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Abstract

Parametric oscillations are well studied phenomena, with applications in amplification,
quantum optics, and quantum information processing. They can occur as a parameter of
a system, such as the resonant frequency, is being modulated or “pumped” by an external
field. A nonlinearity of the system can then transfer power from the pumping frequency
to two frequencies called signal and idler. When the signal falls within a resonance, and
when the pump amplitude exceeds an instability threshold, parametric oscillations occur.
When signal and idler fall within the same resonance, the pumping is called degenerate.

Due to somewhat different implementations, in combination with rich nonlinear physics,
the details of the parametric oscillations can differ in different systems. In this work, we
expand on the research done on parametric oscillations using a superconducting microwave
resonator with a tunable boundary condition. Previously, a degenerate Josephson para-
metric oscillator (JPO) has been demonstrated by modulation of this boundary condition
at twice the resonator’s resonant frequency. We further use the JPO to implement a novel
read-out method for a superconducting qubit. Moreover, we demonstrate a different, non-
degenerate regime of the JPO, which we denote the NJPO, by modulating the frequency
at the sum of two resonant frequencies of a multimode resonator.

Both the JPO qubit read-out and the NJPO have applications within quantum
information processing. The perhaps most promising platform for quantum information
processing is represented by the circuit-QED architecture with superconducting resonators
and artificial atoms, where the two lowest atomic levels represent the qubit. We make these
circuits using lithographic techniques, and control and measure them at low temperature
using microwaves. The qubit’s state is fragile and difficult to read out with high fidelity.
To this end, we have developed a method based on the JPO, in which the qubit state is
mapped onto a zero-amplitude or a large-amplitude state of the JPO. We achieved a large
contrast (185±15 photons), therefore eliminating the need for a following quantum-limited
parametric amplifier. Our readout fidelity was 81.5 %, and by carefully modeling we
can distinguish fidelity loss from the qubit and the readout, respectively. This analysis
displays an actual readout fidelity of 98.7 %.

An alternative model for quantum computing is based on continuous variables, and
uses harmonic oscillators instead of qubits. Entangled states, which can be used as
quantum resources, can then be created, for example, by two-mode squeezing of the
oscillator ground state. The state of the NJPO produces correlated oscillations in its two
modes, which might be useful for continuous-variable quantum computing. In this work
we fully characterize the classical properties of the NJPO, and show good quantitative
agreement with a theoretical model.
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Symbols & Abbreviations

Abbreviations

SQUID Superconducting quantum interference device
cQED Circuit quantum electrodynamics
CPW Coplanar waveguide
JPO Josephson parametric oscillator
NJPO Nondegenerate Josephson parametric oscillator
JPA Josephson parametric amplifier
HEMT High-electron-mobility transistor
SNTJ Shot-noise tunnel junction
AWG Arbitrary waveform generator
LO Local oscillator
IF Intermediate frequency
SNR Signal-to-noise ration

Constants

e Electron charge
h̄ Reduced Planck constant
kB Boltzmann constant
c Speed of light

Superconductivity

ϕ Phase difference across Josephson junction
Ic Critical current of a Josephson junction
LJ Josephson junction inductance
Lsq Josephson inductance of the SQUID
Csq SQUID capacitance
Φ Magnetic flux
Φ0 Magnetic flux quantum
ΦDC DC magnetic flux

v



Resonator parameters

S11 Reflection coefficient
Zin Impedance of a piece of transmission line
Zr Impedance of the resonator including the coupling capacitance
Cc Coupling capacitance
ZC Impedance of the coupling capacitor
C0 Capacitance per unit length
L0 Inductance per unit length
α Real part of the wave propagation constant
β Imaginary part of the wave propagation constant
Z0 Characteristic impedance of the transmission line
vph Phase velocity
d Resonator CPW length
γl SQUID inductance participation ratio
γc SQUID capacitance participation ratio
kn Wave number of mode n
ωn Resonant frequency of mode n
ωλ/4 Bare resonant frequency (without SQUID)
Qc Coupling quality factor
Qi Internal quality factor
Q Total quality factor
λ Wavelength

Parametric oscillations

αn Duffing parameter of mode n
αg Geometric mean of the mode nonlinearities
ε Effective pump strength
δ Pump detuning
δn Detection detuning
ζn Effective pump detuning
∆0 Oscillation frequency detuning
An Intramode field
Bn Incoming field
Cn Outgoing field
Γn0 Coupling rate of mode n
Γn Total damping rate of mode n
Γ Geometric mean of the mode dampings
G Gain
BW Bandwidth
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Qubit parameters

ωr Resonator frequency
ωa Qubit frequency
∆ Qubit-resonator detuning
g Qubit-resonator coupling
H Hamiltonian
â Harmonic oscillator annihilation operator
σ± Raising and lowering operators for the qubit
|n〉 nth qubit level
χ Dispersive shift
T1 Qubit relaxation time
F Readout fidelity

Other

T Temperature
ω Angular frequency
V Voltage
I Current
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Introduction

Superconducting circuits and devices [7, 8] are today found in a variety of systems, such
as MRI and MEG machines at hospitals, particle accelerators, power grids, and many
more. There are three main features that make superconducting circuits so versatile
and useful. Firstly, the absence of electrical resistance allows for very low loss electrical
circuits, as well as the generation of high magnetic fields. Secondly, tunable nonlinear
elements can be implemented, and used, for example, as amplifiers, mixers, and detectors.
Finally, superconducting circuits are very sensitive to their environment, enabling a large
range of different detectors for telescopes, small magnetic fields, etc.

Here, we use superconducting circuits for quantum information processing, which will
be discussed later. During the last two decades, superconducting circuits have played a
large role in the development of what is now the circuit quantum electrodynamics (cQED)
architecture [9, 10]. In other words, the study of light-matter interactions at the level
of quanta of energy using circuits. In cQED there are three main building blocks. The
first is the resonator. A typical example of a resonator is the LC circuit. A resonator
can be seen as a storage for energy, and is characterized by its resonant frequency and
by its quality factor, which quantifies for how long energy can be stored. In cQED, the
resonator is implemented using superconductors to achieve high quality factors.

The second block is the superconducting quantum interference device (SQUID) [11].
The SQUID, consisting of two superconducting Josephson tunnel junctions connected in
parallel, forming a loop that threads a magnetic flux, is essentially a tunable nonlinear
inductance. The tunability allows for precise and rapid modulation of different circuit
parameters, such as resonant frequencies [12] and couplings [13]. The nonlinearity of
the Josephson junctions, and the fact that it can be made strong, is what allows for the
generation of nonclassical states to study quantum phenomena.

The third and final block is the quantum bit (qubit). A qubit is a two-level system,
analog to a bit in a classical computer. However, the qubit can be in a coherent
superposition of its two levels, and entangled with other qubits. Moreover, a qubit
can be used as an artificial atom. The artificial atom can be used to study how light and
atoms interact. The benefits of using circuits and not real atoms are that it is easier to
isolate and manipulate a circuit, and that is easier to engineer its properties.
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1. INTRODUCTION

1.1 Parametric and nonlinear effects

Parametric pumping refers to the pumping (modulation) of one of the parameters of a
system. In the case of a resonator there are two possibilities, either to modulate the
damping or the resonant frequency. When placing a SQUID at the current antinode of the
resonator, its resonant frequency will depend on the magnetic flux through the SQUID.
By modulating the magnetic field with a sinusoidal signal, and therefore the resonant
frequency, different parametric effects such as amplification [14] and frequency conversion
[15] can be realized.

The SQUID also introduces a nonlinearity in the resonator. Nonlinear dynamical
systems are popular in textbooks, where effects such as harmonic generation, bifurcation,
and chaos are studied [16, 17].

In this work, a phenomenon called parametric oscillation is studied and utilized.
By frequency modulating a resonator at twice its resonant frequency, and with a large
amplitude, the ground state of the resonator becomes unstable, and therefore the resonator
starts to oscillate at its resonant frequency. These oscillations are said to be self-sustained,
since there is no external drive of the system at the resonant frequency. Parametric
oscillations have been observed in variety of systems, such as optical and microwave
cavities [18, 19]. We demonstrate a different regime by using a multimode resonator and
a frequency modulation at the sum of two resonant frequencies. This regime is referred to
as nondegenerate parametric oscillations.

1.2 Quantum computation

Quantum bits are the fundamental building blocks for quantum computers, and supercon-
ducting qubits are one of the most promising architectures for building such a system
[20, 21]. A quantum computer is envisioned to be able to solve problems that are today
intractable on classical computers, such as prime factorization and quantum simulation
of molecules. For each specific problem, a quantum algorithm needs to be found that
not only utilize the quantum properties of the qubits, but also yields the correct result
when measuring the qubits’ states. [22]. To build a successful quantum computer, several
criteria need to be fulfilled [23], which are related to, among other things, coherence,
control, and readout.

In this work, we study a method for reading out the state of a superconducting
qubit using a parametric oscillator. There are two important criteria for the readout,
it should be quantum nondemolition (QND) and single shot. QND refers to that after
the measurement, the qubit should be in the eigenstate corresponding to the measured
eigenvalue [24]. A single shot measurement yields the correct state every time, and can
be quantified with a fidelity, i.e. the probability of yielding the correct state.

Another architecture for quantum computing is based on continuous variables (CV)
where harmonic oscillators (resonators) replace the qubits [25]. Harmonic oscillators have
an infinite parameter space, in contrast to qubits which have two energy levels. However,
a harmonic oscillator is usually thought of as a classical system. So to do quantum
information processing, nonclassical states of the harmonic oscillator are created, such
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1.3. THESIS OUTLINE

as superpositions of Fock states [26], entangled two-mode squeezed states [27–29], and
multi-photon cat states [30]. In the creation of these states, parametric phenomena play
a large role.

Nondegenerate parametric oscillations have shown both two- and three-mode entan-
glement in the optical regime. The microwave nondegenerate parametric oscillations
demonstrated here have an important qualitative similarity to the optical ones, namely
a continuous degeneracy of the oscillator state. This degeneracy should lead to large
fluctuations under the effect of vacuum noise, and as a result of this, the state might be
non-Gaussian [31]. A non-Gaussian state is necessary for universal quantum computing
with continuous variables [32].

1.3 Thesis outline

This thesis introduces and summarizes the work of two papers. Chapter 2 introduces
some of the necessary theory for understanding the superconducting devices used. Brief
descriptions of how the devices are fabricated and measured are provided.

Chapter 3 treats the self-sustained parametric oscillations. The theoretical framework
used is briefly outlined for both degenerate and nondegenerate parametric oscillations. It
also summarizes the main experimental results regarding the demonstration of nondegen-
erate parametric oscillations in Paper A.

Chapter 4 covers the basics of superconducting qubits and how they are controlled
and read out using the dispersive coupling regime. Then, the method of reading out a
qubit’s state using a parametric oscillator with high fidelity is demonstrated, which is the
results from Paper B. An important part of that paper was to understand the origin of
the fidelity loss, which was done using a Monte-Carlo simulation.

Chapter 5 summarizes the main findings of this work and gives some outlook on future
work.
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2

Superconducting microwave
resonators

Microwave resonators are fundamental parts of many electrical circuits. Such a resonator
can be used to store electromagnetic energy in the microwave regime, to filter noisy signals,
to stabilize oscillators, and to achieve high electric fields [33]. Superconductors are often
used in applications requiring very low losses (high quality factors), such as in particle
accelerators [34], radiation detectors [35], and quantum devices [21]. In quantum physics,
the electromagnetic field inside a resonator can be quantized and instead described using
particles knows as photons [36]. The quantization of the electromagnetic field leads for
example to the presence of vacuum fluctuations, which means that even in its ground
state, the resonator is still oscillating.

This work is to a great extent dependent on tunable microwave resonators to achieve
parametric oscillations. Moreover, the circuit needs to have low loss, and the resonant
frequencies needs to be modulated fast. To achieve all this, all circuit elements are
fabricated out of superconductors on the same chip using standard micro- and nano-
fabrication techniques. This chapter introduces the basics concepts of superconductivity,
transmission lines, and resonators. Then, it is described how tunable and multimode
resonators can be implemented. At the end, fabrication and measurements of such devices
are described.

2.1 Superconducting circuit elements

As the name suggests, superconductivity is a phenomenon where the conductivity is very
large. In fact, it is infinite for direct currents. However, there is a critical current Ic
which is the maximum current a superconductor can sustain. The microscopics behind
superconductivity is modeled as an effective attractive interaction between the electrons
in the material. Two electrons pair up due to this interaction and creates a so-called
Cooper pair. Cooper pairs, in contrast to electrons, are bosons, meaning that below the
critical temperature Tc they condense into a single ground state. Due to the binding
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2. SUPERCONDUCTING MICROWAVE RESONATORS

between two electrons in a Cooper pair, a gap in the density of states is opened where
electrons cannot exist. Thus, the Cooper pairs can move without scattering inside the
superconductor, yielding zero resistivity. More information about the microscopic theory
and superconductivity in general can be found in Ref. [7].

By separating two superconductors via an insulator, a tunneling barrier is created
where a Cooper pair can tunnel through without dissipating energy. Therefore, it is
possible to draw a current through the barrier without applying any voltage across it.
Mathematically, the effect is described by the two Josephson relations

I = Ic sinϕ, (2.1)

V =
h̄

2e

dϕ

dt
, (2.2)

where I is the current through the junction, Ic is the critical current, V is the voltage
across, ϕ is the phase difference between the two superconductors, h̄ is the reduced
Planck constant, and e is the electron charge. The two equations can be combined by
differentiating Eq. (2.1) and inserting it in Eq. (2.2)

V =
h̄

2e

1

Ic cosϕ

dI

dt
. (2.3)

Recalling the voltage-current relation for an inductance, V = LdI/dt, the Josephson
inductance is defined as

LJ =
h̄

2e

1

Ic cosϕ
. (2.4)

Two Josephson junctions in a loop, as illustrated in Fig. 2.1 (a), creates a direct current
superconducting quantum interference device (DC-SQUID). Any magnetic field through
this loop will introduce a circulating current, effectively decreasing the critical current of
the SQUID. Assuming identical junctions, i.e. the same critical current, Eq. (2.1) modifies
to

I = 2Ic cos

(
π

Φ

Φ0

)
sinϕ, (2.5)

where Φ is the magnetic flux through the SQUID loop and Φ0 = h/(2e) is the magnetic
flux quantum. Similarly to the single Josephson junction, a SQUID inductance is defined
as

Lsq =
h̄

2e

1

2Ic| cos(πΦ/Φ0)| cosϕ
. (2.6)

For a comprehensive review of SQUIDs, see Ref. [11].

Due to the geometry of the Josephson junctions in the SQUID, there is a stray
capacitance Csq in parallel with the SQUID inductance Lsq, which forms an LC resonator.
In practice, the resonant frequency of the SQUID is typically 40 GHz. Above this frequency
the SQUID behaves more as a capacitance than an inductance; thus any device utilizing
the Josephson inductance needs to operate below the this frequency.

8



2.2. TRANSMISSION LINES

e
r

e
0

g w g

F

(a) (b)

Figure 2.1: Illustration of some of the components used. (a) SQUID. It consists of two Josephson
junctions (represented as squares with crosses) in parallel, forming a loop. Φ denotes the magnetic
flux through the loop. (b) A cross section of a co-planar waveguide with a center conductor of
width w and gap to ground planes of width g. The conductor and ground planes are located on a
substrate with a relative dielectric constant εr. Above the CPW there is vacuum, with the relative
dielectric constant 1.

2.2 Transmission lines

Transmission lines are used to guide electromagnetic waves from one point to another.
There are many different types of transmission lines. For microwaves, the most common
ones include coaxial cables, microstrips, and co-planar waveguides. A transmission line
can be described mathematically by the telegraph equations [33], where the transmission
line is modeled as a chain of discrete components. The input parameters to the telegraph
equations are the series inductance per unit length L0, shunt capacitance per unit length
C0, series resistance per unit length R0, and shunt conductance per unit length G0. The
complex propagation constant γ for a wave with travelling with the angular frequency ω in
the transmission line is γ =

√
(R0 + jωL0)(G+ jωC0). For low loss and high frequency

(R0 � ωL0 and G0 � ωC0) the propagation constant simplifies to

γ ≈ 1

2

(
R

√
C0

L0
+G

√
L0

C0

)
+ jω

√
L0C0 = α+ jβ, (2.7)

where α and β are the real and imaginary parts of the propagation constant. In this
approximation, the impedance seen by an incoming wave is Z0 ≈

√
L0/C0. The phase

velocity of the travelling wave is vph = 1/
√
L0C0 = c/

√
εeff , where εeff is the effective

dielectric constant of the media where the wave travels, implying that β = ω/vph and

L0C0 = εeff/c
2. (2.8)

The transmission line used in this work is a co-planar waveguide (CPW) [37], which
is used routinely in both normal and superconducting circuits. A CPW consists of a
center conductor and two ground planes on a dielectric substrate. The center conductor
has a width w, and a gap distance g to the surrounding ground planes, see Fig. 2.1 (b).
The two widths w and g, together with the relative dielectric constant εr, determine the
inductance and capacitance per unit length.

As discussed above, a transmission line has a characteristic impedance Z0. The most
common characteristic impedance for microwave equipment is 50 Ω, thus the CPW needs

9



2. SUPERCONDUCTING MICROWAVE RESONATORS

C
c α, β

d

Z
c

Z
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r
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Figure 2.2: (a) Capacitively coupled quarter wavelength resonator. A piece of transmission
line with the complex wave propagation constant α+ jβ, is shorted to ground in one end, and
capacitively coupled to another transmission line at the other end. The distance d sets the
fundamental resonant frequency ωλ/4 = πvph/2d. Cc is the coupling capacitance. (b-c) Equivalent
impedances models.

to be designed with the same impedance to avoid reflections at the interfaces. Typically,
the effective dielectric constant of a CPW on a substrate with a dielectric constant εr
is εeff ≈ (1 + εr)/2. This gives the product L0C0 via Eq. (2.8). To get the ratio of L0

and C0 one can use either finite-element electromagnetic simulations via commercially
available software, or the mathematical tool of conformal mapping to transform the CPW
into a geometry where the analytical expression for the capacitance is known [37].

2.3 The quarter wavelength resonator

To realize a microwave resonator, a piece of transmission line can be used. By fixing the
length of the transmission line piece, and the two boundary conditions (usually open or
grounded), see Fig. 2.2 (a), one can calculate the resulting resonant frequencies. Normally,
one of resonator’s ends are used to couple the resonator to another transmission line
which is used to drive and measure the resonator. Refs. [38–40] cover the derivation
of a capacitively coupled transmission line resonator’s frequency response. First, the
impedance of just the piece of transmission line which constitutes the resonator needs to
be found, and re-expressed in terms of quality factors instead of circuit parameters such
as inductance, capacitance, and resistance. Since the transmission lines used here are
superconductive, a low-loss approximation can be done. Then, the impedance due to the
coupling between the resonator and transmission line is introduced, see Fig. 2.2 (b). This
slightly modifies the resonant frequency, so the new resonant frequency needs to be found
together with the external coupling quality factor. When the full system impedance is
determined, Fig. 2.2 (c), the reflection coefficient of that impedance is easily calculated.

The input impedance Zin of a transmission line at a distance d from a load impedance
ZL is [33]

Zin = Z0
ZL + Z0 tanh [(α+ jβ)d]

Z0 + ZL tanh [(α+ jβ)d]
. (2.9)

For a short circuit, ZL = 0, Eq. (2.9) becomes

Zin = Z0 tanh [(α+ jβ)d] = Z0
tanhαd+ j tanβd

1 + j tanβd tanhαd
= Z0

1− j tanhαd cotβd

1 + j tanhαd− j cotβd
,

(2.10)

10



2.3. THE QUARTER WAVELENGTH RESONATOR

Assuming a resonant frequency ωλ/4 for a quarter wavelength d = λ/4 gives

βd =
ωd

vph
=
ωλ/4d

vph
+

∆d

vph
=
π

2
+
π

2

∆

ωλ/4
, (2.11)

where ∆ = ω − ωλ/4 is the detuning from the resonant frequency. To get rid of the
different trigonometric and hyperbolic terms in Eq. (2.10), Eq. (2.11) is used together
with the assumption that ∆/ωλ/4 � 1, which yields

cotβd = cot

(
π

2
+
π

2

∆

ωλ/4

)
= − tan

π

2

∆

ωλ/4
≈ −π

2

∆

ωλ/4
. (2.12)

The internal Q-factor of the transmission line is defined as Qi = β/2α. For low
loss transmission lines, which is the case for superconducting co-planar waveguides,
tanhαd = tanhβd/2Qi ≈ βd/2Qi. In combination with Eq. (2.10) and Eq. (2.12), this
gives an approximate input impedance without trigonometric and hyperbolic terms

Zin ≈ Z0

1 + j βd2Qi

π
2

∆
ωλ/4

βd
2Qi

+ j π2
∆
ωλ/4

≈ Z0

π
4Qi

(
1 + ∆

ω

)
+ j π2

∆
ωλ/4

≈ 4Z0Qi/π

1 + j2Qi
∆
ωλ/4

. (2.13)

The only circuit parameter remaining is the characteristic impedance Z0, the rest have
been absorbed in ωλ/4 and Qi.

To interact with the resonator, a coupling between the resonator and a second trans-
mission line is needed. In this work, a capacitive coupling to a transmission line with
the characteristic impedance Z0 is used. The series impedance of the resonator and the
coupling is

Zr = Zin −
j

ωCc
=

4Z0Qi/π

1 + j2Qi
∆
ωλ/4

− j

ωCc
, (2.14)

where Cc is the coupling capacitance. To translate Cc into a coupling quality factor Qc,
one can use the definition of the quality factor Qc = Eωλ/4/P , where E is the total energy
stored in the resonator, and P is the power lost through the capacitor. On resonance,
half of the energy in the resonator is stored in the electric field. Therefore, integration of
the voltage along the resonator can be used in the formula for the electric energy stored
in a capacitor CV 2/2 to find the total energy in the resonator

E = 2

∫ d

0

1

2
C0

[
Vrms sin

(
2π

4d
x

)]2

dx =
1

2
C0V

2
rmsd =

πV 2
rms

4ωλ/4Z0
, (2.15)

where Vrms is the voltage at the coupling capacitor, and Irms is the current through the
capacitor. The same current will flow in the transmission line, implying that the power
lost through the capacitor into the transmission line is P = I2

rmsZ0 = Z0V
2
rmsω

2
λ/4C

2
c .

Therefore, the coupling quality factor is

Qc =
E

P/ωλ/4
=

π

4Z2
0ω

2
λ/4C

2
c

=⇒ ωλ/4Cc =

√
π

4Z2
0Qc

. (2.16)
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2. SUPERCONDUCTING MICROWAVE RESONATORS

The impedance of the resonator and the coupling, Eq. (2.14), can be rewritten in
terms of Qc using Eq. (2.16) in the following way

Zr =
4Z0Qi/π

1 + j2Qi
∆
ωλ/4

− j2Z0

√
Qc

π
. (2.17)

Due to the loading of the resonator via the capacitive coupling, the resonant frequency is
changed. The resonance condition is given by Im(Zr) = 0, evaluating to

∆

ωλ/4
= − 1√

πQc
. (2.18)

Therefore, the loaded resonant frequency has to be redefined accordingly, giving the final
resonator impedance close to the resonant frequency

Zr ≈ 2Z0

√
Qc

π

2Qi
∆
ωλ/4

− j

1 + j2Qi

(
∆
ωλ/4

− 1/
√
πQc

) . (2.19)

In this work, the measured quantity is the reflection coefficient of the resonator, which
evaluates to [33]

S11 =
Zr − Z0

Zr + Z0
≈

∆− j
(
ωλ/4
2Qi
− ωλ/4

2Qc

)

∆− j
(
ωλ/4
2Qi

+
ωλ/4
2Qc

) =
∆− i(Γi − Γ0)

∆− i(Γi + Γ0)
, (2.20)

where the internal (external) loss rates are defined as Γi = ωλ/4/2Qi (Γ0 = ωλ/4/2Qc).
Finally, the total loss rate is Γ = Γi + Γ0, equivalent to 1/Q = 1/Qi + 1/Qc, where Q is
the total quality factor.

2.4 Frequency-tunable resonators

The resonators described so far are fixed in frequency, which in some applications is
sufficient. However, in this work, resonators with a tunable resonant frequency are needed.
Not only do they need to be tunable, but for parametric pumping the resonant frequency
needs to be modulated faster than the resonant frequency itself. To achieve fast frequency
tunability, a DC-SQUID is placed at the grounding point of the resonator where the
current is maximum [12], as shown in Fig. 2.3 (a). The inductance of the SQUID, Lsq,
gives an additional phase shift, which is equivalent to an increase in the resonator’s
electrical length. The fundamental resonant frequency ω1 of the SQUID-terminated
resonator can be approximated by [41]

ω1(F ) ≈ ωλ/4

1 + γl/| cos(πΦ/Φ0)| , (2.21)

where ωλ/4 is the resonant frequency without the SQUID, and γl is the inductive partici-
pation ratio defined as γl = Lsq/L0d.
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2.5. MULTIMODE RESONATORS

Incorporation of a SQUID into the resonator does not only enable frequency modulation,
it also adds a nonlinearity to the system due to the cosine dependence between current
through and phase across the junction. By Taylor expanding Eq. (2.5) to third order, the
relation becomes

I = 2Ic cos

(
π

Φ

Φ0

)
sin(ϕ) ≈ 2Ic cos

(
π

Φ

Φ0

)
(ϕ− ϕ3/6). (2.22)

The cubic term is known as the Duffing term, or Kerr term in optics. The presence of
a cubic term leads to nonlinear effects, for example a lower effective critical current for
higher currents. This causes a power dependent frequency shift of the resonator, which can
be quantified by αn, the amount of negative frequency shift per photon in the resonator
[42].

2.5 Multimode resonators

So far, only the fundamental mode of the quarter wavelength resonator has been examined.
However, as the co-planar waveguide resonator is of the distributed type, higher harmonics
also exist. As long as the voltage profile fulfills the given boundary condition, the voltage
can have arbitrary number of nodes inside the piece of transmission line. For the tunable
resonator described above, the modes exist at ωn ≈ (2n − 1)ω1, where n = 1, 2, 3, ... is
the mode number. This relation is only approximate since the phase drop across the
SQUID modifies the mode frequencies differently for each mode, creating an anharmonic
spectrum. The spectrum of the tunable multimode resonator can be found be solving the
dispersion equation [43, 44]

knd tan knd =
|cos (πΦ/Φ0)|

γl
− kndγc, (2.23)

where knd = πωn/2ωλ/4 and γc = Csq/C0d is the capacitive participation ratio. In Fig. 2.3
(b), the six lowest modes calculated using Eq. (2.23), together with experimental data
for three of the modes, are seen as a function of magnetic flux through the SQUID loop.
Each mode of the resonator is characterized by its resonant frequency ωn, external loss
rate Γn0, total loss rate Γn, and Duffing nonlinearity αn.

2.6 Fabrication

To realize the circuits just described, modern micro- and nano-fabrication techniques are
used. The resonator and the transmission lines consist of co-planar waveguide with gaps
between the center conductor and the ground planes on the order of micrometers. To
create tunable resonators, SQUIDs and on-chip flux lines are needed. A typical device
is depicted in Fig. 2.4. The Josephson junctions of the SQUIDs have features down to
100 nm.

For the dielectric substrate, two materials are used. Either (0001) sapphire or intrinsic
high-resistivity (100) silicon. These materials are chosen due to their low dielectric
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2. SUPERCONDUCTING MICROWAVE RESONATORS

F

(a) (b)

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Figure 2.3: Overview of a tunable multimode resonator. (a) The SQUID terminated resonator,
with an inductively coupled microwave line that can be used to change the magnetic flux Φ
through the SQUID loop. (b) Resonant frequencies of the six lowest modes, as a function of
magnetic flux through the SQUID loop. These frequencies are calculated for a resonator with
ωλ/4/2π = 919 MHz, γl = 0.02, and γc = 0.009. Open circles are experimental data, showing
good agreement with the theoretically calculated frequencies.

losses, yielding high internal quality factors of the resonators [45]. Even though sapphire
has lower losses than silicon in the bulk, the dominating surface losses brings them to
comparable levels [46]. Moreover, from a fabrication point of view, both substrates have
their advantages and disadvantages. For example, sapphire is insulating which makes
it charge up during electron-beam lithography (EBL) and scanning-electron microscopy
(SEM), on the other hand it is difficult to etch niobium selectively to silicon.

An overview of the fabrication processes is presented below. For more detailed
information about the fabrication on the devices used in this work, see Appendix A and
Ref. [47].

First, the substrate wafer is cleaned thoroughly in solvents to remove organic residues
on the surface. In the case of silicon, a hydroflouric acid (HF) dip is performed just prior
to loading into the deposition system. The HF removes the native surface oxide known
to host a large density of charged two-level fluctuators, which are responsible for a large
part of the surface loss [48]. However, the oxide is regrown quickly if the bare silicon is
exposed to air [49]. Therefore, it is important to load into the vacuum of the deposition
system within minutes of the HF dip.

The superconductor used for the resonators in this work is niobium. A thin film of
niobium (80-90 nm) is sputtered onto the substrate using a near UHV, DC magnetron,
sputtering system. The deposited niobium covers the entire surface of the wafer. Subse-
quently, the niobium is patterned using either electron-beam lithography or direct-write
laser (DWL) lithography system. The pattern is transferred to the niobium using an
inductively-coupled reactive ion plasma of NF3.
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2.6. FABRICATION

(a) (b)

(c)

Fluxline

Input/output

SQUID

Figure 2.4: Micrographs of a typical tunable resonator. (a) Full sample with the on-chip fluxline
at the top, and the input/output port with the coupling capacitor at the bottom. The resonator is
meandered to fit in a smaller chip. This chip is 5x7 mm. (b) SQUID together with the inductive
coupling between the fluxline and the SQUID loop. (c) Coupling capacitor.
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2. SUPERCONDUCTING MICROWAVE RESONATORS

The last part of the fabrication is to create the SQUIDs and divide the wafer into
individual chips. This is done by first using electron-beam lithography on a bilayer resist
system. The pattern is two rectangles, separated by a short distance, creating a free
standing bridge. Before development, the wafer is diced into 5 mm2 × 7 mm2 chips using
a diamond-blade saw. Then, the resists on the chips are developed separately using two
different chemicals. This allows for precise control of the undercut size, which is crucial for
having a free-standing bridge. One chip at the time is then inserted into a electron-beam
evaporator only equipped with aluminum targets, which minimizes the probability of cross
contamination. Inside the vacuum chamber there is also an ion gun used to etch the native
niobium oxide before evaporation. A sequence of two evaporations with an oxidation step
in between, creates the three layers of the Josephson junctions. The first evaporation is
done from an angle −θ, forming the first electrode of the Josephson junctions. Then the
top part of the electrode is oxidized with a controlled oxygen pressure inside the chamber,
thus creating the insulating part. Lastly, a second evaporation is done from an angle θ,
overlapping the oxidized aluminum, forming the second electrode. The excess aluminum
is finally lifted off.

2.7 Cryogenic measurements

To experimentally find the resonant frequencies and their associated quality factors, a
vector network analyzer (VNA) is used to measure the reflection coefficient S11 as a
function of frequency. By fitting the measured reflection coefficients to Eq. (2.20), the
resonant frequency, and internal and external quality factors can be extracted. However,
due to the small physical cross sections of the resonators, their resistance per unit length
R0 is large when the niobium is not superconducting and therefore the resonators cannot
be measured at room temperature. To achieve the cryogenic temperatures needed, a
commercially available dilution refrigerator is used. The chip containing the resonator
is wirebonded to a printed circuit board inside a connectorized gold-plated copper box,
which is mounted on the mixing chamber of the refrigerator. Cooling to a temperature of
3 K is done using the second stage of a pulse-tube cryocooler [50]. However, close to Tc
(9.3 K for niobium) there is still a large population of quasiparticles (unpaired electrons),
yielding microwave losses [51]. Therefore, a temperature Tc/10 is typically required to
avoid this effect.

Moreover, to observe quantum phenomena, the temperature needs to be much lower
than the thermal energy corresponding to the frequency of the resonator. For example,
h̄ω/kB ≈ 300 mK, where ω/2π = 6 GHz. Ideally the temperature should then be below
30 mK. This is achieved by the dilution unit in the refrigerator. A phase boundary in
a mixture of helium-3 and helium-4 is used to reach temperatures around 10 mK [52],
allowing measurements almost unaffected by thermal fluctuations and quasiparticles.

To change the magnetic flux through the SQUIDs, there are two possibilities, an
external coil, or an on-chip flux line. The external coil is mounted on the outside of the
sample box, ideally providing a uniform magnetic field field across the chip. However,
this field cannot be modulated fast. For fast modulation, an on-chip flux line provides
magnetic fields locally to the SQUID and can be modulated by a microwave signal.
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SAMPLE BOX

10 mK

300 K

3 K

50 K

1 K

100 mK

300 K

-21-20-10-3 -6-50

VNA

-1-20-10-3 -6

+40+23+23

Figure 2.5: Schematic of a typical cryogenic and microwave setup for measuring tunable su-
perconducting resonators. Each solid box corresponds to a radiation shield at the indicated
temperature. The dashed box only shows the temperature of that stage since there is no radiation
shield there. The attenuators (grey rectangles) are thermalized at the indicated temperature stages.
Two circulators are used to provide isolation between the thermal noise of the amplifier and the
resonator.
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2. SUPERCONDUCTING MICROWAVE RESONATORS

The microwave setup can be divided into two parts: inside and outside of the cryostat.
An illustration of the setup inside the cryostat is seen in Fig. 2.5. The input signals
are attenuated on their way down from room temperature to 10 mK. This serves three
purposes: first, it thermally anchors the lines to the different stages of the cryostat.
Secondly, it yields the appropriate signal powers at the resonator input. Finally, it also
attenuates the thermal noise generated at the different temperature stages inside the
cryostat. The attenuation of the input line is 110 dB, whereof 60 dB is inside the cryostat.
For the flux line, the attenuation is 40 dB, all inside the cryostat. Additionally, there is
extra attenuation in the microwave components such as cables, filters, and circulators,
due to their finite insertion loss.

In this work, the resonators used are one port devices. However, for practical reasons,
the input and output to the resonator is separated into two lines. To achieve this, a
microwave circulator is used. The input line is attenuated as described above, whereas
the output line is not attenuated. Moreover, the output path contains amplifiers to bring
the power up to measurable levels. The amplification is done in two stages: first, by a
high electron mobility transistor, low noise amplifier (LNA), with a noise temperature of
2 K mounted at the 3 K stage of the cryostat. The second stage is outside the cryostat,
where two cascaded amplifiers boost the signal even further. If the gain of the LNA is
high enough, its noise temperature determines the total system noise. The gain of the
LNA used is 40 dB, and the room temperature ones are 23 dB each.
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3

Parametric oscillations in
tunable microwave resonators

The first observation of self-sustained parametric oscillations was done in a second-order-
nonlinear (χ(2)) optical cavity, by pumping the cavity at twice its resonant frequency
(degenerate case) [18]. When the pump amplitude exceeded an instability threshold,
oscillations were observed at half the pump frequency. Pumping at the sum of two
resonant frequencies (nondegenerate case) lead to correlated oscillations in both modes
[53]. Entanglement between the two modes was demonstrated [54], and also extended to
include the pump mode, yielding a three-mode-entanglement [55].

In the microwave domain, frequency-tunable superconducting resonators based on
Josephson junctions are versatile tools. Two parallel Josephson junctions form a super-
conducting quantum interference device (SQUID), which acts as a magnetic-flux-tunable
inductance, therefore enabling frequency modulation via inductively coupled microwaves
[12]. When a frequency-tunable resonator is driven parametrically, below the threshold
amplitude, it provides amplification at the quantum limit [14, 56, 57] and entangled
two-mode squeezed states [27, 29]. Above the threshold amplitude, parametric oscillations
occur [19].

For a theoretical analysis of parametric oscillations in a SQUID terminated resonator,
a field amplitude formalism was developed in Refs. [42, 44]. There, Langevin equations for
the field in the resonator mode, An, was derived. The following two sections summarize
the key results of that work.

The measurement results at the end of this chapter are solely on nondegenerate
parametric oscillations. However, the theory for the degenerate case is relevant for
understanding and the single-shot qubit readout chapter. Experimental results for
degenerate parametric oscillations is found in Ref. [19].
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3. PARAMETRIC OSCILLATIONS IN TUNABLE MICROWAVE RESONATORS

3.1 Degenerate parametric oscillations

Parametric pumping at twice a resonant frequency is referred to as degenerate pumping.
This is effectively three-wave mixing, where the signal and idler are at the same frequency.
In a quantum picture, it can be seen as a split of one pump photon with frequency ωp
into two equal signal photons in mode n of frequency ωn = ωp/2, implying that there is
always an even number of photons produced at ωn. When the pump strength overcomes
an instability threshold set by the mode loss rate Γn, the resonator starts oscillating at
ωn even in absence of an external drive at that frequency.

In Ref. [42], the equation of motion for the intramode amplitude An for degenerate
parametric pumping in a rotating frame at ωp/2 = ωn + δ is derived as

iȦn +
(
δ + αn|An|2

)
An + εA∗n + iΓnAn =

√
2Γn0Bn, (3.1)

where δ = ωp/2− ωn is the pump detuning, ε is the parametric pump strength, αn is the
Duffing parameter, Bn is an external drive field, and A∗n denotes the complex conjugate
of An. Due to the external coupling with strength Γn0, the intramode fields couples into
the transmission line. Therefore, the outgoing field Cn is related to the incoming and
intramode fields as

Cn = Bn − j
√

2Γn0An. (3.2)

The normalization of the fields is such that |An|2 is equivalent to the average number of
photons in the nth mode; hence |Bn|2 and |Cn|2 are the in- and outgoing photon rates.

The term αn|An|2 is effectively increasing δ, equivalent to a lower resonant frequency.
This is the Duffing, or Kerr, effect due to the cubic nonlinearity of the current-phase
relation of the SQUID.

In the steady state, Ȧn = 0, and for no external drive, Bn = 0, Eq. (3.1) has three
solutions

I. The trivial solution An = 0. However, it is only stable for ε < Γn or |δ| >
√
ε2 − Γ2

n.

II. The excited state solution |An|2 =
(
−δ +

√
ε2 − Γ2

n

)
/αn. This solution is stable

for ε ≥ Γn and δ ≤
√
ε2 − Γ2

n.

III. The third solution has the same amplitude and stability as 2, although, its phase is
shifted by π radians.

The regions of stability can be visualized by plotting the excited state amplitudes, see
Fig. 3.1 (a). In the absence of nonlinearities, the oscillation amplitude would diverge and
increase indefinitely. However, due to the Kerr effect, δ increases as the amplitude |An|
increases, thus stabilizing the oscillations.

The excited state of the degenerate parametric oscillator has two π shifted solutions,
see Fig. 3.1(c). Switching between the two states is possible [58] and has been observed [19].
It has been proposed that one could create a coherent superposition of the two states [59],
forming a so called Schrödinger’s cat state, which is a resource in quantum information
processing [60]. The frequency of the parametric oscillations is always centered around
ωp/2, and the frequency width is given by the switching rate between the states.
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(a)
(b) (c) (d)

I

III II

Figure 3.1: (a) Theoretical steady-state intensities |An|2 of a degenerate Josephson parametric
oscillator as a function of pump detuning δ and amplitude ε. Inside region I, only the ground
state is stable (b). In region II, only the excited state is stable (c). Finally, in region III, boths
states are stable (d). (b-d) Phase-space distributions for the three different stability regions.

3.2 Nondegenerate parametric oscillations

Nondegenerate pumping refers to when the pump frequency equals the sum of two resonant
frequencies. Then, the signal and idler are separated into two different modes, and the
pump frequency is ωp = ωn + ωm + 2δ, where n ≥ 0 and m > n, and δ is the pump
detuning. In the quantum picture, the photons are again created in pairs, so that if a
photon is detected in mode n, it is certain that there is a photon also in mode m. It is
therefore easy to understand that there should be entanglement in such a system.

Similarly to the degenerate case, equation of motions for the intramode fields An and
Am can be derived in the corresponding rotating frames ωn,m + δ [44]

iȦn + (ζn + iΓn)An + εA∗m =
√

2Γn0Bn,

iȦm + (ζm + iΓm)Am + εA∗n =
√

2Γm0Bm, (3.3)

where ζn and ζm are effective detunings equal to

ζn = δ + αn|An|2 + 2αg|Am|2,
ζm = δ + αm|Am|2 + 2αg|An|2. (3.4)

For simplicity, the geometric means of dampings Γ =
√

ΓnΓm, and Duffing terms αg =√
αnαm, are introduced. The second terms in Eq. (3.4) are again the Duffing or Kerr

effects. Similarly, the third terms are equivalent to cross-Kerr effects. Both the Kerr and
cross-Kerr lead to larger effective detunings ζn, resulting in lower resonant frequencies, as
the intramode fields increase.

In the steady state, Ȧn = Ȧm = 0, and with no input fields, Bn = Bm = 0, Eq. (3.3)
can be solved to produce the following expressions for the excited state intensities |An|2
and |Am|2:

|An|2 =
2Γm(δth(ε)− δ)

R
, |Am|2 =

2Γn(δth(ε)− δ)
R

, (3.5)

where R is a constant R = αnΓm + αmΓn + 2αg(Γn + Γm), and the pump-dependent
threshold detuning δth is given by

δth(ε) =
Γn + Γm

2

√
ε2

Γ2
− 1. (3.6)
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The finite steady-state amplitudes is only stable for ε ≥ Γ and δ ≤ δth. The ground
state An = 0 is stable for ε < Γ and |δ| > δth, thus three different regions exist in δ-ε
space:

I. For ε < Γ or δ > δth the ground states An = Am = 0 is stable.

II. For ε ≥ Γ and |δ| ≤ δth the excited states |An| and |Am| are stable.

III. For ε ≥ Γ and δ < −δth both states are stable.

These are the same regions as for the degenerate case, see Fig. 3.1.
Where the phase of the degenerate parametric oscillations had a bi-stability, the

nondegenerate parametric oscillations have a continuous degeneracy. The steady-state
phases of the mode fields are denoted by θn and θm. Their sum is given by

θn + θm = Θ ∈ {π/2, π}, tan Θ = −1/
√
ε2/Γ2 − 1, (3.7)

while their difference θn−θm is undefined. Therefore, the intermode phases have continuous
degeneracies between −π and π.

To study the effect of vacuum noise on the system, and more specifically its quantum
properties such as entanglement, one would theoretically linearize around the classical
solution and consider small deviations due to the noise. Here however, the large fluctuations
in phase impose a problem as they are present already in the classical part, implying
that it is not possible to linearize the model. Therefore, we are not able to perform any
quantitative analysis of the noise in the quantum regime.

When solving for the steady state, another rotating frame is needed to obtain stationary
solutions, namely ωn + δ + ∆0 for mode n, and ωm + δ −∆0 for mode m, where

∆0 =
Γnζm − Γmζn

Γn + Γm
. (3.8)

This is in contrast to degenerate parametric oscillations where the oscillation is always
at ωn + δ, equal to half the pump frequency. The frequency shift is dependent on the
asymmetry of the modes, i.e. , Γn = Γm and αn = αm would yield ∆0 = 0.

3.3 Measurement techniques

The cryogenic measurement setup is very similar to the one in Chapter 2. The main
difference is at room temperature, where a vector digitizer detects the outgoing microwave
signals. The digitizer downconverts the signal using heterodyne mixing to an IF frequency
of 187.5 MHz, which is then sampled with an analog-to-digital converter (ADC) at 250
MS/s, illustrated in Fig. 3.2 (a). After digitization, an onboard FPGA filters and processes
the signal by digital down conversion to zero frequency, as well as decimating it to an
effective sampling frequency fs [61]. It is important to choose the effective sampling rate
high enough so all signals of interest are captured, but not much wider than that to
minimize the amount of noise in the measurement. From the digitizer, the quadratures of
the complex voltage, I(t) and Q(t), are transferred to a computer for further processing.
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Figure 3.2: (a) Measurement setup using a heterodyne detection scheme for detection of parametric
oscillations. The outgoing signal is split to allow for detection at two frequencies far separated in
frequency. The signals are then downconverted to an intermediate frequency using microwave
mixers and signal generators. The downconverted signals are digitized with analog-to-digital
converters (ADC). All signal generators and the ADCs are reference locked to the same 10 MHz
signal (represented by the red lines) to ensure phase stability over time. (b) Micrograph of the
device used to demonstrate nondegenerate parametric oscillations.
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The total power is calculated as P = 〈I(t)2〉+ 〈Q(t)2〉, where the voltages are assumed to
be over a 50 Ω resistor.

One complication when measuring power instead of amplitude is that the noise X(t)
doesn’t average to zero, 〈X(t)〉 = 0 6=⇒ 〈X(t)2〉 = 0. This implies that any measurement
of the parametric-oscillation power will also include the power of the noise. However,
by assuming that the noise is constant in time, the noise can be measured separately
and subtracted from subsequent measurements. The measured output power can then
be translated to output field intensity via |C|2 = (P − Pnoise)/Gh̄ωd, where Pnoise is the
system noise power, G is the gain of the system, and ωd is the detection frequency.

For simultaneous detection of two modes far separated in frequency, two vector
digitizers are used. The digitizers uses two different, but phase locked, local oscillators.
This ensures phase stability between the digitizers, which is important when correlating
signals between the modes. One might ask, how can there even exist a phase relation
between two signals with different frequencies? The answer is that the phase relation
only exist under certain circumstances. One being when one frequency is a multiple of
the other, or if the frequencies are connected to a third frequency which acts as a clock,
i.e. ωp = ωn + ωm. It is also important to start the data acquisition for the digitizers
simultaneously. This is achieved by a clock module, which distributes a common trigger
signal to both digitizers in cables of equal length.

Due to the complexity of the measurements, such as the amount of data and instruments
involved, computers are needed for synchronous hardware control and data logging. This
work uses LabberTM for all instrument control, measurement automation, and data
logging1. Each physical instrument has its own software instrument driver. The drivers
are responsible from translating from a general command to a instrument specific command.
For example, the user might request that the frequency of a signal generator to be set to
5 GHz. The driver then translates this to a command that the instrument understands.
Most instruments are controlled via the standard commands for programmable instruments
(SCPI) over either GPIB or Ethernet. Some instruments however, are mounted in a
PXI rack requiring PCI communication. In general, these instruments do not follow the
SCPI. Instead, they have their own dynamic-link libraries (DLL) for communication. For
integration with Labber, a python wrapper is needed for each DLL. Most instrument
drivers for both SCPI and PXI instruments are found on the LabberTM driver repository2.

3.4 Gain and loss calibrations

A calibration of the system loss and gain is needed for proper measurements of the
outgoing fields, as well as for calibration of the incoming fields. It is enough to know
either the loss or the gain, since the other can be inferred by using that |S11| = 1 far-off
resonance. Subsequently, the number of photons inside the mode can be calculated using
Eq. (3.2).

The gain is calibrated using a shot noise tunnel junction (SNTJ) [62, 63] connected
to a microwave switch at the mixing chamber of the refrigerator. The SNTJ is a tunnel

1See http://labber.org for more information.
2See https://github.com/Labber-software/Drivers
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3.5. DEMONSTRATION OF NONDEGENERATE PARAMETRIC OSCILLATIONS

Figure 3.3: Measured resonant frequencies for modes 3 and 4 as a function of magnetic flux
through the SQUID loop. The vertical dashed line marks the static flux bias used in the reported
experiments.

(a) (b)

Figure 3.4: Magnitude and phase of the complex reflection coefficients of modes 3 (a) and 4 (b).
The solid lines are fits, which extract the resonant frequencies, and external and total loss rates.
See the main text for the extracted parameters.

junction made of a normal metal - insulator - normal metal. When a current is applied
through the junction, shot noise is produced. The amount of shot noise depends on the
resistance of the junction, and the current through the junction. Moreover, there is also
thermal, vacuum, and amplifier noise. By measuring the total noise as a function of
current through the junction, the contribution of the different noise processes can be
extracted, together with the gain between the SNTJ and the detector. For practical
reasons, the designed value of the SNTJ resistance is 50 Ω. For more information about
the SNTJ and how it is used, see Ref. [64].

3.5 Demonstration of nondegenerate parametric
oscillations

This section is a summary of the results of Paper A, where nondegenerate parametric
oscillations in a superconducting microwave resonator were demonstrated using the device
seen in 3.2 (b). Initially, the resonant frequencies are measured as a function of magnetic
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3. PARAMETRIC OSCILLATIONS IN TUNABLE MICROWAVE RESONATORS

Figure 3.5: Emergence of self-sustained parametric oscillations when increasing the pump ampli-
tude. The detection frequency detunings δn from the rotating frame are shown on the x-axes. The
pump detuning is fixed at δ = 0.26Γ. The dashed lines are the resulting oscillation frequencies
from the fit of Eq. (3.8).

flux through the SQUID loop ΦDC, see Fig. 3.3. A bias point with enough slope, but
not too close to Φ0/2 is chosen. Close to Φ0/2 the nonlinearities αn are large, and also
the internal losses increase, and should therefore be avoided. The loss rates and the
exact resonant frequencies of the two modes, n = 3 and m = 4, at the chosen bias point
are determined by data fitting of the measured reflection coefficients to Eq. (2.20), see
Fig. 3.4. At the static flux bias ΦDC = 0.37Φ0 indicated in Fig. 3.3, ω3/2π = 4.345 GHz,
ω4/2π = 6.150 GHz, Γ30/2π = 0.52 MHz, Γ3/2π = 0.56 MHz, Γ40/2π = 0.70 MHz, and
Γ4/2π = 0.78 MHz.

To demonstrate nondegenerate parametric oscillations, a fixed pump detuning δ is used
while increasing the pump amplitude ε. In Fig. 3.5 the observed output photon spectral
density is plotted as a function of detuning δn from the rotating frame, δn = ωd− (ωn+ δ).
The observed oscillations has some width corresponding to the frequency noise of the
parametric oscillations. Also, the center frequency is changing with the pump amplitude.
The center frequency for each pump amplitude is extracted and fitted to Eq. (3.8). The free
parameters are α3, α4, and a conversion factor between the applied pump amplitude at the
generator and the effective pump amplitude at the sample. The extracted nonlinearities
are α3/2π = 71 kHz and α4/2π = 178 kHz. One could instead use the observed oscillation
intensities to extract αn, however this method would suffer from systematic errors in the
gain calibration, whereas the center-frequency extraction only has statistical errors that
can be decreased by longer averaging.

Then, the output intensities |Cn|2 are measured as a function of the pump detuning
δ and amplitude ε, see Fig. 3.6(a-b). The oscillations start at a certain pump power,
ε ≈ Γ, defining the instability threshold, and grows rapidly above that. The observed
intensities can be compared with the theoretical steady-state amplitudes Eq. (3.5), see
Fig. 3.6(c-d). We find good agreement inside regions I and II. However, in region III,
where the ground and excited states are both stable, the discrepancy is larger. The model
does not predict the probability of occupying the excited state; consequently Eq. (3.5) are
the maximal achievable intensities. In the experiment, the resonator can switch between
the two states, yielding a lower intensity on average. For large negative detunings, the
observed probability for oscillations tends to zero. This is even more clear for line cuts
of the four regions, see Fig. 3.6(e). There is excellent agreement in region II and all the
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Figure 3.6: Nondegenerate pumping of modes n = 3 and 4, at frequency ωp = ω3 + ω4 + 2δ. (a-d)
Experimentally observed and theoretical output intensities |Cn|2 vs. detuning δ and amplitude ε
of the applied pump tone. I-III indicate the three different stability regions described in the main
text. (e) Horizontal line cuts of (a-d) at ε = 3Γ. The red traces are offset for clarity.
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3. PARAMETRIC OSCILLATIONS IN TUNABLE MICROWAVE RESONATORS

(a) (b) (e)

(c) (d) (f )

Figure 3.7: Quadrature histograms of the nondegenerate parametric oscillations. Panels (a-b)
show the phase-space distributions for the two modes measured at the point indicated by the white
circles in Fig. 3.5. The color scale is proportional to the number of counts in each bin of the
digitized output. (c-d) Two out of four cross-quadrature histograms. All histograms consist of
1 million samples each. (e) Evolution of the phases θn in time. (f) Frequency spectrum of the
nondegenerate parametric oscillations in mode 3. The solid line is a combination of white and
flicker noise.

way down to δ ≈ −4.5Γ, implying that the system is mostly in the excited state. Below
δ ≈ −4.5Γ the excited state probability decreases rapidly.

To investigate the origin of the frequency noise shown in Fig. 3.5, we choose the point
in δ-ε space indicated by the white circles in Fig. 3.6(a-b). We acquire quadrature voltages
In(t) and Qn(t), and calculate their phase-space distributions, see Fig. 3.7 (a-b). The
oscillations have a finite average amplitude, while the phase is random, hence the large
frequency noise.

To quantify if the observed state is quantum or classical, one would normally focus
on the variances of the different quadratures. However, the large fluctuations in phase
impose a problem as they introduce large variances of the individual quadratures. Also,
theoretically it is a problem since a linearization around the classical solution is not
possible for the same reason. Therefore, we are not able to perform any quantitative
analysis of the possible quantum properties of the NJPO state.

However, we can study the cross-quadrature histograms I3, I4 and Q3, Q4 in Fig. 3.7
(c-d). From those histograms, it is clear that I3 and I4 have equal signs, while Q3 and Q4

have opposite signs, implying that the phase sum is fixed as predicted from Eq. (3.7).

The question is, what drives the phase evolutions? In Fig. 3.7(e) the phase evolution
in time of the two modes are plotted, and the clear anti-correlation is observed. For
illustration, the phases of the local oscillators are set so that 〈θ3 + θ4〉 = 0. From the
phase evolution, the frequency noise spectrum Sy(f) is extracted, see Fig. 3.7(f). The
spectrum is a combination of 1/f and white noise. It is difficult to pinpoint the origin of
the noise, but it is well known that SQUIDs have a 1/f flux noise spectrum [65]. Flux
noise translates directly into frequency noise of the resonator, and therefore also into
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(a) (b)

(c)

Figure 3.8: Photon spectral densities (PhSD), in a logarithmic unit relative to 1 photon/sHz,
under injection locking of a nondegenerate parametric oscillator. (a-b) PhSD for modes 3 (left)
and 4 (right), in the presence of an injection signal in mode 3. The x-axes represent the detunings
between the detection and the center of oscillation, and the y-axes represent the average number
of injection photons in the mode. (c) Line cuts of (a) at the three photon numbers given in the
legend.

frequency noise of the parametric oscillations.

3.6 Injection locking

The frequency of an oscillator can be stabilized by injecting a small, but frequency stable,
signal on-resonance with the oscillator [66], which has been utilized in a variety of systems
[67–70]. We apply the same technique here by injecting a coherent signal B3 on resonance
with the parametric oscillations in mode 3. The input field generates an average number
of coherent photons in the mode of 〈n〉 = |B3|22Γ30/Γ

2
3.

The injection locking lifts the phase degeneracy of the phase variables and leads to
narrower photon spectral densities, see Fig. 3.8(a-b). In Fig. 3.8(c) we plot line cuts for
three different injection powers. For 0.1 photons the oscillation is still wide, but when the
input power is increased to 0.7 photons the width is strongly reduced, and for 7.3 photons
the frequency noise is removed almost entirely. The −3 dB point is below the resolution
bandwidth of 1 Hz, implying a frequency-noise reduction of at least a factor 5000.
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4

Single-shot readout of a
superconducting qubit

Superconducting quantum bits (qubits) have had a tremendous development since the
first demonstration in 1999 [71]. Their coherence times, the gate and readout fidelities,
and the number of coupled qubits have all improved with orders of magnitudes. However,
there is still a long way to go before a large-scale universal quantum computer can be
demonstrated. The largest improvement has been in the coherence time, which is now in
the 100 µs range, compared to a few nanoseconds in the first qubit. With that problem
under control for now, the focus have shifted to scaling up the systems from just a few
qubits to tens of qubits. A great challenge is to maintain the long coherence times while
scaling due to the complex 3D geometries needed [72].

Even if both the readout and the gate fidelities now exceed 99 %, they are still a
bottleneck for running long quantum algorithms with active feedback [73]. This chapter
is focused on the problem of reading out the qubit’s state with high fidelity which is
normally done with a parametric amplifier. Here, we omit the parametric amplifier, and
implement a high fidelity readout using a Josephson parametric oscillator.

There are many different types of superconducting qubits [74]. Almost all supercon-
ducting qubits have in common that their transition frequencies are in the GHz regime and
that they utilize the Josephson nonlinearity in some way. One of the most popular qubits
is the transmon [75], which is a capacitively shunted Josephson junction. The transmon
is modeled as a highly nonlinear LC resonator. Since the inductance of the Josephson
junction is nonlinear, it leads to anharmonicity in the spectrum of the LC circuit. If the
anharmonicity is large enough, the two lowest energy levels of the oscillator, denoted
|0〉 and |1〉, can be isolated and used as a qubit, see Fig. 4.1 (b). For the transmon, the
anharmonicity is usually around 5 % of the transition frequency.

In the circuit quantum electrodynamic (cQED) architecture [21], a qubit is strongly
coupled to a resonator [76]. It allows for fast and accurate state readout, qubit-qubit
coupling, gives protection from the environment, and much more. A two-level system
(qubit) coupled to an harmonic oscillator (microwave resonator) is typically described by
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4. SINGLE-SHOT READOUT OF A SUPERCONDUCTING QUBIT

(a) (b) (c) (d)

Figure 4.1: (a) Transmon qubit (red) coupled to a microwave resonator (black). (b) Illustration
of the transmon spectrum including the three lowest energy levels. Note that the distance between
|1〉 and |2〉 is smaller than the distance between |0〉 and |1〉. (c) Readout voltage as a function of
frequency. The dispersive shift χ moves the resonant frequency dependent on the qubit’s state. (d)
Normal distributions of the readout voltage when applied at the dashed black line in (c), dependent
on the qubit’s state. The dashed lines have twice the width of the solid lines, illustrating a larger
overlap of the Gaussians, and therefore a lower readout fidelity.

the Jaynes-Cummings Hamiltonian, which after a rotating-wave approximation equals to
[9]

Ĥ/h̄ = ωr

(
â†â+

1

2

)
+
ωa
2
σ̂z + g

(
σ̂+â+ σ̂−â

†), (4.1)

where â is the annihilation operator for the harmonic oscillator, σ± are the raising and
lowering operators for the qubit, g is the coupling strength, and ωr and ωa are the
frequencies of the harmonic oscillator and qubit, respectively.

However, Eq. (4.1) is not enough to describe the full behavior of an implementation of
a qubit. The environment is interacting with the qubit, causing for example relaxation
back into the ground state or thermal excitation to higher levels. It is difficult to model
the microscopics of the environment due to the many degrees of freedom involved. Instead,
statistical properties of the qubit-environment interaction are used. These include the
qubit’s effective temperature T , and relaxation time T1. If the qubit is initialized to its
excited state, it will relax back into its ground state with the characteristic time scale T1,
which is defined as the time where the probability of finding the qubit in its excited state
is equal to 1/e, in the case of an exponential decay.

4.1 Qubit control and readout

For qubits to have an advantage over classical bits, the qubits need to be put into coherent
superpositions and entangled with each other. To produce an arbitrary single-qubit state
c0 |0〉+c1 |1〉, a sinusoidal drive at the qubit frequency can be used. The amplitude, phase,
and length of the drive determine the complex coefficients c0 and c1 [77]. For proper

normalization, |c0|2 + |c1|2 = 1 is required. The qubit’s state can be represented by the
position on a (Bloch) sphere where |0〉 is on one pole and |1〉 on the other. The control
pulse that transfers the qubit from one pole to the other is called a π pulse since it rotates
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4.1. QUBIT CONTROL AND READOUT

the state by π radians. There is a subfield of the circuit-QED community that focuses on
optimal control of qubits, see for example Ref. [78].

For measurement of the qubit’s state, the dispersive coupling regime is typically used.
This regime is valid when |∆| � g, where ∆ = ωa − ωr is the qubit-resonator detuning.
In this limit the Jaynes-Cummings Hamiltonian can be rewritten as

Ĥdisp/h̄ =

(
ωr +

g2

∆
σ̂z

)
â†â+

1

2

(
ωa +

g2

∆

)
σ̂z. (4.2)

As a result of the dispersive coupling, the effective resonator frequency is ωr + g2

∆ σ̂z =
ωr + χσ̂z, where χ = g2/∆ is the dispersive shift, meaning that the resonator frequency
is dependent on the qubit’s state, see Fig. 4.1 (c). This allows the state of the qubit
to be inferred by measuring the resonant frequency of the resonator. Experimentally, a
single microwave tone is applied at one frequency, and the reflected signal is measured.
Depending on where the resonant frequency is, the readout voltage will be different, and
the qubit’s state can be inferred.

Accurate readout is made difficult due to noise. The readout voltage will have a
Gaussian distribution, whose width is given by the total system noise, see Fig. 4.1 (d).
The readout fidelity F is defined via the overlap between the measurement distributions
with the qubit in the ground respective excited state. This overlap equals to 1− F . A
signal-to-noise ratio, SNR, can also be defined as SNR =

∣∣µ|1〉 − µ|0〉
∣∣/(σ|1〉 + σ|0〉), where

µ and σ are the mean and standard deviation for the respective states.

Ideally, the only contribution to the noise would be from the vacuum. However, in most
practical applications, the semiconducting amplifier used adds noise which dominates
over the vacuum. This causes an overlap between the readout voltage distributions
corresponding to the qubit in the ground and the excited state, yielding a lower readout
fidelity, see the dashed lines in Fig. 4.1 (d).

To mitigate this, two methods could be used. Either the Gaussian’s width (noise) is
reduced, or the separation (signal) is increased. To reduce the noise, several different
techniques have been developed over the years. Most of them rely on some parametric
phenomena to achieve vacuum-noise limited amplification. For example, a Josephson
parametric amplifier was used as the first-stage amplifier to demonstrate single-shot
readout [79, 80].

Normally, the SNR can be increased by just increasing the signal, which is the
amplitude of the microwave tone used for readout. However, if the amplitude is too large,
the approximations done to the dispersive Hamiltonian Eq. (4.2) breaks down and the
resonant frequency is no longer dependent on the qubit’s state [9]. Unfortunately, it turns
out that the critical number of photons in the readout signal is just a few photons for
normal experimental parameters, which is lower than the number of noise photons added
by the best available semiconducting amplifiers.

However, a non-linear detector could be used to increase the signal. In this case, a
small change in the resonant frequency yields a large readout signal [81–83]. The drawback
of a large readout signal is that it takes time for the resonator to relax back into its
ground state. Also, a high photon population of the resonator can cause dephasing of the
qubit [84], which is a source of decoherence.
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Figure 4.2: (a) Experimental setup for the Josephson parametric readout. A transmon qubit (red)
is coupled to a Josephson parametric oscillator (blue). Both the qubit control and the readout
parametric pump is controlled by a microwave mixer and an arbitrary waveform generator. The
outgoing field is amplified and detected using heterodyne mixing. (b) Micrograph of a similar
device to the one used in Paper B.

4.2 Readout using a Josephson parametric oscillator

The excitation of oscillations in a Josephson parametric oscillator (JPO) is sensitive to
the pump conditions. The pump amplitude must exceed the instability threshold, and
the frequency must be close to 2ωr. By coupling a superconducting qubit, such as the
transmon, to the JPO, see Fig. 4.2, the dispersive shift can move the resonant frequency
so that the second criterion is no longer fulfilled. The JPO will then remain in its ground
state. In this way, the ground state of the qubit can be mapped to an oscillating JPO,
and the excited state to a silent JPO, or vice versa. Since the oscillating state has a
large number of photons in the resonator, there will be a large measurement contrast
between the outputs corresponding to the two qubit states, and therefore an improved
signal-to-noise ratio. This was proposed in Ref. [42] and demonstrated in Paper B.

For controlling and reading out the qubit, both the parametric pump and the qubit
control need to be pulsed in a controlled way. This is achieved by combining microwave
signal generators, mixers, and an arbitrary waveform generator (AWG). The mixer acts
as a valve for the microwave signal, and the valve is controlled by the AWG.

The detection of the response to the parametric pump is done using heterodyne mixing
as in Chapter 3. However, proper triggering of the ADC is now important since the
parametric pump is pulsed. A trigger is sent from the AWG to the ADC at the start of
the pump pulse. The ADC then acquires the quadrature voltages for a certain time and
integrates over this time window. The pulse sequence is repeated to build statistics of
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Figure 4.3: Measurements of the output power of the parametric oscillations as a function of the
pump parameters, when the qubit is prepared in the ground state (a) and excited state (b). (c)
Readout fidelity as a function of the pump parameters.

the readout voltage. Note that it is not allowed to average over several pulses, since this
is supposed to be a single-shot measurement. For more details about the experimental
details of the parametric qubit readout, see Ref. [47].

In Fig. 4.3 (a) and (b), the output power of the JPO is presented as a function of the
pump detuning and amplitude, when the qubit is prepared in the ground and excited
states, respectively. For the ground state, a normal parametric region is seen. For the
excited state the region has moved to lower frequencies due to the dispersive shift χ.
However, a faint region is still seen at the original position. This is due to qubit relaxation
back to its ground state before the readout, or that the excitation pulse was not successful.

It is clear that if the JPO is operated close to zero detuning the finite-amplitude state
is mapped to |0〉 and the zero-amplitude state to |1〉. However, if operated at negative
detunings the situation is reversed. The optimal operating point is found by extracting
the maximum fidelity at each point in the parametric regions, see Fig. 4.3 (c). The
maximum fidelity is given by calculating the maximum difference between the cumulative
distributions functions for the readout voltage with the qubit prepared in its ground,
respective, excited state.

For the operating point with the highest readout fidelity, 81.5%, the readout voltage
distributions are analyzed in detail in Fig. 4.4. With the qubit in the ground state, the
oscillator is in its zero amplitude state (one Gaussian at the origin), while in the excited
state the oscillator has a finite amplitude. Moreover, it shows a combination of three
Gaussians. The two outer ones are brighter, meaning that these are the preferred states.
The reason for two peaks at finite voltages is that the JPO has two degenerate states,
shifted by π radians. The central peak is due to errors in the readout and will be explained
later.
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Figure 4.4: Quadrature histograms of the parametric oscillations at the point indicated in Fig. 4.3
(c). (a) and (b) correspond to the qubit prepared in its ground and excited state, respectively. (c)
Histogram of only the I quadrature. The solid lines are Gaussian fits. (d) Cumulative distribution
functions for the respective state preparation. The separation of the curves equals the readout
fidelity, and the maximum separation is indicated.

4.3 Modeling of the readout fidelity

Performing a carful analysis of the acquired histograms can give insights to the origins
of the fidelity loss. Ideally, the distribution for each state should be Gaussian. However,
the distributions experimentally deviate from Gaussians, see Fig. 4.4 (c). For example,
when the qubit relaxes before the start of the readout, the excited state measurement
shows three Gaussians instead of two. If the qubit instead relaxes during the readout, it
introduces an asymmetry in the Gaussians.

Due to the probabilistic nature of the effects limiting the readout fidelity, we use a
Monte-Carlo based simulation of the experiment. The simulation starts with the qubit
initialized to its ground state, then several random numbers between 0 and 1 are generated
and compared to the probability of certain processes, deciding if that processes will happen
during one cycle of the experiment. The final qubit state is recorded and a readout voltage
is drawn from the associated Gaussian distribution. The simulation is then repeated, but
with different random numbers. Over time, a distribution of qubit states and readout
voltages are built up.

There are five sources of error taken into account in the simulation

1. Qubit is not in its ground state initially. This probability is given by the Boltzmann
distribution for a certain qubit frequency and temperature.

2. Qubit is not excited by the π pulse, which is modeled as a gate fidelity.
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Figure 4.5: Analysis of the factors contributing to a decreased readout fidelity. (b) I-quadrature
histogram with a logarithmic y scale, together with the simulation results.

3. Qubit relaxes before readout. The probability of decay after a given delay time td
between the excitation pulse and the start of the readout is given by 1− e−td/T1 .

4. Qubit relaxes during readout. The probability of decay in a given time interval ∆t
is given by e−∆t/T1∆t/T1.

5. Parametric oscillator switches during readout. The probability is given by the
switching rate.

The probability of switching, and the relaxation time T1 are measured separately, while
the gate fidelity and the temperature of the qubit are treated as fitting parameters.

In Fig. 4.5 (b) the result of the simulation and the experimental data is compared.
The side peaks in the red data set corresponds to the qubit initially being in the excited
state due to thermal excitation. The temperature in the simulation is therefore adjusted
accordingly. Moreover, the central peak in the blue data set corresponds to either
relaxation before the readout, an unsuccessful π pulse, or the qubit being in the excited
state initially and then de-excited by the π pulse. Since T1 is measured separately and T
is already fixed, only the gate fidelity is adjusted in the simulation. These two adjustments
gives an overall good agreement with experimental data and simulation. The loss of fidelity
associated with each error channel is summarized in Fig. 4.5 (a). From this analysis we
draw the conclusion that the fidelity due to the readout method itself is 98.7%.

There are a few things that could be done to improve the fidelity. The main loss of
fidelity is the switching between the two π-shifted states of the JPO. What determines
the switching rate is still unknown to a large extent, but two things could be done to
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improve it. Either, the readout duration is decreased so that the probability of switching
during the readout is lower, or the oscillations can be injection locked to one of the states
by applying a small signal on-resonance, as done in Ref. [83].

The qubit induced readout errors are mainly due to the low coherence time compared
to the readout duration. Modern qubits have coherence times at least 10 times longer
than the one used here, and should therefore reduce errors 3 and 4 substantially. The gate
fidelity could also be improved by a more systematic calibration of the qubit excitation
pulse [85], and by using a better shape of the pulse [78].
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5

Summary and outlook

In summary, this work has revolved around the Josephson parametric oscillator (JPO),
which is based on a frequency tunable microwave resonator. After some introductory theory
and descriptions of superconducting circuits, we outlined the field amplitude formalism
for degenerate and nondegenerate parametric oscillations in a tunable resonator.

In Paper A, we demonstrated the nondegenerate Josephson parametric oscillator
(NJPO) regime in a multimode microwave resonator. The NJPO was realized by pumping
at the sum of two resonant frequencies with an amplitude larger than an instability
threshold. We investigated the classical properties of the NJPO, such as the output
intensities as a function of the pump parameters. We observed that the sum of the
intermode phases was fixed, but the difference was not, leading to a continuous degeneracy
of the intramode phases. Furthermore, by injecting a small coherent signal on-resonance
with the parametric oscillations in one of the modes, we phase locked the oscillations and
reduced the frequency noise with at least a factor 5000.

It has been theoretically proposed that the NJPO could exhibit novel quantum states
useful for quantum information processing applications. However, before the NJPO can
be used in such applications, more theoretical work is needed on how to characterize the
NJPO states in presence of the large fluctuations, together with experimental methods of
quantifying these fluctuations and the NJPO state. The noisy amplifiers used, and the
lack of microwave single photon detectors, provide great challenges on the experimental
part of that work.

In Paper B, we utilized a JPO in the cQED architecture to read out the state of a
superconducting transmon qubit with high fidelity, without the need of a quantum limited
parametric amplifier. By carful analysis of different sources of fidelity loss, we could show
that the fidelity of the readout itself was 98.7 %. Since that work was performed, new and
better parametric amplifiers have been developed which allows for single-shot readout
using the normal dispersive readout. The saturation power and bandwidths of these
amplifiers are now sufficiently high so that multiple qubits can be read out simultaneously.
Therefore, it is not obvious that the method presented here is so advantageous as it once
was. The cQED field is constantly developing new methods, so that all the criteria for
building a large scale quantum computer is met.
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Appendix A

Fabrication of tunable
resonators

Cleaning of silicon

• Acetone for 5 min in ultrasonic

• Methanol for 5 min in ultrasonic

• IPA for 5 min in ultrasonic

• Blow dry with N2

• Dip in 2% HF for 30 sec

• Quick dump rinse (QDR)

• Blow dry with N2

Deposition of niobium

• Pre-sputter for 5 min

• Sputter for 2 min with 200 W, 8 µbar and 60 sccm of argon

Patterning and etching of niobium resonators

• 1165 Remover at 70◦C for 5 min

• Rinse in IPA

• Blow dry with N2
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• Ash in oxygen plasma, 50W for 20 sec

• Pre-bake at 115◦C for 1 min

• Spin S1805 at 3000 rpm for 1 min

• Soft-bake at 115◦C for 2 min

• Expose in DWL. Intensity 80, Focus 5, Transmission 100

• Develop using MF319 for 45 sec

• Ash in oxygen plasma, 50W for 20 sec

• Etching using 50 sccm of NF3, RF 30 W, ICP 200 W

• Ash in oxygen plasma, 50W for 30 sec

Patterning of SQUIDs

• 1165 Remover at 70◦C for 5 min

• Rinse in IPA

• Blow dry with N2

• Ash in oxygen plasma, 50W for 20 sec

• Pre-bake at 170◦C for 1 min

• Spin MMA(8.5)EL10 500 rpm for 5 sec, 2000 rpm for 45 sec

• Soft-bake at 170◦C for 5 min

• Spin ARP 3200.09 2:1 3000 rpm for 1 min

• Soft-bake at 170◦C for 5 min

• Expose with 2 nA with a dose of 280 µC/mm2

• Dice into 24 samples

Deposition of SQUIDs

• Develop top layer using n-Amylacetate for 2 min

• Rinse in IPA

• Blow dry with N2

• Develop bottom layer using H2O:IPA 1:4 for 7 min
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• Rinse in IPA

• Blow dry with N2

• Ash in oxygen plasma, 50W for 20 sec

• Argon ion milling, 250V, 20mA, ±30◦, 1+1 min

• Evaporate 40 nm aluminum from 25◦

• Oxidize with a pressure of 0.2 mBar for 30 min

• Evaporate 65 nm aluminum from −25◦

• Lift-off in 1165 Remover at 70◦C

• Rinse in IPA

• Blow dry with N2
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