
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Lock-free Concurrent Search

BAPI CHATTERJEE

Division of Networks and Systems
Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2017

Lock-free Concurrent Search
Bapi Chatterjee

Copyright c© Bapi Chatterjee, 2017.

ISBN: 978-91-7597-483-5
Series number: 4164
ISSN 0346-718X

Technical report 136D
Department of Computer Science and Engineering
Distributed Computing and Systems Research Group

Division of Networks and Systems
Chalmers University of Technology
SE-412 96 GÖTEBORG, Sweden
Phone: +46 (0)31-772 10 00

Author e-mail: bapic@chalmers.se, bhaskerchatterjee@gmail.com

Printed by Chalmers Reproservice
GÖTEBORG, Sweden 2017

Lock-free Concurrent Search
Bapi Chatterjee
Division of Networks and Systems, Chalmers University of Technology

ABSTRACT
The contemporary computers typically consist of multiple computing cores
with high compute power. Such computers make excellent concurrent asyn-
chronous shared memory system. On the other hand, though many celebrated
books on data structure and algorithm provide a comprehensive study of se-
quential search data structures, unfortunately, we do not have such a luxury if
concurrency comes in the setting. The present dissertation aims to address this
paucity. We describe novel lock-free algorithms for concurrent data structures
that target a variety of search problems.

(i) Point search (membership query, predecessor query, nearest neighbour
query) for 1-dimensional data: Lock-free linked-list; lock-free internal
and external binary search trees (BST).

(ii) Range search for 1-dimensional data: A range search method for lock-
free ordered set data structures - linked-list, skip-list and BST.

(iii) Point search for multi-dimensional data: Lock-free kD-tree, specially, a
generic method for nearest neighbour search.

We prove that the presented algorithms are linearizable i.e. the concurrent
data structure operations intuitively display their sequential behaviour to an ob-
server of the concurrent system. The lock-freedom in the introduced algorithms
guarantee overall progress in an asynchronous shared memory system.

We present the amortized analysis of lock-free data structures to show their
efficiency. Moreover, we provide sample implementations of the algorithms and
test them over extensive micro-benchmarks. Our experiments demonstrate that
the implementations are scalable and perform well when compared to related
existing alternative implementations on common multi-core computers.

Our focus is on propounding the generic methodologies for efficient lock-
free concurrent search. In this direction, we present the notion of help-optimality,
which captures the optimization of amortized step complexity of the operations.
In addition to that, we explore the language-portable design of lock-free data
structures that aims to simplify an implementation from programmer’s point of
view. Finally, our techniques to implement lock-free linearizable range search
and nearest neighbour search are independent of the underlying data structures
and thus are adaptive to similar data structures.

Keywords: Data Structure, Search, Range Search, Nearest Neighbour Search, Con-
current, Concurrency, Lock-free, Lock-based, Blocking, Non-blocking, Wait-free, Lin-
earizable, Linearizability, Binary Search Tree, Linked-list, kD-tree, Lock-free-kD-tree,
Amortized Complexity, Help-aware, Help-optimal, Language-portable, Synchronization

ii

To my Mother & my late Father

iii

iv Dedication

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Prof. Philippas
Tsigas for his constant support and guidance. Without his generous help, this
thesis would not have been possible.

I also thank the graduate committee members - Prof. Thierry Coquand, As-
sociate Prof. Marina Papatriantafilou, Prof. Jan Jonsson and former committee
members Prof. Koen Claessen and Prof. Gerardo Schneider for their kind sup-
port and helpful suggestions during the discussions in my Ph.D. study follow-up
meetings.

I am honored to have Prof. Pascal Felber as the opponent of my Ph.D. thesis
defense. My sincere thanks to the members of the grading committee: Associate
Prof. Paolo Romano, Associate Prof. Pedro Petersen Moura Trancoso, Prof.
Stefanos Kaxiras, and Prof. Ulf Assarsson.

I also take this opportunity to thank my previous supervisors Prof. Subodh
Kumar (Dept of CS&E, IIT Delhi, India) and Prof. Aparna Mehra (Dept of
Mathematics, IIT Delhi, India), whose guidance during my master’s studies
helped me shape my thinking and motivated me enough to join the doctoral
studies.

I am extremely grateful to the Swedish Foundation for Strategic Research
(SSF) who funded me as a full-time Ph.D. student for five years in the research
project “Software Abstractions for Heterogeneous Computers (SCHEME)”. I
thank the project co-leaders Prof. Per Stenström and Prof. Ulf Assarsson and
other members in the project SCHEME with whom I truly enjoyed my collab-
oration.

Next, I would like to thank everybody in the Distributed Computing and
Systems group, of which I am proud to be a member: Amir, Aras, Bashr, Char-
alampos, Elad, Hannah, Ioannis, Iosif, Ivan, Olaf, Magnus, Thomas, and Vin-
cenzo.

I thank former members of the group, with whom I spent some of the most
enjoyable moments during my Ph.D.: Andreas, Daniel, Farnaz, Giorgos, Oscar,
Paul, and Valentin. My special thanks to my former office-mates, Nhan and
Zhang, for the fun time and interesting discussions on topics confined to an

v

vi Acknowledgements

uncountable number of domains. I also wish all the best to the youngsters in
the group.

It will remain incomplete without mentioning former members of the de-
partment: Bhavishya, Chien-Chung, and Madhavan, with whom I shared not
just many vegetarian meals but also some unforgettable moments in Göteborg.

I also take this opportunity to thank the staff and the Ph.D. students at the
Department of Computer Science and Engineering where I am privileged to be
a member. It is thanking them for their efforts to make the department such a
great place to work. I would like to especially thank Eva, Rebecca, Peter, Tiina,
and Tomas for always being helpful and responsive.

Bapi Chatterjee
Göteborg

Contents

Abstract . i

Dedication . iii

Acknowledgements . v

Contents and Publications . xi

Part I Introduction 1

1. Introduction . 3
1.1 Search Algorithms . 3

1.1.1 Introduction to Search 3
1.1.2 Search Data Structures 5

1.2 Concurrent Data Structures . 8
1.2.1 Synchronization Algorithm 8
1.2.2 Concurrent Search Data Structures 15

1.3 Our Contributions . 19

2. System Model and Preliminaries 21
2.1 System Model . 21
2.2 Correctness and Complexity 24

2.2.1 Correctness . 24
2.2.2 Complexity . 26

Part II Lock-free 1-dimensional Point Search 29

3. Help-optimal and Language-portable Lock-free Concurrent Data Struc-
tures . 31

vii

viii Contents

3.1 Introduction . 32
3.1.1 Overview . 32
3.1.2 Related Work . 35

3.2 Help-optimality: Motivation 36
3.3 Help-optimal Lock-free Linked-list 40

3.3.1 Design . 40
3.3.2 Correctness and Lock-freedom 44
3.3.3 Amortized Step Complexity 45

3.4 Help-optimal Lock-free BST 45
3.4.1 Design . 47
3.4.2 Correctness and Lock-freedom 52

3.5 Help-optimality: Specification 53
3.6 Experimental Evaluation . 54

3.6.1 Experimental Set-up 54
3.6.2 Performance Results and Discussion 56

4. Amortized Complexity of Lock-Free Internal Binary Search Tree . 63
4.1 Introduction . 63
4.2 Preliminaries . 65
4.3 Our Algorithm . 67

4.3.1 Design Fundamentals 67
4.3.2 The Lock-free Algorithm 68

4.4 Correctness and Complexity 83
4.4.1 Linearizability . 85
4.4.2 Lock-Freedom . 86
4.4.3 Complexity . 87

Part III Lock-free 1-dimensional Range Search 93

5. Lock-free Linearizable 1-Dimensional Range Queries 95
5.1 Introduction . 95

5.1.1 Background . 95
5.1.2 Related work . 97
5.1.3 A summary of our work 97

5.2 The Lock-Free Range Search 100
5.2.1 Snap-collector implementation 100
5.2.2 Lock-free linearizable range search algorithm 104
5.2.3 Range queries in a lock-free binary search tree 111

5.3 Correctness proof . 113

Contents ix

5.3.1 Proof . 113
5.4 Experimental Evaluation . 117

5.4.1 Experimental Setup . 117
5.4.2 Observations and Discussion 118

Part IV Lock-free Multidimensional Point Search 121

6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-
tree . 123
6.1 Introduction . 123

6.1.1 Background . 123
6.1.2 A high-level summary of the work 126

6.2 LockFree-kD-tree: Basic Design 128
6.2.1 Design of the LFkD-tree 128
6.2.2 Sequential Behaviour of the ADT Operations 129

6.3 LockFree-kD-tree: Implementation 130
6.3.1 Lock-free Synchronization: Basics 130
6.3.2 Linearizable ADD, REMOVE and CONTAINS operations 133
6.3.3 Linearizable Nearest Neighbour Search 139

6.4 Correctness and Lock-freedom 152
6.5 A real-life application . 160
6.6 Experimental Evaluation . 161

6.6.1 Experimental Setup . 161
6.6.2 Datasets . 162
6.6.3 Observations and Discussion 164

Part V Conclusion 171

7. General Conclusions and Discussion 173
7.1 Goals and the main findings 173
7.2 Further direction . 175
7.3 Some reflections . 175

x Contents

Contents and Publications

The focus of this thesis is on the design and implementation of concurrent lock-
free search data structures drawing from the contents of the first four papers
listed below. Contents in the Chapter 1 draw the description of multi-core and
heterogeneous systems from the paper V and VI. The Chapter 2 presents the
basic notions required for the descriptions in the later chapters. The Chapter 3 is
based on the paper II. The Chapter 4 is based on a revised and a modified version
of the lock-free internal BST algorithm published in paper I. The Chapter 5 is
based on an extended version of the paper III. The paper IV is extended in
the preparation of the Chapter 6. We discuss the overall thesis and present the
general conclusions in the Chapter 7. Following is the list of papers published
during Ph.D.:

I Bapi Chatterjee, Nhan Nguyen and Philippas Tsigas, “Efficient Lock-
Free Binary Search Trees”, In the Proceedings of the 2014 ACM Sympo-
sium on Principles of Distributed Computing (PODC 2014), 2014.

II Bapi Chatterjee, Ivan Walulya and Philippas Tsigas, “Help-optimal and
Language-portable Lock-free Concurrent Data Structures”, In the Pro-
ceedings of the 45th International Conference on Parallel Processing (ICPP
2016), 2016.

III Bapi Chatterjee, “Lock-free 1-Dimensional Range Queries”, In the Pro-
ceedings of the 18th International Conference on Distributed Computing
and Networking (ICDCN 2017), 2017.

IV Bapi Chatterjee, Ivan Walulya and Philippas Tsigas, “Concurrent Lin-
earizable Nearest Neighbour Search in LockFree-kD-tree”, In the Pro-
ceedings of the 19th International Conference on Distributed Computing
and Networking (ICDCN 2018), 2018.

V Daniel Cederman, Bapi Chatterjee, Nhan Nguyen, Yiannis Nikolakopou-
los, Marina Papatriantafilou and Philippas Tsigas, “A Study of the Be-
havior of Synchronization Methods in Commonly Used Languages and

xi

xii Contents and Publications

Systems”, In the Proceedings of the 27th International Parallel and Dis-
tributed Symposium (IPDPS 2013), 2013.

VI Daniel Cederman, Bapi Chatterjee and Philippas Tsigas, “Understand-
ing the Performance of Concurrent Data Structures on Graphics Proces-
sors”, In the Proceedings of the 18th International Conference on Parallel
Processing (Euro-Par 2012), 2012.

List of Figures

3.1 Sentinel Nodes: Simple Lock-free BST 38
3.2 Performance graph: Lock-Free Basic BST 39
3.3 Sentinel Nodes: Lock-free linked-list 40
3.4 Steps of REMOVE in the linked-list. 43
3.5 Sentinel Nodes: Lock-free BST 48
3.6 Steps of REMOVE in the BST. 50
3.7 Concurrent linked-list algorithms: Java Implementation 56
3.8 Concurrent linked-list algorithms: C/C++ Implementation . . . 57
3.9 Lock-Free BST algorithms: Java Implementation 58
3.10 Lock-Free BST algorithms: C/C++ Implementation 59
3.11 Heap size change . 60

4.1 Basic Design of the Binary Search Tree. 67
4.2 Category of Nodes in the BST for REMOVE. 69
4.3 Sentinel Node: Internal lock-free BST 71
4.4 REMOVE steps: Category 1 Node with the right child. 74
4.5 REMOVE steps: Category 1 Node without the right child. 74
4.6 REMOVE steps: Category 2 or Category 3 Node with right child. 76
4.7 REMOVE steps: Category 2 or Category 3 Node without right

child. 77

5.1 A snap-collector implementation 101
5.2 A range-collector implementation 107
5.3 A sub-tree of an external BST with parent pointers 113
5.4 Performance of the implementations. 119

6.1 LFkD-tree Structure . 129
6.2 ADD and REMOVE operations in LFkD-tree 132
6.3 Synthetic datasets: SKEWED(1) and SKEWED(3). 163
6.4 Synthetic datasets: SKEWED(6) and CLUSTER. 163
6.5 Performance on the 2-D TIGER/Line dataset. 164

xiii

xiv List of Figures

6.6 Performance on the SKEWED(6) dataset. 165
6.7 Performance on the CLUSTER dataset. 166
6.8 System throughput for SKEWED(1) and SKEWED(6) datasets . 167
6.9 System throughput for Levy-kd. 168

Part I

INTRODUCTION

1

INTRODUCTION

Chapter Abstract

In this chapter, we introduce the concurrent search problem. We describe the
varieties of search and how concurrency affects the consistency of the results of
such problems. We introduce the basics of concurrent data structures. We give
brief descriptions of the succeeding chapters in the thesis and a roadmap of the
remaining of the thesis.

1.1 Search Algorithms

1.1.1 Introduction to Search
Given a set of input objects, searching one or more that match certain criteria,
is an everyday problem. Computationally, we perform search by fixing the
criteria based on an enumerable feature or attribute of the given objects, which
is commonly called a key (corresponding to an object). Typically, a key is a real
number. Often a search can be based on more than one feature of an object. In
that case, the key can be a real number tuple, and the search problem is also
called a multi-dimensional search. The set of keys corresponding to the given
input objects is commonly called the dataset, and accordingly a key is also
called data or a data-point. Typically, the search problem is formulated in order
to extract certain content information from the given dataset, and the criteria
of the search are based on a set of keys. The formulated search is also called
a query and the set of keys that the search is based on is called the query set.
When the query set contains a single key, it is called a query key. The superset
formed by all possible datasets in a given context of an application is called the
universe of keys.

Given a query key or set, we can ask for various kinds of information from
the dataset. Depending on the set of query keys and the type of information that
we ask, the queries can be of various types. According to the requirements of
query type and the maintenance of the dataset, the universe of keys can have a
partial order and/or a metric defined over it. Let U be the universe of keys and

3

4 1. Introduction

K be the dataset. In general, we can categorize a search problem among the
following varieties.

(i) Membership Query: Let k ∈ U be a query key. Does k ∈ K?
Equivalently, in words, is there an object in the given set of objects with
a particular key?

(ii) Predecessor Query: Let k ∈ U be a query key. Let � denote the partial
order in U . Find k1 ∈ K such that k1 � k and @ k2 ∈ K s.t.
k1 � k2 � k. Equivalently, find the object whose key is just less than
(in the partial order of the universe of the keys) the query key. The type
of queries such as find k ∈ K s.t. @ k1 ∈ K and k1 � k (or k � k1),
or equivalently, find the object with smallest (or largest) key in the given
set of objects, are also considered as a predecessor query.

(iii) Nearest Neighbour Query: For the nearest neighbour query, we need a
metric or distance in the key universe. Let d(k1, k2) denote the distance
between two keys k1, k2, ∈ U . Let k ∈ U be a query key. Find
k1 ∈ K such that d(k1, k) ≤ d(k2, k) ∀ k2 ∈ K. Equivalently, find
the object whose key is at the smallest distance from the query key.

(iv) Range Query: Same as nearest neighbour query, we need a metric in the
key universe for a range query. Let d(k1, k2) denote the distance between
two keys k1, k2, ∈ U . A range query can be of the following two types.

(a) Orthogonal range query: In this type, typically we have a query
range as a closed and bounded rectangle1 [l, h] described by two
keys l, h, ∈ U . l and h are called lower limit and upper limit,
respectively. Let [l, h], l, h, ∈ U be a query interval. Find all
k ∈ K s.t. k ∈ [l, h]. Equivalently, find all the objects in the
given set of objects whose key falls in the query range.

(b) Circular range query: In geometric problems, range queries are usu-
ally circular, that is, the query range is described by a key as centre
of a sphere2 and a radius and the aim is to find the objects whose
key falls in the sphere.

Some authors (e.g. see [80, Chap. 4, p. 485]) refer to the query of type (i) as
a point query. However, in this dissertation, we shall refer to the first three
type of queries collectively as a point search. There are some generalizations of

1 In 1-dimensional problems, the rectangle becomes an interval.
2 For two-dimensional keys the sphere becomes a circle, whereas in 1-dimension cases it is an

interval on the real-line.

1.1. Search Algorithms 5

the above query types, for example, k-nearest neighbour query, which requires
finding k objects from the given set, whose keys are closest to a given query
key. There are some other types of queries, such as, all-closest-pair query [80]
and their generalizations, however, we shall limit our discussion to the query
types that we mentioned above. Furthermore, for a nearest neighbour query and
its generalizations, approximate solutions are also very popular. However, in
this dissertation, we will not delve into those.

Sometimes in an application, there are multiple queries of different types.
In those cases, we shall use the term set of queries to address the collection of
all the queries in the application.

Depending on the type of application, a search problem can be static, where
the entire dataset is given once and for all before the start of the first query, or
dynamic, where the application takes in modifications in the dataset i.e. data
can be added or removed from the dataset during the lifetime of the application.
Naturally, in static search problems the focus is on improving the efficiency
of the query only, whereas, in dynamic search problems, the efficiencies of
addition and removal of data are equally important.

Thus, a search problem has: (a) a dataset, static or dynamic, (b) a set of
queries, and (c) set of operations to add or remove data, collectively called mod-
ifications, in the dataset. A search data structure is the main tool to efficiently
solve a search problem.

1.1.2 Search Data Structures

The theory of search data structures is the study of arranging the dataset in
the main memory or disk of a computer and facilitating efficient queries and
modifications in the dataset. We refer to a query and a modification in a data
structure as a data structure operation or just an operation if the context does
not have any ambiguity. In section 1.1.1, we described the basics of a search
problem. The fundamental aim of an algorithm for a search data structure is
to extract the information required by a query by visiting as small a subset as
possible of the given (or the available, in the case of a dynamic) dataset. This
is made possible by storing extra information with the dataset. Typically, the
augmented information includes the addresses of the data-points which makes it
possible to navigate the dataset efficiently, and thus pruning (avoiding to visit)
those subsets that potentially do not contain the information required for the
query.

Depending on the static or dynamic nature of the dataset underlying an ap-
plication, a search data structure can be categorized into static and dynamic. For
static data structures, the focus lies on - (a) efficiently loading the dataset on to

6 1. Introduction

the data structure and (b) efficient querying. Additionally, the storage space is
also considered for efficiency. On the other hand, for dynamic data structures,
the efficiency of each operation is equally important. Moreover, the efficiency
of operations in dynamic data structures is typically valued over the efficiency
of storage space. Obviously, the dynamic data structures cannot be efficiently
based on arrays, which is the preferred way to store the entire dataset in case of
static applications. In dynamic data structures, the cost of shifting data-points
across and/or resizing the array is prohibitive. Therefore, for augmenting the
extra information, mainly address of other data-points, we use nodes, which
are packets of a key (or a set of keys), the address of other nodes in the data
structure and some metadata related to the structure of the data structure. The
address stored in nodes in a specific data structure is based on various consider-
ations that come from the type of query that we intend to perform.

In the present dissertation, we are mainly interested in dynamic data struc-
tures. Henceforth unless explicitly mentioned, by a data structure we shall refer
to a dynamic data structure. Accordingly, our description of the design of data
structures shall be primarily confined to node-based data structures.

Now, considering the type of queries, for membership queries, a simple
data structure that can be used is an unordered list, in which keys are arranged
without any navigation order and thus each query may need traversing the entire
data structure. However, building an unordered list is straightforward: a linear
list of nodes, in which each node consists of a key and address of the next node
in the list. The next fields form the links between nodes. There are two ends of
the list, often called head and tail and the nodes are added at one of the ends
only, say at the tail. Clearly, adding a new key in an unordered list is always
O(1). The most popular data structure for membership queries is a Hash table
[27]. Typically, a hash table is constructed as an array of buckets. Each bucket
is usually an unordered list. A hash table builds upon a hash function which
maps a key to a bucket. A hash table provides fast membership queries: the
average case cost of each query is O(1) irrespective of the number of keys in
the data structure. However, unordered lists and hash tables cannot be used
efficiently for other types of point search queries i.e. predecessor queries or
nearest neighbour searches or for that matter range searches as well. The reason
is that the augmented information in the data structure - the address of the next
node in each node, which does not necessarily contain the key related in any
order to the key in the current node - cannot be used for order or proximity of
the keys.

For predecessor queries, as mentioned before, we need partial order. Here,
a simple data structure is a sorted or ordered list, commonly called a linked list,
which has the same node structure as an unordered list, but the next field in a

1.1. Search Algorithms 7

node always points to the node containing the successor (or predecessor) of the
key in the current node. In a linked list the average case complexity of each
operation is O(n). Because each node has a single link, a linked list is also
called a singly linked list, and it facilitates traversing the list in one direction
only. Alternately, a doubly linked list, which contains a pre link in addition
to a next, facilitates traversal in the list in both directions (forward towards
successors and backward towards predecessors). However, the asymptotic cost
of data structure operations in a doubly linked list is the same as that in a singly
linked list.

The most popular data structure for predecessor queries is a binary search
tree (BST), in which each node has two links emanating from it, commonly
called the left and the right child links, and the nodes connected to these links
are called the left and the right child, respectively. The partial order of the key
universe is used to hierarchically arrange the subsets of the dataset in a BST.
The order of hierarchical arrangement is also called the symmetric order of
the BST. In a BST the average case complexity of each operation is O(log n).
The efficiency of a BST significantly depends on its structure in terms of the
distribution of nodes along the left and the right child links of each of the nodes.
The distribution is expected to be balanced on the two sides. To balance a BST,
a number of criteria and techniques have been proposed in the literature. For
example, AVL tree [1], Red-black tree [43], rank-balanced tree [45] and many
other BST designs have their specific criteria for balancing the BST. BSTs offer
generalization in terms of the number of links emanating from a node. Thereby,
we have data structures like k-ary tree [34], B-tree [13] and their variants.

An essential generalization of the above mentioned data structures come
from the dimension of the data. So far as the membership queries are con-
cerned, we can use a hash table with a hash function for multidimensional data,
such as Locality Sensitive Hashing [56]. For predecessor queries, a simple tool
to map multidimensional data to one dimension is Z-order or Morton order
[69]. The z-value of a multi-dimensional key is calculated by interleaving the
binary representations of its coordinates. However, for multi-dimensional data
the predecessor query is not an important query, the reason being that there is no
natural linear order. For multidimensional data, a typical and important query
is the nearest neighbour query. For a nearest neighbour query, a generalization
of BST is the kD-tree proposed by Friedman et al.[37]. A collection of sophis-
ticated data structures for performing nearest neighbour query in datasets with
very high dimensions can be found in Samet’s book [80].

In case of the range queries, in one dimensional data, a data structure that
facilitates predecessor queries can be directly used. However, for efficiency, a
data structure with fat nodes, that is one in which a node contains multiple keys,

8 1. Introduction

is preferred because it reduces the number of nodes to be read to collect the keys
belonging to the query range. A popular data structure for one-dimensional
orthogonal3 range queries is the B-tree [13]. The B-trees have multiple keys
in its fat nodes and multiple links emanating from nodes for traversing down
the tree. For multidimensional data, the most popular data structure for range
search is the R-tree [44].

The literature of search data structures is huge and it is difficult to come up
with a survey that can reach each one of them. Additionally, the search data
structures are used to design databases, where they are commonly known as
index structures or just indexes. Therefore, a comprehensive study of the field
of search data structures remains incomplete without covering the database in-
dexes. One-dimensional data structures are commonly part of any celebrated
book on algorithms [27, 41, 4]. For multidimensional data structures a compre-
hensive collection can be found in [80].

Knuth in his seminal book [60, Chapter 3, p. 422] provided an earlier ac-
count of search algorithms existing in the literature. Therein, the history of
search algorithms can be traced back to the binary search introduced by John
Mauchly in 1946 [65], who constructed the first fully functioning electronic dig-
ital computer ENIAC (Electronic Numerical Integrator And Computer). Today,
the landscape of search problems encompass a countless number of applica-
tions. These applications often require dynamic real-time updates of the un-
derlying datasets. We already mentioned the basics of the dynamic search data
structures. At the same time, today’s multi-core computers come packed with
multiple computing cores with high compute power. These machines provide
very good platform for the concurrent asynchronous shared memory systems,
which naturally fit for the applications that take in dynamic updates. Such ap-
plications and compute platforms have escalated the demand for scalable con-
current search data structures. In the next section, we provide the basics of
concurrent algorithms for search data structures.

1.2 Concurrent Data Structures

1.2.1 Synchronization Algorithm

It is widely known that in single-core compute processors higher computation
performance could be achieved only by way of increased clock frequency and
that would come with the drawbacks ranging from large power requirements

3 In one dimension, an orthogonal range can be converted to a circular range without changing
co-ordinates system.

1.2. Concurrent Data Structures 9

to unmanageably high heat dissipation. A ubiquitous device to solve the op-
timization problem of maximizing the computation under the constraints of
power-consumption and heat-dissipation in contemporary computers is a multi-
core Central Processing Unit (CPU). To further enhance the processing of data-
parallel components in a program, multi-core CPUs are supported by many-core
co-processors such as Graphics Processing Units (GPUs). These coprocessors
can run hundreds of lightweight processing threads concurrently. The process-
ing units in such co-processors often have their independent memory hierarchy
to store the data to be processed close to compute units. The computer archi-
tecture comprising of CPUs and co-processors like GPUs i.e. heterogeneous
compute units with added heterogeneity in memory hierarchy is known as het-
erogeneous computer architecture.

However, harnessing the maximum available processing power in the ma-
chines equipped with multi-core and many-core processors is not plain sailing.
An algorithm may not always lend itself for easy parallelization, specially when
it involves concurrency of multiple threads to modify shared data. For example,
consider the case of two threads that increment a shared counter which broadly
happens in three compute steps - (1) read the counter (2) increment the counter
(3) store the incremented value at the shared memory word. We can list out all
possible

(
6
3

)
= 20 valid interleavings4 of the instructions by the two threads.

But it is not hard to see that there can be only 2 valid interleavings which will
increase the counter meaningfully. The problem of finding a valid interleaving
that can resolve the conflict between concurrent threads to produce a correct
solution of a problem involving concurrent access of shared memory is called
synchronization. An algorithm is called a synchronization algorithm that solves
the synchronization problem in a concurrent program. A synchronization algo-
rithm becomes more complex with increasing number of shared memory words
to be modified in order to accomplish an operation. And, the challenge of op-
timizing such an algorithm is immense because there is no guarantee provided
by the implementation platform about the relative speeds of the threads.

Now, before describing the synchronization algorithm, we need to specify
the model of the shared memory system used for the concurrent algorithms
in this dissertation. In the chapter 2 we shall describe the same in detail, but
for a self-contained discussion here, we briefly outline it. We consider a con-
current shared memory system in which a finite set of threads communicate
asynchronously by reading and writing on shared memory words. Asynchrony

4 There are altogether 6 instructions and a thread executes 3. We pick-up any 3 out of 6 in
(6
3

)
ways for one thread and 3 out of remaining 3 in

(3
3

)
for the second thread. Counter will be

increased by 2 counts only if the first thread performs all its instructions in order before the
second thread starts and does the same or vice-versa.

10 1. Introduction

implies that there is no assumption on the relative speeds of the threads. Each
thread is considered to be executing a sequential program over a finite set of
variables as memory words each of which consists of one or more bits. A vari-
able is local to a thread if the thread holds an exclusive access to it, and is
shared when two or more threads can access it. The sequential program con-
sists of steps and a step can contain computation on local variables and at most
a single access to a shared variable.

Access to a shared-variable happens by means of an execution of an atomic
synchronization primitive or synchronization primitive. By atomic it indicates
that it takes place in an undividable unit of time. Some of the widely used
synchronization primitives in synchronization algorithms are listed here. The
shared-variables (Sv) passed as arguments are passed by reference whereas the
value type (Vt) arguments are passed by value.

1. Read

Vt read(Sv r)
{
return r;

}

2. Write

void write(Sv r, Vt v)
{
r = v;

}

3. Test-and-set (TAS)

Vt TAS(Sv r, Vt v)
{
initial = r;
r = v;
return initial;

}

1.2. Concurrent Data Structures 11

4. Compare-and-swap (CAS)

bool CAS(Sv r, Vt old, Vt new)
{
if(old = r)
{
r = new;
return true;

}
else
{
return false;

}
}

The synchronization primitives read, write, TAS and CAS are natively pro-
vided by almost all of the multi-core and many-core architectures available in
market. Some multi-core architectures, for example MIPS [49], also provide
Load-linked/Store-conditional (LL/SC). LL/SC is actually a pair of instruc-
tions used together. At every LL(Sv old, Vt r), the value of r is not only
written at old but also written at a linked register.

5. Load-linked LL

void LL(Sv old, Vt r)
{
old = r;

}

12 1. Introduction

6. Store-conditional SC

Vt SC(Vt new, Sv r)
{
� assuming that r was read as old by the last LL

if(r = old)
{
r = new;
return old;

}
else
{
return 0;

}
}

Now coming back to the synchronization algorithms, they are categorized
in two classes - (a) blocking and (b) non-blocking. At the heart of a blocking
synchronization algorithm is the critical section which is a piece of code that
needs to be executed by multiple concurrent threads and in which threads need
to access shared memory words. If the critical section is executed by more than
one thread, it can result in unexpected and unwanted return by the concurrent
program. Naturally, a thread is allowed to take an only finite number of steps
to execute a critical section. To implement a critical section in an algorithm, a
simple and straightforward way is using the construct of lock. Before entering
a critical section, a thread acquires a lock, and when coming out of the critical
section it releases the lock. In the critical section, the thread is said to be holding
the lock. A lock can not be acquired by more than one threads and thus the
critical section at any time is executed by no more than one thread.

Many efficient designs of locks are available in the literature. A simple test-
and-set (TAS) lock works as described below:

while(!TAS(Sv lock, Vt 1)){}
critical_section{}
lock = 0;

The shared-variable lock is called to be acquired by a thread if the thread

1.2. Concurrent Data Structures 13

succeeds to set 1 at it given that it was initially 0. Setting the variable lock
back to 0 is called releasing the lock. Now, if the number of threads increases
and the memory bus gets locked by many threads continuously, the performance
drops drastically. Therefore, a better and optimized version can be written as

while(lock!=0 || !TAS(Sv lock, Vt 1)){}
critical_section{}
lock = 0;

In the revised format a thread reads the variable lock first and if it is avail-
able then only tries to acquire the lock. Using the CAS synchronization primi-
tive also we can construct a lock as below

while(!CAS(Sv lock, Vt 0, Vt 1)){}
critical_section{}
lock = 0;

Nevertheless, the above formulations of locks essentially bring busy waiting
because of high degree of contention for the variable lock. A way to lower
the contention on a lock is to use some backoff function. A backoff function
tells a process to wait for a certain amount of time before checking again. A
popular backoff function is the exponential backoff in which the backoff time is
increased exponentially for every failed attempt to acquire the lock. But still the
problem to tune the backoff function persists in the sense that some processes
might have to wait for much longer than other processes before acquiring the
lock.

In the above lock designs it is easy to notice that the available cores in a
processor are used for useless works during busy waiting and so it is imperative
to minimize that. An alternative method of lock implementation is queue lock
in which when a process fails to acquire a lock it adds itself to a queue asso-
ciated with the lock and does a context switch so that another thread can use
the processor while it is waiting to acquire the lock. After a thread finishes its
critical section and releases the lock, it notifies the next thread waiting in the
associated queue about it and context switches itself. Unfortunately, the cost
of context switching in multiprocessors could be high and therefore the queue
locks get outperformed by the TAS or CAS locks.

14 1. Introduction

Not just the above problems that arise with locks but also there is problem
of lock conveying described as the situation in which a thread acquiring the lock
gets preempted by the thread scheduler. This causes other threads to wait longer
than necessary because the thread that got swapped could not release the lock
and this results in overall slowdown of the entire program. A related problem
is that of the priority inversion when a high priority thread has to wait for a
low priority thread holding lock. This problem can be solved by increasing
the priority of the lower priority thread that holds the lock to a certain high
ceiling priority or to the priority of the higher priority thread. The first method
is called the priority-ceiling-protocol (PCP) and the second method is called
the priority-inheritance-protocol (PIP).

Having described the issues associated with a lock, we can clearly see that
the blocking synchronization algorithm are often uninteresting. Alternatively,
a non-blocking synchronization algorithm does not have a critical section in
its design and thus is not vulnerable to the problems associated with a lock.
Essentially no thread needs to be blocked from executing any (atomic) step on
any shared memory word in a non-blocking synchronization algorithm. Thus,
the biggest advantage is that no thread can die or get delayed while holding
a lock over a critical section. This brings a progress guarantee attached to a
non-blocking algorithm.

The basic idea is that instead of holding any kind of lock, the threads copy
the value of shared-variable using an atomic read primitive to its local variable,
makes the changes as needed locally and then changes the shared-variable using
a stronger synchronization primitive like CAS in one atomic step. In case it
fails to successfully perform CAS, because another thread would have applied
its own changes on the shared-variable since this thread read the value, it retries
after updating its local value. This way a greater fault-tolerance comes that
enables avoiding issues associated with blocking synchronization.

Based on the kind of progress guarantee, non-blocking algorithms are cate-
gorized in the following three classes:

(a) Wait-free: These algorithms guarantee that if a thread remains alive and
taking steps, it can always finish its operation regardless of other threads
getting delayed or even failing, and thus all the non-faulty threads are
guaranteed to complete their operations in a finite number of steps.

(b) Lock-free: These algorithms guarantee that at least one of the non-faulty
operation will complete its operation in a finite number of steps. Clearly,
the lock-free algorithms provide weaker progress guarantee than the wait-
free algorithms.

1.2. Concurrent Data Structures 15

(c) Obstruction-free: These algorithms provide weakest progress guarantee
- if a non-faulty thread works in isolation, it is guaranteed to complete its
operation in a finite number of steps.

In the chapter 2, we shall detail the methodology to prove the correctness
of a synchronization algorithm. However, for the sake of reference, here we
briefly mention about the consistency notion of a synchronization algorithm
called linearizability. linearizability ensures that despite concurrent execution
of operations by multiple threads, the operations should appear to take effect se-
quentially and thereby a correct behavior of the concurrent algorithm becomes
equivalent to a correct behavior of a sequential algorithm. With that we now
describe synchronization algorithm for search data structures, which we refer
to as concurrent search data structures.

1.2.2 Concurrent Search Data Structures
In the section 1.1.2, we described the dynamic search data structures, which are
built on nodes and links. Adding a new node or removing one requires modi-
fication of links. In fact, for an operation that removes a node, multiple links
may need to be modified together. In a concurrent setting, these modifications
create shared state access scenarios by multiple threads. Naturally, we need
correct synchronization algorithms for correct implementations of concurrent
search data structures. The multi-core and many-core architectures, with more
than a single level of hierarchy in the memory access, add further complexity
as the size of the cache memory comes to play important role in the perfor-
mance of such data structures. Thus the design, analysis, and implementation
of concurrent search data-structures on multi-core and many-core architectures
is an immensely challenging task.Depending on the choice of synchronization
algorithm, the concurrent data structures can be classified into blocking and
non-blocking classes as explained below.

(A) Blocking concurrent data structures

The design of a blocking concurrent data structure is primarily based on locks.
Modification of a link becomes a critical section and guarded by a lock. If mul-
tiple links need to be modified for an operation, they lead to the possibility of
either being guarded by a single lock, called coarse-grained locking, or multiple
locks, called fine-grained locking. In case of fine-grained locking, both acquir-
ing and releasing locks need to follow a pre-specified order, to avoid malforma-
tion of the data structure. Another issue with fine-grained locking is deadlock -
two different threads hold two different locks and wait for each other to release

16 1. Introduction

their locks before releasing their own. Thus, designing a correct fine-grained
locking based concurrent data structure is a deft task.

Design of lock-based concurrent data structures has now come of age, and
many libraries of lock-based concurrent data structures are available. Still, as
described before, they come with all the drawbacks associated with blocking
synchronization algorithms. In addition to that, another well-known problem
that occurs in these data structures is that of lack of composability of two or
more concurrent data structures that use blocking synchronization. Although
the individual concurrent data structures could not have the issue of deadlock
as described before, in the composed one two threads could keep on waiting for
each other to release their respective locks while holding their own locks.

Ordinarily, locks suffer from poor scalability and that also gets transferred to
the concurrent data structure using those locks. Thus, in their entirety, the prob-
lems with lock-based concurrent data structures make it important to design and
implement concurrent data structures which do not use locks i.e. non-blocking
concurrent search data structures.

(B) Non-blocking concurrent search data structures

As described before, an alternative design of concurrent search data structure
can be based on non-blocking synchronization. Accordingly, depending on the
kind of progress guarantee associated with the non-blocking data structures they
can be categorized into wait-free, lock-free and obstruction-free classes. The
various levels of progress guarantee come from the design aspect of taking care
of slow non-faulty threads when they attempt to modify shared links of a con-
current data structure. Often an operation in a concurrent data structure needs
more than a single shared link to modify. As there is no assumption on the
relative speeds of the threads, if a thread gets delayed, other threads in order
to progress without getting blocked in any manner actually help the delayed
thread. This is called helping mechanism in a non-blocking data structure. In
the core of a helping mechanism is the idea that whenever in an operation more
than one shared link is needed to be modified, the modifications should be done
in an orderly manner and some indicator should be used in order to indicate the
progress of the operation. However, helping should always be optimized as it
makes the threads perform many atomic accesses to shared-variables even when
that is not needed.

Helping in a non-blocking data structure actually decides its class. If all the
delayed threads are helped by the faster concurrent threads, so that each of the
non-faulty threads get guaranteed to complete their operations in finite num-
ber of steps, it becomes a wait-free data structure. In lock-free data structure,

1.2. Concurrent Data Structures 17

most often only those slow threads are helped by concurrent ones, which actu-
ally create obstruction by way of having modified some of the multiple shared
links required to be modified in an operation. Those threads whose operations
do not obstruct any concurrent operation, mostly the threads performing read
only operations, can still remain without completing their operation if they get
delayed in a lock-free data structure. Finally, if we completely do away with
the helping mechanism, we can have the guarantee of completion of opera-
tions by non-faulty threads only when they run in isolation, and in that case,
the non-blocking data structures become obstruction-free. Given the complex-
ity of wait-free data structures and weaker progress guarantee associated with
obstruction-free data structures, most often we are interested in lock-free data
structures for an application.

CAS is the most widely used synchronization primitive for modifying the
shared-memory variables in a non-blocking synchronization method. One rea-
son is that it is available in almost all the available multi-core and many-core
architectures. By CAS, we indicate the synchronization primitive for a single
shared-memory word. However, as we mentioned above, usually in a link-
based data structure, we need to modify multiple links to do modifications
(ADD/REMOVE). Thus, it requires a lot of effort to design a correct lock-free
data structure based on CAS. To circumvent this issue, a number of work exist
in the literature that use software constructs based on CAS. Double-compare-
and-swap (DCAS), Multi-word-compare-and-swap (MCAS), Double-compare-
single-swap (DCSS) are some of the well-known ones. A DCAS performs CAS
over two shared-memory words. A MCAS is a generalization of DCAS. A DCSS
performs CAS over a single word, however, it checks two words before perform-
ing the CAS. Henceforth, in the thesis we shall mean a single-word compare-
and-swap by CAS.

With the benefits that the lock-free data structures bring with them, there
comes a challenging issue - the memory reclamation. Next we discuss that.

(C) Memory reclamation in non-blocking concurrent data structures

Because memory is always limited and the running duration of an application
based a dynamic node-based data structure may not be fixed before the applica-
tion starts, the memory management becomes extremely significant. Allocating
memory in terms of new nodes by individual threads in a concurrent data struc-
ture is a thread local operation and therefore is same as that in a sequential data
structure. However, reclaiming memory occupied by a node is a completely dif-
ferent task in a lock-free data structure. For that matter, it is different from that
even in a lock-based data structure. In a sequential data structure after a node

18 1. Introduction

is removed, the single thread that removes the node returns it to the operating
system or a memory pool if one is used. In a blocking data structure, the thread
that holds a lock at the node being removed, does the same before releasing the
lock. Thus it is straightforward in these cases.

On the other hand, consider the case of removing a node in a lock-free data
structure. It is absolutely possible that more than a thread may hold the address
of the node under remove in their local memory. For example, the threads
that are either trying to help the remove operation by a concurrent thread or
itself trying to execute the remove operation. Now, it is also possible that while
holding the address of the node under remove, a thread gets pre-empted by the
operating system and thus goes to sleep. Given that, when the sleeping thread
wakes up, because there is no lock around, it can attempt to access the node
whose address it was holding if it was not informed by the concurrent thread
that actually freed the node under remove to the operating system. This can very
likely cause the program to crash or create other unexpected errors. Obviously,
carelessly freeing memory after removing a node in a lock-free data structure
is not an option. Therefore, we need some specific mechanism for memory
reclamation in lock-free data structures.

Mostly, recent papers on lock-free data structures focus on the main algo-
rithm. Their reason is justified in the sense that the research literature of au-
tomatic memory reclamation, commonly known as garbage collector, is large
and growing regardless of the research in lock-free data structures. The auto-
matic garbage collectors are included in the virtual machine based high-level
popular programming languages like Java and C#, and with every new release
of the compiler the efficiency of garbage collector also typically gets improved.
Still, many authors have presented tailor-made lock-free memory reclamation
schemes and made them part of concurrent data structure libraries. In this dis-
sertation, we shall not go into the memory reclamation of the presented al-
gorithms and shall assume the availability of lock-free memory reclamation
method. Our sample implementations in Java use the Java Virtual Machine
(JVM) provided garbage collector whereas implementations in C++ use epoch
based memory reclamation.

Finally, last but not the least, another challenge in designing non-blocking
concurrent data structures is ABA problem. We describe it here.

(D) ABA problem in non-blocking concurrent data structures

We mentioned above that CAS is the most widely used primitive to design lock-
free data structures. However, use of CAS brings one of the most interesting
problems in a concurrent setup known as ABA problem. CAS(Sv A, Vt B,

1.3. Our Contributions 19

Vt C) is not able to discover whether A was changed to B and then changed
back to A between it was read and CAS is performed. In many situations, it
causes problems in which a concurrent data structure can become malformed.
On the other hand, using Load-Link/Store-Conditional LL/SC avoids ABA is-
sue. Unlike CAS, it succeeds only if A, when changed in Store-Conditional to C,
has not changed since it was read in Load-link as B. This is guaranteed because
the value read buy a LL is always stored at a linked auxiliary register.

A second well-known mechanism to tackle ABA problem is via DCAS. A
counter is packed with a shared-memory single-word length variable that needs
to be modified. Thus, it makes an augmented variable. Now, to modify an aug-
mented variable, we can use DCAS, and whenever the word changes its counter
is incremented. That way, an ABA problem can not occur because of an in-
cremented counter. However, as DCAS is not provided natively, this technique
imposes a high cost.

1.3 Our Contributions
Further in the thesis, first in the chapter 2, we present the system model that we
use to describe the presented algorithms. Thereafter, the detailed descriptions of
the lock-free search data structures are given. Specifically, this thesis presents
the following :

Lock-free one-dimensional point search: In the part II, we describe point
search for one-dimensional datasets. In one-dimensional data, the nearest neigh-
bour search is analogous to predecessor search. We present lock-free algorithms
for linked-list and external BST in the chapter 3 and internal BST in the chap-
ter 4. An important contribution of the chapter 3 is the notion of help-optimality
which captures the optimization in the amortized complexity of operations in
the data structures. Additionally, in the same chapter, we present a methodol-
ogy for language-portable designs of lock-free data structures. To evaluate the
efficiency of language-portability we implement the algorithms in both Java and
C++ and compare their experimental performance with that of related existing
implementations. In the chapter 4, we present an algorithm for lock-free inter-
nal BST. We present the amortized analysis of the algorithm. We prove that the
presented lock-free data structures are linearizable.

Lock-free one-dimensional range search: In the part III, we describe a generic
method for implementing linearizable lock-free range searches for one-dimensional
datasets. The data structures linked-list, skip-list, and BST, which facilitate

20 1. Introduction

predecessor query, are used as underlying data structures. We implement the
algorithm and compare its experimental performance with that of an existing
method of lock-free range search in a k-ary tree.

Lock-free multi-dimensional point search: In the part IV, we describe point
search algorithms for multi-dimensional datasets. kD-tree is one of the most uti-
lized data structure for nearest neighbour as well membership queries for multi-
dimensional data. We present LFkD-tree- a lock-free design of the kD-tree.
We present a linearizable nearest neighbour search method, which is generic
and can be adapted to other multidimensional data structures. We also provide
experimental results of an implementation of the presented algorithm.

2

SYSTEM MODEL AND
PRELIMINARIES

Chapter Abstract

In this chapter, we present the definitions used in the algorithms. We also de-
scribe the consistency model of the algorithms and present an overview of proof
techniques for linearizability. Finally, we describe the notion of contention mea-
sures that help in the amortized analysis of the lock-free algorithms.

2.1 System Model
Designing concurrent search data structures is a tedious task. However, proving
the correctness of these algorithms is even harder. Rigorous proofs of these
algorithms are as important as bug-free sample implementations. Now before
describing the methodology to prove correctness, we define the system model
used for the design and correctness proof of the algorithms in this dissertation.

Shared Memory System: We consider an asynchronous shared memory sys-
tem U which comprises a set of word-sized objects V and a finite set of threads1

P and supports primitives read, write and CAS (compare-and-swap). U
guarantees that the primitives are atomic i.e. they take effect instantaneously
at an indivisible time-point [51]. Each object v∈V has a unique address, com-
monly known as a pointer to v, denoted by v·ref. CAS(v·ref, exp, new) com-
pares the value of v with exp and on a match updates it to new in a single atomic
step and returns true; else it returns false without any update at a. Let |P|=n.
Processes p∈P communicate by accessing the objects v∈V using a primitive.
A configuration Ut of U specifies the value of each of v∈V and the state (values
of local variables, etc.) of each of p∈P at time t. The initial configuration U0
represents the initial value of each of v∈V and the initial state of each of p∈P .

1 In this dissertation, we shall use threads instead of processes, which is also very common
in describing a shared memory system. The reason is that our program implementation is
multi-threaded instead of multi-processing.

21

22 2. System Model and Preliminaries

Abstract Data Type: In this dissertation, by multidimensional data we mean
a point from the real space Rd and by distance we mean Euclidean distance
||a, b||2 ∀ a, b∈Rd. Accordingly, if not mentioned explicitly, by data we shall
mean a one-dimensional real number. Let FRd

be the set of all countably finite
subsets of Rd. Let k∈Rd and A∈FRd

. Let B:={true, false}. With that, we
shall define a universal abstract data type (ADT)A for all the data structures in
this dissertation, which we specify as a set of mappingsM = {ADD,REMOVE,
CONTAINS,NNSEARCH,RANGESEARCH} as defined below:
ADT Operations:

1. ADD : Rd×FRd 7→ B×FRd

s.t. ADD(k,A) = (true,A∪ k) if k/∈A and
ADD(k,A) = (false,A) if k∈A.

2. REMOVE : Rd×FRd 7→B×FRd

s.t. REMOVE(k,A) = (true,A/k) if
k∈A and REMOVE(k,A) = (false,A) if k/∈A.

3. CONTAINS : Rd×FRd 7→ B×FRd

s.t. CONTAINS(k,A) = (true,A) if
k∈A and ADD(k,A) = (false,A) if k/∈A.

4. NNSEARCH : Rd×FRd 7→Rd×FRd

s.t. NNSEARCH(k,A) = (a∗,A)
where a∗ ∈ A and ||a∗, k||2 ≤ ||a, k||2∀a∈A.

5. RANGESEARCH : Rd×Rd×FRd 7→FRd×FRd

s.t. RANGESEARCH(x, x′,A)

= (S,A) where S∈FRd

and ∀k∈S, k∈A ∧ xi ≤ ki ≤ x′i where
1 ≤ i ≤ d.

Please note that in case of one-dimensional data, d = 1. Furthermore, in this
dissertation we consider only orthogonal ranges that are given by two corner
points as [x, x′].

Data Structure: A data structure Υ stores points from a dataset A∈FRd

.
The state of Υ in configuration Ut, denoted Υt, stores points from At∈FRd

.
For an unbounded and dynamic design, Υ is constructed using nodes and links
that are assembled of the objects v∈V . Υ may contain instances, and pointers
thereto, of other classes to support a specific algorithm. A node nd instantiates
a class Node, which provides a template for (contiguously) packaging required
number of objects v∈V to store the values of the members of the class. Thus, the
address of nd, more commonly known as pointer to the node or node-pointer
nd, is the address of the first object of the object-packet assigned to it. We use
a·m to denote the value of a member m of nd, if nd·ref=a. A link represents the
address of a node, and thus is a node-pointer, is stored at a single object v∈V .
Node has a member ky which is immutable and represents a unique data-point

2.1. System Model 23

k∈Rd. We denote nd by Nd(k) if nd·ref·ky = k. Node may have one or more
links as its members depending on a specific design of Υ. Node may also have
members, such as lock or some version-info-object, to facilitate synchronization
of the concurrent threads accessing Υ. The access of Υ is availed by root - the
address of a fixed sentinel node (We may have more than one sentinel nodes in
a data structure). At any time t≥0, a node N is said to be physically present
in Υt, if it can be reached following links starting from root. In many cases a
node is removed from a lock-free data structure using multiple CAS steps. One
of these steps are known to be logical remove step. At any time t≥0, a node N
is said to be present in Υt, denoted by N∈Υt, if it is physically present in Υt

and is not logically removed.
Implementation: An implementation IO of the ADT A is an algorithm,

which implements mappings O⊆M using operations on Υ. We call the imple-
mentation full ifO=M, otherwise it is called partial. We assign the operations
same name as its corresponding mapping. Thus, a mapping op(k,A), where
op : Rd×FRd 7→B×FRd

, k∈Rd and A∈FRd

, is implemented by an operation
op(k) that outputs true or false and makes appropriate changes in Υ storing A.
A NNSEARCH(k,A) is implemented by NNSEARCH(k), which outputs a point
a∗∈Rd according to the mapping definition. Similarly, a RANGESEARCH(x, x′,
A) is implemented by RANGESEARCH([x, x′]) that outputs S which is a subset
of A.

Operation Steps: A thread p∈P performs an operation op as a set of steps.
If op is large, often we group a subset of steps in op as a method, which is
called from inside of op. A step s=〈v, g, h, p〉, where g and h are the values of
the object v before and after the execution of s, comprises at most one execution
of a primitive and can contain some calculations over thread-local variables of
p. The execution-point of s is the point on a real time-line where its atomic
primitive takes effect. We denote the invocation and response steps of op by
si(op) and sr(op), respectively. The execution-points of si(op) and sr(op),
denoted by ti(op) and tr(op), are called the invocation point and response point
respectively. IO also specifies the initial configuration U0.

Execution History: An execution α of IO is a (finite or infinite) sequence
of steps performed by the threads p∈P , starting from U0. A historyH of α is its
subsequence consisting of the invocation and response steps. A subhistory ofH
is its subsequence. A thread subhistory ofH, denoted byH|p is its subsequence
containing steps executed by a p∈P . We call histories H and H′ equivalent,
denoted H≡H′, if ∀p∈P , H|p=H′|p. In H, a response step of an operation
op matches an invocation step if the two are performed by the same thread. A
history is called sequential, if the first step is an invocation and every invocation
step, except possibly the last one, follows by a matching response step. We

24 2. System Model and Preliminaries

assume that every history H is well-formed: ∀p∈P , H|p is sequential. An
operation in a history is effectively the pair of its invocation and response steps.
Let op1 and op2 be two operations inH. We call op1 precedes op2 inH, denoted
op1−→

H
op2, if tr(op1)<ti(op2). We call two operations op1 and op2 concurrent

in H, if neither precede the other. H is called concurrent if it contains at least
one pair of concurrent operations.

Extension and Completion of History: We call an invocation s pending in
H, ifH does not contain a matching response to it. An extension ofH, denoted
ext(H), is obtained by appending matching response steps to every pending
invocation in H. A completion of H, denoted by complete(H), is obtained by
dropping the pending invocation steps, or equivalently, dropping the pending
operations, fromH.

Consistent Sequential History: A sequential specification of IO is a set
of sequential histories with some properties. Let si(op), sr(op)∈S, where S is
a sequential history. Let Υti(op) and Υtr(op) be the states of Υ at ti(op) and
tr(op), which store the datasets Ati(op) and Atr(op), respectively. We call the
operation op consistent with respect to the ADTA in S if the output arguments
at the response and Atr(op) satisfy the corresponding mapping definition of the
ADT A. The sequential history S is consistent if each operation in it is consis-
tent.

2.2 Correctness and Complexity

2.2.1 Correctness
The concurrent data structures in which operations are executed by multiple
threads concurrently are very hard to debug. The reason is asynchrony in the
shared memory systems which makes it difficult to replicate a bug. But even
before the implementation a concurrent data structure needs rigorous proof of
correctness. Given a concurrent data structure that provides an implementation
IO of A, to prove its correctness, as mentioned by Lamport [61], we need to
essentially prove two types of properties:

(a) Safety: Intuitively some bad things never happen.

(b) Liveness: Intuitively a good thing eventually happens.

Often, we refer to safety property as consistency condition and liveness prop-
erty as progress condition. For the blocking data structures, wherein a critical
section is protected by a lock around it, for proving the safety and liveness
properties, it is essential to prove:

2.2. Correctness and Complexity 25

• Mutual Exclusion : Two threads executing concurrently can not be in
their critical section simultaneously. This is a safety property.

• Deadlock-freedom : If a thread attempts to enter its critical section, then
some thread, not necessarily the same one eventually enters its critical
section. This is a liveness property.

Another stronger and quite desirable liveness property with respect to the critical-
section based blocking data structures is Starvation-freedom.

• Starvation-freedom : A thread, that attempts to enter its critical section,
must eventually succeed.

In case of non-blocking data structures, where there is no critical section,
the most popular safety property is linearizability that is defined below. Here we
use the notion of history of the implementation as described in the section 2.1.

Linearizability: A history H is linearizable if ∃He=ext(H) and a consis-
tent sequential history S s.t. (a) complete(He) ≡ S and (b) op1−−→

He

op2 =⇒
op1−→

S
op2. We call an implementation IO linearizable if every execution his-

tory of IO is linearizable.
The most common approach to prove linearizability is: (a) define lineariza-

tion point of each operation op as the execution-point of a step, called lineariza-
tion, which should be between the invocation and response point of op then
(b) in an arbitrary history H append appropriate response (in any arbitrary or-
der) of all the operations which have performed their linearization to obtain
ext(H), then (c) drop the invocation steps without a matching response to ob-
tain complete(ext(H)), and (d) construct a sequential history S by arrang-
ing the invocation-response pair of operations according to their linearization
points. It is easy to argue that complete(ext(H)) ≡ S. And, finally, show that
the constructed sequential history S is consistent.

Another weaker consistency condition is sequential consistency. A sequen-
tially consistent concurrent data structure guarantees that the threads executing
different operations provided by the data structure will see the effect of the
data structure in their respective program order. In other words, the individual
thread subhistories H|p are equivalent to some consistent sequential histories.
It is weaker than the linearizability in the sense that in a linearizable implemen-
tation a user looking from outside the threads gets the illusion of operations
running in their program order. An even weaker consistency condition is qui-
escent consistency which ensures that two operations separated by a period of
quiescence take effect in their real time order but concurrent operations i.e.
those whose execution interval overlap can take any order. It can also be seen

26 2. System Model and Preliminaries

as proving that the subhistory of individual thread histories obtained by purging
those operations that are concurrent with any other operation in the execution
history, are equivalent to some sequential histories. The sequential consistency
and quiescent consistency are less often used in proving consistency of concur-
rent data structures. The former is often useful in describing the correctness of
low level concurrent systems such as hardware memory interfaces and the latter
is used to provide even weaker constraints in object behaviors, mostly in order
to obtain a higher computational performance.

The safety properties described in terms of consistency of execution histo-
ries are equally applicable to blocking data structures. In fact, it is desirable to
prove that a blocking data structure that satisfies mutual execution property also
satisfies linearizability.

The liveness property of non-blocking data structures is expressed in terms
of the progress guarantee that they provide. We already described the classes of
non-blocking data structures in the last chapter. To prove wait-freedom in terms
of an execution α of an implementation IO, we show that for no operation an
infinite number of steps exist in any α. To prove lock-freedom, we show that
there exists at least one operation such that it takes only finite number of steps in
an arbitrary execution α of an implementation IO. Finally, to prove obstruction-
freedom, we purge the operation steps taken due to obstructions by concurrent
operations in any α, and show that for no operation there exist infinite number
of steps in IO.

At times, in an implementation ofA, some operations can be wait-free while
others are still blocking. Usually, such an implementation can be seen where
CONTAINS operations are wait-free under the assumption that there are only
finite number of elements in the key universe and modification operations ADD
and REMOVE are blocking, for example in the lock-based linked list of Heller
et al. [48]. In that case, we prove the the properties of different operations
differently with respect to their respective liveness properties.

2.2.2 Complexity

As there is no assumption on the relative speeds of the the threads in an asyn-
chronous shared memory system, the time complexity of an algorithm, which
involves synchronization, is difficult to be analyzed. For concurrent algorithms
we count the total number of steps taken by all the operations in an execution.
It is referred as the step complexity of the execution. In a step, to a thread, at
most one atomic access to any shared-variable is allowed. However, depend-
ing on the architecture of the machine and the memory hierarchy, access to a
shared-variable that is cached in a memory close to the processor is orders of

2.2. Correctness and Complexity 27

magnitude faster than the access to a shared-variable that is not cached. There-
fore it becomes imperative to count only those steps in which an access to a
remote shared-variable is performed. This is called Remote Memory Access
measure. A remote memory access may refer to an attempt by a thread to ac-
cess a shared-variable residing at either a central shared memory location or in
the local memory of a core in which the thread is not running. In both the cases
the memory access attempt goes across the memory bus. Depending on the
architecture there are two possible remote memory access complexity models

1. Coherent Caching (CC) model - An access to a shared-variable not in the
cache memory of the core running the thread is called a remote access.

2. Distributed Shared Memory (DSM) model - An access to a shared-variable
in the cache memory of a core that the thread is not running is called a
remote access.

Often we need to derive the bounds of operations provided by a concurrent
data structure. For this purpose amortized analysis is the most popular method,
specifically in the contexts where the operations are not run in isolation. In
concurrent data structures the amortized analysis can be used to give the bounds
of complexity of operations. For a blocking concurrent data structure, it is
impossible to give any upper bound of an operation which follows from the
following result due to Alur and Taubenfield [5], we mention it here without its
proof.

Theorem 1. There is no two (or more) thread mutual exclusion algorithm, with
an upper bound on the number of times a winning thread may need to access the
shared memory in order to enter its critical section in presence of contention.

Nevertheless, for a non-blocking concurrent data structure, an amortized
analysis of its upper bound can be presented in terms of the size of the data
structure and the measure of contention. In principle the measure of contention
is the number of concurrent threads in the recent history of a thread during an
interval. Starting with the size of the data structure at the invocation of the
operation, the change in size of the data structure during the execution interval
of an operation can be accounted to a measure of contention. Moreover the
number of extra steps that a thread incurs on account of helping other threads
during a given operation can be measured using a measure of contention and
hence on amortization we could count total number of steps taken by all the
threads performing the operations in a finite execution. Some of the often used
measures of contention during an operation are as following.

Let op be an operation with ti and tr as its invocation and response points
respectively,

28 2. System Model and Preliminaries

• Interval Contention [3] - Total number of operations whose execution
interval overlaps the interval [ti, tr].

• Point Contention [8] - Maximum number of operations being executed
concurrently at any point in the interval [ti, tr].

• Overlapping-Interval Contention [74] - Maximum interval contention of
any operation whose execution interval overlaps the interval [ti, tr].

Some authors name the interval contention as cumulative contention and point
contention as concurrent contention [52]. Point contention is a tighter measure
of contention compared to interval contention. As explained before the number
of extra steps that a thread needs to take on account of the helping mechanism
in the design of a concurrent data structure should always be optimized. How-
ever, in some cases a thread may end up taking extra read steps due to extended
traversal path in a linked concurrent data structure which may arise because of
conservative helping. Overlapping interval contention is used in these cases in
which a thread has to incur extra steps during an operation which can be ac-
counted to the operations whose execution interval do not overlap with that of
itself. For example, in a double linked-list if the insert operations do not help
a concurrent insert then there can be such a situation (example taken directly
from [74]). Consider that out of two links connecting two nodes in a double
linked-list, a link gets updated by an insert and the other is pending while the
thread performing insert gets delayed. In the meantime many insert operations
succeed to insert multiple nodes between the node whose insert is pending and
the node that has been connected by one of its link. Now if after the successful
insert operations return, a predecessor query travels extra steps from one direc-
tion to the other, these extra steps can not be accounted to an operation whose
execution interval overlaps the predecessor query. In such cases overlapping
interval contention is used.

Recently, Gibson et al. [39] showed that the amortized number of steps per
operation are asymptotically equivalent. This result is important in the sense
that we can perhaps see no theoretical incentive to optimize a lock-free data
structure algorithm to obtain the amortized complexity in terms of point con-
tention instead of interval contention. Practically, in an implementation the
CONTAINS operations are made not to help concurrent ADD or REMOVE op-
erations and that way the amortized complexity is obtained in terms of interval
contention. However, it has been observed that minimizing the number of steps
taken in helping is practically a much better design choice as we shall see in the
chapter 3.

Part II

LOCK-FREE 1-DIMENSIONAL POINT SEARCH

3

HELP-OPTIMAL AND
LANGUAGE-PORTABLE

LOCK-FREE CONCURRENT
DATA STRUCTURES

Chapter Abstract

Helping is a widely used technique to guarantee lock-freedom in many concur-
rent data structures. An optimized helping strategy improves the overall per-
formance of a lock-free algorithm. In this chapter, we propose help-optimality,
which essentially implies that no operation step is accounted for exclusive help-
ing in the lock-free synchronization of concurrent operations. To describe the
concept, we revisit the designs of a lock-free linked-list and a lock-free binary
search tree and present improved algorithms. Our algorithms employ CAS
primitives and are linearizable.

We design the algorithms without using any language/platform specific mech-
anism. Specifically, we use neither bit-stealing from a pointer nor runtime type
introspection of objects. Thus, our algorithms are language-portable. Further,
to optimize the amortized number of steps per operation, if a CAS execution to
modify a shared pointer fails, we obtain a fresh set of thread-local variables
without restarting an operation from scratch.

We use several micro-benchmarks in both C/C++ and Java to validate the
efficiency of our algorithms against existing state-of-the-art. The experiments
show that the algorithms are scalable. Our implementations perform on a par
with highly optimized ones and in many cases yield 10%-50% higher through-
put.

31

32 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

3.1 Introduction

3.1.1 Overview

The literature on lock-free data structures has grown sufficiently over the last
decade [46, 67, 35, 33, 53, 71, 32, 24, 78]. Typically, practical lock-free designs
use single-word atomic compare-and-swap synchronization primitives (hence-
forth referred to as CAS) to modify shared variables. Thus, to implement a
lock-free version of a dynamic pointer-based data structure, in which (multi-
ple) mutable links (pointers) are shared among threads in a concurrent set-up,
either by design or due to necessity, one or more CAS executions are performed
to complete a modify (add or remove) operation. For example, in the lock-free
linked-list of [46], two successful CAS executions are required to complete a re-
move operation, whereas in [35] three such executions are required for the same
operation. Considering the lock-free external binary search trees (BSTs), three
successful CAS executions are necessary to remove a node in [71], whereas in
[33] and [32], four such executions are required for the same purpose. Further-
more, in [33] and [32], two successful CAS executions are required to add a
node. Naturally, concurrent operations which modify overlapping sets of links,
face each other at a stage where they would have partially completed and would
still need to perform one or more CAS to complete. Herein, we call this situation
concurrent obstruction.

For operations on a concurrent data structure, linearizability [50] is the most
commonly used consistency framework. Intuitively, a concurrent data struc-
ture is linearizable if every execution provides time-points, called linearization
points, between the invocation and the response of each operation, where it
seems to take effect instantaneously. Thus, using a sequence of seemingly in-
stantaneous operations, described by the real-time order of the linearization
points, we perceive the concurrent operations displaying their sequential be-
haviour.

In a lock-free algorithm, often a CAS execution step is taken as the lineariza-
tion point of an operation performing multiple CAS. Such a step may not nec-
essarily be the last one. Most commonly in a remove operation, on the success
of the CAS representing the linearization point, the target node is considered
logically removed, [46, 67, 35, 33, 53]. This results in each traversal passing
through a logically removed node and hence extra read steps get counted in step
complexity of operations.

A well-known mechanism to deal with such situations is helping. Helping
essentially implies that if multiple operations face concurrent obstruction or
need to perform extra read while traversing over a transient deformation in form

3.1. Introduction 33

of a logically removed node, based on a fixed protocol, the pending steps of one
of the operations are completed by the concurrent operations, before furthering
their own course of steps. This strategy ensures lock-freedom because a non-
faulty thread definitely completes its operation in finite number of steps.

In the prevalent research on lock-free data structure design, the helping
mechanism now holds a center stage. In the lock-free linked-lists of [46, 35],
every concurrent operation offers helping to a remove operation which success-
fully performs the CAS to logically remove the target node and is yet to execute
one more CAS. Barnes [11] proposed a helping mechanism called cooperative
technique. The cooperative technique applied to a data structure requires a mod-
ify operation to atomically write the description of planned steps in the node
whose links it targets to modify and thereby a concurrent obstructed operation
ensures completion of those steps in case the original operation gets delayed.
This method is applied in the BST of [33, 32], where even add operations re-
quire helping.

In the lock-free BST of Natarajan et al. [71], the links are used much in
the same way as in the linked-lists of [46, 35] to modulate helping, and unlike
[33, 32], the add operations there do not require help. Broadly, their design pro-
vides better progress conditions for concurrent operations, which they showed
experimentally. However, we notice that they put the linearization point of a re-
move operation at the very last CAS execution, which necessitates a concurrent
remove operation to help a pending remove operation of the same query key,
even though it does not change its return that is false. Clearly, the number of
helping steps are not necessarily minimized.

A common suggestion found in the papers on lock-free data structures is
that one should avoid helping during traversal by an otherwise unobstructed op-
eration, which if the obstructing operation is not delayed, predominantly goes
to wastage. The works analysing experimental performance of concurrent data
structures [18, 42, 29] further emphasize on the same. Gibson et al. [39] showed
that the amortized number of steps per operation are asymptotically equivalent
irrespective of avoiding help by read operations. However, a design optimiza-
tion to minimize the number of steps incurred by modify operations in helping
at a concurrent obstruction is largely un-attempted.

Another noticeable characteristic of existing lock-free algorithms is that
their descriptions are very close to the programming language of the sample
implementations used by the authors to validate their claim of efficiency. For ex-
ample, in the linked-lists of [46, 35] and the BST of [71], the design is described
in terms of using unused bits from a pointer which points to a memory-word
aligned at a fixed boundary. This technique is popularly known as bit-stealing
in programming parlance. The correctness proof thereof is inherently con-

34 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

nected to bit-stealing. In Java toolkit [73], AtomicMarkableReference
and AtomicStampedReference classes are used to simulate bit-stealing,
but are not too popular from the performance point of view. The lock-free ex-
ternal BST designs of [33, 32] use polymorphism, class inheritance and type
introspection of objects at runtime (also known as real-time-type-information
or RTTI), to describe their algorithm. The correctness proofs in these papers
are presented accordingly.

In the lock-free skip-list implementation in Java [62], Doug Lea uses extra
splice nodes to simulate the pointers masked with stolen bits. Such a node is
identified with a specific assignment of one of its fields, for example, the value
field of a marker node points to itself in [62]. A marker node stores the original
pointer in its next field enabling unmasking of the pointer off any stolen bit.
Lea remarks that in spite of some temporary extra nodes, this technique could
still be faster for a traversal with quick garbage collection of removed nodes
and is worth avoiding the overhead of extra type testing.

Usually, the lock-free implementations in C/C++, for example in [18] or
[29], use their own memory allocation and garbage collection strategies to im-
prove performance. Obviously, these implementation environments of C/C++
very much resemble one in Java and yet they entail each traversal step to un-
mask a pointer off a possible stolen bit. This underlines a motivation to present
the lock-free algorithms that utilize temporary splice nodes and thereby achiev-
ing language portability. However, the efficiency of such an implementation in
C/C++ remains still unexplored for the research community.

In literature, the efficiency of a lock-free algorithm is also presented in terms
of the amortized step complexity per operation [35, 32, 24]. Often in a lock-free
data structure, when a CAS execution in a modify operation returns false, the
local variables in the thread become unusable for a reattempt. Hence, the thread
needs to restart the operation from a clean location to get a fresh set of local
variables. Usually, the first sentinel node where an operation starts from (head
of a linked-list, root of a BST), is always clean. However, there can be as many
as c restarts per operation if c concurrent threads access the data structure. To
get a pointer to backtrack to a local clean location and thus restart the operation
from there, improves the amortized number of steps per operation (counting
both read and write). It can be interesting to use a splice node to store a pointer
to a node in a local clean location and thus locally restart a modify operation.

The contributions of this work are the following:

1. We introduce the concept of help-optimality which essentially revisits the
lock-free algorithms to optimize the number of CAS steps in helping at
concurrent obstructions.

3.1. Introduction 35

2. We describe help-optimal lock-free designs of a linked-list and a BST to
implement Set abstract data types (ADT) which export linearizable ADD,
REMOVE, and CONTAINS operations. CONTAINS are wait-free in the
linked-list for a finite key space.

3. The presented algorithms do not use language specific constructs like
bit-stealing or type introspection of objects at runtime and hence are
language-portable for a programmer.

4. We also show that on a CAS failure at a conflict, the modify operations in
our algorithms restart locally to optimize the amortized step complexity
per operation.

5. We implement the algorithms in both C++ and Java. Our implementa-
tions perform on a par with highly optimized implementations and out-
perform them in many cases.

Further in this chapter, first, we present a simple lock-free BST algorithm as a
motivation for a help-optimal design (section 3.2). Thereafter, we present effi-
cient lock-free algorithms of a linked-list (section 3.3) and a BST (section 3.4),
to describe the concept of help-optimality as used in practice. Having described
it algorithmically, we specify help-optimality more formally (section 3.5). Fi-
nally, we discuss the experimental performance of the presented algorithms
(section 3.6).

3.1.2 Related Work

The first CAS-based lock-free linked-list was presented by Valois [84]. He sug-
gested to augment every node with an auxiliary node to manage synchroniza-
tion. Heller et al. [48] were perhaps the first to suggest that the CONTAINS
operations in a concurrent linked-list must progress in a wait-free manner for a
finite key space. They presented lock-based linked-list, called lazy list, to show
that it favours performance. They also recommended that the CONTAINS oper-
ations in Michael’s lock-free linked-list [67] should not be involved in helping.
Subsequently, to the best of our knowledge, no concurrent data structure was
designed in which CONTAINS operations are obstructed; interestingly, some re-
searchers called it conservative helping, for example in [33]. In the lock-free
internal BSTs presented by Howley et al. [53], Chatterjee et al. [24] and Ra-
machandran et al. [78] CONTAINS operations complete without helping any
concurrent operation.

36 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

3.2 Help-optimality: Motivation

Let us consider a very simple lock-free design of an external BST to implement
a Set ADT that exports ADD, REMOVE, and CONTAINS operations as given in
the Algorithm 3.1.

In this data structure, a node has two pointer fields lt and rt in addition to a
key field k, see line 1. Without ambiguity, we shall use k to denote a node with
key k. The pointer fields lt and rt connect a node to its left and right children
respectively, which are null in a leaf (also called external) node. In this BST, the
external nodes are data-nodes and the internal nodes are routing-nodes. There
is a symmetric order of node-arrangement - the nodes in the left subtree of a
routing-node k have keys less than k, whereas in its right subtree the nodes have
keys at least k. We denote the parent of a node k by p(k) and there is a unique
node called root s.t. p(root) = null. Each parent is connected to its children
via links (we indicate the link emanating from k and incoming to l by k;l; we
use the terms pointer and link interchangeably). The other child of p(k), i.e.
sibling of k, is denoted by s(k).

Pseudo-code convention: N·ref represents the reference to a variable N.
Thus, f(N·ref) indicates passing N by reference to a method f. If x is a member
of a class C then pc.x returns field x of an instance of C pointed by pc. dir L and
dir R represent the left and right directions. CAS(A·ref, exp, new) compares A
with exp and updates to new in one atomic step if A = exp and returns true;
else it returns false without any update at A.

We initialize the BST with a subtree consisting of an internal node root with
key∞1 and two children with key∞0 and∞1, where∞1>∞0>|k| ∀ key k,
as its left- and right- child respectively, see Figure 3.1 and line 2. The method
Search, line 12 to 13, is used for traversal by a data structure operation.
Search takes variables par, cur and k as input which are two node-pointers
and a query key, respectively. At the invocation of Search, cur points to the
child of the node pointed by par in the direction of the subtree which can contain
k. At the termination of Search, cur points to a leaf-node which is identified
by the lt field being null.

To perform REMOVE(k), line 20 to 26, we use Search to arrive at a leaf-
node pointed by `. If k matches the key at `, we use a CAS to replace ` with a
special node with the same key, but with its rt field pointing to itself, see line 24.
We call such special nodes Dead. See method IsDead at line 10 which is used
to identify a Dead node. If the CAS succeeds, REMOVE returns true; if k was
not found or ` was already Dead, REMOVE returns false. For ADD(k), line 27
to 36, arriving at ` using Search, we use a CAS to replace ` with (i) a new
leaf-node with key k, if ` was Dead and (ii) a new internal node created using

3.2. Help-optimality: Motivation 37

Algorithm 3.1. A Simple Help-optimal Language-portable Lock-free Bi-
nary Search Tree

1 struct Node {K k; Node∗ lt, rt;};

2 root := Node(∞1, Node(∞0)·ref, Node(∞1)·ref);

3 Dir(Node∗ par, K k) {return k < par·k ? L : R};

ChCAS(Node∗ par, Node∗ exp, Node∗ new, dir cD)
4 if (cD == L) and par·lt == exp then
5 return CAS(par·lt·ref, exp, new);
6 else if (cD == R) and par·rt == exp then
7 return CAS(par·rt·ref, exp, new);
8 else return false;

9 GetDead(K k) {n := Node(k); n·rt := n; return n;}

10 IsDead(Node∗ leaf) {return leaf ·rt == leaf ;}

Child(Node∗ par, dir cD)
11 return cD == L ? par·lt : par·rt;

Search(Node∗ par, Node∗ cur, K k)
12 while cur·lt 6= null do
13 par := cur; cur := Child(par, Dir(par, k));

NewNode(Node∗ a, Node∗ b, K pKey)
14 left := (a·k < b·k ? a : b);
15 right := (a·k < b·k ? a : b);
16 return Node(pKey, left, right, null);

CONTAINS(K k)
17 p := root·ref; ` := root·lt;
18 Search(p·ref, `·ref, k); cD := Dir(p, k);
19 return `·k == k and !IsDead(`);

38 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

Algorithm 3.1. A Simple Help-optimal Language-portable Lock-free Bi-
nary Search Tree

REMOVE(K k)
20 p := root·ref; ` := root·lt;
21 while true do
22 Search(p·ref, `·ref, k); cD := Dir(p, k);
23 if `·k 6= k or IsDead(`) then return false;
24 if ChCAS(p, `, GetDead(k), cD) then
25 return true;

26 ` := Child(p, Dir(p, k));

ADD(K k)
27 nd := Node(k)·ref;
28 p := root·ref; ` := root·lt;
29 while true do
30 Search(p·ref, `·ref, k); cD := Dir(p, k);
31 if !IsDead(`) then
32 if `·k == k then return false;
33 n := NewNode(nd, `, max{k, `·k})·ref;
34 if ChCAS(p, `, n, cD) then return true;
35 else if ChCAS(p, `, nd, cD) then return true;
36 ` := Child(p, Dir(p, k));

∞1

∞1∞0

Fig. 3.1: Sentinel Nodes: Simple Lock-free BST

3.2. Help-optimality: Motivation 39

NewNod, line 14 to 16, if ` was not Dead and k does not match at `. If the
CAS succeeds at line 34 or at line 35, ADD returns true; if ` was not Dead and
contained k, it returns false. A CONTAINS(k), line 17 to 19, returns true if k is
found at a leaf-node which is not Dead, else it returns false.

#threads
16 32 48 64 16 32 48 64

∆
H

ea
p

0

20

40

60

80

30

40

50

60

70

si
ze

 (
M

B
)

Write Dominated Read Dominated

2.5

5.0

7.5

10.0

12.5

5

10

15

20

16 32 48 64 16 32 48 64

T
hr

ou
gh

pu
t(

M
op

s/
s)

CWT Simple BST EFRB BST LF SKIPLIST

Fig. 3.2: Performance graph: Lock-Free Basic BST

The main idea of this algorithm is to discard the requirement of helping by
not cleaning out a node in a REMOVE operation, which otherwise uses multi-
ple CAS executions. Thus, a single successful CAS is required by both ADD
and REMOVE operations, much like a lock-free stack. We skip the proofs of
correctness and lock-freedom of this algorithm, which are straightforward. An
interested reader may take them as a simple exercise. Please note that we have
not used any language specific construct to describe this algorithm.

We implemented the Algorithm 3.1 in Java and compared it against the (au-
thor provided) implementation of lock-free BST of [33] and the lock-free skip-
list of Java library [62]. The set-up and methodology of the experiments are
described in section 3.6. The throughput and memory usage by the algorithms
to implement a Set formed by at most 220 distinct keys are plotted in the Fig-
ure 3.2.

40 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

We see that this simple lock-free BST handsomely outperforms state-of-the-
art implementations of a skip-list and a BST. However, on account of memory
footprint, it performs poorly. We get enough motivation to design lock-free data
structures which optimally reduces the number of CAS executions by each ADT
operation aided with optimal memory footprints.

3.3 Help-optimal Lock-free Linked-list

3.3.1 Design
We implement an ordered linked-list based Set ADT which exports ADD, RE-
MOVE and CONTAINS operations. The pseudo-code is given in the Algorithm 3.2.
A node has two pointer fields nxt and bck in addition to the key field k, see
line 1. As before, we use k to denote a node with key k. The field nxt points
to the successor of k, denoted by s(k). We describe the use of bck later; it is
null in a regular node. The predecessor of k is denoted by p(k). Initially, the
linked-list consists of four sentinel nodes tailNxt, tail, headNxt and head with
keys∞1,∞0, −∞0 and −∞1, respectively, where∞1>∞0>|k| ∀ key k. See
line 2 to 5 and the Figure 3.3.

−∞1 -∞0 ∞0 ∞1

Fig. 3.3: Sentinel Nodes: Lock-free linked-list

We aim to reduce the number of CAS steps incurred in helping not only
during traversal, which is simple, but also in the concurrent obstruction. In the
Algorithm 3.1 we observed that obstruction can be fully avoided in an external
BST if REMOVE operations do not try to clean out the removed nodes. How-
ever, that strategy led to undesirably large memory footprint. So, the question
we ask - can we overcome the drawbacks? Observing carefully, in a linked-list
we can leverage the linear structure to connect the predecessor of the leftmost
node to the successor of the rightmost node of a contiguous chunk of removed
nodes by a single CAS and thus solve the issue. We describe it below.

At the basic level, ADD(k) in a lock-free linked list comprises - finding p(k)
and s(k) s.t. p(k).k<k<s(k).k, allocating the node k s.t. k·nxt=s(k) and using
a single CAS execution to swing the p(k).nxt from s(k) to k. We have seen it in
[46, 35]. Similarly, REMOVE(k) comprises - finding nodes p(k) and k, logically
removing k using a single CAS and then swing the p(k).nxt from k to s(k) using
a CAS.

3.3. Help-optimal Lock-free Linked-list 41

Algorithm 3.2. Help-optimal lock-free linked-list

1 struct Node {K k; Node∗ nxt, bck;};

2 tailNxt := Node(∞1, null, null);
3 tail := Node(∞0, tailNxt·ref, null);
4 headNxt := Node(−∞0, tail·ref, null);
5 head := Node(−∞1, headNext·ref, null);

Search(Node∗ pre, Node∗ nex, Node∗ cur, Node∗ suc, K k)
6 while cur·k < k do
7 if IsSp(suc) then cur := suc·nxt;
8 else pre := cur; nex := suc; cur := suc;
9 suc := cur·nxt;

CONTAINS(K k)
10 c := headNext·nxt;
11 while c·k < k do c := cur·nxt;
12 return c·k == k and !IsSp(c·nxt);

ADD(K k)
13 p := head·ref; n := headNxt·ref;
14 c := headNxt·ref; s := headNxt·nxt;
15 while true do
16 Search(p·ref, n·ref, c·ref, s·ref, k);
17 if IsSp(s) then
18 while IsSp(s) do {c := s·nxt; s := c·nxt};
19 else if c·k == k then return false;
20 if CAS(p·nxt·ref, n, Node(k, c, null)) then
21 return true;

22 BckTrck(p·ref, n·ref); c := p; s := n;

23 BckTrck(Node∗ pre, Node∗ nex)
24 nex := pre·nxt;
25 while IsSp(nex) do
26 pre := nex.bck; nex := pre·nxt;

27 IsSp(Node∗ c) {return c·k == −∞2;}

42 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

However, our aimed implementation as described before will require ad-
ditional tricks over this basic idea. Firstly, in order to make the algorithm
language-portable, we find a way of using splice nodes as Lea [62], instead
of bit-stealing like [46, 35]. For that, when logically removing k, we add a
splice node between k and s(k). We fix the key of a splice node as−∞2, where
∞2>∞1, by which it can be identified, see line 35 and the method IsSp at
line 27.

Algorithm 3.2. Help-optimal lock-free linked-list

REMOVE(K k)
28 p := head·ref; n := headNxt·ref;
29 c := headNxt·ref; s := headNxt·nxt;
30 r := null; spNd := null; mode := INIT;
31 while true do
32 Search(p·ref, n·ref, c·ref, s·ref, k);
33 if mode == INIT then
34 if c·k 6= k or IsSp(s) then return false;
35 spNd := Node(−∞2, s, p)·ref;
36 while true do
37 if CAS(c·nxt·ref, s, spNd) then
38 if CAS(p·nxt·ref, n, s) then return true;
39 r := s; mode := CLEAN; break;

40 s := c·nxt; if IsSp(s) then return false;
41 spNd·nxt := s;

42 else if s 6= spNd or CAS(p·nxt·ref, n, r) then
43 return true;

44 BckTrck(p·ref, n·ref); c := p; s := n;

Secondly, to avoid eager helping during traversal by a modify operation and
yet be able to clean out the logically removed nodes (along with the splice nodes
succeeding them), we use two trailing node-pointers during traversal. This trick
is similar to [71], there used in BST. We use them to store the address of the
last node, which was not logically removed, and its successor. Thus, at the
termination of a traversal, we have reference to the predecessor, say p(k), of
the leftmost node of a possible contiguous chunk of logically removed nodes.
Hence, when we swing the pointer p(k).nxt, using a CAS, to connect either to
a new node k for ADD or to s(k) for REMOVE, zero or more logically removed

3.3. Help-optimal Lock-free Linked-list 43

nodes are cleaned out.

p(a) a s(a)
−∞2

g(a)

p(a) g(a) a s(a)
(i)

(ii)

p(a) a s(a)
−∞2

g(a)
(iii)

Fig. 3.4: Steps of REMOVE in the linked-list.

And thirdly, to backtrack to a clean zone on CAS failures, we use the idea
of back-pointers as applied in [35]. However, our approach differs from them.
When allocating a splice node, we save the address of p(k) in its bck field,
which is always null for a regular node. Essentially, our approach is novel in
the following ways - (a) we do not use an extra CAS to fix (flagging) the pointer
p(k).nxt. Given the use of trailing pointers, we do not often travel a long chain
of back pointers. And (b) we do not set back-pointer of a regular node and thus,
save an extra atomic write of a shared pointer. Indeed, a splice node in our
algorithm splices two node paths.

The basic steps of REMOVE(k), are shown in the Figure 3.4. The node
n(k) denotes the first node of a possible contiguous chunk of logically removed
nodes before and adjacent to k. In case there is no such chunk before k, n(k)
coincides with it.

We perform traversal for a modify operation using the method Search,
line 6 to 9. We advance the variables pre and nex only if suc is not a splice
node, that is when cur is not a logically removed node. Otherwise, we advance
cur to the node saved at the nxt of the splice node suc. In REMOVE and ADD,
at the first call of Search, the variable pre points to head, nex, cur point to
headNxt and suc points to the successor of headNext, see lines 13 and 14.
Thus, at the termination of a traversal, when cur points to a node with key
not greater than k, pre points to the predecessor of the first node of a possible
contiguous chunk of logically removed nodes and nex points to the first node of
such a chunk.

To perform REMOVE(k), line 30 to 44, at the termination of a traversal, we
check the key at the node pointed by c, and if k does not match at it or the node
pointed by s is found splice (indicating node pointed by c is already logically
removed), we return false, line 34. Otherwise, we perform a CAS to add a
splice node between c and s to logically remove c, line 37. The steps taken up
to this point are identified by a variable mode with value INIT. After this step,

44 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

mode changes to CLEAN and we attempt to swing the p.nxt from n to s using
a CAS at line 38. If the CAS fails, we save s as r, and perform a BckTrck at
line 44 to find a fresh pair of p and n.

In the method BckTrck, line 24 to 26, we keep on traversing back, follow-
ing the bck of splice nodes, until we find the first node which is not logically
removed. If the call of BckTrck was due to a CAS failure caused by an ADD
of a new node, added between pre and nex, it is guaranteed that the chunk of
contiguous logically removed nodes must have been cleaned out. We explain it
in the next paragraph.

The operation ADD(k), line 13 to 22, performs a similar traversal. At the
termination of the traversal, we check if the node pointed by c is logically re-
moved by checking whether s points to a splice node, line 17. If the node at c
is not logically removed and contains the query key k, we return false; else, we
find the first node succeeding it which is still not logically removed, line 18, and
attempt a CAS to add the new node between p and c to return true. On a CAS
failure, we perform BckTrck as explained before and reattempt the previous
steps. Thus, on a successful ADD it cleans out a complete chunk of contiguous
logically removed nodes.

Note that, a modify operation in the Algorithm 3.2 differs from one in [46,
35], in the sense that on a CAS failure at p(k).nxt, we do not perform any help
before reattempting. Instead of that, we selfishly attempt the CAS from a clean
location. Thus, the operations are essentially selfish in our algorithm.

A CONTAINS operation, line 10 to 12, traverses in a wait-free manner and
returns true only if the node at which it terminates, the one pointed by c, is not
logically removed and contains the query key, else it returns false.

3.3.2 Correctness and Lock-freedom

It is easy to observe that the field k of a node is never modified after initializa-
tion. Scanning through the pseudo-code, we can observe that once a splice node
is added at the nxt of a node, no CAS is performed at it. Further, unless the nxt
of a node k is splice, it is not removed from the list. Thus, we can show that
a node p(k) is present in the list, when we connect a new node k or successor
s(k) of a removed node k to it. Additionally, we can observe that a traversal
terminates with c pointing to a node which has a key greater than or equal to
k in all the operations, which in turn shows that we maintain the order of node
arrangement in an ADD or a REMOVE operation. At the initialization, the sen-
tinel nodes form a valid ordered list. Hence, using induction we can prove that
the ADT operations maintain a valid ordered list.

The linearization point for an unsuccessful ADD operation is at line 9 dur-

3.4. Help-optimal Lock-free BST 45

ing a call of Search. Similarly for a successful CONTAINS operation it is
at line 11, when we read c·nxt for the first time. For a successful ADD or a
REMOVE operation, the linearization point lies at the first successful CAS ex-
ecution to add a new or a splice node. For an unsuccessful CONTAINS, the
linearization point is (a) just after that of the concurrent REMOVE operation
which (logically) removed k, if k existed in the list at the invocation point of
CONTAINS and (b) at the invocation point itself, if k was not present in the list
at that point. The linearization point of an unsuccessful REMOVE is determined
similar to an unsuccessful CONTAINS operation.

We can observe that the CAS to add a splice node is reattempted only if a
new node is added at the nxt of k. Before every reattempt of a CAS to swing the
nxt pointer of p(k), in both ADD and REMOVE, we perform a BckTrck and a
Search which guarantees that we have a fresh set of variables for references
of p(k) and n(k). Hence, it is guaranteed that a modify operation can not take an
infinite number of steps without a modification in the data structure. It proves
the lock-freedom of the ADD and REMOVE operation. It is easy to observe that
a non-faulty CONTAINS always finishes in a finite number of steps if the key
space is finite and thus is wait-free.

3.3.3 Amortized Step Complexity

We can observe that the splice nodes are never adjacent. Similar to [42], we do
not perform help in a CONTAINS operation. Additionally, in ADD and REMOVE
as well, no step is taken for helping during traversal. On a CAS failure to add
a splice node, we do not perform any traversal. On a CAS failure to add a new
node or to clean out a chunk of logically removed nodes, we perform backtrack
and do not start from the head. Following the same method as [35], we can
show that the amortized number of steps per operation is O(n+cI), where cI is
the total number of concurrent operations between invocation and response of
o, called interval contention [3] and n is the size of the list at the invocation of
o. In the light of theorem 1 of [39], it is asymptotically equivalent to O(n+cP),
where cP is the maximum number of concurrent operations at any point in the
lifetime of o, called point contention [8].

3.4 Help-optimal Lock-free BST

Having described a simple lock-free BST and an improved lock-free linked-list,
where we do not spend any CAS execution for helping, we are ready to describe
an efficient lock-free BST, in which we introduce the notion of help-awareness.

46 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

Algorithm 3.3. Help-optimal lock-free binary search tree

1 struct Node {K k; Node∗ lt, rt, bck;};

2 root := Node(∞1); grRoot := Node(∞0);
3 root·lt := Node(∞2)·ref; root·rt := Node(∞1)·ref;
4 grRoot·lt := root·ref; grRoot·rt := Node(∞0)·ref;

Search(Node∗ gPar, Node∗ nex, Node∗ par, Node∗ leaf , K k)
5 while leaf ·lt 6= null do
6 if IsSp(leaf) then par := leaf ·rt;
7 else gPar := par; nex := leaf ; par := leaf ;
8 leaf := Child(par, Dir(par, k));

GetNxt(Node∗ leaf)
9 return IsSp(leaf) ? leaf ·rt : leaf ;

10 GetKey(Node∗ leaf) {return GetNxt(leaf)·k;}

GetDeadBl(Node∗ gPar, K k)
11 n := GetDead(k); n.bck := gPar; return n;

12 IsBl(Node∗ leaf) {return leaf .bck 6= null;}

GetSp(Node∗ gPar, Node∗ leaf)
13 if IsDead(leaf) then
14 return GetDeadBl(gPar, leaf);
15 else return Node(−∞3, leaf ·lt, leaf , gPar);

AddSp(Node∗ par, Node∗ gPar, dir sD)
16 while true do
17 sib := Child(par, sD);
18 if IsBl(sib) then return sib;
19 else if ChCAS(par, sib, GetSp(gPar, sib), sD) then return sib;

20 IsSp(Node∗ leaf) {return leaf ·k == −∞3;}

BckTrck(Node∗ gPar, Node∗ nex, K k)
21 nex := Child(gPar, k);
22 while IsSp(nex) do
23 gPar := nex.bck; nex := Child(gPar, k);

3.4. Help-optimal Lock-free BST 47

3.4.1 Design

The pseudo-code of the design is given in the Algorithm 3.3. The symmetric
order of the BST is same as that in section 3.2. We borrow the notations from
the Algorithm 3.1 along with the methods Dir, Child, ChCAS, GetDead,
IsDead and NewNod as they are described there. We denote the parent of
p(k) by g(k).

The main drawback of the lock-free BST of the Algorithm 3.1 was removing
a node k by replacing it with a Dead node and not cleaning the Dead node
out that caused memory-wastage. Therefore, in the Algorithm 3.3 we make a
REMOVE operation clean out the added Dead node. Consequently, the ADD
operations will have to synchronize with the REMOVE operations which now
make structural changes in the BST.

In a sequential set-up, removing a node k from an external BST is a one step
process of modifying the link g(k);p(k) to connect s(k) to g(k). This process
also cleans out the removed node. It essentially removes the node p(k) from
the (unordered) linked-list described by the nodes on the path from the root to
s(k). Thus, to perform REMOVE(k) with cleaning out k in a lock-free BST can
be visualized as a two stage process - (a) single CAS to logically remove k by
replacing it with a Dead node as in the Algorithm 3.1 and (b) two CAS steps to
remove p(k) - adding a splice node between p(k) and s(k) to logically remove
p(k) and then swinging the pointer g(k);p(k) to connect s(k) to g(k), as in the
Algorithm 3.2. Let us call these stages LREMOVE and PREMOVE, respectively.
This understanding gives us the fundamental idea of the Algorithm 3.3.

LREMOVE is quite straightforward. Now, to perform PREMOVE efficiently,
along the lines of the Algorithm 3.2, we carry two trailing node-pointers during
the traversal for a modify operation. Thus, the method Search in the Algo-
rithm 3.3, line 5 to 8, becomes a blend of the same method in the previous
two algorithms. At the termination of Search, the variable gPar points to the
parent of the root of the sub-tree in which all the nodes are logically removed.
To avoid special cases arising in placing the trailing node-pointers in an empty
BST, we use a set of sentinel nodes as shown in the line 2 to 4 and the Figure 3.5.

We assign key −∞3 for a splice node, such that∞3>∞2>∞1>∞0>|k|
∀ key k. It ensures that at a splice node a traversal always goes right. Hence,
we connect s(k) to rt of a splice node. We copy the lt field of s(k) to the splice
node that it connects to, which if null, indicates that s(k) is a leaf node. Thus,
a traversal may terminate at a splice node. Considering that, we always use
the method GetNxt to access the actual leaf node, see line 9; and following
that the method GetKey gives the key at that leaf node, see line 10. Further,

48 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

Algorithm 3.3. Help-optimal lock-free binary search tree: ADD

ADD(K k)
24 g := grRoot·ref; n := root·ref; p := root·ref;
25 ` := root·lt; nd := Node(k)·ref;
26 while true do
27 Search(g·ref, n·ref, p·ref, `·ref, k);
28 cD := Dir(p, k); pD := Dir(g, k);
29 if !IsDead(`) then
30 if GetKey(`) == k then return false;
31 nI := NewNode(nd, GetNxt(`), k+GetKey(`)

2)·ref;
32 if IsSp(`) then
33 if ChCAS(g, n, nI, pD) then return true;
34 else if ChCAS(p, `, nI, cD) then return true;
35 else
36 if IsBl(`) then
37 sib := AddSp(p, g, !cD);
38 if !IsDead(sib) then
39 nI := NewNode(nd, GetNxt(sib), k+p·k

2)·ref;
40 if ChCAS(g, n, nI, pD) then return true;
41 else if ChCAS(g, n, nd, pD) then return true;
42 else if ChCAS(p, `, nd, cD) then return true;

43 BckTrck(g·ref, n·ref, k); p := g; ` := n;

∞1

∞1∞0

∞2

∞2

Fig. 3.5: Sentinel Nodes: Lock-free BST

3.4. Help-optimal Lock-free BST 49

to achieve local restart as in the Algorithm 3.2, we include a bck pointer in
the node structure to implement splice nodes that can provide reference to a
node in a local clean zone. However, the local restart here is more complex, as
discussed below. Consider these cases:

Algorithm 3.3. Help-optimal lock-free binary search tree: REMOVE

REMOVE(K k)
44 g := grRoot·ref; n := root·ref; p := root·ref; ` := root·lt;
45 dNdBl := null; sib := null; mode := INIT;
46 while true do
47 Search(g·ref, n·ref, p·ref, `·ref, k);
48 cD := Dir(p, k); pD := Dir(g, k);
49 if mode == INIT then
50 if GetKey(`) 6= k or IsDead(`) then return false ;
51 dNd := GetDead(k);
52 if !IsSp(`) and p 6= g then
53 dNdBl := GetDeadBl(g, k);
54 if ChCAS(p, `, dNdBl, cD) then
55 sib := AddSp(p, g, !cD); mode := CLEAN;
56 if IsSp(sib) then return true;
57 else if IsDead(sib) then
58 ChCAS(g, n, dNd, pD); return true;
59 else if ChCAS(g, n, sib, pD) then return true;

60 else if ChCAS(g, n, dNd, pD) then return true;
61 else
62 if ` == dNdBl and p 6= g then
63 if ChCAS(g, n, sib, pD) then return true;
64 else return true;

65 BckTrck(g·ref, n·ref, k); p := g; ` := n;

(A) An ADD operation o just before performing its CAS step gets pre-
empted by the operating system scheduler. Let g be the trailing node-pointer
pointing to the last internal node of the traversal path which is not logically re-
moved. Suppose that, by the time o wakes up, the BST changes in a way that
both the children of the node pointed by g are replaced by Dead nodes and the
node itself cleaned out of the BST. Consequently, o will have no link to reach a
clean zone except restarting from the root of the BST, which we want to avoid.
To tackle this issue, we use the bck pointer of a Dead node, which replaces a

50 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

node k in a REMOVE operation, to store g. We call a Dead node with a non-null
bck field a DeadBl node.

(B) Two concurrent REMOVE operations o1 and o2, at the end of their traver-
sal, target to remove two leaf nodes k1 and k2, which are children of the same
internal node, say p. Also suppose that o1 and o2 have same pair of trailing
node-pointers - g and n - in their thread-local memory and thus for both o1
and o2 there is access to no link to backtrack above g in the BST. Suppose that
LREMOVE stage of both o1 and o2 finished without contention, and thus after
that both the children of p are DeadBl. Therefore, after its PREMOVE, if o1
successfully connects the DeadBl node k2 to g, o2 will not get a node-pointer
to reach a local clean zone to get a fresh g. It becomes untenable to restart
o2 in such a situation without accessing root, which we want to avoid (it may
well be with o1 symmetrically). To tackle this issue, we let o2 fall back to the
approach of the Algorithm 3.1 and instead of cleaning the DeadBl node out it
adds a Dead node containing key k2 at g and gets out of the system to ensure
progress. Therefore, similar to the Algorithm 3.1, we make an ADD operation
replace a Dead node with a new leaf node, knowing that no REMOVE operation
takes step to clean out such a node.

With basics in place, we are ready to describe the pseudo-code of REMOVE
and ADD operations of the Algorithm 3.3; a CONTAINS operation works abso-
lutely same as that in the Algorithm 3.1.

a

g(k)

g(a)

p(a)

s(a)

g(k)

g(a)

p(a)

s(a)

a

g(k)

g(a)

p(a)

s(a)

a

−∞3

g(k)

g(a)

p(a)

s(a)

a

−∞3

(i) (ii) (iii) (iv)

Fig. 3.6: Steps of REMOVE in the BST.

3.4. Help-optimal Lock-free BST 51

The steps of a REMOVE(k) operation, line 44 to 65, are shown in the Fig-
ure 3.6. Let n(k) be the last logically removed internal node in the traversal
path obtained by a call of Search at line 48, and g(k) be its parent as shown
in the Figure 3.6 (i). n(k) coincides with p(k) in case there is no chunk of logi-
cally removed nodes above p(k) in the traversal path. Replacing the target node
k with a DeadBl node containing same key, Figure 3.6 (ii), logically removes
k, line 54. After that, we add a splice node between p(k) and s(k) to logically
remove p(k) as shown in the Figure 3.6 (iii). Finally, update the link g(k);n(k)
to connect s(k) to g(k) as shown in the Figure 3.6 (iv). If all these CAS execu-
tions are successful, we complete the REMOVE operation with cleaning out the
DeadBl node.

In the stage LREMOVE itself, if the leaf-node at which traversal terminates,
say `, does not contain k or is found Dead (note that a DeadBl node is also
Dead), REMOVE(k) returns false, line 50. If ` is a splice node, it shows that
the actual node to remove is pointed by GetNxt(`) which is `.rt. To make
a REMOVE operation selfish, we do not perform any CAS to help the pending
REMOVE. However, we do not have a possibility for a local restart to get a
fresh g(k) after the completion of LREMOVE, similar to the case (B) above.
Therefore, we replace the link g(k);n(k) by a Dead node containing k, and
return true if the CAS succeeds, line 60.

In the stage PREMOVE, the first step is to add a splice node between p(k)
and s(k), line 55. We use the method AddSp, line 16 to 19, to do that. In
AddSp, if s(k), denoted by sib, is found splice or DeadBl, indicated by non-
null bck link, we return it as it is, line 18, because both indicate that the child-
link of par, referred by sib, is never updated ever after. If sib is Dead, we
perform a CAS, line 19, to replace it with a DeadBl node connecting its bck
field to gPar, created at line 14, so that a concurrent ADD does not replace it
directly.

If the method AddSp returns a splice node at line 55, it indicates that a
concurrent ADD operation is working selfishly to progress (we describe it later)
and we can safely allow the remaining steps of REMOVE(k) to be assimilated in
the steps of ADD. Considering that, REMOVE(k) returns true, line 56. We call
this behaviour of REMOVE(k) its help-awareness which is a main component
of a help-optimal implementation.

On the other hand, if AddSp returns a Dead or DeadBl node, it indicates
a scenario of case (B) and we handle it accordingly, see line 58. Finally, if
a regular leaf node is returned as sib, we attempt a CAS to connect it to g(k)
to return true at line 59. If this CAS fails, it indicates that g(k);n(k) has
changed and therefore we perform a BckTrck at line 65 similar to the Algo-
rithm 3.2 and reattempt the CAS if required, see line 63. Along the lines of the

52 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

Algorithm 3.2, the steps taken to add splice node between p(k) and s(k) are
identified by the value of a variable mode set as INIT and after that mode is
changed to CLEAN, line 55.

To add a new node in an external BST, we add a new sub-tree. We use the
following midpoint rule to determine the key at the root of the new sub-tree.

Theorem 3.1 (Midpoint rule). Let k be a query key and A be the (partially
ordered) set of keys stored in a sub-tree. Let al≤a ∀ a∈A and au≥a ∀ a∈A. To
add a new node at the root of the sub-tree, assign a key kp at the root of the new
sub-tree such that kp= k+au

2 if k>au and kp= k+al
2 if k<al.

The mid-point rule maintains the symmetric order of the BST. Intuitively,
rule 3.1 optimizes the average hight of the BST. We do not delve into an ana-
lytical discussion of this rule in the present work. In experiments, we observed
that this approach improves the average throughput.

An ADD(k), line 25 to 43, performs a traversal using Search to reach a
leaf node `. If ` is neither Dead nor DeadBl, we find the regular leaf node
using GetNxt(`). It calls the NewNod method to create a new internal node
pointed by nI. We apply rule 3.1 at line 31. If ` is a regular node, it perform as
in the Algorithm 3.1. However, if ` is a splice node, it does not take steps to
help the pending REMOVE operation and behaves in a selfish manner to directly
update g(k);n(k) to nI using a CAS. If CAS succeeds, it not only ensures suc-
cess of ADD(k), but also guarantees the completion of some pending REMOVE
operations. If CAS to connect nI at line 33 or 34 succeeds, we return true.

On the other hand, if ` is found Dead, ADD(k) behaves along the lines of
the Algorithm 3.1, see line 42. And finally, if ` is DeadBl, to ensure progress,
we first fix the sibling of ` using the method AddSp, line 37, and then add
either a new node, line 41, or a new internal node, line 40, at g(k) in a selfish
fashion. The call of AddSp at line 37 may assimilate the steps of a concurrent
pending REMOVE operation, which being help-aware, terminates immediately,
as discussed before. Note that, to apply rule 3.1 here, we use p·k instead of
GetKey(sib) because the latter may not provide the required bound of the set
of keys stored in the sub-tree rooted at sib. On a CAS failure, we perform a
BckTrck at line 43 to get a fresh set of thread-local variables and reattempt.

3.4.2 Correctness and Lock-freedom

Proving that the modify operations maintain a valid external BST requires sim-
ilar approach as that in the Algorithm 3.2. Therefore, without repeating them,
we mention that we derive an induction based proof building on the arguments

3.5. Help-optimality: Specification 53

that the sentinel nodes form a valid BST at the initialization and no modify
operation invalidates the symmetric order of the BST.

In this algorithm, the linearization points of a successful ADD, REMOVE
and CONTAINS operations and an unsuccessful ADD operation are similar to
their counterparts in the Algorithm 3.2. A CONTAINS or a REMOVE operation
returns false also in case the node containing query key is found Dead, in
addition to the cases already discussed in the Algorithm 3.2. The linearization
point of such a CONTAINS or REMOVE operation is taken at own invocation
point.

Finally, we can prove the lock-freedom of the Algorithm 3.3 using argu-
ments which are parallel to those used in Algorithm 3.2. However, unlike a
linked-list, in an external BST even though a CONTAINS is not engaged in any
helping activity, it is not wait-free, even for a finite key universe. This is a very
interesting aspect of an external BST structure, which entails an entirely dif-
ferent and innovative approach to designing a wait-free algorithm for this data
structure.

3.5 Help-optimality: Specification

We consider a shared memory system U comprising of a finite set of threads
Λ and a finite set of shared variables V . At time t, the states of Λ and V are
denoted by Λt and Vt, respectively. Let Υ be a lock-free data structure formed
by variables v∈V . Let Oλ be the set of operations performed by a λ∈Λ on Υ.
A step s of an operation o∈Oλ comprises local computations in λ and at most a
single execution of an atomic-primitive a∈{read, write, CAS} on a shared
variable v∈V . A state Υt of Υ is formed by variables v∈Vt. On execution of
a step s, Υ can change from a state Υt to another state Υt′ . We denote such a
state change by ∆Υt,t′ . Let So denote the set of steps to complete an operation
o∈Oλ.

We call s∈So an altruistic step of o, if (a) it is executed to apply a state
change ∆Υt,t′ (b) ∆Υt,t′ is necessary for completion of a concurrent opera-
tion o′∈Oλ′ and (c) ∆Υt,t′ is not necessary for completion of o. We call an
operation o selfish if no step s∈So is altruistic.

We call s∈So a wasted step of o, if (a) it is executed to apply a state change
∆Υt,t′ (b) ∆Υt,t′ is necessary for completion of o (c) ∆Υt,t′⊆∆Υt,t′′ (c)
∆Υt,t′′ has already been applied by a set of steps {s′1, . . . , s′n}, where s′i∈So′i
is a step of a concurrent operation o′i∈Oλ′

i
. We call o∈Oλ help-aware if it

performs no more than one wasted step.
A lock-free data structure Υ is called help-optimal if every operation o∈Oλ

54 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

for each λ∈Λ is both selfish and help-aware. In the Algorithms 3.1 to 3.3, we
can observe that every operation satisfies the requirements of both selfishness
and help-awareness. We skip a rigorous definitional discussion on selfishness,
help-awareness, and help-optimality to a future work.

Censor-Hillel et al. [20] defined help-freedom, which intuitively implies that
an operation does not altruistically help a concurrent (slow) operation to guar-
antee wait-freedom. In contrast to that, in lock-free algorithms, help-optimality
not only implies an absence of altruistic helping but also indicates that an oper-
ation is aware of intended modification getting applied as a part of a modifica-
tion by a concurrent operation. Thereby, on account of helping, the aggregate
number of steps is minimized. In this work, we do not delve into a formal
comparison between help-optimality and help-freedom.

As a rationale behind the term help-optimality, we would like to underline
our aim to optimize a lock-free design with respect to the number of (CAS
execution) steps incurred in helping under the constraints such as an optimal
memory footprint and an optimal amortized step complexity.

3.6 Experimental Evaluation

3.6.1 Experimental Set-up
In this section, we present a detailed performance analysis of our implementa-
tions in both C/C++ and Java. The following concurrent linked-lists and lock-
free BSTs are compared:

1. HO-LL: An optimized variant of lock-free linked-list of [46], where a
CONTAINS does not perform help.

2. Lazy-LL: Lock-based linked-list of [48], in which logically removed
nodes are ignored during traversal.

3. CWT-LL: Lock-free linked-list described in section 3.3.

4. EFRB-BST: Lock-free external BST of [33], in which both ADD and
REMOVE require help to complete at a conflict.

5. LF-SKIPLIST: Concurrent skip-list implementation that is part of the
java.util. concurrent package [62].

6. NM-BST: Lock-free external BST of [71], in which multiple nodes un-
der REMOVE by different threads are cleaned out together similar to al-
gorithm 3.3.

3.6. Experimental Evaluation 55

7. CWT-BST: Lock-free BST described in section 3.4.

8. CWT-Simple-BST: Lock-free BST of section 3.2.

We performed our evaluations on a dual-socket server with a 3.4 GHz In-
tel (R) Xeon (R) E5-2687W-v2 having 16 physical cores (32 hardware threads
by hyper-threading), 16 GB of RAM, running Ubuntu 13.04 Linux (3.8.0-35-
generic x86_64) with Java HotSpot (TM) 64-Bit Server VM (build 25.60-b23,
mixed mode). We compiled all Java implementations with javac version
1.8.0_60 and used the runtime flags -d64 -server. C/C++ implementa-
tions were compiled with g++ version 4.9.2, O3 optimization and TCMalloc
[38] to reduce dynamic memory allocation overheads.

We compared the performance in terms of the throughput as Million op-
erations per second (Mops/s). We measured the memory consumption as the
change in heap-size of the JVM on loading the set with initial elements and on
execution of the workload. Each experiment was run for 5 seconds, then the
average over 6 trials was taken under the following parameters:

1. Workload Distribution: Similar to [71], we considered three workload
distributions: (a) write-dominated: 0% CONTAINS, 50% ADD and 50%
REMOVE. (b) mixed: 70% CONTAINS, 20% ADD and 10% REMOVE,
and (c) read-dominated: 90% CONTAINS, 9% ADD and 1% REMOVE.

2. Set Size:. The maximum set size depends on the range of the keys. We
consider the following key ranges for the linked-lists: 27, 29, 210 and
212. For the BSTs we consider the ranges: 210, 214, 217 and 220. In each
experiment, the set is pre-loaded with roughly half the keys in the key
range.

C/C++ and Java Implementations: As we pointed out in the section 3.1,
many concurrent data structures are designed with language specific dependen-
cies and as such offer varying performance in different languages. Addition-
ally, original implementations of the algorithms are available either in Java or
C/C++. With this in mind, we implemented our new language-portable lock-
free algorithms in both C/C++ and Java. The code is available at https:
//github.com/bapi/ConcurrentSet.

To ensure a fair comparison, we implemented our C/C++ versions of the
algorithms as part of the ASCYLIB library [29], with SSMEM - a memory
allocator with epoch-based garbage collection. We used the same benchmarks
which are part thereof. HO-LL in Java employs RTTI. For locking, Lazy-LL
uses ReentrantLock in Java and a ticket lock in C/C++.

https://github.com/bapi/ConcurrentSet
https://github.com/bapi/ConcurrentSet

56 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

3.6.2 Performance Results and Discussion

Write −Dominated Mixed Read −Dominated

k
=
2
7

k
=
2
9

k
=
2
1
0

k
=
2
1
2

0

10

20

10

20

30

40

20

30

40

50

60

5

10

5

10

15

4

8

12

16

2.5

5.0

7.5

2.5

5.0

7.5

2

4

6

8

1

2

3

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

16 32 48 64 16 32 48 64 16 32 48 64

#threads

T
h
ro
u
g
h
p
u
t(
M
o
p
s
/s
)

CWT LL HO LL Lazy LL

Fig. 3.7: Concurrent linked-list algorithms: Java Implementation

Figures 3.7 and 3.8 depict the comparative performance of linked-list-based
Set algorithms in Java and in C/C++, respectively. At low contention i.e. with
read-dominated workloads and large key space sizes, the lists scale with in-
creasing thread count. CWT-LL performs on a par with HO-LL in both Java
and C/C++. In the high contention cases, mainly write-dominated and small
key space sizes, Lazy-LL degrades significantly with increasing thread count.
This is mainly due to the increased contention on the locks and cache misses
resulting from the lock migrations. Contention increases as the list gets shorter
in size with a smaller key space size. At high contention CWT-LL outperforms

3.6. Experimental Evaluation 57

HO-LL by 5% for Write-Dominated and 3%-6% for Mixed workloads. This
can be attributed to the local restart and the ability to clean out multiple nodes
in a single step.

Write Dominated Mixed Read Dominated

k
=
2
7

k
=
2
9

k
=
2
1
0

k
=
2
1
2

0

10

20

30

40

20

40

60

20

40

60

0

5

10

15

20

5

10

15

20

5

10

15

2.5

5.0

7.5

10.0

12.5

2.5

5.0

7.5

10.0

2

4

6

1

2

3

1

2

3

0.5

1.0

1.5

16 32 48 64 16 32 48 64 16 32 48 64

#Threads

T
h
ro
u
g
h
p
u
t(
M
o
p
s
/s
)

CWT LL HO LL Lazy LL

Fig. 3.8: Concurrent linked-list algorithms: C/C++ Implementation

In C/C++ we observe similar relative performance, however, the list perfor-
mance degrades significantly when the cores are saturated with threads (most
especially in the write-dominated workload). The effect of oversubscribing the
cores with more threads is bigger in Lazy-LL than that in other algorithms as a
result of increased lock-contention.

Figures 3.9 and 3.10 shows the comparative performance of considered
lock-free BST and skip-list algorithms in Java and C/C++, respectively. We

58 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

have not included CWT-Simple-BST here considering its incomparable mem-
ory footprint. It is clear that among the Java implementations, CWT-BST offers
the best throughput for all key space sizes and workloads. CWT-BST outper-
forms EFRB-BST by 10%- 50% and LF-SKIPLIST 20%-100% over Write-
Dominated and Mixed workloads.

Write −Dominated Mixed Read −Dominated

k
=
2
1
0

k
=
2
1
4

k
=
2
1
7

k
=
2
2
0

10

20

30

20

40

60

50

100

150

10

20

30

20

40

60

25

50

75

100

10

20

30

10

20

30

40

50

20

40

60

80

4

8

12

5

10

15

5

10

15

20

16 32 48 64 16 32 48 64 16 32 48 64

#threads

T
h
ro
u
g
h
p
u
t(
M
o
p
s
/s
)

CWT BST EFRB BST LF SKIPLIST

Fig. 3.9: Lock-Free BST algorithms: Java Implementation

In C/C++, NM-BST outperforms others at high contention. This can be at-
tributed to the advantage of bit-stealing over explicit object allocations. Bit
masking, unmasking and other bitwise operations in C/C++ are simple and
faster than object creation, however not portable to other high-level languages.
As we increase the key space size, CWT-BST offers performance similar to
NM-BST, especially in Mixed and Read-Dominated workloads, even dominat-

3.6. Experimental Evaluation 59

k
=
2
1
0

k
=
2
1
4

k
=
2
1
7

k
=
2
2
0

Write Dominated Mixed Read Dominated

10

20

30

40

50

60

40

80

120

100

200

20

40

60

25

50

75

100

40

80

120

160

10

20

30

40

50

25

50

75

100

30

60

90

5

10

15

20

25

10

20

30

10

20

30

16 32 48 64 16 32 48 64 16 32 48 64

#Threads

T
h
ro
u
g
h
p
u
t(
M
o
p
s
/s
)

CWT BST EFRB BST NM BST

Fig. 3.10: Lock-Free BST algorithms: C/C++ Implementation

60 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

ing in the low contention case with key space (220) by 3%-15%. This can be
attributed to a comparative cost of object allocation but lowered cost of reading
a pointer without bit unmasking. It can be noted that although EFRB-BST im-
plementation is based on bit-stealing, CWT-BST outperforms it in every case
scenario by 10%-50%.

Read�Dominated

30

40

50

60

70

16 32 48 64
#threads

H
e
a

p
s
iz

e
 (

M
B

)

CWT�BST

CWT�Simple�BST

EFRB�BST

LF�SKIPLIST

Fig. 3.11: Heap size change

Memory Reclamation: As a REMOVE operation allocates a splice node,
the load on garbage collector certainly increases. However, as illustrated in the
Figure 3.11, in a garbage collected environment, CWT-BST experiences no un-
expected growth in heap-memory usage. In fact, on this account, it outperforms
EFRB-BST. Though the figure presents a case for one workload setting, we
observed similar relative memory usage with every workload settings. Never-
theless, we do advise that these techniques should not be used without memory
reclamation.

Chapter Summary

In this chapter, we introduced the notion of help-optimality in a lock-free algo-
rithm. Intuitively, in a lock-free data structure, which satisfies help-optimality,
at a conflict over modification of a shared variable, we avoid both offer and ac-
ceptance of help in form of a step comprising a CAS execution. Help-optimality
consists of the notions of selfishness and help-awareness. Selfishness implies
optimization of the count of steps of CAS executions by an obstructed opera-
tion, whereas help-awareness implies the same for an obstructing operation.

3.6. Experimental Evaluation 61

The present work is mostly experimental in nature to demonstrate the utility
of the concept of help-optimality in a lock-free linked-list and a BST. In future,
we plan to develop formal specifications of the introduced notions.

Following a state-of-the-art implementation of the lock-free skip-list in Java
library, in this chapter, we designed the lock-free data structures to provide
a language-portable implementation. We experimentally showed that such an
implementation performs on a par with highly optimized implementations in
C++ which use the technique of bit-stealing. The Go programming language,
which reasonably focuses on concurrency, provides pointers without pointer-
arithmetic and does not provide type-inheritance. We believe that with grow-
ing popularity of such languages, designing language-portable lock-free data
structures will be increasingly significant.

62 3. Help-optimal and Language-portable Lock-free Concurrent Data Structures

4

AMORTIZED COMPLEXITY
OF LOCK-FREE INTERNAL

BINARY SEARCH TREE
Chapter Abstract

In this chapter, we present an algorithm for the lock-free internal binary search
trees (BST). We prove that the Set ADT operations–ADD, REMOVE and CONTAINS–
implemented by the algorithm are linearizable. We show that the amortized step
complexity of each of the operations is O(H(n) + c), where c is the contention
during the execution and H(n) is the height of the BST (with n number of
nodes) at its invocation. The operations ADD and REMOVE use the single-
word compare-and-swap (CAS) atomic primitive, which is readily available in
common multi-core architectures.

4.1 Introduction
In literature, there are lock-free as well as wait-free singly linked-lists [35, 83],
lock-free doubly linked-list [82], lock-free hash-tables [67] and lock-free skip-
lists [35, 81]. In case of non-blocking concurrent BSTs, there have been some
recent publications. A multi-word compare-and-swap (MCAS) based lock-free
BST implementation was presented by Fraser in [36]. However, MCAS is not
a native atomic primitive provided by available multi-core chips and is very
costly to be implemented using single-word CAS. Bronson et al. proposed an
optimistic lock-based partially-external BST with relaxed balance [15]. Ellen
et al. presented lock-free external binary search tree [33] based on co-operative
helping technique presented by Barnes [11]. Though their work did not include
an analysis of complexity or any empirical evaluation of the algorithm, the con-
tention window of update operations in the data-structure is large. Also, because
it is an external binary search tree, REMOVE is simpler at the cost of extra mem-
ory to maintain internal nodes without data. Howley et al. presented a lock-free

63

64 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

internal BST [53] based on similar technique. A software transactional memory
based approach was presented by Crain et al. [28] to design a concurrent red-
black tree. While it seems to outperform some coarse-grained locking meth-
ods, it easily falls behind in performance when compared to a carefully tailored
locking scheme as in [15]. Recently, two lock-free external BSTs [71, 17] and
a lock-based internal BST [30] have been proposed. All of these works lack
theoretical complexity analysis.

A common predicament for the existing lock-free BST algorithms is the fol-
lowing. Consider multiple modify operations contending at a leaf node. Now,
if a REMOVE operation among them succeeds then all other operations have
to restart from the root. It results in the complexity of a modify operation be-
ing O(cH(n)) where H(n) is the height of the BST on n nodes and c is the
measure of contention. It may grow dramatically with the growth in the size
of the tree and the contention. In addition to that, CONTAINS operations have
to be aware of an ongoing REMOVE of a node with two children, otherwise it
may return an invalid result. Hence in the existing implementations of lock-free
internal BST [53], a CONTAINS operation may have to restart from the root
on realizing that the return may be invalid if more nodes are not scanned. The
external or partially-external BSTs remain immune to this problem at the cost
of extra memory used by the routing internal nodes. Our algorithm solves both
these problems elegantly. The CONTAINS operations in our BST enjoy obliv-
ion of any kind of modify operation. And, the modify operations after helping
a concurrent modify operation restart not from the root, rather from a level in
the vicinity of failure. It ensures that all the operations in our algorithm run in
O(H(n) + c). This is our main contribution. Ellen et al. [32] improved the
external BST by Ellen et al. [33] using thread local stacks for each thread to
achieve similar complexity as ours.

Given the requirements of a concurrent data-structure in terms of number
of shared-memory words to modify for an update, we always strive to exploit
maximum possible disjoint-access-parallelism [57]. It facilitates in maximizing
the progress of concurrent operations if an operation needs to modify multiple
shared memory words to complete its steps. The lock-free methods for BST
[33, 53], in order to use single-word CAS for atomically modifying the links
outgoing from a node, and yet maintain correctness, store a flag as an operation
field or some version indicator in the node itself, and hence a modify operation
“holds” a node. This mechanism of holding a node, specifically for a REMOVE,
can reduce the progress of two concurrent operations which may be otherwise
non-conflicting. In [71], a flag is stored in a link instead of a node in an external
BST. We found that even in an internal BST it is indeed possible that a RE-
MOVE operation, instead of holding the node, just holds the links connected to

4.2. Preliminaries 65

and from a node in a predetermined order so that improved progress of concur-
rent operations working at disjoint memory words corresponding to the links
could be achieved. The presented lock-free design using “storing a flag” at
a link instead of a node significantly improves the disjoint-access-parallelism
compared to the existing design as in [53]. This is our next contribution.

Helping mechanism which ensures non-blocking progress may prove coun-
terproductive to the performance if not used judiciously. In a previous version of
this work [24] we proposed an adaptive helping mechanism to choose depend-
ing on the read-write load. However, with empirical observations we found that
helping during traversal always reduces the performance and so it is better not
to help a pending REMOVE operation during traversal. Our algorithm requires
only single-word atomic CAS primitives along with single-word atomic read
and write which practically exist in all the widely available multi-core proces-
sors in the market. Based on our design, we implement a Set ADT. We prove
that our algorithm is linearizable [50]. We also present complexity analysis of
our implementation.

The contributions of this work are the following:

1. We present an algorithm for a lock-free internal BST that implements a
Set abstract data types (ADT). The ADT operations ADD, REMOVE, and
CONTAINS are provably linearizable. The presented algorithm is help-
aware (see chapter 3).

2. On a CAS failure at a conflict, the modify operations in our algorithm
restart locally to optimize the amortized step complexity per operation.

3. We prove that the amortized number of steps per operation in our algo-
rithm is O(H(n) + c), where H(n) is the height of the BST on n nodes
and c is the measure of contention.

Further in this chapter, first, we present the basic tree terminologies (sec-
tion 4.2,). Thereafter, the proposed algorithm is described (section 4.3). Having
described the algorithms, we present a discussion on the correctness and the
progress of our concurrent implementation along with an amortized analysis of
its time complexity (section 4.4).

4.2 Preliminaries
A binary tree is an ordered tree in which each node x has a left-child and a right-
child denoted as left(x) and right(x) respectively, either or both of which may
be external. When both the children are external the node is called a leaf, with

66 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

one external child a unary node and with no external child a binary node, and all
the non-external nodes are called internal nodes. If a node is used to store data
it is called a data node else it remains in the tree for just facilitating a traversal
and is called a routing-node. We denote the parent of a node x by p(x) and there
is a unique node called root s.t. p(root) = null. Each parent is connected with
its children by links. We indicate the link (often we shall be using the terms
pointer and link interchangeably) emanating from a node k and incoming to a
node l by k;l.

We are primarily interested in implementing an ordered Set ADT - binary
search tree using a binary tree in which each node is associated with a unique
key k selected from a totally ordered universe. A node with a key k is denoted
as x(k) and x if the context is otherwise understood. Determined by the total
order of the keys, each node x has a predecessor and a successor, denoted as
pre(x) and suc(x), respectively. We denote height of x by ht(x), which is
defined as the distance of the deepest leaf in the subtree rooted at x from x.
Height of a BST is ht(root). In this chapter, we consider an internal BST, in
which all the internal nodes are data-nodes and the external nodes are usually
denoted by null. There is a symmetric order of arranging the data - all the nodes
in the left subtree of x(k) have keys less than k and those in its right subtree
have keys greater than k, and so no two nodes can have the same key.

The ADT operations in our BST design are as described here. To query
whether a BST CONTAINS a data with key k, at every search-step we utilize
its symmetric order to look for the desired node either in the left or in the right
subtree of the current node if the key not matched at it, unless we reach an
external node. If the key matches at a node, we return true (or address of the
node if needed), otherwise false. To ADD data we query by its key k. If the
query reaches an external node we replace this node with a new leaf node x(k).
The REMOVE operations vary with the location of the node containing the data
to remove. First of all, we check whether x(k) is in the BST. If the BST does
not contain x(k), false is returned. On finding x(k), we perform delete as
following. If it is a leaf then we just replace it with an external node i.e. null. In
case of a unary node its only child is connected to its parent. For a binary node
x(k), it is first replaced with a copy of pre(x(k)), which may happen to be a
leaf or a unary node, and then pre(x(k)) is removed. Thus, the ADT operations
do maintain the symmetric order of the BST.

4.3. Our Algorithm 67

4.3 Our Algorithm

4.3.1 Design Fundamentals

(b)

543 987621 10

(a)

6

93

2 5 7 10

4 81

Fig. 4.1: Basic Design of the Binary Search Tree.

The basic design of the lock-free internal BST is shown in the Figure 4.1.
To implement a lock-free BST, we represent it in a threaded format [75]. In this
format, if the left or the right child pointers at x is null and so corresponds to an
external node, it is instead connected to pre(x) or suc(x), respectively. Some
indicator is stored to indicate whether a child-link is used for such a connection.
This is called threading of the child-links. In our design, we use the null child
pointers at the leaf and unary nodes as following - right child pointer, if null,
is threaded and is used to point to the successor node, whereas, a similar left
child pointer is threaded to point to the node itself, see Figure 4.1(a). In this
representation a binary tree can be viewed as an ordered list with exactly two
outgoing and two incoming pointers per node, as shown in Figure 4.1(b). Also,
among two incoming pointers, exactly one is threaded and the other is not.
Further, if x(ki) and x(kj) are two nodes in the BST and there is no node
x(k) such that ki≤k≤kj then the interval [ki, kj] is called associated with the
threaded link incoming at kj .

68 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

We exploit this symmetry of the equal number of incoming and outgoing
pointers. A usual traversal in the BST following its symmetric order for a pre-
decessor query, is equivalent to a traversal over a subsequence of the ordered-list
produced by an in-order traversal of the BST, which is exactly the one shown in
Figure 4.1(b). This is made possible by the threaded right-links at leaf or unary
nodes. Though in this representation, there are two pointers in both incoming
and outgoing directions at each node, a single pointer needs to be modified to
ADD a node in the list. To REMOVE a node we may have to modify up to
four pointers. Therefore, ADD can be as simple as that in a lock-free single
linked-list [35], and REMOVE is no more complex than that in a lock-free dou-
ble linked-list [82]. A traversal in a lock-free list may enjoy oblivion from a
concurrent REMOVE of a node. Also in our design of internal BST, a traver-
sal can remain undeterred by any ongoing modification, unlike that in existing
lock-free implementations of internal BSTs [53, 36].

In designing an internal BST in a concurrent set-up, the most difficult part
is to perform an error-free REMOVE of a binary node. To remove a binary
node we replace it with its predecessor, and hence, the incoming and outgoing
links of the predecessor also need to be modified in addition to the incoming
and outgoing links of the node itself. According to the number of links needed
to be modified in order to remove a node, unlike traditional categorization of
nodes of a BST into leaf, unary and binary, we categorize them into three cate-
gories as shown in Figure 4.2. The categorization characteristic is the origin of
the threaded incoming link into the node, hereafter we call this link the order-
link. Nodes belonging to category 1 are those whose order-link emanates from
themselves; to category 2, it emanates from the left-child of the node, and to cat-
egory 3 are those whose incoming order-link emanates from a “distant” node
in its left-subtree. We name the node where the order-link emanates from, an
order-node.

Given this categorization of nodes, we are now ready to describe the opera-
tions in the lock-free internal BST.

4.3.2 The Lock-free Algorithm

(A) The basic lock-free design

We described in the section 4.2, that if the node under REMOVE is binary, it is
first replaced with its predecessor and then the predecessor is removed. How-
ever, in a concurrent setting, that structural change leads to a large number of
CAS operations, as can be seen in our previous work [24]. Specifically, that
procedure does not support proving the claim of the upper bound of amortized

4.3. Our Algorithm 69

(a)

6

93

2 5 7 10

4 81

(b)

Category 1
k

Category 2
k

Category 3
k

Fig. 4.2: Category of Nodes in the BST for REMOVE.

70 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

number of steps per operation in the lock-free internal BST, which we present
in section 4.4. Therefore, here we first describe a simple method to remove a
node from the internal BST in a sequential setting. Thereafter, we shall describe
the lock-free implementation.

For a node x(k) of category 1, where the left child-link is its order-link em-
anating from and terminating at itself, (a) we just connect the incoming link
from the parent of x(k), p(x(k));x(k) to the right-child if the right-child-
link points to a node in the right-subtree, and (b) we change the incoming link
p(x(k));x(k) to a threaded link and connect it to suc(x(k)), if the right-child-
link is threaded and pointing to suc(x(k)). We can notice that it is in fact equiv-
alent to replacing the value of link p(x(k));x(k) in the node p(x(k)) with the
value of the right-child-link of x(k). For a category 2 node x(k), where the
order-link emanates from the left-child of x(k), we connect the right-child or
the suc(x(k)) with the left-child by a non-threaded or a threaded link, respec-
tively. Additionally, we update the link p(x(k));x(k) at the node p(x(k)) with
the value of the left-child-link of x(k). For a category 3 node x(k), we do not
follow the traditional approach of replacing it with a copy of pre(x(k)) and
removing the node pre(x(k)). In place of that, we follow a simple approach
and in effect treat a category 3 node as a category 2 node. Accordingly, here
as the order-link of x(k) emanates from pre(x(k)), we connect the right-child
or the suc(x(k)) with the node pre(x(k)) by a non-threaded or a threaded link,
respectively, and update the link p(x(k));x(k) at the node p(x(k)) with the
value of the left-child-link of x(k).

In a sequential setting, when REMOVE(x(k)) modifies the pointer p(x(k))
;x(k), no operation is executed concurrently with a possibility to modify ei-
ther of the child-links of x(k). However, in a concurrent setting, where these
pointers are shared by multiple operations, an ADD operation can concurrently
modify any of these pointers. It may result into the newly added node not being
a part of the BST. Similarly, a concurrent REMOVE operation trying to remove a
child of right-child of x(k) may end up connecting p(x(k)) to the removed child
which results into a wrong outcome. Essentially, for a correct concurrent imple-
mentation of modify operations in a BST, we need to keep the child links fixed
when p(x(k));x(k) is updated or for that matter the link pre(x(k));x(k) i.e.
the order link of x(k) is updated.

For a lock-free synchronization we can not use locks to keep these shared
links fixed. Instead of locks, we use a protocol for operations to perform help-
ing, whenever they encounter shared pointers fixed (although not by a lock) by
concurrent operations, i.e. obstructed. This ensures that no non-faulty thread
is blocked due to a delayed or crashed thread and thereby providing progress
guarantee.

4.3. Our Algorithm 71

More precisely, we use special descriptors over links to inform any ob-
structed operation about the stage of REMOVE operation indicating the links
that are already modified. Along the same lines as in the last chapter, to keep
the algorithms language-portable, we use splice-nodes to delegate a link with
descriptor or that is not clean. The splice nodes are identified by their keys.
Additionally, as we saw in the last chapter, we can use these nodes to keep an
extra pointer to a node up in the BST to facilitate local restart. Furthermore,
we also save some new memory allocation by way of splice nodes storing the
original links on which descriptors are put during a REMOVE operation.

root ∞

Fig. 4.3: Sentinel Node: Internal lock-free BST

The node structure of a typical node is shown at line 1 in Algorithm 4.1.
A node consists three pointer fields lt, rt and preLink in addition to a key field
k. Without ambiguity, we shall use k to denote a node with key k. The pointer
fields lt and rt connect a node to its left and right children respectively. The
preLink is a special pointer that connects a node to its predecessor when it is
under REMOVE. We use the method Dir to find the child direction L or R of
a node containing a query key with respect to a node in the BST. The method
Child returns the child link of a node given the address of the node and the
child direction. Whereas, the method ChCAS performs a CAS at the child link
of a node, given its address and the child direction. To avoid special cases, we
use a sentinel node root as given in line 2 and shown in Figure 4.3. The special
key ∞ relates to any other key in the dataset as k < ∞ for all keys k in the
dataset.

Following the technique used in the last chapter, we essentially use de-
scriptors over the links for concurrent operations to synchronize. A link is not
“clean” if it has a descriptor over it. A special descriptor - thread (using the
same terminology as in the thread-based BST design) - is used for the threaded-
links. A link with descriptor is represented by a splice node, as described in
the last chapter. Splice nodes are distinguished based on their key. The pointer
field rt is used to store the original pointer value of the link, whereas, the fields
lt and preLink are used to store additional addresses which help in local restart
of a modify operation and some additional programming optimizations. We use

72 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

Algorithm 4.1. Lock-free Internal BST: Basic Operations

1 struct Node {K k; Node∗ lt, rt, preLink;};

2 root := Node(∞1, GetTh(root), null, null);

3 Dir(Node∗ par, K k) {return k ≤ par·k ? L : R};

Child(Node∗ par, dir cD)
4 return cD == L ? par·lt : par·rt;

ChCAS(Node∗ par, Node∗ exp, Node∗ new, dir cD)
5 if (cD == L) and par·lt == exp then
6 return CAS(par·lt·ref, exp, new);
7 else if (cD == R) and par·rt == exp then
8 return CAS(par·rt·ref, exp, new);
9 else return false;

10 GetTh(Node∗ n) {return Node(∞2, null, n, null);}

GetMark(Node∗ n, Node∗ p)
11 return Node(−∞0, p, n, null);

GetThMark(Node∗ n, Node∗ p)
12 return Node(∞0, p, n·rt, n);

GetThFlag(Node∗ n, Node∗ p)
13 return Node(∞1, p, n, null);

14 IsTh(Node∗ n) {return n·k ≥∞2;}

15 IsMark(Node∗ n) {return n·k == −∞0;}

16 IsThMark(Node∗ n) {return n·k ==∞0;}

17 IsThFlag(Node∗ n) {return n·k ==∞1;}

4.3. Our Algorithm 73

following category of links with descriptors and the corresponding splice node
types.

1. Thread: Used for order-links of a node. The key is∞2. The rt pointer
stores the node that the link is order-link of.

2. Mark: Used to fix the left or right child-link of a node under REMOVE.
The child-link is originally un-threaded. The key of the splice node is
−∞0. The rt pointer stores the original child-link. The lt pointer points
to the parent of the node under REMOVE.

3. ThMark: Used to fix a right child-link of a node under REMOVE which
is originally threaded. The key of the splice node is∞0. The rt pointer
points to the successor of the node under REMOVE. The lt pointer points
to the parent of the node under REMOVE. The preLink pointer stores the
original threaded right child-link.

4. ThFlag: Used to fix the order-link of a node under REMOVE. The key
of the splice node is ∞1. The rt pointer stores the address of the node
under REMOVE. The lt pointer points to the parent of the node under
REMOVE.

The special keys in the splice nodes are such that |k|<∞2<∞1<∞0<∞ for
all keys k in the BST. The descriptors ThMark and ThFlag are considered as
composite descriptors. The links with descriptors are created using the methods
GetTh, GetMark, GetThMark and GetThFlag, see line 10 to 13 in algo-
rithm 4.1. The methods IsMark, IsThMark are IsThFlag used to check
whether a link has a descriptor Mark, ThMark or ThFlag, respectively, see
lines 15 to 17. Whereas, the method IsTh, line 14, checks whether a link has
either the descriptor Thread or any composite descriptor.

(B) The Steps of the REMOVE Operation

With that, we now describe the REMOVE operation. As the number of links to
be modified in the case of category 2 and category 3 nodes are equal, we take
them together and before that we describe the steps of REMOVE operation of
category 1 nodes.

As shown in the Figure 4.4, given a node x(k) with its order-link, see Fig-
ure 4.4(a), the first step is to replace the order-link with a link containing the
descriptor ThFlag, see Figure 4.4(b), using a CAS. On that, the order-link of
the node x(k) is fixed and a new node can not be added there. Any ADD opera-
tion that aims to add a new node there, will help the pending REMOVE operation

74 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

k

∞2

k

∞1

(a) (b)

k

∞1
-∞0

k

∞1
-∞0

(c) (d)

Fig. 4.4: REMOVE steps: Category 1 Node with the right child.

(a) (b)

k

∞2

∞2 k

∞1

∞2

(c) (d)

k

∞1

∞2

∞0

k

∞1

∞2

∞0

Fig. 4.5: REMOVE steps: Category 1 Node without the right child.

4.3. Our Algorithm 75

of x(k). The descriptor ThFlag indicates that the next step is to replace the
right child-link with a link containing the descriptor Mark and pointing to the
right child as in Figure 4.4(c). With that, the only child link of x(k) is fixed
which makes any obstructed operation to help the REMOVE of x(k). Having
done that, the incoming link from the parent of x(k) is replaced with the origi-
nal right child-link of x(k), see Figure 4.4(d), using a CAS.

In case the right child-link of x(k) is itself a threaded link, which is order-
link of the successor of x(k), the steps are shown in the Figure 4.5. Here in
step (c) the right child-link is replaced using a CAS to a link with descriptor
ThMark, see Figure 4.5(c). Please note that the original right link of x(k) is
stored in the preLink of the link with ThMark, which provides an optimization
to avoid a new node allocation. Finally the incoming parent link to x(k) is
updated using a CAS to the original right link of x(k), see Figure 4.5(d).

For a category 2 node, its left-child itself is its order-node. However, the
overall steps of REMOVE operation are same for category 2 and category 3
nodes. The steps of REMOVE operation for a node of category 2 or 3, with its
right child-link pointing to its right-child, are shown in the Figure 4.6. Given
x(k), as shown in the Figure 4.6(a), the first step is to replace the order-link
with a link with descriptor ThFlag using a CAS, see Figure 4.6(b). In the next
step, the left child-link is replaced with a link containing the descriptor Mark
using a CAS, see Figure 4.6(c). After that, the right child-link is replaced with
a link containing the descriptor Mark using a CAS, see Figure 4.6(d). With
that both the child links of the node under REMOVE are fixed. Also, the order-
link is fixed and therefore no new node can be added at this link, and any ADD
operation getting obstructed there helps the pending REMOVE operation.

The next step is to update the incoming order-link and the parent-link of the
node x(k). First we update the order-link using a CAS as shown in Figure 4.6(e),
the predecessor of x(k) is connected to the right-child of x(k). Finally the in-
coming parent link is updated using a CAS to connect the parent to the left-child
of x(k) as shown in Figure 4.6(f). With that the node x(k) is made unreachable
from any node in the BST.

The case of REMOVE of a node x(k), which is of the category 2 or 3, are
shown in the Figure 4.7. The steps are absolutely same with only difference
with the step of fixing the right link of x(k), which is replaced with a link
containing the descriptor ThMark.

Adding a new node in the BST requires a single CAS and always happens
at a threaded-link. If the threaded-link is found marked or flagged, the ADD
operation helps the pending REMOVE operation. To perform a CONTAINS, the
query either terminates at a node containing the query key, in which case it
returns true or at a threaded-link, in which case it returns false.

76 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

(a) (b)

(c)

k

∞2

k

∞1

-∞0

k

∞1

(d)

-∞0

k

∞1

-∞0

(e) (f)

-∞0

k

-∞0 -∞0

k

-∞0

Fig. 4.6: REMOVE steps: Category 2 or Category 3 Node with right child.

4.3. Our Algorithm 77

(a) (b)

(d)

(e) (f)

k

∞2

∞2 k

∞1

∞2

(c)

-∞0

k

∞1

∞2

-∞0

k

∞1

∞2

∞0

-∞0

k

∞2

∞2

∞0 -∞0

k

∞2

∞2

∞0

Fig. 4.7: REMOVE steps: Category 2 or Category 3 Node without right child.

78 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

Algorithm 4.2. Lock-free Internal BST: REMOVE operation

REMOVE(K k)
1 mode := true; d := null; p := root·ref;
2 retry:
3 c := Child(p, Dir(p, k));
4 while IsMark(c) do {p := c·lt; c := Child(p, Dir(p, k));} ;
5 while true do
6 if !IsTh(c) then
7 n := Child(c, Dir(c, k));
8 while IsMark(n) do
9 pr := Pr(c); r := GetRepHelp(c, p, pr);

10 if !ChCAS(p, c, r, Dir(p, k)) then goto retry;
11 c := r; n := Child(c, Dir(c, k));

12 else {n := c; c := p;};
13 if c·k == k and d == null then {par := p; d := c;};
14 if IsTh(n) then
15 if mode == true then
16 if n·rt 6= d then return false;
17 if IsThFlag(n) then
18 r := GetRep(c, n, p, false);
19 if r == null then return false;
20 else if ChCAS(p, d, r, Dir(p, k)) then return false;
21 p := n·lt;
22 else if IsThMark(n) then
23 pr := Pr(c); r := GetRepHelp(c, p, pr);
24 ChCAS(p, c, r, Dir(p, k));
25 if p == c then p := n·lt;
26 else
27 m := GetThMark(p, d);
28 if ChCAS(c, n, m, Dir(c, k)) then
29 mode := false; r := GetRep(c, m, p, false);
30 if r == null then return true;
31 else if ChCAS(p, d, r, Dir(p, k)) then return true;
32 p := par·lt;

33 goto retry;
34 else return true;
35 else {p := c; c := n;};

4.3. Our Algorithm 79

(C) The Lock-free Algorithm

Algorithm 4.3. Lock-free Internal BST: Help method

GetRep(Node∗ oNode, Node∗ oLink, Node∗ p, bool isHelp)
1 n := oLink·rt;
2 if !CAS(n·preLink, null, oNode) and !isHelp then
3 return null;

4 if n 6= oNode then
5 lC := MarkLt(n, p, isHelp);
6 if lC 6= null then
7 rC := MarkRt(n, p, isHelp);
8 if rC 6= null then
9 ChCAS(oNode, oLink, rC, false); return lC;

10 else return null;
11 else return null;
12 else return MarkRt(n, p, isHelp);

MarkLt(Node∗ n, Node∗ p, bool isHelp)
13 lC := n·lt;
14 while true do
15 if !IsMark(lC) then
16 m := GetMark(p, lC);
17 if ChCAS(n, lC, m, true) then return lC;
18 else return isHelp ? lC·rt : null;

MarkRt(Node∗ n, Node∗ p, bool isHelp)
19 rC := n·rt;
20 while true do
21 if IsThMark(rC) then
22 return isHelp ? rC·preLink : null;
23 else if IsMark(rC) then
24 return isHelp ? rC·preLink : null;
25 else if IsThFlag(rC) then
26 GetRep(n, rC, rC·lt, true);
27 else
28 m := IsTh(rC) ? GetThMark(p, rC) : GetMark(p, rC);
29 if ChCAS(n, rC, m, false) then return rC;

80 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

The REMOVE operation is given by the pseudo-code in the Algorithm 4.2
from the line 1 to 35. We start from the root with its address copying to the
variable p. In case we face a link with Mark descriptor, see line 4, we keep on
backtracking using the lt of the splice node delegating the link. Please note that
the While loop does terminate because a child-link of root can not be marked as
the key of the root can not be a key to remove. We actually start with attempting
our own REMOVE operation where we enter the While loop at line 5. First we
check, whether the current link has a descriptor Thread or not. It could be
a composite descriptor. If the link is not having a Thread or a composite
descriptor, we find the child-link of the node (in the direction of the query key)
to check whether it is the node to terminate the traversal at. If the child link
does not have a Thread or a composite descriptor over it, it can either be a
clean link or a link with a Mark descriptor over it.

Algorithm 4.3. Lock-free Internal BST: Help method

GetRepHelp(Node∗ n, Node∗ p, Node∗ oNode)
30 if n 6= oNode then
31 oLink := oNode·rt;
32 if oLink·rt = n then
33 lC := MarkLt(n, p, isHelp);
34 rC := MarkRt(n, p, isHelp);
35 ChCAS(oNode, oLink, rC, false);
36 return lC;
37 else return n·lt·rt;
38 else return MarkRt(n, p, true);

In case there is a Mark descriptor over it, it indicates that the node pointed
by c is undergoing a REMOVE and therefore the link p;c is attempted (in help-
ing) to be updated to point to a replacement of c. The method GetRepHelp is
called to get the replacement node. In case the CAS to update the p;c fails, it
implies that the link itself has changed and therefore we go to the backtracking
steps, see line 10. In all other cases, we check whether the query key match
at the current node (represented by c) node, and if it does, the current node
becomes the node to remove (stored at d), in case that is not already fixed (be
checking whether d is null), and at this location the value of p becomes the
parent of the node to remove, see line 13.

Now, if we found that the child-link of c has a Thread or a composite
descriptor, it indicates that the traversal is over and it is time to start the RE-
MOVE operation. If the node to remove and its parent were not fixed before this

4.3. Our Algorithm 81

Algorithm 4.4. Lock-free Internal BST: ADD and CONTAINS operations

ADD(K k)
1 node := null; p := root·ref;
2 retry:
3 c := Child(p, Dir(p, k));
4 while IsMark(c) do {p := c·lt; c := Child(p, Dir(p, k));} ;
5 while true do
6 if !IsTh(c) then
7 n := Child(c, Dir(c, k));
8 while IsMark(n) do
9 pr := Pr(c); r := GetRepHelp(c, p, pr);

10 if !ChCAS(p, c, r, Dir(p, k)) then goto retry;
11 c := r; n := Child(c, Dir(c, k));

12 else {n := c; c := p;};
13 cD := Dir(c, k); pr := Pr(c);
14 if c·k == k and pr == null then return false;
15 if IsTh(n) then
16 if IsThFlag(n) then
17 r := GetRep(c, n, ,·lt true);
18 if cD == L then ChCAS(p, c, r, Dir(p, k));
19 if p == n·rt then p := n·lt;
20 else if IsThMark(n) then
21 r := GetRepHelp(c, p, pr); ChCAS(p, c, r, Dir(p, c·k));
22 if p == c then p := n·lt;
23 else
24 if node == null then
25 node := Node(k);
26 node·lt := GetTh(node); node·rt := n;

27 if ChCAS(c, n, node, cD) then return true;

28 goto retry;
29 else {p := c; c := n;};

CONTAINS(K k)
30 c := root·lt;
31 while !IsTh(c) do
32 if k == c·k then return Pr(c) == null;
33 else c := Child(c, Dir(c, k));

34 return false;

82 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

point, it shows that the query key does not exist in the BST and therefore we
return false, see line 16. After that we check if the link already has a descriptor
ThFlag, and if it does, it indicates that a REMOVE of the node has already
been initiated and therefore that REMOVE operation is helped before returning
false, see line 20. In case the link is found to have the descriptor ThMark, it
indicates that the order-node of the node is under a concurrent REMOVE and
therefore that is helped before going to backtracking step, see line 25.

Now, in case the link is found to have the descriptor Thread, it is replaced
by a link with descriptor ThFlag using a CAS and steps to physically clean the
node are taken next, see line 28. The method GetRep starts with setting the
preLink of the node under REMOVE to point to the order-node using a CAS, see
line 2. At this point if the preLink is found to be already set, it indicates that
there is a concurrent helping operation working, and the REMOVE operation
being help-aware (see last chapter), returns. If the setting of preLink succeeds,
it checks the category of node by comparing the order-node with the node itself,
see line 4, and if that found matching it indicates a category 1 node and therefore
the next step is to replace the right child-link of the node with a link containing
the descriptor Mark or ThMark whichever appropriate. In case the node is
found to be not of category 1, the next step is replace the left child-link of the
node with a link containing the descriptor Mark.

The steps of replacing the left and right child links with a link containing
Mark or ThMark descriptor, are taken in the methods MarkLt, line 13 to
18, and MarkRt, line 19 to 29, respectively, in the Algorithm 4.3. In these
methods, in case the link is found already containing the desired descriptor, the
REMOVE operation returns because of being help-aware. The return is ensured
by returning null from the methods which further terminates the calling method.
In the method MarkRt, in case the right child-link is found containing the
descriptor ThFlag, it shows that a concurrent REMOVE of the successor of the
node has already started and therefore that is first helped before reattempting
the CAS, see line 25. The method GetRepHelp, from line 30 to 38, is called
to clean a node whose one of the links has been already replaced with a link
with the descriptor Mark, and therefore performs the helping steps without
attempting setting the preLink.

In an ADD operation, line 1 to 29 in the Algorithm 4.4, the traversal and
helping during that are absolutely same as those in a REMOVE operation. When
we see a link with the descriptor Thread, it is attempted to be replaced with
a new node at line 27 using a CAS. However, if a node containing the query
key is found to be in the BST, whose preLink is still null, false is returned, see
line 14.

The CONTAINS operation, line 30 to 34 in the Algorithm 4.4, returns true

4.4. Correctness and Complexity 83

only if a node containing the query key is found in the BST and the node must
not have its preLink set, see line 32. Otherwise it returns false, line 34.

4.4 Correctness and Complexity
In this section we present the formal proof of correctness of the presented algo-
rithm and show that the algorithm is linearizable to a sequential BST and then
prove its lock-freedom. First we give some basic definitions that will be used in
the proof.

We consider the shared memory system U as described in section 2.1. In U a
binary search tree is a data structure that provides a partial implementation IO,
where O⊆M is given by O = {ADD,REMOVE,CONTAINS}. The definition
of M is given in the section 2.1. The state of Υ at time t is a finite set of
nodes denoted as Υt = {xi(ki)}r−1i=0 forming a directed graph. The nodes are
connected with links and the nodes and the links together have properties as
described in the section 4.2. There is a specific node root∈Υt from where
every node xi(ki)∈Υt is reachable following the lt and rt links of other nodes.
It implies that to remove the node xi(ki) from Υt, we need to ensure that it can
not be reached from any other node and hence from the node root.

Definition 4.1. At time t the BST state Υt is called valid iff ∀ nodes x(kx), y(ky)
∈ Υt, x(kx) 6=y(ky) ⇒ kx 6=ky . Further if y(ky) is in the left-subtree of x(kx)
then ky<kx and if that is in the right-subtree of the same then ky>kx.

At time t = 0, the BST state Υ0 = {root} satisfies the above requirement
in which both the subtrees of the node of root are null. A valid BST state
Υt = {xi(ki)}r−1i=0 corresponds to an abstract set K = {ki}r−1i=0 with r ele-
ments. The ADT operations ADD(k), REMOVE(k) and CONTAINS(k) follow
the sequential specifications as given in their definition in the mapping M in
section 2.1 in chapter 2.

Now we prove some invariants of the presented algorithm in form of lemmas
in order to prove that at all time t≥0 it maintains a valid BST. Essentially, the
lemmas will show that no null variable is dereferenced and further if in an exe-
cution α, a step s is performed by a thread p∈P over a configuration Ut⊇Υt so
that it changes to a configuration U ′t⊇Υ′t then Υt is valid ⇒ Υ′t is also valid.
After that we shall prove the linearizability of the set operations to prove a
correct concurrent linearizable implementation. And finally we shall prove the
lock-freedom and hence we shall prove that the efficient lock-free BST algo-
rithm presented in this paper implements a correct linearizable lock-free con-
current BST.

84 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

It is trivial to observe that after a node is ADDed in a BST following our
algorithm, its key never changes and all the links outgoing from it are modified
using atomic CAS only. Because we can not ADD or REMOVE a key k such
that k ≥ (∞2) or k ≤ (−∞0), the sentinel node or splice nodes can not come
under a REMOVE. For that matter the lt link of root can not be marked.

Lemma 4.1. A null is never dereferenced at any step s during an execution α.

Proof. It can be observed that when a node is ADDed in the BST, all its fields
except preLink are non-null. To turn a node to be unreachable the incoming
pointers are turned away from it. The preLink field of a node is updated only
once in the algorithm in the method GetRep. After that when we need to
retrieve the fields of the order-node referred by the preLink, we first check if
it is non-null throughout the algorithm. We can check that for the parameters
passed to the methods, no null pointer is passed to them. Hence a null pointer
is never dereferenced at any step s in α.

Lemma 4.2. In a BST state Υt a link that connects a node to any of its children
is not threaded.

Proof. In the initial state Υ0 it is vacuously true. Now suppose it is true in a
state Υi−1 and ADD(x)(Υi−1)�Υi. At line 27 after CAS succeeds, the link
between the node to which x is connected and x, is a clean link. Hence, by
induction the lemma proves.

Corollary 4.1. A threaded link outgoing from a node ensures the subtree of the
node in that direction is null.

Proof. We can observe in the operation ADD that when a new node that has
been initialized at line 25 its left and right outgoing links are threaded and thus
it has null subtrees in both the directions. Using the induction it is proved.

Corollary 4.2. An ADD always happens at a clean and threaded link.

Proof. Follows from above.

Lemma 4.3. At any step s in an execution α, a call of CONTAINS(key) over a
valid BST state Υt at a t≥0 satisfies the sequential specifications.

Proof. We can observe that in no step s during CONTAINS any change in the
BST is performed. The return then matches the sequential specification.

Lemma 4.4. At any step s in an execution α, a call of ADD(key) over a valid
BST state Υt at a t≥0 satisfies the sequential specifications.

4.4. Correctness and Complexity 85

Proof. From initial conditions and corollary 4.2.

Lemma 4.5. At any step s in an execution α, from a valid BST state Υt at a
t≥0, the REMOVE of a node x(k)∈Υt starts with flagging its order link.

Proof. By observation.

Lemma 4.6. For a link belonging to a node x(k)∈Υt, once it is marked it can
not be updated again.

Proof. Trivial by observations at the CAS operations performed in the algo-
rithm.

Lemma 4.7. At any step s in an execution α, in a valid BST state Υt at a t≥0,
the rt link of a node x(k)∈Υt can not be marked unless its order-link is flagged
and its preLink must points to the correct order-node.

Proof. rt link of a node is marked only in the method MarkRt. However, that
method is called from GetRep only after setting the preLink and even before
that the order link is flagged.

Lemma 4.8. At any step s in an execution α, before the parent-link incoming
to a node x(k)∈Υt at a t≥0, is moved away from it all other links are fixed.

Proof. Using previous lemmas and observation in the operation REMOVE.

Lemma 4.9. At any step s in an execution α, a call of REMOVE(key) over a
valid BST state Υt at a t≥0, satisfies its sequential specifications.

Proof. Using lemma 4.8.

Using Lemmas 4.3, 4.4 and 4.9, we arrive at proposition 4.1.

Proposition 4.1. The presented algorithm in an execution α starting with initial
configuration U0⊇Υ0 maintains a valid binary search tree state Υt, ∀t≥0.

4.4.1 Linearizability
Having proved the above invariants of the lock-free BST algorithm we prove
the linearizability.

Lemma 4.10. In a step s in an execution α, there exist linearization points of
ADD, REMOVE and CONTAINS between their respective invocation and return,
satisfying their sequential specifications

86 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

Proof. CONTAINS - A thread performing a CONTAINS(k) essentially termi-
nates either at the node where it found the matching key or at a link with
Thread or composite descriptor. If CONTAINS(k)(Υt) = true then the point
at which the link pointing to x(k) was read by CONTAINS, is taken as the lin-
earization point. There is no other way that CONTAINS(k)(Υt) could return
true as proved before. However, if CONTAINS(k)(Υt) = false then there could
be two possibilities - (a) when CONTAINS(k) was invoked, x(k)∈Υt and its
preLink was not null and (b) when CONTAINS(k) was invoked, x(k)/∈Υt. In
the first case because the linearization point of CONTAINS(k)(Υt) = false is
just after the linearization point of the successful concurrent REMOVE operation
that set the preLink of x(k). In the second case the linearization point can well
be taken as the invocation point of CONTAINS(k) returning false.

ADD - A thread performing an ADD(k) returns false if x(k)∈Υt and there-
fore as in case of CONTAINS, the linearization point of ADD(k)(Υt) = false
is at the point where the link pointing to x(k) was read, which is between the
invocation and return ADD. For a successful ADD operation, the execution of
the CAS at line 27 is where it takes effect and therefore it is the linearization
point of ADD(k)(Υt) = true.

REMOVE - A thread performing a REMOVE(k) can return false in two
ways (a) x(k)/∈Υt at the invocation of REMOVE and therefore is not located
(b) x(k)∈Υt at the invocation of REMOVE but got REMOVEd by a concurrent
successful REMOVE. These are the cases similar to those in the CONTAINS
operation and so the linearization points are same as in that case. For a RE-
MOVE(k) returning true, the linearization point is where the preLink of x(k)
is set that is at line 2 in the method GetRep. Please note that the setting of
preLink can be performed either by the REMOVE operation that returns true in
account of initiating the operation or by any helping concurrent operation.

Using the Proposition 4.1 and the Lemma 4.10, the proposition 4.2 follows.

Proposition 4.2. The algorithm Efficient Lock Free BST implements a valid and
linearizable concurrent binary search tree.

4.4.2 Lock-Freedom
Lemma 4.11. Lock-freedom is guaranteed in the algorithm Efficient Lock Free
BST.

Proof. By the description of the algorithm, a non-faulty thread performing
CONTAINS will always return unless its search path keeps on getting longer
forever. If that happens, an infinite number of ADD operations would have suc-
cessfully completed adding new nodes making the implementation lock-free.

4.4. Correctness and Complexity 87

So, it will suffice to prove that the modify operations are lock-free. Suppose
that a thread p∈P performs a modify operation op on a valid BST state Υt and
takes infinite steps and no other modify operation completes after that. Now, if
no modify operation completes then Υt remains unchanged forcing p to retract
every time it wants to execute its own modification step on Υt. This is possible
only if every time p finds the injection point of op having a composite descrip-
tor. This implies that a REMOVE operation is pending. It can be observed in
our algorithm that in the function ADD if it gets obstructed by a concurrent
REMOVE then before retrying after recovery from failure it helps the pending
REMOVE by executing all the remaining steps of that. Additionally, whenever
two REMOVE operations obstruct each other, one finishes before the other. It
implies that whenever two modify operations obstruct each other one finishes
before the other and so Υt changes. It is contrary to our assumption. Hence,
by contradiction we show that no non-faulty thread shall remain taking infinite
steps if no other non-faulty thread is making progress.

The lemma 4.11 leads to the proposition 4.3.

Proposition 4.3. The algorithm Efficient Lock Free BST implements a valid and
linearizable lock-free concurrent binary search tree.

4.4.3 Complexity
Having proved that our algorithm guarantees lock-freedom, though we can not
compute the worst-case time complexity of an operation, we can definitely de-
rive their amortized complexity. We derive the amortized step complexity of
the set operations in our implementation by the accounting method along the
similar lines as in [35, 74]. For an execution α, let O be the set of operations.
First we show that a traversal visits a node only a constant number of times and
hence we bound the length of the traversal path. Then in the execution α we
amortize the step complexity of the operations op∈O.

Lemma 4.12. A thread p∈P executing an operation op visits a node x∈Υt only
an O(1) times during the traversal in the shared memory system U , if it does no
modification.

Proof. Trivial to observe.

Note that, all the set operations have to perform a predecessor query by
a key k to LOCATE an interval [ki, kj] associated with a link s.t. x(ki) and
x(kj) are two nodes in the BST. Let us define the access-node of an interval as
the node from which the link associated with the interval, emanates from. We

88 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

define distance of an interval from an operation op as the number of links that
op traverses from its current location (root ∀ t≤ti(op)) to read the access-node
of the interval. Suppose that at ti(op) there are n nodes in the valid BST state
Υti(op). Clearly, distance of any interval from op at ti(op) is O(H(n)). Next
we prove the following lemma.

Lemma 4.13. If at tref (op) ∈ [ti(op), tr(op)], x(kj) is a category 1 node and
the distance of the interval [ki, kj] associated with the order-link of x(kj) from
op at tref (op) is d then to access an interval [k, k′] ⊆ [ki, kj] op traverses no
more than d+ ht(x(kj)) + |{op′∈O : op′ is a concurrent ADD}| links.

Proof. Given that at tref (op) ∈ [ti(op), tr(op)], x(kj) is a category 1 node
and the distance of the interval [ki, kj] associated with the order-link of x(kj)
from op at tref (op) is d. We can observe that if at a t ∈ [tref (op), tr(op)],
x(kj) is still a category 1 node and it is REMOVEd then the interval associated
with its order-link gets subsumed by the interval associated with the order-link
of the leftmost child in its right subtree or with the order-link emanating from
its parent if the right subtree is null. In the former case the distance of [ki, kj]
from op becomes d + ht(x(kj)) and in the latter it decreases by 1. Also if a
node x(kl) is ADDed by an operation op′ then the extra distance apart from d
traversed by op to access [ki, kl] or [kl, kj] is no more than 1. The observations
made above imply that op does not traverse more than d+ht(x(kj))+|{op′∈O :
op′ is a concurrent ADD}| links to access a subinterval of [ki, kj].

Lemma 4.14. Length of the traversal path of a thread p∈P is bounded by
2H(n) + |{op′∈O : op′ is a concurrent ADD}|.
Proof. When op traverses in the left subtree of a category 3 node x and if x
gets REMOVEd, the interval associated with its order-link gets subsumed by the
interval associated with the order-link of the leftmost node in the right subtree
of x which is a category 1 node. On removal of a category 2 node, the interval
associated with its order-link is subsumed by the interval associated with the
order-link of its parent which can be a category 2 or category 3 node. Lemma
4.12 shows that a node is visited at maximum O(1) times by a thread during
a traversal. And, (d + ht(x)) ≤ 2H(n) ∀ x∈Υ and for any d that is distance
of an interval from op its present position. Therefore, lemma 4.13 along with
these observations show that the path length of a traversal in our lock-free BST
is bounded by 2H(n) + |{op′∈O : op′ is a concurrent ADD}|+O(1).

Having shown that the traversal path of a thread for any operation is bounded
by O(H(n) + |{op′∈O : op′ is a concurrent ADD}|) we prove that an ob-
structed operation incurs only a constant number of extra steps in helping an
obstructing operation.

4.4. Correctness and Complexity 89

Lemma 4.15. An obstructing operation op makes an obstructed operation op′

take only a constant number of extra steps for recovery from failure in order to
finish its execution.

Proof. An ADD operation does not have to hold any link and so does not ob-
struct an operation for itself so only a REMOVE operation can obstruct another
operation. Let op be a REMOVE operation. We observe that after flagging the
order-link of a node, op takes only a constant number of atomic steps to flag,
mark, tag and swap links connected to the node and to its order-node in addition
to setting the preLink pointer of the node under REMOVE, if not obstructed by
a concurrent operation. To start helping op after an unsuccessful CAS in order
to complete an operation op′, a thread p reads the preLink pointer of a node. It
is trivial to observe that from a node pointed by preLink the distance of node
is no more than a single directed link. That shows that a thread needs to take
only a constant number of extra steps in order to perform helping. Hence the
recovery from failure due to a concurrent obstructing operation needs only a
constant number of links to traverse. That proves the lemma.

Now we amortize the step complexities of the operations during an execu-
tion α. In the shared memory system U , let ti(op) be the invocation point of op
which is the time it reads the pRoot, and tr(op) be the return point of op which
is the time it reads or writes at the last link before it leaves the BST. The point
contention cp(op) during the execution interval of op is defined as the maximum
number of threads running concurrently at any point t∈[ti(op), tr(op)] [3] to
execute any operation. Some authors also call it concurrent contention [52]. In
order to perform an operation op∈O, a number of atomic steps a are taken. The
amortized complexity of op∈O is computed as following

Amortized step complexity ĉ(op) of op∈O
= Actual step complexity c(op)

+ number of extra steps charged to op on behalf of op′

− number of extra steps charged on behalf of op to op′′

where op, op′, op′′∈O and op′ 6=op6=op′′

Let A be the set of atomic steps taken by all p∈P . We define a function
f : A 7→ O such that if f(a) = op then a is charged to the account of op and

(a) In case of no contention, all the atomic steps a representing atomic read,
write and CAS taken by op is mapped to op by f .

(b) In case of contention, any failed CAS by op is mapped by f to the opera-
tion op′ whose successful CAS causes the failure.

90 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

(c) If an extra read is performed during the traversal in op due to an ADDed
node at t∈[ti(op), tr(op)] to the set of existing nodes by a concurrent
ADD operation op′ then it is mapped by f to op′.

(d) Any read, write or CAS step a taken by an operation op after the first
failed CAS and before retrying at the same link i.e. during helping and
recovery from failure is mapped by f to the operation op′ that performed
the successful CAS in order to make op help it, provided op′ further does
not help some op′′ so that op helps op′′ recursively. This includes reset-
ting of prelink, if needed.

(e) In case of recursive helping, the extra atomic steps by all the operations
helping op is mapped by f to op.

With the definition of the function for accounting the steps, we prove that
the upper bound of amortized complexity of operations in the following Propo-
sition.

Proposition 4.4. In a BST with n nodes at the start of a finite execution α,
the amortized step complexity of each operation op in α is O(H(n) + cp(op)),
where cp(op) is the point contention during the execution of op.

Proof. Clearly for two operations op, op′∈O and op 6=op′, if they are not con-
current, f can not charge any extra step to op or op′ on behalf of either. Now
we take the three set operations separately.

(a) A CONTAINS operation op, as it does no modification in the BST no ex-
tra step can be charged to it other than the essential steps that it would
take on account of the traversal. If a node is ADDed by op′ to the BST
at t∈[ti(op), tr(op)] and it comes in the traversal path of op then the
read of this node is charged to op′ by f . In Lemma 4.12 we proved that
a traversal visits a node only O(1) times. From the discussion in the
proof of Lemma 4.12 it can be seen that during the traversal an opera-
tion may possibly visit the node p more than once if the node curr is
shifted by a concurrent REMOVE operation during its LOCATE. The ex-
tra read of p is charged to the concurrent REMOVE operation that shifts
curr and that is at most once as in a REMOVE the shift of an order-
node happens only once. Because the traversal path length is at most
2H(n) + |{op′∈O : op′ is a concurrent ADD}| and the number of ex-
tra reads, if any, counted in |{op′∈O : op′ is a concurrent ADD}| is
charged to concurrent ADD operations, the amortized step complexity of
a CONTAINS operation during a finite execution α is O(H(n)) where n
is the number of nodes in the BST in the initial configuration in α.

4.4. Correctness and Complexity 91

(b) An ADD operation does not perform any flag or mark of a link which
can block a concurrent operation so an extra step can not be charged to
an ADD by f on account of getting helped by any concurrent operation.
When a node is ADDed to the BST by an operation op which was not
at the invocation point of a concurrent operation op′ and the new node
comes in the path of the traversal of op′, the read of the new node by op′

is charged to op and it can be at most 1. This infers that at most cp(op)
can be charged to an ADD operation op by f on account of the added
node. An ADD operation’s successful CAS can cause failure to the CAS
of a concurrent ADD or the flagging or marking of a concurrent REMOVE
and for that at most 1 CAS step can be charged by any concurrent mod-
ify operation. After the failure any concurrent modify will have to travel
only one extra link which has been counted before. So on the account
of failed CAS of concurrent operations f can charge at most cp(op) to
an ADD operation op. Finally, an ADD operation helps a concurrent RE-
MOVE operation if the threaded link that the new node is required to be
added to is found marked or flagged. The failed CAS step and the extra
steps in helping the concurrent REMOVE is charged to that. By Lemma
4.15 only a constant number of extra steps are taken in the helping. On
summarizing these observations and by the upper bound of the traversal
path by Lemma 4.12, the amortized complexity of an ADD operation op
during a finite execution α is O(H(n) + cp(op)) where n is the number
of nodes in the BST in the initial configuration in α.

(c) For a REMOVE operation other than the essential steps that it takes in
the traversal to track the order-link of the node to be deleted, it obstructs
a concurrent modify operation and can make a concurrent traversal read
extra node because of shifting of the order-node. The steps charged on
account of traversal is similar to as discussed in case of CONTAINS. By
Lemma 4.15 only a constant number of extra steps are needed by an ob-
structed concurrent modify operation. Therefore after locating the order-
link of the node and its successful flagging a REMOVE operation op can
be charged only O(cp(op)) extra steps if it itself is not obstructed by
another concurrent REMOVE forcing a recursive helping. In case of re-
cursive helping the charges of the extra steps on behalf of obstructed op-
erations that is taken to help another obstructing operation is passed to
that by f . Summarizing these observations the amortized complexity of
a REMOVE operation op during a finite execution α is O(H(n)+ cp(op))
where n is the number of nodes in the BST in the initial configuration in
α.

92 4. Amortized Complexity of Lock-Free Internal Binary Search Tree

Summing up, in any finite execution α with the set of operations O, threads
perform at most O

(∑
op∈O(H(n) + cp(op))

)
steps in total where n is the

number of nodes in the BST in the initial configuration in α.

It is straightforward to observe that the number of memory-words used by
a BST with n nodes in our design is 5n. That concludes the amortized analysis
of our algorithm.

Chapter Summary

In this chapter we presented an algorithm for a lock-free internal BST. We
proved that each operation in our design takes O(H(n) + c) amortized number
of steps, where H(n) is the height of the BST with n nodes and c is the point
contention. We solved the problem of “retry from scratch” in internal BSTs. We
proved the linearizability and lock-freedom of the proposed algorithm.

Acknowledgments
We would like to thank Dr. Neeraj Mittal (Associate Professor, Department of
Computer Science, The University of Texas at Dallas, USA) for many valuable
comments on a previous version of this chapter published as a a paper in PODC
2014.

Part III

LOCK-FREE 1-DIMENSIONAL RANGE SEARCH

5

LOCK-FREE LINEARIZABLE
1-DIMENSIONAL RANGE

QUERIES

Chapter Abstract

Efficient concurrent data structures that support range queries are highly sought-
after in a number of applications. For example, the contemporary big-data pro-
cessing platforms employ them as in-memory index structures for fast and scal-
able real-time updates and analytics, where analytics utilizes the range queries.

In this chapter, we present a generic algorithm to perform linearizable
range queries in lock-free ordered 1-dimensional data-structures. The algo-
rithm requires single-word CAS primitives. Our method generalizes the lock-
free data structure snapshot of Petrank et al. [76]. Fundamentally, we utilize a
partial snapshot object derived from the snapshot object of Jayanti [58].

We experimentally evaluate the proposed algorithm in a lock-free linked-
list, skip-list and binary search tree (BST). The experiments demonstrate that
our algorithm is scalable even in the presence of high percentage of concurrent
modify operations and outperforms an existing range search algorithm in lock-
free k-ary trees in several scenarios.

5.1 Introduction

5.1.1 Background
An ordered set abstract data type (ADT), which supports set operations - ADD,
REMOVE, CONTAINS and RANGESEARCH, is a widely used programming in-
terface. Sequential data structures such as linked-lists, skip-lists and BSTs,
which provide predecessor queries, implement this ADT. With the ubiquity of
multi-core processors, efficient concurrent version of these data structures are
ever more important.

95

96 5. Lock-free Linearizable 1-Dimensional Range Queries

An extremely important application area for such concurrent data structures
is a modern big-data processing platform such as Google’s Bigtable [22] and
Apache HBase [47]. These technologies, in addition to the on-disc storage for
persistence, employ a concurrent data structure as an in-memory index for fast
real-time data updates and analytics. Specifically, the analytics components
thereof are based on the RANGESEARCH operations. Therefore, to ensure the
correctness of the analytics, the consistency of a RANGESEARCH, in presence
of other concurrent set operations, becomes paramount. Additionally, the over-
all performance of such applications get significant impact from the scalability
of the utilized concurrent index structure.

The most common consistency framework used in concurrent settings is
linearizability [50], which makes a user perceive an operation to take effect
instantaneously at a point between the invocation and response of the operation.
In effect, linearizability of range search is highly desired because it ensures that
the output provides an “aligned view”, with respect to a global real-time order,
of the targeted entries in the data structure.

Traditionally, concurrent data structure use mutual exclusion locks for con-
sistent set operations. However, locks succumb to high contention and often
offer poor scalability. In addition to that, in an asynchronous shared-memory
system, where an infinite delay or a crash failure of a process is possible, a
lock-based concurrent data structure is vulnerable to pitfalls such as deadlock,
priority inversion and convoying. On the other hand, in a lock-free data struc-
ture, processes do not hold locks and at least one non-faulty process is guaran-
teed to finish its operation in a finite number of steps. Therefore, lock-free data
structures foster both scalability and fault tolerance.

A number of lock-free ordered data structures exist in the literature: singly-
linked lists [46, 35], doubly-linked lists [82], skip lists [81, 62], BSTs [33, 53,
71, 24, 32], etc. However, in general, the ADT implemented by these data
structures do not support RANGESEARCH operations. A linearizable RANGE-
SEARCH outputs a consistent view of the concurrent data structure with respect
to multiple points stored in it and thus is inherently different from other set
operations that essentially require single point queries.

This chapter makes the following contributions:

1. We present a generic method to implement linearizable RANGESEARCH
operations in a lock-free ordered search data structure that supports lin-
earizable ADD, REMOVE and CONTAINS operations.

2. Our method can be seamlessly integrated to any lock-free 1-dimensional
ordered data structure.

5.1. Introduction 97

3. We experimentally show that the proposed range search algorithm achieves
good scalability and outperforms an existing range search method [16] in
high contention scenarios.

Further in this chapter, first, we describe the algorithm (section 5.2). Thereafter,
we present a proof of linearizability of the introduced range-search algorithm
(section 5.3). Finally, we present details of the experiments and discussion on
the observations thereof (section 5.4).

5.1.2 Related work

To our knowledge, the only work existing in the literature with regard to a lin-
earizable range query in a lock-free data structure is by Brown et al. [16], who
implemented it in the lock-free k-ary search trees. Their method requires range
scanning using a depth-first-search followed by validating the scan, and if any
node is found outdated, the range scan is retried, often repeatedly. Thus, in the
cases of multiple concurrent updates, this method lets the range search starve.

The ConcurrentSkipListSet in Java concurrency library supports
subSet operations that are effectively non-linarizable range queries. Avni et
al. [10] used software transactional memory (STM) to encapsulate the lineariz-
able range queries in a lock-based concurrent skip list, which they call a Leap
list. The scalability of their method mainly depends on the efficiency of the
underlying STM. Moreover, an STM based approach for a range query incurs
increasing overhead with the growth in the number of target shared-memory
words covered by a transaction and thus may not be an efficient approach to
perform queries for long ranges in a reasonably populated concurrent data struc-
ture. Sagonas et al. [79], proposed to implement linearizable range queries by
way of locking each of the nodes, which contain the points in the target range,
in a lock-based data structure. Recently, Basin et al. [12] published a concurrent
key-value store that supports range queries.

5.1.3 A summary of our work

(A) Background

A simple approach to perform a linearizable range search in a lock-free data
structure is to collect a lock-free linearizable snapshot of the data structure and
output the appropriate subset thereof. However, not many lock-free data struc-
tures support linearizable snapshot collection. Exception is - lock-free hash trie
by Prokopec et al. [77]. They used a variant of double-compare-single-swap

98 5. Lock-free Linearizable 1-Dimensional Range Queries

(DCSS) primitive, which is implemented using single-word CAS. Here, an up-
date with a concurrent snapshot requires copying each updated node together
with the path from the root to it to help the snapshot collection, which results
to a performance deterioration of concurrent updates with snapshot. Also, the
hash mapping of the keys makes it hard to compute a range search directly from
a collected snapshot.

Petrank and Timmat [76] presented another approach for collecting a lin-
earizable snapshot of lock-free linked lists and skip lists. Their method is based
on the wait-free multi-writer multi-scanner snapshot object of Jayanti [58]. A
snapshot object, which consists of multiple shared-memory words, supports
concurrent scan and update methods. An update writes a new value at
one of the words, and a scan returns an atomic view of all the words.

Nonetheless, directly using a “full” snapshot collection for a RANGESEARCH
is undesirable as it discards the advantage of the size of a range query output,
which may not necessarily be equal to the size of the entire data structure.

A way to align the snapshot collection with the size of the queried range
can be derived from the notion of the partial snapshot introduced by Attiya et
al. [9]. A partial snapshot collection is essentially a generalization of the snap-
shot collection, in which the target is restricted to only a part of the multi-word
object. This work underlines the motivation that a partial snapshot collection
must be cheaper than a (full) snapshot collection.

The fundamental idea of a partial snapshot is based on the multiple concur-
rent announcements of partial scan operations. To handle the announcements,
Attiya et al. used the idea of an active set object of Afek et al. [3]. An active
set provides the methods - join, leave and get_set. A join method is
called to join the set of “active” processes, a leave is called to leave such a
set, and get_set outputs the list of processes which are part of the active set.
Thus, an active set implementation keeps track of the processes that “currently”
perform a partial scan.

(B) Our approach

To implement a lineaeizable range search, we combine the method of lock-free
data structure snapshot of [76] with an implementation of an active set.

The key element of the lock-free data structure snapshot of [76] is a special
object called snap-collector. The data structure is augmented with a pointer to
snap-collector allocated by a process (called a scanner) collecting a snapshot.
Concurrent scanners use a single snap-collector to return the same snapshot.
An operation such as ADD, REMOVE or CONTAINS reports a modification to a
concurrent scanner using its snap-collector.

5.1. Introduction 99

We modify a snap-collector by equipping it with the lower and upper limits
of a target range and call the modified object a range-collector. However, it
does not provide a scalable solution for a common scenario in which concur-
rent range queries target disjoint ranges and thus can not use the same range-
collector. Naturally, to solve that issue, we need multiple “simultaneously ac-
tive” range-collectors corresponding to the concurrent range queries targeting
disjoint ranges. Yet, there can be scenario where the concurrent range queries
have overlapping ranges and for them ensuring linearizability needs extra care.
We explain it below.

Suppose op1 and op2 are two concurrent RANGESEARCH operations with
overlapping but non-identical target ranges. Now, if op1 has its linearization
point before that of op2, and it includes a data-point k in its output, which
belongs to the intersection of the associated target ranges, and there is no lin-
earization point of a REMOVE(k) between the linearization points of op1 and
op2, op2 must also include k in its output for consistency. That effectively
means that op1 and op2 must synchronize before their returns. Furthermore, if
for concurrent and independent progress we use different range-collectors for
op1 and op2, a concurrent ADD/ REMOVE/ CONTAINS operation, say op3, will
have to report to both the range-collectors, if its return point happens to be-
long to the intersection of the two associated ranges. Naturally, it significantly
increases the overhead of reporting, which is undesirable.

To overcome these issues, we augment a lock-free concurrent data structure
with a lock-free linked-list of range-collector objects. Functionally, the linked-
list implements an active set of processes performing concurrent range queries.
The data structure holds a pointer to one of the ends of this list, say the head.
A new range-collector is allowed to be added only at the other end, say the
tail. Thus, the addition to, removal from and traversal through this lock-free list
delegate the active set methods join, leave and get_set, respectively.

A RANGESEARCH operation starts with traversing through the list and checks
whether there is an active range-collector with an identical target range. If in the
list such an active range-collector is found, it is used for a concurrent coordi-
nated range scan, which is analogous to using same snap-collector by multiple
concurrent scanners in [76]. A range-collector is removed from the lock-free
linked-list as soon as the range scan at it gets over. With that, if concurrent
RANGESEARCH operations op1 and op2 have overlapping ranges, and op1 suc-
cessfully joins the active set before op2 by adding its range-collector to the
lock-free list, we first make op2 help op1 to finish, and then let it restart. Thus
at any time-point, the augmented list contains active range-collectors with dis-
joint ranges only.

It is easy to see that in our method a RANGESEARCH does not require

100 5. Lock-free Linearizable 1-Dimensional Range Queries

multiple (repeated) scans followed by validation, and thus, presents a scalable
method even in presence of high percentage of concurrent ADD/ REMOVE op-
erations in the data structure.

Please note that, similar to [76], our approach to implement range search
in a lock-free data-structure is independent of the actual data structure design,
and thus is generic. Moreover, this work also practically presents an alternate
method to implement a partial snapshot object derived from [58]. The existing
algorithms for partial snapshot by Attiya et al. [9] and Imbs et al. [55] are based
on repeated scan and validation that we aimed to avoid.

Lastly, because the range search in data structures storing multidimensional
points is not similar to that in 1-dimensional data structures, for detail see
Samet’s book [80], we do not claim that our method can be directly adapted
to multidimensional range search problems in a concurrent setting, which in its
own merit is a very important but yet largely unexplored topic.

5.2 The Lock-Free Range Search
We consider an asynchronous shared memory system U which comprises a set
of word-sized objects V and a finite set of processes P and supports primitives
read, write and and CAS (compare-and-swap). U guarantees that the primi-
tives are atomic i.e. they take effect instantaneously at an indivisible time-point
[51]. Each object v∈V has a unique address, commonly known as a pointer to
v, denoted by v·ref . CAS(v·ref , exp, new) compares the value of v with exp
and on a match updates it to new in a single atomic step and returns true; else
it returns false without any update at v. Let |P|=n. Processes pi∈P communi-
cate by accessing the objects v∈V using a primitive.

We consider an abstract data type (ADT) OSet that provides definition of
operations ADD, REMOVE, CONTAINS and RANGESEARCH. The ADT OSet
is implemented by an ordered 1-dimensional data structure. A formal definition
of the ADT OSet is as given in the chapter 2.

Fundamentally, our algorithm presents a generalization of the lock-free it-
erator algorithm of [76]. Therefore, for the sake of completeness, we briefly
recap the algorithm of [76] in the section 5.2.1 before describing the lineariz-
able range query algorithm in the section 5.2.2.

5.2.1 Snap-collector implementation

The lock-free data-structures considered in [76] are - linked list [46] and skip
list [62], in which each node x has a unique key key(x) and it is straightfor-

5.2. The Lock-Free Range Search 101

ward to find next(x). The data-structures implement an ADT that provides the
operations ADD(x), REMOVE(x) and CONTAINS(x). Without any ambiguity,
we denote ADD(key(x)) by ADD(x). In these data-structures, the operation
REMOVE(x) takes more than one atomic CAS steps. One of the CAS steps,
whose success ensures that x will be eventually removed, is generally known as
logical remove, and is considered the linearization point of REMOVE(x).

An Ordered Set Data Structure

∗psc

isActive: bool

A Snap-Collector Object

L: node-list

R1: report-list of p1 Rn: report-list of pn

Remove-report

Add-report

R: report-list array

Fig. 5.1: A snap-collector implementation

To implement the snapshot collection, a pointer psc to an instance of a
class snap-collector is maintained in the data-structure. The structure of the
class snap-collector is shown in the Figure 5.1. It holds (a) a boolean variable
isActive (b) a list L of the data structure node pointers in which nodes are
sorted by their keys and (c) an array R of lists of reports. A report comprises a
node pointer and a report-type (ADD or REM). The size of the report-list array R
is equal to the number of processes in the system. A snap-collector with false
isActive field is called inactive, otherwise active. If there is no ongoing snap-
shot collection, the pointer psc holds a reference to an inactive snap-collector.
Initially psc points to a dummy snap-collector which is always inactive.

A snapshot collection starts with reading the pointer psc. If psc is found
pointing to an inactive snap-collector, a new active snap-collector is allocated.
The snap collector attempts to update psc to point to the new snap-collector

102 5. Lock-free Linearizable 1-Dimensional Range Queries

Algorithm 5.1. The basic methods of the range query algorithm
� data-structure-node.

35 struct DSNode {K k; · · · ;} *DSNPtr;

� report consisting a DSNPtr and report-type.

struct Report {� RptType: ADD, REM.

36 RptType rt; DSNPtr node;
37 } *RptPtr;

� packet of a DSNPtr and auxilliary info to find next node.

38 struct Window {DSNPtr cur;· · · ;};

39 struct RCNode {� range-collector-node.

40 K lo, hi; Window * L;
41 RptPtr * R;� Array-Size=#Threads.

� mark bit of next is used.

42 (RCNPtr ref, bool mark) next;
43 } *RCNPtr;

� Global shared variables to initialize.

44 RTail = RCNode(∞,∞,null,null, (null, 1));
45 RHead = RCNode(-∞, -∞,null,null, (∗RTail, 1));
46 · · · ;� Other global variables.

� Returns the Window of DSNPtr with key just ≥ lo; returns null
if no such node present.

47 FindMinNode(K lo)

� Returns a Window of DSNPtr with key just ≥ key(x �cur).

48 Next(Window x)

� Returns true if x is not logically removed.

49 IsPresent(DSNPtr x)

� Returns true if range-collection at rnd is not linearized

i.e. its next field’s mark is 0.

50 IsActive(RCNode rnd)

� Returns the Window of DSNPtr with largest key in rnd ·L
after attempting to add x to it.

51 AddNode(RCNode rnd, Window x)

5.2. The Lock-Free Range Search 103

using a CAS. If the CAS fails, it helps the concurrent operation that successfully
injected its own snap-collector. In both the situations (success in injecting own
snap-collector or helping), the process scans the data-structure and collects the
address of every node x that it discovers which is not logically removed. The
list L (which has very similar semantics as the lock-free queue of Micheal et
al. [66]) is used for the purpose in which the node tail(L) satisfies key(l)≤
key(tail(L)) for every node l∈L.

Algorithm 5.1. The basic methods of the range query algorithm
� Returns whether the interval [lo,hi]
isConatined/contains/overlaps/isDisjoint with the interval of the

range-collector-node rnd.
52 ChkOvrlap(K lo, K hi, RCNode rnd)

� Returns a list of keys in interval [lo,hi] from the

range-collector-node rnd.
53 ProcessRange(K lo, K hi, RCNode rnd)

� Returns true if range-collection at rnd is not linearized

i.e.its next field’s mark is 0.

54 Report(RCNode rnd, Report r, int tid)

� Collects the nodes in [lo,hi] to add to rnd ·L.
55 SnapRange(K lo, K hi, RCNode rnd)
56 w = FindMinNode(lo);
57 if w·cur 6=null then
58 while IsActive(rnd) and w·cur.key≤hi do
59 if IsPresent(w·cur) then w = Next(AddNode(rnd, w));

60 Deactivate(rnd); BlockFurtherReports(rnd);

� Adds a Window of DSNPtr with max-value key to rnd ·L and

sets 1 at the mark of rnd’s next.

Deactivate(RCNode rnd)
61 AddNode(rnd, Window(∗DSNode(∞),· · ·));
62 (ref,m) = rnd·next;
63 while m 6=1 or !CAS(rnd·next, (ref, 0), (ref, 1)) do
64 (ref,m) = rnd·next;

To optimize the scanning by multiple concurrent processes, a process is

104 5. Lock-free Linearizable 1-Dimensional Range Queries

allowed to insert a node-pointer ∗x in L only if key(x)>key(tail(L)). An
attempt to insert ∗x in L returns tail(L) if key(x)≤ key(tail(L)) (without
making any changes in L) and ∗x is returned if it was successfully added to L.
The isActive variable is checked before every attempt to read a node from the
data-structure and if it is found false then the snapshot collection is guaranteed
to have finished. On completion of scanning the data-structure, isActive is set
false. This is the linearization point of the snapshot. Further, in order to ensure
that all the processes have the same view of L, before attempting to set false at
isActive, a null is inserted at L.

For a linearizable snapshot collection, a process performing ADD/ REMOVE/
CONTAINS requires to report the operation. A REMOVE(x), on finding x, per-
forms steps up to the logical remove of x, then before taking further steps, adds
a REM report consisting ∗x to its respective report-list in R. An ADD(x) after
adding x with a successful CAS, reports ∗x as an ADD to its respective report-
list in an active snap-collector. Before every ADD report, the logically remove
status of ∗x is checked to avoid an unnecessary reporting. A CONTAINS(x) on
finding a node reports (ADD or REM) to an active snap-collector. To ensure a
consistent view of the report-lists of all the processes in the system, before the
isActive field of a snap-collector is set false, a null report is added to each
of the report-lists. After the linearization of the snapshot, the reports are pro-
cessed by sorting them and then merging them to L. A processed snapshot
contains address to the nodes present in the data structure during the execution
interval of the snapshot collection. The concurrent processes working at the
same snap-collector return same snapshot.

5.2.2 Lock-free linearizable range search algorithm

Having presented the basic construction of the snapshot collection method, we
are now prepared to present the linearizable range search by means of an active
set of processes that collect concurrent snapshots targeting different subsets of
nodes present in a lock-free data-structure.

In the description of the algorithm, we assume that the memory allocator
always allocates a new shared-memory object at a new address and thus ABA
problem (see the chapter 2) never occurs. We also assume that the memory
reclamation is lock-free such as one using a lock-free garbage collector, for
example, [72]. These are standard assumptions in the description of a lock-free
data structure algorithm.

The pseudo-code of the algorithm is given in the Algorithms 5.1 to 5.3. We
have sufficiently commented the pseudo-code to describe the functionality of
the methods.

5.2. The Lock-Free Range Search 105

Algorithm 5.2. The linearizable range search algorithm
� Returns a list of keys in interval [lo,hi].
RANGESEARCH(K lo, K hi)

1 pre=RHead; cur=pre�next; mode=INIT; RN=null;
2 retry:
3 while true do
4 (ref,m)=cur�next;
5 while ref 6= null and m==1 do
6 if !CAS(pre�next, (cur, 0), (ref, 0)) then
7 goto retry;

8 (ref,m)=cur�next; pre=cur; cur=ref ;

9 if ref==null then
10 if mode==CLEAN then
11 return ProcessRange(lo, hi, RN);

12 RN=RCNode(true, lo,hi,null,null, (∗RTail, 0));
13 if CAS(pre�next, (cur, 0), (∗RN, 0)) then
14 SnapRange(lo, hi, RN);
15 (ref, ∗)=RN�next; mode=CLEAN;
16 if CAS(pre�next, (RN, 0), (ref, 0)) then
17 return ProcessRange(lo, hi, RN);

18 else goto retry;
19 else if ChkOvrlap(lo,hi, cur)==isConatined then
20 SnapRange(cur·lo, cur·hi, cur);
21 RN=cur; mode=CLEAN; (ref, ∗)=RN�next;
22 if CAS(pre�next, (RN, 0), (ref, 0)) then
23 return ProcessRange(lo, hi, RN);

24 else if ChkOvrlap(lo,hi, cur)==isDisjoint then
25 (ref,m)=cur�next; pre=cur; cur=ref ;
26 else
27 SnapRange(cur·lo, cur·hi, cur);
28 (ref, ∗)=cur�next;
29 CAS(pre�next, (cur, 0), (ref, 0));

106 5. Lock-free Linearizable 1-Dimensional Range Queries

We consider an ordered lock-free data-structure with nodes of type DSNode
which are indexed by the keys k uniquely selected from a partially ordered
universe. As before, we shall use k to denote a node if its key is k.

The data-structure is augmented with a lock-free linked list of instances of
the class RCNode (range-collector node), see line 39 to line 43 in the Algo-
rithm 5.1. An RCNode, similar to a snap-collector node, in addition to contain-
ing the data structure node list L and array of report-lists R, contains a pointer
next to connect to another RCNode in the list. It also records the range in terms
of the lower limit lo and the upper limit hi. However, unlike a snap-collector
node, a range-collector node does not contain the boolean field isActive to fix
the linearization point. Here we use a bit from the pointer next for the purpose,
which is a design optimization.

An important difference between an RCNode and a snap-collector node of
[76] is the list L: we store additional info in a node (of type Window, line 38)
of L that can facilitate traversal in the data-structures like BST, in which, unlike
linked list and skip list, computing next(x) is not straightforward. We describe
in section 5.2.3 how we implemented the method Next that finds the successor
of a node in a BST.

The list of RCNodes, which is unordered, has similar semantics as the lock-
free linked list of Harris [46], except that here a new RCNode can be added
only at one end. See Figure 5.2. The linked list is represented by two sentinel
RCNodes RHead and RTail with ranges [-∞ -∞] and [∞ ∞], respectively,
s.t. they are disjoint to any RCNode (-∞ and ∞ are the minimum and the
maximum elements, respectively, in the partially ordered universe of keys). At
the initialization of the data-structure, the next of RHead points to RTail and
L and R of both these RCNodes are null. Additionally, the next of RTail is
always null.

A new RCNode is added using a CAS such that its next pointer always
points to RTail. On a CAS failure we restart from RHead. To remove an
RCNode from the linked list, first its next pointer is marked (one unused bit is
set using a CAS) and then the next pointer of the previous RCNode is updated.
Any traversal through the list always helps a pending remove in the path. The
method RANGESEARCH of the data-structure (see line 24 to line 23 in Algo-
rithm 5.2) intrinsically uses add and remove of an RCNode in the unordered list
together with the traversal through the list.

In effect, at any point of time, all the processes that perform RANGESEARCH
use exactly one RCNode whose next is not marked. A traversal through the list
outputs the process-id of all the processes that perform RANGESEARCH. Be-
cause a new RCNode is added only at the RTail (just before it), a traversal
can not miss a new RANGESEARCH that started before and has not linearized

5.2. The Lock-Free Range Search 107

Algorithm 5.2. The linearizable range search algorithm: The operation
SyncWithRangeQuery

� Finds appropriate active concurrent range-collection to

report node x.
SyncWithRangeQuery(DSNPtr x, RptType report, int tid)

30 (ref, ∗)=RHead�next;
31 while ref 6=RTail do
32 if IsActive(ref) and ref.lo≤x.key≤ref.lo then
33 if report == ADD and IsPresent(x) then
34 Report(ref,Report(x,ADD), tid);
35 else Report(ref,Report(x,REM), tid) ;
36 break;
37 else (ref, ∗)=ref�next;

An Ordered Set Data Structure

A Range-Collector Object

Rhead
Rtail

L: node-list

R1: report-list of p1 Rn: report-list of pn

Remove-report

Add-report

lo: lower limit

hi: upper limit

R: report-list array

Fig. 5.2: A range-collector implementation

108 5. Lock-free Linearizable 1-Dimensional Range Queries

yet. Therefore, a process that starts a new RANGESEARCH always gets to know
the concurrent processes that are active and performing RANGESEARCH. Also,
“logically” leaving this set of active processes takes one CAS execution. Thus,
the augmented lock-free list implements an active set.

A process intending to perform RANGESEARCH([lo hi]), line 24 to line 23
in the Algorithm 5.2, starts scanning the unordered list starting fromRHead. A
variable mode is assigned value INIT to indicate that the process is yet to start
the collection of desired data-structure nodes, line 1. On reading an RCNode
cur with range [x y], one of the following is done depending on how [lo hi]
relates to [x y]:

1. If the next of cur is marked and not null (line 5), it indicates a pending
but linearized RANGESEARCH operation. We help to clean the RCNode
cur from the linked list.

2. If the next of cur is null (line 9), i.e. cur is the node RTail, a new
RCNodeRN is allocated and added. After that, the method SnapRange
(line 55 to line 60) is called to collect the snapshot of the desired subset
of the data-structure.
In an execution of SnapRange, the collection of nodes from the data-
structure and storing them in the list L works exactly the same way as
in a snap-collector. We begin with finding the node with smallest key in
the data structure using the method FindMinNode, at line 47. In linear
data structures such as linked list and skip list, it is straightforward: the
first node (head or the successor of it in case head is a dummy node) is
the node with the smallest key. In a BST we need to traverse down to
locate the node with smallest key. Similarly, to find the node in the data
structure with successor key the method Next, line 48, works directly in
linear data structure, whereas, in a BST, we need to perform depth first
search. The methods FindMinNode and Next for a lock-free BST are
described in the section 5.2.3.
The method Deactivate (line 60 to line 64), which consists of the
steps - (a) adding a node with key ∞ to the list L and (b) a CAS to set
the mark-bit of next, is called to deactivate a range-collector. Setting
the mark bit of the next works as the linearization point of the RANGE-
SEARCH operation. After this step any call to IsActive returns false.
Clearly, the terminal node of L with key ∞ causes termination of the
collection of any further node. Additionally, the SnapRange method
also calls the method BlockFurtherReportswhich works along the
same lines as in a snap-collector and thus ensures that no further concur-
rent modify operation can be reported to RN .

5.2. The Lock-Free Range Search 109

On completion of SnapRange, mode is changed to CLEAN and the RC-
Node RN is attempted to be detached from the unordered list. If the
CAS to detach the node fails, the traversal is restarted. If mode is set to
CLEAN then reaching the node RTail indicates that the targeted RCN-
ode has been detached. Finally, the method ProcessRange, line 53,
is called to return the desired data-structure-nodes. ProcessRange in-
cludes steps of sorting the added reports and combining the nodes from
L to produce a set of nodes with keys in the range [lo hi].

3. If the next of cur is neither marked nor null, it indicates an active RANGE-
SEARCH, therefore we check the relation between ([lo hi]) and ([x y]) by
calling ChkOvrlap and

(a) if the relation is isConatined (line 19), we help the undergoing
SnapRange at cur and ProcessRange is used to return only
those nodes which have the keys ∈ [lo hi].

(b) if the relation is isDisjoint (line 24), we simply move to the next
RSNode as cur does not cover any data-structure-node with key in
the range [lo hi].

(c) and finally, if the relation is contains or overlaps (line 26), we help
the undergoing SnapRange at cur and the traversal is restarted
from RHead.

Most commonly, the lock-free 1-dimensional ordered data structures avail-
able in literature [46, 62, 71] have a single successful CAS step as the com-
pletion of an ADD operation. Similarly, for a REMOVE operation, a successful
CAS is required to inject a “mark” at a connecting link from the node to re-
move. This CAS step is commonly known as the logical remove step, and after
that the logically removed node is eventually cleaned out of the data structure.
Further, the CONTAINS operations terminate at a single atomic read step after
performing the traversal. We have shown a generalized pseudo-code for these
operations in the Algorithm 5.3. Now we describe how they synchronize with a
concurrent RANGESEARCH operation.

The set operations ADD (line 2 to 12), REMOVE (line 13 to 22), and CON-
TAINS (line 24 to 28), which are concurrent to a RANGESEARCH, report the
data-structure-nodes in a similar way as they do in [76]. An object Report con-
sists of the address of the node to be reported and the type of report (ADD or
REM). To report a node x, the method SyncWithRangeQuery, line 47 to
49, is called. SyncWithRangeQuery traverses through the unordered list to
locate an RCNode which is active and has the range 3 key(x). However, dur-
ing the traversal no RANGESEARCH is helped. Before reporting an ADD, the

110 5. Lock-free Linearizable 1-Dimensional Range Queries

Algorithm 5.3. A Lock-free data structure with the linearizable range
search

� Returns the DSNode with key equal k; returns null if no such

node present.

1 Find(K k)

� Adds DSNode (k) to return true if no such node present else

returns false. tid is the unique id of the thread/process.

ADD(K k)
2 while true do
3 if (x=Find(k))6=null then
4 if IsPresent(x) then
5 SyncWithRangeQuery(x,REM, tid); return false;
6 else
7 SyncWithRangeQuery(x,REM, tid);
8 · · · ;� Complete REMOVE.

9 cont;

10 else
11 · · · ;� Complete ADD.

12 SyncWithRangeQuery(x,ADD, tid); return true;

� Removes the DSNode (k) to return true; returns false if no

such node present. tid is the unique id of the thread/process.

REMOVE(K k)
13 if (x=Find(k)) == null then return false;
14 if IsPresent(x) then
15 · · · ;� Logically remove DSNode (k).

16 SyncWithRangeQuery(x,REM, tid);
17 · · · ;� Complete REMOVE.

18 return true;
19 else
20 SyncWithRangeQuery(x,REM, tid);
21 · · · ;� Complete REMOVE.

22 return false;

� Atomically adds a dummy report to each of A[tid] and R[tid]

lists of rnd.
23 BlockFurtherReports(RCNode rnd)

5.2. The Lock-Free Range Search 111

method IsPresent is called to check whether X is logically removed. If no
relevant RCNode is found then nothing is reported.

A CONTAINS (line 24 to 28) operation on finding the target node reports it as
ADD if it is not logically removed else REM is reported. If the node is not found,
there is nothing to report. An ADD operation (line 2 to line 12) first adds the
desired node, then calls the method SyncWithRangeQuery to report ADD.
If a node with query key is found in the data-structure, which is not logically
removed, then it behaves as a CONTAINS operations. On finding a node with the
query key but logically removed, a REM is first reported, after that the pending
REMOVE operation is helped and then the ADD is reattempted. A REMOVE
(line 13 to line 22) on finding a node with the query key, attempts to logically
remove the node, reports REM of the node, then completes the remaining steps
to clean the node.

Algorithm 5.3. A Lock-free data structure with the linearizable range
search

� Returns true if there exists a DSNode with key equal k else

false. tid is the unique id of the thread/process.

CONTAINS(K k)
24 if (x=Find(k)) == null then return false;
25 if IsPresent(x) then
26 SyncWithRangeQuery(x,ADD, tid); return true;
27 else
28 SyncWithRangeQuery(x,REM, tid); return false;

5.2.3 Range queries in a lock-free binary search tree
The BST that we used in this work is a modified form of the lock-free external
BST of Natarajan et al. [71]. We included parent pointer in the node structure
to facilitate depth first search (DFS). See line 3 to line 22 in the Algorithm 5.4
and the Figure 5.3.

Because of maintaining the parent pointers in nodes, obviously, the ADD
and REMOVE operations become complex. The alternate approach to perform
DFS is by way of maintaining a local stack in a thread. However, to perform
a coordinated scan of the data structure, in which given any node, we find its
successor, we can not use the method of stack for DFS. Using a stack will
always require a scan to start from the root of the BST and if there is already
a concurrent RANGESEARCH that has almost completed the range scan and

112 5. Lock-free Linearizable 1-Dimensional Range Queries

Algorithm 5.4. DFS implementation in the lock-free binary search tree.
� Structure of a BST node.

1 struct Node {K key; Node∗ lt, rt, parent;};

� Packet of address of a leaf-node and its parent.

2 struct Window {Node∗ cur; Node∗ par;};

� Returns the Window containing the node with key just ≥ lo
in the BST; returns null if no such node present.

FindMinNode(K lo)
3 prev=∗root, cur=root�lt;
4 while true do
5 while (cur�lt 6= null) do
6 prev=cur; turn=(k < prev�key);
7 cur=turn ? prev�lt : prev�rt;

8 if cur�key<lo and cur�key<prev�key then
9 cur=prev�rt

10 if (cur�lt == null) then break;

11 if cur�key < lo then return null;
12 else return Window(cur, prev);

� Returns a Window with BST node with key just greater than

or equal to the key(x �cur).

Next(Window x)
13 prev=x·par, cur=x·cur;
14 if cur�key < prev�key then cur=prev�rt;
15 else
16 gP = prev�parent;
17 while pre�key < gP�key do
18 prev=gP ; gP=prev�parent;

19 prev=gP ; cur=prev�rt;

20 while (cur�lt 6= null) do
21 prev=cur; cur=prev�lt;

22 return Window(cur, prev);

5.3. Correctness proof 113

stored the nodes in the L list in an RCNode, we will have large wastage of
work. To avoid that, we use parent pointers.

In an instance of Window, line 2, we store the address of a leaf-node, which
contains data in an external BST, along with the address of its parent. Given
these addresses we can always find the successor of the leaf-node. Given the
lower limit of a target range, the method FindMinNode here, line 3 to 12,
returns the Window that contains the first node to be stored in the list L as
required in the method SnapRange at the line 56. The method Next for the
BST called at line 59 in SnapRange performs one step of the DFS and is given
in line 37 to 22.

Fig. 5.3: A sub-tree of an external BST with parent pointers

5.3 Correctness proof
We prove that our algorithm is linearizable and lock-free. The system model
and definition of basic notions are as given in the section 2.1 in chapter 2. The
ADT that we implement here is defined by the set of mappingsM′ ⊂M such
thatM = {ADD,REMOVE,CONTAINS,RANGESEARCH}.

5.3.1 Proof
First we list out the linearization points of the ADT operations as presented in
the generalized pseudo-code of the Algorithms 5.2 and 5.3. We already men-
tioned that the linearization point of a RANGESEARCH operation is the atomic
CAS step at line 63, where the next of the RCNode is marked in the method
Deactivate by one of the processes performing SnapRange at it. The in-
troduction of RANGESEARCH in a linearizable partial implementation of the

114 5. Lock-free Linearizable 1-Dimensional Range Queries

ADT OSet with ADD, REMOVE and CONTAINS operations does not alter the
usual linearization points of these operations, if the output of RANGESEARCH
includes a modification performed or observed by a concurrent such operation.
The linearization points for these operations in the generalized case are as be-
low.

For a successful ADD operation, the execution of the CAS, where a new data
structure node is added, is the linearization point. For an unsuccessful ADD and
a successful CONTAINS, it is at the point where we read the address of the node
with matching key in the method Find. For a successful REMOVE operation,
the CAS of the logical remove step is the linearization point. Linearization ar-
guments for an unsuccessful REMOVE and a similar CONTAINS have two cases
- (a) if there existed a node containing the query key in the data structure at the
invocation but was logically or completely removed by a concurrent REMOVE
operation before the return of Find, the linearization point is placed just af-
ter the linearization point of that REMOVE operation (b) if no node containing
the query key existed in the data structure at the invocation of the REMOVE or
CONTAINS, the invocation point itself is taken as the linearization point.

However, if the output of the RANGESEARCH does not include a modifica-
tion either performed or observed by a concurrent such operation, we linearize
the concurrent operation just after the RANGESEARCH. In effect, the lineariza-
tion points of all the concurrent operations are anchored at the linearization
point of the RANGESEARCH, which is the atomic CAS step at line 63, if the
output of the RANGESEARCH misses the observed or performed modification
by a concurrent ADD, REMOVE or CONTAINS operations. We can order the
linearization points anchored at the same CAS step in any arbitrary order, for
example, in the order of their invocation points.

Now, because our range search algorithm is independent of the operations
ADD, REMOVE and CONTAINS, we shall prove the linearizability of the full im-
plementation IM′ , whereM′ = {ADD,REMOVE,CONTAINS,RANGESEARCH},
of the ADT OSet by building upon a linearizable partial implementation IO,
where O = {ADD,REMOVE,CONTAINS}.

Theorem 5.1. (Correctness) The operations ADD, REMOVE, CONTAINS and
RANGESEARCH are linearizable with respect to the ADT OSet.

Proof. Let α be an arbitrary execution of the implementation IM′ . Let H be
an arbitrary history of α. We show that a sequential history S obtained by
following the steps: (a) in H append appropriate response (in any arbitrary
order) of all the operations which have performed their linearization steps as
stated above to obtain ext(H), (b) drop the invocation steps without a matching
response to obtain complete(ext(H)), and (c) construct S by arranging the

5.3. Correctness proof 115

invocation-response pair of operations according to their linearization points, is
consistent.

Let ρ=H|O and σ=S|O be the projections of H and S such that they con-
tain operations belonging to only O. Please note that, for any operation op∈σ,
op(k), where k∈R, returns either true or false, whereas, for a RANGESEARCH
operation, RANGESEARCH(x, x′)

Now, by the assumption that IO is linearizable, the sequential history σ is
consistent. That directly implies that in σ and for a key k∈R,

1. if op1, op2∈σ and op1(k)→σop2(k) and op1=ADD and op2=ADD and
op1(k) =op2(k)=true then ∃ op3∈σ s.t. op1(k)→σop3(k)→σop2(k)
and op3=REMOVE and op3(k) =true.

2. if op1∈σ and op1=ADD and op1(k)=false then ∃ op2∈σ and op2=ADD
and op2(k)=true and @ op3∈σ and op3 =REMOVE and op3(k)=true s.t
op1(k)→σop3(k)→σop2(k).

3. if op1, op2∈σ and op1(k)→σop2(k) and op1=REMOVE and op2=REMOVE
and op1(k) =op2(k)=true then ∃ op3∈σ s.t. op1(k)→σop3(k)→σop2(k)
and op3=ADD and op3(k) =true.

4. if op1, op2∈σ and op1(k)→σop2(k) and op1=REMOVE and op2=REMOVE
and op1(k)=false and op2(k)=false then either (a) @ op3∈σ s.t. op1(k)
→σop3(k) →σop2(k) and op3=ADD and op3(k)=true or (b) @ op3∈σ
s.t. op3(k)→σop1(k) and op3=ADD and op3(k)=true.

5. if op1∈σ and op1=CONTAINS and op1(k)=true then ∃ op2∈σ and op2=ADD
and op2(k)=true and @ op3∈σ and op3= REMOVE and op3(k)=true s.t.
op2(k)→σop3(k)→σop1(k).

6. if op1, op2∈σ and op1(k)→σop2(k) and op1=REMOVE and op2=CONTAINS
and op1(k)=true and op2(k)=false then ∃ op3∈σ s.t. op1(k)→σop3(k)
→σop2(k) and op3=ADD and op3(k)=true.

The above expressions describe the consistency of the sequential history σ
in the sense that in between two successful ADD operations with same key there
must be a successful REMOVE of that key, or, for two successful REMOVE with
same key there must be a successful ADD of that key or for a successful CON-
TAINS operation with a given key there must be a prior successful ADD with the
same key, and so on. Here by success we mean a CONTAINS/ADD/REMOVE
operation returning true in its response.

Now, with these assumptions in place, we need to show that ρ is consistent.
Let ρn be a sub-history of ρ that contains the first n complete operations. Let

116 5. Lock-free Linearizable 1-Dimensional Range Queries

An be the dataset which was added to the data structure by the successful ADD
operations in ρn. Let Bn be the dataset which was removed from the data
structure by the successful REMOVE operations in ρn. Let Cn = An/Bn. We
use (strong) induction on n to show that ρn is consistent ∀ n≥1.

Suppose that ρn is consistent ∀ n : 1≤n≤i. Let the (i+ 1)th operation in
ρn be op, where x, x′∈R. Then for ρi+1 we prove the following:

1. Let op be RANGESEARCH(x, x′) and RANGESEARCH(x, x′) 3 k.

(a) We show that if ∃ op1∈ρi and op1(k)→σop(k) and op1=ADD and
op1(k)=true then @ op2∈ρi and op2= REMOVE and op2(k)=true
s.t. op1(k)→σop2(k)→σop(k).
Proof: Suppose there ∃ such an op2∈ρi. Then by the construc-
tion of the linearization points, the RANGESEARCH(x, x′) must
have noticed this REMOVE operation. That implies that either the
REMOVE operation itself would have reported the logical removal
of the node containing k or the RANGESEARCH operation started
after REMOVE and they were not concurrent. That implies that
k /∈ RANGESEARCH(x, x′), which is a contradiction.

(b) We show that if ∃ op1∈ρi and op1(k)→σop(k) and op1=CONTAINS
and op1(k)=true then @ op2∈ρi and op2= REMOVE and op2(k)=true
s.t. op1(k)→σop2(k)→σop(k).
Proof: Same as (a) above.

(c) We show that if ∃ op1∈ρi and op1(k)→σop(k) and op1=ADD and
op1(k)=true then @ op2∈ρi and op2= CONTAINS and op2(k)=false
s.t. op1(k)→σop2(k)→σop(k).
Proof: Suppose there ∃ such an op2∈ρi. Then by the algorithm,
either the CONTAINS operation found a node with key k as logi-
cally removed or it did not find it at all. If it found, the node log-
ically removed then by the construction of the linearization points,
the RANGESEARCH (x, x′) must have either been notified of the
same or the RANGESEARCH started after the completion of CON-
TAINS and they were not concurrent. Which in turn implies that
k /∈ RANGESEARCH(x, x′). This is a contradiction. On the other
hand, if CONTAINS did not find this node then there must have been
a successful REMOVE operation after the ADD and before the CON-
TAINS. However, that is not possible by (a) above, hence contradic-
tion.

2. Let op∈O then by the consistency of σ mentioned before, they are con-
sistent among themselves.

5.4. Experimental Evaluation 117

(1) and (2) together prove that ρi+1 is consistent. Thus, ρn is consistent
for n = i + 1 provided ρi is consistent. Hence, by (strong) induction ρn is
consistent for all n ≥ 1.

Proving lock-freedom of the full implementation IM of OSet is straight-
forward. Because IO is lock-free, at least one thread finishes its operation if
none of them are performing RANGESEARCH. Now, even if RANGESEARCH
is performed, the operations in the set O perform a single CAS for reporting
without any failure-retry and thus even if one thread finishes its operation in IO,
it must finish its operation in IM as well. With regard to concurrent RANGE-
SEARCH operations in IM, they do not perform any write in the data structure.
Further, in the augmented list, whenever a CAS fails to add a new RCNode, the
traversal during the reattempt starts from the RHead and any pending opera-
tion is helped to finish. Thus, for concurrent RANGESEARCH operations, it can
not be possible that no operation finishes in finite number of steps. Thus we
have the following theorem.

Theorem 5.2. (Liveness) The operations ADD, REMOVE, CONTAINS and RANGE-
SEARCH are lock-free.

This concludes the proof of the presented algorithm.

5.4 Experimental Evaluation

5.4.1 Experimental Setup

We implemented the presented algorithms in Java using RTTI. We evaluated
the introduced range search algorithm in three lock-free data-structures - (a)
H_LinkedList: linked list of [46] , (b) Im_Ex_BST: a lock-free external BST in
which a non-recursive traversal is facilitated using parent-links as described in
section 5.2.3 (c) ConcSkipList: the skip list of [62].

We thankfully obtained the basic code of [76] from the authors in a per-
sonal communication. They used AtomicMarkedReference objects of
java.util.concurrent.atomic library in the snap-collector implementation as well
as in the linked list of [46], whereas the java library code of [62] was used
for the skip list. To optimize the code, we aligned all the implementations to
RTTI by replacing every instance of AtomicMarkedReference object with
a volatile variable and used AtomicReferenceFieldUpdater on top of
it for CAS.

118 5. Lock-free Linearizable 1-Dimensional Range Queries

We compared the algorithm with the range search implementation of [16]
(BA_KST64), which is based on Java RTTI. We used the author’s code avail-
able at their home-page. In the experiments in [16], k = 64 produced the best
results among the k-ary search trees. Therefore, we chose to compare our im-
plementation with the one with k = 64.

To simulate the variation due to the contention, we selected the combination
of key-range, percentage of operations and the number of threads as following:
(a) the % of (ADD, REMOVE, CONTAINS, RANGESEARCH) ∈ {(05, 05, 89, 01)
, (05, 05, 88, 02), (25, 25, 89, 01), (25, 25, 88, 02)}, (b) |{key∈K}| ∈ {102, 103}
and (c) the number of threads ∈ {2, 4, 8, 16 , 28, 32}.

We used a machine with a dual chip Intel(R) Xeon(R) E5-2695 v3 processor
with 14 hardware threads per chip (28 hardware threads in total with hyper-
threading) running at 2.30 GHz. The machine has 64 GB of RAM and runs
over CentOS Linux 7.1.1503 (Kernel version: 3.10.0-229.el7.x86_64) with Java
HotSpot(TM) 64-Bit Server VM (1.8.0_51) with 1 GB initial heap size and 15.6
GB maximum heap size. All the implementations were compiled using javac
version 1.8.0_51 and the runtime flags -d64 -server were used. We performed
10 repetitions of 5 seconds runs for each combination of the parameters shown
in the graphs. The average over the 10 trials are recorded. The keys in all the
data-structures are taken of Integer type. We ran the experiments for up to 32
threads to observe the scalability above the thread saturation limit - 28 threads,
of the processor.

In the experiments, the keys are selected at random from the chosen key-
ranges following a uniform distribution. Additionally, all the threads in the
experiment perform all the operations selecting next operation at random with a
probability expressed by the distribution percentage. In RANGESEARCH exper-
iments, we recorded the throughput of the method Size which computes the
size of the node-set returned by a call of RANGESEARCH. To call a RANGE-
SEARCH([lo, hi]), we randomly selected two keys from the chosen key-range
and passed their min as lo and their max as hi. For a linearizable Size method
in BA_KST64, we used the length of the return of the subset method thereof.

5.4.2 Observations and Discussion
Figure 5.4 demonstrates the experimental observations. We observed a com-
pletely different behavior of our implementation in comparison to that of BA_KST64
with regards the performance and overhead.

• With the growth in the number of modify operations , our method sub-
stantially outperforms BA_KST64 (even linked list performs better than
KST64 in smaller data-structure with high modification percentage). This

5.4. Experimental Evaluation 119

0 <= key(x) < 10
2

0 <= key(x) < 10
3

1

2

3

4

2

4

6

1

2

3

1

2

3

4

5

6

0
5
−

0
5
−

8
8
−

0
2

0
5
−

0
5
−

8
9
−

0
1

2
5
−

2
5
−

4
8
−

0
2

2
5
−

2
5
−

4
9
−

0
1

2 8 16 24 32 2 8 16 24 32

of Threads

T
h
ro

u
g
h
p
u
t
(1

0
3
 o

p
s
/m

s
)

BA_KST64 ConcSkipList H_LinkedList Im_Ex_BST

Fig. 5.4: Performance of the implementations.

120 5. Lock-free Linearizable 1-Dimensional Range Queries

is expected from the growing number of validations required in BA_KST64
with the growth in modify operations.

• In all the cases, as the number of threads increases, our method exhibits
good scalability whereas it is opposite in BA_KST64. This again can be
understood in terms of increasing number of validations required in high
contention scenarios in BA_KST64.

• Among the data-structures considered for evaluating our generic method,
in high contention cases BST outperforms the skip list, whereas in cases
of low contention and smaller size of the data structure, skip list wins
over the BST. This can be explained in terms of higher number of steps
required to find the successor of a node in an external BST.

• On increasing the percentage of RANGESEARCH operations, the through-
put of our algorithm decreases across the data-structure types, whereas
we do not see similar throughput change in BA_KST64. It indicates that
our method has marginally higher overhead compared to BA_KST64,
specifically, when the number of concurrent threads and percentage of
modify operations is low. It can be explained in terms of the fundamental
difference in the snapshot collection strategies ([2] vs. [58]). We make
CONTAINS operations report to the concurrent RANGESEARCH, whereas
in BA_KST64, CONTAINS do not bother about RANGESEARCH. The ex-
perimental evaluations in [76] also showed somewhat similar behaviour
with respect to the comparison between throughput and overhead of [76]
and [77].

Chapter Summary

In this chapter we presented a generic method to perform linearizable range
search in lock-free 1-dimensional ordered data structures. Our experiments
showed that the proposed range search method scales well in high contention
scenarios.

The k-ary tree by Brown et al. [16] used dirty bits in nodes. We observed
that this method achieves better throughput in low contention scenarios com-
pared to our method. We can design a hybrid method that uses similar strategy
to achieve scalability of RANGESEARCH together with lower overhead in low
contention scenarios, whereas falls back to the presented method when per-
centage of concurrent modification is high. Also, we can explore the design of a
lock-free BST which facilitates faster computation of successor of a given node,
for instance, by connecting the leaves.

Part IV

LOCK-FREE MULTIDIMENSIONAL POINT
SEARCH

6

CONCURRENT
LINEARIZABLE NEAREST
NEIGHBOUR SEARCH IN

LOCKFREE-KD-TREE

Chapter Abstract

The Nearest neighbour search (NNS) is a fundamental problem in many ap-
plication domains dealing with multidimensional data. In a concurrent set-
ting, where dynamic modifications are allowed, a linearizable implementation
of NNS is highly desirable.

This chapter introduces the LockFree-kD-tree (LFkD-tree): a lock-free con-
current kD-tree, which implements an abstract data type (ADT) that provides
the operations ADD, REMOVE, CONTAINS, and NNSEARCH. Our implemen-
tation is linearizable. The operations in the LFkD-tree use single-word CAS
atomic primitives.

We experimentally evaluate the LFkD-tree using several benchmarks com-
prising real-world and synthetic datasets. The experiments show that the pre-
sented design is scalable and achieves significant speed-up compared to the
implementations of an existing sequential kD-tree and a recently proposed mul-
tidimensional indexing structure, PH-tree.

6.1 Introduction

6.1.1 Background

Given a dataset of multidimensional points, finding the point in the dataset at
the smallest distance from a given target point is typically known as the nearest
neighbour search (NNS) problem. This fundamental problem arises in numer-

123

124 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

ous application domains such as data mining, information retrieval, machine
learning, robotics, etc.

A variety of data structures available in the literature, which store multi-
dimensional points, solve the NNS in a sequential setting. Samet’s book [80]
provides an excellent collection of data structures for storing multidimensional
data. Several of these have been adapted to perform parallel NNS over a static
data structure. However, both sequential and parallel designs primarily consider
NNS queries without accommodating dynamic addition or removal (modifica-
tions) in the data structure. Allowing concurrent dynamic modifications exac-
erbates the challenge substantially. A typical real-life application is presented
in the section 6.5.

The wide availability of multi-core machines, large system memory, and a
surge in the popularity of in-memory databases, have led to a significant interest
in the index structures that can support NNS with dynamic concurrent addition
and removal of data. However, to our knowledge no complete work exists in
the literature on concurrent data structures that support NNS.

Typically, a hierarchical tree-based multidimensional data structure stores
the points following a space partitioning scheme. Such data structures provide
an excellent tool to prune the subsets of a dataset that do not contain the target
nearest neighbour. Thus, an NNS query iteratively scans the dataset using such
a data structure. The iterative scan procedure starts with an initial guess, at
every iteration visits a subset of the data structure (e.g. a subtree of a tree) that
can potentially contain a better guess, and is unvisited until the last iteration,
updates the current guess if required, and thereby finally returns the nearest
neighbour.

In a concurrent setting, performing an iterative scan along with concurrent
modifications, faces an inescapable challenge. Consider the case of an op-
eration op performing an NNS query in a hierarchical multidimensional data
structure that stores points from Rd and where Euclidean distance is used.
Let a={ai}di=1 ∈ Rd be the target point of the NNS. Let us assume that
k∗={k∗i }di=1 ∈ {k : k is key of a node} is the nearest neighbour of a at the
invocation of op. In a sequential setting, where no addition or removal of data-
points occurs during the lifetime of op, k∗ remains the nearest neighbour of a at
the return of op. However, if a concurrent addition is allowed, a new node with
key k∗∗ may be added to the data structure in a subset that may already have
been visited or got pruned by the completion of the latest iteration step. Clearly,
op would not visit that subset. Suppose that k∗∗ was closer to a compared to
k∗, if op returns k∗, it is not consistent to an operation which observes that the
addition of k∗∗ completes before op.

We aim to design a lock-free linearizable data structure for NNS. In re-

6.1. Introduction 125

cent years, a number of practical lock-free search data structures have been de-
signed: skip-lists [81], binary search trees (BSTs) [33, 53, 71, 24], etc. Despite
the growing literature on lock-free data structures, the research community has
largely focused on one-dimensional search problems. To our knowledge, no
complete design of any lock-free multidimensional data structure exists in the
literature.

The challenge appears in two ways: designing a concurrent lock-free mul-
tidimensional data structure that supports NNS and ensuring the linearizability
of NNS.

One of the most commonly used multidimensional data structures for NNS
is the kD-tree, introduced by Bentley [14]. In principle, a kD-tree is a gen-
eralization of the BST to store multidimensional data. Friedmann et al. [37]
proved that a kD-tree can process an NNS in expected logarithmic time assum-
ing uniformly distributed data points. Various efforts, including approximate
solutions, have contributed to improving the performance of NNS in kD-trees
[70, 7]. Furthermore, several parallel kD-tree implementations have been pre-
sented, specifically in the computer graphics community, where the focus is
on accelerating the applications, such as the ray tracing, in single-instruction-
multiple-data (SIMD) programming model [86]. Unfortunately, these designs
do not fit concurrent setting where we desire linearizable NNS with concur-
rent modifications. For robotic motion planning, Ichnowski et al. [54] used
a kD-tree of 3-dimensional data in which they add nodes concurrently. How-
ever, this design does not support REMOVE and the canonical implementation
of NNSEARCH, using recursive tree-traversal, is not linearizable.

The contributions of this work are the following:
1. We describe a linearizable implementation of an abstract data type (ADT)

that provides ADD, REMOVE, CONTAINS and NNSEARCH operations for a
multidimensional dataset.

2. To illustrate the implementation, we present LockFree-kD-tree (LFkD-tree) -
an efficient concurrent lock-free kD-tree. LFkD-tree requires atomic single-
word read and compare-and-swap primitives.

3. For experimental validation of the LFkD-tree, we use a 2-dimensional real-
world dataset and several synthetic datasets representing extreme cases. We
evaluate our implementation against an existing sequential kD-tree imple-
mentation and a recently proposed multidimensional index structure - PATRICIA-
hypercube-tree implementation [85].

Further in this chapter, first, we present the basic design of the LockFree-kD-
tree (LFkD-tree) (section 6.3). Thereafter, we detail the lock-free implemen-
tation (section 6.3). On describing the algorithm, we present the proof of its
correctness (section 6.4). We describe an interesting real-life application of this

126 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

work (section 6.5). Finally, we describe experimental evaluation of our algo-
rithm against an existing sequential kD-tree and the PATRICIA-hypercube-tree
[85]1 (section 6.6).

6.1.2 A high-level summary of the work
The main challenge in implementing a linearizable NNSEARCH is to ensure
that it is not oblivious to the concurrent modifications in the data structure.
NNSEARCH requires an iterative scan, which collects, along with pruning, an
atomic snapshot.

In general, concurrent data structures do not trivially support atomic snap-
shots. Some exceptions are - the lock-based BST by Bronson et al. [15], the
lock-free Trie by Prokopec et al. [77] and lock-free k-ary search tree by Brown
et al. [16].

Petrank et al. presented a method to support atomic snapshots in one di-
mensional lock-free ordered data structures that implement sets [76]. They
illustrated their method in lock-free linked-lists and skip-lists. We extended
[23] the method of [76] to propose lock-free linearizable range search in one
dimensional data structures presented in chapter 5.

The main idea in [23, 76] is augmenting the data structure with a pointer
to a special object, which provides a platform for an ADD/ REMOVE/ CON-
TAINS operation to report modifications to a concurrent operation performing a
full or partial snapshot. Nevertheless, collecting an atomic snapshot of a mul-
tidimensional data structure to perform an NNSEARCH would be naive. We
need to adapt the procedure of iterative scan, which benefits from an efficient
hierarchical space partitioning structure, to a concurrent setting.

Our work proposes a solution based on augmenting a concurrent data struc-
ture with a pointer to a special object called neighbour-collector. A neighbour-
collector provides a platform for reporting concurrent modifications that can
otherwise invalidate the output of a linearizable NNSEARCH.

Essentially, an operation NNSEARCH(α) first searches for an exact match
of α in the data structure, and if it succeeds, returns α itself as its nearest
neighbour. If an exact match is not found, before starting the iterative scan,
NNSEARCH(α) announces itself. The announcement uses a new active neighbour-
collector that contains the target point α and the current best guess for the
nearest neighbour of α. On completing the iterative scan, it deactivates the
neighbour-collector. A concurrent operation, after completing its steps, checks

1 In this work, we are not interested in an existing parallel or sequential implementation that does
not provide a REMOVE operation, in which case lock-free design poses little challenge. We could
find only these two existing implementations that provide REMOVE along with NNSEARCH.

6.1. Introduction 127

for any active neighbour-collector, and if found, reports its output if it was a bet-
ter guess than the current best guess available. Finally, NNSEARCH(α) outputs
the best guess among the collected and the reported neighbours as the nearest
neighbour of α.

Naturally, there can be multiple concurrent NNSEARCH operations with
different target points, and we must allow each of them to continue its iterative
scan, after announcing it as soon as it begins. To handle multiple concurrent
announcements, we use a lock-free linked-list of neighbour-collector objects.
The data structure stores a pointer to one end of this list, say the head. A new
neighbour-collector is allowed to be added only at the other end, say the tail.

Consequently, before announcing a new iterative scan, an NNSEARCH op-
eration goes through the list and checks whether there is an active neighbour-
collector with the same target point. If an active neighbour-collector is found,
it is used for a concurrent coordinated iterative scan(explained in the next para-
graph). A neighbour-collector is removed from the lock-free linked-list as soon
as the associated iterative scan is completed. Hence, at any point in time, the
length of the list is at most the number of active NNSEARCH operations.

During an iterative scan, a subset of the dataset is pruned depending on
whether the distance of the target point from a bounding box covering the subset
is greater than that from the current best guess. Now, if the current best guess
at a neighbour-collector is the outcome of already pruned many subsets, an
NNSEARCH that starts its iterative scan at a later time-point, or is slow (or even
delayed), will be able to complete much faster. Thus, the coordination among
the concurrent NNS, via their iterative scans at the same neighbour-collector,
speeds them up in aggregation.

The basic design of the LFkD-tree is based on the lock-free BST of Natara-
jan et al. [71]. To perform an iterative scan, we implement an efficient fully
non-recursive traversal using parent links, which is not available in [71]. Thus,
to manage an extra link in each node, our design requires extra effort for the
lock-free synchronization. The modify operations use single-word-sized atomic
CAS primitives. The helping mechanism is based on the operation descriptors
at the child-links. Consequently, extra object allocations for synchronization is
avoided. The linearizable implementation of NNSEARCH is not confined to the
LFkD-tree, and it can be used in a similar concurrent implementation of any
other multidimensional data structure available in [80].

128 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

6.2 LockFree-kD-tree: Basic Design

6.2.1 Design of the LFkD-tree

The LFkD-tree is a point kD-tree in which each node, that stores data, is as-
signed at most one data-point. Typically, to partition Rd, we use axis-orthogonal
hyperplanes that are given by xi=c, 1≤i≤d. The structure and consequently
the NNS performance of a kD-tree heavily depends on the splitting rule - the
procedure to select the partitioning hyperplanes. Traditionally, in a sequential
setting, to construct a kD-tree from static data, the partitioning hyperplanes are
chosen to coincide with points that belong to the given dataset. In this approach,
similar to an internal BST representation [24], each node is used for storing
data. However, removing a node from an internal BST is costly, more so in
a concurrent setting [53, 24]. With this in mind, we opt for an external BST
representation [33, 71] to design the LFkD-tree. In this design, only leaf-nodes
contain the data-points and internal-nodes route a traversal, see the Figure 6.1
(b). More importantly, it gives us the flexibility to compute c and i : 1≤i≤d for
a hyperplane xi=c, which may not coincide with a data-point.

To compute the values of c and i, in the scenarios where the entire dataset
is available beforehand, a number of splitting rules exist in the literature [37,
70]. These rules focus on the hierarchical partition of a closed hyperrectangle
that covers the entire dataset and not only tries to balance a kD-tree but also
optimize its depth. In a concurrent setting, where we do not have knowledge of
the entire dataset in advance, the partitioning hyperplane needs to be computed
dynamically and in a very localized fashion. For the LFkD-tree, we formulate
a simple and practical splitting rule, the local-midpoint rule, as given in the
section 6.2.2. In this work, we do not delve in to an analytical discussion of the
splitting rule.

A leaf-node of a LFkD-tree Υ, contains a unique data-point as its key,
whereas, an internal-node corresponds to a partitioning hyperplane. Without
ambiguity, we denote a leaf-node containing key k={ki}di=1∈Rd by Nd(k)
(or Nd({ki}di=1)), and an internal node associated with a hyperplane xi=c, by
Nd(i, c). An internal-node has three links connected to its left-child, right-child
and parent. We indicate the link emanating from a node N and incoming to a
node M by N;M. Access to Υ is given by the address of (pointer to) a unique
node root. A node N is said to be present in Υ, denoted by N∈Υt, if it can
be reached following the links starting from the root. For each internal-node
Nd(i, c), Υ maintains the following invariants: (i) a node Nd({ki}di=1) belongs
to the left subtree, if ki<c, (ii) a node Nd({ki}di=1) belongs to the right subtree,
if ki≥c and (iii) both subtrees are themselves LFkD-tree. (i) and (ii) together are

6.2. LockFree-kD-tree: Basic Design 129

(b)(a) x1=4

x2=3

x1=1

x1=6

x2=5

(1,1)

x1=8

x2=7

(0,5)

(2,7)

(7,8)

(6,6)

(5,4)

(7,3)

(9,1) x1,8

x1,4

x2,3

x1,6 x2,7

(0,5)

(1,1)

(7,8)(6,6)

(9,1)(7,3)

(5,4)(2,7)

x1,1

x2,5

Fig. 6.1: LFkD-tree Structure

called the symmetric order of the LFkD-tree. Figure 6.1 illustrates the structure
of a subtree of a LFkD-tree corresponding to a sample 2-dimensional dataset.

6.2.2 Sequential Behaviour of the ADT Operations

LFkD-tree implements an abstract data type that provides operations ADD, RE-
MOVE, CONTAINS and NNSEARCH. For each of the operations, we start with
a query: start from the root, traverse down Υ, at each internal node decide left /
right child direction using the symmetric order until arrive at a leaf-node.

To perform ADD(a), a∈Rd, if the query terminates at a leaf-node Nd(b),
b∈Rd, and b = a (an element-wise comparison of keys), ADD(a) returns false.
However, if b 6= a, we allocate a new internal-node Nd(i, c) with its child links
connected to two leaf-nodes Nd(a) and Nd(b). If p(Nd(b)) was the parent of
Nd(b) at the termination of query, we connect the parent link of Nd(i, c) to
p(Nd(b)). We update the link p(Nd(b));Nd(b) to point to Nd(i, c) and return
true. To compute i and c, we employ the local-midpoint rule as given below.

Local-midpoint rule: 1≤i≤d is the index of the coordinate axis along which
a and b have the maximum coordinate difference; if there are more than one
such axis then select the one with the lowest index. Take the hyperplane as
xi = a[i]+b[i]

2 .
To perform REMOVE(a), if the leaf-node where the query terminates, has

130 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

the key a, i.e. Nd(a)∈Υ, we modify the link from the grandparent of Nd(a),
denoted by g(Nd(a)), to its parent, to connect the sibling of Nd(a), s(Nd(a)), to
g(Nd(a)); and return true. If Nd(a)/∈Υ, REMOVE(a) returns false. To perform
CONTAINS(a), using a similar query we check whether Nd(a)∈Υ and return
true or false accordingly.

The operation NNSEARCH(a) is non-trivial. On termination of the initial
query, if we reach at Nd(b) and b = a, clearly the nearest neighbour of a, avail-
able in the dataset stored in Υ, is a itself. However, if b 6= a, we take b as our
current best guess and check whether the other subtree of p(Nd(b)) (the cur-
rent subtree consists the single node Nd(b)) stores a better guess. Suppose that
p(Nd(b))=Nd(i, c). Now, any point on the other side of the hyperplane xi=c
will be at least at a distance |ai−c| from the target point {ai}di=1. Therefore, if
|ai−c|>||a, b||2 (the Euclidean distance between a and b), we must prune the
other subtree i.e. one rooted at s(Nd(b)), otherwise we visit it in the next itera-
tion. A subtree once visited is not visited again and thus we traverse back to the
root of Υ. At the termination of the iterative scan of Υ, the current best guess is
returned as the nearest neighbour of a.

6.3 LockFree-kD-tree: Implementation

6.3.1 Lock-free Synchronization: Basics
In a sequential setting, when REMOVE(a) modifies g(Nd(a));p(Nd(a)), no
operation is executed concurrently with a possibility to modify either of the
links - p(Nd(a));Nd(a) or p(Nd(a));s(Nd(a)). However, in a concurrent
setting, where these pointers are shared by multiple operations, an ADD op-
eration can concurrently modify any of these pointers. It may result into the
newly added node not being a part of the LFkD-tree. Similarly, if s(Nd(a)) is
an internal-node, a concurrent REMOVE operation trying to remove a child of
s(Nd(a)) may end up connecting p(Nd(a)) to the sibling of the removed child
which results into a wrong outcome. Essentially, for a correct concurrent im-
plementation of modify operations in a LFkD-tree, we need to keep the point-
ers p(Nd(a));Nd(a) and p(Nd(a));s(Nd(a)) fixed when g(Nd(a));p(Nd(a))
is updated to g(Nd(a));s(Nd(a)). Additionally, because we maintain par-
ent pointers, we also need to keep the pointer g(Nd(a));p(Nd(a)) fixed when
s(Nd(a));p(Nd(a)) is updated to s(Nd(a));g(Nd(a)), in case s(Nd(a)) is an
internal node.

For a lock-free synchronization we can not use locks to keep these shared
pointers fixed. Instead of locks, we design the helping protocol for operations.
Basically, the idea is: whenever an operation encounters a shared pointer fixed

6.3. LockFree-kD-tree: Implementation 131

(although not by a lock) by a concurrent modify operation, i.e. obstructed,
it takes necessary steps to complete the pending operation and thereby avoids
the obstruction in its own progress. This ensures that no non-faulty thread is
blocked due to a delayed or crashed thread and thereby provides progress guar-
antee.

Ellen et al. [33] suggested to put operation descriptors, using CAS, at the
nodes g(Nd(a)) and p(Nd(a)) by a REMOVE operation and at p(Nd(a)) by an
ADD operation, before updating the necessary pointers. An operation descriptor
stores information about the changes that a modify operation needs to make. If
CAS fails, appropriate helping is performed, using the information from the
descriptor, before a reattempt.

Natarajan et al. [71] suggested that instead of putting the descriptors at
the nodes g(Nd(a)) and p(Nd(a)), putting them at the links p(Nd(a));Nd(a)
and p(Nd(a));s(Nd(a)) improves performance. Both these designs use single-
word-sized CAS to put descriptors and update the pointers.

As mentioned before, the basic structure of our LFkD-tree is based on an
external BST. Therefore, for the lock-free synchronization in the LFkD-tree,
we build upon the lock-free BST algorithm of [71]. The fundamental idea of
the design is a lazy remove procedure that is essentially based on a protocol of
atomically injecting operation descriptors on the links connected to the node
to be removed, and then modifying those links to disconnect the node from the
LFkD-tree. If multiple concurrent operations try to modify a link simultane-
ously, they synchronize by helping one of the pending operations that would
have successfully injected its descriptor.

More specifically, to REMOVE the node Nd(a), as shown in the Figure 6.2(b),
we use a CAS to inject operation descriptors at the links p(Nd(a));Nd(a),
g(Nd(a));p(Nd(a)) and p(Nd(a));s(Nd(a)), in this order. We call these de-
scriptors mark, tag and flag respectively. An operation descriptor works as
an information source about the steps already performed in REMOVE(a) and
thus a concurrent operation, if obstructed at a link with descriptor, helps by per-
forming the remaining steps. In particular, a mark at a link indicates that the
next step would be to inject a tag at the link g(Nd(a));p(Nd(a)), whereas,
a tag indicates that the next step is to inject the descriptor flag at the link
p(Nd(a));s(Nd(a)). Finally, a flag indicates the completion of steps of in-
jecting operation descriptors and thereafter the required link updates are done.
The helping mechanism ensures that the concurrent ADD and REMOVE oper-
ations do not violate any invariant maintained by the LFkD-tree. The steps
of a REMOVE operation are shown in the Figure 6.2(c). An ADD operation
uses a single CAS to update the target link only if it is free from any operation
descriptor, otherwise it helps the concurrent pending REMOVE operation. A

132 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

(a)
(i) (ii)

(x1=∞1)

{∞2}d︸ ︷︷ ︸
d−tuple

{∞0}d︸ ︷︷ ︸
d−tuple

(x1,∞1)

∞1∞2

g(a)

a

p(a)

s(a)

(b)

mark tag flag

(c)

(i) (ii)

(iii) (iv)

g(a)

p(a)

s(a)
a

g(a)

p(a)

s(a)
a

g(a)

p(a)

s(a)
a

g(a)

p(a)

s(a)

a

Fig. 6.2: ADD and REMOVE operations in LFkD-tree

6.3. LockFree-kD-tree: Implementation 133

CONTAINS or NNSEARCH operation does not perform help.
We call the CAS step, which injects a mark at p(Nd(a));Nd(a), the logical

remove of a. After this step, a CONTAINS(a) that reads p(Nd(a));Nd(a) re-
turns false. Accordingly, ADD(a) helps to complete the pending REMOVE(a),
if it reads p(Nd(a));Nd(a) with a mark descriptor, and then reattempts its own
steps. The helping mechanism guarantees that a logically removed node will be
eventually detached from the LFkD-tree.

To realize the atomic step to inject an operation descriptor, we replace a
link using a CAS with a single-word-sized packet of a link and a descriptor.
Given a pointer delegates a link, a well-known method in C/C++ to pack extra
information with a pointer in a single memory-word is bit-stealing. In a x86/64
machine, where memory allocation is aligned on a 64-bit boundary, three least
significant bits in a pointer are unused. The three operation descriptors used in
our algorithm fit over these bits.

For ease of exposition, we assume that a memory allocator always allocates
a variable at a new address and thus an ABA (see section 1.2.2) problem does
not occur. For lock-free memory reclamation in a C/C++ implementation of
the algorithm, a method such as one based on reference counting [40] can be
used. Whereas, traditionally a Java implementation uses the JVM garbage col-
lector. Furthermore, to avoid null pointers at the beginning of an application,
we use a subtree containing an internal-node and two leaf-nodes which work as
sentinel nodes. See the Figure 6.2(a). The keys in the sentinel nodes maintain
∞0>∞1>∞2>ki, 1≤i≤d, for any data point {ki}di=1 stored in the LFkD-tree.
The sentinel internal-node Nd(1,∞1) works as the root of the LFkD-tree and
the entire dataset is stored in its left subtree.

6.3.2 Linearizable ADD, REMOVE and CONTAINS
operations

(A) Overview

Algorithm 6.1. The node structure in the LFkD-tree

1 struct INode {long i; double c; Node∗ lt, rt, pr;} � A subclass of Node.

2 struct LNode {K k;} � A subclass of Node.

3 root := INode∗(1,∞1, LNode∗({∞2}d), LNode∗({∞0}d), null);

134 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

First, we present the node-structures in the LFkD-tree, which will help in
the subsequent discussion. The classes INode and LNode, which represent
an internal- and a leaf- node respectively, are shown in lines 1 and 2 in Algo-
rithm 6.1. Every INode, in addition to the fields i and c that represent the as-
sociated hyperplane, has three pointers lt, rt and pr that delegate the left-child,
right-child and parent links, respectively. A LNode contains only an array k to
represent a data-point k={ki}di=1∈Rd. The node-pointer root, line 3, delegates
address of the sentinel node Nd(1,∞1). As a convention, if x is a field of a class
C, we use pc·x to indicate the field x of an instance of C pointed by pc; and,
the type of a pointer to an instance of C is indicated by C∗. Note that, INode
and LNode inherit Node.

(B) The algorithm

Algorithm 6.2. LFkD-tree: Search method
�Return a child-direction.

Dir(Node∗ Nd(i,c)·ref, K k)
1 return k[i] < c ? L : R;

�Directions - L: left, R: right; implemented as a boolean.

�Return a child-pointer.

Child(Node∗ pa, dir cD)
2 return cD = L ? pa·lt : pa·rt;

Search(Node∗ pa, Node∗ a, K k)
3 while Ptr(a)·class 6= LNode do
4 pa := Ptr(a); a := Child(pa, Dir(pa, k));

5 return 〈pa, a〉;

We have already described in section 6.3.1 the operation descriptors and
their denotation about the different steps of a REMOVE operation. In the fol-
lowing algorithms, we use the methods IsMark, IsFlag and IsTag to check
whether a pointer has descriptor mark, flag and tag (actually ltag and
rtag, see below), respectively. Further, to pack these descriptors, we use the
methods Mark, Flag and Tag, respectively. To get the value of a pointer free
from all descriptors, which gives a node-address, we use the method Ptr. The
ADD, REMOVE and CONTAINS operations, along with the methods called by
them, are described in a modular fashion in the Algorithm 6.2.

6.3. LockFree-kD-tree: Implementation 135

The basic methods Dir and Child are used in traversal. The method
Search, line 3 to 5, which performs a query, returns the pointers to the leaf-
node and its parent, where the query terminates.

Algorithm 6.2. LFkD-tree: The CONTAINS operation

CONTAINS(K k)
6 pa := root; a := pa·lt;
7 〈pa, a〉 := Search(pa, a, k);
8 if !IsMark(a) then
9 Sync(Ptr(pa), Ptr(a));

10 return k = Ptr(a)·k ? true : false;
11 else return false;

A CONTAINS, line 6 to 11, stats with calling Search, returns true only if
the pointer a does not have mark and the query key matches at the leaf-node
pointed by a at line 10; else it returns false, line 11. A CONTAINS calls Sync,
line 9, before return to synchronize with concurrent NNSEARCH operations.
We describe Sync in the section 6.3.3.

Algorithm 6.2. LFkD-tree: The REMOVE operation

REMOVE(K k)
12 pa := root; a := pa·lt;
13 while true do
14 〈pa, a〉 := Search(pa, a, k);
15 if !IsMark(a) then
16 if k 6= Ptr(a)·k then return false;
17 if IsFlag(a) then pa := Help(pa, a);
18 marker := Mark(a); cD := Dir(pa, k);
19 else if ChCAS(pa, a, marker, cD) then
20 Help(pa, a); return true;

21 else return false;
22 a := Child(pa, Dir(pa, k));

The method AddNode, line 23 to 36, attempts to add a new node in the
LFkD-tree. It starts with calling Search, line 25. If the returned leaf-node-
pointer a is found containing mark, it indicates that the node containing the
query key is logically removed, and therefore, the method Help is called to

136 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

help the concurrent pending REMOVE operation, line 35. Otherwise, the node
pointed by a is checked whether it contains the query key, line 27, and if found,
false is returned, line 28. AddNode also outputs the descriptor-free pointers to
the leaf-node and its parent where the query terminated. However, if the leaf-
node did not contain the query-key, it is checked whether a has the descriptor
flag, which indicates a pending REMOVE of the sibling of the node pointed
by a; and if flag is found, Help is called, line 29. We describe Help in the
next subsection. Only in the case a is descriptor-free, the method NewNode
(see lines 37 to 42) is called to allocate a new node, and a CAS executed in the
method ChCAS (see lines 43 to 47), called at line 33, modifies a to add the new
node. On that, return includes true.

The operation ADD, line 48 to 49, calls AddNode to get the pointer to the
node and its parent, either added by itself or already present there, containing
its query key, and the result of addition accordingly. Thereafter, ADD calls the
method Sync, line 49, and outputs the result.

The REMOVE operation, line 12 to 22, performs query in a similar way
calling Search, line 14. At the return of Search, if a is found to have mark,
it indicates that even if the query key k was present in the LFkD-tree, has already
been logically removed and therefore REMOVE returns false, line 21. If a is
free of mark, we check if the node pointed by a contains the query key, and if
not, REMOVE returns false, line 16. However, if the pointer a is found to have
the descriptor flag, it indicates a pending REMOVE of the sibling of the node
pointed by a, and therefore we call the method Help to perform helping steps.
After return of Help, the steps are reattempted. Finally, if a was descriptor-
free, mark is injected on it via the method ChCAS, line 19, and if it succeeds,
the Help is called to take further steps and true is returned, line 20.

(C) The Helping steps

The method Help is described In the Algorithm 6.3, line 1 to 6. We call Help
at a pointer to a leaf-node which had been injected with either the descriptor
mark or flag. Therefore, it first decides the type of descriptor, and then ac-
cordingly calls either HelpMrk, line 5, or HelpFlg, line 6.

The method HelpMrk, line 7 to 10, first calls ApndTag to fix the g(Nd(a)),
pointed by ga. And then calls HelpTag to complete the remaining steps of
REMOVE. To distinguish between the tag put by the REMOVE of left and right
child of p(Nd(a)), we use two types of tag: ltag and rtag. In the method
ApndTag, line 13 to 26, if the link was found already tagged, the type of tag
(ltag or rtag) is read using the method TagDir. And, if the link was found
to be tagged by a REMOVE of the other child of p(Nd(a)), first that REMOVE is

6.3. LockFree-kD-tree: Implementation 137

Algorithm 6.2. LFkD-tree: The ADD operation

AddNodeK k
23 pa := root; a := pa·lt;
24 while true do
25 〈pa, a〉 := Search(pa, a, k);
26 if !IsMark(a) then
27 if k = Ptr(a)·k then
28 return 〈Ptr(pa), Ptr(a), false〉;
29 if IsFlag(a) then pa := Help(pa, a);
30 else
31 n := LNode(k); cD := Dir(pa, k);
32 newNd := NewNode(a, n·ref, pa);
33 if ChCAS(pa, a, newNd·ref, cD) then
34 return 〈newNd·ref, n·ref, true〉;

35 else pa := Help(pa, a);
36 a := Child(pa, Dir(pa, k));

�Crates a new internal-node.

NewNode(Node∗ a, Node∗ b, Node∗ p)
37 ka := a·k; kb := b·k;
38 i := {i : 1≤i≤d and |ka[i]−kb[i]|≥{|ka[j]−kb[j]|}dj=1};

�Local-midpoint rule is applied.

39 c := ka[i]+kb[i]
2 ;

40 left := (ka[m] < kb[m] ? a : b);
41 right := (ka[m] > kb[m] ? a : b);
42 return INode(m, c, left, right, p);

ChCAS(Node∗ pa, Node∗ exp, Node∗ new, dir cD)
43 if (cD = L) and pa·lt = exp then
44 return CAS(pa·lt·ref, exp, new);
45 else if (cD = R) and pa·rt = exp then
46 return CAS(pa·rt·ref, exp, new);
47 else return false;

ADD(K k)
48 〈pa, a, result〉 := AddNodek;
49 Sync(pa, a); return result;

138 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

Algorithm 6.3. LFkD-tree: Help method

Help(Node∗ pa, Node∗ a)
1 cD := (a·k[pa·i] < pa·c) ? L : R;
2 if IsFlag(a) then
3 ga := Pr(pa); sa := Child(pa, !cD);
4 pD := (a·k[ga·i] < ga·c) ? L : R;
5 return HelpFlg(ga, pa, sa, pD);
6 else return HelpMrk(pa, a, cD);

HelpMrk(Node∗ pa, Node∗ a, dir cD)
7 ga := ApndTag(pa, a, cD);
8 pD := Dir(ga, a·k); pl := Child(ga, pD);
9 if Ptr(pl) = pa then HelpTag(ga, pl, pD);

10 return ga;

HelpTag(Node∗ ga, Node∗ pl, bool pD)
11 pa := Ptr(pl); sD := (TagDir(pl) = L ? R : L);
12 HelpFlg(ga, pa, ApndFlg(pa, sD), sD);

ApndTag(Node∗ pa, Node∗ a, dir cD)
13 while true do
14 ga := Pr(pa); pD := Dir(ga, a·k);
15 pl := Child(ga, pD);
16 if Ptr(pl) = pa then
17 if IsTag(pl) then
18 if TagDir(pl) = cD then return ga;
19 else HelpTag(ga, pl, pD);
20 else if IsFlag(pl) then
21 grGa := Pr(ga);
22 HelpFlg(grGa, ga, pa, Dir(grGa, a·k));
23 else if ChCAS(ga, pl, Tag(pl, cD), pD) then
24 return ga;

25 else if pl = a then pa := ga;
26 else return ga;

ApndFlg(Node∗ pa, dir sD)
27 while true do
28 sa := Child(pa, sD);
29 if IsMark(sa) then return sa;
30 else if IsFlag(sa) then return Ptr(sa);
31 else if IsTag(sa) then HelpTag(pa, sa, sD);
32 else if ChCAS(pa, sa, Flag(sa), sD) then
33 return sa;

6.3. LockFree-kD-tree: Implementation 139

Algorithm 6.3. LFkD-tree: Help method

HelpFlg(Node∗ ga, Node∗ pa, Node∗ sa, dir pD)
34 if Ptr(pl := Child(ga, pD)) = pa then
35 if Pr(Ptr(sa)) = pa then
36 CAS(Pr(Ptr(sa))·ref, pa, ga);

37 ChCAS(ga, pl, sa, pD);

38 return ga;

helped and then we reattempt, line 19, otherwise we return ga, line 18. How-
ever, if the link g(Nd(a));p(Nd(a)) is found flagged, line 22, it indicates
a pending REMOVE of s(p(a)) and therefore we help it before reattempt. On
successfully tagging the link g(Nd(a));p(Nd(a)), we return the pointer ga,
line 24. Also, if g(Nd(a)) is found not connected with p(Nd(a)), we return ga,
line 26, and REMOVE operation terminates because it indicates the completion.

The method HelpTag, line 11 to 12, reads the direction of the child whose
REMOVE had tagged the link g(Nd(a));p(Nd(a)) (represented by pl), line 11,
flags the (sibling) link calling ApndFlg and finally calls HelpFlg to per-
form the remaining steps, see line 12.

In ApndFlg, line 27 to 33, if the link p(Nd(a));s(Nd(a)) (represented by
sa) was found marked, line 29, we return this link as it is, because it is guar-
anteed that the REMOVE operation that marked this link, will perform helping
before reattempting its CAS to put a tag in the method ApndTag. In that case,
the marked link is further carried to the method HelpFlg and connected to
p(Nd(a)). If p(Nd(a));s(Nd(a)) is found flagged, we return s(Nd(a)), repre-
sented by the value of sa without any descriptor i.e. Ptr(sa), line 30. On a
successful CAS to flag the link, we return address of s(Nd(a)) represented by
sa, line 33.

Finally, the method HelpFlg, line 34 to 37, if required, connects the pr
pointer of s(Nd(a)) to g(Nd(a)), see line 36. And lastly, node a is detached
from the LFkD-tree by connecting s(Nd(a)), represented by sa, to g(Nd(a))
using a CAS at line 37.

6.3.3 Linearizable Nearest Neighbour Search

In this section, we begin with the algorithm that addresses the case where con-
current NNSEARCH operations have coinciding target points. We build on it
to present the algorithm for general cases without any restriction. However,

140 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

before describing the NNSEARCH algorithms, we discuss the linearizability of
the operations as its motivation.

(A) Linearization argument

Consider the concurrent modifications in the LFkD-tree, when an NNSEARCH
operation, say op, performs its iterative scan. We can ensure, by checking
whether IsMark returns true, that the key of a leaf-node which was logically
removed, is never collected as a current guess for the nearest neighbour. Similar
to a CONTAINS operation, we can place the linearization point of op at the point
where it reads the pointer to the leaf-node, say Nd, whose key is returned as the
nearest neighbour. Now, if Nd is logically removed after it was read by op, by a
concurrent REMOVE operation, say op1, which returns before the return of op,
we still do not loose the linearizability argument, simply because linearization
point of op1 is ordered after that of op.

Algorithm 6.4. LFkD-tree: Structure of Neighbour-collector

1 struct Nebr {Node∗ a; double d;}� Neighbour

2 struct NbrClctr {K tgt; bool isAct; Nebr∗ col, rep; NbrClctr∗ next;}
� Neighbour-collector

3 ncp := NbrClctr∗(null, false, null, null, null);

4 tail := NbrClctr∗(null, null, null, null, false);

5 head := NbrClctr∗(null, null, null, tail·ref, false);

However, in case of a concurrent ADD operation, say op2, we may be at the
risk of returning not the latest nearest neighbour and thereby invalidating the
linearizability, as explained in the section 6.1.1. Thus, op2 essentially needs to
report its modification to op, after completing its own steps. Now, suppose that
op2 got delayed after adding a new node Nd to the LFkD-tree and could not
report it to op. If in the meantime a concurrent CONTAINS operation, say op3,
read Nd and returned as usual, we may again loose linearizability because to
an outside observer the addition of a better guess is visible, possibly before the
return of op, by way of op3, although op did not return it. Therefore, op3 also
needs to report its output to op. Now, given that op2 and op3 are made to report
their output to op, we need to change the linearization point of op. To maintain

6.3. LockFree-kD-tree: Implementation 141

the order, we put the linearization point of op just after that of op2 or op3, if op
happens to return the nearest neighbour which was a report by one of them.

Note that, we need to be careful about unnecessary reporting, which may
possibly be harmful as well, in the following sense. Suppose that op2 and op3
both got delayed after their linearization. Now, if invocation of op happened
after that, op is guaranteed to read Nd, if Nd contained the nearest neighbour
of the target point. But, if in between the linearization of op3 and invocation
of op, a concurrent REMOVE removed Nd, op will certainly not read it, and a
reporting may render the linearization point of op to be shifted to even before its
invocation, which is undesired. To avoid this situation, before every reporting,
we first ascertain whether the node to be reported is logically removed by calling
the method IsMark.

Having described the linearization argument, it seems tempting that we
could have avoided the entire reporting method for synchronization between
concurrent NNSEARCH and ADD/CONTAINS operations. For example, we
could have reordered the linearization points of an NNSEARCH and an ADD
operation in a way that if an NNSEARCH does not return the latest key, say
x∗, added in the dataset, the NNSEARCH is linearized before the ADD, though
it returned after the ADD. Furthermore, the concurrent CONTAINS operations
that return x∗, are linearized after ADD, as expected. However, that does not
seem in line with the idea of linearizability that proposes that the operations in
a concurrent data structure must demonstrate their sequential behaviour.

Before describing the algorithm for NNSEARCH, we describe the classes to
implement the neighboour-collector. See the Algorithm 6.4. The class Nebr,
line 1, represents a packet of a data-point, as contained in a leaf-node pointed
by the node-pointer a, and its distance, given as d, from the target point of an
NNSEARCH. The class NbrClctr, line 2, represents a neighbour-collector: the
platform for collecting and reporting the nearest neighbour. NbrClctr contains
pointers to two Nebr instances: col points to one that contains collected data-
point during iterative scan by an NNSEARCH operation and rep points to one
that contains a data-point reported by a concurrent operation, in addition to the
target point tgt. It also contains a boolean isAct, which if set true, implies
an active neighbour-collector; and a neighbour-collector-pointer nxt to imple-
ment an augmented lock-free linked-list of neighbour-collectors. The LFkD-
tree is augmented with a pointer ncp, line 3, initialized to point to an inactive
neighbour-collector.

142 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

(B) Concurrent NNSEARCH with coinciding target points

When concurrent NNSEARCH operations have coinciding target points, they
can output same result by adopting a single atomic step, which is performed
during the lifetime of one of them, as the linearization point for each of them;
the real-time order amongst them can be taken as the order of any fixed step for
example their invocation step. Thus, essentially they require a single iterative
scan. Principally, it is similar to the linearizable snapshot algorithm of [76].
The pseudo-code of the algorithm is given in the Algorithm 6.5.

The methods Seek and NextGuess, see lines 2 and 17, are used to per-
form a non-recursive traversal of the LFkD-tree. We describe these methods in
the subsection (D). Here, we describe how the non-recursive traversal is used to
perform co-ordinated iterative scan by concurrent NNSEARCH operations.

The operation NNSEARCH, line 1 to 5, starts with calling the method Seek,
line 2, to perform the initial query to arrive at a leaf-node. If the pointer to leaf-
node a is free of descriptor mark, which indicates that the node pointed by
a is not logically removed, and if the query key k matches at the leaf-node,
which is checked by the distance between k and the key at the leaf-node, k
itself is the nearest neighbour available in the dataset and NNSEARCH returns,
line 5. Otherwise, NNSEARCH calls the method NNSync, which performs
further steps and returns the nearest neighbour, line 4. The arrays hi and lo
are used to support non-recursive traversal, described in the subsection (D).
NNSync and methods called subsequently are described here.

The method NNSync, line 6 to 15, starts with checking whether ncp points
to an active neighbour-collector, and if it does not, it allocates a new active
neighbour-collector and attempts a CAS to modify ncp to point to the new one,
line 10. In case ncp was pointing to an active neighbour-collector, we attempt
to update the current best guess of nearest-neighbour as the key in the leaf-node.
On an active neighbour-collector, the method Collect is called to perform a
coordinated iterative scan, line 14.

Collect, line 16 to 18, calls the method NextGuess, line 17, to per-
form next iteration that can better the current best guess of the nearest neigh-
bour. Before attempting to add the new guess, contained in a leaf-node, to the
neighbour-collector using the method AdNebr, it is always checked whether
the leaf-node is logically removed by calling the method ChkValid. Please
note that, given a (possibly stale) pointer to a leaf-node, we can not directly
check whether it was logically removed. Therefore, we also supply the pointer
to the parent and thus the method ChkValid, line 39 to line 43, gets the latest
pointer to the leaf-node considering the fact that a new internal-node may get
added between the parent of the leaf-node and the leaf-node to be reported.

6.3. LockFree-kD-tree: Implementation 143

Algorithm 6.5. LFkD-tree: NNSEARCH operations with coinciding tar-
get points

NNSEARCH(K k)
1 pa := root; a := pa·lt; hi := {∞0}d; lo := {−∞0}d;
2 〈pa, a〉 := Seek(pa, a, k, hi, lo);
3 dst := IsMark(a) ?∞ : ||k, a·k||2;
4 if dst 6= 0 then return NNSync(pa, a, dst, k, hi, lo);
5 else {Sync(pa, a); return k;}

NNSync(Node∗ pa, Node∗ a, double dst, K k, K hi, K lo)
6 while true do
7 on := ncp;
8 if on·isAct = false then
9 cN := Nebr∗(a, dst); nn := NbrClctr∗(k, true, cN, cN, null);

10 if CAS(ncp·ref, on, nn) then break;
11 else
12 if ChkValid(pa, a) then dst := AdNebr(a, on, col);
13 nn := on; break;

14 nn := Collect(pa, a, dst, k, hi, lo, nn);
15 Deactivate(nn); return Process(nn);

Collect(Node∗ pa, Node∗ a, K k, K hi, K lo, double dst, NbrClctr∗
nn)

16 while pa 6= Ptr(root) and dst 6= 0 do
17 〈pa, a〉 := NextGuess(pa, a, dst, k, hi, lo);
18 if ChkValid(pa, a) then dst := AdNebr(a, nn, col);

19 return nn;

AdNebr(Node∗ a, NbrClctr∗ nn, bool nt)� nt (Neighbour-type):

col or rep.

20 while true do
21 nbr := (nt == col) ? nn·col : report(nn);
22 if nn·isAct and !IsFinish(nbr) then
23 〈dst, nb〉 := NearNbr(a, nn);
24 if nb == null then return dst;
25 if nt == col then res := CAS(nn·col·ref, nbr, nb);
26 else res := CAS(report(nn)·ref, nbr, nb);
27 if res then return dst;
28 else return 0;

144 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

Algorithm 6.5. LFkD-tree: NNSEARCH operations with coinciding tar-
get points

NearNbr(Node∗ a, NbrClctr∗ nn)
29 distTgt := ||a·k, nn·tgt||2; col := nn·col; rep := report(nn);
30 if distTgt < col·d and distTgt < rep·d then return
〈distTgt, Nebr∗(a, distTgt)〉;

31 else return 〈distTgt, null 〉;

BlockNebr(NbrClctr∗ nn, bool nt)� nt (Neighbour-type): col or

rep.

32 nbr := (nt == col) ? nn·col : report(nn);
33 while !IsFinish(nbr) do
34 if nt == col then CAS(nn·col·ref, nbr, Finish(nbr));
35 else CAS(report(nn)·ref, nbr, Finish(nbr));
36 nbr := nt == col ? nn·col : report(nn);

ChkValid(Node∗ pa, Node∗ a)
37 k := a·k; ch := Child(pa, Dir(pa, k));
38 while Ptr(ch)·class 6= LNode do
39 ch := Ptr(Child(ch, Dir(ch, k)));

40 if IsMark(ch) then return false;
41 returnch == a ? true: false;

Deactivate(NbrClctr∗ nn)
42 BlockNebr(nn, col); nn·isAct := false; BlockNebr(nn, rep);

Process(NbrClctr∗ nn)
43 if report(nn)·d < nn·col·d then return report(nn)·a;
44 else return nn·col·a;

Sync(Node∗ pa, Node∗ a)
45 if ncp·isAct then
46 〈d, nb〉 := NearNbr(a, ncp);
47 if nb 6= null and ChkValid(pa, a) then Report(a, ncp);

48 Report(Node∗ a, NbrClctr∗ nn) {AdNebr(a, nn, rep);}

6.3. LockFree-kD-tree: Implementation 145

AdNebr, line 21 to 29, is called to add a collected or reported neighbour
to an active neighbour-collector. It calls the method NearerNbr, shown in
line 30 to 31, which returns a new neighbour only if the distance of the new
guess is less than the distance of the already collected or reported neighbours to
the neighbour-collector.

After completion of the iterative scan, the method Deactivate is called
by NNSync at line 15. Deactivate, line 44, other than setting the IsAct
to false, also injects a descriptor finish at both the neighbour-pointers of the
neighbour-collector using the method BlockNebr. BlockNebr, line 34 to
line 38, performs a CAS to replace a neighbour-pointer with one that has the
descriptor finish over it, see lines 36 and 37. It ensures that each of the
concurrent NNSEARCH operations using same neighbour-collector have same
view of it after linearization. The method IsFinish returns true when called
on a neighbour-pointer with descriptor finish. Thus, AdNebr can not add a
new neighbour in a neighbour-collector if the corresponding pointer is injected
with finish, see line 23.

Finally, the method Process, line 45 to 46, is called by NNSync to se-
lect the better candidate between the reported and the collected neighbours of
the target point, which is returned to the caller NNSEARCH to output. Note
that, once a neighbour-collector is deactivated by an NNSEARCH, the method
AdNebr returns 0, line 29. This in turn, immediately terminates the While
loop in Collect at the line 16. Thus, as mentioned in section 6.1.2, we can
observe that the coordination among the concurrent iterative scans at the same
neighbour-collector helps a delayed NNSEARCH operation to complete faster.

The method Sync, line 47 to 49, is used by an ADD or a CONTAINS after
their completion, see Algorithm 6.2 at lines 9 and 49. Sync is also used by
NNSEARCH in the case a matching key is found, see line 5. It first checks the
active status of the neighbour-collector and then calls the method NearerNbr
to create a neighbour. If the point to be reported is not better than the current
best guess available, NearerNbr returns null and in that case Sync returns
without any change. Otherwise, it checks whether the leaf node with the point
to be reported is logically removed by calling the method ChkValid, and then
calls the method Report, which in turn calls AdNebr to add the reported
neighbour, line 50.

(C) A general case of Concurrent NNSEARCH with multiple target points

To allow multiple concurrent NNSEARCH with non-coinciding target points to
progress together, we need to have as many active neighbour-collectors as the

146 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

Algorithm 6.6. LFkD-tree: NNSEARCH operations with multiple distinct
target points

1 tail := NbrClctr∗(null, false, null, null, null);

2 head := NbrClctr∗(null, false, null, null, tail);

NNSync(Node∗ pa, Node∗ a, double dst, K k, K hi, K lo)
3 nn := null; mode := INIT;
4 retry:
5 while true do
6 p := null; c := head; n := c·nxt;
7 while Ptr(n) 6= tail do
8 if n = nn and mode = CLEAN then
9 val := Clean(c, nn);

10 if val 6= null then return val;
11 else goto retry;
12 else if k = n·tgt and n·isAct then
13 nn := n; mode := COLLECT; break;
14 else {p := c; c := n; n := n·nxt;}

15 if mode = INIT and IsMark(n) then
16 CAS(p·nxt·ref, c, Ptr(n)); goto retry;

17 if mode 6= CLEAN then
18 〈val, mode〉 := Finalize(pa, a, dst, k, hi, lo, p, c, mode);
19 if val 6= null then return val;
20 else return Process(nn);

Sync(Node∗ pa, Node∗ a)
21 n := head·nxt;
22 while n 6= tail do
23 if n·isAct then
24 nb := NearNbr(a, n);
25 if nb 6= null and ChkValid(pa, a) then Report(a, n) ;
26 else break;
27 else n := Ptr(n·nxt);

6.3. LockFree-kD-tree: Implementation 147

number of different target points. Essentially, we need to have a dynamic list
of neighbour-collectors. In this list, before adding a new neighbour-collector,
an NNSEARCH must scan through it so that if there was already an active
neighbour-collector with a matching target point, coordination among the con-
current iterative scans with coinciding target points can be achieved. For each
of the operations in the LFkD-tree to be lock-free, we ensure the lock-freedom
of this list as well. Hence, we augment the LFkD-tree with a single-word CAS
based lock-free list of neighbour-collectors.

Algorithm 6.6. LFkD-tree: NNSEARCH operations with multiple distinct
target points
Finalize(Node∗ pa, Node∗ a, double dst, K k, K hi, K lo, NbrClctr∗
p, NbrClctr∗ c, enum md)

28 if md = COLLECT then nn := c; pre := p;
29 else if md = INIT then
30 nn := Allocate(a, dst, k, c); pre := c;
31 if nn 6= null then mode := COLLECT;

32 if md = COLLECT then
33 nn := Collect(pa, a, dst, k, hi, lo, nn);
34 Deactivate(nn); md := CLEAN;
35 if (val := Clean(pre, nn)) 6= null then
36 return 〈val, md〉;

Allocate(Node∗ a, double dst, K k, NbrClctr∗ c)
37 cNb := Nebr∗(a, dst);
38 nn := NbrClctr∗(k, true, cNb, cNb, tail);
39 if CAS(c·ref, on, nn) then return nn;
40 else return null;

The linearization points remain as before: the concurrent NNSEARCH with
coinciding target points share an atomic step during the lifetime of one of them
as their linearization point with some order among themselves.

The pseudo-code of the algorithm is given in the Algorithm 6.6, in which
every method is absolutely same as those in the Algorithm 6.5, except NNSync
and Sync. The list is initialized with two sentinel nodes pointed by tail and
head, with head·nxt set as tail, as given in lines 1 and 2. A new neighbour-
collector is added to this list at one of the ends only, which is just before the
node pointed by tail. The method of maintaining this list is similar to the lock-

148 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

free linked-list of Harris et al. [46], except the fact that no addition happens
anywhere in the middle of the list. Removal of a neighbour-collector, say one
pointed by c, takes two successful CAS steps: first we inject a mark descriptor
at the c·nxt using a CAS and then modify the pointer p·nxt to n with a CAS, if p
and n happened to be the pointers to the predecessor and successor, respectively,
of the neighbour-collector pointed by c.

We use the method Mark to get a word-sized packet of a neighbour-collector-
pointer and the descriptor mark, whereas, the method Ptrmasks the descriptor
off such a packet and does not change a neighbour-collector-pointer. Please note
that, earlier we used the same notation mark for an operation descriptor over a
pointer to a LFkD-tree node. However, without any ambiguity, they indicate the
descriptor for the type of pointer in the context. Similarly, the methods Mark
and IsMark are used depending on the context. Adding a neighbour-collector
takes a single successful CAS similar to [46].

The method NNSync, line 3 to 20, as called by NNSEARCH after the ini-
tial query in Algorithm 6.5, starts with traversing the list. We maintain an
enum variable mode that indicates the stages of NNSync. Initially, the mode
is INIT. During the traversal, if an active neighbour-collector with matching
target point is found, the mode is changed to COLLECT and traversal termi-
nates, line 13. Otherwise, the traversal terminates in the mode INIT itself.
On the termination of the traversal in the mode INIT, it is checked whether
the neighbour-collector, where traversal terminated (in this case c), is already
logically removed, line 15, and if it is, a CAS is attempted to detach it from the
list and the traversal is restarted, line 16.

After that, if the mode is INIT or COLLECT, the method Finalize is
called. Finalize, line 28 to 36, if called in the mode INIT, allocates a
new neighbour-collector by calling the method Allocate, line 37 to 40, oth-
erwise uses the input neighbour-collector. If Allocate could not add a new
neighbour-collector, it returns null and the entire process restarts from scratch
with a fresh traversal. After successfully adding a new neighbour-collector to
the list or asserting that it needs to use an existing one, Finalize calls the
methods Collect and Deactivate similar to those in Algorithm 6.5. On
deactivating the neighbour-collector, the method Clean is called to remove it
from the list and return the value of the nearest neighbour.

Clean, line 41 to 45, performs the two CAS steps to remove the neighbour-
collector and calls the method Process, line 44, to compute the nearest neigh-
bour. However, if after injecting mark, it could not modify the nxt pointer
of the predecessor, it returns null, which again causes a fresh traversal in the
mode CLEAN in Finalize. A traversal in mode CLEAN, if finds the de-
activated neighbour-collector, calls the method Clean, line 10, to redo the re-

6.3. LockFree-kD-tree: Implementation 149

maining steps and return the nearest neighbour. If the traversal terminates in the
mode CLEAN, that implies that a concurrent NNSEARCH would have detached
the deactivated neighbour-collector and therefore Process is called to finish,
line 20.

Algorithm 6.6. LFkD-tree: NNSEARCH operations with multiple distinct
target points

Clean(NbrClctr∗ pre, NbrClctr∗ nn)
41 nxt := nn·nxt;
42 while !IsMark(nxt) do
43 CAS(nn·nxt·ref, nxt, Mark(nxt)); nxt := nn·nxt;

44 if CAS(pre·nxt·ref, nn, Ptr(nxt)) then return Process(nn);
45 else return null;

(D) The Non-recursive Traversal

The main tool of the non-recursive traversal for the iterative scan is to keep
track of an (orthogonal) axis aligned bounding box (AABB) of the points in
the subtrees, both visited and pruned. An AABB is described by its two corner
points. We use the variables hi and lo throughout the algorithms to represent
the two corner points. Initially, in order to begin the query in the operation
NNSEARCH, the corner points are taken as {∞0}d and {−∞0}d, see line 1 in
the Algorithm 6.5, which cover the entire dataset.

The method Seek, line 1 to 7, which is called by NNSEARCH for the initial
query at line 2 in the Algorithm 6.5, starts with the initial AABB as described
by the two arrays hi and lo with their initial values, and performs a query abso-
lutely similar to the method Search to arrive at a leaf-node. At the termina-
tion of Seek, the arrays AABB represent the bounding box that covers every
data-point that can be in the sub-tree of the parent of the leaf-node, where it
terminates, which has the same direction as the leaf-node with respect to its
parent. We follow the convention that an array is always passed by reference
and therefore any modification at any element in a method call persists even af-
ter the return of the method call. Thus, at the return of Seek, if the query point
did not match at the key of the leaf-node, we go to perform further iterations
using the method NextGuess with the current bounding box which represents
the rectangular region of the Euclidean space that we have covered.

The method NextGuess, line 8 to 26, performs an iteration for a better
guess of the nearest neighbour given the distance of the current guess from

150 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

Algorithm 6.7. Non-recursive traversal

Seek(Node∗ pa, Node∗ a, K k, K hi, K lo)
1 cD := (a·k[pa·i] < pa·c) ? L : R;
2 while Ptr(a)·lt 6= null do
3 pa := Ptr(a); cD := Dir(pa, k);
4 a := Child(pa, cD);
5 if cD = L then hi[pa·i] := pa·c;
6 else lo[pa·i] := pa·c;

7 return 〈pa, a〉;

NextGuess(Node∗ pa, Node∗ a, double dst, K k, K hi, K lo)
8 cD := (a·k[pa·i] < pa·c) ? L : R;
9 leafKey := a·k;

10 while pa 6= root do
11 if cD = L then ntVsted := (pa·c≥hi[pa·i]);
12 else ntVsted := (pa·c≤lo[pa·i]);
13 if |pa·c− k[pa·i]| < dst and ntVsted then
14 cD := (cD = L ? R : L); a := Child(pa, cD);
15 Seek(pa·ref, a·ref, cD·ref, k, hi)lo;
16 leafKey := a·k;
17 if (leafdst := ||k, leafKey||2) < dst then
18 if !IsMark(a) then
19 dst := leafdst; break;

20 else
21 a := pa; pa := Pr(pa); cD := Dir(pa, leafKey);
22 if cD = L then
23 if pa·c > hi[pa·i] then hi[pa·i] := pa·c;
24 else
25 if pa·c < lo[pa·i] then lo[pa·i] := pa·c;

26 return 〈pa, a〉;

6.3. LockFree-kD-tree: Implementation 151

the target point. We input the pointers to the current leaf-node and its parent
along with the AABB described by its two corners. The first step is to find the
direction of the current sub-tree and then decide whether the other sub-tree of
the parent is visited or not, see lines 8, 11 and 12.

In essence, we check whether the axis-orthogonal hyperplane associated
with the parent node is beyond the AABB. Having done that, we check whether
the unvisited AABB on the other side of the hyperplane should be visited by
checking its distance from the target point and comparing it with the current
distance as input, see line 13. Now, if we need to visit the other sub-tree, the
method Seek is called to perform the query and update AABB, line 15, else
we traverse back to root. When we traverse back to root, the AABB is widened
to cover both sub-tree rooted at an internal node, see lines 23 and 25.

Thus, the method Collect repeatedly calls NextGuess to perform an
iterative scan of the LFkD-tree, see line 17 in Algorithm 6.5.

(E) Relaxation in Consistency Requirements

Algorithm 6.8. Relaxed NNSEARCH operations in LFkD-tree

NNSEARCHRELAXED(K k)
1 pa := root·ref; a := pa·lt; hi := {∞0}d; lo := {−∞0}d;
2 〈pa, a〉 := Seek(pa, a, k, hi, lo);
3 dst := IsMark(a) ?∞ : ||k, a·k||2;
4 if dst 6= 0 then
5 while pa 6= Ptr(root) do
6 〈pa, a〉 := NextGuess(pa, a, dst, k, hi, lo);

7 return a;

Practitioners prefer better throughput at the cost of exact solution in various
applications that require a nearest neighbour search, which is commonly known
as approximate-NN (ANN). Generally, in a hierarchical multidimensional data
structure like kD-tree, ANN algorithms relax the pruning criterion so that an
NNSEARCH operation visits lesser number of subsets and thereby it speeds up
the performance. Implementing ANN in a concurrent hierarchical multidimen-
sional data structure may not directly impact the design-complexity as long as
we follow the same consistency framework. However, in the spirit of getting
better throughput at the cost of exact solution, we can certainly explore the re-
laxation in consistency requirements of an NNS operation.

152 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

Suppose that we do not make an ADD or a CONTAINS operation report its
output to a concurrent NNSEARCH and each NNSEARCH progresses in obliv-
ion to any concurrent NNSEARCH. Considering a point of reference local to
a thread, an NNSEARCH outputs the nearest neighbour that it discovers with
a certainty that there was no operation performed by the thread itself that can
alter the result. Clearly, this relaxed arrangement satisfies the requirements of
sequential consistency [31]. The operation NNSEARCHRELAXED, described
in Algorithm 6.8, implements a sequentially consistent version of NNSEARCH.
We shall utilize its experimental performance to empirically evaluate the over-
head of linearizability with respect to NNSEARCH.

6.4 Correctness and Lock-freedom
In section (A), we discussed the arguments that determine linearization steps
of NNSEARCH operations when target points are coincident. We also stated
in section (C) that the linearization point of an NNSEARCH operation remains
unchanged even if the target points of the concurrent NNSEARCH operations
do not coincide. Here we list out the linearization points of the operations as
the following:

Definition 6.1 (Linearization points:). 1. For a successful ADD operation,
it is at line 44 or line 46 in the method ChCAS, which is called at line 33
in the method AddNode and which in turn was called by ADD.

2. For a successful REMOVE operation, it is at line 44 or line 46 in the
method ChCAS, which is called at line 19 in REMOVE.

3. For an unsuccessful ADD and a successful CONTAINS operation it is at
line 4 in the method Search called from these operations.

4. For an unsuccessful CONTAINS and REMOVE operation, it can be either
just after the linearization point of a concurrent REMOVE operation or
at the invocation point of these operations.

5. For a NNSEARCH operation, if it returns a data-point which was con-
tained in a collected-neighbour, the linearization point is at line 3 in al-
gorithm 6.7 in the method Seek called from the NNSEARCH.

6. For a NNSEARCH operation, if it returns a data-point which was con-
tained in a reported-neighbour, the linearization point is just after the
linearization point of either CONTAINS or ADD that reported the neigh-
bour.

6.4. Correctness and Lock-freedom 153

It is easy to observe in the pseudo-codes presented in the chapter that these
linearization points are in between ti(op) and tr(op) for an operation op∈O,
where O={ADD,REMOVE,CONTAINS,NNSEARCH}.

Now with that, given any concurrent execution history H of an implemen-
tation IO, where O⊆{ADD,REMOVE,CONTAINS,NNSEARCH}, we form an
equivalent sequential history S by following the steps as described above. And
thus it remains to be shown that such a sequential history will be consistent.

To do that, we essentially show that the invariants of the LFkD-tree, as
stated in the section 6.2.1 are maintained, and the sequential specifications as
described in the section 6.2.2, are satisfied by the consistent operations. Be-
cause the implementation of the lock-free list of neighbour-collectors is orthog-
onal to the implementation of the LFkD-tree, we also need to show that the
invariants of the list, as stated in the section 6.3.3(C), are maintained by the
NNSEARCH operations. Therefore, first we state the invariants and present
some observations and lemmas which help us in that process.

Given a LFkD-tree Υ, let Nd(i, c) be an internal-node and Nd({ki}di=1) be
a leaf node. Υ maintains the following invariants:

Invariant 6.1. A node Nd({ki}di=1) belongs to the left subtree, if ki<c.

Invariant 6.2. A node Nd({ki}di=1) belongs to the right subtree, if ki≥c.

Invariant 6.3. A node Nd({ki}di=1) belongs to the right subtree, if ki≥c.

A LFkD-tree state Υt that satisfies the invariants 6.1 to 6.3 is called a valid
state. Now, for the list of the neighbour-collectors, we denote a neighbour-
collector by NC({ki}di=1) if the target point that it contains is {ki}di=1. A
neighbour-collector list maintains following invariant:

Invariant 6.4. In the list there can not be two neighbour-collectors NC({ki}di=1)
and NC({ji}di=1) such that ki = ji ∀ i : 1≤i≤d.

To prove that the above invariants are maintained throughout the algorithms,
we present following observations and lemmas.

Observation 6.1. The fields k and i are never changed in a Node.

Observation 6.2. Any link in a LFkD-tree is updated only using a CAS.

Observation 6.3. The sentinel nodes are never removed.

Observation 6.4. The pr pointer of the node root is never dereferenced.

154 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

Going through the pseudo-code we can observe that once we allocate a
node, we never call any store step on the fields k and i and any pointer up-
date is done using a CAS. The choice of keys in the sentinel nodes verifies the
third observation. The pr pointer of an internal node is dereferenced only if a
REMOVE operation on any of its children is called. Thus the observation 6.3,
implies the observation 6.4.

Lemma 6.1. In each call of Dir, line 1, variable Nd(i,c)·ref represents a
pointer which is clean and points to an internal-node and thus is not null.

Lemma 6.2. In each call of Child, line 2, pa is clean and points to an
internal-node and thus is not null.

Lemma 6.3. In each call of ChCAS, line 43 to 47, pa is clean and points to
an internal-node, whereas new is clean and points to a leaf-node; thus pa and
a are both not null.

Lemma 6.4. In each call of Search, line 3, pa is clean and points to an
internal-node, whereas a is clean and points to a node (internal or leaf); thus
both are not null.

Lemma 6.5. In each call of Search, line 3, pa and a satisfy a = pa·lt | pa·rt.

Lemma 6.6. In each call of HelpMrk, line 7, pa is clean and points to an
internal-node, whereas a is clean and points to a leaf-node; thus both are not
null.

Lemma 6.7. In each call of HelpFlg, line 34, ga and pa are clean and
point to two different internal-nodes, whereas sa is either points to a leaf-node
and thus are not null.

Lemma 6.8. In each call of HelpTag, line 11, ga is clean and points to an
internal-nodes, whereas pl is either ltag or rtag and points to an internal-
node and thus are not null.

Lemma 6.9. In each call of ApndTag, line 13, pa and a are clean. pa points
to an internal-nodes, whereas a points to a leaf-node and thus both are not null.

Lemma 6.10. In each call of ApndTag, line 27, pa is clean and points to
an internal-node and thus is not null.

Lemma 6.11. A pointer once injected with a descriptor mark, flag, ltag
or rtag is not injected with any descriptor ever after.

6.4. Correctness and Lock-freedom 155

The lemma 6.1 to 6.10 provide a base to prove that at no point an implemen-
tation of the presented algorithm faces a segmentation fault due to the derefer-
encing of a null pointer during the operations ADD, REMOVE and CONTAINS.
To prove these lemmas we inspect the pseudo-code in the Algorithms 6.2 and 6.3.
At each call of the utility methods we find that the inputs to the utility methods
follow the requirements of these lemmas. A listing of the lines of the pseudo-
code containing call of these methods verifies this claim. The statements of this
set of lemmas is what we need to prove the next set of lemmas which provides
the verified base for postconditions of the LFkD-tree operations.

Lemma 6.12. At the termination of Search at line 5,

(a) pa points to an internal-node and is clean.

(b) a points to a leaf-node and can be either clean or mark or flag.

(c) pa and a satisfy a = pa·lt | pa·rt.

(d) a·k[pa·i] ≥ pa·c =⇒ a = pa·rt.

(e) a·k[pa·i] < pa·c =⇒ a = pa·lt.

Following from the lemmas 6.4 and 6.5, the while loop ensures that the
variable a always points to one of the child-pointers of the node pointed by pa;
this ensures the validity of the lemma 6.12 (a), (b) and (c).

Now, Following the lemma 6.11 shows that the CAS steps are performed
orderly in a REMOVE operation. It is easy to verify that if the CAS steps are
orderly in a REMOVE operation, it does not result into the malformation of the
LFkD-tree. Also, for an ADD operation, because the single CAS that it requires
can not happen over a link with descriptor.

Now, the keys in the sentinel nodes vacuously prove the following lemma 6.13,
which provides base condition for an induction to prove the theorem 6.1.

Lemma 6.13. Initially, the LFkD-tree consisting of the sentinel nodes satisfies
the invariants as stated in section 6.2.1.

Now we are prepared to prove theorem 6.1. We use induction to prove it.
Using lemma 6.13, when no update has happened, the nodes in the LFkD-tree
satisfy the invariants. It is straightforward to observe that no CONTAINS or
NNSEARCH operation involves a write (CAS) step and therefore they do not
change the state of the LFkD-tree. From lemma 6.12, at the end of every call to
Search, which satisfies the symmetric order of the LFkD-tree, a CAS to ADD
does not violate the invariant 6.1 to 6.3. For a REMOVE operation, after the

156 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

CAS to logically removing the node i.e. mark CAS, the order of CAS do not
let any update operation let the node reappear in the LFkD-tree following the
lemma 6.11.

Thus if the state of the LFkD-tree was consistent before the application of
an update operation, it remains so after its linearization. Using induction the
theorem 6.1 follows.

Theorem 6.1. At any time t ≥ 0 the LFkD-tree state Υt is a valid state.

Now considering the neighbour-collector-list, its semantics are absolutely
same as those of Harris’s lock-free linked list [46] and which was further im-
proved my Micheal [67]. A very sophisticated proof of the state change and
thus validity of the list algorithm was provided by Micheal [67]. The invariant
maintained our list, invariant 6.4, can be proved along the same lines and we
skip the detail here. Now, we prove the linearizability of the implementation
IM as given below.

Theorem 6.2. (Correctness) The operations ADD, REMOVE, CONTAINS and
NNSEARCH are linearizable.

Proof. We show that a sequential history S obtained by following the steps: (a)
in an arbitrary historyH append appropriate response (in any arbitrary order) of
all the operations which have performed their linearization steps as defined in
definition 6.1 to obtain ext(H), (b) drop the invocation steps without a matching
response to obtain complete(ext(H)), and (c) construct S by arranging the
invocation-response pair of operations according to their linearization points, is
consistent.

Let Sn be a sub-history of S that contains the first n complete operations.
Let An be the dataset which was added to the LFkD-tree by the successful ADD
operations in Sn. Let Bn be the dataset which was removed from the LFkD-
tree by the successful REMOVE operations in Sn. Let Cn = An/Bn. We use
(strong) induction on n to show that Sn is consistent ∀ n≥1.

Suppose that Sn is consistent ∀ n : 1≤n≤i. Let the (i+ 1)th operation in
Sn be op(k), where k∈Rd. Then for Si+1 we prove the following:

1. Let op(k) be an ADD operation.

(a) Let op(k) returns true. We show that if op1(k) is an ADD opera-
tion such that op1(k) −−−→

Si+1

op(k) and op1(k) returns true then ∃

a REMOVE operation op2(k) such that op1(k) −−−→
Si+1

op2(k) −−−→
Si+1

op(k) and op2(k) returns true.

6.4. Correctness and Lock-freedom 157

Suppose there does not exist such a REMOVE operation. Now, fol-
lowing lemma 6.12, at the termination of Search, line 4 in the
Algorithm 6.2, pa;a is a leaf-node pointer. Now using the con-
struction of Si and definition 6.1-(1), at the linearization of op, it
performed a successful CAS at the link pa;a which must have been
clean. Using the same argument op1 also performed a successful
CAS at the link pa;a which must have been clean.
Now because op1 linearized before op, the set of nodes that the
Search called from op, terminates at, by the consistency of Si op
must find k being the key at that leaf-node. Now unless the link
pa;a was already injected with the descriptor mark, op would
not have continued beyond the termination of Search and reading
the descriptor at it and thereby returning false. Therefore, there
must have been a REMOVE operation which marked the link pa;a
before op read and thus it had the linearization point before that of
op. This is a contradiction.

(b) Let op(k) returns false. We show that ∃ an ADD operation op1(k),
which returns true, such that op1(k) −−−→

Si+1

op(k) and @ a RE-

MOVE operation op2(k), which returns true, such that op1(k) −−−→
Si+1

op2(k) −−−→
Si+1

op(k).

Suppose the contrary. Then at the termination of Search, line 4
in the Algorithm 6.2, by definition 6.1-(3) the link pa;a is clean
and a·k = k. But, following (a) as above and the consistency of Si,
there must exist an op1(k) in Si which returns true and that does
not precede an op2(k) which returns true- which contradicts our
assumption.

Now, it is easy to see that after the linearization of an ADD operation that
returns true, the node added by it is reachable from root following the
links and thus that node belongs to the LFkD-tree which in turn implies
that k ∈ Ci+1. Thus, combining this fact with (a) and (b) together, the
mapping definition of ADD is satisfied. Thus, ADD is consistent in Si+1.

2. Let op(k) be a REMOVE operation.

(a) Let op(k) returns true. We show that if op1(k) is a REMOVE oper-
ation, which returns true, such that op1(k) −−−→

Si+1

op(k) then ∃ an

ADD operation op2(k), which returns true, such that op1(k) −−−→
Si+1

158 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

op2(k) −−−→
Si+1

op(k).

We use similar argument as given in (1) to prove it.
(b) Let op(k) returns false. We show that one of the following is true:

i. If op1(k) is a REMOVE operation, which returns true, such that
op1(k) −−−→

Si+1

op(k) then @ an ADD operation op2(k), which

returns true, such that op1(k) −−−→
Si+1

op2(k) −−−→
Si+1

op(k).

Suppose the contrary is true. Then, because op1(k) return true,
by the construction of Si+1 and the definition of the lineariza-
tion point definition 6.1-(2), either a leaf-node does not exist
with key k or the link to it is injected with mark. Now if that
is the case and op also returns true, then there must have been
a link to a leaf-node with key k which was clean. But that
was possible only if an ADD existed before op, which added a
leaf-node with key k. This contradicts our claim.

ii. There @ an ADD operation op1(k), which returns true, and
op1(k) −−−→

Si+1

op(k).

We can observe that at the linearization of op(k), the link to the leaf-node
with key k gets injected with mark and thus after that k/∈Cn. Combining
this fact with (a) and (b) satisfies the sequential specification of REMOVE.
Thus, REMOVE is consistent in Si+1.

3. Let op(k) be a CONTAINS operation.

(a) Let op(k) returns true. We show that ∃ an ADD operation op1(k)
such that op1(k) −−−→

Si+1

op(k) and @ a REMOVE operation op2(k)

such that op1(k) −−−→
Si+1

op2(k) −−−→
Si+1

op(k).

The arguments are similar to (1)(b) above.
(b) Let op(k) returns false. We show that one of the following is true:

i. If op1(k) is a REMOVE operation, which returns true, such that
op1(k) −−−→

Si+1

op(k) then @ an ADD operation op2(k), which

returns true, such that op1(k) −−−→
Si+1

op2(k) −−−→
Si+1

op(k).

ii. There @ an ADD operation op1(k), which returns true, and
op1(k) −−−→

Si+1

op(k).

The arguments are similar to (2)(b) above. Combining (3)(a) and
(3)(b), CONTAINS is consistent in Si+1.

6.4. Correctness and Lock-freedom 159

4. Let op(k) be a NNSEARCH operation that returns k∗. We show that
(a) there ∃ op1(k∗) such that op1(k∗) −−−→

Si+1

op(k) and (b) if there ∃

op1(k∗∗), which returns true, where op1 is either ADD or CONTAINS and
||k∗∗, k||2 < ||k∗, k||2 such that op1(k∗∗) −−−→

Si+1

op(k) then there ∃ a

REMOVE operation op2(k∗∗), which returns true, such that op1(k∗∗) −−−→
Si+1

op2(k∗∗) −−−→
Si+1

op(k).

To prove (a), it is easy to see that if such an ADD did not exist preceding
op then at the linearization of op it can not read a leaf-node containing
k∗. Therefore, (a) is true.

Now, for (b), suppose the contrary is true. Thus, if there did not exist
a REMOVE operation op2 then at the linearization of op, which is either
at the termination of the method Seek called by itself or at the termi-
nation of the method Search called by reporting CONTAINS or at the
CAS step performed by a reporting ADD operation, the leaf-node con-
taining k∗∗ must have been connected by a clean link. But then ei-
ther op would have read the clean link to the leaf-node with k∗∗ or the
operation reporting to it would have done the same. Thus the method
Process that is called by NNSEARCH before its return, by virtue of
||k∗∗, k||2 < ||k∗, k||2, would have returned k∗∗ which in turn would
have been returned as the nearest neighbour of k by op. Which is a con-
tradiction. Thus, NNSEARCH is consistent in Si+1.

By (1) to (4), Si+1 is consistent whenever Sn is consistent ∀n : 1≤n≤i. There-
fore, using (strong) induction, Sn is consistent for every positive integer n.

Theorem 6.3. (Lock-freedom) The LFkD-tree operations ADD, REMOVE, CON-
TAINS and NNSEARCH are lock-free and thus the presented algorithm imple-
ments a lock-free LFkD-tree.

Proof. We take the NNSEARCH operation separately because it also involves
the steps related to the lock-free list. By the description of the algorithm, a non-
faulty thread performing a CONTAINS will always return unless its search path
keeps on getting longer forever. If that happens, an infinite number of ADD
operations would have successfully completed adding new nodes making the
implementation lock-free. So, in the context of ADD, REMOVE and CONTAINS,
it will suffice to prove that the modify operations are lock-free.

Suppose that a process p∈P performs a modify operation op on a valid
state of LFkD-tree Υt and takes infinite steps and no other modify operation
completes after that. Now, if no modify operation completes then Υt remains

160 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

unchanged forcing p to retract every time it wants to execute its own modifica-
tion step on Υt. This is possible only if every time p finds the injection point of
op with descriptor mark, flag, ltag or rtag. This implies that a REMOVE
operation is pending. It is trivial to observe in the method ADD that if it gets
obstructed by a concurrent REMOVE, then before retrying after recovery from
failure, it helps the pending REMOVE by executing all the remaining steps of
that. We can also observe that whenever two REMOVE operations obstruct each
other, one finishes before the other. It implies that whenever two modify oper-
ations obstruct each other one finishes before the other and so Υt changes. It is
contrary to our assumption. Hence, by contradiction we show that no non-faulty
process shall remain taking infinite steps if no other non-faulty process makes
progress where the executed operation is either ADD or REMOVE.

Now we consider a NNSEARCH with concurrent ADD, REMOVE or CON-
TAINS operations. We consider the case where concurrent NNSEARCH op-
erations do not necessarily have coinciding target points; this case obviously
covers the case when they do have coinciding target points. We can see that a
REMOVE operation does not have to report to a concurrent NNSEARCH opera-
tion. Moreover, an ADD or a CONTAINS operation to perform a reporting, needs
to first traverse through the unordered list and then possibly perform a CAS if
required to report. Now, unless the number of NNSEARCH operations keep on
increasing infinitely, the total length of the unordered list will be finite and thus
the traversal path for an ADD or a CONTAINS operation to report will be finite.
Now, at each neighbour-collector, where the reporting is required, if a CAS to re-
port fails, that implies that a concurrent CONTAINS or ADD operation succeeds.
Similarly, when a CAS by a NNSEARCH operation fails, it indicates that a CAS
by a concurrent NNSEARCH operation succeeded. Finally, a CAS to add a new
neighbour-collector only indicates that either a new neighbour-collector by a
concurrent NNSEARCH has been successfully added or a NNSEARCH opera-
tion has terminated. In case of a CAS failure to add a new neighbour-collector,
a NNSEARCH operation always helps a concurrent pending NNSEARCH op-
eration before reattempting, in case it finds the link with descriptor mark. It
shows that in all cases at least one non-faulty thread succeeds with respect to
execute a NNSEARCH operation concurrent to any other LFkD-tree operation.
Thus we arrive at the theorem 6.3.

This concludes the proof of the presented algorithm.

6.5. A real-life application 161

6.5 A real-life application

Let us consider a web application that provides support for a real-time dynamic
speed dating. The requirements of this application are as the following:

(a) Users join and leave dynamically.

(b) Users respond to a set of 5 multiple choice questions and based on the
response their profile is created as a 5-tuple. A user is indexed by his/her
profile.

(c) Users query for the most similar matching profile concurrently with pro-
files getting adding and removed.

(d) The application aims to utilize the multiple cores of a commonly available
shared memory machine to get speed-up.

(e) In the fully asynchronous setting of the application, the concurrent oper-
ations must return consistent result. Additionally, progress guarantee is
desired, that is, if multiple concurrent threads are assigned to the tasks of
add, remove and similarity match queries by users, the application should
tolerate any number of individual threads getting faulty.

We face many similar instances in our day-to-day experience with web
based software. Given a 5-tuple a={ai}5i=1 representing the profile of a user
querying similarity match, the problem here is to find the profile of a user, rep-
resented by b={bi}5i=1, such that d(a, b)≤d(a, k) ∀ k={ki}5i=1, where d() is a
real-valued metric and k represents a 5-tuple corresponding to an active user.
The problem becomes challenging for the dynamic nature of the application.
Furthermore, desiring speed-up along with consistency and progress guarantee
broadens the challenge.

Although the above problem statement is hypothetical but to our surprise we
found that the sequential kD-tree used for throughput comparison in this work
is perhaps being used in a similar web application as mentioned here http:
//home.wlu.edu/~levys/software/kd/. This clearly motivates our
work which can most certainly speed up such an application with a provable
progress guarantee.

http://home.wlu.edu/~levys/software/kd/
http://home.wlu.edu/~levys/software/kd/

162 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

6.6 Experimental Evaluation

6.6.1 Experimental Setup

We implemented the LFkD-tree algorithm in Java using RTTI. We used the
library objects AtomicReferenceFieldUpdater to perform CAS. The
test environment comprised a dual-socket server with a 2.0GHz Intel (R) Xeon
(R) E5-2650 with 8 physical cores each (32 hardware threads in total with
hyper-threading enabled). The server has 64 GB of RAM, runs Ubuntu 13.04
Linux (Kernel version: 3.8.0-35-generic x86_64) with Java HotSpot (TM) 64-
Bit Server VM (build 25.60-b23), and we compiled all the implementations
with javac version 1.8.0_60.

1. Levy-Kd: An implementation of kD-tree of [68] by Levy [63] that sup-
ports REMOVE operations (we could not find any other Java implementa-
tion of a kD-tree with REMOVE).

2. LFKD: Our implementation of the LFkD-tree with NNSEARCH.

3. LFKD(SC): Our implementation of the LFkD-tree with NNSEARCHRE-
LAXED.

4. PH-tree: A multi-dimensional storage and indexing data structure by
Zäschke et al. [85] that supports REMOVE operations. The implemen-
tation is single-threaded.

We run each test for 5 seconds and measured throughput as the total number
of operations per microsecond executed by all threads in this time duration. We
run each experiment in a separate instance of the JVM, starting off with a 2-
second “warm-up” period to allow the Java HotSpot compiler to initialize and
optimize the running code. During this warm-up phase, we performed random
Add, Remove and Contains operations, and then flushed the tree at the end of
the period. At the start of each execution, the data structure is pre-filled with a
set of keys in the selected key-range.

To simulate the variation in contention and tree structure, we chose fol-
lowing combination of workload configurations: i) dataset space dimension ∈
{2, 3, 4, 5}, ii) number of key entries ∈

{
{0-106}, {0-107}

}
, iii) distribution of

(ADD-REMOVE-NNSEARCH) ∈ {(05, 05, 90), (25, 25, 50), (50, 50, 00)}, and
iv) number of threads ∈ {1, 2, 4, 8, 16, 32}.

We did not include CONTAINS operations in experiment because essentially
it would increase the proportion of exact-match NNSEARCH. All executions

6.6. Experimental Evaluation 163

use the same set of randomly generated points for the selected workload char-
acteristics. The graphs present average of throughput over 6 runs of each exper-
iment.

6.6.2 Datasets
We performed evaluation using a 2D real-world dataset and a set of synthetic
benchmarks. For the real-world dataset, we used the United States Census Bu-
reau 2010 TIGER/Line KML [21] dataset that consists of polylines describing
map features of the United States of America. TIGER/Line is a standard dataset
used for benchmarking spatial databases. For this evaluation, we extracted
points representing the mainland, resulting in 18.4 ∗ 106 unique 2-dimensional
points, with x-y coordinates that lie between -124.85 6 x 6 -66.89 and 24.40
6 y 6 49.38 (ignoring the third dimension with all points 0.0).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X

Y

SKEWED (1)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X

Y

SKEWED (3)

Fig. 6.3: Synthetic datasets: SKEWED(1) and SKEWED(3).

To investigate more extreme cases, two synthetic datasets were utilized.
The SKEWED data simulates datasets in which different dimensions may have
varying distributions. The SKEWED (c) dataset contains uniformly distributed
points which fall within 0.0 and 1.0 in every dimension that have been skewed
in the y-dimension. For each point in the dataset, the y value is replaced with
the value yc. In the Figure 6.3(a), we show examples for SKEWED(1) which is
intuitively uniform distribution in all dimensions. SKEWED (3) and SKEWED
(6) are shown in the Figure 6.3(b) and Figure 6.4(a), respectively .

The CLUSTER dataset [85] is an extension of a synthetic dataset previously
described by Arge et al. [6]. In this evaluation we used clusters of 1000 points

164 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X

Y
SKEWED (6)

0.00 0.25 0.50 0.75 1.00

X

Y

CLUSTER

Fig. 6.4: Synthetic datasets: SKEWED(6) and CLUSTER.

evenly spaced on a horizontal line. Each of the clusters is filled with evenly dis-
tributed points and stretches 0.00001 in every dimension. Figure 6.4(b) depicts
an example of the CLUSTER dataset with 49 points per cluster. The line of
clusters falls within (0.0, 1.0) along the x-axis and is parallel to every other di-
mensional axis with a 0.5 offset. For this dataset, we generated up to 50,000,000
unique points.

6.6.3 Observations and Discussion
The Figures 6.5, 6.6 and 6.7 show the performance of the implementations for
TIGER/Line, SKEWED and CLUSTER datasets respectively. In Figure 6.6
and 6.7, each row represents a combination of the range of key (k=N, N being
the maximum) and the associated workload distribution while each column the
dimensionality of key (d=dimension).

In all of them, LFKD and LFKD(SC) have higher performance compared to
both the PH-tree and the Levy-Kd, even in single thread cases, for all workload
distributions. The performance significantly scales up with increasing thread
count. This shows that our implementation is both lightweight and scalable. As
we increase the key dimension, the performance degrades for workloads domi-
nated by the NNSEARCH. This degradation with increasing key dimensions is
expected in kD-trees due to the curse of dimensionality [80]. This performance
pattern is identical for different key ranges. However, the LFKD still achieve
speed-up over the single threaded implementations.

We further observe that, as expected, LFKD(SC) outperforms LFKD in

6.6. Experimental Evaluation 165

0

1

2

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Threads (2
x
)

T
h
ro

u
g
h
p
u
t
(o

p
s
/µ

s
)

LFKD LFKD(SC NNS) Levy Kd Ph tree

Fig. 6.5: Performance on the 2-D TIGER/Line dataset.

NNSEARCH dominated workload, however, the gap reduces with increasing
dimensionality of the data set that brings the increased load of BFS traversal.
This can be explained in terms of additional step complexity in account of re-
porting and maintaining the augmented lock-free list for linearizability. More
importantly, it provides a significant exposition of NNSEARCH vis-a-vis consis-
tency framework of a concurrent implementation: the overhead of linearizabil-
ity, which is visible in a low dimension, gets subsumed by the cost of iterative
scan, which visits almost every node of the kD-tree as the dimension increases.

For the TIGER/Line dataset, in a single thread case, both LFKD and LFKD(SC)
perform at least 2.5× better than Levy-Kd, and, it goes up to 19× in the NNSEARCH
dominated workload. Additionally, the PH-tree outperforms the Levy-Kd only
for workloads that do not involve NNSEARCH (00% NNSEARCH, 50% ADD
and 50% REMOVE).

We observe that for NNSEARCH dominated workload (90% NNSEARCH,
5% ADD and 5% REMOVE), the LFKD(SC) achieves speed-ups up to 66× for
SKEWED and up to 150× for CLUSTER datasets over the sequential imple-
mentations. These observations can be partially attributed to the local-midpoint
rule, which carries the essence of the sliding-midpoint-splitting rule of [70] that
targets the extreme cases such as a CLUSTER dataset, to a concurrent setting.

For a mixed workload (50% NNSEARCH, 25% ADD and 25% REMOVE),
the performance of LFkD-tree degrades by increasing key dimension. The ab-
solute throughput figures are higher for the NNSEARCH dominated workload
in lower dimensions than in mixed workloads. This is because the modify op-
erations incur higher synchronization (conflicts, expensive atomic operations,
and helping) overhead. However in higher dimensions, the throughput of the
NNSEARCH is lower as the number of visited nodes increases tremendously

166 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

d = 2 d = 3 d = 4 d = 5

0

1

2

3

0

1

2

1

2

0

1

2

0

1

2

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Threads (2
x
)

T
h
ro

u
g
h
p
u
t
(o

p
s
/µ

s
)

LFKD LFKD(SC d Ph tree

Fig. 6.6: Performance on the SKEWED(6) dataset.

6.6. Experimental Evaluation 167

T
h
ro

u
g
h
p
u
t
(o

p
s
/µ

s
)

d = 2 d = 3 d = 4 d = 5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

2.5

k
=

1
0

6
k
=

1
0

6
k
=

1
0

6
k
=

1
0

7
k
=

1
0

7
k
=

1
0

7

0
5

0
5

9
0

2
5

2
5

5
0

5
0

5
0

0
0

0
5

0
5

9
0

2
5

2
5

5
0

5
0

5
0

0
0

1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Threads (2
x
)

LFKD(SC Ph tree

Fig. 6.7: Performance on the CLUSTER dataset.

168 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

d = 2 d = 3 d = 4 d = 5

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0
5

0
5

9
0

2
5

2
5

5
0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Number of threads (2
x
)

T
ro

u
g

h
p

u
t(

o
p

s
/µ

s
)

LFKD(1)

LFKD(6)

Levy Kd(1)

Levy Kd(6)

Ph tree(1)

Ph tree(6)

Fig. 6.8: System throughput for SKEWED(1) and SKEWED(6) datasets

05−05−90 25−25−50

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

k=
5e+

05
k=

5e+
06

2 3 4 5 2 3 4 5
Key Dimension

Tr
ou

gh
pu

t(
op

s/
µs

)

Levy−Kd(1) Levy−Kd(6)

Fig. 6.9: System throughput for Levy-kd.

6.6. Experimental Evaluation 169

with dimension.
We also observed that the skewness of data does not affect the performance

of the LFKD, see the Figure 6.8. On the contrary, as depicted in the Figure 6.9
the throughput performance for the Levy-Kd drops as we increase the skewness
of the data. The observed different behaviour can be attributed mainly to the
local-midpoint splitting rule in the concurrent setting.

Chapter Summary

For a large number of applications, which require a multidimensional data
structure supporting dynamic modifications along with nearest neighbour search,
research community has largely focused on improving the design of sequen-
tial data structures. Parallel implementations of the sequential designs focus
on speeding up the loading of the data and then NNS on a fully loaded data
structure. Thus, they do not address the issue of dynamic modifications in the
datasets. On the other hand, the concurrent data structure research is primarily
confined to one-dimensional problems.

Our work is the first to extend the concurrent data structures to problems
covering multidimensional datasets. We introduced LFkD-tree, a lock-free de-
sign of kD-tree, which supports linearizable nearest neighbour search oper-
ations with concurrent dynamic addition and removal of data. We provided
a sample implementation which shows that the LFkD-tree algorithm is highly
scalable.

Our method to implement linearizable nearest neighbour search is generic
and can be adapted to other multidimensional data structures. We plan to de-
sign lock-free data structures which are suitable for nearest neighbour search
in high dimensions, for example, the ball-tree [64]. We also plan to extend our
work to k-nearest neighbour (kNN) search.

170 6. Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree

Part V

CONCLUSION

7

GENERAL CONCLUSIONS
AND DISCUSSION

Chapter Abstract

In this final chapter, we discuss the goals and the achievements of this Ph.D.
work. Moreover, we present some possible future directions to which this work
can be extended.

7.1 Goals and the main findings

The goal of this Ph.D. work was to explore the following research directions:

1. Design and analysis of efficient concurrent data structures, in particular,
the non-blocking algorithms that provide progress guarantee.

2. Scalable implementation of the concurrent data structure algorithms.

3. Design optimization of the lock-free algorithms.

4. Exploring the adaptability of the concurrent data structures to heteroge-
neous computing platforms such as GPUs.

When we started, the state of the art in the non-blocking concurrent data
structures were mainly lock-free queues, dequeue, linked-list, and skip-list. We
realized that the efficient non-blocking data structure for search problems could
be a significant contribution of our research. In pursuit of the same, this thesis
contributes the following:

1. We presented efficient algorithms for lock-free linearizable point search
in one-dimensional datasets [26]. We presented novel lock-free algo-
rithms for linked-lists and BSTs [24] that competed well the existing state
of the art.

173

174 7. General Conclusions and Discussion

2. We presented a novel lock-free linearizable range search algorithm for
one-dimensional datasets [23]. The range search algorithm is generic,
that is, any data structure that supports predecessor query can seamlessly
adopt the presented methodology. The previously existing solutions for
lock-free linearizable range search were tightly associated with the data
structure, in this case, k-ary search trees.

3. Our algorithms for lock-free linked-lists and BSTs [26] improve on the
existing similar algorithms in the following way:

(a) Our algorithms are language portable, that is, they do not use language-
specific constructs for an implementation. Specifically, this method-
ology demonstrates that a fully object-oriented design of a lock-free
data structure that does not utilize any pointer manipulation, which
is typically suitable for an implementation in Java, is equally com-
petitive in C/C++.

(b) The presented algorithms take the optimization of step complex-
ity as a very important aspect of the design. In that direction, we
present the notion of help-optimality that captures the wastage of
costly CAS execution steps. Thereby, minimizing such wastage
makes an algorithm more efficient.

4. We presented the first complete design for a lock-free kD-tree [25]. Our
lock-free algorithm for a linearizable nearest neighbour search is the first
in its category. Further, the nearest neighbour search algorithm for the
multidimensional datasets is independent of the underlying data structure.
To the best of our knowledge, ours is the first algorithm for a lock-free
multi-dimensional data structure. Given that the application of multidi-
mensional search is at the center of many contemporary applications, our
work attempts to align scalable lock-free concurrent data structures with
the contemporary computers.

In addition to the above contributions, we explored the adaptability of concur-
rent data structures to GPUs, which we did not include in this thesis to keep its
theme focused on the lock-free search data structures. An interested reader may
refer to the paper VI listed in the Contents and Publications [19]. This work
was the first that implemented any concurrent data structure on the GPUs.

7.2. Further direction 175

7.2 Further direction
The research work presented in this thesis can be carried forward in a number
of interesting directions.

1. The lock-free linearizable range search algorithm for one-dimensional
datasets can naturally be extended to the multidimensional datasets. To-
wards that, we aim to explore an efficient lock-free design of data struc-
tures like R-tree with range search. Another work in the same direction
will be to design a lock-free version of the multidimensional hash table.

2. Traditionally, the trade-off between an approximate solution and the per-
formance of a search problem has attracted intense attention of the re-
search community. On that point, the trade-off between consistency frame-
works (linearizability, sequential consistency, etc.) and approximate so-
lution is an interesting issue to explore.

3. From an implementation point of view, implementing our language-portable
lock-free design in a high-level programming language such as Go is an
interesting future work. Go is a programming language that provides
pointers without pointer arithmetic and has a restricted object inheritance
support.

4. The complexity analysis of concurrent non-blocking data structures defi-
nitely entails efficient methodologies. Instead of translating the methods
applied in sequential data structures, an entirely new and innovative ap-
proach, which keeps the main focus on concurrency, can be an important
future work. The literature of the lower bound analysis of sequential
search data structures is vast. At the same time, in wait-free data struc-
tures, where every operation finishes in a finite number of steps, there are
works in literature to compute lower bounds. Mostly the lower bound
computation in such wait-free data structures assumes that the dataset is
finite. For example, see [59]. With that assumption, even in lock-free
data structures, computation of lower bound can be largely simplified.
We plan to work on lower bound of the lock-free search algorithms.

7.3 Some reflections
Today’s computing systems are very different from the ones that existed just
a decade ago. Multi-core CPUs are commonplace and heterogeneous systems
have replaced usual workstations. Processing is fast migrating to big distributed

176 7. General Conclusions and Discussion

systems that are the constellations of commodity multi-core computers. Simul-
taneously, data is getting generated by an ever-increasing number of intercon-
nected devices at a pace that was previously unimagined. Applications are con-
stantly in a rush to get information out of the data, which obviously happens by
way of a variety of real-time search queries. Even in big distributed systems,
with “big data” platforms running on them, the real-time information process-
ing takes place in main-memory data structures.

When we started this Ph.D. work, the above-mentioned scenario was fast
evolving. Unlike today, when every smart-phone is equipped with a GPU, high-
end GPUs were costly and mainly found in the workstations. At such a time my
contribution to the research project “Software Abstractions for Heterogeneous
Computers (SCHEME)” was envisaged as a library of concurrent data structures
for multi-core CPUs as well as many-core GPUs. We started with implementing
existing concurrent queue algorithms on GPUs and had a quick publication [19]
too. However, soon we realized that designing new efficient concurrent data
structures entailed a much greater significance and implementation on GPUs
could follow. Thus, given the demand for efficient real-time search problems
we soon converged at a collective and focused study of lock-free search data
structures.

While writing this thesis after five long years, I am definitely satisfied with
the detailed study presented in this work. The new lock-free data structures for
point search and range search in one-dimensional data and nearest neighbour
search in multi-dimensional data take steps in the pursuit of our envisioned
research goals. I wish I could have contributed more to this exciting area of
research. I am surely interested to continue this work in the areas mentioned
as the future directions above and in many more upcoming computer science
research domains in the time to come.

7

BIBLIOGRAPHY

[1] M AdelsonVelskii and E. M. Landis. An algorithm for the organization
of information. Technical report, DTIC Document, 1963.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic
snapshots of shared memory. Journal of the ACM (JACM), 40(4):873–
890, 1993.

[3] Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive collect with ap-
plications. In 40th Annual Symposium on Foundations of Computer Sci-
ence, pages 262–272. IEEE, 1999.

[4] A. V. Aho and J. E. Hopcroft. The design and analysis of computer algo-
rithms. Pearson Education India, 1974.

[5] R. Alur and G. Taubenfeld. Results about fast mutual exclusion. In Real-
Time Systems Symposium, 1992, pages 12–21. IEEE, 1992.

[6] L. Arge, M. D. Berg, H. Haverkort, and K. Yi. The priority r-tree: a prac-
tically efficient and worst-case optimal r-tree. ACM Trans. Algorithms,
4(1):9:1–9:30, 2008. ISSN: 1549-6325.

[7] S. Arya and H.-Y. A. Fu. Expected-case complexity of approximate near-
est neighbor searching. SIAM Journal on Computing, 32(3):793–815,
2003.

[8] H. Attiya and A. Fouren. Algorithms adapting to point contention. Jour-
nal of the ACM, 50(4):444–468, 2003.

[9] H. Attiya, R. Guerraoui, and E. Ruppert. Partial snapshot objects. In Pro-
ceedings of the 20thannual symposium on Parallelism in algorithms and
architectures, pages 336–343. ACM, 2008.

177

178 BIBLIOGRAPHY

[10] H. Avni, N. Shavit, and A. Suissa. Leaplist: lessons learned in designing
tm-supported range queries. In Proceedings of the 32nd ACM symposium
on Principles of distributed computing, pages 299–308. ACM, 2013.

[11] G. Barnes. A method for implementing lock-free shared-data structures.
In Proceedings of the fifth annual ACM symposium on Parallel algo-
rithms and architectures, pages 261–270. ACM, 1993.

[12] D. Basin, E. Bortnikov, A. Braginsky, G. Golan-Gueta, E. Hillel, I. Kei-
dar, and M. Sulamy. Kiwi: a key-value map for scalable real-time analyt-
ics. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 357–369. ACM, 2017.

[13] R. Bayer and E. McCreight. Organization and maintenance of large or-
dered indexes. In Software pioneers, pages 245–262. Springer, 2002.

[14] J. L. Bentley. Multidimensional binary search trees used for associative
searching. CACM, 18(9):509–517, 1975.

[15] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical concur-
rent binary search tree. In ACM Sigplan Notices, volume 45 of number 5,
pages 257–268. ACM, 2010.

[16] T. Brown and H. Avni. Range queries in non-blocking k-ary search trees.
In 16th International Conference On Principles Of Distributed Systems,
pages 31–45. Springer, 2012.

[17] T. Brown, F. Ellen, and E. Ruppert. A general technique for non-blocking
trees. In ACM SIGPLAN Notices, volume 49 of number 8, pages 329–
342. ACM, 2014.

[18] D. Cederman, B. Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papa-
triantafilou, and P. Tsigas. A study of the behavior of synchronization
methods in commonly used languages and systems. In 27th IEEE In-
ternational Parallel & Distributed Processing Symposium, pages 1309–
1320, 2013.

[19] D. Cederman, B. Chatterjee, and P. Tsigas. Understanding the perfor-
mance of concurrent data structures on graphics processors. Euro-Par
2012 Parallel Processing:883–894, 2012.

[20] K. Censor-Hillel, E. Petrank, and S. Timnat. Help! In Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing, pages 241–
250. ACM, 2015.

[21] U. Census. Tiger/line dataset. In https://www.census.gov/
geo/maps-data/data/tiger.html, 2017.

https://www.census.gov/geo/maps-data/data/tiger.html
https://www.census.gov/geo/maps-data/data/tiger.html

BIBLIOGRAPHY 179

[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed stor-
age system for structured data. ACM Transactions on Computer Systems
(TOCS), 26(2):4, 2008.

[23] B. Chatterjee. Lock-free linearizable 1-dimensional range queries. In Pro-
ceedings of the 18th International Conference on Distributed Computing
and Networking, page 9. ACM, 2017.

[24] B. Chatterjee, N. Nguyen, and P. Tsigas. Efficient lock-free binary search
trees. In Proceedings of the 2014 ACM Symposium on Principles of Dis-
tributed Computing, PODC ’14, pages 322–331. ACM, 2014.

[25] B. Chatterjee, I. Walulya, and P. Tsigas. Concurrent linearizable nearest
neighbour search in lockfree-kd-tree. In Proceedings of the 19th Inter-
national Conference on Distributed Computing and Networking. ACM,
2018.

[26] B. Chatterjee, I. Walulya, and P. Tsigas. Help-optimal and language-
portable lock-free concurrent data structures. In Parallel Processing (ICPP),
2016 45th International Conference on, pages 360–369. IEEE, 2016.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. MIT press Cambridge, 2001.

[28] T. Crain, V. Gramoli, and M. Raynal. A speculation- friendly binary
search tree. In Proceedings of the 17th ACM PPoPP, pages 161–170,
2012.

[29] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concurrency:
the secret to scaling concurrent search data structures. In ACM SIGARCH
Computer Architecture News, volume 43 of number 1, pages 631–644.
ACM, 2015.

[30] D. Drachsler, M. Vechev, and E. Yahav. Practical concurrent binary search
trees via logical ordering. In volume 49 of number 8, pages 343–356.
ACM, 2014.

[31] M. Dubois and C. Scheurich. Memory access dependencies in shared-
memory multiprocessors. Software Engineering, IEEE Transactions on,
16(6):660–673, 1990.

[32] F. Ellen, P. Fatourou, J. Helga, and E. Rupert. The amortized complexity
of non-blocking binary search trees. In 33rd ACM Symposium on Princi-
ples of Distributed Computing, pages 332–341, 2014.

180 BIBLIOGRAPHY

[33] F. Ellen, P. Fatourou, E. Ruppert, and F. v. Breugel. Non-blocking bi-
nary search trees. In 29th ACM Symposium on Principles of Distributed
Computing, pages 131–140, 2010.

[34] M. Er. Efficient generation of k-ary trees in natural order. The Computer
Journal, 35(3):306–308, 1992.

[35] M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In
Proceedings of the twenty-third annual ACM symposium on Principles
of distributed computing, pages 50–59. ACM, 2004.

[36] K. Fraser. Practical lock-freedom. PhD thesis, Cambridge University,
Computer Laboratory, 2004.

[37] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding
best matches in logarithmic expected time. Transactions on Mathemati-
cal Software (TOMS), 3(3):209–226, 1977.

[38] S. Ghemawat and P. Menage. Tcmalloc : thread-caching malloc. http:
//goog-perftools.sourceforge.net/doc/tcmalloc.
html, 2017.

[39] J. Gibson and V. Gramoli. Why non-blocking operations should be self-
ish. In Distributed Computing, pages 200–214. Springer, 2015.

[40] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas. Efficient
and reliable lock-free memory reclamation based on reference counting.
IEEE Transactions on Parallel and Distributed Systems, 20(8):1173–
1187, 2009.

[41] M. T. Goodrich and R. Tamassia. Data structures and algorithms in Java.
John Wiley & Sons, 2008.

[42] V. Gramoli. More than you ever wanted to know about synchronization:
synchrobench, measuring the impact of the synchronization on concur-
rent algorithms. 50(8):1–10, 2015.

[43] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced
trees. In Foundations of Computer Science, 1978., 19th Annual Sympo-
sium on, pages 8–21. IEEE, 1978.

[44] A. Guttman. R-trees: a dynamic index structure for spatial searching,
volume 14 of number 2. ACM, 1984.

[45] B. Haeupler, S. Sen, and R. E. Tarjan. Rank-balanced trees. In WADS,
pages 351–362. Springer, 2009.

[46] T. L. Harris. A pragmatic implementation of non-blocking linked-lists.
In Distributed Computing, pages 300–314. Springer, 2001.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

BIBLIOGRAPHY 181

[47] HBase. A distributed database for large datasets. The Apache Software
Foundation, 4(4.2), 2017.

[48] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. S. Iii, and N. Shavit.
A Lazy Concurrent List-Based Set Algorithm. In 9th International Con-
ference On Principles Of Distributed Systems, pages 3–16. 2005.

[49] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross, F. Baskett,
and J. Gill. Mips: a microprocessor architecture. In ACM SIGMICRO
Newsletter, volume 13 of number 4, pages 17–22. IEEE Press, 1982.

[50] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(3):463–492, 1990.

[51] M. Herlihy. Wait-free synchronization. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 13(1):124–149, 1991.

[52] M. Herlihy, V. Luchangco, and M. Moir. Space-and time-adaptive non-
blocking algorithms. Electronic Notes in Theoretical Computer Science,
78:260–280, 2003.

[53] S. V. Howley and J. Jones. A non-blocking internal binary search tree. In
24th ACM Symposium on Parallelism in Algorithms and Architectures,
pages 161–171, 2012.

[54] J. Ichnowski and R. Alterovitz. Scalable multicore motion planning us-
ing lock-free concurrency. Robotics, IEEE Transactions on, 30(5):1123–
1136, 2014.

[55] D. Imbs and M. Raynal. Help when needed, but no more: efficient read/write
partial snapshot. Journal of Parallel and Distributed Computing, 72(1):1–
12, 2012.

[56] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala. Locality-preserving
hashing in multidimensional spaces. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pages 618–625. ACM,
1997.

[57] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of
strong shared memory primitives. In 13th ACM Symposium on Principles
of Distributed Computing, pages 151–160, 1994.

[58] P. Jayanti. An optimal multi-writer snapshot algorithm. In 37th Annual
ACM Symposium on Theory of Computing, pages 723–732, 2005.

[59] S. V. Jayanti and R. E. Tarjan. A randomized concurrent algorithm for
disjoint set union. In Proceedings of the 2016 ACM Symposium on Prin-
ciples of Distributed Computing, pages 75–82. ACM, 2016.

182 BIBLIOGRAPHY

[60] D. E. Knuth. The art of computer programming: sorting and searching,
volume 3. Pearson Education, 1998.

[61] L. Lamport. Proving the correctness of multiprocess programs. IEEE
transactions on software engineering, (2):125–143, 1977.

[62] D. Lea. ConcurrentSkipListMap. In java.util.concurrent,
2017.

[63] S. D. Levy. KDTree. In edu.wlu.cs.levy.CG.KDTree, 2017.

[64] T. Liu, A. W. Moore, and A. Gray. New algorithms for efficient high-
dimensional nonparametric classification. Journal of Machine Learning
Research, 7(Jun):1135–1158, 2006.

[65] J. W. Mauchly. Sorting and collating. Theory and Techniques for Design
of Electronic Digital Computers:271–287, 1946.

[66] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In 15th ACM Symposium on
Principles of Distributed Computing, pages 267–275, 1996.

[67] M. M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In Proceedings of the fourteenth annual ACM symposium
on Parallel algorithms and architectures, pages 73–82. ACM, 2002.

[68] A. W. Moore. Efficient memory-based learning for robot control. Tech-
nical report 209, University of Cambridge, 1991.

[69] G. M. Morton. A computer oriented geodetic data base and a new tech-
nique in file sequencing. International Business Machines Company New
York, 1966.

[70] D. M. Mount and S. Arya. Ann: a library for approximate nearest neigh-
bor searching. http://www.cs.umd.edu/~mount/ANN/, 2017.

[71] A. Natarajan and N. Mittal. Fast concurrent lock-free binary search trees.
In ACM SIGPLAN Notices, volume 49 of number 8, pages 317–328.
ACM, 2014.

[72] N. Nguyen, P. Tsigas, and H. Sundell. Parmarksplit: a parallel mark-split
garbage collector based on a lock-free skip-list. In International Con-
ference on Principles of Distributed Systems, pages 372–387. Springer,
2014.

[73] Oracle. Java.util.concurrent. In https://docs.oracle.com/
javase/8/docs/api/, 2017.

http://www.cs.umd.edu/~mount/ANN/
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/

BIBLIOGRAPHY 183

[74] R. Oshman and N. Shavit. The skiptrie: low-depth concurrent search
without rebalancing. In Proceedings of the 2013 ACM Symposium on
Principles of Distributed Computing, PODC ’13, pages 23–32. ACM,
2013.

[75] A. J. Perlis and C. Thornton. Symbol manipulation by threaded lists.
Communications of the ACM, 3(4):195–204, 1960.

[76] E. Petrank and S. Timnat. Lock-free data-structure iterators. In Distributed
Computing, pages 224–238. Springer, 2013.

[77] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky. Concurrent
tries with efficient non-blocking snapshots. In Acm Sigplan Notices, vol-
ume 47 of number 8, pages 151–160. ACM, 2012.

[78] A. Ramachandran and N. Mittal. A fast lock-free internal binary search
tree. In Proceedings of the 2015 International Conference on Distributed
Computing and Networking, page 37. ACM, 2015.

[79] K. F. Sagonas and K. Winblad. Efficient support for range queries and
range updates using contention adapting search trees. In Languages and
Compilers for Parallel Computing - 28th International Workshop, LCPC
2015, Raleigh, NC, USA, September 9-11, 2015, Revised Selected Pa-
pers, pages 37–53, 2015.

[80] H. Samet. Foundations of multidimensional and metric data structures.
Morgan Kaufmann, 2006.

[81] H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues
for multi-thread systems. Journal of Parallel and Distributed Computing,
65(5):609–627, 2005.

[82] H. Sundell and P. Tsigas. Lock-free and practical doubly linked list-based
deques using single-word compare-and-swap. In 9th International Con-
ference On Principles Of Distributed Systems, pages 240–255. Springer,
2005.

[83] S. Timnat, A. Braginsky, A. Kogan, and E. Petrank. Wait-free linked-
lists. In R. Baldoni, P. Flocchini, and R. Binoy, editors, Principles of
Distributed Systems. Volume 7702, LNCS. Springer Berlin Heidelberg,
2012.

[84] J. D. Valois. Lock-free linked lists using compare-and-swap. In Pro-
ceedings of the fourteenth annual ACM symposium on Principles of dis-
tributed computing, pages 214–222. ACM, 1995.

184 BIBLIOGRAPHY

[85] T. Zäschke, C. Zimmerli, and M. C. Norrie. The ph-tree: a space-efficient
storage structure and multi-dimensional index. In Proceedings of the
2014 ACM SIGMOD international conference on Management of data,
pages 397–408. ACM, 2014.

[86] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construction
on graphics hardware. ACM Transactions on Graphics (TOG), 27(5):126,
2008.

	Abstract
	Dedication
	Acknowledgements
	Contents and Publications
	Part I Introduction
	Introduction
	Search Algorithms
	Introduction to Search
	Search Data Structures

	Concurrent Data Structures
	Synchronization Algorithm
	Concurrent Search Data Structures

	Our Contributions

	System Model and Preliminaries
	System Model
	Correctness and Complexity
	Correctness
	Complexity

	Part II Lock-free 1-dimensional Point Search
	Help-optimal and Language-portable Lock-free Concurrent Data Structures
	Introduction
	Overview
	Related Work

	Help-optimality: Motivation
	Help-optimal Lock-free Linked-list
	Design
	Correctness and Lock-freedom
	Amortized Step Complexity

	Help-optimal Lock-free BST
	Design
	Correctness and Lock-freedom

	Help-optimality: Specification
	Experimental Evaluation
	Experimental Set-up
	Performance Results and Discussion

	Amortized Complexity of Lock-Free Internal Binary Search Tree
	Introduction
	Preliminaries
	Our Algorithm
	Design Fundamentals
	The Lock-free Algorithm

	Correctness and Complexity
	Linearizability
	Lock-Freedom
	Complexity

	Part III Lock-free 1-dimensional Range Search
	Lock-free Linearizable 1-Dimensional Range Queries
	Introduction
	Background
	Related work
	A summary of our work

	The Lock-Free Range Search
	Snap-collector implementation
	Lock-free linearizable range search algorithm
	Range queries in a lock-free binary search tree

	Correctness proof
	Proof

	Experimental Evaluation
	Experimental Setup
	Observations and Discussion

	Part IV Lock-free Multidimensional Point Search
	Concurrent Linearizable Nearest Neighbour Search in LockFree-kD-tree
	Introduction
	Background
	A high-level summary of the work

	LockFree-kD-tree: Basic Design
	Design of the LFkD-tree
	Sequential Behaviour of the ADT Operations

	LockFree-kD-tree: Implementation
	Lock-free Synchronization: Basics
	Linearizable Add, and Contains operations
	Linearizable Nearest Neighbour Search

	Correctness and Lock-freedom
	A real-life application
	Experimental Evaluation
	Experimental Setup
	Datasets
	Observations and Discussion

	Part V Conclusion
	General Conclusions and Discussion
	Goals and the main findings
	Further direction
	Some reflections

