisioning shared resources enhance system design and
implementations.

In this thesis, we develop analytical tools for the evaluation and self-
stabilizing provisioning of shared-resources in distributed systems. We first
focus on systems where resource demand and supply varies, and study cases of
reusable and non-reusable resources. We study shared-object systems, where
system nodes demand mutually exclusive access to a number of objects in a con-
tinuous fashion. We develop analytical tools for computing the expected delay
and throughput of such systems, in a wide range of system utilization scenar-
ios, including saturation points. Moreover, we study systems where nodes share
energy resources, and focus on optimizing the available resources on a system-
level. We develop online algorithms that use the flexibility on resource demand,
to optimize the utilization of the available supply, and prove their competitive
ratios.

Recovery from failures is necessary for provisioning shared resources. Dy-
namic and complex systems are often designed based on a failure model, but
it is important that they recover even after the occurrence of unexpected fail-
ures, outside the failure model. Such failures can include topological changes
in the network, stale information in the nodes’ memory, communication fail-
ures, etc. These failures are further amplified by the system’s asynchrony. In
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these settings, we first focus on provisioning of network resources, in terms
of network control and ordering of distributed events. We study Software-
Defined Networks (SDNs) and specifically their control planes. We provide
a self-stabilizing distributed algorithm for a fault-tolerant SDN control plane,
that deals with communication failures, topological changes, as well as, with
transient faults, that can bring the system in an arbitrary state. Moreover, we fo-
cus on ordering distributed events in asynchronous message-passing systems, in
the absence of execution fairness. In these extreme asynchronous settings, we
provide a practically-self-stabilizing distributed algorithm, that uses bounded
memory and yet, can tolerate concurrent counter overflows, when counting dis-
tributed events, as well as transient faults.

Keywords: resource sharing, shared object systems, online algorithms, smart grid, dis-

tributed algorithms, self-stabilization, software-defined networks.
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1
Introduction

1.1 Motivation

Overview Distributed systems are prevalent in our society. We interact with
services that base on distributed systems through many computing devices that
we use, and in turn these services require interaction of these devices with other
systems (even though we, as users, are usually oblivious to these processes).
This computing paradigm scales from smartphone applications communicating
with servers or collaborative document editing, to the operation of a data center,
where for example, your favorite social media host your data. Systems that are
inherently distributed include nodes that need to interact via a network or by
sharing resources in order to provide services.

For each service, each node of the system runs a program which determines

3
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the local actions of the node, as well as, the interaction with other nodes, to
the end of providing the service. This interaction, may include coordination
for sharing the system’s resources, exchange of a node’s state, discovering a
change in the system’s topology, etc. The complexity for the nodes to collec-
tively achieve their tasks depends on a number of factors. Some of these factors
are the architectural limitations of the system, faults that occur or have occurred
in the past, the system’s asynchrony (e.g. communication delays), the num-
ber of times a node needs to interact with other nodes for retrieving necessary
information, the nodes’ inability to predict the future system state (e.g. node
additions or failures), the availability of resources, etc. [1].

This thesis aims to address challenges related to resource sharing in dis-
tributed systems by taking an analytical approach. We develop analytical tools
for problems related to performance evaluation of shared resources systems, as
well as for provisioning of shared resources in the presence of failures.

1.1.1 Shared-resources systems

A main paradigm of node interaction in a distributed system is the one in which
the system’s nodes interact by sharing resources [2, 3]. We refer to resources
in an abstract manner, since in practice they can be, for example, the shared-
memory of a single computer, distributed storage over multiple computers, en-
ergy resources that are generated in different sites of the power grid, cloud re-
sources, network resources, etc. [1, 4]. Designing solutions for handling these
shared resources in a distributed system is a challenge in an online setting,
where future resource demand and availability is usually not known in advance.
It is often the case that these solutions are evaluated experimentally, depending
on a set of available data. Thus, analytical tools for studying the performance
of such systems provide more flexibility both in the evaluation but also in the
solution design. In this thesis we study two problems related to this context;
one related to shared objects and another related to sharing energy resources.

Shared-object systems Consider a system that includes shared objects and
nodes that interact by gaining and releasing access to subsets of these objects.
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This abstraction can, for example, relate to shared-memory, where threads in-
teract for gaining access to memory locations. The more the system is utilized,
the higher the contention among its nodes, i.e., the events where more than one
node needs to access a single object at the same time.

Contention management algorithms determine access to a shared object
among a set of competing nodes [5–7]. The criteria for determining the node
(or process) that will gain access to the shared object can rely on the number
of objects that each competing node holds, an assignment of priorities over the
nodes, a first-come first-serve order, a random choice, etc. A contention man-
agement scheme comes with some guarantees for the system’s progress (e.g.
how much a node can be stalled from gaining access to an object), throughput,
and delay. Moreover, these algorithms are mostly evaluated experimentally and
few analytical results exist in the literature (e.g. [8]).

Sharing energy resources Consider a system in which some nodes demand
(non-reusable) resources and some nodes supply (and possibly demand) re-
sources. In this system producing and consuming resources comes at a cost,
resource demand and supply varies, and consumer nodes issue demands subject
to a number of constraints (e.g. temporal or cost related). An example of such
systems is the power grid, when considering energy resources and nodes of the
grid that produce and consume energy.

The increasing inclusion of renewable energy generation in the power grid,
the use of different energy carriers, the ability of the end-user to choose among
different utility companies, as well as new consumption monitoring technolo-
gies are factors that are changing the traditional operation of the power grid [9].
Nodes of the grid can be both producers and consumers of energy (e.g. end
users or companies that own an installation of renewables), and decide among
different energy supply options for covering their energy demand. Even though
energy supply is usually not a challenge (except for high demand peaks), using
the grid’s energy resources efficiently to reduce the production or consumption
cost is non-trivial. That is, costs can be optimized by individual nodes, subsets
of nodes, or in a system-level, by taking into account the varying supply and
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demand (and optionally the ability to forecast the future demand and supply).
Solutions to the latter problem are nowadays supported by the ability to collect
frequently consumption data from smart meters, i.e., metering devices that can
connect remotely with the utility company (hence the term smart grid [9]).

1.1.2 Provisioning shared resources in distributed systems

Another prominent way of viewing distributed systems is to consider nodes that
are interconnected via a network in order to provision resources, such as net-
work resources or shared object replicas. For any task that the nodes need to
solve, they need to communicate via the network, thus facing a list of chal-
lenges. Some of them are the number of times that each node needs to com-
municate with its neighbors, communication delays, the system’s asynchrony,
changes in the network topology, faults that occur or stale information that re-
sides in the network, byzantine nodes, etc. [1, 2]. Here we mainly focus on the
effect of stale information in asynchronous distributed systems in problems re-
lated to provisioning network resources and to ordering events in asynchronous
distributed systems.

Provisioning network resources Since distributed systems lack central co-
ordination (before any communication among the nodes occurs), distributed
algorithms that run on these systems are dependent on the network’s limitations
and state. Most models of distributed computation in a network of nodes (e.g.
local, congest, interleaving models [10–12]) use assumptions on the topology
(e.g. fully connected graph, ring, arbitrary graph, etc.), the level of synchrony
(i.e., how often nodes interact with the network), the delay in communication,
the presence or not of distinct node identifiers, the fault model of the system,
etc. These challenges are further amplified by limitations that come from the
network’s architecture, when we deploy distributed algorithms in practice.

Ordering events in asynchronous distributed systems A desirable property
for any distributed system is the ability to argue about the order in which dis-
tributed events occurred. To that end, various notions of clocks have been used,
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e.g. clocks that count time [1] or distributed events [13–15]. Of course, nodes
need to communicate in order to have both a common reference in their clock
values, but also to learn about the local events that occurred in neighboring
nodes. Such tasks become more challenging in the presence of failures, and
various fault-models exist in the literature [1, 10, 16].

1.1.3 Thesis organization

This thesis consists of three parts and is organized as follows. We continue Part I
(Introduction) by giving the background for the sections to follow (Section 1.2).
Then, we present the two areas of focus of the thesis, including challenges and
related work (sections 1.3 and 1.4). In the following, we formulate the two
research questions that this thesis aims to address in each of the two areas of
focus (Section 1.5), and explain how we contribute to these research questions
through the appended papers, i.e., papers I–IV (Section 1.6). In Section 1.7 we
conclude and discuss future directions.

In Part II of the thesis we append the complete technical reports of papers
I–IV. In Part III, we discuss the technical contributions of the thesis and the an-
alytical tools that we developed, which can be also used for relevant problems.

1.2 Background

In this section we give the necessary background, before proceeding with the
overview of this thesis in the following sections. In Section 1.2.1 we give an
introduction to Software-Defined Networks (SDNs) and in Section 1.2.2 we
introduce Self-stabilization.

1.2.1 Software-defined networks

Computer networks (the Internet, data-center networks, enterprise networks,
etc.) are a critical infrastructure. However, today’s computer networks are of-
ten inflexible, complex and error-prone, raising concerns regarding their de-
pendability. Recently, leading tech companies have reported major issues with
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their networks, due to misconfigurations [17–19]. Software-Defined Networks
(SDNs) have emerged as a promising alternative, providing new opportunities
for designing more dependable networks [20]. By outsourcing and consoli-
dating the control over the data plane devices (switches, routers, basic middle-
boxes) to a logically centralized controller software, SDNs introduce interesting
new flexibilities. In particular, the decoupling of the control plane from the data
plane allows to innovate the former independently of the latter. Moreover, SDNs
enable a principled and formal specification of the network configuration, also
enabling an automated verification [21].

1.2.2 Self-stabilization

Consider a message-passing system, i.e., a set of nodes connected via a network,
such that each node can be modeled as a finite-state machine and the network’s
communication channels have finite capacity. Message-passing systems can be
designed to tolerate failures based on a fault model [16], such as topological
changes (node or link failures) or communication failures. In addition to these
failures, it is possible that failures outside the fault model can occur. We con-
sider transient faults, i.e., any temporary violation of assumptions according to
which the system and network were designed to behave, e.g., the corruption of
the system state due to soft errors. We assume that these transient faults ar-
bitrarily change the system state in unpredictable manners (while keeping the
nodes’ program code intact). Since these transient faults are rare, a common
assumption is that all transient faults occurred before the start of the system
execution.

Self-stabilization is a design criterion that requires a system, which may
start in an arbitrary state, to return to a correct behavior within a bounded period
and was introduced by Dijkstra [22]. That is, for any execution, the system is
guaranteed to reach a legitimate state (according to a task’s specification) within
a bounded time, and continue being in a legitimate state for the remainder of
the execution. Self-stabilizing (distributed) algorithms have been developed
for a large variety of systems, e.g. self-stabilizing algorithms for peer-to-peer
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networks [23], mobile robots [24], etc. [10].

Asynchronous message-passing systems cannot always fulfill Dijkstra’s sta-
bilization requirements (often referred to as strong self-stabilization). Adversar-
ial schedulers can allow stale information (e.g. due to transient faults) to reside
in the system for an unbounded prefix of any execution, and then appear to
violate the system’s safety requirements. Thus, research has focused on more
relaxed stabilization criteria. Pseudo-stabilization [10, 25] deals with the above
inability by bounding the number of times the system violates safety in an in-
finite system execution. Moreover, practically-self-stabilizing systems [26–29]
require a bounded number of safety violations during any practically infinite

period of a system execution. A practically infinite execution [28, 29] is an
execution of bounded but extreme size, say, of 2b sequential processor steps,
where b = 64 or an even a larger integer, as long as a constant number of bits
can represent it. These relaxed notions of self-stabilization are relevant for this
thesis, however more proposals exist in the literature, e.g. the ones in [30–32].

1.3 Analytical tools for evaluating the performance
of distributed systems

Overview In this section we focus on analytical tools that evaluate algorithms
for sharing resources in dynamic distributed systems. We present the motiva-
tion, challenges, and related work in the context of relevant problems that we
study in this thesis.

1.3.1 Analytical performance evaluation of shared-object sys-
tems

Motivation, challenges, and related work Consider a system that consists
of a set of computing entities, which we call threads and a number of reusable
objects. Each thread runs a sequential program (a job), for which it has to
acquire a subset of these objects in order to perform an operation for a bounded
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time. Once the operation completes, the thread releases access to the job’s
objects and waits until another job is assigned to it (e.g. by a scheduler).

The order of object acquisition plays a crucial role in the progress of such
systems. For example, it is important to avoid deadlocks or livelocks, i.e., situa-
tions in which two or more processes make no progress with or without chang-
ing their state, unless they are interrupted. A simple solution for avoiding such
race conditions is to force the threads to follow the same order (e.g. ascend-
ing or descending) when acquiring their jobs’ objects. Also, as the workload
of threads increases, it is more probable that threads compete for accessing the
same objects.

Working systems that follow the discussed paradigm include multi-word
compare-and-swap (CASN) operations and fine-grained locking implementa-
tions in shared-memory systems [33–36], as well as transactional memories [37,
38]. A common way to model such systems is to consider a generalization of the
dining philosophers problem, as in [39, 40], in which every job includes a fixed
set of objects that it may need. This problem has well-known results studying
the worst-case job delays, which may even be exponential on the system’s size,
i.e., the chromatic number of the resource graph [8, 39]. In this graph, the ver-
tices (objects) are connected if there is, at least, one thread that may request
them both at any point in time. In practice, the expected delay and throughput
is rather different than the worst case and, therefore, computer experiments are
the common way for evaluating the system performance.

1.3.2 Optimizing resource allocation on a system level: the
smart grid case

Motivation, challenges, and related work The power grid is rapidly shifting
nowadays towards a dynamic market of energy resources. Until recently, util-
ity companies were the main suppliers of energy and their operation followed
the utility service paradigm, i.e., all demands must be satisfied irrespective of
the available supply (demand-following supply [41]). However, this paradigm
becomes very costly for the utility companies in very high demand peaks, since
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they need to maintain their production in higher levels than the average con-
sumption. This need to reduce high production costs, can be achieved by shift-
ing the demand curve to follow the supply curve, as much as possible.

From a consumer point of view, there is a wide range of available energy
supply services, either from different utility companies, or from local-scale en-
ergy production and brokering, or from own generated resources (e.g. photo-
voltaic arrays). The choice between all of these options is based on information
about the sources, usually price-related (pricing signal [42]). The common
thread underlying both real world practice and relevant research is that no sin-

gle actor has full control over all pricing signals [9]. Therefore, the standard
model of energy utilization can no longer guarantee an efficient system-level
utilization.

1.4 Analytical tools for self-stabilizing provision-
ing of distributed systems

Overview In this section we focus on analytical tools for self-stabilizing pro-
visioning of resources in distributed systems. We present the motivation, chal-
lenges, and related work in the context of relevant problems that we study in
this thesis.

1.4.1 Fault-tolerant Software-Defined Network control planes

Motivation, challenges, and related work Software-Defined Networks
(SDNs) have emerged as a promising alternative, providing new opportunities
for designing more dependable networks. SDNs outsource the control over the
data plane devices (switches, routers, basic middleboxes) to a logically cen-
tralized software entity. We refer to that entity as the SDN control plane. This
decoupling allows a more flexible network design, by enabling the development
of the control plane independently of the data plane (e.g. automated verifica-
tion [21]).
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Since control is logically centralized, designing fault-tolerant SDN control
planes is crucial. To that end, it is important that the control plane is physi-
cally distributed, in order to provide robustness. That is, a decentralized control

plane can tolerate controller failures by relying on multiple and redundant con-
trollers. Moreover, decentralized control planes can improve scalability and
performance (latency).

Decoupling the control plane from the date plane raises the challenge of
the control plane quickly reacting to data plane events. This becomes more
challenging when control is done in-band, i.e., the control plane is part of the
network (e.g. network attached servers). Even though most deployments of
SDNs rely on out-of-band control [43–45], where control plane packets are car-
ried by a dedicated management network, in-band control is desirable for many
reasons. Except for the economical and connectivity benefits, as well as the
benefit of not having to maintain a separate management network, they enhance
fault-tolerance (by redundancy). That is, control traffic can also be forwarded
with data plane traffic, instead of using only the dedicated management ports
of the switches (as in out-of-band). Of course, these benefits come with the
challenge of demultiplexing control and data traffic at the switches.

While the benefits of separating the control plane with the data plane have
been well founded in the literature [43, 44, 46–48], the question of how connec-
tivity between these two planes is maintained (i.e., the communication channels
from controllers to switches and between controllers) has not received much at-
tention. This raises several concerns regarding the availability of the SDN archi-
tecture. For example, it is a challenge to guarantee that the SDN control plane
can always establish a route between any pair of switches and controllers, given
a physically connected data plane. To that end, connections can be made with
the fault-tolerance literature, in order to guarantee the provisioning of network
resources.
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1.4.2 Ordering distributed events in asynchronous systems
that are prone to failures

Motivation, challenges, and related work Self-stabilizing systems [10, 22]
recover to a legitimate state after the occurrence of an arbitrary combination of
failures. Distributed systems that are self-stabilizing rely on fairness assump-
tions regarding communication and scheduling (execution fairness), as well as
on assumptions regarding synchrony. Communication is fair when a message
that is sent infinitely often is received infinitely often [10]. Similarly, an ex-
ecution is fair when every step that is applicable infinitely often is executed
infinitely often [10] (hence no processor can crash after the start of the sys-
tem’s execution). In asynchronous systems, recovery is often designed and
measured based on synchronization rounds or similar notions [39]. However,
when studying systems in which any of these assumptions do not hold, more re-
laxed notions of stabilization are often used, such as pseudo-stabilizing [10, 25]
or practically-self-stabilizing algorithms [26–29] (cf. Section 1.2.2).

Providing solutions in asynchronous distributed systems, in the absence of
mechanisms for synchronization or roll-back is a challenge, especially in the
presence of failures. For example, when ordering distributed events, it is im-
portant to develop algorithms that use bounded storage, and tolerate failures
(whether they are included in the failure model [16] or not) as well as arbitrary
processor rates. In the absence of execution fairness, processors may crash even
after the starting configuration, hence relying on synchronization rounds is no
longer possible. Therefore, standard solutions for ordering distributed events,
such as vector clock algorithms [13, 15], need to be redesigned to cope with
these extreme asynchronous settings. Since vector clocks include a wide range
of applications, such as constructing distributed snapshots [3] or using them
as building blocks in various conflict-free replicated data types (CRDTs) [49],
it is important to provide vector clock algorithms that overcome the discussed
challenges.
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1.5 Research questions

We consolidate and position the challenges of sections 1.3 and 1.4 in two re-
search questions that we present in the following. In Section 1.6 we discuss
how this thesis addresses these research questions.

Research question 1 (RQ 1). How to evaluate analytically the performance
of algorithms for resource-sharing in distributed systems, in which resource
demand and supply varies?

Research question 2 (RQ 2). How to deal effectively with the effect of tran-
sient faults in an asynchronous message-passing system, in which changes in
the topology can occur at any time?

1.6 Thesis contribution

Overview We present the contributions of this thesis with respect to the chal-
lenges and the related work (sections 1.3 and 1.4), as well as, the research ques-
tions in Section 1.5.

1.6.1 Analytical performance evaluation of resource alloca-
tion systems (RQ 1)

Analytical performance evaluation of shared-object systems (Paper I) We
study shared-object systems, which consist of a fixed number of threads and ob-
jects. Threads carry out jobs by acquiring access to subsets of objects, on which
they perform operations of bounded time. We assume that jobs are assigned to
the threads following known exponential distributions (arrival rates) and thre-
ads acquire their jobs’ objects in an ascending (object) order. For such systems
we estimate analytically the expected job delay and throughput.

We estimate the system’s performance in a wide range of scenarios. Our
analysis provides estimates of the job delay and throughput, when the job ar-
rival rates match the job completion rates. In these cases, the system is in a
shared-Object System Equilibrium (OSE). The existing literature often focuses
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on peak utilization scenarios, i.e., saturation points. However, saturation points
are special cases of OSEs, where (1) the system is in equilibrium and (2) any
increase in the job arrival rates cannot increase any further the job completion
rates. Thus, our analysis covers a wider range of system equilibria.

For a given ε > 0 and an OSE, we say that the system is in an ε-OSE when
the completion rate of any job differs from the one of an OSE by at most ε. We
develop (polynomial-time) algorithms for estimating delay and throughput in ε-
OSEs. To that end, we study the conditions for a given shared-object system to
be in an OSE as well as contention-related properties of OSEs, i.e., the expected

job delay and completion rate, as well as the time in which each thread blocks
other threads and by that prevents them from making progress. We then propose
a procedure for finding ε-OSEs, if such exist in the given system.

Optimizing resource allocation on a system level: the smart grid case (Pa-
per II) We consider the energy dispatch problem, where energy demands are
issued by consumer sites (at arbitrary intervals) and must be satisfied within a
certain time range (timeslot) by the energy supply sites. These demands can
have flexibility regarding the timeslot in which they must be satisfied, restric-
tions on the energy carrier to satisfy them (e.g. thermal or electric), and (op-
tionally) produce energy storage for later use.

To the end of shaping the demand curve to follow the supply, we introduce
the concept of energy budget (or simply budget) for every timeslot, by com-
bining energy and price information. Intuitively, budgets reflect the ability and
cost of supplying energy for every timeslot. With this approach, we reformu-
late the energy utilization problem as a budget utilization problem. That is, by
maximizing the utilization of the available budget we achieve both to force the
demand curve to follow (as much as possible) the supply curve, and also to
reduce high demand peaks through adaptive scheduling.

This modeling approach allows us to connect to research fields such as bi-
partite matching and scheduling, and to use these tools for solving the budget
utilization problem. In fact, we propose a novel modeling of the energy dis-
patch problem based on the Adwords problem [50], in which a set of bidders
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with given budgets, place bids for a newly revealed adword. To that end, we
utilize a proposed modeling from previous work [51] that maps the energy dis-
patch problem to an online scheduling problem. We provide solutions that are
orthogonal to pricing schemes and prove their online guarantees (competitive
ratio [52]). Moreover, we identify an extension of the ADWORDS problem that
includes dynamic budgets, and address it through our algorithms.

In this modelling, bids for adwords (that utilize the budget) reflect the cur-
rent ability and cost to serve a demand in a specific timeslot. When the bids
are very small compared to the budgets, we solve the utilization problem with
(1 − 1

e )-competitive ratio. When the bids can be comparable to the budgets
(e.g. due to local-scale generation), we solve the energy utilization problem
with 1

2 -competitive ratio.

1.6.2 Analytical tools for self-stabilizing provisioning of dis-
tributed systems (RQ 2)

Bootstrapping the control-plane of a software-defined network in the pres-
ence of failures (Paper III) We design a self-stabilizing software-defined
network control plane, i.e., an SDN that recovers from controller, switch, and
link failures, as well as a wide range of communication failures. To that end, we
model the SDN control plane as an asynchronous distributed system and rely on
message passing for communication. We consider a failure model that includes
fail-stop failures of controllers, link failures, and a wide range of communica-
tion failures, including omission, packet duplication, and packet reordering. We
assume that up to κ concurrent link failures can occur at any point in time, for
some parameter κ ∈ Z+, as well as access to a (link) failure detector. More-
over, we also assume that transient faults (e.g., the corruption of the packet
forwarding rules or malicious changes to the availability of links, switches, and
controllers) can bring any execution of the system to an arbitrary starting system
state (while keeping the program code intact).

We develop an algorithm to bootstrap and maintain connectivity in an in-
band and distributed SDN control plane, in the presence of the failures men-
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tioned above. Our algorithm maintains control flows between any controller
and any other node in the network (switch or controller). In fact, in the pres-
ence of at most κ link failures, we achieve bounded communication delays. We
assume no external (out-of-band) support of the control plane, controllers that
can fail-stop, and yet provide bounded time recovery after the occurrence of
an arbitrary combination of failures. Once the control plane exhibits bounded
communication delays, the controllers can coordinate their network operations
(e.g. traffic balancing or installing data-flows between hosts).

To that end, we provide a (distributed) self-stabilizing algorithm for decen-
tralized SDN control planes, that recovers from arbitrary combinations of fail-
ures, given that the network topology is (κ + 1)-edge-connected and includes
at least one (non-failed) controller. First, we show that our algorithm recov-
ers from transient faults. Starting from an arbitrary state, the system recovers
within time O(D2N) to a legitimate state, where N is the number of nodes in
the system and D is the maximum system diameter (regardless of link failures).
In a legitimate state, no stale information exists in the memory of the system
nodes (e.g. regarding unreachable controllers or stale rules) and the switches
store rules that (1) facilitate O(D) flows between any controller and any other
node in the network, and (2) maintain bounded communication delays in the
event of at most κ concurrent link failures.

We show bounds on the memory requirements of the controllers and the
switches. In a legitimate state, the number of packet forwarding rules at every
switch are at mostNC times the optimal, whereNC is the number of controllers.
We also show that starting from a legitimate state, the system can recover from
a wide range of topological changes within O(D) time.

Ordering events in asynchronous systems that are prone to failures (Paper
IV) We design a highly fault-tolerant distributed algorithm for vector clocks,
in the absence of execution fairness. We consider asynchronous message pass-
ing systems, in which node and communication failures, as well as transient
faults can occur. Specifically, we assume crash failures of nodes, that can op-
tionally perform undetectable restarts (i.e., resume with the same state as before
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crashing, possibly having lost incoming messages and without being aware that
a crash occurred), as well as packet failures, such as omission, duplication, and
reordering [16]. Moreover, we assume that transient faults can bring the system
in an arbitrary starting state, while leaving the program code intact. Since tran-
sient faults are rare, we assume that they occur before the beginning of a system
execution.

We present a practically-self-stabilizing vector clock algorithm that deals
with the failures mentioned above and does not require synchronization guar-
antees, nor uses mechanisms for synchronization or roll-back, even during the

period of recovery from failures not included in the failure model. To that end,
we interpret the requirements of practically-self-stabilizing algorithms, by de-
manding that for every practically-infinite [29] system execution, the number
of safety violations is insignificant with respect to the the execution size. We
use existing practically-self-stabilizing labeling schemes [26, 28] for construct-
ing a data structure of O(N3) size (where N is the number of processors) that
supports the vector clock functionalities, and yet tolerates the studied failures.

Our solution uses bounded memory for every processor in the system. Our
proposed vector clock data structure considers 3N integers and two labels [28]
per vector, where each label’s size is in O(N3). We rely on bounded counters
for recording the system’s events, and present elegant techniques for dealing
with concurrent counter overflows, such that counter increments (i.e. events)
are never lost, even though vector clocks with different labels might exist in
the system. Hence, by counting events correctly, we show that it is possible
to reason about causality, during a legal execution. We show that for every
practically-infinite execution, at most O(N8C ) safety violations occur, where
C is a bound on the capacity of the communication channels.

1.7 Conclusion and future directions

This thesis focuses on the research area of sharing resources in distributed sys-
tems. We focus on problems that relate to analytical tools for evaluating the per-
formance of resource allocation algorithms in such systems, as well as, for pro-
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visioning shared resources in a self-stabilizing manner. Regarding the first area
of focus, we provide performance guarantees for systems in which resources are
allocated in an online fashion, in terms of expected and worst case performance.
Regarding the second area of focus, we provide algorithms for overcoming the
effects of transient faults, in addition to those of the failure model, even in the
presence of topological changes that occur in the system.

Some areas and problems that connect to the ones studied in this thesis
are, for example, (i) the analytical performance evaluation of shared-object sys-
tems that follow acquisition schemes different than the sequential one that was
studied in Paper I, (ii) scheduling solutions for matching energy supply and
demand in the smart grid that study the effect of price fluctuations in comput-
ing the load allocation, as well as, connections to smart city frameworks and
infrastructures [53] (cf. Paper II), (iii) combining in-band and out-of-band con-
trol depending on network sub-regions (cf. Paper III), and (iv) practically-self-
stabilizing algorithms related to other CRDT primitives than vector clocks (cf.
Paper IV).
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