
i

Thesis for the Degree of Licentiate of Engineering

An Empirical Investigation of the
Harmfulness of

Architectural Technical Debt

Terese Besker

Division of Software Engineering

Department of Computer Science and Engineering

Chalmers University of Technology and Göteborg University

Göteborg, Sweden, 2018

ii

An Empirical Investigation of the Harmfulness of Architectural

Technical Debt

Terese Besker

Copyright ©2018 Terese Besker

except where otherwise stated.

All rights reserved.

Technical report 172L

ISSN 1652-876X

Department of Computer Science and Engineering

Division of Software Engineering

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Printed by Chalmers Reproservice,

Göteborg, Sweden 2018.

iii

“Gratitude is not only the greatest of virtues, but the parent of

all others”

Marcus Tullius Cicero

iv

v

Abstracts

Background: In order to survive in today's fast-growing and ever fast-changing business

environments, large-scale software companies need to deliver customer value

continuously, both from a short- and long-term perspective. However, the consequences

of potential long-term and far-reaching negative effects of shortcuts and quick fixes

made during the software development lifecycle, described as Technical Debt (TD), can

impede the software development process.

Objective: The overall goal of this Licentiate thesis is to empirically study and

understand in what way and to what extent, TD in general and architectural TD

specifically, influence today’s software development work and, specifically, with the

intention of providing more quantitative insights into the field.

Method: To achieve the objectives, a combination of both quantitative and qualitative

research methodologies are used, including interviews, surveys, a systematic literature

review, a longitudinal study, correlation analysis, and statistical tests. In five of the seven

included studies, we use a combination of multiple research methods to achieve high

validity.

Results: We present results showing that software suffering from TD will cause various

different negative effects on both the software and on the developing process. These

negative effects can be illustrated from a technical, a financial and from a developer’s

working situational perspective.

Conclusion: This thesis contributes to the understanding and quantification of in what

way and to what extent TD is harmful to software development organizations. The results

show that software practitioners estimate that they waste 36% of their working time due

to experiencing TD and that the TD is causing them to perform additional time-

consuming work activities. This study also shows that, compared to all types of TD,

architectural TD has the greatest negative impact on the daily software development

work.

Keywords

Software Engineering, Empirical Research, Technical Debt, Software Architecture,

Software Quality, Software Developing Productivity, Morale, Mixed-methods

vi

vii

Acknowledgements

First of all, I would like to express my deepest gratitude and appreciation to my

main supervisor, Professor Jan Bosch, for his encouragement, support, guidance,

and engagement. You continuously raise the bar with me, and, most importantly,

make me believe I can reach my goals.

Next, I would like to express my sincere appreciation to my second supervisor,

Professor Antonio Martini, for always sharing his technical knowledge and

expertise. Besides being a great friend, your support, ideas and comments have

significantly improved the quality of my research.

Many thanks also go to Professor Helena Holström Olsson for her sincere

support whenever I needed it. Without my supervisors’ support, this work would

never had been accomplished.

I would also like to thank my family and all my friends for their support and

sacrifices to ensure that I could pursue this dream.

Finally, I would like to thank all the partners at the Software Center for

supporting my research and ensuring that we conduct research into highly

relevant topics from both an academic and software industrial perspective.

viii

ix

List of Publications

Appended Papers

This thesis is based on the following papers:

[A] T. Besker, A. Martini, and J. Bosch, “Managing architectural technical debt: A

unified model and systematic literature review”, Journal of Systems and Software,

vol. 135, pp. 1-16, 2018.

[B] T. Besker, A. Martini, and J. Bosch,T. Besker, A. Martini, and J. Bosch, “Time to

Pay Up - Technical Debt from a Software Quality Perspective”, In proceedings of

the 20th Ibero American Conference on Software Engineering (CibSE) @ ICSE17,

2017.

[C] T. Besker, A. Martini, and J. Bosch, "The pricey Bill of Technical Debt - When and

by whom will it be paid?”, Proceedings of IEEE International Conference on

Software Maintenance and Evolution (ICSME), Shanghai, China, pp. 13-23, 2017.

[D] T. Besker, A. Martini, and J. Bosch, "Impact of Architectural Technical Debt on

Daily Software Development Work - A Survey of Software Practitioners,

"Proceedings in 43th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), Vienna, 2017, pp. 278-287.

[E] T. Besker, A. Martini, and J. Bosch, “Technical Debt Cripples Software Developer

Productivity - A longitudinal study on developers’ daily software development

work”, In submission to the First International Conference on Technical Debt @

ICSE18, 2018.

[F] H. Ghanbari, T. Besker, A. Martini, and J. Bosch, “Looking for Peace of Mind?

Manage your (Technical) Debt - An Exploratory Field Study”, Proceedings in the

International Symposium on Empirical Software Engineering and Measurement

(ESEM), Toronto, Canada, 2017

[G] A. Martini, T. Besker, and J. Bosch, “Technical Debt Tracking: Current State of

Practice - A Survey and Multiple Case-Study in 15 large organizations”, Journal

of Science of Computer Programming, accepted for publication 2017.

x

Other Publications

The following papers are published but not appended to this thesis:

[A] T. Besker, A. Martini, and J. Bosch, "A Systematic Literature Review and a Unified

Model of ATD." Proceedings in 42th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), Cyprus, 2016, pp. 189-197.

[B] T. Besker, A. Martini, J. Bosch, and M. Tichy, "An investigation of technical debt

in automatic production systems," Proceedings of the XP2017 Scientific

Workshops, Cologne, Germany, 2017.

[C] A. Martini, T. Besker, and J. Bosch, “The introduction of Technical Debt Tracking

in Large Companies”, Proceedings in the 23rd Asia-Pacific Software Engineering

Conference (APSEC), Hamilton, New Zealand, 2017.

xi

Personal Contribution
For all included publications, the first author is the main contributor with regards to the

inception, planning and execution of the research, and the writing of this publication.

The same applies to the excluded publications for which I am the first author. For the

two publications in which I am listed as second co-author, the following contributions

were made by me:

Ghanbari et al.: In this paper, I participated in the design of the overall study, I conducted

two of the interviews, I designed, implemented and partly analyzed the survey, and I

contributed in writing the publication.

Martini et al.: In this paper, I designed and implemented the survey, I contributed during

the data analysis phase, and I contributed in writing the publication.

xii

xiii

CONTENTS

1. . Introduction .. 1

1.1 Background and Related Work ... 3

1.1.1 TD categorizations .. 4

1.1.2 TD Types .. 5

1.1.3 Concepts of Debt, Principal, and Interest .. 6

1.1.4 Software Quality Attributes .. 7

1.1.5 Age of Software .. 7

1.1.6 Software Professional Roles ... 8

1.1.7 Tracking Process ... 8

1.1.8 Software Development Productivity ... 8

1.1.9 Impact of TD on Developers’ morale ... 9

1.2 Research Motivation ... 9

1.3 Research Goals and Research Questions .. 10

1.4 Methodology ... 11

1.4.1 Research Approaches .. 13

1.4.1.1 Qualitative research .. 13

1.4.1.2 Quantitive research ... 13

1.4.1.3 Mixed-Methods research .. 13

1.4.1.4 Deductive, Inductive and Abductive Reasoning 14

1.4.1.5 Longitudinal studies ... 15

1.4.2 Data Collection ... 15

1.4.2.1 Interviews ... 15

1.4.2.2 Surveys ... 17

1.4.2.3 Systematic Literature Review ... 18

1.4.3 Data analysis ... 18

1.4.3.1 Quantitative Data Analysis ... 18

1.4.3.2 Qualitative Data Analysis ... 19

1.4.4 Threats to Validity .. 20

1.4.4.1 Construct validity ... 20

1.4.4.2 Internal validity .. 21

1.4.4.3 External validity ... 21

1.4.4.4 Reliability ... 22

1.4.4.5 Triangulation .. 22

1.5 Overview of Papers .. 23

1.5.1 Paper A: Managing Architectural Technical Debt: A unified model and

systematic literature review ... 24

1.5.1.1 Study Summary .. 24

1.5.1.2 Results .. 25

1.5.2 Paper B: Time to Pay Up - Technical Debt from a Software Quality

Perspective .. 26

1.5.2.1 Study Summary .. 26

1.5.2.2 Results .. 27

xiv

1.5.3 Paper C: The Pricey Bill of Technical Debt - When and by whom will it be paid?

 28

1.5.3.1 Study Summary .. 28

1.5.3.2 Results .. 28

1.5.4 Paper D: Impact of Architectural Technical Debt on Daily Software Development

Work - A Survey of Software Practitioners ... 29

1.5.4.1 Study Summary .. 29

1.5.4.2 Results .. 30

1.5.5 Paper E: Technical Debt Cripples Software Developer Productivity - A

longitudinal study on developers’ daily software development work 30

1.5.5.1 Study Summary .. 30

1.5.5.2 Results .. 31

1.5.6 Paper F: Looking for Peace of Mind? Manage your (Technical) Debt - An

Exploratory Field Study .. 31

1.5.6.1 Study Summary .. 31

1.5.6.2 Results .. 32

1.5.7 Paper G: Technical Debt Management: Current State of Practice 32

1.5.7.1 Study Summary .. 32

1.5.7.2 Results .. 32

1.6 Future Research .. 33

1.7 Conclusion .. 34

2 .. Paper A ... 37

2.1 Introduction .. 39

2.2 Background ... 42

2.2.1 Debt ... 42

2.2.2 Interest .. 43

2.2.3 Principal .. 43

2.2.4 Software management process .. 43

2.2.5 ATD challenges .. 44

2.2.6 ATD analyzing support ... 44

2.3 SLR method .. 44

2.3.1 Research question ... 45

2.3.2 Search process ... 45

2.3.3 Snowballing .. 46

2.3.4 Inclusion and exclusion criteria .. 46

2.3.5 Quality assessment .. 47

2.3.6 Data collection and Data synthesis ... 48

2.3.7 Data analysis ... 49

2.4 Results from the retrieval of publications ... 50

2.5 Results 54

2.5.1 What is the importance of ATD in software development? (RQ1) 54

2.5.2 Existing knowledge about ATD regarding debt, interest, and principal (RQ2) 55

2.5.2.1 Categories of ATD (RQ 2.1) .. 55

2.5.2.2 Negative effects caused by ATD (RQ 2.2) ... 55

2.5.2.3 Refactoring strategies for managing ATD (RQ 2.3) 56

xv

2.5.3 Existing challenges and solutions in managing ATD (RQ3) 57

2.5.3.1 Architectural TDM activities (RQ 3.1) ... 57

2.5.3.2 Challenges with ATD (RQ 3.2) .. 58

2.5.3.3 Analysis method for detecting or evaluating (RQ 3.3) 58

2.6 Importance of ATD and a need for a Unified Model .. 59

2.7 Discussion... 60

2.7.1 Importance of ATD (RQ1) .. 62

2.7.2 ATD identification checklist (RQ2.1) ... 62

2.7.3 ATD impediments (RQ3.2 and RQ2.2) .. 62

2.7.4 ATD management (RQ3.1, RQ3.3, and RQ2.3) ... 62

2.7.5 The Unified model for ATD ... 63

2.7.6 Research agenda for ATD ... 64

2.7.7 Threats to validity ... 64

2.7.7.1 Incompleteness of study search and obtaining accurate data

bias .. 64

2.7.7.2 Number of retrieved publications ... 64

2.7.7.3 Search string ... 65

2.7.7.4 Data extraction .. 65

2.7.7.5 The unified model of ATD ... 65

2.8 Related work ... 65

2.9 Conclusions .. 66

3 .. Paper B ... 69

3.1 Introduction .. 71

3.2 Related work ... 72

3.2.1 Software Quality Attributes .. 72

3.2.2 Prior research on TD related interest .. 73

3.3 Methodology ... 73

3.3.1 Survey ... 74

3.3.1.1 Data Collection ... 74

3.3.1.2 Data analysis ... 75

3.3.2 Interviews .. 75

3.3.2.1 Data collection .. 75

3.3.2.2 Start-up interviews. ... 75

3.3.2.3 Follow-up interviews. ... 76

3.3.2.4 Data analysis ... 76

3.4 Results and findings.. 76

3.4.1 Affected Quality Attributes ... 76

3.4.2 TD Types and related interest ... 77

3.4.3 Age of the Software .. 79

3.4.4 Wasted time and compromised quality issues ... 80

3.5 Discussions and Limitations ... 81

3.5.1 Affected Quality Attributes ... 81

3.5.2 TD Types and related interest ... 82

3.5.3 Age of the Software .. 82

3.5.4 Wasted time and compromised quality issues ... 82

xvi

3.6 Threats to validity ... 83

3.7 Conclusion .. 84

4 .. Paper C ... 85

4.1 Introduction .. 87

4.2 Related work ... 89

4.2.1 Empirical survey-based studies on TD ... 89

4.2.2 Prior research on TD related issues ... 90

4.3 Methodology ... 90

4.3.1 Survey ... 91

4.3.1.1 Data collection .. 91

4.3.1.2 Data analysis ... 93

4.3.2 Interviews .. 93

4.3.2.1 Data collection .. 93

4.3.2.2 Data analysis ... 94

4.4 Results and Findings ... 94

4.4.1 How much of the overall development time is wasted because of Technical Debt?

(RQ1). .. 94

4.4.2 System Age effect on wasted time (RQ4) ... 95

4.4.3 Different Roles’ estimation of the wasted time (RQ5) 96

4.4.4 What Challenges generate the most negative impact on the daily software

development work? (RQ2) .. 97

4.4.5 System Age effect different negative effects. (RQ4) .. 99

4.4.6 How different Roles interpret the Challenge (RQ6) 100

4.4.7 What are the various activities on which extra-time is spent as a result of

Technical Debt? (RQ3).. 101

4.4.8 System Age effect how the extra time is spent (RQ4) 101

4.4.9 How professionals with different roles spend their extra time on different

activities (RQ6) ... 103

4.5 Discussion... 104

4.5.1 Wasted time due to Technical Debt (RQ1,4,5) ... 104

4.5.2 What type of TD generates the most negative impact on daily development work

(RQ2,4,5) ... 104

4.5.3 Extra time is spent on activities (RQ3,5,6) ... 105

4.6 Threats to validity and Verifiability.. 105

4.7 Conclusion .. 106

5 .. Paper D ... 107

5.1 Introduction .. 109

5.2 Related work ... 111

5.2.1 The importance of addressing ATD .. 112

5.2.2 Survey-based studies on TD ... 112

5.2.3 Research on TD interest variations ... 113

5.3 Methodology ... 113

5.3.1 Design of the Survey ... 114

5.3.2 Data collection of survey data ... 114

5.3.2.1 Data analysis of survey data ... 116

xvii

5.4 Results and Analysis ... 116

5.4.1 Does ATD generate a negative impact on daily software development work?

(RQ1) ... 116

5.4.2 Does ATD negatively affect the amount of estimated wasted development time?

(RQ2). .. 118

5.4.3 Does the Age of the software system affect the level of negative effects due to

ATD?(RQ3) ... 120

5.4.4 ATD impacts on different Roles (RQ4) .. 122

5.5 Discussion and limitations .. 124

5.5.1 The negative impact on daily software development work due to ATD

(RQ1) ... 124

5.5.2 Does ATD negatively affect the amount of wasted development time?

(RQ2). .. 124

5.5.3 Does the Age of the software system affect the negative effects due to ATD?

(RQ3) ... 125

5.5.4 ATD impact on different Roles (RQ4) .. 125

5.5.5 Verifiability and Limitations ... 126

5.6 Threats to validity and Verifiability.. 126

5.7 Conclusion .. 127

6 .. Paper E ... 129

6.1 Introduction .. 131

6.2 Related Work .. 133

6.3 Methodology ... 134

6.3.1 Research Design .. 135

6.3.1.1 Contextual Analysis and Design. .. 135

6.3.1.2 Preparation. ... 135

6.3.1.3 Data Collection – Longitudinal study. .. 135

6.3.1.4 Analysis and Synthesis. .. 137

6.3.1.5 Verification and Explanation. ... 137

6.3.1.6 Analysis and synthesis. ... 138

6.4 Results and Findings ... 140

6.4.1 Wasted time .. 140

6.4.1.1 Wasted time (RQ1). .. 140

6.4.1.2 Distribution (RQ1.1). .. 140

6.4.2 Additional Activities ... 141

6.4.3 Technical Debt types ... 143

6.4.4 Introducing new Technical Debt ... 146

6.4.5 Awareness and Benefits .. 147

6.4.6 Challenges of tracking TD interest ... 148

6.5 Discussion and Limitations... 149

6.5.1 Wasted time and Introduction of new TD ... 149

6.5.2 Additional Activities ... 149

6.5.3 Technical Debt types ... 149

6.5.4 Awareness and Challenges .. 150

6.5.5 Verifiability and Limitations ... 150

xviii

6.6 Threats to Validity .. 151

6.7 Conclusions .. 151

7 .. Paper F ... 153

7.1 Introduction .. 155

7.2 Background ... 156

7.2.1 Technical Debt .. 156

7.2.2 Morale ... 157

7.2.3 Technical Debt and Morale ... 157

7.3 Methodology ... 158

7.3.1 Interviews .. 159

7.3.2 Online survey .. 160

7.3.3 Data Analysis .. 161

7.4 Results 163

7.4.1 Results of the Interviews ... 163

7.4.1.1 Influence on Affective antecedents .. 163

7.4.1.2 Influence on Future/Goal antecedents .. 165

7.4.1.3 Influence on Interpersonal antecedents... 166

7.4.2 Results of the Online Survey .. 167

7.5 Discussion... 169

7.5.1 Implications .. 170

7.5.2 Related work ... 170

7.5.3 Limitations .. 171

7.6 Conclusions .. 172

8 .. Paper G ... 173

8.1 Introduction .. 175

8.2 Methodology ... 177

8.2.1 Survey ... 177

8.2.1.1 Survey Data Collection ... 177

8.2.1.2 Survey Data Analysis ... 180

8.2.2 Multiple case-study ... 181

8.2.2.1 Interviews ... 182

8.2.2.2 Document Analysis .. 183

8.3 Results 183

8.3.1 Demographics and background of the respondents ... 183

8.3.2 Estimation of management cost of TD (RQ1) .. 185

8.3.3 Familiarity with the term “Technical Debt” (RQ2) ... 186

8.3.4 Awareness of Technical Debt present in the system (RQ3 and RQ5)............. 187

8.3.5 Tracking Technical Debt (RQ4) .. 188

8.3.6 Influence of the background of respondents on the management of TD

(RQ6) ... 189

8.3.7 Tools used to track Technical Debt (RQ7).. 190

8.3.8 Why and how do companies start tracking TD? (RQ3) 193

8.3.8.1 Motivation for start tracking TD ... 193

8.3.8.2 Preparation of the tracking process ... 193

8.3.9 What are benefits and challenges of tracking TD? (RQ4) 195

xix

8.3.9.1 Benefits ... 195

8.3.9.2 Challenges .. 195

8.3.10 Strategic Adoption Strategy .. 196

8.4 Discussion... 198

8.4.1 Current state of practice of tracking TD and implications for practitioners and

researchers ... 199

8.4.2 Related Work .. 201

8.4.3 Limitations and Threats to Validity .. 202

8.5 Conclusion .. 204

9 .. References .. 205

xx

1

1. Introduction
In order to survive in today's fast-growing and ever fast-changing business environments,

large-scale software companies need to deliver customer value continuously, both from a

short- and long-term perspective. During the software development lifecycle, companies

need to consider the tradeoffs between the overall quality of the software, and the costs of

the software development process in terms of the required time and resources. In general,

software companies strive to balance the quality of the software with the ambition of

increasing the efficiency and decreasing the costs in each lifecycle phase, by reducing time

and resources deployed by the development teams.

Examples of this tradeoff can be illustrated by scenarios where software companies

deliberately implement sub-optimal solutions in order to shorten the time-to-market or

when resources are limited in practice, by implementing “quick fixes” or “cutting corners”

during the software development process. Even if the best intention is to go back and

refactor the sub-optimal solution immediately afterward, there is a tendency that these

refactoring tasks will be postponed since, commonly, there are other important deadlines

in the near future, where these refactoring tasks are often down-prioritized. There is also

the scenario where sub-optimal solutions are implemented unintentionally, due to a lack

of knowledge, guidelines or best practices.

As a result of these scenarios, the sub-optimal solutions in the software gradually grow,

and the short-term implemented quick fixes in the code base live on and become more

deeply embedded. Last minute hacks remain in the code and turn into features that the

users depend upon, and documentation and coding conventions are perhaps also ignored,

and eventually the original architecture degrades and becomes obfuscated [131]. When

new requirements start appearing that necessitate the software being extended and altered,

these implemented sub-optimal solutions can impede both innovation and expansion of

the software system.

The result of this impediment is the accrual of what is described as Technical Debt (TD).

The TD metaphor was first coined at OOPSLA ‘92 by Ward Cunningham [8], to describe

the need to recognize the potential long-term negative effects of immature code that is

made during the software development lifecycle. Cunningham used the financial terms

debt and interest when describing the concept of TD: “Shipping first-time code is like

going into debt. A little debt speeds development so long as it is paid back promptly with

a rewrite. Objects make the cost of this transaction tolerable. The danger occurs when the

debt is not repaid. Every minute spent on not-quite-right code counts as interest on that

debt.”

An additional, a more recent, definition was provided by Avgeriou et al. [10] who define

TD as “In software-intensive systems, technical debt is a collection of design or

implementation constructs that are expedient in the short term, but set up a technical

context that can make future changes more costly or impossible. Technical debt presents

2

an actual or contingent liability whose impact is limited to internal system qualities,

primarily maintainability and evolvability”.

As an illustration of a “technical context where the future changes are more costly or

impossible” can be exemplified by a situation where the software experiencing TD

becomes fragile in terms of when unexpected side-effects occur or when changes to one

part of the software cause unpredicted failures in its unrelated parts. This situation could

make the software practitioners avoid altering the software, with the result of, for example,

maintenance complications.

If the technical context refers to the architecture of the system, this can be illustrated by a

situation where the architecture is inflexible in terms of resistance to changeability.

Without first implementing extensive, costly, risky and time-consuming architectural

refactoring, the possibility to implement new features is reduced significantly. In a worst-

case scenario, software companies could reach a point where they have accrued so much

TD that they spend more time maintaining and containing their legacy software than

adding new features for their customers [131]. Accumulated negative consequences of

TD can even lead to a crisis point when a huge, costly refactoring or a replacement of the

entire software needs to be undertaken [103].

In conclusion, TD is considered to be detrimental to the long-term success of software

development [147], and, left unchecked, TD can result in compromised quality attributes

such as maintainability, reusability, performance, and the ability to add new features. In

addition to potential quality complications, TD can also hinder the software development

process by causing an excessive amount of wasted working time in terms of low

development productivity, project delays and high defect rates [92].

However, even if the concept and harmfulness of TD are gaining importance from an

academic perspective, software companies still struggle with giving TD management

sufficient attention in practice. There are several major reasons for this, such as the

difficulty of implementing prevention mechanics to avoid introducing TD in the first

place, and to raise awareness about the negative effects TD has on the overall software

development process, and difficulties in understanding and quantifying the level of

negative impact from TD.

Despite the significant need for supporting tools and methods for analyzing and

quantifying TD, no supporting software tools exist that iteratively include the measuring,

evaluation, and tracking of different types of TD.

Consequently, the ability to quantify TD can provide a common point of reference for

software practitioners when deciding upon the prioritizing of refactoring tasks and adding

new features in terms of assisting the organizations in understanding the burning issues

that can affect new investments and future opportunities.

Furthermore, there are several different types of TD [3],[86],[147], such as Architectural

TD, Documentation TD, Requirement TD, Code TD, Test TD, and Infrastructure TD.

These different TD types affect different software development parts during different

development phases, and they also have different levels of negative impact on the overall

software development process. This study focuses on all TD types in general, but more

3

specifically on the Architectural TD (ATD) type. ATD is often described as the most

important source of TD [45] and also as the most frequently encountered type of TD [67].

During different phases of the overall software development process, several different

professional roles are involved, including, for instance, developers, architects, testers, and

product and project managers. Hence, all these roles could potentially be affected by TD

in general, but each role could potentially also be more negatively affected by a specific

TD type.

When studying how software practitioners are affected by TD, some studies suggest that,

along with its technical and economic consequences, TD can also negatively affect

developers’ psychological states and morale, in terms of, for instance, confidence,

optimism, enthusiasm, and loyalty [62].

The overall goal of this Licentiate thesis is to study and understand in what way and to

what extent, TD and ATD (both in general, and, more specifically, from an architectural

perspective), influence today’s software development work from various perspectives and,

specifically, with the intention of providing more quantitative insights into the field.

1.1 Background and Related Work

This thesis studies TD in general and ATD specifically, from various different

perspectives, and, in order to provide the reader with the necessary information needed to

better understand the remainder of the thesis, this section provides background

information and describes the related work of this thesis.

Figure 1 is a conceptual model that comprehensively describes essential aspects of the

concerned included research topics within the TD and the ATD domains which are used

and addressed in this Licentiate thesis. As illustrated in the Figure, TD can be of different

types, where some of the included papers in this thesis focus on TD in general and some

of the publications have a specific focus on ATD. The Figure further illustrates that the

presence of TD, causing different negative effects during the overall software

development lifecycle and the presence of TD, causes the need for several different actions

to be taken and knowledge to be gained for software development organizations.

This section examines the illustrated aspects in terms of different TD categorizations,

different TD types, and also what constitutes ATD in terms of debt, interest, and principal,

software quality attributes, software aging, different software roles, TD tracking

processes, software productivity, and, lastly, the negative effects of TD in terms of

developer morale are addressed.

4

Figure 1: A conceptual model of TD and ATD, as portrayed in this thesis.

1.1.1 TD categorizations

TD can be categorized in different ways, depending on the perspective adopted. For

example, Kruchten et al. [83] provide a categorization based on the visibility of different

elements. As illustrated in Figure 2, their model illustrates visible elements such as new

functionality to add and defects to fix, and the invisible elements (those visible only to

software developers). Kruchten et al. suggest that only the invisible elements should be

considered as TD, where they distinguish between evolution and quality issues.

Figure 2. The TD landscape, distinguishing between evolution and quality issues [83].

Yet another classification of the TD landscape is provided by Steve McConnell [110] who

categorizes TD based on whether the TD was incurred intentionally or unintentionally.

The unintentionally incurred TD is the non-strategic result of doing a poor job. In some

cases, this type of debt can be incurred unknowingly, for example, if a company acquires

another company that has accumulated significant TD that was not identified until after

the acquisition. The intentionally incurred TD is commonly found when a company makes

a conscious decision to optimize for the present rather than for the future [110].

5

Similar to McConnell’s classification, Martin Fowler [57] provides a categorization

illustrated in Figure 3, where he uses a four quadrant grid considering the following

characteristics: Reckless, Prudent, Deliberate, and Inadvertent. These characteristics

comprise what is generally called the TD Quadrant and allows the classification of the

debt by analyzing if it was inserted intentionally or not, and, in both cases, if it can be

considered the result of a careless action or was inserted with prudence.

The prudent TD is deliberately introduced because the team is aware of the fact that they

are taking on a TD, and puts some thought into whether the payoff for an earlier release is

greater than the costs of paying it off. A team ignorant of design practices is taking on its

reckless TD without even realizing the negative consequences of doing so [57].

Martin Fowler describes that reckless TD may not be inadvertent. A team could know

about good design practices, and even be capable of practicing them, but decide to go

“quick and dirty” because they think they cannot afford the time required to write clean

code.

The last quadrant prudent, inadvertent, refers to the willingness of the teams to improve

upon whatever has been done after gaining experience and relevant knowledge.

Figure 3. Technical Debt Grid Quadrant [57].

1.1.2 TD Types

There are several different types of TD, and different researchers provide different

categorizations for TD types. Tom et al. [147] provide a list of seven different types of

TD: code debt, design and architectural debt, environmental debt, knowledge distribution

and documentation debt, and testing debt. Similar to that classification, Li et al. [86]

provide an extension of, in total, 10 coarse-grained types including several sub-types of

TD: Requirements TD, Architectural TD, Design TD, Code TD, Test TD, Build TD,

Documentation TD, Infrastructure TD, Versioning TD, and Defect TD.

The architectural aspects of TD (ATD), which have a specific focus in this thesis, are

commonly described as design decisions that, intentionally or unintentionally,

compromise system-wide quality attributes, particularly maintainability and evolvability

[87]. More specifically, ATD is regarded as violations of the code towards the intended

architecture for supporting the business goals of the organization [98].

6

Alves et al. [3] define ATD as referring “to the problems encountered in project

architecture, for example, violation of modularity, which can affect architectural

requirements (performance, robustness, among others). Normally this type of debt cannot

be paid with simple interventions in the code, implying in more extensive development

activities.”

In a similar manner, Fernández-Sánchez et al. [48] describe ATD as being caused by

shortcuts and shortcomings in design and architecture or by the result of sub-optimal

upfront architecture design solutions, that become sub-optimal as technologies and

patterns become superseded.

However, ATD is fraught with several challenges arising from difficulties in detection

[37] and the issue that ATD seldom yields observable behaviors to end users [90], and,

even if there are some software tools available for analyzing TD, most of them focus on

the code level instead of the architectural aspects of TD [123]. The issue of removing ATD

after it has been introduced is often associated with high costs since architectural decisions

take many years to evolve and are commonly made early in the software lifecycle, and it

is often invisible until late in the process [82].

Furthermore, ATD tends to become widespread within the system due to what is known

as vicious circles, inferring a non-linear accumulation of the interest with the result of

making a later removal even more costly [98].

From a non-technical perspective, ATD is also associated with several challenges, since

the awareness from both managers and other professionals about the magnitude of the

related consequences of ATD are somewhat limited. This lack of knowledge often leads

to the issue that ATD seldom receives sufficient attention from managers and that the

allocation of both time and resources to manage and remediate ATD are limited.

1.1.3 Concepts of Debt, Principal, and Interest

The term TD is a financial metaphor, and the most common financial terms that are used

in TD research are debt, principal and interest [5].

In financial terms, a debt refers to the amount of money owed by one party (debtor or

borrower) to another party (creditor or lender) [6] where the obligation of the debtor is to

repay a larger sum of money to the creditor at the end of that period [115]. The term debt

is used to describe the gap between the existing state of a software and some hypothesized

“ideal” state in which the system is optimally successful [25].

From an architectural perspective (architectural debt), this debt refers, for instance, to

system shortcomings that can be improved to form an enhanced architectural software

quality and to avoid excessive interest payments in the form of decreasing maintainability.

The interest refers to the negative effects of the extra effort that have to be paid due to the

accumulated amount of debt in the system, such as executing manual processes that could

potentially be automated, excessive effort spent on modifying unnecessarily complex

code, performance problems due to lower resource usage by inefficient code, and similar

costs [147], [37]. Ampatzoglou et al. [6] define interest in their TD financial glossary list

7

as: “The additional effort that is needed to be spent on maintaining the software, because

of its decayed design-time quality.”

Financially, the term principal refers to the original amount of money borrowed, and, from

a software development perspective, the same term is used to describe the cost of

remediating planned software system violations concerning TD, in other words, the cost

of refactoring Ampatzoglou et al. [6]. The principal is computed as a combination of the

number of violations, the hours to refactor each violation, and the cost of labor [34].

1.1.4 Software Quality Attributes

Software suffering from TD negatively affects several different quality attributes, and

these affected quality attributes can, consequently, affect the software in different ways,

and the level of impact can also vary during the software lifecycle [39],[161].

As depicted in Table 1, the software product quality model proposed in ISO/IEC 25010

[70] categorizes product quality properties into eight main characteristics, and each

character is composed of a set of related sub-characteristics. This quality model is used in

this Licentiate thesis when accessing how TD negatively affects the overall quality when

experiencing TD. Li et al.’s [86] systematic mapping study shows that most examined

studies argue that TD negatively affects the maintainability and that other quality attributes

are only mentioned in a handful of studies.

TABLE I. SOFTWARE QUALITY ATTRIBUTES - ISO/IEC 25010

Functional suitability

Completeness/Correctness/Appropriateness

Reliability

Maturity/Availability/Fault tolerance/Recoverability

Performance efficiency

Time behavior/Resource Utilization/Capacity

Security

Confidentiality/Integrity/ Non-

repudiation/Accountability/ Authenticity

Usability

Appropriateness/Recognizability/

Learnability/Operability/User error protection/User

interface aesthetics/Accessibility

Maintainability

Modularity/Reusability/ Analyzability/Modifiability/

Testability

Compatibility

Co-existence/Interoperability

Portability

Adaptability/Installability/ Replaceability

1.1.5 Age of Software

Software systems are, by definition, highly evolving products, and there is a commonly

held belief that the negative effects of a complex architectural design, in terms of ATD,

increase with the age of the software, which is related to the concept of software aging

[124]. Parnas [124] argues that software aging is inevitable, yet can be controlled or even

reversed. Parnas highlights the causes of software aging, such as obsolescence,

incompetent maintenance engineering work and the effects of residual bugs in long-

running systems [40]. “Programs, like people, get old. We can’t prevent aging, but we can

understand its causes, take steps to limit its effects, temporarily reverse some of the

8

damage it has caused, and prepare for the day when the software is no longer viable.”

Furthermore, Mens et al. [112] describe that the negative effects of software aging have a

significant economic and social impact in all sectors of industry and therefore it is crucial

to develop tools and techniques to reverse or avoid the intrinsic problems of software

aging. This notion is echoed by Lindgren et al. [93], stating “Technical debt refers to

software aging costs that are not attended to, which hence need to be repaid at a later

time.”

1.1.6 Software Professional Roles

Today, there are several different kinds of professional roles present in the software

industry. These roles have different working tasks and responsibilities and work in

different areas and in different development phases. The different roles also can have

different education, understandings and scope of knowledge. Taken together, during the

software lifecycle, several different professional roles participate, and could subsequently

be affected differently by TD. In this thesis, we have included the software professional

roles that are affected by TD and the roles that are empowered to make a decision in the

context of TD. The assessed roles are many developers, testers, architects, product

managers, and product managers.

1.1.7 Tracking Process

Software tooling is a necessary component of any TD management strategy [45], and the

tracking process of TD is crucial for the ability to manage TD in a proactive way. Even if

there are some tools available (e.g., SonarQube), these tools usually focus on only

identifying TD at a code level, and these code-focusing tools generally cannot prove

indicative for, for example, architectural trade-off, since they can cause misleading results

[96]. The available tools also rarely provide the user with any supporting information

about the principal or the interest of the TD. Despite the significant need for supporting

tools and methods for analyzing TD and ATD, there are no supporting software tools that

exist that iteratively include the measuring, evaluation, and tracking of different types of

TD. The process of starting to track TD requirements includes both costs in terms of initial

investments, educational and preparation activities. However, there are some companies

that have, to some extent, introduced a TD tracking process within their software

development process. In this regard, Ernst et al. [45], found that only 16% of the

respondents in their study used a tool to identify TD.

1.1.8 Software Development Productivity

Several publications, such as [2], [147], [86], state that TD can, in general, have a negative

effect on the overall software development productivity, but these publications rarely

define what productivity refers to and in what way this reduced productivity can be

measured. Commonly, the existing literature relating to TD and productivity states that

TD becomes a constant drain on software productivity [42], which can lead to slowing

down the overall development and negatively affect productivity [147], [2]

9

Software systems suffering from TD are causing an extensive amount of wasted working

time, since practitioners are forced to perform additional activities which would not be

necessary if the TD was not present. In general, there are different ways of measuring

software development productivity [108], and, in this Licentiate thesis, we refer to

productivity as “the ability to deliver high-quality customer value in the shortest amount

of time”. This means that the less time that is wasted due to experiencing TD, the greater

the increase in productivity, inferring that the practitioners can thus use more time

focusing on delivering customer value.

1.1.9 Impact of TD on Developers’ morale

In addition to technical and financial consequences, TD can also affect developers’ morale

[147], [50]. The reason for this is primarily because the occurrence of TD could hamper

the developers from performing their tasks and achieving their developer goals. The term

morale can be found within the research field of organizational sciences, management,

education, and healthcare [62]. Despite the vast body of related literature, the term morale

lacks a coherent and precise definition, and Hardy [62] describes that several concepts,

such as satisfaction, motivation, and happiness are commonly used interchangeably to

highlight the term morale. In this thesis, we have used the definition of morale, provided

by Hardy [62]:“a cognitive, emotional, and motivational stance toward the goals and

tasks of a group. It subsumes confidence, optimism, enthusiasm, and loyalty as well as a

sense of common purpose”. Furthermore, we adopt an approach for predicting the levels

of morale from measuring a set of factors that influence morale suggested by Hardy [62],

where the antecedent factors of morale are divided into three main categories: affective

antecedents, future/goal antecedents, and interpersonal antecedents. Even if there are some

publications mentioning the relationship between TD and developers’ morale or emotions,

these publications do not have this scope as their primary research focus, and none of them

investigate the relationship of TD and morale using an empirical research approach.

1.2 Research Motivation

As highlighted earlier in the Introduction section, software systems and software

development processes suffering from TD in general, and ATD specifically, can be

impeded, in terms of the technical, financial and developer working situational

perspectives. However, since limited knowledge and few supporting tools are available to

measure the extent of TD within a system, it is quite difficult to compute the negative

effects that TD causes in terms of, for example, extra costs, extra activities, and the need

for extra resources. Without this knowledge, software development organizations are not

aware of the interest that they are paying on the debt, and therefore they might not

currently give TD management the necessary attention within their organizations.

Furthermore, without this information, software organizations risk not focusing

sufficiently on deliberate remediation of their TD, which, over time, can result in high

defect rates, project delays, quality complications and very low developer productivity.

10

Although significant theoretical work has been undertaken to describe the negative effects

of TD and ATD, to date, very few empirical studies focus on their impact and their

negative effects on software development. Therefore, there is a need for more empirical

assessments in the research field, with a focus on quantifying the negative effects and a

more in-depth understanding of its related negative consequences. The overall goal of this

Licentiate thesis is, therefore, to empirically study and understand in what way and to what

extent, TD in general and ATD specifically, influence today’s software development work

and specifically with the intention of providing more quantitative insights into the field.

1.3 Research Goals and Research Questions

The goal of this thesis is to empirically examine the negative effects due to TD and ATD

from several different perspectives, using a combination of both quantitative and

qualitative research methodologies. Derived from this main goal, below are listed the four

main goals, with four sub-goals formulated, which will be addressed in this thesis.

Since this thesis focuses on TD in general and on ATD more specifically, some of the

research questions focus on TD (including ATD among other TD types) in general, while

other research questions focus specifically on ATD.

RQ1: What is ATD and what is known in the literature about ATD?

RQ2: What is the negative impact on Software Quality due to TD?

RQ3: How do TD and ATD negatively affect practitioners during the software

development process?

RQ3.1: How much do software practitioners estimate the negative impact on

daily software development work due to TD to be?

RQ3.2: How much do software practitioners estimate the negative impact on

daily software development work due to ATD to be?

RQ3.3: What is the negative impact on software development productivity due

to TD?

RQ3.4: How does TD influence developers’ morale?

RQ4: How do companies start tracking TD and what are the initial benefits and

challenges?

The first research question (RQ1) set out to understand what ATD is what is known in the

literature about ATD? This question will analyze how ATD is described in the body of

existing research on ATD.

The second research question (RQ2) aims to address how different software quality

attributes are negatively affected in software experiencing TD, and also to assess if there

is a relationship between the interest of TD and the frequencies of encountering these

compromised quality attributes. The investigated quality attributes are presented in Table

1.

11

The third research question (RQ3) seeks to address how TD and ATD negatively affect

practitioners during the software development process, both by investigating how

practitioners estimate and perceive the negative effects of TD and also examines how

practitioners report similar negative effects. During this investigation, a comparison

between different types of TD and different ages of the software was made, and different

professional roles are also assessed. Finally, this research question examines how TD

influences developers’ morale during the software development process.

The fourth and final research question (RQ4), focuses on how companies start tracking

TD and the initial benefits and challenges of the tracking process.

1.4 Methodology

Software engineering is a multi-disciplinary field, encompassing not only technological,

but also social, boundaries. Therefore, not only do the tools and processes software

engineers use need to be investigated, but also the social and cognitive processes

surrounding them, which includes the study of concerned professionals, their working

tasks, and activities. Thus, we need to understand how individual software engineers

develop software, as well as how teams and organizations coordinate their efforts [41].

This thesis includes seven publications, and, in order to fulfill the goals of the thesis,

different research methods and different research categories have been adopted. Figure 4

provides an overview of the goals with the corresponding research questions, the selected

research types, the research approaches, and, finally, the research methods used for each

of the included publications. It is apparent from this Figure that this thesis has a strong

emphasis on empirical research, where most of the analyzed data are based on estimated

and/or reported artifacts and derive knowledge from actual industrial settings and

experiences rather than from theories or anecdotal evidence. It can also be seen in Figure

4 that a strong focus is placed on combining both a qualitative and quantitative research

methodology using a mixed-methods approach.

12

13

1.4.1 Research Approaches

The included studies that form this thesis use different research approaches. The

approaches adopted are listed in this section, together with a short description and benefits

of each approach.

1.4.1.1 Qualitative research

The goal of conducting qualitative research is the “Development of concepts which help

us to understand social phenomena in natural (rather than experimental) settings, given

due emphasis to the meanings, experiences, and views of the participants” [129]. Our

motivation for using this qualitative research approach was to obtain richer information,

to gain more in-depth insights into the phenomenon we studied, and to understand the

perceptions that underlie and influence different studied negative effects. The main

methods for collecting qualitative data are individual interviews, group interviews,

observations, and documents. In this thesis, we have chosen individual interviews, group

interviews, and documents as the data collection approaches when conducting the

qualitative research.

1.4.1.2 Quantitive research

The goal of conducting quantitative research is to “explain behavior in terms of specific

causes (independent variables) and the measurement of the effects of those causes

(dependent variables)” [63]. The benefits of a quantitative research approach include

improving the generalizations of a larger number of subjects and to thereby achieve a

higher objectivity. The quantitative data collection method used in this thesis is surveys.

1.4.1.3 Mixed-Methods research

A mixed-methods research approach involves the collection of both qualitative and

quantitative data, where the two forms of data collection are integrated into the design

through merging the data, connecting the data, or embedding the data. The purpose of this

approach is to provide a more complete understanding of the phenomena being studied

[113] and the benefits of a mixed-method approach can be argued to provide a stronger

understanding of the problem than either by itself and by minimizing the limitations of

both approaches [32]. An advantageous characteristic of conducting mixed-methods

research is the ability to perform triangulation.

However, there is a potential weakness of mixing methods for the purpose of validity

convergence, namely to compare outcomes from different methods to see if they agree

because the interpretation of agreement or disagreement is not straightforward [113].

The mixed-methods research approach used in this thesis has contributed to a comparison

of different perspectives drawn from both qualitative and quantitative data within the same

studies. This approach has also provided assistance in explaining quantitative results with

qualitative follow-up data collections. Even if it is claimed that it is more difficult to

execute studies based on a mixed-methods approach [159], the motivation for using this

14

approach was to be able to address more complex research questions and to collect a richer

and stronger array of evidence that could be accomplished by using a single method alone

[159].

When interpreting the results from a mixed-methods research approach, there are different

designs to facilitate in providing a stronger interpretation and more insight from the

results. This thesis has used different typologies for the classification of different mixed-

methods strategies. The convergent parallel mixed-methods design was used in Paper C,

where we collected both qualitative and quantitative data, analyzed them separately, and

compared the results to understand if the findings confirmed or contradicted each other.

In Papers E and G, an explanatory sequential mixed-methods design was used, where we,

as a first step, collected and analyzed the quantitative data and used this result to build the

qualitative data collection upon. In Papers B and F, we first collected and analyzed the

qualitative data and, thereafter, collected the quantitative data, using a so-called

explanatory sequential mixed method design.

1.4.1.4 Deductive, Inductive and Abductive Reasoning

A research approach also refers to whether the research is using a deductive, inductive or

an abductive reasoning approach, where the relevance of hypotheses to the study is the

main distinctive point between the different approaches.

The deductive approach refers to a research approach with the objective of testing a theory

rather than developing it, where the researcher advances a theory, collects data to test it,

and confirms or rejects the theory [32]. This deductive research approach has been used

in this thesis, when, for example, testing whether or not commonly held beliefs about

software aging can be confirmed (see Paper D).

The inductive approach aims to generate meanings from the collected data in order to

identify patterns and relationships to build a theory [32]. In this thesis, we have used this

approach in several included publications (e.g., Papers B, C, E, and F) where we gathered

detailed information from participants and then formed this information into different

categories or themes. Using this inductive approach, no theories or hypotheses were

applied at the beginning of these research studies, and we, as researchers, were free in

terms of altering the direction for the study after the research process had begun.

Both the inductive and the deductive approaches are associated with weaknesses, for

instance, in terms of a lack of clarity when selecting the theory to be tested via formulating

hypotheses (deductive reasoning) or in terms of the concern that “no amount of empirical

data will necessarily enable theory-building” [135] (inductive reasoning).

The abductive reasoning set out to address the weaknesses associated with deductive and

inductive approaches to overcoming this by adopting a more pragmatic perspective. In an

abductive approach, the research process starts with “surprising facts” or “puzzles”, and

the research process is devoted to their explanation. The researcher seeks to select the most

appropriate explanation among many alternatives in order to explain these surprising facts

or puzzles [26]. However, in this thesis, we have not used this abductive research

approach.

15

1.4.1.5 Longitudinal studies

A longitudinal study is a research method that contains repetitive observations of the same

variables (e.g., time usage) on more than one occasion and over time [127]. The incentive

for using a longitudinal research method in this study has two principal aspects: a) To

increase the precision of reporting experienced data (in our case, not based on single

estimations and single perceptions). This was achieved by studying each respondent

during several weeks where the reported data could be compared. Such designs are called

repeated measures designs [127], and b) To examine the respondents’ changing responses

over time: Longitudinal designs have a natural appeal for the study of changes associated

with development or changes over time. They have value for describing both temporal

changes and their dependence on individual characteristics [127]. Ployhart and

Vandenberg [127] state that: “Longitudinal designs give greater precision per

observation, but observations may be more expensive or difficult to collect. Problems with

missing or suspect data may be harder to solve in longitudinal studies. Implementation

issues also influence design, since it is not always possible to sustain the commitment of

investigators and participants or the quality of study procedures”.

To address the potential problem with missing data from the respondents, for instance, if

the respondents for some reason did not enter the data in one or more surveys, the

respondents were always asked to report their experienced data since the last time they

took the survey. This wording means that if, for some reason, the respondent did not enter

the data in one or more surveys, they would enter the data from the last time the respondent

took the survey. In this way, the surveys cover the full period of sampling. To sustain the

commitment of the respondents, prior to starting the study, all respondents had agreed with

both their managers and ourselves of their participation. All respondents who agreed to

participate were sent educational material before starting the study, with the intention of

minimizing inter-observer (all researchers communicate the same knowledge) and inter-

instrument (all participants receive the same information) variability [127].

1.4.2 Data Collection

The collected data in this thesis consist of both primary and secondary studies, where the

primary form of data collection is one which is collected for the first time by the

researcher, and where the secondary study sets out to aggregate and synthesize the

outcomes of other primary studies in an objective and unbiased manner using either a

qualitative or quantitative form of synthesis. The secondary study in this thesis refers to

the conducted the systematic literature review.

1.4.2.1 Interviews

The data collection method in this thesis includes several interviews with industrial

practitioners within the software engineering field, where we, as researchers, asked a series

of questions to a set of subjects about the areas of interest in the study. This thesis includes

both interviews with a single interviewee, but have we also conducted several group

interviews (focus group), with several interview objects at the same time. According to

16

the guidance provided by Runeson and Höst [133], the dialog between the researcher and

the subject(s) during all interviews was conducted by a set of pre-defined interview

questions.

Runeson and Höst [133], distinguish between unstructured, semi-structured, and fully

structured interviews. Unstructured interviews are a very flexible approach whereby the

area of interest is established by the interviewer, but the discussion of the issues is guided

by the interviewees [19]. In fully structured interviews, the interviewer has full control of

the order of the questions, which are all predetermined [19]. A fully structured interview

is similar to a face-to-face completion of a survey [133]. The interviews conducted in this

thesis are all semi-structured in nature, with the advantage of allowing for the

improvisation and exploration of the studied objects [133].

Semi-structured interviews include a combination of open-ended and closed questions,

designed to elicit not only the information foreseen, but also other information not

foreseen by the interviewer. In semi-structured interviews, questions are planned, but are

not necessarily asked in the same order as they are listed in the interview protocol [133].

We used semi-structured interviews with the intention of ensuring that they provide us

with valuable results, since the interviewees’ awareness and knowledge about the concept

of TD could potentially differ considerably, and therefore it was important to carefully

explain the concepts used in order to create a comparable understanding between the

interviewer and the interviewees.

In order to obtain a more accurate rendition of the interviews, all interviews were digitally

recorded and transcribed verbatim (all interviewees were asked for recording permission

before starting). All interviews were treated anonymously, regarding both the name of the

interviewee and the company name.

All interviews conducted were selected based on a selective sampling of the interviewees,

with respect to their role and their expertise. Several of the publications included in this

thesis include interviews with software roles, such as software architects, developers,

testers, project managers, and product managers.

Some of the interviews conducted were characterized as “Follow-Up” interviews,

meaning that, to some extent, they had a focus on corroborating certain findings that we

already thought had been established during previous data collection activities, where the

questions were carefully worded (avoiding leading questions) to allow the interviewee to

provide fresh commentary to, for example, previously presented material [159].

As shown in Figure 4, the study in Paper E includes a pre-study. During this initial pre-

study, the motivation for the study was presented and discussed with software practitioners

from seven software companies within our network, with an extensive range of software

development. This phase acted as a guide in collecting information concerning the studied

context and to select the most appropriate research model to use.

The interviews in Papers C and E were conducted with interviewees who had previously

answered one or more surveys, and, during these interviews, the compiled results from the

interviewees’ individual results from the survey were presented. During interviews with

their managers and during group interviews, an aggregated view of all the respondents

from the respective company was presented. This presentation allowed the interviewees

17

to relate to the interview questions more easily, where the results of the survey were

addressed. The interview questions for these studies were designed to: a) increase the

understanding of the survey results, b) ensure that the questions in the survey were

understood and interpreted as intended and in a uniform manner, c) confirm the results

from the survey, and d) understand the implications of the survey results.

1.4.2.2 Surveys

Initially, we would like to clarify the term “survey” in this thesis. A survey, in this context,

refers to the questionnaire (to differentiate it from a “survey” as a literature review).

Surveys are considered as one of the most common data collection methods in software

engineering research. Surveys aim to achieve generalizability over a certain population,

for instance, different software developing practitioners or end users [141]; their

advantages can be described in terms of facilitating the recruitment of respondents where

they can be anonymous, since the anonymity is believed to help in gaining access to

normally hard to reach respondents, and it may facilitate the sharing of their experiences

and opinions. Online surveys are considered useful when the issues being researched are

particularly sensitive [149].

The motivation for using surveys in this thesis was to reach a high level of generalizability

to a large number of software professionals, and to maximize coverage and participation

without having to conduct time-consuming interviews. We also aimed to collect data for

quantitative analysis that could contribute to a more detailed examination of the different

relationships and aspects of the studied topics. Aside from Paper A, all papers included in

this thesis incorporated a research method that, to some extent, included a survey.

According to the guidance provided by Czaja and Blair [38], the drafts of all surveys were

first tested by at least one industrial practitioner and by one Ph.D. candidate in order to

evaluate the understanding of the questions and the usage of common terms and

expressions. During this evaluation, we also monitored the time needed to complete each

survey. All surveys were designed and hosted by the online survey service SurveyMonkey.

Except for the surveys used in the longitudinal study in Paper E, all the surveys used a mix

of open-ended and closed questions where the respondents could either select an answer

from among pre-defined alternatives and also where the respondents could formulate their

answers freely in a text field. The questions were a combination of an optional and

mandatory nature. To avoid bias in these surveys, the questions were developed as

neutrally as possible, ordered in such a way that one question did not influence the

response to the next question, and a clarifying description was provided when needed [79].

The survey invitations were mailed directly to seven companies within our networks, all

located in Scandinavia, with an extensive range of software development, and invitations

were also published on software engineering related networks on LinkedIn. After two

weeks, a reminder was sent out to those who had been specifically invited. The surveys

were anonymous, and participation in the surveys was voluntary. Due to high completion

rates (~83%), we decided to reject the incomplete responses, according to the guidelines

proposed by Kitchenham and Pfleeger [79].

18

In Paper E, we used three different surveys when conducting the study. The first survey

was a start-up survey gathering descriptive statistics to summarize the backgrounds of the

respondents and their companies. The second survey (longitudinal) collected repeated

measures by mailing a link to an identical survey, twice a week, for 7 weeks (i.e., 14 survey

occasions), and, for those respondents who did not answer within one day, a reminder was

emailed. This part of the study allowed us to collect repeated measures over time, where

each respondent’s data were reported more than once in order to study variability over

time. The third survey was a retrospective follow-up survey, in order to collect

retrospective specific data from each respondent.

1.4.2.3 Systematic Literature Review

A vital part of conducting software engineering research is the ability to identify existing

research on technologies, tools, theories, and methods in order to evaluate and make

informed and scientific decisions. Empirical approaches that include a systematic review

methodologies such as a systematic literature review (SLR), are found to be effective in

this context [11]. The main rationale for undertaking an SLR is to synthesize existing work

and to identify gaps in current research in order to suggest areas for further research [77].

The SLR process should be carried out in accordance with a predefined search strategy,

which allows the search to be assessed. The major advantage of using this method is that

the result is provided by evidence, which is robust and transferable and that sources of

variation can be further studied [77]. It provides a framework for establishing the

importance of the study as well as a benchmark for comparing the results with other

findings [32].

1.4.3 Data analysis

The data analysis in this thesis has been carried out in different ways, depending on the

type of data collection. The quantitative data are analyzed using statistics, while the

qualitative data are analyzed using categorizations and sortings [133].

1.4.3.1 Quantitative Data Analysis

The techniques for analyzing and summarizing quantitative data include different

methods, such as determining measures of central tendency (e.g., median and mean) and

measures of dispersion (e.g., ranges and standard deviations) [52].

For example, the collected data from the surveys used in this thesis were analyzed in a

quantitative fashion, i.e., by interpreting the numbers obtained from the answers. All

analyses were carried out using the software package SPSS (version 22), R (version 3.3.2)

[30], and by using the optional collection of R packages from tidyverse (version 1.1.1)

[32] for data manipulation and visualization. The data collected in the surveys were

analyzed by assessing the median, mean and standard deviation and also by using

statistical methods such as Pearson’s R correlation coefficient, the Pearson chi-square

tests, F-tests, Holm’s procedure, the Wilcoxon signed rank test and ANOVA.

19

Pearson's R method was used for correlation analysis of associations between variables.

This method computes pairwise, determining the strength and direction of the association

between two values, and can be used to describe a linear relationship between two values.

Pearson chi-square tests were used for evaluating the likelihood of any observed difference

between the values arising by chance, and to assess whether unpaired observations on two

variables were independent of each other. F-tests using Satterthwaite’s approximation of

the denominator degrees of freedom were used for significance tests of regression

coefficients [136]. Holm’s statistical procedure [65] was used to counteract the problem

of multiple comparisons of different groups of data. The Wilcoxon signed rank test is a

non-parametric statistical hypothesis test and was used when comparing two related

samples when the population could not be assumed to be normally distributed. The one-

way ANOVA test was used to compare the means of two or more independent groups in

order to determine whether there was statistical evidence that the associated means were

significantly different.

1.4.3.2 Qualitative Data Analysis

When analyzing the qualitative data collected in this thesis, a thematic analysis approach

was used. Thematic analysis is a method for identifying, analyzing, and reporting patterns

and themes within data, which involves searching across a dataset to find repeated patterns

of meaning. The thematic analysis provides a flexible and useful research tool, which

offers a detailed, and yet complex, account of the collected data [22].

When analyzing the qualitative data, guidelines provided by Braun and Clarke [22] were

used in order to conduct the analysis in a thorough and rigorous manner. The thematic

analysis was conducted using a six-phase guide. First, the audio recorded qualitative data

collected from interviews were transcribed into written form, where we were also able to

familiarize ourselves with the data. The second step involved the production of initial

codes from the data, where we organized the data into meaningful groups. In this phase of

the analysis, a Qualitative Data Analysis (QDA) software package called Atlas.ti was used.

The third phase focused on searching for themes by sorting the different codes into

potential themes and collating all the relevant coded data extracts within each identified

theme. Each extract of data was assigned to at least one theme and, in many cases, to

multiple themes. For example, the citation “Maybe you have to encourage the developers

a bit, to get the data” was coded as “Willingness to input data” in the theme “Measuring

Wasted time Aspects” in Paper E. To ensure that the coding was performed in a consistent

and reliable fashion and in order to triangulate the interpretation of the data and to avoid

bias as much as possible, two authors synchronized the output of the coding, following

guidelines provided by Campbell et al. [28].

The fourth phase focused on the revised set of candidate themes, involving the refinement

of those themes. The refinement focused on forming coherent patterns within the themes,

otherwise, we revised the themes or created a new theme. The fifth phase focused on

identifying the essence of each theme and determining what aspect of the data is captured

by each theme. This phase also stressed the importance of not just paraphrasing the content

of the data extracts, but also identifying what is interesting about them and why. The final

https://en.wikipedia.org/wiki/Multiple_comparisons
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Normally_distributed

20

phase of the thematic analysis took place when we had a set of fully developed themes,

and involved the final analysis and write-up of the publication. Figure 5 graphically

illustrates how the codes (light grey boxes) and the corresponding themes (darker grey

boxes) were assigned in Paper E.

Figure 5: The thematic map from Paper E.

1.4.4 Threats to Validity

The validity of a research study refers to the trustworthiness, the credibility, the

confirmability, and the data dependability of the results, and to what extent the results are

reliable and not biased by the researchers’ personal opinions [133], [159]. In this thesis,

we have chosen a classification scheme in order to distinguish between different aspects

of validity and threats to validity provided by Runesson och Höst [133], which is also used

by Yin [159], and Wohlin et al. [157]. This scheme distinguishes between four aspects of

validity: construct validity, internal validity, external validity, and reliability.

1.4.4.1 Construct validity

Construct validity addresses the extent to which operational measures that are studied

represent what the researchers are considering and the desire to investigate according to

the research questions [133], i.e., whether the theoretical constructs are interpreted and

measured correctly [41]. The results presented in this thesis may be affected by some

threats to construct validity, and, in order to mitigate this risk, several different approaches

were employed, depending on the type of study.

For example, in the longitudinal study in Paper E, this risk was mitigated by trying to

ensure that all the participants had the same base of knowledge in the field of the study,

where all participants received educational material before starting the study. However,

we cannot ensure that all the participants have read and understood the material. Another

example is the studies which used web surveys as part of the data collection. In these

studies, the construct validity threat was addressed by helping the respondents to

21

distinguish between different types of TD, thus a short description of each type of TD was

used in the surveys. An additional threat to this validity can stem from the fact that the

qualitative data derived from the survey in Papers B, C, D, F, and G, are based on

perceptions and estimations (not on measured, reported or observed data) made by the

respondents. Moreover, in Paper A, which is a systematic literature review, we have

attempted to mitigate this risk by only including peer-reviewed publications from journals,

conference proceedings, or workshop proceedings, and only two peer-reviewed book

chapters were included in order to include all relevant publications concerning ATDM. In

addition, in order to mitigate the risk of not retrieving relevant publications, which could

affect the completeness of the study, we searched the most common electronic databases

and also conducted both a forward- and backward snowballing technique.

1.4.4.2 Internal validity

The internal validity refers to whether the result is correctly derived from the researcher’s

conclusions without external factors potentially affecting the result. “When the researcher

is investigating whether one factor affects an investigated factor there is a risk that the

investigated factor is also affected by a third factor” [133]. Yin [159] states that internal

validity primarily concerns studies where the researcher is trying to explain how and why

one event led to another and thereby concludes a causal relationship without considering

the presence of additional excluded events. Furthermore, Easterbrook et al. [41] state that

it is a common mistake to confuse correlation with causality and that it is much harder to

demonstrate causality than to show that two variables are correlated.

The results of this thesis could potentially be affected by this threat since, in some of the

included studies, the findings are correlational and also indicate a causal relationship. For

example, in the studies where we examine the amount of wasted time, activities and

different TD types, this threat affects our ability to accurately explain the phenomena that

we observed [159]. This threat is, for example, demonstrated in Paper B, where we use

the estimated wasted time correlated with the frequency of how often the respondent

encountered each of the listed quality attributes. By performing this correlation, this

validity could potentially have been violated by either finding relationships that are non-

existent or missing real relationships that are wrongly deemed non-significant.

1.4.4.3 External validity

The external aspect of validity addresses the extent to which it is possible to generalize

the findings of the study and to be applicable to other situations. Yin [159] defines this as

“An analytic generalization consists of a carefully posed theoretical statement, theory, or

theoretical proposition.” Easterbrook et al. [41] state that, commonly, this depends on the

nature of the sampling used in a study. This notion is echoed by Morse et al. [119]: “the

sample must be appropriate, consisting of participants who best represent or have

knowledge of the research topic.”

Following guidelines by Yin [159], it was important to ensure external validity was used

when formulating the research questions by using the term “how”, which increases the

22

possibility of arriving at an analytical generalization. Moreover, in order to mitigate this

risk, the goal is to enable analytical generalization where the results are extended to

situations which have common characteristics, and thus for which the findings of the study

are applicable [133]. Although we cannot generalize the results in this study, we can rely

on a high number of participating organizations from different types of software

development settings (e.g., different business domains, programming languages, and

experience) and also on a relatively high number of participants with different professional

roles from each company. Furthermore, in studies where surveys are used as part of the

data collection, there is always a risk that the sample is biased, and, therefore, a potential

threat refers to the demographic distribution of response samples. The companies in this

thesis are primarily from the Scandinavian region. Without replicating this study to other

countries or regions, it is not possible to confirm the generalizability of this study.

1.4.4.4 Reliability

The goal of reliability in research is to minimize the errors and biases in a study. Reliability

addresses whether the study would yield the same results if other researchers replicated

them, following the same procedure, by means of the extent to which the analysis is

dependent on specific researchers [133], [159]. An example of a threat to the reliability

could occur if the researcher introduces bias into the study where a tool being evaluated is

one in which the researchers themselves have a stake [41]. Morse et al. [119] state that it

is important to ensure the attainment of rigor and reliability verification strategies early

and during the whole study in a proactive way and not only apply them using a post-hoc

evaluation after the research is completed.

An example of a threat to the reliability can be found in the included papers where the

results are based on estimated values from participants, where we do not know what the

given estimations are based on. However, as the demographic data show in these studies,

many participants can count several years (more than 10) of software development

experience. This means that they are used to estimate the amount of work that has been

performed or that is upcoming, which mitigates the threat that the estimated effort would

be very distant from the real one.

During the design of the studies included in this Licentiate thesis, we attempted to mitigate

this threat in various ways. First, one prerequisite to allowing for repeatability of a study

is, for example, the access to the used surveys, which we have addressed by making all

surveys used available online. To assist for replicability, we have also reported how the

data analysis protocol was constructed for interviews and SLR. Second, the code and sub-

codes of the collected data from interviews are reported, and all surveys are made available

online. Third, we have employed source triangulation, methodological triangulation, and,

finally, observer triangulation (see section 1.4.2.3).

1.4.4.5 Triangulation

To achieve a higher degree of validity and reliability, we have adopted different

triangulation techniques. Triangulation is important in order to increase the precision of

23

empirical research, in terms of taking different perspectives towards the studied object and

thus providing a broader view [133]. In this thesis, three different types of triangulation

are used: source triangulation, observer triangulation, and methodological triangulation.

Source (data) triangulation refers to using several sampling strategies to ensure that data

is gathered at different times and in different situations. The use of more than one source

(e.g., interviews, surveys, documents) of data makes the conclusion stronger, since it can

be drawn from several sources of information [133], [114]. During source triangulation,

the sources of evidence can be either of a convergence and non-convergence character,

where the converging lines of inquiry refer to when more than one source of data

corroborating the same finding and the non-convergence refers to when different sources

of data address different findings [159]. As illustrated in Figure 4, this type of triangulation

is used in included papers B, C, E, F, and G, where we have used more than one source of

information, such as interviews, surveys, and analysis of documents. In these papers, both

convergence and non-convergence source triangulation strategies are used.

Observer (researcher) triangulation refers to using more than one observer to gather and

interpret data [133], [114]. This type of triangulation was achieved in all papers included

in this thesis, where at least two of the involved researchers worked together with different

roles during the studies, thus enabling peer debriefing and the analysis of the collected

data. For example, in the conducted SLR, in Paper A, two researchers independently

examined several of the retrieved publications to ensure that they were suitable and

equivalently analyzed. To reduce the risk of subjectivity during the classification and

extraction phase, performed by only one researcher, several publications were examined

by at least two researchers in order to ensure that the returned publications were suitable

and equivalently analyzed.

Methodological triangulation refers to combining different types of data collection

methods, such as a combination of both qualitative and quantitative methods [133], [114].

As illustrated in Figure 4, this type of triangulation was used in this thesis included Papers

A, B, C, E, F, and G, where we have used more than one type of data collection method.

1.5 Overview of Papers

In order to provide an overview of the work presented in this thesis, this section presents

the included studies in this Licentiate thesis and explains how they are related.

Each paper is described in two sub-sections where the first (study summary) describes the

study’s goal, the research questions addressed, the selected research approach, research

category, and, finally, the research method used. In a second sub-section (results) for each

included paper, the results and contributions from each of the included studies are

presented and synthesized. This second sub-section also sets out to discuss how the papers

are related and answers the research question formulated in previous section, Section 1.3

24

1.5.1 Paper A: Managing Architectural Technical Debt: A unified model

and systematic literature review

The following sections will briefly describe Paper A. More details of this study are

reported in Chapter 2.

1.5.1.1 Study Summary

As shown in Figure 4, this research initially started by conducting an SLR. The goal of

this study was to synthesize and compile the current ‘state-of-the-art’ in the ATD field, by

conducting a systematic literature review focusing on the following research areas: ATD

in terms of principal, interest, debt and related challenges and solutions for managing

ATD. Brereton et al. [23] state that software engineering systematic reviews can be

categorized as being qualitative in nature, and, with this information as a background, we

conclude that our study is both qualitative and quantitative in nature, where the qualitative

approach refers to the synthesizing process of the reviewed publication and the

quantitative approach refers to the mapping of the retrieved number of publications into

the study’s unified model. However, the approach used in this paper has a strong emphasis

on a qualitative approach and less of a quantitative one.

The study was conducted by automatically searching in six well-known digital libraries:

the ACM Digital Library, IEEExplore, ScienceDirect, SpringerLink, Scopus, and Web of

Science and also by a manual hand search in all the proceedings of a key conference on

the subject: the International Workshop on Managing Technical Debt (MTD Workshop).

Additionally, we also conducted both a forward and a backward snowballing technique to

the retrieved publications.

The target of the search term was defined to search in both title and abstract, and the search

term (query) contained the keywords: “technical debt” AND architec∗. The search was

conducted in April 2017 and included publications within the timeframe of 2005-2016.

To screen out the most interesting and relevant publications for this review, a filtering

technique based on five different stages was used. In the first stage, 166 publications from

the different data sources were retrieved and merged. The second stage of finding and

removing duplicates resulted in reducing the number of publications to 79. The third stage

was applied after the full texts were retrieved, where each publication was checked using

the defined inclusion and exclusion criteria. This stage returned 38 publications, for which

the snowballing technique was applied in a fourth stage. In stage five, we again applied

the inclusion and exclusion criteria of the publications retrieved using the snowballing

technique, which returned 42 publications for a detailed quality assessment. In the sixth

stage, the publications went through an assessment process, with the goal of assessing the

quality of all publications. Finally, in the seventh stage, data were extracted from each of

the 42 primary publications included. Based on these 42 publications, we conducted a

synthesis including a descriptive synthesis and a quantitative summary (meta-analysis) by

studying selected venues, numbers of publications per venue and publication types, and

publications per year.

25

There was a wide agreement in the reviewed publications that ATD is of primary

importance to software development. However, it was observed that ATD was described

in a scattered and inconsistent manner. Consequently, we concluded that, in order to derive

more value from the results concerning ATD and its effects, a holistic model depicting

different views and their implications at hand was required. We thus constructed a novel

descriptive model that provided an overall understanding of existing knowledge in the

research area of ATD with the aim of providing a comprehensive interpretation of the

ATD phenomenon. This model clarifies the different aspects of each research question and

assembles relationships between them, together with an ATD Identification Checklist,

recognized ATD Impediments, and identified ATD Management strategies.

1.5.1.2 Results

The main objective of this study was to elucidate and contribute to an extended knowledge

base in the research area of ATD and to build a collective platform for future research.

The contributions of this study are both in the academic and practical aspects. First, the

study shows that there is no one unified and overarching description or interpretation for

ATD, and, therefore, we provide a ‘state-of-the-art’ review of significant issues which

identifies aspects of previous studies, and examines how these studies have been

conducted. This study also provides a novel descriptive model which can support the

process of more informed management of the software development lifecycle, with the

goal of raising the system’s success rate and lowering the rate of negative consequences

for both the academic and practitioner community. This will allow practitioners and

researchers to use this model to assess and recognize what problems might occur while

dealing with ATD and the consequences of these challenges being left unattended. This

study also shows that there is a compelling need for supporting tools and methods for

system monitoring and evaluation of ATD, but also shows that no software tools covering

the full spectrum of ATD are yet available. Furthermore, the results demonstrate that

maintenance and evolvability are the main challenges within ATD, due to the fact that all

of the ATD challenges are related to compromises in these quality attributes. This paper

highlights that practitioners, in general, lack strategies for architectural refactoring, and,

therefore, such an activity might result in an ad-hoc process where the results are

inadequate. Consequently, this paper provides several key dimensions that need to be

taken into consideration when defining a refactoring strategy for ATD issues. In addition,

this study demonstrates, to both practitioners and academics, the relevance of paying more

attention and effort to remediate ATD during the software lifecycle, in order to decrease

the level of negative impact due to ATD on daily software development work.

Figure 6 answers RQ1 by illustrating the most significant characteristics of ATD,

addressing the relevance of ATD, different categories of ATD, impediments of ATD in

terms of both challenges and negative effects, and the management characteristics of ATD

with regards to different management activities, available methods/tools, and, finally, a

focus on the different refactory aspects.

26

Figure 6: Characteristics of ATD, based on the results from Paper A.

1.5.2 Paper B: Time to Pay Up - Technical Debt from a Software Quality

Perspective

The following sections will briefly describe Paper B. More details of this study are

reported in Chapter 3.

1.5.2.1 Study Summary

The results of the SLR showed that, within the reviewed publications, the most frequently

identified negative effects caused by ATD were compromises of maintainability and

evolvability, which led to this second study, where we empirically investigated in what

way TD affects different software quality attributes.

The second research question (RQ2) in this thesis addresses how TD affects different

software quality attributes. In order to be able to answer RQ2, we conducted a study with

the aim of understanding which quality issues have the most negative impact on the

software development lifecycle process, and to determine the association of these quality

issues in relation to the age of the software and to relate each of these quality issues to the

impact of different TD types. This study was conducted through a combination of

qualitative and quantitative research approaches and was conducted in three different

stages.

First, we group-interviewed 43 software practitioners, with the goal of understanding

which of the quality attributes were the most negatively affected by having TD. This stage

also included an assessment of compromised quality attributes by an in-depth analysis,

examining nine different TD issues and evaluating the impact each of these had on

different quality attributes listed by ISO/IEC. In the second stage, an online web-survey

was used, providing quantitative data from 258 software participants. In the third stage,

27

we conducted seven semi-structured follow-up group interviews with in total 32 industrial

software practitioners.

1.5.2.2 Results

The second research question (RQ2) in this thesis addresses how TD affects different

software quality attributes, which is addressed in Paper B. This paper provides an

empirically based study on how practitioners experience and perceive TD, in terms of

compromised quality attributes and their relation to wasted working time, based on both

quantitative and qualitative data.

First, the results of this study show that practitioners identified maintenance difficulties, a

limited ability to add new features, restricted reusability, poor reliability, and

performance degradation issues as the quality attributes having the most negative effect

on the software development lifecycle. When analysing these five quality attributes, the

summary statistics from the survey showed that 60% of all respondents frequently or very

frequently encounter maintenance difficulties during the software lifecycle, 45% of the

respondents frequently or very frequently encounter restricted reusability, and 39% of the

respondents frequently or very frequently encounter a limited ability to add new features.

Secondly, we found no evidence for the generally held opinion that maintenance

complications increase with the age of the software. When studying how the different

quality attributes examined were compromised with respect to the age of the software, our

results showed that there were only significant differences in how the respondents

encountered maintenance difficulties regarding its age. Furthermore, our results showed

that, for software that is more than 20 years old and for systems within the age interval of

2-10 years, the respondents encounter maintenance difficulties most frequently, and, for

systems within the interval of 10-20 years, a limited ability to add new features is the most

frequently encountered problem. Respondents who reported restricted reusability as the

most frequently encountered quality issue had software with an average age of less than 2

years. This study thus could not confirm the generally held view that the amount of

compromised quality attributes increases with system age, but our results imply that it is

important to remediate TD very early in the lifecycle in order to the keep the frequency of

compromised quality attributes down.

Thirdly, we show that TD affects not only software productivity (in terms of wasted time)

but also that several quality attributes of the system were negatively affected by TD. The

results showed that there is a significant positive linear correlation between the frequency

of encountering all of the investigated quality issues and the estimated amount of wasted

time. The strongest relationship was found between the frequency of encountering poor

reliability and wasted time, followed by a limited ability to add new features and

maintenance difficulties.

These findings highlight the importance of understanding how TD negatively affects the

overall system quality, in order to proactively manage it in terms of allocating time,

resources and additional effort. These findings provide strong empirical confirmation that

both practitioners and academics need to focus more attention and effort on deliberately

remediating TD, in order to reduce future costly interest payments.

28

1.5.3 Paper C: The Pricey Bill of Technical Debt - When and by whom

will it be paid?

The following sections will briefly describe Paper C. More details of this study are

reported in Chapter 4.

1.5.3.1 Study Summary

From Paper A, it was evident that limited knowledge and few supporting tools are

available to measure the extent of TD within a software application, and, in addition, the

time spent on TD related issues is not made explicitly visible and measurable. The lack of

this knowledge can result in the fact that software development organizations are not

aware of the interest that they are paying on TD, and therefore they might not give TD

management necessary attention.

The third research question (RQ3.1) in this thesis addresses how much software

practitioners estimate the negative impact on daily software development work due to TD.

To answer RQ3.1 and with the result of the previous study (Paper B), addressing the

negative impact TD has on different software quality attributes in mind, the goal of this

study was to empirically investigate how software practitioners perceive and estimate the

interest payment of TD. More specifically, the main goal of the study was to examine the

amount of estimated wasted time caused by TD interest during the software lifecycle. The

aim of this study was also to investigate what type of TD generates the most negative

effect and the activities on which the extra time was spent as a result of experiencing TD.

Furthermore, this study also examined the ways in which the age of the software system

affected the wasted time, the frequency of encountering different TD types, and the

frequency of having to perform the extra activities. Finally, this study also investigates the

ways in which different professional software roles are affected by these artifacts.

To accomplish this goal, we conducted a study using a combination of qualitative and

quantitative research approaches. First, a web survey to seven companies within our

networks with an extensive range of software development was sent out, and invitations

were also published in software engineering related networks on LinkedIn. In total, this

survey returned 258 complete answers (completion rate of 83%). Secondly, we conducted

follow-up interviews with 32 industrial software practitioners, who had all participated in

the first survey. During the semi-structured interviews, the compiled results from the

previous survey were presented to the interviewees, where some of the most interesting

findings were highlighted together with questions related to the specific area of research.

This presentation allowed the interviewees to more easily relate the interview questions to

the results of the survey.

1.5.3.2 Results

The third research question (RQ3.1) in this thesis, attempts to explore how much software

practitioners estimate the negative impact on daily software development work due to TD

to be, which is addressed in Paper C. This study offers a contribution to TD research, with

respect to the existing body of knowledge, in several respects. The single most striking

29

result emerging from this study is that, on average, software practitioners estimate that

36% of all software development time is wasted because of paying the interest due to TD.

The result reveals that the majority of the wasted time is spent on understanding and/or

measuring TD. When studying how different professional roles perceive TD, this result

reveals that different roles are affected differently by TD. We found that different roles

waste time on different activities, hence experiencing different negative impacts of TD.

When examining if, and in what way, the amount of perceived wasted time varies with

respect to the age of the software, this study shows that the degree of the wasted time does

vary. Although the amount of wasted time result does not show a linear progression, the

result shows that wasted time varies in relation to the system’s age. The findings in this

study contribute to new knowledge concerning TD, stressing the importance of the fact

that organizations need to be aware of the amount of time and resources they are spending

on their interest of TD and to deliberately focus on remediating their TD.

1.5.4 Paper D: Impact of Architectural Technical Debt on Daily Software

Development Work - A Survey of Software Practitioners

The following sections will briefly describe Paper D. More details of this study are

reported in Chapter 5.

1.5.4.1 Study Summary

An important and interesting result from the previous study (Paper C) showed that when

software practitioners estimate the negative impact of several different types of TD, they

perceive that ATD generates the most negative impact on their daily software development

work (closely followed by Requirement TD).

The third research question (RQ3.2) in this thesis addresses if and how ATD specifically

generates a negative impact on daily software development work. Based on the previous

result and in order to answer RQ3.2, we conducted a more in-depth analysis of the

architectural related aspects of TD, i.e., ATD.

The goal of this study was to examine how software practitioners perceive and estimate

the impact of ATD during the software development process from several different

aspects. The first goal set out to examine the level of negative effects ATD has on the daily

software development work and compare this level with the negative effects of other types

of TD. Secondly, we aimed to understand if the level of the negative effects due to ATD

correlates with the estimated wasted development time during the software lifecycle.

Thirdly, the negative effects due to ATD is commonly believed to have an increasingly

negative impact with respect to the age of the software. Finally, this study aimed to assess

the extent to which the level of negative effects due to ATD differs in relation to the age

of the system and if different professional roles are affected differently by specific ATD.

The data in this study were collected via a survey. This paper is, to some extent, also

related to our previous paper, Paper C, where we study and compare several different TD

types. However, even if the data are collected using the same survey, this study focuses

on the architectural aspects of TD and does not focus on other types of TD besides ATD.

30

By focusing specifically on ATD, this means that we can provide a more in-depth analysis

of the architecturally related issues of TD and provide more detailed statistical analysis of

the data.

1.5.4.2 Results

The fourth research question (RQ3.2) in this thesis concentrates on ATD specifically and

addresses the ways in which ATD produces a negative impact on daily software

development work. This question is answered in Paper D, in which we study the negative

impact ATD has on the overall daily software development work, with respect to wasted

working time and additional activities performed.

First, the results of this study show that practitioners experience that ATD has the highest

negative impact on daily software development work. The results of the study also show

that the level of negative impact due to ATD is introduced early, and thereafter remains

during the entire software lifecycle. Based on evidence from our survey, this study does

not support the currently held belief that the negative effects due to ATD increase with

respect to the age of the system. This study also provides new insights into ATD research

by showing that, despite the different responsibilities and working tasks of software

professionals, ATD negatively affects all roles without any significant difference between

these roles. This study contributes to an empirical confirmation that software companies

need to invest in continuous refactoring from the conception of the system in order to

maintain the negative effect generated by ATD at a future low level.

1.5.5 Paper E: Technical Debt Cripples Software Developer Productivity

- A longitudinal study on developers’ daily software development

work

The following sections will briefly describe Paper E. More details of this study are

reported in Chapter 6.

1.5.5.1 Study Summary

In the previously presented paper, Paper C, the results show that software developers

estimate that, on average, they waste 36% of their software development time due to

experiencing TD. Even if the respondents in that study were experienced in software

development, and their estimates were likely to be formed by what they have heard,

observed, and experienced at their workplaces, we were intrigued by the idea of

conducting an additional study where the wasted time could be studied by using reported

data instead of single occurrence based on perception and estimates. In order to answer

RQ3.3, we extended the previous research exploration by incorporating a longitudinal

study where 43 software developers, twice a week for seven weeks, reported their

experience and interest due to TD. The goal of this study was to explore the negative

consequences of TD in terms of wasted software development time. This study also

investigates on which additional activities this wasted time was spent and whether

different types of TD impacted the wasted time differently. This study also set out to

31

examine the benefits of tracking and communicating the amount of wasted time, from both

a developer’s and manager’s perspective.

This study was initially presented and discussed during a workshop with several industrial

companies within our network. Thereafter, the study was conducted using three steps,

where the first step was a start-up survey gathering descriptive statistics about the

respondents, the second step collected reported data from the respondents over 14 survey

occasions, and the final step was a follow-up survey in order to collect retrospective

specific data from each respondent. The result was also verified using supplementary

qualitative semi-structured interviews with 16 participating respondents.

1.5.5.2 Results

The third research question (RQ3.3) in this thesis concentrates on the reported (not the

estimated) amount of wasted software development time, in terms of software

development productivity. This research question is examined in Paper E, where the result

is based on a longitudinal study of reported data and interviews with software

practitioners. This study makes a novel contribution to the TD research, where the analysis

of the reported wasted time in this study revealed that developers report that they waste,

on average, 23% of their software development time due to TD and that the wasted time

is most commonly spent on performing additional testing, followed by conducting

additional source code analysis and performing additional refactoring. The results also

reveal that, on a quarter of the occasions where developers encounter TD, they are forced

to introduce additional TD due to the already existing TD.

By studying the tracking process of the wasted time, it was apparent that none of the

examined companies in the study tracked or measured the amount of wasted time due to

TD, and none of the companies had an aligned strategy for addressing the interest of TD.

In addition, this study shows that both developers and managers clearly see the benefits of

tracking the amount of wasted time, but both professions are somewhat reluctant to

implement such measures in practice. This “unwillingness” is recognized as a challenge

for the companies.

1.5.6 Paper F: Looking for Peace of Mind? Manage your (Technical)

Debt - An Exploratory Field Study

The following sections will briefly describe Paper F. More details of this study are reported

in Chapter 7.

1.5.6.1 Study Summary

The previously described studies in Papers A, B, C, D, and E demonstrate the negative

consequences of TD and/or ATD, from both a technical and/or an economic perspective.

However, TD can also affect developers’ psychological states and morale, which is the

focus in RQ3.4. Drawing on the previous literature on morale, this study explores the

influence of TD and its management on three dimensions of morale: affective, future/goal,

32

and interpersonal antecedents. In this study, we followed a mixed-methods approach to

both quantitative and qualitative research. The quantitative approach was performed

through a survey with 33 software developers, and the qualitative part of the study was

conducted through eight semi-structured interviews.

1.5.6.2 Results

The third research question (RQ3.4) in this thesis addresses how TD influences

developers’ morale, and is addressed in Paper F. This study has several contributions to

both software engineering research and practice. The study specifically concentrates on

investigating the influence of TD on developers’ morale, while the study is based on

previous literature on morale, we introduce a novel approach for studying morale within

the software engineering discipline.

The results from this study show that that the occurrence of TD can reduce developers’

morale, where this can be described in terms of the fact that the presence of TD hinders

developers from performing their tasks and achieving their goals. The results further show

that the proper management of TD increases developers’ morale, where the TD

management can have a positive influence on all the different dimensions of morale since

it is associated with positive feelings and interpersonal feedback as well as a sense of

progress.

1.5.7 Paper G: Technical Debt Management: Current State of Practice

The following sections will briefly describe Paper G. More details of this study are

reported in Chapter 8.

1.5.7.1 Study Summary

As previously shown in all the publications mentioned above, TD has a negative impact

on software development from various different perspectives, and the results from these

publications demonstrate the relevance of paying more attention and effort towards

actively managing and remediating TD. Although a great deal of theoretical work on TD

has recently been produced, its practical management lacks empirical studies. When

implementing a TD management strategy, the tracking of the TD is an important key

activity. Therefore, this thesis’ research question (RQ4), focuses on how companies start

tracking TD and the initial benefits and challenges of the tracking process. This study was

conducted using both qualitative and quantitative methods. First, we conducted a survey

of 226 respondents from 15 organizations and followed up with multiple case-studies at

three companies which have started tracking TD. The case study included 13 semi-

structured interviews and collection of 79 TD-related documents.

1.5.7.2 Results

The fourth research question (RQ4) in this thesis examines how software developing

companies track TD and what the initial benefits and challenges are when introducing and

33

starting a tracking process. This research question is answered in Paper G, which

investigates the state of practice in several companies in order to understand how these

companies start tracking TD. The results from this study show that software practitioners

estimate that, on average, they spend a substantial amount of their working time trying to

manage TD (25%) and only a few of them have started tracking TD, where 7.2% of them

apply a systematic tracking process in this regard. The results further show that the major

reasons for this noticeably low proportion of companies having an implemented TD

tracking process are due to lack of knowledge of what is necessary to implement it in terms

of tools and processes, as well as a lack of awareness of what the negative effects of TD

are before they occur. In order to help the initialization process for TD tracking, we

propose a Strategic Adoption Model (SAMTTD). This model can be used by practitioners

to assess their TD tracking process and to plan their next steps.

1.6 Future Research

The work presented in this thesis has its main focus on studying and understanding in what

way and to what extent, TD in general and ATD specifically, influence today’s software

development work. Based on the synthesis of the results from this thesis’ conducted

studies, several different opportunities for future research are provided.

In these studies, we have explored the negative effects of experiencing TD and ATD, and,

in future research, we plan to investigate a range of solutions based on the insights arising

from this study in order to mitigate the negative impact of both TD and ATD.

As illustrated in Figure 7, we have outlined four main tracks of future research, covering

both TD in general and ATD more specifically.

The first track’s main focus is to provide support for the awareness and understanding of

the causes of TD and ATD and thereby contribute to an improved prevention and

limitation mechanism of introducing new TD in the first place. This could be performed

by studying how different software development guidelines and practices contributes to a

reduction of TD and ATD.

Software development companies depend on their software practitioners, such as

developers, testers, and architects, to implement the requested software. Our research

results show that it is important that practitioners are aware of TD and its negative

consequences and thereby also actively work with refactorings and avoidance of

introducing new TD in the software. The second track is related to the first track but has a

more solution-oriented focus, where different approaches to practically encourage and

motivate software practitioners to keep the TD at bay are offered. In this track, we will

investigate if, and how, companies can implement a rewarding system to encourage

practitioners on an individual level or a team or project level to avoid introducing new TD

and rewarding them when reducing the already existing TD by conducting refactoring

activities.

The third track addresses remediation and refactoring strategies in terms of investigating

to what extent different types of remediation and refactoring initiatives can potentially

have a positive effect on the negative effects of TD and ATD.

34

The fourth track aims to understand how TD and ATD remediation and refactoring

activities are prioritized in relation to features and bugs in the agile backlog during

software development sprints and to understand which different artifacts have an impact

on this prioritization process.

Figure 7: Possible directions for future research.

1.7 Conclusion

Returning to the goal of this thesis posed at the beginning of this chapter, it is now possible,

based on the empirical data, to state the negative effects TD and ATD have on software

development from several different aspects, encompassing technical, financial and social

perspectives.

This thesis’ study has a focus on investigating both TD in general and ATD more

specifically, and when studying and comparing different types of TD, this thesis shows

that ATD is of very high importance to software companies and that, among the different

types of TD, ATD is the most commonly encountered type of TD. Furthermore, this study

shows that, compared to all types of TD, ATD has the greatest negative impact on the

daily software development work, estimated by all the different software professional

roles surveyed.

Most commonly in the available academic literature, the negative effects due to TD are

described in terms of maintenance complications and evolvability (limited ability to add

new features) issues of the software. However, this study has been able to show that TD

also has negative effects on software development from many other perspectives, which

are also important and need to be addressed. The results in this thesis show that, in addition

to causing maintainability complications and a limited ability to add new features, TD also

has a negative effect on several other software quality attributes, such as a restricted

reusability, poor reliability, and performance degradations, by providing a quantified

estimation of the negative impact of each of the compromised quality attributes.

Furthermore, this thesis broadly supports the common view presented in academic

literature in this area, where our study empirically shows that almost all the investigated

35

types of TD cause maintenance difficulties as the most frequently encountered quality

issue.When studying the frequency of encountering maintenance complications with

respect to the age of the software, this study did find not any evidence for the generally

held belief that the maintenance complications increase with the age of the software.

This Licentiate thesis also shows that software encountering TD caused software

practitioners to perform additional time-consuming work activities. The time spent on

these activities is referred to as wasted time in this thesis, and, by empirically assessing

the amount of this wasted time, using both estimated and reported numbers by software

practitioners, this study shows that they expend an extensive part of their software

development working time on these activities. One striking result emerging from this

study is that, on average, software practitioners (from several different roles) estimated

that 36% of all software development time is wasted because of paying the interest due to

TD. Furthermore, the results show that developers specifically report that they waste, on

average, 23% of their software development time due to TD. The study also indicates that

this wasted time negatively affects the development productivity and viability of the

software. When studying on which different additional working task this wasted time is

spent, the following activities were identified: performing additional testing, conducting

additional source code analysis and performing additional refactoring.

This study also found that all different software professional roles are affected by TD. The

results also reveal that, on a quarter of the occasions where developers encounter TD, they

are forced to introduce additional TD due to the already existing TD. This burden of being

forced to introduce additional TD demonstrates the contagiousness of TD, inferring that

the interest cost of the TD might potentially grow exponentially.

When studying how TD affects the developers’ morale, it is evident that working with

software experiencing TD can reduce their morale, which can be described in terms of the

issue that the TD hinders them from performing their tasks and achieving their goals. On

the other hand, the results clearly suggest that proper management of TD increases

developers’ morale.

One key necessity to reducing the potentially negative effects of TD, is to track it.

However, this study revealed that only 7% of the investigated companies had applied a

systematic tracking process for TD. One reason for this significantly low number of

companies who have implemented such a tracking strategy for TD can be described in

terms of a lack of awareness of what the negative effects of TD are before they occur.

Another reason is that companies have difficulties in finding supporting tools and methods

to follow and also difficulties in understanding how different types of TD affect the

software, thereby creating problems when prioritizing among them when planning for

refactoring.

The overall results of this thesis empirically demonstrate that software encountering TD

in general, and ATD specifically, causes several different negative effects, from both the

technical, financial and social perspectives. The findings show that software development

organizations need to understand and deliberately refactor TD and ATD in both newer

projects and in more mature software. The findings in this thesis further demonstrate that

the consequences of TD can, over time, result in issues such as project delays, software

36

quality complications, high defect rates, reduced developer morale and very low developer

productivity. In the long run and left unchecked, these issues can seriously impede

organizations’ ability to innovate and grow by impeding innovation and expansion of their

software. The findings indicate that software companies need to be armed with strategies

and proactive management to enable them to track and manage the interest of TD. Such

strategies could result in better, more informed decisions to balance the accumulation and

the repayment of TD.

