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ABSTRACT 

Drinking water is widely collected from surface water sources. In these water sources, both the 

quantity and quality of natural organic matter (NOM) have been affected around the world 

during the last decades, especially in Northern Europe and North America. This increasing 

NOM and its composition change challenge the drinking water treatment plants (DWTPs) due 

to e.g. increased coagulant demand, and because NOMs constituents act as precursors for 

potentially harmful disinfection by-products. Many DWTPs employing conventional treatment 

are currently struggling to maintain sufficient NOM removal, and are facing significant 

investments to upgrade existing treatment processes.  

In this thesis, a modification strategy to improve NOM removal by existing biological activated 

carbon (BAC) filters was tested. Analytical techniques like dissolved organic carbon, 

spectroscopic methods (absorbance and fluorescence) were used to monitor the performance of 

the modified filters in comparison to reference filters. In the second phase of the study, the 

modification strategy was employed in a different DWTP with different source water and 

coagulation treatment in order to validate the effectiveness of the proposed strategy under 

diverse conditions.  

Results show that replenishment of about 10% activated carbon media with new carbon media 

in BAC filters resulted in improved performance. The modified biofilters showed improved 

organic matter removal lasting for 10-20 days, depending on surface loading. In addition to 

improving the adsorption of humic-like NOM fractions, biological removal by the saturated 

filter media was enhanced. A subsequent validation study showed that improvement of 

biodegradation and adsorption mechanisms occurred in different DWTPs regardless of 

differences in NOM composition and coagulation processes prior to the BAC filters. 

Keywords: Biofiltration, Drinking water treatment, Fluorescence, Granular activated carbon 

filter, Natural organic matter, Online monitoring, Spectroscopic properties. 
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1 Introduction 

This chapter of the thesis states the aim and objectives of the thesis and provides an overview 

of the papers attached. 

Drinking water is an essential part of human health and life. However, around 663 million 

people around the world are without access to potable drinking water (United Nations 2017). 

Therefore, United Nations has included ‘Water and Sanitation to all’ as one of the 17 sustainable 

development goals (Goal 6) to be achieved by 2030. Several of the other sustainability goals 

includes potable drinking water and human health as well (United Nations 2016).  

Achieving these sustainable development goals is challenging due to many aspects, including 

climate change and global increases in population. Lack of proper sanitation, and access to 

potable drinking water, is the major source of gastrointestinal diseases in the developing 

countries (Ashbolt 2004). Potable water quality in developed countries suffers as well, due to 

changes in water resources affected by anthropogenic activities, including large scale 

industrialization and discharge of municipal wastewater into the raw water sources. Climate 

change also affects global drinking water quality and availability; this is evident in increased 

precipitation or prolonged draught periods and the overall increase in global temperatures that 

influence the terrestrial and aquatic ecosystems (Preston 2004; Seekell & Pace 2011). Thus, 

climate change can negatively influence the raw water quality both suddenly and gradually by 

increasing humic content (main organic constituents of soil (humus), peat and coal) and 

pathogen levels, and by increasing the frequency of short-term algal blooms (Moore et al. 2008) 

and outbreaks of infectious diseases (Murdoch et al. 2000; Burge et al. 2014).  

This increase in humic substances in water sources has been widely observed around Northern 

Europe and North America (Evans et al. 2005; Worrall & Burt 2009; Ritson et al. 2014), where 

it decreases performance in drinking water treatment plants (DWTP), impeding their ability to 

meet water quality standards year round (Collins et al. 1985). In order to meet water quality 

requirements, more stringent guidelines have been proposed. Hence, it is crucial that DWTPs 

can adapt to both long- and short-term changes in water quality, to ensure that safe and reliable 

drinking water can be provided at all times. One way to ensure this is to upgrade or optimize 

existing treatment technologies, or to implement new treatment technologies (Slavik & Uhl 

2009). However, these upgrades are usually expensive to implement and require large 

investments. Alternatively, the research presented in this thesis has focused on how to optimize 

existing DTWP operations using only minor changes. 

Natural organic matter (NOM) poses a constant challenge to drinking water treatment. NOM is 

present in all source water and has characteristics that vary based on the nature of and 

geographical location of the sources, seasonal variation (e.g. temperature and pH) and human 

activities located around the source catchment. There has been on-going research to find 

efficient ways to remove NOM from the raw water.  Different treatment steps like conventional 

treatment, coagulation, flocculation, sedimentation and filtration processes, are applied in order 

to reduce both NOM and pathogen concentrations in the drinking water. However, changing 

raw quality due climate change present extra challenges on NOM removal by increasing cost 
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of water treatment operations (due to e.g. increased chemical consumption), demanding new 

infrastructure to remove new target compounds (e.g., chemical compounds, algae etc.) and/or 

associated challenges that they create (e.g., taste and odour compounds, toxic algal by-products) 

(Emelko et al. 2011). Thus, this increased load on existing treatment processes can be beyond 

critical design threshold ranges, and it is therefore necessary to optimize the treatment 

technology currently in use. 

Granular activated carbon (GAC) filtration is a widely-used treatment technology implemented 

in many surface water treatment plants. GAC filters are good at adsorbing micro-pollutants e.g. 

Perfluorooctanesulfonic acid (PFOS), algal degradation products, and petroleum residues. 

However, dissolved organic matter (DOC) in raw water saturates the GAC filters pores with 

irreversibly bound NOM and reduces the adsorption capacity (Velten 2008). A biofilm forms 

on the filter media converting them to biofilters (BAC) (Servais et al. 1994; Velten 2008) in 

which microorganisms break down and remove biodegradable NOM. BAC filtration reduces 

biodegradable organic matter (BDOC), chlorine demand, disinfection by-product precursors, 

taste and odor compounds, turbidity, and indicator organisms such as coliforms (Rittmann & 

Stilwell 2002). 

This research evaluates a low-cost technique to improve NOM removal by existing BAC 

filtration process in DWTPs in order to prevent system overload during short-term deterioration 

in raw water quality.  

1.1 Aim and objectives  
The aim of this research is to study the improved NOM removal by existing BAC filters using 

a simple modified operational strategy.  

To fulfil this aim several specific objectives are included in this thesis. 

The specific objectives are: 

 To study the improved removal of NOM by modifying the operation of existing BAC 

filters in full-scale DWTPs (Paper I, Paper II)  

 To monitor the qualitative and quantitative changes in NOM concentration after GAC 

replenishment and identify if different NOM fractions react differently to the BAC filter 

modification (Paper I, Paper II) 

 To compare the effect of BAC filter modification for two DWTPs with different raw 

water, and identify factors influencing removal of various fractions of NOM (Paper II) 

1.2 Summary of the attached papers 
Two papers are attached to this thesis. A short summary of these papers is given below. 

In Paper I, improvement of NOM removal by replenishing BAC filters with fresh GAC was 

investigated in a full-scale drinking water treatment plant in Uddevalla municipality, Sweden. 

This treatment plant has seven parallel GAC filters which contains saturated GAC (more than 

three years old) that are currently functioning as BAC filters. Intermittent complaints from 

consumers regarding drinking water taste and odor indicated that the treatment plant need extra 
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support during periods of reduced raw water quality. The effects of improvement measures on 

NOM removal was monitored by dissolved organic carbon (DOC), optical measurements 

techniques like fluorescence spectroscopy and ultra violet absorbance at 254 nm. 

Paper I indicated that replacing a thin layer of activated carbon from the existing BAC filters 

with fresh GAC can improve its treatment performance. Both adsorption and biological 

degradation improved within the filter bed for a period of 10-20 days after this modification. 

Paper I presents the strategy where combination of fresh GAC and saturated GAC are utilized 

within existing BAC filters to improve absorbable and biodegradable NOM removal. 

In Paper II, a similar experiment as in Paper I was implemented at Lackarebäck DWTP, which 

receives raw water from a different source, and was compared with experiment at Uddevalla. 

In this paper, the results from Lackarebäck were compared to the full-scale experiment in Paper 

I. Paper II paper focuses on the robustness of the proposed strategy to remove different NOM 

fractions. 

The same measurements tools were used to characterize the NOM removal in both papers. 

1.3 Scope 
This thesis focuses on NOM removal using optical properties NOM as well as bulk NOM 

concentration properties like DOC.  

Since the studies were performed in operating full-scale DWTPs, the experimental design had 

to follow the layout and operation steps of the full-scale plant. Thus backwashing of the filters 

could not be controlled during the experiment.  
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2 Background 

In this chapter the problem related to NOM in drinking water sources and a general overview 

of drinking water treatment processes are included in the beginning. Afterwards, detailed 

description of the GAC and BAC filtration processes for drinking water treatment are described 

since NOM removal through these two treatment processes are the main focus of the thesis. 

Various NOM characterization techniques are included as well that were utilised to investigate 

the NOM removal performance by the filtration processes. 

2.1 Natural organic matter (NOM) 
Drinking water is derived from the available 3% fresh and saline water around the world. In 

order to convert raw water to drinking water and reduce the risk of water borne diseases, raw 

water often needs to be converted by various kinds of treatment steps to remove NOM and 

pathogens from treated water. NOM is part of the substances that needs to be removed from 

drinking water. NOM is produced from different hydrological, biological and geological 

processes within surface and ground waters. NOM quality and quantity varies from one location 

to another as well as within same water body as a result of natural phenomena such as droughts, 

floods, and rainfalls (Matilainen et al. 2002; Sharp et al. 2006b; Kundzewicz et al. 2014). It can 

be produced through biological activities of algae and microbes (autochthonous NOM), or 

introduced from outside of the water body via drainage within watersheds containing 

breakdown of terrestrial organisms (Allochthonous NOM) (Eikebrokk et al. 2004).  

NOM can be present in various forms like dissolved and particulate organic matter (Figure 2-

1). Fraction of NOM that passes through the 0.45 – 1 µm filter is defined as dissolved organic 

matter (DOM) (Hansell & Carlson 2014). NOM can have both hydrophobic and hydrophilic 

fractions with dominant components as humic and fulvic acids, proteins, amino acids and 

carbohydrates of various molecular size and properties (Huguet et al. 2009; Thurman 2012).  
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Figure 2-1: Different fractions of Natural organic matter. 

2.2 Treatment processes of drinking water  
Around 1750 municipal DWTP has been established until now in Sweden (Svenskt Vatten 

2016). 50% of these DWTP use surface water for their production and the other 50% uses 

ground water infiltration and ground water (Svenskt Vatten 2016). In order to convert the raw 

water collected from natural water sources like streams, river or underground aquifers to 

drinking water, DWTPs have treatment steps like:  

 Pre chlorination:  

To meet different treatment objectives of removing microorganisms and to remove iron and 

manganese.  

 Conventional treatment or Coagulation, flocculation and sedimentation:  

Main purpose is to eliminate pathogens, reduce turbidity and taste and odor related problems. 

The colloidal particles in raw water are destabilization by the addition of a chemical reagent 

called as coagulant. Then the microflocs formed by agglomeration of destabilized particles and 

after into bulky floccules/flocs which can be settled. The addition of another reagent called 

flocculants or a flocculants aid may promote formation of the flocs. Conventional treatment can 

reduce micro pollutants but their removal might not be complete during this process. 

Conventional treatment is the most important treatment step in determining the subsequent 

GAC filtration and disinfection processes (World Health Organization 2008) performance.  
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 Filtration:  

Rapid gravity and pressure filters are commonly used to filter water that are pre-treated by 

coagulation and sedimentation. Direct filtration in another alternative where coagulant is added 

to the water and then precipitated flocs are removed directly from the filter. To remove the flocs 

and particles, there are different filtration processes involved in drinking water treatment. For 

example, granular, slow sand, precoat and membrane (microfiltration, ultrafiltration, 

nanofiltration and reverse osmosis) filtration (World Health Organization 2008). 

 

 Post-chlorination:  

Removes or inactivates microorganisms, stops regrowth of microorganisms in the distribution 

network. 

 

There are periods of extra challenging water quality when there is a short term peaks in NOM 

concentrations in raw water (especially during Lake Turnover period, snow melt run-off or 

periods of algal bloom). Some of the short term treatment improvement approaches are 

improving existing coagulation step, addition of powdered activated carbon (PAC) to the raw 

water or to reduce surface load of the filters. 

2.2.1 Problems related to NOM in drinking water treatment 

Presence of NOM affects many aspects of water treatment by deteriorating performance of 

individual unit processes (i.e. coagulation, adsorption and oxidation). NOM is a precursors of 

disinfection by-products (DBPs) and unremoved fractions of NOM produce DBPs like: 

halogenated Trihalomethanes (THMs), Haloacetic acids (HAAs), Haloacetonitriles (HANs), 

Haloketones and trichloronitromethane (Bond et al. 2012; Serrano et al. 2015; Jiang et al. 2017; 

Li et al. 2017) along with numerous aromatic halo-DBPs. The biodegradable fraction of NOM 

(BDOC) promotes bacterial growth in the water distribution network (Van der Kooij & Hijnen 

1984) and reduces quality of finished water by altering their organoleptic properties (colour, 

taste and odor). Therefore, it is important to remove NOM within the DWTPs by optimization 

of treatment processes (Owen et al. 1995; Singer 1999; Matilainen et al. 2011). Furthermore, 

NOM is a carrier of toxic organic and inorganic pollutants like pesticides and radionuclides. It 

increases solubility of hydrophobic anthropogenic compounds and make them more 

bioavailable (Reid et al. 2000). The humic acids and fulvic acids fraction of NOM forms strong 

metal complexes with heavy metals that has high transportation ability, bioavailability and 

toxicity (Matilainen et al. 2011). NOM further increases coagulant demand and production of 

sludge (Jarvis et al. 2006). Humic fraction of NOM competes with undesirable micro pollutants 

adsorption through by decreasing available adsorption sites, reducing surface area of GAC by 

blocking pores and increases negative surface charge by adsorbing humic substances 

(Newcombe 1994). NOM can as well foul/clog the membranes used in drinking-water treatment 

(Carroll et al. 2000). 
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2.3 Activated carbon in water treatment  
In the following sections a brief description of activated carbon in drinking water treatment 

and detailed description NOM removal via GAC and BAC filtration processes in drinking water 

treatment are provided.  

Activated carbon (AC) is used for the removal of pesticides and other organic chemicals, taste 

and odor compounds, cyanobacterial toxins and total organic carbon. AC has been produced 

from porous media from natural sources like wood, coal, coconut shells or peat. These 

carbonaceous materials are thermalized under controlled condition and a porous structure with 

large surface area (500-1500 m2/g) is formed that has high affinity for organic compounds. 

Activated carbon is used either as powdered (PAC) or in granular (GAC) form. PAC has 

typically diameter less than 0.15 mm and GAC has diameters ranging from 0.5 to 2.5 mm. Both 

form activated carbon fundamentally has similar adsorption properties despite differences in 

particle size (Karanfil 2006).  

2.3.1 Powdered activated carbon (PAC) 

PAC has high carbon usage or dosage rate since PAC cannot be recovered or regenerated. PAC 

has lower capital cost than GAC and are used to control seasonal occurrences of taste- and odor- 

compounds and pesticides. For emergency control of spikes and spills from municipal and 

industrial wastewater discharges and agricultural runoff, many utilities keep PAC on-site 

(Chowdhury 2013). PAC is beneficial to use due to low capital cost (Najm et al. 1991; Najm et 

al. 1994). But PAC application is only limited to low concentration of organic pollutants due 

to short contact time (Kim & Kang 2008) 

2.3.2 Granular activated carbon (GAC) filtration 

GAC filters are employed as fixed-bed adsorbers such as granular media filters or post filters. 

It is an effective barrier against many dissolved contaminants present in water. GAC can 

preferentially absorb contaminants from water due to its large surface area, surface chemistry 

and fast adsorption kinetics (Wei et al. 2008). It can remove hydrophobic fraction of humic 

acids (HAs), lower molecular weight humic- and fulvic acids (McCreary & Snoeyink 1980; 

Matilainen et al. 2006). On the contrary, some researcher have found that lower molecular 

weight matter is more amendable than higher molecular weight matter due to size exclusion 

effect (McCreary & Snoeyink 1980; Karanfil & Kilduff 1999). Therefore the adsorption NOM 

is mainly controlled by the molecular size distribution of NOM and pore size distribution of 

carbon (Newcombe et al. 2002). Background NOM reduces the adsorption of trace level 

contaminants. Therefore if the purpose of installing GAC filtration is to remove trace organics, 

then the filter must be placed as post filter filtration unit (Binnie et al. 2002).  

The main mechanism of adsorption onto GAC are adsorption of soluble NOM, physical 

filtration of particulate NOM (Emelko et al. 2006). NOM adsorption occurs in the mesophores 

(100-1000 °A) and large micropores (<100 °A) of GAC (Figure 2-2). Large size NOM (>10,000 

°A) is not well removed due to size exclusion effect and lower molecular size is also not 

absorbable as majority of them are hydrophilic (Matilainen et al. 2006). 



  Background 

9 

 

 

Figure 2-2: Pore size distribution of GAC and NOM removal mechanism (from webpage ‘Aqua-cache’). 

2.3.3 Biologically Activated carbon filter 

NOM imparts negative influence on GAC filters adsorption capacity and thus the adsorption 

capacity reduces rapidly and a biofilm forms on the filters material converting them to 

biologically active GAC filter (BAC). There are many modification and methods that are 

proposed to improve water treatment processes, the most promising, environmentally friendly 

and economical solution is BAC treatment (Liao et al. 2013). It can mitigate the limitations of 

GAC filtration treatment (reduction of adsorption capacity over time and requires frequent 

regeneration). The active biofilm that covers GAC filters increased the life span of exhausted 

GAC filters since NOM and artificial organic pollutants are continuously removed by 

biodegradation and partial adsorption (Liao et al. 2013). 

Around early seventies, the capability of bacteria which proliferate in GAC filters to remove 

organics in the filter was first reported. Since then it is now known that GAC surface acts as a 

support material favourable for some bacteria that are widely found in the environment (such 

as nitrifying bacteria or heterotrophic bacteria) to develop and metabolize biodegradable 

organic matter (Huck 2000). Around ‘80s many European DWTP incorporated the combination 

of pre-ozonation and BAC filter in their treatment processes. Presently, BAC filters are mostly 

operated as a passive process, and the design and operational parameters are generally focused 

on media configuration, backwash strategy and loading rate (Lauderdale et al. 2012). Recently 

the concept of Engineered Biofiltration is becoming popular where biofilters are operated as a 

purposefully operated biological system rather than a passive process. The aim is to target 

specific water quality objectives while maintaining or improving hydraulic performance. 

Nutrient supplement has been proposed in the feed water to promote bacterial growth and 

biofilm formation and subsequent enhancing removal of NOM. A handful of studies have 

investigated the Engineered Biofiltration (Lauderdale et al. 2012; Azzeh et al. 2015; McKie et 

al. 2015) and the information on such processes remains rather limited. 
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BAC filtration process is usually placed after advanced oxidation processes (AOP) or ozonation 

processes to remove small molecular, hydrophilic, and biodegradable organic carbon (BDOC) 

fraction of NOM produced through the partial oxidation of NOM. DOC removal through BAC 

filters is relatively small in the context of an entire DWTP (Hozalski et al. 1995). DOC removal 

takes place through four stages on BAC filters. On the first stage removal is mainly through 

adsorption of molecules in fresh GAC media. 40-90% of DOC and 70-90% removal of DBP 

and THM precursors’ removal was observed during this period (Dussert & Van Stone 1994; 

Servais et al. 1994; Lohwacharin et al. 2011). The second phase lasts at about 2-3 months and 

is required to biologically colonize the GAC media. Biological degradation of DOC rate 

increases at this this stage while the physical adsorption continues to drop. Third stage is the 

steady state period as the physical adsorption capacity of AC is exhausted the biological 

degradation is the predominant process for DOC removal (Dussert & Van Stone 1994). There 

is 15-45% removal of DOC from ozonated water as the BDOC concentration increases 

(Simpson 2008; Lohwacharin et al. 2011). On the fourth phase of BAC filters operation is 

beyond 13 months when DOC removal gradually decreases (Hozalski et al. 1995). 

Benefit of BAC filters: 

Thus BAC filters has the following added benefit over GAC filters: 

 BAC filters extends the service life of GAC filters and it does not require frequent 

regenerations of the filter media (Aktaş & Çeçen 2007). 

 BAC filters ensures bio stability of effluent by removing biodegradable organic 

compounds (BDOC) and assimilable organic carbon (AOC). These part of NOM are 

not affected by coagulation and remains in high concentration after conventional 

treatment Volk et al. 2000. 

 The removal of non-biodegradable compounds benefit as well by BAC filters biofilm 

as bio-regeneration increases the adsorptive capacity of GAC (Seredyńska-Sobecka et 

al. 2006). 

 BAC filtration reduces significant fraction of disinfection by product formation 

potential (DBP-FP) especially for THMs and chlorine demand of treated water (Graham 

1999; Volk et al. 2000) 

2.4 NOM characterization 
In the following section a summary of the analytical methods and data processing methods used 

in this thesis is given. Detailed description can be found in the respective papers.  

Characterization of NOM is a difficult task due to wide range chemical composition included 

within NOM. Therefore, rather than using one analysis technique to measure total quantity of 

NOM, a combination of different analytical techniques are used to gather information on sub-

fractions of NOM (Peleato et al. 2017) based on similar physiochemical properties. Some of 

these methods include adsorption/desorption on resins (Yan et al. 2010), membrane filtration 

(Summers & Roberts 1988; Yan et al. 2010), fluorescence spectrophotometry (Baghoth et al. 

2011b) and high-performance size exclusion chromatography (HPSEC) (Matilainen et al. 
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2002). Some of the conventional NOM characterisation techniques are total organic carbon 

(TOC), colour and UV absorbance (Volk et al. 2002). The spectroscopic properties of optically 

active NOM fractions provides information regarding concentration, composition and source 

of NOM (Coble et al. 2014). These spectroscopic technique of NOM characterisation (i.e. 

Fluorescence and UV absorption at 254nm are rapid and highly sensitive techniques that does 

not require extensive sample preparation and require very little sample volume (Bieroza et al. 

2009; Beggs & Summers 2011). 

2.4.1 Optical properties of NOM/DOM 

UV254 and SUVA 

Dissolved organic fractions of NOM that can absorb ultraviolet and visible light, is referred to 

as chromophoric or coloured DOM (CDOM) (Coble et al. 1998). Absorbance is a semi-

quantitative indicator of NOM concentration in natural waters. Most CDOM that absorb light 

have aromatic groups and are associated with humic fraction of NOM (Korshin et al. 1997a). 

Aromaticity of organic matter influences the reactivity of DOC and humic substances to 

oxidants like chlorine (Reckhow et al. 1990). Therefore, UV absorption at 254 nm (UV254) is 

widely used monitoring tool for DOC concentration within DWTPs. Ozonation and adsorption 

onto AC is known to reduce UV254 from the treated water (Bahr et al. 2007; Altmann et al. 

2014).  

Specific UV absorbance (SUVA or SUVA 254) is another method based on UV254 and DOC to 

estimate the aromaticity of DOC in a sample. It is the ratio of the samples’ UV absorbance at 

254 nm to the DOC concertation of the solution.  

DOC

UV
=SUVA 254  

High SUVA value indicates that the organic matter is largely composed of hydrophobic, high 

molecular weight organic material, whereas low SUVA value indicates that mostly hydrophilic 

and low molecular weight fraction with low charge density (Edzwald & Tobiason 1999; Sharp 

et al. 2006a). SUVA is a good indicator of the humic fraction of NOM and effectiveness of 

coagulation to remove these humic fractions. 

 

Figure 2-3: Interpretation of SUVA values for freshwaters adopted from Edzwald and Tobiason (1999). 

SUVA >4 L/m-mgC 

• Aquatic humic

• High hydrophobicity

• High molecular weight

• High UV254

• High chlorine demand

• High DBP-FP

SUVA ≈2-4 L/m-mgC 

• Mixture of aquatic humics  and 
other NOM

• Mixture of hydrophobic and 
hydrophilic NOM

• Mixture of different molecular 
weight

• Medium UV254

• Medium chlorine demand

• Medium DBP-FP

SUVA <2 L/m-mgC

• Mostly non-humics

• Low hydrophobicity

• Low molecular weight

• High UV254

• High chlorine demand

• High DBP DBP-FP
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Fluorescence excitation and emission matrix 

NOM fractions that exhibit fluorescence in both ultraviolet and visible range is referred to as 

fluorescent dissolved organic matter (FDOM) (Helms et al. 2008). By fluorescence 

spectroscopic analysis, based on presence of FDOMs associated with humic-fulvic and protein-

like compounds, rapid characterization of NOM with high sensitivity and minimal sample 

preparation can be achieved (Sanchez et al. 2013). Fluorescence analysis is done by exciting a 

sample by a light source (a xenon arc lamp) and measuring the emitted light. FDOMs are 

identified by collecting fluorescence excitation-emission matrices (F-EEM) emitted by FDOMs 

present in water at multiple excitation wavelengths (Baker 2001; Coble et al. 2014). By 

observing the location of a prominent peak of a excitation-emission pair (Figure 2-4), specific 

organic compound groupings of FDOM within NOM can be identified and the maximum 

intensity of the peak correlates with concentration (Bieroza et al. 2011). Thus humic-like NOM 

having longer emission wavelength (>350 nm) and protein-like NOM having shorter emission 

wavelength (<350 nm) can be distinguished by peak location. Different regions within the 

fluorescence spectra can be linked with different fraction of NOM (Chen et al. 2003).  

In Table 2-1, the classification of various NOM fraction according to previous literature is 

presented: 

Table 2-1: Different fluorescent peaks and excitation/emission wavelengths and source of origin 

according to literature (Coble 1996; Coble et al. 1998; Stedmon et al. 2003; Murphy et al. 2008) 

Peak name Description Excitation/Emission 

A Humic-like 

Terrestrially-delivered 

Allochthonous 

< 250-260 / < 380-480 

B Tyrosine-like 

Microbially delivered 

Autochthonous 

< 270 – 280 / 300 - 320  

C Humic-like 

Terrestrially-delivered 

Allochthonous 

< 330 – 350 / 420 - 480 

M Marine humic-like  

Microbially delivered 

Autochthonous 

310 – 320 / 380 - 420 

T Tryptophan-like  

Microbially delivered 

Autochthonous 

270 – 280/ 320 - 350 

 

Some other well-known methods for NOM characterisation using F-EEMs are:  

 Fluorescence regional integration (Chen et al. 2003): The fluorescence regional 

integration (FRI) model proposes to integrate the fluorescence spectra instead of 

specific peak information (Figure 2-4). EEMs were divided in to five regions: Protein 

regions I and II, fulvic acid-like (III), microbial by products-like (IV) and humic acid-

like (V), by determining the volume of fluorescence beneath a given region, the 

particular importance of the fluorescence region was quantified (Chen et al., 2003). 



  Background 

13 

 

 Multivariate data analysis (e.g. principal component analysis, PCA and partial least 

square regression (Persson & Wedborg 2001).  

 Multiway data analysis using parallel factor analysis (PARAFAC) (Stedmon et al. 

2003). 

 

Figure 2-4: Excitation and emission spectra of a FDOM component identified using parallel factor 

analysis in Paper I (left) and fluorescence EEM of raw water. Fluorescence regions are denoted as Peak 

C: fulvic-like fluorescence, Peak A: humic-like fluorescence and Peak T: tryptophan-like fluorescence 

adopted from Bieroza et al. (2009). 

Fluorescence intensity usually increases with DOC. However, since different DOC fraction has 

different absorbance characteristics, this increasing trend with DOC might not be linear 

especially at higher concentration. Measured intensity can be reduced by other light absorbing 

molecules or ions (McKnight et al. 2001). Thus absorbance correction is necessary for samples 

having greater than 0.05 cm-1 absorbance or DOC concertation higher than 1 mg C/L prior to 

experiment (Kothawala et al. 2013). Fluorescence analysis is sensitive to pH (Patel-Sorrentino 

et al. 2002), temperature (Baker 2005), polarity of solvent (Lakowicz & Masters 2008), metal 

ion plus organic substances interactions (Reynolds & Ahmad 1995).  

Parallel factor analysis (PARAFAC) 

Multivariate analysis techniques like parallel factor analysis (PARAFAC) can separate 

collected excitation-emission matrices into chemically and mathematically independent 

fluorescence components. PARAFAC maybe the most useful of the available multivariate 

analysis techniques in investigating NOM in diverse environment (Stedmon & Markager 2005).  

PARAFAC modelling can decompose multi-way data of EEMs (sample x excitation x 

emission) into a set of modelled parameters (Figure 2-5) that are independently-varying using 

alternating least-squares algorithm (Bro 1997). Thus the result of PARAFAC modelling finds 

independent fluorescent ‘components’ with unique excitation-emission spectra and the intensity 

of each component in each sample is termed as ‘score’ (Bro 1997). PARAFAC utilizes equation 

1 to reduce a dataset of EEMs into a set of trilinear terms and a residual array (Bro 1997): 
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𝑥𝑖𝑗𝑘 =  ∑ 𝑎𝑖𝑓𝑏𝑗𝑓
𝐹
𝑓=1 𝑐𝑘𝑓 +  𝜀𝑖𝑗𝑘  𝑖 = 1, … 𝐼; 𝑗 = 1, … 𝐽; 𝑘 = 1, … 𝐾   (1) 

Here, 𝑥𝑖𝑗𝑘 is the fluorescence intensity of the ith sample at the kth excitation and jth emission 

wavelength, 𝑎𝑖𝑓is directly proportional to the concentration of the fth fluorophore in the ith 

sample (defined as scores), and 𝑏𝑗𝑓 and 𝑐𝑘𝑓 are the estimates of the emission and excitation 

spectrum of the fth fluorophore (defined as loadings), respectively (Stedmon et al. 2003). The 

residuals (εijk) represent unexplained signal containing noise and other un-modelled variations. 

According to Beer-Lamberts law, in an ideal case there are no interactions between the 

underlying fluorophores in the EEM (Stedmon & Bro 2008). This implies that the fluorescence 

peaks wavelengths position for each fluorophore do not “shift” but the fluorescence maxima of 

the mixture (e.g. in the EEM of raw water and treated water samples) may shift depending on 

the relative contribution of each of the fluorophores (wavelength position of the fluorescence 

peaks representing each fluorophore (Stedmon & Bro 2008). 

 

Figure 2-5: A drinking water EEM dataset can be decomposed into underlying fluorescence components 

using PARAFAC (Paper I). 

PARAFAC model is sensitive to the number of components for fitting. Therefore, selection of 

the correct number of component is essential for samples containing unknown fluorophore 

composition (Stedmon & Markager 2005). 

Differential excitation emission matrix 

Differential EEMs allow to observe the treatability of NOM fractions by each treatment 

processes. Contour plot of EEMs collected from each treatment step is deducted from the 

contour plot of samples of reference treatment using the following equation: 

Differential EEM = EEM Reference filter - EEM Fresh GAC added filter  (2) 

Differential fluorescence spectra allows to detect small changes in NOM compositions and 

visualize over a range of excitation and emission wavelengths that represent different 

characteristics of the NOM.  
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EEM spectra were divided into three regions representing specific components of organic 

matters:  

 Region I: Ex: 220–300/Em: 220–350, microbial by-products, proteins, polypeptides and 

amino acid-like 

 Region II: Ex: 220–300 / Em: 350–550, fulvic acid-like 

 Region III: Ex: 300–480/Em: 300–550, humic acid-like 

2.4.2 Optical properties of NOM/DOM in natural and engineered water 
systems 

Fluorescence analysis is a becoming popular analysis method to monitor organic matter 

composition within natural and engineered water systems. Individual components of FDOM 

fractions of NOM have been revealed to correlate well with biochemical Oxygen Demand 

(BOD) (Hudson et al. 2008), chemical oxygen demand (COD) (Baker & Inverarity 2004; 

Bridgeman et al. 2013), indicator of total coliforms and E. coli (Cumberland et al. 2012). 

Spectral slope of NOM fraction that absorb between 280 – 350 nm has been shown to correlate 

with the yields of commonly regulated DBPs like Trihalomethanes (THMs) and Haloacetic 

acids (HAAs) (Korshin et al. 1997b). UV absorbance at 272 nm has been reported as the best 

indicator of total organic halogen (TOX) (Korshin et al. 1997a). TOX is the sum of all 

halogenated organic products present in water TOX, regardless of their identity. Differential 

absorption is another approach to detect subtle changes in NOM structure (Ates et al. 2007). 

2.4.3 High performance Size exclusion chromatography (HPSEC) 

HPSEC is used to fractionate NOM in a sample based on higher to lower molecular size (Croue 

et al. 2000; Her et al. 2003). Thus molecular size distribution of NOM within a sample can be 

achieved. The larger the molecular weight the faster they are eluted from the chromatographic 

packing column. Molecular size is an important characteristic in water treatment as diffusion 

coefficients and removal efficiencies are directly dependent on the size of the solute (Haarhoff 

et al. 2010). HPSEC allows effectively to follow changes in NOM distribution along the DWTP 

trains (Vuorio et al. 1998). Matilainen et al. (2002) used HPSEC to monitor NOM content in 

DWTP in a one year study and found that high molecular weight NOM fractions are better 

removed by coagulation and filtration process and GAC filtration was ineffective in removing 

lower molecular weight fraction. Contrary to the study done by Haarhoff et al. (2010), where 

they found that GAC filtrations targets low to intermediate molecular weight fraction of NOM. 

They also found that rapid sand filters removes low and high molecular weight fractions and 

ultrafilters targets high molecular weight fraction.  

2.4.4 How to optimize NOM removal in GAC and BAC filters? 

In the following section some relevant research work in published literatures are summarised. 

Optimization of BAC filters by influencing design and operational parameters such as media 

configuration, backwash strategy and loading rate to improve the filters performance have been 

investigated extensively (Lauderdale et al. 2012). BAC filters allows greater microbial biomass 
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concentration than sand and anthracite biofilters and have higher removal rate of organic 

matters present in water (Miltner et al. 1995; Wang et al. 1995; Klymenko et al. 2010). From 

operation perspective it is now known that performance of biofiltration for NOM removal is 

affected by the empty bed contact time (EBCT), temperature, backwashing strategy and 

presence of other treatment step (e.g. ozonation) (Emelko et al. 2006). Up-flow biofilters have 

higher removal of NOM and allows more diverse and equitability in bacterial community 

compared to down-flow filters (Han et al. 2013). Recent studies have suggested to operate 

biofilters as a purposefully operated biological system, i.e., engineered Biofiltration. In these 

engineered biofilters, feed water is supplemented with nutrients to promote the microbial 

growth and biofilm formation and subsequently enhance the removal of NOM (Lauderdale et 

al. 2012; Azzeh et al. 2015).Cheng et al. (2005) used modification techniques to improve virgin 

GAC using heat activation, ammonia treatment and iron-impregnation to increase the dissolved 

organic matter removal from water. Their result showed that even though mass-basis 

performance of modified GAC was better compared to virgin GAC for dissolved organic matter 

uptake. But no specific selectivity was visible for specific size fractions and for UV absorbing 

fractions of NOM. Comparison between old GAC filter and regenerated GAC filters showed 

that removal efficiency improved after regeneration for intermediate molecular weight fractions 

(Matilainen et al. 2006). However, this improvement changes within few months after 

regeneration.  

A limited number of studies combines optical properties of NOM measured through UV 

absorbance and fluorescence spectroscopy to monitor the reduction of NOM in full-scale 

DWTP (Ishii & Boyer 2012). Some of these studies have investigated the application of 

PARAFAC analysis to track changes in NOM in DWTPs.  

Baghoth et al. (2011a) studied two full-scale treatment facilities to track the changes to 

PARAFAC component due to several treatment processes like rapid sand filtration, ozonation, 

biological activated carbon filtration, and coagulation, together with another NOM 

characterization technique called liquid chromatography-organic carbon detection (LC-OCD) 

for a combined set of samples. Their study revealed unique process impacts on individual 

FDOM fractions of NOM, suggesting the possible use of fluorescence spectroscopy for online 

monitoring. Sanchez et al. (2013) performed a long term study demonstrating the suitability of 

fluorescence and PARAFAC analysis for selection of coagulant to optimize organic 

concentration reduction. Bieroza et al. (2011) has compared different analysis techniques of 

fluorescence measurements collected from 16 full-scale treatment plant’s treatment processes 

and compared different decomposition and calibration models used for fluorescence data. 

Peleato and Andrews (2015) compared the performance of four drinking water treatment plant 

using fluorescence spectroscopy and LC-OCD. They concluded that coagulation/settling 

removed both humic and protein-like material with higher removal of larger molecular weight, 

hydrophobic humic-like NOM. This result is also in consistent with previous researchers like 

(Beggs et al. 2009b; Baghoth et al. 2011; Sanchez et al. 2013; Peleato & Andrews 2015). 

Peleato et al. (2016) later performed a pilot scale study on BAC filters and found that the 

biofilter using GAC as media, with exhausted absorptive capacity, provided the highest removal 

of all identified PARAFAC components. They also showed that deep GAC layer filters gave 



  Background 

17 

 

greater protein- and humic-like removal. A microbial or processed humic-like component was 

found to be most amenable to biodegradation by biofilters and removed mainly by conventional 

treatment (Peleato et al. 2017). Protein-like DOM (especially tryptophan) are removed mainly 

removed by degradation by microorganisms attached to the GAC in the filters (Wang et al. 

2017). Previous studies observed fresh GAC filters have high removal of humics through 

adsorption.  
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3 Materials and methods 

This chapter includes a description of the study area, description of the two full-scale drinking 

water treatment plants and the experimental set-up and as well as a description of the analytical 

methods (DOC, optical measurements: fluorescence spectroscopy and UV absorbance at 

254nm) that are used to compare the water quality are included. 

3.1 Operational strategy 
In order to combine the benefits of both fresh GAC and BAC filters in a simple manner, a 

strategy is here proposed whereby a portion (10%) of saturated activated carbon from the BAC 

filter top is replaced by fresh activated carbon filter media. 

3.2 Study areas 
Marieberg DWTP 

 One full-scale drinking water treatment plant (Marieberg 

DWTP) was used during the investigation of applicability 

of the proposed strategy in Paper I. Marieberg DWTP is 

located in Uddevalla municipality, Sweden (Figure 3-1) 

and receives raw water from Lake Köperödssjön which is 

located in a forested area. Water is pumped to the lake from 

a creek that runs through an agricultural area. The treatment 

train consists of flocculation using poly-aluminium 

chloride, rapid sand filtration using DynaSand filters 

(divided in two halls, A and B, consisting of 24 and 22 

filters respectively), followed by GAC filters and 

disinfection using UV and chlorine (Figure 3-2 and Figure 

1, Paper I).  

Lackarebäck DWTP 

To study the robustness of the proposed strategy, the full-

scale experiment was repeated in another DWTP called Lackarebäck and NOM removal 

performance was compared with Marieberg DWTP. Lackarebäck DWTP is the second largest 

in Sweden and located in Gothenburg municipality, Sweden. The water is collected from a Lake 

Stora Delsjön and the lake is a reservoir where water is pumped from River Göta älv. The water 

treatment steps in Lackarebäck includes conventional treatment, with coagulation using 

Aluminium sulphate, sedimentation, rapid filtration through activated carbon, membrane 

filtration using ultrafilter, and final disinfection with Chorine and sodium hypochlorite (Figure 

3-2, Figure 1 and Table 1, in Paper II).  

There are seven activated carbon filters in Marieberg WTP and 24 filters in Lackarebäck 

DWTP. GAC filters in Marieberg were over three years old at the time of the study whereas 

GAC filters in Lackarebäck were two years old. Details of the filters are presented in Paper II.  

Figure 3-1: Study areas for the experiments. 
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3.3 Experimental design 
In Marieberg DWTP (Paper I) three full-scale BAC filters (F6, F7 and F4) were replenished 

with fresh GAC, and two filters were used as references (Rf2 and Rf5). Hydraulic modelling 

was performed to quantify the proportions of inflow to the BAC filters from the two DynaSand 

filter halls. Details of the replenishment steps are provided in Paper I (section 2.3 ‘Experimental 

design’). It is important to mention that the replenishment operation, in Marieberg DWTP, of 

the three filters was performed in sequence F6, F7 and F4. During the replenishment operation 

the filter was taken out of operation and the flow in the remaining filters increased accordingly. 

This implies, Filter F6 received higher flow two times during the period when filter F7 and F4 

were taken out of operation during replenishment.  

In Lackarebäck DWTP (Paper II), one full-scale filter was selected for replenishment and a 

reference filter was selected for monitoring.  

3.4 Sampling 
In Marieberg DWTP, the experiment was carried out during the summer of 2015 (July – 

August). Regular weekly sample collection from four sampling sites were performed. Inflow 

and outflow water of the BAC filters were sampled at seven 

sampling points. Inflow (after two Dynasand filter halls) 

and outflow for the five filters (F4, F6, F7, Rf2 and Rf5) 

were sampled. In total 138 samples were collected from the 

treatment plant. In order to monitor the continuous relative 

changes in treated water from the filters, a multi-parameter 

spectrophotometer probe Spectro::lyser was placed at the 

outlet from the carbon filters. Parameters that were 

measured by this probe were TOC, UV absorbance 254, 

turbidity (in FNU and NTU units), colour and 

transmittance. More details on sampling in Paper I.  Figure 3-2: Sampling points after BAC 

filters. 

Figure 3-2: Lake water sources and treatment processes for Lackarebäck and Uddevalla DWTP. 



 Materials and methods 

21 

 

In Lackarebäck DWTP, the experiment was carried out in the fall 2016 (September – October). 

In total 70 samples were collected in the treatment plant. Sampling took place 1-2 times per 

week for 4 weeks. Samples were collected for UV absorbance, fluorescence and dissolved 

organic carbon (DOC) in both DWTP. More details on sampling in Paper II.  

3.5 Analytical method 

3.5.1 Fluorescence spectroscopy 

Aqualog fluorescence spectrophotometer (Horiba Inc.) with a 10 mm path length was used for 

CDOM fluorescence and absorbance analysis. The F-EEMs were measured (at 20°C) by 

scanning the excitation wavelengths ranged from 220 nm to 500nm in 3nm steps and 2sec 

integration time and emission ranged from 245nm to 825nm with 2.33nm increment.  

Raman scans of Milliq water in a sealed cell was obtained every day as blank. Aqualog 

fluorescence spectrophotometer can measure the absorbance spectra (200-500 nm) at the same 

time as the fluorescence spectral analysis.  

3.5.2 Dissolved organic carbon (DOC) 

DOC was measured using a Shimadzu TOC-VCPH carbon analyser with auto-sampler TOC-

ASI-V. Non-purgeable organic carbon (NPOC) method was used to analyse DOC were all the 

inorganic carbon were removed through purging the sample with CO2 free purified air for 5 

minutes. DOC concentration was calibrated using 5 point calibration curve for potassium 

Phthalate standards solutions (between 1.0-10.0 mg C/L). 

3.5.3 High performance size exclusion chromatography (HPSEC) 

HPSEC analysis was carried out to check the influence of GAC replenishment on molecular 

size of NOM, on one of the DWTP samples. Details of this analysis is presented in Paper II. 
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4 Results and discussion 

4.1 Did the proposed modification strategy improve BAC 
filters performance at Marieberg? 

In Paper I, the modification strategy was investigated in Marieberg DWTP, where three full-

scale filters were replenished and two reference filters monitored to compare the NOM removal 

efficiency. The efficiency was compared based on optical properties of NOM (Fluorescence 

and UV spectroscopy) as well as DOC removal capacity. 

Online monitoring of UV absorbance provided real-time information about the filter 

performance and allowed to observe subtle changes in water quality. In Figure 4-1 (Paper I, 

Figure 2), it can be seen that before replenishment, modified filter F4 and reference filters Rf5 

had similar UV absorbance. After replenishment, a sharp drop is visible which recovers back 

to original performance after 10-20 days. UV absorbance is an indicator of aromatic groups and 

humic fraction of NOM, thus their reduction indicate preferential removal of these fractions of 

NOM by the modified filters. UV absorbing NOM fractions or CDOM are recalcitrant to 

biodegradation (Lawrence 1980; Novak et al. 1992). Thus their improved reduction indicates 

that they are not removed by biodegradation within the BAC filters, rather they are removed by 

the improved adsorption capacity of the modified BAC filters. This is consistent with previous 

findings where it was seen that UV absorbing NOM are removed by adsorption (Chowdhury 

2013). However, UV absorbance does not detect hydrophilic fraction of NOM which are known 

to be DBP precursors (Shon et al. 2006). Neither can it detect easily biodegradable NOM which 

are small in molecular size and non-UV-absorbing (Yavich & Masten 2003; Bond et al. 2011). 

Therefore, UV absorbance measurements needs to be complemented with other NOM 

characterisation techniques to get the full-picture of NOM fraction removal via filtration 

process.  

From the online monitoring of UV absorbance data, it was seen that the removal is dependent 

on the incoming flow or surface load to the filter. The last modified filter (Filter F4) were more 

efficient and for longer duration than the other filters, since it did not receive increased surface 

load while other filters where out of operation (Paper I, Figure 2 and 3). Fu et al. (2017) reported 

similar effect of flow or surface load on BAC filters performance where the increased flow rate 

reduced the empty bed contact time (EBCT) and decreased the removal efficiency of NOM in 

BAC filters. For this reason, surface load or flow rate is a key design and operating parameter 

of a biofilter/contactor (Chaudhary et al. 2003). During high production period when the 

DWTPs need to increase flow to the filters, it can be recommended to the DWTP operators to 

replenish the exiting BAC filters with fresh GAC to handle the extra flow in order to ensure 

good filtered water quality.  
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Figure 4-1: Water quality in filtrates from modified (F4: blue line) and reference (Rf5: black line) filters. 

Vertical dotted lines denote filter start-up after GAC replenishment. Data for 30 days are presented here. 

DOC removal in modified and reference filters were moderate (Paper I, Table 2). This is 

expected since not all fractions of DOC are biodegradable (Hozalski et al. 1995). The removal 

by reference filters (Rf2 and Rf5) were 0.2 - 0.5 mg C L-1 and the removal by modified filters 

(F4, F6 and F7) were 0.7 - 0.8 mg C L-1. The removal by reference filters are comparable to 

removal rates obtained in several studies done on full-scale BAC filters (Hozalski et al. 1995; 

Baghoth et al. 2011b; Fu et al. 2017). The BAC filters at Marieberg DWTP are over 3 years 

old and have thus reached a steady state during which the DOC removal becomes low (Hozalski 

et al. 1995). Modified filter performance was similar to engineered biofilters (0.4 – 0.75 mg C 

L-1) that have had phosphorous and nitrogen added to their incoming water to enhance biofilm 

growth (Lauderdale et al. 2012). Thus, rather than adding phosphorous and nitrogen into the 

incoming water, GAC replenishment onto existing BAC filters can ensure higher DOC 

removal. 

Fluorescence intensity of effluents from modified filters was lower than reference filters. The 

reduction of fluorescent dissolved organic matter (FDOM) (calculated by differential EEMs 

using Equation 1) reduces with bed volume treated by the filters. From Figure 4-2, it can be 

seen that fluorescent NOM fractions were removed over the complete range of excitation and 

emission wavelengths. From the intensity scale, it can be seen that the NOM fractions were 

removed more efficiently during the first few days following GAC replenishment and continued 

to exhibit better removal for filter F4 compared to reference filter after 30 days. Thus, 

visualising EEM data in this manner allows to observe which type of FDOM is the easiest to 

remove by the modified filters compared to the reference filters. Thus, fluorescence analysis 

can separate bulk NOM concentrations (measured using UV and DOC) into fractions, each 

reacting differently to different treatment processes. Comparing Figure 4-2 with Figure 2-4, it 

can be seen that modified filter is efficient at removing terrestrial humic like peaks A and C (in 

Figure 2-4), as well as protein-like peak T than the reference filters. 
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Figure 4-2: Removed fraction of FDOM by the modified filter in comparison to the reference filter. 

Differential EEM calculated between Reference filter Rf5 and modified filter F4 at Marieberg DWTP. 

Signal intensities are presented at the right of the Figure in color bar where colors represent absolute 

intensity in Raman unit. 

PARFAC decomposition of collected EEM found three independently varying FDOM fractions 

(Paper I, Figure 4). The excitation ad emission maxima of identified components are listed in 

Table 4-1.  

Table 4-1: Identified PARAFAC components and their characteristics as well as removal by the 

modified filters (Paper I) 

Component  Excitation 

(nm) 

Emission 

(nm) 

Characteristics Removal by reference 

filters (%) 

Removal by modified 

filters (%) 

C1 <250, 330  480 Terrestrial humic 

material 

Relatively larger 

molecular weight 

12-14 16-24 

C2 <250, 330  410 Terrestrial humic-like 

NOM modified by 

microbial reprocessing 

Relatively smaller 

molecular weight 

fraction 

17-22 24-33 

C3 <250, 290 360 Tryptophan protein-like 

character and associated 

with algal and 

microbial-derived 

organic 

15-19 20-28 

 

The modified filters reduced all PARAFAC components with higher efficiency than reference 

filters. Similar removal efficiency of PARAFAC components was previously observed by other 

researchers such as Baghoth et al. (2011a); Peldszus et al. (2011). The highest removal was 

observed for microbially reprocessed humic-like NOM fraction (C2) followed by protein-like 

NOM (C3). PARAFAC component C2 was the most abundant FDOM in incoming water to the 

BAC filters and was removed to the greatest extent. In our study, protein-like fluorescence 

NOM fraction removal were moderately high by both reference and modified BAC filters 

contrary to the recent study done by Fu et al. (2017) on GAC biofilter. They found in their study 

that proteins are refractory to the BAC filtration process. However, in this study there was 
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noticeable increase in removal of protein-like fluorescence. Terrestrial humic-like component 

(C1) is the humic fraction of NOM that is removed by adsorption onto fresh GAC (Velten et 

al. 2011) and is not removed by biofiltration (Baghoth et al. 2011a). Therefore, removal of C1 

improved after replenishment indicating higher adsorption ability of the BAC filters. Previously 

component C1 and C2 has been found to correlate strongly with chloroform which is the most 

abundant DBP formed by chlorination (Pifer & Fairey 2012). Thus improved reduction of C1 

and C2 decreases formation potential of chloroform. 

PARAFAC decomposition of collected excitation emission revealed three components (Paper 

1, Table 2). Reduction in FDOM components were always greater than UV for both modified 

and reference BAC filters (Paper1, Figure 5). Indicating that the modified filters were better 

than reference filters to remove FDOM fractions of NOM (Figure 4-3).  

 

To conclude, the results presented here demonstrates that the proposed modification strategy 

improved the performance of the BAC filters at Marieberg DWTP. The improved performance 

of the filters lasted between 10 to 20 days and is dependent on the surface load to the filters. 

However, this only proves the robustness of the modification strategy at one plant. Therefore, 

in order to check the robustness of the strategy there is a need to implement this at a second 

plant. 

4.2 Does the proposed modification strategy work for 
different NOM source and treatment trains? 

In order to check the robustness of the proposed strategy, replenishment of the one BAC filters 

was performed in Lackarebäck DWTP and compared with Marieberg DWTP. The two plants 

have different raw water quality and different treatment processes before their BAC filtration 

Figure 4-3: Removal efficiencies of three fluorescence components (C1-C3) and UV254 during the four 

weeks following GAC replenishment. Modified filters F6 and F7 should be compared with reference 

filter Rf2 and modified filter F4 with reference filter Rf5. (Paper I, Figure 5). The removal efficiency in 

Peleato et al. 2016 is 3.7%, 14.6% and 27.8% respectively for C1, C2 and C3 (depicted in Rf2 using solid 

red circle). 
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step. The general raw water quality and quantity of the pre-treated water (water after 

conventional treatment) is presented in Table 4-2 and 4-3. 

Table 4-2: Raw water quality and average treatment capacity for Lackarebäck and Marieberg DWTP 

 Lackarebäck Marieberg Observation 

Capacity (m3/day) 180,000 11,300 Lackarebäck higher capacity 

Consumers served 500,000 35,000  

Temp (°C) 2.1-19.2 

(8.2) 

2.2–19.8  

(10.2) 

Marieberg has higher temperature  

pH 7.0–7.4  

(7.2) 

6.4–7.1  

(6.9) 

Typical for surface water 

TOC (mg/L) 4.5–5.1  

(4.7) 

9.0*  Marieberg has higher DOC 

Turbidity (NTU) 0.7–1.8  

(1.0) 

0.8-2.9  

(1.5) 

Lackarebäck has higher 

turbidity 

UV254 (1/cm) 0.11–0.17  

(0.12) 

0.26-0.48 (0.37) Marieberg has higher UV absorbance  

SUVA (mg/L-m) 3.2- 5.2  

(2.6) 

3.2* Both have water with mixture of aquatic humics and 

mixture of hydrophobic and hydrophilic NOM of 

different molecular weight 
* Data not available for the whole year. Median value is in parenthesis. For Lackarebäck data is collected from Göteborgs Stad Kretslopp och 

Vatten (2017) 

During coagulation treatment, close to 50 – 60% DOC was removed in both DWTPs. This is 

expected from the SUVA values of the raw waters (Table 4-2), since 25-50% removal 

efficiency from waters having SUVA from 2 – 4 is found through previous research (Matilainen 

et al. 2010).  

Table 4-3: Average (4 weeks) results of DOC, UV254 and SUVA values measured at Lackarebäck and 

Marieberg DWTP 

 Lackarebäck DWTP Marieberg DWTP 

Sample 
DOCa (mg 

C/L) 

UV254
a (cm-1) SUVAa 

(L/mg/m) 

DOCa UV254
a (cm-1) SUVAa 

(L/mg/m) 

Incoming water to 

BAC filters 

3.85 ± 0.3 0.038 ± 0.003 0.98 ± 0.1 3.3 ± 0.2 0.056 ± 0.003 1.7 ± 0.13 

BAC filter effluent 

(ref. filter) 

3.54 ± 0.6 0.031 ± 0.003 0.84 ± 0.2 2.9 ± 0.4 0.05 ± 0.003 1.7 ± 0.15 

BAC filter effluent 

(modified filter) 

3.28 ± 0.4 0.027 ± 0.003 0.82 ± 0.17 2.7 ± 0.1 0.04 ± 0.002 1.5 ± 0.1 

Water quality Less SUVA, Less aromatic fraction Higher SUVA, more aromatic fractions 
a Mean value ± standard deviation, for n = 23 and 12 (raw water and coagulated settled water samples) for Lackarebäck and Marieberg DWTP, 

respectively 

From a combined PARAFAC model, the same FDOM components were found in both DWTP, 

indicating similarity in FDOM character despite different source waters. Modified BAC filters 

in both DWTPs had improved removal of DOC, SUVA, UV254 and FDOM components. Higher 

removal for UV254, SUVA and FDOM components was observed in Lackarebäck compared to 

Marieberg DWTP (Table 4-3, Figure 4-4).  

Lackarebäck had lower SUVA in the BAC filter influent, indicating higher biodegradability 

(Yapsakli & Çeçen 2010). Since UV-absorbing fractions are non-biodegradable and are 

removed by adsorption, their additional reduction indicate improved adsorption in modified 

filters compared to reference filters. Higher removal of the non-biodegradable fraction on fresh 
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GAC filter allows the biodegradable fraction to be better removed within the modified BAC 

filters. This is evident from improved reduction of microbially reprocessed humics (C2) and 

proteins (C3) which are removed via biodegradation. Higher removal for FDOM components 

in Lackarebäck DWTP (Table 4-3, Figure 4-4) can be caused by longer retention time within 

BAC filters in Lackarebäck than Marieberg DWTP (Table 4-2) which further assists in 

removing more NOM in Lackarebäck (Pramanik et al. 2015). Furthermore, Lackarebäck has 

pre-chlorination, which is known to produce smaller and more bioavailable NOM fraction from 

humic substances (Ji et al. 2008). These smaller size humics are both easily adsorbed and 

degraded within the modified filters resulting improved reduction of both C1 and C2 FDOM 

fractions (Matilainen et al. 2006).  

  

Figure 4-4: Removal efficiency of Identified PARAFAC component, DOC and UV254 by modified and 

reference filters in Lackarebäck (L) and Marieberg (M) (F4 and Rf5) drinking water treatment plant. 

(Average value over 4 weeks following GAC replenishment). 

DOC removal, on the other hand, was higher in Marieberg DWTP. Higher removal of DOC in 

this DWTP probably results from chlorinated backwashing of the BAC filters. Chlorinated 

backwashing diminishes microbial biomass within the biofilm, which then needs to build up 

again during the filter cycle period (Miltner et al. 1995). Degradation of DOC is higher during 

the build-up stage of biomass after chlorinated backwashing compared the mature biomass, at 

the steady state of the biofilm (that has not been through chlorinated backwashing) (Hozalski 

et al. 1995; Velten et al. 2011a).  

Overall, the proposed modification strategy improved the performance of NOM removal in 

BAC filters, regardless of source water characteristics and upstream treatment processes. Lower 

SUVA in the incoming water allowed for better removal of biodegradable NOM fractions by 

the modified BAC filters. 
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5 Conclusions and recommendations 

5.1 Summary and conclusions 
In this chapter the summary and conclusions regarding the modification of BAC filters using 

fresh GAC replenishment are presented. Some recommendations for the water industry based 

on the research questions are included, as well as suggestions for future research questions. 

A modification strategy to improve NOM removal by biologically activated carbon (BAC) filter 

is presented in this thesis. The strategy involves replenishing a small portion of saturated filter 

media with fresh filter media in order to improve NOM removal. Full-scale experiments, using 

three modified and two reference BAC filters, have been carried out (Paper I). Additionally, 

validation of the robustness of the modification strategy has been carried out by comparing two 

DWTPs with varying source water and coagulation treatment (Paper II). The modified filter 

was monitored to evaluate the effect of partial replenishment of BAC filters on NOM removal. 

Various NOM characterisation techniques like dissolved organic carbon (DOC) and optical 

measurement techniques (fluorescence and absorbance) were used to investigate the 

performance of modified and reference filters.  

A summary of the findings obtained is presented below: 

 Partial renewal of filter media with fresh GAC in BAC filters improved the removal of 

various NOM fractions. 

 The efficiency of GAC replenishment was monitored online using UV254. The online 

measurements showed that the adsorption capacity was enhanced for a period of 10-20 

days. Improved reduction of UV254 indicates that the filter effluent had lower aromatic 

groups and humic fractions. These fractions are preferentially removed by adsorption 

onto fresh GAC, accordingly, reduction of the UV absorbing NOM indicates improved 

adsorption onto the modified BAC filters. 

 Enhanced removal of the UV absorbing NOM indicated improved adsorption onto the 

modified BAC filters. UV absorbing NOM are known to indicate regulated disinfection 

by-products.  

 SUVA values decreased following GAC replenishment. A lower SUVA value is an 

indicator of higher biodegradability and lower aromaticity in the modified filter effluent.  

 From the fluorescence measurement, three NOM fractions were identified. Two 

fractions were humic-like (terrestrial humic-like and microbially reprocessed humic-

like) and one component was protein-like. Modified filters showed an improved 

removal of these identified fluorescent components. 

 Improved removal of absorbable (terrestrial humic-like) fluorescent NOM fraction 

further supported the reduction of UV absorbing NOM fractions and confirmed that 

adsorption capacity improved within the modified filters.  
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 Biodegradable (microbially reprocessed humics and protein-like) NOM fractions 

improved after GAC replenishment. Higher removal of biodegradable NOM fraction 

compared to absorbable fraction indicate that the biodegradation capacity improved 

significantly within the modified filters. 

 Reference filters were not good at removing DOC. Possibly due to desorption of already 

adsorbed DOC in the filters. Removal of DOC was higher after replenishment of BAC 

filters compared to reference filter. 

 HPSEC analysis showed that the removal efficiency of smaller molecular weight 

fractions (<500 kDa) was slightly better in the modified filters, and that the removal 

improvement was still evident 21 days after GAC replenishment. 

 Improved removal lasted for different periods in different DWTPs. Improved removal 

of humic substances were observed for 10-20 days in Marieberg DWTP and more than 

6 weeks in Lackarebäck DWTP. 

5.2 Recommendations for the water industry 
Based on work presented in this thesis, the following recommendations for the water industry 

are made: 

 Partial renewal of BAC filters can improve NOM removal for a certain period. 

However, DWTPs that utilise pre-chlorination will have longer enhanced NOM 

reduction by the modified filters. 

 During high production period when the DWTPs need to increase flow to the filters, it 

can be recommended to the DWTP operators to replenish the exiting BAC filters with 

fresh GAC to handle the extra flow in order to ensure good filtered water quality. 

 DWTPs that have less aromatic fractions (lower SUVA) in the incoming water to the 

filters will benefit more from replenishing their BAC filters. 

 The suggested modification strategy can be used during periods of expected high NOM 

loads. Such events could be after snow melt run off period (resulting in high fluorescent 

NOM and aromatic NOM), during heavy rain (high flow to the filters), algal blooms in 

source waters, or during lake turn- over period (indicated by high fluorescent NOM in 

incoming raw water). 
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5.3 Areas of future investigation 
In this study, the focus was to improve NOM removal in BAC filters by partially replenishing 

saturated filter media with fresh media. The evaluation of filter performance was based on 

NOM removal assessed by various NOM characterization techniques. GAC replenishment will, 

however, also influence the biofilm and microbial community that colonize the pores of GAC 

particles, but these effects were beyond the scope of this study. Future research should assess 

the effect of GAC replenishment on biological activity in the filter media using various 

techniques such as: 

 Scanning electron microscopy (SEM): SEM images can demonstrate the morphology 

of suspended filter material surfaces (Weber et al. 1978).  

 Adenosine triphosphate (ATP) measurement: ATP analysis can measure the detachment 

of the biomass as well as biological activity on the filter media (US EPA 1991; Servais 

et al. 1994).  

 Phospholipid fatty acid (PLFA) analysis: The changes of biomass and bacterial 

community in the BAC filters after GAC replenishment can be measured using this 

method (Findlay et al. 1989). 

In the current study, potential changes in sorption capacity of the filter media were not 

monitored. To improve our understanding of the changes in sorption capacity of the filters, 

iodine number (IN) and apparent surface area (SBET) should be monitored on a regular basis.  

NOM removal by GAC and BAC filters is controlled by the relationship between the molecular 

size distributions of NOM and pore size distribution of carbon (Newcombe 1994). To improve 

our understanding of the effects of partial GAC replenishment on BAC filters, the pore size 

distribution in the filter media, in addition to a comparison between different DWTPs, should 

be assessed. Finally, there is a need to investigate whether the positive effect of GAC 

replenishment on NOM removal by modified BAC, improved the reduction of DBP formation 

as well.  
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