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Systems Biology of the Secondary Metabolism in Filamentous Fungi 
Jens Christian Nielsen 

Department of Biology and Biological Engineering 
Chalmers University of Technology 

Abstract 

Filamentous fungi constitute a rich reservoir of pharmaceutically relevant bioactive small 
molecules. These compounds, commonly referred to as secondary metabolites, are widely 
used as antibiotics for the treatment of microbial infections, but also as other 
pharmaceuticals such as immunosuppressors, cholesterol lowering agents and anticancer 
drugs. Although fungal derived antibiotics have been known for almost a century, genome 
sequencing has revealed that the biosynthetic potential of fungi is not fully exhausted. 
The Penicillium genus consists of around 350 accepted species, and many of these are 
well-known producers of pharmaceuticals and industrially exploited for this. The genus 
as a whole, however, is grossly understudied at the genomic level. To assess the potential 
for secondary metabolite biosynthesis in the Penicillium genus, we sequenced the 
genomes of ten species that produce diverse arrays of secondary metabolites in culture. 
One of the sequenced isolates was described as a new species, and we mapped secondary 
metabolites detected in culture to the corresponding biosynthetic gene clusters. The ten 
sequenced genomes were analyzed together with published Penicillium genomes, 
altogether 24, and we developed a pipeline to group biosynthetic gene clusters and map 
them to known pathways. We found a large untapped potential for biosynthesis of 
secondary metabolites, encoded in the genomes of these species, that potentially could 
fill the drug discovery pipeline. Based on our predictions, we experimentally identified a 
novel compound from the antifungal class of antibiotics called yanuthones. 

Since heterologous expression of secondary metabolite pathways has proved 
troublesome, the ten genome-sequenced Penicillium species were evaluated as cell 
factories in controlled bioreactor fermentations. Compared to an industrially relevant 
strain, the ten Penicillium species showed growth characteristics that encourage further 
exploration of their industrial potential. Transcriptome analysis of six of the species 
enabled the identification of a metabolic network that is responsible for precursor 
formation of secondary metabolites. This network provides important insight into the 
further industrial development of Penicillium cell factories, and could be used in 
designing metabolic engineering strategies for optimization of secondary metabolite 
production. 

Altogether this thesis provides novel insights into genetic and metabolic aspects of fungal 
secondary metabolism. Our findings propose that industrial production of secondary 
metabolites can be effectively established on the basis of native producers. Penicillium 
species constitute a rich source of drug leads, and possess promising physiological 
characteristics to be established as industrial production platforms. 
Keywords: filamentous fungi, Penicillium, secondary metabolism, secondary 
metabolites, antibiotics, systems biology, genomics, next-generation sequencing, cell 
factories  
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“Science, my boy, is made up of mistakes,  

but they are mistakes which it is useful to make, 
because they lead little by little to the truth.” 

- Jules Verne, A Journey to the Centre of the Earth 
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Introduction

The discovery of antibiotics is largely associated with the famous and serendipitous 
discovery of the antibacterial property of a Penicillium mold by Alexander Fleming 
(Fleming 1929). Earlier on, Paul Erlich, had already hypothesized the idea of developing 
a “magic bullet” that selectively would target disease causing microbes and not the host, 
based on his observations that certain dyes could selectively stain different cell types (a 
precursor to gram-staining of bacteria). By applying a systematic screening approach 
testing the efficacy of synthetic arsenic derivatives on rabbits, Erlich developed Salvarsan 
in 1909, the first successful treatment for syphilis. Following Flemings discovery, of what 
today is known as the antibiotic penicillin, a race began on isolating and scaling up the 
production of this new antimicrobial compound. It was Chain and Florey who published 
the first purification of penicillin (Chain et al. 1940), and their work led to industrial mass 
production in 1945, the same year as they together with Fleming shared the Nobel Prize 
in Physiology or Medicine. As an immediate consequence of the realization that Erlich’s 
“magic bullets” could be derived from microorganisms, researchers started to do 
systematic screening for antimicrobials from microorganisms in what is known as the 
golden era of antibiotic discovery. One of the pioneers was Nobel Laureate Selman 
Waksman, who the conducted systematic screening of soil bacteria and identified more 
than 20 new antibiotics, including some that are in therapeutic use today (Kresge et al. 
2004). 
Already at an early stage, the problem that bacteria could develop resistance to antibiotics 
was realized, in particular from synthetic sulfonamide drugs developed in the 1930s. In 
his Nobel speech, Fleming warned about using too low doses of antibiotics to prevent 
development of resistance. Nevertheless, the occurrence of antibiotic resistant infectious 
microorganisms would develop in the years to come for virtually all antibiotics. At the 
same time, discovery of novel antibiotics started to become increasingly difficult, since 
most apparently new substances, turned out to be re-discoveries of known antibiotics, 
thus increasing the costs of development. As a consequence of increased developmental 
costs, and increasingly strict documentation requirements from the Food and Drug 
Administration (FDA), many pharmaceutical companies discontinued their development 
of antibiotics in the 80s and 90s (Davies and Davies 2010). Since the end of the golden 
age in the 1970s, no new classes of antibiotics have been developed (Aminov 2010). 
Today, the World Health Organization lists antibiotic resistant pathogens as one of the 
biggest threats to global health, food security and development (WHO 2017). One 
important reason for this is the continuous overuse and misuse of antibiotics from 
healthcare personnel and the agricultural sector. However, in order to reduce the usage 
of, in particular certain broad-spectrum antibiotics, which will render them useless in the 
future, there is a need to increase the antibiotics portfolio. This would allow for alternating 
between different antibiotics and thus distribute the use on a larger number of compounds, 
in order to reduce the selection for resistance against few highly used antibiotics. Further, 
more antibiotics would allow for restricting certain classes to human use only, while 
reserving others for animal treatment, to prevent untreatable pathogens being transmitted 
between animals and humans. 
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As a fellow in the Marie Curie ITN, QuantFung, I took part in an effort to unlock the 
potential of fungi as sources of bioactive compounds (Büttel et al. 2015). In particular, it 
intrigued me why the development of antibiotics has plateaued and what we can do to fill 
the antibiotics discovery pipeline. I was curious to investigate if natures reservoir of 
antimicrobials was exhausted or if unexploited niches could be identified. To study this, 
we employed genome sequencing of selected fungal species to assess known and 
unknown biosynthetic pathways, and evaluate the relevance of these pathways for 
production of novel antibiotics. To facilitate further development of industrial antibiotic 
production processes, we evaluated the performance of native fungal antibiotics 
producers as cell factories. This thesis aims at contributing to the development of novel 
antibiotics from biodiversity screening to industrial exploitation. 
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Background

Industrial biotechnology 

Biotechnology is a broad and multidisciplinary field that revolves around the 
technological exploitation of biological systems. In a broad sense, this can be expanded 
to include ancient microbial process such as production of fermented beverages, which 
dates back to the 7th millennium BC (McGovern et al. 2004). Further it could be argued 
that low level technological improvement of nature such as grafting of plants can be 
considered biotechnology. For a more tangible definition, the term biotechnology is 
commonly divided into different sub-fields defined by colors. The exact definition and 
number of colors of these sub-fields of biotechnology, are however, not fully agreed upon, 
and in an editorial in the electronic journal of Biotechnology, ten different colors, or sub-
fields of biotechnology were defined (DaSilva and J. 2012). More commonly, four colors 
are used to describe the main fields of biotechnology and each of these fields have some 
degree of overlap. The four colors of biotechnology described here are green, blue, red 
and white (Figure 1A). 

Green biotechnology has to do with applications related to agriculture, e.g. genetically 
modified (GM) crops. Although controversial, GM plants have the potential to increase 
nutritional values, sustainability of production and increase resistance to pests (Lucht 
2015). Blue biotechnology revolves around exploitation of marine resources, and possess 
a large potential, since the sea accounts for the greatest biodiversity and area of the earth 
(Querellou et al. 2010). Red biotechnology constitutes health related applications of 
biological systems, such as production of pharmaceuticals or biomedical solutions. 
Lastly, white biotechnology is the fields often referred to as industrial biotechnology and 
revolves around the production of chemicals using microorganisms or their derived 
products. 

The purpose of industrial biotechnology is to produce chemicals that are easily 
degradable, requires less energy to produce or plainly perform better than alternatives. 
These chemicals are produced through biological catalysis using either living cells in a 
fermentation processes, often referred to as cell factories, or using biologically derived 
constituents such as enzymes. White biotechnology is widely regarded to represent the 
next evolutionary step in production processes, and constitutes a sustainable alternative 
to classical petrochemical production, which is based on microbial conversion of 
renewable biomass into refined chemical products. The concept of industrial 
biotechnology is not new and has been applied for decades in the production of selected 
products such as amylases, citric acid and penicillin, because it has offered a feasible 
production process of the given products. 

Penicillin production is a prime example of biotechnological exploitation in the interface 
between red and white biotechnology. Penicillin production is carried out by filamentous 
fungi of the Penicillium genus, and has been the focus of great development and 
optimization through programs of random mutagenesis and selection for beneficial traits. 
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In recent years however, the technological advancements within several fields of biology, 
including sequencing and other omics technologies, and gene engineering, have 
dramatically increased our understanding of cell physiology and genetics. This increased 
understanding of biological systems can be exploited within the field of metabolic 
engineering, where rational genetic changes are implemented in cells to improve 
production capabilities, rather than relying on the stochastic nature of traditional 
mutagenesis methods. This approach holds a promising potential to change our society to 
a bio based economy where any chemical in the future could be produced in a feasible 
way from renewable resources using microbial cell factories. 
The field of metabolic engineering aims at applying rational genetic changes to an 
organism, in order to improve key parameters for industrial production such as the titre, 
yield and rate (Nielsen and Keasling 2016). Improving these parameters is often 
undertaken through the iterative cycle of metabolic engineering, where the phenotype of 
either a native producer or a platform cell factory, expressing a heterologous pathway of 
interest, is being optimized through the design-build-test-learn cycle (Figure 1B). Firstly, 
a design strategy is developed, which aims at rationally identifying changes of the genetic 
basis of a production organism that could lead to an improved phenotype. The aim of the 
design strategy could be to transfer a pathway to a new host, to improve product 
formation, or to modify properties of the cell such as increasing substrate range (Nielsen 
2001). Secondly, the build-step implements the genetic modifications and can benefit 
from modular synthetic biology parts and the versatility of CRISPR based methods for 
gene editing (Jakociunas et al. 2016). The physiology of the constructed organism is then 
evaluated in the test-step e.g. through cultivation experiments and analysis of omics data. 
In this step, it is tested whether the genetic alterations resulted in the desired traits. Lastly, 
the learn-step gathers the information from the test-step, in order to gain new insights into 
physiology and genetics of the organism, and this obtained knowledge can then be 
exploited in another round of the metabolic engineering cycle by designing a new 
optimization strategy. 

 

 
Figure 1. Overview of biotechnology and metabolic engineering. (A) Biotechnology is commonly divided into 
several partly overlapping sub-fields, which are defined by different colors. (B) The design-build-test-learn cycle of 
metabolic engineering for optimization of microbial cell factories. 
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Filamentous fungi 

Life-style, growth and taxonomy 

Filamentous fungi, or plainly mold in common English, constitute a large and diverse 
group of organisms within the kingdom of fungi that are characterized by filamentous 
growth. These organisms are of medical, ecological and industrial importance. In nature, 
filamentous fungi are ubiquitous, and can be isolated from a wide range of diverse 
environments and under highly varying conditions in terms of temperature, pH, water 
activity, etc. Many filamentous fungi are saprophytes, meaning that they live on dead 
organic matter, which they degrade through the secretion of enzymes, why they also play 
important roles in the ecosystem as principal decomposers. Another important 
characteristic affecting the ecosystem is the secretion of bioactive compounds, which are 
used as a means of communication with other organisms. Colonization of nutrient sources 
is achieved by growing in a network of branching tubes, hyphae, where transportation of 
nutrients between cells takes place through septate perforations (Webster and Weber 
2007). 

 

 
Figure 2. Filamentous fungi represented by a typical conidiophore of a monoverticillate Penicillium species. 
The terminology of different cell types of the conidiophore is indicated, and industrially important products are 
shown with arrows. 

Classification of fungi has been subject to much debate in recent years with sequencing 
technologies providing new insight into the time of divergence between organisms. 
Historically, however, fungi are classified based on spore formation characteristics, and 
they are divided into three classes: zygomycetes, basidiomycetes and ascomycetes. Many 
of the industrially relevant fungi belong to the group of ascomycetes, including 
Saccharomyces yeasts, and Penicillium and Aspergillus filamentous fungi. Ascomycetes 
reproduce either by sexual or asexual reproduction: during sexual reproduction, cells of 
opposite mating type, fuse and give rise to ascospores. In asexual reproduction, asexual 
spores called conidia, are generated in sporefoming structures called conidiophores 
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(Figure 2). For many fungi, sexual formation has not been observed, and fungal genera 
are therefore often defined based on characteristics of the conidiophores. For the genus 
of Penicillium, the brush-like shape of the spore forming units called phialides and 
conidia is a defining character that also gave rise to the name Penicillium meaning 
“painters brush” (Crous et al. 2009). Based on the number of branch points in the 
conidiophores, the Penicillium genus can be divided into two sub-genera: Aspergilloides 
with monoverticillate conidiophores (no branches) and Penicillium with biverticillate or 
terverticillate conidiophores (one or more staged branch points), and these sub-genera can 
be further divided into 25 different sections. The sub-genus Penicillium is the largest and 
include several industrially exploited species (Visagie et al. 2014). 

Industrial processes 

The industrial impact of filamentous fungi is of significant importance especially in the 
food industry where their usage goes several millennia back (Demain and Martens 2017). 
Arguably, the most studied genus of filamentous fungi is Aspergillus, likely attributable 
to a long history of industrial exploitation of the koji molds (A. oryzae and A. soyae) for 
production of Asian fermented food products. Production of the enzyme, a-amylase in A. 
oryzae was the first patented microbial enzyme (US Patent 525,823, 1894), and industrial 
citric acid production in A. niger dates back a century (Currie 1917). In addition, A. 
fumigatus, is a human pathogen causing Aspergillosis in immunocompromised 
individuals (Latgé 1999), and A. nidulans has been widely used as a model system to 
study filamentous fungi since the 1950s (Pontecorvo et al. 1953). 

The Penicillium genus is phylogenetically closely related to Aspergilli and is also being 
widely used in industrial settings. Industrial applications of Penicillia include: (i) 
manufacturing of fermented food products such as blue veined cheeses using P. 
roqueforti and bloomy rind cheeses using P. camemberti (Cheeseman et al. 2014), (ii) P. 
nalgiovense is used as a starter culture in fermented dry sausages (Ludemann et al. 2009), 
(iii) production of lignocellulolytic enzymes (Liu et al. 2013a) and (iv) production of 
bioactive small molecules, which can be used in the pharmaceutical industry (Frisvad et 
al. 2004). Further, Penicillia play an important role in mediating phosphate to plants (Chai 
et al. 2011), which has great impact on agriculture (Richardson and Simpson 2011). As 
previously mentioned in the Introduction, it was a Penicillium colony that Fleming found 
as a contaminant on his bacterial agar plates, and the genus have since attracted attention 
owing to its potential for production of drug leads from the group of compounds referred 
to as secondary metabolites. 

Secondary metabolism 

Introduction to secondary metabolism 

Metabolism can be broadly defined as the set chemical transformations taking place 
inside living cells, with the majority of these being catalyzed by enzymes (Nielsen 2017). 
Arguably, the overshadowing goal of metabolism is to generate the necessary building 
blocks that allow an organism to proliferate. This is achieved through uptake of nutrients 
and transformation of these into energy and precursor units for the synthesis of 
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macromolecules such as proteins, nucleic acids, lipids and carbohydrates. These essential 
processes comprise, in most organisms, what is usually referred to as metabolism. 

However, some species, often constrained to specific taxonomical lineages, have evolved 
additional metabolic features, which are not essential for growth or survival in the 
organism, and hence is referred to as secondary metabolism (this definition has proved 
limited, although it mostly holds true). The chemicals resulting from the secondary 
metabolism are referred to as secondary metabolites or natural products, and constitute a 
group of structurally diverse compounds. Some of the most prolific secondary metabolite 
producers include Actinobacteria, plants and filamentous fungi (Bérdy 2005). The 
ecological function of most secondary metabolites is unknown, but they are generally 
believed to be used as a means of communication, and to confer the producing organism 
with a fitness advantage that renders it better adapted to a given, often stressful, 
environment (Romero et al. 2011). Sometimes the ecological function of secondary 
metabolites can be deduced from the activity of the compounds. For example, some 
secondary metabolites are pigments, like melanin in Penicillium species, which is 
responsible for the coloring of the spores. This has been hypothesized to be a means of 
blocking ultra-violet irradiation from the sun, to avoid mutations (Butler and Day 1998). 
Other secondary metabolites such as terrein from A. terreus are chelators, and function 
as metal scavengers that are produced in nutrient scarce environments (Gressler et al. 
2015). Lastly, many secondary metabolites exhibit bioactivities and are likely a means to 
fight off predators or competitors by killing them or inhibiting their growth (Rohlfs and 
Churchill 2011). 

 

 
Figure 3. Industrially important fungal secondary metabolites. Aside from antibiotics, fungal secondary 
metabolites are used as other pharmaceuticals such as immunosuppressants and anticancer drugs, and as food 
colorants. 

Industrial applications of secondary metabolites 

From a pharmaceutical point of view, secondary metabolites with biological activity are 
interesting candidates for drug leads (Figure 3). Many compounds from fungi possess 
antimicrobial activities such as the b-lactam antibiotics penicillins and cephalosporins 
(Brakhage 1998), as well as the antifungal griseofulvin (Finkelstein et al. 1996). 
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Pharmaceutical applications of fungal secondary metabolites, however, goes beyond 
antibiotics and include immunosuppressants such as mycophenolic acid (Stassen et al. 
2007) and cyclosporins (Sallam et al. 2005), cholesterol lowering drugs such as statins 
(Barrios-González and Miranda 2010) and anticancer drugs such as taxol (Yang et al. 
2014). Aside from pharmaceutical properties, some fungal secondary metabolites can be 
exploited as natural colorants, such as monascorubrin and its derivatives which are 
produced by Monascus species and are widely used as dyes in the food industry (Woo et 
al. 2014). Altogether, fungal derived secondary metabolites constitute an important multi-
billion dollar industry (Hillman et al. 2017). 

Secondary metabolite biosynthesis 

One of the explanations for the diverse industrial applications of secondary metabolites, 
relates to the structural diversity of the chemicals (Figure 3). In spite of this diversity, 
secondary metabolites are derived from a limited number of precursors from the primary 
metabolism. The main fungal secondary metabolites are polyketides (PK) derived from 
short chain carboxylic acids, and non-ribosomal peptides (NRPs) derived from amino 
acids (Keller et al. 2005; Nielsen et al. 2017) (Figure 4). Secondary metabolites are 
polymers of these precursors, that are linked together using polyketide synthases (PKSs) 
or non-ribosomal peptide synthetases (NRPSs) and the resulting chemical structures are 
subsequently modified by various tailoring enzymes such as oxygenases and transferases, 
to confer additional structural functionality to the final product. Secondary metabolite 
pathways are often coexpressed with a transporter to facilitate secretion of the final 
product and to detoxify the cell from bioactive intermediates or end-products. Other self-
protection mechanisms include genes encoding an unsusceptible version of the enzyme 
targeted by the chemical products of the pathway (Regueira et al. 2011). The genes 
encoding secondary metabolite biosynthesis pathways tend to cluster in the genome in 
biosynthetic gene clusters (BGCs) (Figure 5A). 
The precursors for secondary metabolites are highly connected in metabolism where they 
are used for the biosynthesis of macromolecules, energy and co-factors (Nielsen 2014). 
Specific environmental stimuli can activate expression of specific secondary metabolite 
pathways, and direct carbon flux towards their biosynthesis (Figure 4). This is controlled 
by transcription factors, such as the global transcriptional regulator, the velvet complex 
(VeA), that regulates both secondary metabolism as well as other processes such as sexual 
development (Bayram et al. 2008). Such global regulators further control the expression 
of either specific pathways or other transcription factors that are pathway specific and 
often belong to the zinc cluster family of transcription factors (Shelest 2008). These 
pathway specific regulators also ensure concerted expression of pathway genes. In 
addition to PKS and NRPS pathways, less frequent, but equally important secondary 
metabolite pathways include the ones synthesizing terpenoids, alkaloids, as well as 
hybrids between different classes (Hoffmeister and Keller 2007). 

There are a number of metabolic routes generating acetyl-CoA and amino acids in fungi, 
and since many secondary metabolites are only produced during starvation; breakdown 
might be an important mechanism to generate precursors for the biosynthesis of 
secondary metabolites (Figure 4). Roze et al. (2010) suggested the breakdown of 
branched chains amino acids (BCAAs) (isoleucine, leucine and valine) and fatty acids, 
through b-oxidation to be some of the main contributing pathways that provide acetyl-
CoA for the biosynthesis of PKs in Aspergilli (Roze et al. 2010). 
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Figure 4. Overview of metabolism. Nutrients are taken up and converted into precursor metabolites through the 
process of anabolism. These precursors are transformed into macromolecules to generate biomass for growth. 
During nutrient limited conditions precursors can be regenerated through catabolism of macromolecules and 
repurposed in the cell. External stimuli can induce secondary metabolism and direct flux of precursor metabolites 
towards generation of secondary metabolites. Acetyl-CoA and amino acids are important building blocks for 
macromolecules and secondary metabolites. 

Architecture of biosynthetic enzymes 

The PKS and NRPS backbone genes, which products catalyze the committed step in 
secondary metabolite biosynthetic pathways, are modular and multidomain 
megaenzymes. PKSs are divided into different sub-classes depending on the specific 
mechanism of action. Fungal PKSs are type 1 iterative PKSs, which consist of a single 
module of catalytic protein domains that work in an iterative fashion and are 
evolutionarily related to vertebrate fatty acid synthases (Smith and Tsai 2007). In a 
minimal type I PKS, the protein domains include an acyltransferase (AT), a ketoacyl 
synthase (KS), an acyl-carrier protein (ACP), a starter ACP transacylase (SAT) and a 
thioesterase (TE) (Figure 5B). The starter unit, often acetyl delivered by the enzyme 
CoA, is recognised by the SAT domain and then loaded onto the KS domain. An extender 
unit, often malonyl delivered in its CoA form, is bound by the AT domain and fused to 
the starter unit through a C-C bond forming Claisen condensation catalyzed by the KS 
domain and driven by the decarboxylation of the extender unit. This acyl chain is then 
transferred to ACP that moves the growing carbon backbone between active sites. Either 
another round of elongation is performed, or the acyl chain is transferred to the TE domain 
and released from the enzyme. The length of the growing chain, and thus the number of 
iterations performed has proved to be correlated to the volume of the active site of the KS 
domain (Yadav et al. 2009). The resulting non-reducing PKs forms aromatic structures. 
The optional part of PKSs include the reducing domains enoyl reductase (ER), 
dehydratase (DH) and β-ketoacyl reductase (KR). These domains act on the β-keto group 
of the acyl chain, which can be partially reduced or fully reduced, based on the presence 
of these domains in the PKS and the activity of the domains during different iterations. 
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Thus, during chain elongation, the keto group on the b-carbon is either retained, reduced 
to a hydroxyl group or reduced to an enoyl group along the acyl chain (Figure 5B). The 
main difference between PKSs and fatty acid synthases is that reduction of the b-carbon 
is optional on PKSs. 

 

 
Figure 5. Overview of secondary metabolite biosynthetic gene clusters (BGCs). (A) Typical BGC and the most 
common classes of genes present. (B) Protein domain architecture and catalytic principle of PKS and NRPS 
backbone genes catalyzing the formations of PKs, and NRPs, respectively. See text for abbreviations of protein 
domains. 

NRPSs are characterized by their large size, which in most organisms constitutes the 
longest amino acid sequences in the proteome, being several thousand amino acids long. 
Their modular organization show similarity to that of PKSs, although substrates differ 
considerably in being amino acids. A minimal NRPS contain a condensation (C) domain, 
an adenylation (A) domain, a peptidyl carrier protein (PCP), and a 4´phosphopantetheine 
(4´PP) dependent transferase (PPT) (Figure 5B). The A domain is amino acid specific 
and selects a given amino acid, that is activated by hydrolysis of ATP to form an 
aminoacyl adenylate, which is then bound to a 4’-PP cofactor thiol group attached to the 
PCP domain. Two aminoacyl adenylates are fused by the C-C bond forming condensation 
reaction catalyzed by the C domain (Sieber and Marahiel 2005). NRPS modules can work 
in an iterative manner where the same A, C and PCP domains continuously increase the 
peptide chain length, or a number of modules can work in sequence to yield the final 
peptide (Yu et al. 2017). Optional domains include methyltransferases (MT), and 
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epimerases (E) that are responsible for methylation and chirality changes of the amino 
acids, respectively. 

Gene clustering 

As previously mentioned, a central trait for the genes encoding secondary metabolite 
biosynthetic pathways, is that they tend to physically cluster in a single locus in the 
genome in BGCs (Smith et al. 1990). Gene clustering of metabolic pathways is not 
common in eukaryotes, possibly because of the associated risk of losing an entire essential 
pathway if part of a chromosome is lost. However, in bacteria, pathway genes are often 
clustered in operons, which has been proposed to be attributed to a selfish property of the 
genes, as they are more likely to survive horizontal transfer if all pathway members are 
acquired at once (Lawrence and Roth 1996). It has been shown that many fungal BGCs 
originate from bacteria and have been acquired through horizontal gene transfer (HGT), 
and thus could explain the gene clustering in fungi (Wisecaver and Rokas 2015). Since 
secondary metabolites are not essential, there might not be a strong selective pressure to 
distribute the pathway genes in the genome. The gene clustering might also serve as an 
advantageous trait for rapidly evolving new secondary metabolite pathways. The genomic 
loci of BGCs have been proposed as “evolutionary playing fields” where mutations would 
allow rapid evolution to generate new and useful compounds, without the risk of harming 
the host by disrupting essential genes (Lind et al. 2017). In support of this notion, it has 
been shown that BGCs often localize in the sub-telomeric region of the chromosomes 
(McDonagh et al. 2008; Palmer and Keller 2010), which are regions with a low frequency 
of essential genes, hence allowing for evolutionary changes to occur without harming the 
host. 

Genome mining of secondary metabolism 

The genome era reached filamentous fungi in the mid 2000s, with Neurosporra crassa 
being the first genome sequenced representative in 2003 (Galagan et al. 2003). This was 
followed by the release of three Aspergillus genomes in a single issue of Nature in 2005 
(Galagan et al. 2005; Machida et al. 2005; Nierman et al. 2005). An important finding 
emerged from the analysis of these genomes, as it was clear that the number of secondary 
metabolite BGCs was far greater than the number of compounds produced, effectively 
demonstrating a yet unexploited biosynthetic potential encoded in the genomes of these 
organisms. This led to the notion that the majority of secondary metabolite BGCs are 
silent under standard laboratory conditions (Bok et al. 2006).  

Following the discovery of silent BGCs, a number of different bioinformatics tools have 
been developed to automatically identify BGCs in genomes (Medema and Fischbach 
2015; Ziemert et al. 2016). The bioinformatics approaches for the discovery of BGCs, 
generally, utilize the convenient trait of gene clustering to identify all genes encoding a 
single pathway. By sequence analysis, e.g. using Hidden Markov Models (HMMs), a 
genome can be screened for known backbone genes such as PKSs, NRPSs, terpene 
cyclases etc. From these, the extent of a BGC can be estimated based on the presence of 
common biosynthetic genes in the vicinity of the backbone gene. These algorithms, 
identifies, with high confidence and fully automated, BGCs of the common classes, 
PKSs, NRPSs etc., although prediction of BGC boundaries is troublesome and 
determination of the gene members encoding a pathway requires manual curation and/or 
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experimental investigations. A number of tools have been implemented using the strategy 
described above with SMURF (Khaldi et al. 2010) and antiSMASH (Medema et al. 2011) 
as the most successful examples, and recently the cluster boundary predictions have been 
improved by incorporating analysis of conserved promoter motifs in fungal BGCs (Wolf 
et al. 2016). Other types of algorithms for BGC prediction are motif independent and thus 
allow for the identification of unknown classes of BGCs, either by investigating 
coexpression patterns of clustered genes (Andersen et al. 2013; Umemura et al. 2013), 
comparative genome analysis (Takeda et al. 2014) or machine learning strategies based 
on the frequency of PFAM domains (Cimermancic et al. 2014). With genome mining for 
BGC identification, secondary metabolite research has opened up for applying systems 
biology tools in the study of secondary metabolism. 

Systems biology and omics 

The paradigm of systems biology 

Systems biology is a computational discipline that aims at studying biological systems as 
a whole and applies data integration and mathematical modeling to gain insight (Nielsen 
2017). Being it interactions between organisms in a biological niche, interactions between 
tissues in higher organisms or interactions of enzymes and metabolites in a cell, systems 
biology integrates global information to identify emerging properties of the system. The 
concept of emerging properties is a central dogma of systems biology, and defines the 
phenomena occurring from interactions of the components of a biological system that 
cannot be deduced based on the function of the components alone. This is important 
because biological systems rarely consist of individual parts that act autonomously, but 
rather is composed of a range of heterogenic constituents that are interdependent and 
interconnected. The systems biology paradigm, as defined by Kitano (2002a), represents 
a holistic approach and stands in contrast to traditional reductionist biology, that dissects 
biological systems and studies their individual components (Kitano 2002a). 
Reductionism is a useful approach to describe the constituents of a system, but is limited 
in explaining the system as a whole. In this thesis, the biological system in focus is the 
cell. Reductionist biology has, through the use of molecular biology, provided insights 
into the function of cellular constituents such as genes, transcripts, proteins, metabolites, 
compartments and membranes, and this has provided the foundation for systems biology 
studies that integrates the accumulated knowledge to study the cell. 
Systems biology is often divided into two different approaches: the bottom-up and the 
top-down approach. The bottom-up approach derives detailed models, e.g. about a 
biochemical pathway, and requires manual curation and a thorough prior description of 
the individual components of the system. The top-down approach has been used in this 
thesis and integrates systems level characterization or quantifications of collections of 
biological entities, from high throughput technologies, what is often referred to as omics 
data. Omics data can represent a multitude of different biological sources and techniques, 
and one of the most established omics technologies is transcriptomics, which quantifies 
all mRNA transcripts in a single cell or a population of cells, the transcriptome. Similarly, 
other types of omics technologies include genomics, proteomics and metabolomics. The 
inclusive and integrative nature of top-down systems biology and the identification of 
emerging properties, makes it a data-driven discipline that is hypothesis generating. A 
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common example would be the comparison of cellular responses to different conditions 
and applying statistical and clustering methods to extrapolate patterns in the data that 
define a given perturbed state of the cell. The hypothesis generated from systems biology 
needs to be validated experimentally and the experimental results can then be used to 
improve the description of a biological system that has increased predictive or descriptive 
power, and can be applied for further systems level studies. Kitano (2002b), described 
this as the systems biology research cycle (Kitano 2002b). 

Integrative analysis of omics data 

As a consequence of technological developments, the generation of omics data is getting 
cheaper and faster. In particular within nucleic acid sequencing where the massive 
parallelisation of small sequencing tasks represents what is referred to as next-generation 
sequencing (NGS). The sequencing of short DNA fragments, provides information about 
parts of a nucleotide sequence, and the connections between these fragments can be 
inferred using computational algorithms, that use nucleotide overlaps to assemble the 
original sequence. 
These NGS techniques allow for generation of a range of omics data, such as 
metagenomics, epigenomics and exome sequencing, which are all different variations of 
applying NGS to different samples or enrichments of samples (Rizzo and Buck 2012). 
Most commonly, however, NGS is used for genome sequencing and transcriptome 
sequencing (RNA-seq). 
Genome sequencing provides information on the order of nucleotides in a genome, a 
chromosome or part of a chromosome referred to as a scaffold or contig. Often, the aim 
is to identify coding regions of a DNA sequence in order to functionally annotate the 
genes based on homology to other sequences. A useful application of a genome is to 
benchmark it against other genomes, what is known as comparative genomics. Here the 
presence, absence or variation in sequences can form the basis for identifying function or 
phylogeny between genes or genomes. Comparative genomics and phylogenomics can 
be used in identifying pathways by mapping phenotypic data to phylogenetic trees, and 
correlating this with gene presence or absence. Fungi are particularly useful for this due 
to their manageable genome size, evolutionary divergence and phenotypic variation 
(Sardi and Gasch 2017). 

RNA-seq is probably the most established omics technology used to study the dynamic 
aspects of cell physiology. This owes largely to the price of sequencing and the 
standardization of the associated analysis protocols. Transcriptome sequencing data can 
either be mapped to a reference genome, and thus benefits from previous annotation 
efforts, or it can be assembled de novo. The most common application of transcriptome 
data is statistical analyses, such as differential expression analysis that identifies the main 
affected genes when comparing different conditions. Given the complexity of cellular 
physiology, isolated functional information about genes differentially expressed, provide 
limited information of the cell as a system, why contextualization in gene sets is useful 
in the evaluation of the cellular response to a treatment. 

The Gene Ontology (GO) terms, aims at providing a vocabulary for gene products, that 
is dynamic and generally applicable across organisms, and it is frequently used in analysis 
of omics data (Ashburner et al. 2000). GO terms are organized as a directed acyclic graph 
where each term has a defined relationship to connected terms and thus is representing a 
hierarchy of information. Other annotations include Clusters of Orthologous Groups 
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(COGs) describing bacterial gene products (Tatusov et al. 2000) or the corresponding 
eukaryal annotation, euKaryotic Orthologous Groups (KOGs) (Tatusov et al. 2003). A 
number of  databases exist, that link genes to metabolic pathways or reactions, such as 
the Koyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al. 2016) and the 
MetaCyc database (Caspi et al. 2014). Such mapping of gene functions can be used in 
connection with enrichment analysis to assess which cellular functions are driven by a 
group of genes, e.g. the differentially expressed (Väremo et al. 2013). 

Metabolic modeling 

Metabolism constitutes a network of interwoven biochemical reactions that are not easily 
interpreted by humans. Given sufficient prior knowledge of an organism, this network 
can be reconstructed at the genome-scale, and the metabolic flux through such a network 
can be simulated with computers in genome-scale metabolic models (GEMs) (Price et al. 
2004). The foundation of a GEM is the functional annotation of the genes in an organism, 
and connecting these to the biochemical reactions catalyzed. This can be arranged in a 
stoichiometric matrix that provides a comprehensive and quantitative description of the 
metabolic capabilities of a cell and associates genes to reactions and metabolites. Flux 
balance analysis (FBA) is a modeling concept that can be used to simulate the fluxes in a 
metabolic network given an objective function. The objective function can vary, but 
commonly an artificial biomass function is maximized, based on the idea that 
microorganisms have evolved to maximize their growth rate (Orth et al. 2010). Aside 
from simulations, GEMs can be used for topological analysis of metabolism, by 
integrating omics data. This allows for extracting subnetworks that are metabolic hotspots 
of the perturbations studied. One example of this, is the extraction of reporter features, 
such as metabolites, that are overrepresented among the reactions catalyzed by affected 
genes of interest, e.g. differentially expressed genes (DEGs) (Patil and Nielsen 2005). 
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Part I: Mapping the biosynthetic 
potential of Penicillium using 
genomic

Within recent years, the field of fungal genomics has experienced exciting development 
and an increasing level of attention. A main driver of this has been the 1000 fungal 
genomes project which was initiated with the aim of exploring the genomic diversity 
within the fungal kingdom (Grigoriev et al. 2014). As part of the project, sequencing of 
the Aspergillus genus constituting approximately 350 species is being undertaken (Brandl 
and Andersen 2017). This will provide evidence about the diversity of this industrially 
and medically important genus. A recent genomic study of 19 different Aspergillus 
species provided a thorough investigation into several aspects of Aspergillus biology, and 
linked phenotypes to genotypes for a number of traits (de Vries et al. 2017). In particular, 
secondary metabolite BGCs were identified across species, and there was overall a good 
correlation between production of secondary metabolites and identification of the 
corresponding BGCs. 
In comparison, the Penicillium genus is understudied at the genomic level, and this is 
surprising considering the industrial importance of Penicillia. As part of this PhD project, 
we performed genome sequencing of ten Penicillium species. The species were selected 
in a collaboration with Professor J. C. Frisvad and Associate Professor M. Workman from 
the Technical University of Denmark (DTU), with the aim of capturing the full spectrum 
of phylogenetic diversity of the Penicillium genus and to select species with strong 
capabilities for production of diverse arrays of secondary metabolites. 

The genome sequencing provided the basis for investigations into Penicillium genomics 
with particular focus on secondary metabolism. In this part of my thesis, I will describe 
these efforts which constituted analyses to obtain a holistic view of the biosynthetic 
potential of Penicillia through genome mining. The contents of three publications which 
have revolved around this topic, will be described in the following, starting with a review 
on different strategies for linking BGCs to secondary metabolites (Paper I). This is 
followed by a case story where we combined metabolite profiling and genome sequencing 
to identify BGCs responsible for the biosynthesis of secondary metabolites produced by 
a new fungal species, Penicillium arizonense (Paper II). Lastly, I will describe a genus 
wide investigation of Penicillium where we analyzed the diversity of the secondary 
metabolism across 24 different Penicillium species, and used this to gain insights into the 
evolution of BGCs and production of novel secondary metabolites (Paper III). 
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Paper I: Linking genes to secondary metabolites 

The combination of an increasing number of sequenced genomes, and the development 
of automated genome mining algorithms for the identification of BGCs, has sparked the 
community with excitement that a second golden age of antibiotics discovery is on the 
rise (Medema and Fischbach 2015). This promise has yet to be fulfilled, and part of the 
explanation is the challenge of the down-stream analysis of linking identified BGCs to a 
metabolic pathway or chemical end-product. In Paper I, we reviewed different strategies 
for linking BGCs to pathways and define them as: targeted or untargeted approaches. 

Targeted approaches 

When the aim is to connect a single BGC to a compound (or vice versa), targeted 
approaches can be applied. This is low-throughput and benefits from expert knowledge 
on biosynthetic mechanisms. 
One simple approach is to identify two or more genome sequenced organisms producing 
a compound of interest, and then evaluate whether these organisms share any backbone 
genes that could be responsible for the synthesis of the given class of compounds i.e. 
PKSs for PKs, NRPSs for NRPs etc. Shared backbone genes between organisms can be 
identified by sequence similarities of either the full translated protein sequence or based 
on specific conserved protein domains (Cacho et al. 2015). Another approach is to use 
retrosynthesis, which aims at deducing the specific enzymes needed for the synthesis of 
a given compound, for example by evaluating if a PK is reduced, and comparing that to 
the number of reducing domains in PKSs (Cacho et al. 2015). A combination of 
comparative genomics and retrosynthesis is often needed to pinpoint a BGC of interest. 
These targeted approached were successfully used in the identification of the BGCs 
responsible for the synthesis of the industrially important secondary metabolites 
griseofulvin (Chooi et al. 2010) and tryptoquialanine (Gao et al. 2011) in P. 
lanosocoeruleum. 
Another piece of information that can be used in deducing a match between a BGC and 
a compound is the presence of self-resistance genes, which have been proved to co-
localize with the pathway genes in some BGCs. This information was utilized to identify 
a BGC responsible for mycophenolic acid biosynthesis in P. brevicompactum where a 
duplicated version of the mycophenolic acid target enzyme, IMP dehydrogenase, encoded 
an unsusceptible version that conferred self-resistance to the organism (Regueira et al. 
2011). More recently, a BGC in A. nidulans containing a gene encoding an extra copy of 
a proteasome subunit was identified, and the end-product of the pathways proved to be 
the proteasome inhibitor fellutamide B (Yeh et al. 2016). 

Untargeted approaches 

Above-mentioned targeted approaches are labour intensive and unfeasible for exhaustive 
annotation of BGCs from many genomes. Thus, an appealing thought is to generalize the 
targeted approaches, through algorithmic implementation. Recent studies have made 
great progress in development of computational retrosynthesis, which has been integrated 
in an automatic workflow to correlate gene structures to enzymatic activities encoded in 
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BGCs (Dejong et al. 2016). Similarly, identification of resistance genes has been 
suggested to be exploitable for genome mining of BGCs encoding compounds with 
specific properties (Tang et al. 2015; Ziemert et al. 2016). This approach is applied by 
the Antibiotic Resistant Target Seeker (ARTS) that use self-resistance genes to prioritize 
computationally detected BGCs with putative antibiotic activity (Alanjary et al. 2017). 
Annotating the function of BGCs has been enabled in recent years with the development 
of well-annotated databases with sequence information of BGCs. The most inclusive 
database is IMG-ABC from the Joint Genome Institute (JGI), which contains more than 
one million automatically mined BGCs, however the majority of these are orphan 
(Hadjithomas et al. 2015). Conversely, the MIBiG database contains only BGCs that have 
been linked to an end-product, but the total number of BGCs is also considerably smaller 
(1393 BGC) (Medema et al. 2015). The MIBiG database has further defined the minimum 
information about a BGC, which ensures appropriate annotation of new BGCs, enables 
efficient parsing of the database and facilitates user entry of new items, thus reducing the 
maintenance and increases the chance of continuation and growth of the database. 
Another community driven database was previously attempted with the clustermine360 
database (Conway and Boddy 2013), but maintenance seem to have been discontinued. 
Reflecting the literature, these databases are dominated by bacterial entries, however, a 
dedicated effort to include more fungal sequences used text mining to add an additional 
197 BGC of fungal origin to the MIBiG database (Li et al. 2016). 

In order to utilize such databases to group BGCs, a similarity metric is needed. Early 
genomics work on the comparison of fungal type 1 PKSs was conducted by Kroken et al. 
(2003) who showed that the KS domains of PKS were conserved and well suited for 
inferring the phylogenetic relationship between PKSs (Kroken et al. 2003). Similarly, C 
domains of NRPSs have shown to be informative with respect to enzyme architecture and 
function (Rausch et al. 2007). Ziemert et al. (2014) used these KS and C domains to assess 
the similarity between PKSs and NRPSs in bacteria of the Salinispora genus (Ziemert et 
al. 2014). More advanced methods enables comparison of BGCs beyond the ones 
containing PKSs and NRPSs, and use the number of shared PFAM domains between 
BGCs, (Cimermancic et al. 2014), or a combination of different similarity metrics 
(Doroghazi et al. 2014). This allows for grouping of BGCs into gene cluster families 
(GCFs) encoding the same or related pathways. Such GCFs can be mapped to database 
entries to annotate the corresponding pathways. 
In Paper II we applied a targeted approach to link secondary metabolites detected in 
culture extracts, to the corresponding BGCs in P. arizonense. In Paper III we applied an 
untargeted approach to link BGCs in 24 species, to chemical compounds, using the 
MIBiG database. 
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Paper II: The secondary metabolism of 
Penicillium arizonense 

Genome sequencing was conducted of a fungal isolate that we proposed as a new species 
within the Penicillium genus: Penicillium arizonense Frisvad, Grijseels and J.C. Nielsen, 
sp. nov. The isolate was obtained from red soil in Grand Canyon, South Rim, Arizona, 
USA in July 1990. We described the morphology of the species and conducted a genomic 
and chemical characterization that indicated a large potential of P. arizonense for 
production of new enzymes and secondary metabolites. 

A new species within section Canescentia 

Preliminary morphological analysis suggested that P. arizonense was related to species 
from section Canescentia. We decided to assess its phylogeny compared to other species 
of this section, based on four nucleotide marker sequences, the internal transcribed spacer 
(ITS) region, the b-tubulin (BenA) gene, the calmodulin (CaM) gene and the RNA 
polymerase II second largest subunit (RPB2) gene, which are recommended for assessing 
Penicillium phylogeny (Visagie et al. 2014). A concatenated maximum likelihood tree 
based on the marker sequences confirmed P. arizonense as grouping in section 
Canescentia with P. yarmokense as closest relative (Figure 6). 

 

 
Figure 6. Phylogenetic tree of Penicillium species in section Canescentia. The phylogeny was inferred as a 
maximum likelihood tree using the concatenated sequence of four nucleotide marker sequences (ITS, BenA, CaM 
and RPB2). Bootstrap support is given as percent based on 1000 bootstrap replicates and only indicated in nodes 
having more than 80% bootstrap support. Scale bar indicates the mean expected substitutions per site.  

The P. arizonense genome is the first published representative of section Canescentia, 
and the paper is to the best of our knowledge, the first description of a new fungal species 
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which is published together with its genome sequence. This sets a standard for future 
species description efforts to provide genome sequencing information as well. 

Large arsenal of degradative enzymes 

Section Canescentia has proved to contain species that are efficient producers of 
lignocellulolytic enzymes, in particular xylanases as seen in P. canescens (Bakri et al. 
2003) and P. janczewskii (Terrasan et al. 2010). In order to evaluate if P. arizonense 
possessed potential for production of similar industrial enzymes, we annotated 
Carbohydrate Active enZymes (CAZys) in its genome as well as in related species known 
for production of hydrolytic enzymes or model organisms (Figure 7).  
 

 
Figure 7. Carbohydrate Active enZymes (CAZys) in filamentous fungi. For all CAZys the presence of a 
secretion signal was detected, grouping them into secreted or non-secreted. GH: Glycoside Hydrolase; GT: Glycosyl 
Transferase; CE: Carbohydrate Esterase; PL:  Polysaccharide Lyase; AA: Auxiliary Activities. 

Interestingly, P. arizonense was the species with the highest number of glycoside 
hydrolase (GH) proteins encoded in its genome. GHs breaks glycosidic bonds between 
carbohydrates, and are of relevance for degradation of complex biomass e.g. for 
production of biofuels (Liu et al. 2013a). Based on evaluation of secretion signals, P. 
arizonense was further found to contain the highest number of secreted GHs, together 
with A. oryzae whose capabilities to secrete enzymes is industrially exploited 
(Christensen et al. 1988). The most important industrial producer of cellulases 
Trichoderma reesei, proved to encode few GHs in agreement with previous observations 
(Martinez et al. 2008). Recently, Penicillia have been suggested to be promising 
producers of lignocellulolytic enzymes, due to increased protein production and 
hydrolytic performance of Penicillium enzymes compared to T. reesei (Gusakov 2011). 
Whether the high number of GHs identified in P. arizonense have high hydrolytic activity 

GH GT CE PL AA

0

100

200

300

P. a
riz

onen
se

A. o
ryz

ae

A. n
ige

r

P. ru
be

ns

P. o
xa

licu
m

T. re
es

ei

A. n
idu

lan
s

P. a
riz

onen
se

A. o
ryz

ae

A. n
ige

r

P. ru
be

ns

P. o
xa

licu
m

T. re
es

ei

A. n
idu

lan
s

P. a
riz

onen
se

A. o
ryz

ae

A. n
ige

r

P. ru
be

ns

P. o
xa

licu
m

T. re
es

ei

A. n
idu

lan
s

P. a
riz

onen
se

A. o
ryz

ae

A. n
ige

r

P. ru
be

ns

P. o
xa

licu
m

T. re
es

ei

A. n
idu

lan
s

P. a
riz

onen
se

A. o
ryz

ae

A. n
ige

r

P. ru
be

ns

P. o
xa

licu
m

T. re
es

ei

A. n
idu

lan
s

N
o
. 
o
f 

C
A

Z
y
s

Secretion

No
Yes



Part I: Mapping the biosynthetic potential of Penicillium using genomic 

 20 

cannot be determined based on our genomic data, but thus far our data serves as an 
interesting starting point for further studies of potential industrial enzymes in this species. 

Production of secondary metabolites 

We investigated two different aspects of the secondary metabolism in P. arizonense: 
Firstly, the genomic potential for secondary metabolite biosynthesis was assessed and 62 
BGCs were identified using antiSMASH (Weber et al. 2015). Compared to nine other 
Penicillium species, P. arizonense proved to contain the highest number of PKS BGCs 
(28 in total). In a later paper, we further found that P. arizonense contained the highest 
number of PKS BGCs out of 24 different Penicillium species analyzed (Paper III). 
Secondly, we used Liquid Chromatography-Mass Spectrometry (LC-MS) to identify 
secreted secondary metabolites in the crude extract of P. arizonense cultivated on three 
different solid media known to induce secondary metabolite production (CYA, YES and 
OAT) (Frisvad 2012). A total of seven different compounds, or families of compounds, 
were detected in the media (Table 1), and many of these have potential medical 
applications as discussed in the original paper (Grijseels et al. 2016). Four of the detected 
compound families, austalides, pyripyropenes, tryptoquialanines and xanthoepocin, were 
not previously reported from species in section Canescentia. Many of the peaks in the 
chromatograms could not be mapped to a compound, thus highlighting the potential for 
discovery of novel secondary metabolites from P. arizonense. 

 
Table 1. Detected compounds and BGCs in P. arizonense. 
Detected compound or  
family of compounds 

P. arizonense BGC with 
similarity to 

No. of 
homologsb 

Avg. similarity 
[%ID / %cov] 

Austalidesa Mycophenolic acid 
(Regueira et al. 2011) 3/8 59/96 

6-farnesyl-5-7-dihydroxy-4-methylphthalidea 

Pyripyropenesa Pyripyropene 
(Itoh et al. 2010) 7/9 79/99 

Tryptoquivalinesa Tryptoquialanine 
(Gao et al. 2011) 13/13 74/96 

Fumagillin Fumagillin-pseurotin 
(Wiemann et al. 2013) 16/16 82/95 

Pseurotin A 

Xanthoepocina Aurofusarin 
(Frandsen et al. 2011) 7/11 49/96 

Curvulinic acid N/A N/A N/A 
aNot previously seen in section Canescentia. 
bGenes were considered homologs if: ID > 30% and coverage > 50%. 

Linking secondary metabolites to BGCs 

In order to identify which BGCs that were responsible for production of the detected 
compounds, we applied a BLAST based targeted approach. For each compound, we 
searched the literature to determine if the corresponding BGC had been characterized in 
another species (Table 1). This was the case for pyripyropenes (Itoh et al. 2010), 
fumagillin-pseurotin (Wiemann et al. 2013) and tryptoquivalines (Gao et al. 2011) 
(actually tryptoquialanines). The BGCs responsible for the biosynthesis of these 
compounds in other species showed in all cases high similarity to one of the detected 
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BGCs in P. arizonense, and the majority of gene cluster members were conserved as well 
(Table 1). 

For the remaining compounds, we evaluated their chemical structure and biosynthesis, 
with respect to similarity to characterized pathways. Austalides contain a phtalide PK 
core which was detected in the crude extract of P. arizonense and also constitutes the PK 
core of mycophenolic acid (de Jesus et al. 1983). The mycophenolic acid BGC has been 
characterized in P. brevicompactum (Regueira et al. 2011), and one of the BGCs in P. 
arizonense showed homology to three of the genes. These genes correspond to the ones 
responsible for biosynthesis of the phtalide moiety of mycophenolic acid in P. 
brevicompactum, and the BGC could thus likely be responsible for austalide biosynthesis 
P. arizonense. Similarly, a probable BGC responsible for xanthoepocin biosynthesis in 
P. arizonense, was identified by having orthologs to seven genes in the BGC encoding 
the structurally related compound, aurofusarin, in Fusarium graminearum (Frandsen et 
al. 2011). For curvulinic acid, we were not able to identify characterized BGCs encoding 
similar products, and thus no BGCs could be confidently assigned to curvulinic acid 
production. 

The putative austalide and xanthoepocin BGCs in P. arizonense showed lower sequence 
similarity to the most similar BGCs in other species compared to the cases were the same 
BGCs in another species was found (Table 1). This suggests a more distant evolutionary 
relationship, and demonstrates how the modularity of BGCs can be repurposed to evolve 
new pathways in fungi (Wisecaver and Rokas 2015). This modularity of the secondary 
metabolism provides potential for applying synthetic biology tools to develop new 
secondary metabolite pathways by recombining domains and modules to generate 
alternative products (Medema et al. 2012). 

In summary, we have described a novel Penicillium species which possess promising 
potential for production of industrial enzymes and bioactive secondary metabolites with 
medical applications. Surprisingly it contained the most GH domains and PKS BGCs 
compared to related organisms. Our description of the species, combined with availability 
of its genome sequence provides a basis for further biotechnological exploitation of P. 
arizonense. 

  



Part I: Mapping the biosynthetic potential of Penicillium using genomic 

 22 

Paper III: Global biosynthetic potential of the 
Penicillium genus 

To broaden the insights into to the potential of Penicillia for the biosynthesis of secondary 
metabolites, we decided to widen the scope and include the genomes of as many 
Penicillium species as possible. This included published genomes, as well as the ten 
sequenced in this PhD project, altogether 24 genomes of different Penicillium species. 
The resulting study (Paper III) constituted the first genus wide investigation of 
Penicillium genomics, and provided fundamental insights into the diversity of secondary 
metabolite pathways at the genus level. 

Overview of Penicillium genomics 

The first sequenced Penicillium genome was published in 2008 and encompassed the 
industrial penicillin producer P. rubens Wisconsin54-1255 (formerly P. chrysogenum) 
(van den Berg et al. 2008). Despite being published several years after the first 
Neurosporra and Aspergillus genomes in 2003 and 2005, respectively (Galagan et al. 
2003; Galagan et al. 2005), it provided important insight into fungal biotechnology. The 
sequenced strain had been strongly exposed to classical strain improvement programs 
through random mutagenesis, and its genome sequence proved that this had led to 
amplification of the penicillin BGC and enhanced amino acid production (van den Berg 
et al. 2008). Four years later, the genome sequence of the postharvest pathogen P. 
digitatum, was published (Marcet-Houben et al. 2012), and this was followed by the 
genomes of other postharvest pathogens P. expansum, P. italicum (Ballester et al. 2015) 
and P. griseofulvum (Banani et al. 2016). These studies provided insights into the 
pathogenicity of Penicillium species, and their biosynthesis of mycotoxins such as 
patulin. For the purpose of studying production of lignocellulases, the genome of the 
industrial enzyme producers P. oxalicum was sequenced, and revealed a diverse set of 
plant cell wall degradation enzymes encoded (Liu et al. 2013b). Other sequencing efforts 
revolved around the importance of Penicillia for manufacturing food products, with the 
sequencing of P. camemberti and P. roqueforti (Cheeseman et al. 2014), and the year 
after an additional five Penicillium species important in the food industry were sequenced 
as well (Ropars et al. 2015). These studies demonstrated how HGT, among distantly 
related species, have contributed to adaptation to the environments found in cheeses. 

The above walkthrough of Penicillium genomics, proves that Penicillia constitute a 
diverse genus with diverse industrial applications. However, one aspect that is conserved 
across these species, is the ability to produce secondary metabolites (Frisvad et al. 2004).  

Penicillium phylogeny 

In 2014 the Penicillium genus was defined to contain 354 accepted species (Visagie et al. 
2014), and the phylogeny was recently revisited based on three marker genes (Houbraken 
et al. 2015). We conducted a more comprehensive assessment of the phylogeny of 24 
Penicillium species using whole genome sequencing information to infer a maximum 
likelihood tree based on 1,389 single copy orthologous genes using the supermatrix 
approach (de Queiroz and Gatesy 2007) (Figure 8). The topology of the phylogram is in 
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agreement with the previous phylogenetic assessment based on marker genes (Houbraken 
et al. 2015). However, the quantitative nature of the branches in our genome based 
phylogenetic tree, constitute information on the relative phylogenetic distance (or time of 
divergence) between the species. For the further analysis, the 24 species were divided 
into seven clades corresponding to their specific section or subgenus as previously 
defined (Visagie et al. 2014). 

 

 
Figure 8. Phylogenetic tree of the investigated Penicillium species. Maximum likelihood phylogenetic tree 
calculated using the supermatrix method based on 1,389 single copy core genes. A. nidulans was used as outgroup, 
bootstrap support is given from 100 bootstrap replicates, and the scale bar indicates the mean expected substitutions 
per site. Species marked in bold were sequenced in this study, and the clades correspond to section or sub-genus. 
Clade 1: section Fasciculata; clade 2: section Robsamsonia; clade 3: section Roquefortorum; clade 4: section 
Chrysogena; clade 5: section Penicillium; clade 6: section Canescentia; clade 7: sub-genus Aspergilloides. 

Functional diversity of Penicillium species 

Genes in the 24 species were grouped into orthologs using orthoMCL (Fischer et al. 
2011). This enabled the identification of 3,248 gene families shared by all species, hence 
representing the core genome. In addition, 8,784 genes families were observed in a subset 
of species (at least two), thus representing the dispensable genome, and the pan-genome, 
here defined as the union of the two, was 12,032 gene families. In order to get an overview 
of the functional capabilities encoded in these different genome fractions, the genes were 
annotated using KOGs. We sorted the KOGs according to variance in the number of 
encoded genes within each KOG category, and found the greatest variation to be within 
secondary metabolism (Q), followed by the remaining metabolic subsystems: 
carbohydrate metabolism (G), amino acids metabolism (E) and lipid metabolism (I) 
(Figure 9A).  
Interestingly, the majority of the genes within secondary metabolism proved to be 
encoded in the core genome indicating that although there is great variation in the number 
of secondary metabolite biosynthetic genes, all the genomes did contain the different gene 
classes associated with secondary metabolism. The main variation in the number of genes 



Part I: Mapping the biosynthetic potential of Penicillium using genomic 

 24 

annotated as secondary metabolism per species was within cytochrome P450’s. Although 
there is limited reporting of the functional capabilities of the pan- and core genome in 
fungi, it is generally assumed that the core genome contains essential and housekeeping 
genes (Vernikos et al. 2015). The fact that secondary metabolism is present in the core 
fraction of the Penicillium genomes seemingly opposes the notion of secondary 
metabolism being non-essential and an aspect of diversification. In our analysis, it was 
observed that the gene classes involved in secondary metabolite biosynthesis is present 
in all Penicillium species, but this doesn’t necessarily mean that the pathways encoded in 
the genomes are the same (as shown in the next section). Another comparative genomics 
study on the genomes of 19 Aspergillus species was published two months prior to our 
Penicillium study, and the authors found a great diversity among several aspects of the 
genomes, including secondary metabolite biosynthesis pathways, although no analysis of 
the functional capabilities within the pan- and core genomes was conducted (de Vries et 
al. 2017). 

 

 
Figure 9. Functional analysis of the genomes of 24 Penicillium species. (A) Distribution of proteins allocated to 
different subsystems as defined by euKaryotic Orthologous Groups (KOGs). KOGs are sorted according to standard 
deviation in the pan-genome. KOG categories are as follows. For cellular processes and signalling, M is cell 
wall/membrane/envelope biogenesis, O is post-translational modification, protein turnover and chaperones, T is 
signal transduction mechanisms, U is intracellular trafficking, secretion and vesicular transport, V is defence 
mechanisms, W is extracellular structures, Y is nuclear structure, and Z is cytoskeleton. For information storage and 
processing, A is RNA processing and modification, B is chromatin structure and dynamics, J is translation, 
ribosomal structure and biogenesis, K is transcription, and L is replication, recombination and repair. For 
metabolism, C is energy production and conversion, D is cell cycle control, cell division and chromosome 
partitioning, E is amino-acid transport and metabolism, F is nucleotide transport and metabolism, G is carbohydrate 
transport and metabolism, H is coenzyme transport and metabolism, I is lipid transport and metabolism, P is 
inorganic ion transport and metabolism, and Q is secondary metabolites biosynthesis, transport and catabolism. (B) 
Distribution of BGC classes. Each boxplot represents the distribution of a class of BGCs as defined by antiSMASH. 
The class ‘Other’ contains BGCs that do not fit into any of the predefined categories of antiSMASH and rare BGC 
classes that were present only in few species. 

Overview of the secondary metabolism 

The main focus of this study was to evaluate the diversity and conservation in secondary 
metabolite biosynthesis pathways encoded in the species. Initially we mined the genomes 
for BGCs using antiSMASH, and could detect a total of 1,317 BGC in the 24 genomes 
(Figure 9B). Although, all genomes contained predicted BGCs there was a large variation 
between the species, with 78 predicted BGCs in P. polonicum and 22 in P. decumbens. 
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PKS and NRPS BGCs were the two major classes of BGCs detected (Figure 9B) in 
agreement with previous observations (Keller et al. 2005). On average we found 55 BGC 
per species, where recently an average of 41 BGC per species was found in 19 Aspergillus 
genomes (de Vries et al. 2017). This indicates a greater potential for secondary metabolite 
biosynthesis in Penicillium compared to Aspergillus, although different approaches for 
BGC detection were used, thus a direct comparison should be interpreted with caution. 

The species from clade 1 contained more terpenoid BGCs than species from the other 
clades, and generally showed a high number of BGCs encoded in their genomes (Figure 
9B). It is interesting to speculate whether these species might be better equipped for 
production of terpenoids compared to other Penicillium species. Besides clade 1, there 
were no clear correlations between phylogeny and specific BGC classes (Figure 9B). 

Clustering of BGCs 

To assess the conservation of secondary metabolite biosynthetic pathways across species, 
we grouped the detected BGCs into gene cluster families (GCFs). Since PKS and NRPS 
BGCs were the most abundant classes found in the genomes, we decided to focus on these 
for the clustering. We used the KS domain of PKSs and the C domain of NRPSs to assess 
the similarity between BGCs as previously discussed in Paper I. 
Based on pair-wise alignments of all KS domains, a histogram of the pairwise sequence 
identities revealed a bimodal distribution, were the majority of the domains showed 20-
60% identity, while a second group of KS domains showed higher similarity. From this, 
we selected a threshold of 74% identity, to separate these two distributions (Figure 10A). 
A similar bimodal distribution was observed based on pair-wise alignment of the C 
domains, although they generally were less similar, thus resulting in a lower threshold of 
64% identity (Figure 10B). The selected thresholds were considerably lower than those 
chosen by Ziemert et al. (2014), where 90% and 85% identity was used as thresholds for 
grouping KS and C domains, respectively, and by extension, PKSs and NRPSs. In that 
analysis however, different isolates of only three different species Salinispora species 
were compared. Our lower thresholds correspond to a greater phylogenetic diversity in 
our dataset of 24 Penicillium species. 

Based on the selected domain thresholds, PKS and NRPS BGCs were grouped into GCFs. 
To evaluate the quality of the clustering, a manual assessment of the synteny between 
clustered BGCs confirmed a good conservation of the sequences (Figure 11B,C). 
Following this grouping, we annotated the identified BGCs relative to the MIBiG 
database (Medema et al. 2015), which contains information on biosynthetic loci that have 
been linked to a compound. We applied the same approach and the same thresholds to 
link BGCs from the MIBiG database to the Penicillium BGCs, as we did when grouping 
the Penicillium BGCs based on KS and C domains. This allowed us to annotate 127 of 
the 798 Penicillium PKS and NRPS BGCs corresponding to 16%, to a pathway and a 
metabolic end-product (Figure 10C,D). In order to confirm these findings, we cross-
referenced these 127 predictions and could validate 87 of the species:metabolite 
associations to the exact or a related compound from published literature, or based on 
chemical analysis conducted in the study. The remaining predicted species:metabolite 
relationships, either constitute new producers of known compounds, or false predictions 
that might encode pathways that are similar to the predicted ones. 
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Figure 10. Global overview of biosynthetic gene cluster (BGC) similarity in 24 Penicillium genomes. 
Histograms of the similarity of (A) KS domains identified in PKS BGC and (B) C domains identified in NRPS 
BGCs of Penicillium species. Each histogram indicates the threshold for grouping the corresponding BGCs into 
GCFs. Network representation of GCFs based on (C) KS domains for PKS BGCs and (D) c domains for NRPS 
BGCs. Each node represents a domain and by extension a BGC, and the edges connect domains that are similar. 
Nodes are colored according to the clade of the species and highlighted clusters represent GCFs that mapped to an 
entry in the MIBiG database (Medema et al. 2015). 

Production of yanuthones in Penicillium 

As a proof of concept, we decided to look further into the annotated yanuthone encoding 
BGCs that were predicted to be present in seven of the species (Figure 10C). Previously, 
only one intermediate of the yanuthone pathway, 7-deacetoxyyanuthone, has been 
reported from P. chrysogenum (Maskey et al. 2005), as well as from a marine Penicillium 
species (Li et al. 2003), so we wanted to assess if the Penicillia also could synthesize the 
end-product of the Aspergillus version of the pathway, yanuthone D. The biosynthesis of 
yanuthone D has previously been characterized in A. niger (Holm et al. 2014), and 
yanuthones are of medical interest as they have been shown to exhibit antifungal activity 
(Holm et al. 2014; Petersen et al. 2015). Interestingly, the identified Penicillium version 
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of the BGC contained one additional conserved gene, which is not present in A. niger. 
This additional gene did not show any obvious hits in the NCBI nr-database, although a 
membrane bound prenyl cyclase from the pyripyropene BGC in A. fumigatus showed 
32% identity. It seems plausible that the BGC could contain a prenyl cyclase since 
yanuthones contain a prenyl moiety that could undergo cyclization, similarly to what is 
seen in the pyripyropene biosynthesis (Itoh et al. 2010). 

To assess production of yanuthones, the seven Penicillium species were grown on 
different solid media, and crude extracts were analyzed using LC-MS. Using a reference 
standard, yanuthone D and E were detected in P. rubens, while only yanuthone E was 
detected in P. flavigenum. We further searched for yanuthone isomers generating 
fragment ions, as the known standards, and could identify a new yanuthone derivative. 
These findings validate our prediction approach and shows how it can be applied in 
predicting production of known and novel compounds in new species. The production of 
a novel yanuthone further suggests the participation of additional enzymatic activities in 
the Penicillium version of the yanuthone BGCs, that could originate from the additional 
gene identified in the cluster. The exact function of the additional Penicillium gene is 
however, still dubious since the prenyl moiety of the novel yanuthone, was unchanged.  
 

 
Figure 11. Overview of 6-MSA pathways in Penicillium species. (A) Biosynthetic pathways of patulin and 
yanuthone D. Dashed arrows indicate multiple steps. (B) Predicted patulin BGCs relative to the version in P. 
expansum (Tannous et al. 2014) (C) Predicted yanuthone D BGCs relative to the version in A. niger (Holm et al. 
2014). 

Yanuthones were not produced in the remaining five Penicillium species in the conditions 
tested. In A. niger, yanuthones have proved to be very specific and only induced on YES 
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medium where it is represented as little peaks in the chromatogram (Holm et al. 2014), 
while in P. chrysogenum PDA medium induced yanuthones (Maskey et al. 2005). We 
cultivated all seven Penicillium species on solid YES and PDA, and yanuthones were 
observed for P. rubens and P. flavigenum, only on PDA, and still as minor peaks. Possibly 
other conditions are required for induction of yanuthones in the five remaining Penicillia. 

Evolution of Penicillium BGCs 

In addition to providing information about the biosynthetic capabilities of Penicillium 
species, our analysis further enabled insight into the evolution of fungal BGCs. In 
particular, we identified two groups of BGCs containing 6-MSA synthases (6-MSAS), 
annotated as synthesizing the 6-MSA based compounds yanuthones and patulin (Figure 
11B,C). Examining the prevalence of these 6-MSAS based pathways in Penicillium 
proved that no species from clade 1 (section Fasciculata) and clade 7 (subgenus 
Aspergilloides) contained the BGCs, and suggests that 6-MSAS could have been lost by 
their divergence (Figure 12A). In contrast, 6-MSAS was present in most other species. 
We also observed that the yanuthone producing species (P. rubens and P. flavigenum), 
does not also produce patulin (Frisvad et al. 2004), but rather contain fossil patulin BGCs 
that are likely not functional. This suggest that yanuthone and patulin production does not 
commonly co-occur in one species, possibly to avoid cross chemistry, since their 
pathways are highly redundant (Figure 11A). 

Among the annotated patulin BGCs, we noted that P. antarcticum had a new 
conformation that is distinct from previously identified ones in P. expansum and A. 
clavatus (Artigot et al. 2009) (Figure 12B). We found that the version of the BGC in P. 
antarcticum served as an intermediate between the two previously identified, with the 
dominant architecture in Penicillium being the one present in P. expansum. This is in 
agreement with the phylogeny of the species, where P. antarcticum is the earliest 
diverging species, among the ones containing patulin BGCs. This provides insight into 
the rate of which rearrangements and thus diversification of BGCs occur in fungi. 

This concludes part I of my thesis describing the large biosynthetic potential of 
filamentous fungi for the production of future drug leads. This work can be exploited for 
the discovery of new producers of known secondary metabolites or new derivatives of 
secondary metabolites, by searching for BGCs with extra genes. In order to develop a 
feasible production processes of new secondary metabolites, it is valuable to have a 
thorough understanding of the physiology that governs secondary metabolite production. 
In part II, I will describe studies on how to translate the identification of novel secondary 
metabolites into industrial production processes. 
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Figure 12. Evolutionary events of 6-MSA pathways in Penicillium. (A) Overview of evolutionary trajectory of 
6-MSA based pathways in Penicillium species.  (B) Gene organization of patulin BGC in P. antarcticum, discovered 
in this study compared to two previously published patulin BGCs in P. expansum (Tannous et al. 2014) and A. 
clavatus (Artigot et al. 2009). 
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Part II: Characterizing 
secondary metabolism using 
systems biology

Once a promising compound of interest has been identified, the next step is to establish a 
feasible production process. Systems biology can aid in characterizing cell factories and 
provide insight into how a strain and overall process economics can be optimized for 
production. 
The traditional approach to establish production processes using cell factories has been 
to select naturally high yielding isolates producing the compound of interest. This has 
historically been a successful approach in many industrial production processes of 
chemicals such as glutamate production by Corynebacterium glutamicum (Kinoshita et 
al. 1957) and citric acid production by A. niger (Currie 1917). For large-scale production 
of penicillin, various Penicillium species and isolates were screened for production. This 
led to the discovery of a high yielding strain, P. rubens NRRL 1951, that can be traced 
back to a moldy cantaloupe melon from the food market in Peoria, Illinois, USA. The 
isolate, is the ancestor of all current industrial penicillin production, and proved to possess 
a major potential for further optimization. Following decades of classical strain 
improvement programs through random mutagenesis, penicillin production was increased 
more than 10,000 fold (Thykaer and Nielsen 2003). 
Nowadays, an increasingly popular strategy is to transfer the pathway of interest to a 
platform cell factory which has been optimized for industrial production. Such organisms 
are advantageous since they are well characterized, and a number of gene editing and 
gene expression tools are established (Nielsen and Keasling 2016). In addition, existing 
systems biology tools such as GEMs, can be exploited to easily understand the context of 
expression of a heterologous pathway. The yeast, S. cerevisiae serves as an attractive 
platform for secondary metabolite production and has been successfully used to express 
heterologous pathways of fungal PKs (Rugbjerg et al. 2013) and NRPs (Awan et al. 
2017). Examples of heterologous production, however, is limited in the scientific 
literature, and often associated with a low yields (Awan et al. 2017). Several factors could 
influence why it is troublesome to express PKS and NRPS pathways in yeast, but a 
general limitation is that yeast does not natively produce secondary metabolites, and thus 
might lack some fundamental cellular features for efficient production. This could include 
correct compartmentalization, since many secondary metabolite biosynthesis pathways 
have proved to utilize complex multistep compartmentalization processes (Roze et al. 
2011; Kistler et al. 2015). Further, correct folding of the large PKS and NRPS enzymes 
might not always take place in heterologous hosts such as yeast (Siewers et al. 2009). For 
these reasons, we decided to evaluate the potential of wild type Penicillium species as 
native cell factories for secondary metabolite production. 

  



Part II: Characterizing secondary metabolism using systems biology 

 32 

Paper IV and V: Penicillium species as cell 
factories 

The ten Penicillium species that were genome sequenced in Paper II and III showed a 
promising potential for biosynthesis of secondary metabolites. We decided to further 
investigate if these species also had potential as cell factories. All species were cultivated 
in controlled bioreactor fermentations and characterized at the physiological level for 
growth and production of secondary metabolites (Paper IV). For six of the species, we 
further characterized them at the transcriptional level (Paper V). 

Physiological characterization of Penicillium species 

Cultivations were carried out in submerged conditions in controlled bioreactors in two 
different media: One defined medium (DM) for Penicillium based on glucose and 
ammonium, and one complex medium (CM) called CYA, based on yeast extract, sucrose 
and nitrate. The DM was selected to characterize the physiology of the species, while the 
complex medium was selected because it has been reported to induce production of 
secondary metabolites (Frisvad 2012) and is of industrial relevance. During the 
cultivations, we monitored the morphology of the species, biomass dry weight, CO2 
exhaust, glucose consumption and secretion of secondary metabolites (Figure 13). 

Overall, we observed a large difference in growth in the two media (Table 2). In DM, six 
of the species grew as pellets or clumbs, while P. nalgiovense, P. decumbens, P. 
antarcticum and P. arizonense had dispersed mycelium in the fermenters. In contrast, all 
species grew with dispersed mycelium in the CM. Growth rates of all species were in the 
range of 0.14-0.22 h-1 in DM and 0.17-0.29 h-1 in CM, and the biomass yields were in the 
range of 0.25-0.67 g DW g-1 glucose in DM. These results are comparable to what has 
been achieved with an industrial penicillin P. rubens strain (Robin et al. 2001), thus 
emphasizing the potential of using Penicillium biodiversity in industrial fermentations in 
terms of growth rate and biomass yield. Interestingly, the two species that grew the fastest 
in the CM, were also the species with the smallest genomes. Genome minimization could 
be an evolutionary mechanism by these species to optimize growth rate, by reducing the 
costs of genome replication. The DM in this study was based on a previously published 
medium for P. rubens (Thykaer et al. 2008), and adapting the medium to the individual 
Penicillium species could potentially further improve the morphology and growth rates, 
especially since the medium is optimized for penicillin production and not for growth 
specifically. Although dispersed mycelium resulted in the highest growth rates, the 
desirable morphology depends on the production process in question, as morphology is 
known to strongly affect production of metabolites and enzymes (Krijgsheld et al. 2013). 
For examples, for optimal production of citric acid in A. niger, pellet formation is 
desirable (Gomez et al. 1988). 
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Figure 13 Growth profiles of Penicillium species. Ten Penicillium species cultivated in controlled bioreactor 
fermentations in a defined medium for Penicillium and a complex medium. All cultivations were conducted in 
biological triplicates. 
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Table 2. Physiological parameters of Penicillium species. Growth and morphology of ten Penicillium species 
relative to an industrial isolate of penicillin producing P. rubens. 

 Defined medium Complex medium  

Species Ysx µmax Morphologya µmax Morphologya Reference 

P. solitum 0.29±0.13 0.14±0.02 Pellets/clumbs 0.22±0.01 Dispersed This study 

P. polonicum 0.25±0.01 n/a Dispersed 0.22±0.01 Dispersed This study 

P. nalgiovense 0.60±0.17 0.21±0.01 Dispersed 0.21±0.01 Dispersed This study 

P. flavigenum 0.58±0.05 0.22±0.01 Pellets/clumbs 0.26±0.00 Dispersed This study 

P. coprophilum 0.37±0.03 0.17±0.02 Pellets/clumbs 0.28±0.01 Dispersed This study 

P. vulpinum 0.54±0.14 n/a Pellets/clumbs 0.21±0.01 Dispersed This study 

P. arizonense 0.67±0.04 0.14±0.01 Dispersed 0.24±0.00 Dispersed This study 

P. antarcticum 0.58±0.03 0.19±0.00 Dispersed 0.17±0.03 Dispersed This study 

P. steckii 0.37±0.02 0.15±0.02 Pellets/clumbs 0.21±0.01 Dispersed This study 

P. decumbens 0.55±0.02 0.19±0.02 Dispersed 0.29±0.02 Dispersed This study 

P. rubens 0.45 0.19 N/A N/A N/A (Robin et al. 2001) 

± denotes standard deviation where n = 3. 
a morphology of the mycelium in the submerged cultivations. 

Secondary metabolite production 

The fermentation media were analyzed for secreted secondary metabolites using LC-MS, 
and intermediates or end-products of 14 different secondary metabolite pathways were 
detected in the fermentation media (Figure 14). In addition, a number of unidentified 
peaks were detected. Surprisingly, for the majority of compounds no differential effect of 
the two different fermentation conditions were observed. The compounds that were 
differentially produced in the two media were fungisporin by P. coprophilum, penicillic 
acid and verrucofortine by P. polonicum and atlantinone by P. solitum. Possibly, the 
submerged condition was a more important environmental factor determining the 
induction of BGCs than the differences in nutrient composition in the two media. In 
comparison, we detected eight secondary metabolites produced by P. arizonense on solid 
CYA medium (Paper II), while in submerged cultivations in the same medium (CM), 
only pseurotin was identified. Overall, this demonstrates that submerged cultivations are 
not a good approach for screening the diversity in secreted secondary metabolites. On the 
other hand, it might be a useful strategy for achieving high production levels since 
competition from other secondary metabolite pathways is minimized. Disruption of 
competing secondary metabolite pathways has been shown to increase production of 
certain secondary metabolites and enable production of new ones in fungi (Salo et al. 
2015). This has also been exploited to increase production of specific secondary 
metabolites in Actinobacteria (Komatsu et al. 2010; Gomez-Escribano and Bibb 2011). 

The species with a high growth rate on the CM and production of few secondary 
metabolites such as P. flavigenum might thus contain a great potential for further 
industrial development. Detection of secondary metabolites was not quantitative, but it 
would be interesting to investigate the titres of secondary metabolites in submerged 
fermentations of Penicillium species. 
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Figure 14. Secondary metabolite families produced during bioreactor batch fermentations. Compounds were 
detected by LC-MS/MS based on fragmentation pattern and UV/vis spectra of reference standards. 

Transcriptional landscape of Penicillium 

To further gain insights into the regulations of secondary metabolite production and to 
assess the transcriptional profile during secondary metabolite biosynthesis, we selected 
six of the ten species for transcriptome analysis. The species were chosen to represent the 
phylogenetic diversity of the Penicillium genus (Figure 15A). Samples for transcriptome 
analysis were collected in the stationary phase, several hours after the CO2 exhaust had 
peaked, indicating that a nutrient had been depleted (Figure 13). The time point was 
selected in order to ensure activity of the secondary metabolism, since many secondary 
metabolite pathways are induced at stress conditions, such as nutrient depletion 
(Brakhage 2013). 

In order to investigate the conserved transcriptional responses across species, we initially 
identified orthologous genes in the six genomes. We found 4,296 core gene families (in 
comparison we found 3,248 core gene families in the 24 Penicillium species in Paper 
III), and among these, 3,782 gene families were present only in a single copy in each 
genome (Figure 15C). These single copy core genes were important for the further 
comparative transcriptome analysis as they enabled a direct comparison of gene 
expression between species, while the remaining core genes include duplications and 
hence cause problems in identifying which paralogs correspond to each other in different 
genomes. 
GEMs were reconstructed (further described in Paper VI) and used as a framework for 
annotation of metabolism and as a roadmap of the metabolic pathways and capabilities 
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of the species. We found that 582 single copy core genes were part of metabolism, and 
that 1220 metabolic reactions in the GEMs were catalyzed by the corresponding enzymes 
(Figure 15D). These 1220 core reactions were significantly depleted for reactions 
involved in secondary metabolism, in particular alkaloid and terpenoid biosynthesis 
pathways. 
 

 
Figure 15. Overview of differences and similarities in six Penicillium species. (A) Phylogenetic tree of the 
species used in this study. (B) Principal component analysis of the six Penicillium species based on the normalized 
expression of single copy core genes. (C) Number of genes and (D) reactions within each of the species that are 
shared by all species (core), shared by a subset of species (accessory) or specific to one species (unique).  

Based on the expression levels of the single copy core genes, a principal component 
analysis (PCA) was conducted (Figure 15B). The individual samples grouped according 
to the phylogeny of the species, while medium had little effect on the global gene 
expression pattern. This suggests that the gene regulation of core genes might be strongly 
dependent on the evolutionary distance between species. In yeast, evolutionary distance 
has proved to be correlated to differences in gene regulation. In particular, it has been 
found that gene duplication events strongly increase divergence in gene regulation 
(Thompson et al. 2013). Our results indicate that these regulatory differences go beyond 
gene duplication, as we only focused on genes without paralogs (the singly copy core 
genes). Further, in the next study (Paper IV), we show that the metabolic capabilities are 
largely conserved across Penicillium species, thus suggesting that regulatory differences 
could give rise to the metabolic diversity of the species, by inducing/repressing pathways. 
Differentially expressed genes (DEGs) were identified (adjusted p<0.05), using the 
DESeq2 procedure (Love et al. 2014). DEGs were defined as up or down-regulated in the 
CM with the DM as reference. We observed a large variation in the number of affected 
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genes in the species, with P. steckii showing the greatest difference between the two 
media (up-regulated: 1,885; down-regulated: 2,363) while P. decumbens had the fewest 
affected genes (up-regulated: 327; down-regulated: 331) (Figure 16A). 
 

 
Figure 16. Overview of main transcriptional changes. (A) Number of differentially expressed genes in complex 
versus defined medium. (B) Gene set enrichment analysis identifying cellular processes shared by at least two 
species. Each data point in the box-plots represent a gene set enriched by a combination of n species and grouped 
as either up or down-regulated. The main shared processes are written in frames. (C) Effect of media on the 
expression of secondary metabolite backbone genes that were present in at least two species. Cells in the heatmap 
marked with a cross represents backbone genes that were not significant differentially expressed. Up and down-
regulation refers to expression levels in complex medium compared to defined medium. Grey cells indicate 
backbone genes not detected in the species.  

In order to identify the function of these genes, we used a GO term annotation of the 
genomes and a MetaCyc annotation of metabolic genes based on the reconstructed GEMs. 
Among the DEGs, we found two genes that were up-regulated in all six species and these 
were annotated as a nitrate reductase (ortholog NIAD in A. nidulans) and an ammonium 
uptake transporter (ortholog MEAA in A. nidulans). Both genes have been shown to 
respond to nitrate availability: NIAD reduce nitrate to nitrite intracellularly and is known 
to be up-regulated in response to hypoxia (Terabayashi et al. 2012), while MEAA is a low 
affinity ammonium transporter which has proved to be up-regulated under nitrogen 
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starvation and induced by nitrate (Schinko et al. 2010). No shared DEGs were down-
regulated in all species. 

Although only two genes were differentially expressed in all six species, we conducted a 
gene set analysis to investigate if specific GO terms or MetaCyc pathways were enriched 
across multiple species. In accordance with the shared DEGs, we observed only one gene 
set to be enriched across all six species and this was an up-regulation of the nitrate 
assimilation GO term (Figure 16B). Also, ammonium transport and ammonia 
assimilation was up-regulated in five and four species for GO terms and MetaCyc 
pathways, respectively. The GO term, copper ion transport, was down-regulated in five 
species. Among the MetaCyc pathways, degradation of a number of amino acids was 
observed, in particular the BCAAs and glutamate. These pathways were down-regulated 
in all species except P. coprophilum. 

Taken together, remarkably few gene sets were enriched across a majority of the species. 
These results indicate that although the species are within the same genus, their responses 
to the different fermentation conditions were highly diverse. Thus, future work should be 
careful when extrapolating information between species from a diverse genus such as 
Penicillium. 

Expression of biosynthetic gene clusters 

In the six genomes, we identified a total of 311 BGCs, that we grouped into 42 GCFs 
consisting of BGCs from at least two species. Among these GCFs, 32 contained backbone 
genes of the classes PKS, NRPS, or PKS-NRPS, and seven of these could be linked to a 
pathway. We applied the BIG-SCAPE algorithm (Navarro-Muñoz, Yeong, Medema et 
al., in preparation) to group and annotate BGCs relative to the MIBiG database, and could 
connect six GCFs to a pathway. The BIG-SCAPE algorithm uses a combination of 
parameters including order and similarity in shared protein domains, and overall the 
resulting GCFs were very similar to the ones obtained in Paper III. Based on the PKS 
and NRPS genes, the expression of BGCs within the 32 GCFs was evaluated (Figure 
16C). An equal distribution between up and down-regulated BGCs confirmed that the 
media resulted in no major differences in the number of induced BGCs, in accordance 
with the observations from the analytical detection of secondary metabolites (Figure 14). 
We correlated our BGC annotation with the detected secondary metabolites in the 
fermentation media (Figure 14). In four of six cases, we detected the secondary 
metabolites corresponding to the annotated BGCs. This included: (i) andrastins by P. 
decumbens, (ii) chrysogines by P. flavigenum and P. nalgiovense, (iii) 
roquefortine/meleagrin intermediates by P. coprophilum and P. flavigenum (iv) and 
fungisporin by P. coprophilum, P. nalgiovense and P. flavigenum. We further looked into 
the expression of the gene members, based on previous characterization of the annotated 
andrastin BGC in P. roqueforti (Rojas-Aedo et al. 2017) and chrysogine BGC in P. 
rubens (Viggiano et al. 2017) (Figure 17). All genes in the andrastin BGC in P. 
decumbens were up-regulated, and oppositely chysogine genes in P. flavigenum were 
down-regulated. For the chrysogine BGC in P. nalgiovense, however, some genes were 
up-regulated while others down-regulated. Specifically, genes chyE and chyH were 
significantly down regulated, while chyD and chyA were up-regulated (Figure 17B). 
ChyA and ChyD catalyze the two first steps in the pathway, while ChyE and ChyH are 
thought to catalyze later steps and the differences in expression could thus constitute a 
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temporal transcriptional control based on when the individual enzymes are needed in the 
pathway. 

 

 
Figure 17. Expression of BGCs in Penicillium. (A) andrastin BGC, (B) chrysogine BGC and (C) chemical 
structure of the end-products of the pathways. Barplots represent the log2 fold change in expression level in complex 
medium relative to defined medium. Asterisk (*) denotes genes that were significantly differentially expressed. 

Identification of coexpression modules 

We showed above that few DEGs were shared among the species and the gene sets that 
were enriched proved to be present in only a subset of the species (Figure 16A,B). In 
order to further identify if there were certain groups of genes which expression was 
correlated to each other, we conducted an analysis of coexpression across the six species. 
For this, the Pearson correlation coefficient (PCC) was computed among the 3,782 single 
copy core genes, as well as the 33 PKS and NRPS genes identified in the GCFs. The 
pairwise correlation in expression levels among these 3,815 genes constituted a weighted 
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coexpression network. This network served as a starting point to identify modules of 
highly coexpressed genes (Figure 18). The coexpression network was decomposed into 
nine subnetworks by removing correlations (edges) between genes (nodes) by applying 
varying PCC cut-off’s. Subsequently, modules of correlated genes were identified in the 
subnetworks using the clusterONE algorithm (Nepusz et al. 2012), and a total of 54 
modules were found after removing redundant ones. 

 

 
Figure 18. Overview of coexpression network analysis. Network “N0” is the global coexpression network where 
each node represents a group of orthologous genes, and edges represent Pearson’s correlation coefficient (PCC) 
weights. Nine subnetworks N1-N9 were generated by removing edges based on varying PCC cut-off’s. For each of 
these coexpression subnetworks, modules of highly coexpressed genes were detected using the clusterONE 
algorithm (Nepusz et al. 2012). 

For these 54 modules of coexpressed genes, an enrichment analysis (hypergeometric test) 
was conducted based on the MetaCyc annotation of metabolism, and a total of 29 modules 
were enriched for at least one pathway (Figure 19A). The pathways that were enriched 
in the most modules were related to proteinogenic amino acid metabolism, both 
degradation and biosynthesis. A total of nine modules were enriched for degradation of 
amino acids, in particular degradation of leucine, valine and tyrosine. Conversely, 
biosynthesis of amino acids was enriched in eight modules, indicating that degradation 
might take place in some conditions, e.g. in DM where the only carbon source had been 
depleted at the time of sampling, while biosynthesis might take place in the CM where 
other nutrients from the yeast extract might be consumed. Secondary metabolite 
biosynthesis was enriched in seven modules and these modules were also enriched for 
either biosynthesis or degradation of amino acids. 
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Figure 19. Overview of enriched pathways in coexpression modules. (A) Pathways (rows) enriched among 
orthologous groups in each coexpression module (columns). (B) Pathway (rows) enriched among genes connected to 
secondary metabolite backbone genes (columns) in the coexpression modules. Pathways were based on the third level 
of the MetaCyc annotation, while sub-pathways indicated with arrows, refers to the fourth level of pathway annotation 
in MetaCyc.  
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Strong link between primary and secondary metabolism 

A total of 33 PKS and NRPS genes were included in the coexpression analysis and all of 
these were present in at least one coexpression module. To specifically investigate which 
genes that correlated with secondary metabolism, we conducted an enrichment analysis 
based on the genes that were directly connected to PKS or NRPS genes in the modules. 
The genes were divided into either positive or negative correlations based on the PCC. 
For 20 of the PKS and NRPS genes, at least one pathway was enriched among the 
correlated genes. The PKS and NRPS genes could be divided into three groups based on 
the correlated pathways (Figure 19B). 
Group I correlated mainly with genes involved in degradation pathways, such as amino 
acid degradation, in particular tyrosine, as well as fatty acid degradation through b-
oxidation. In addition, degradation of propanoate, which is a toxic by-product of valine 
degradation, was correlated via the 2-methylcitrate cycle (2MCC). The only biosynthetic 
pathways enriched in this group was for secondary metabolites, while a negative 
correlation to the biosynthesis of amino acids and purine was seen. Group I might 
constitute genes that are expressed during nutrient limitation, were degradation pathways 
are active to generate energy and precursor metabolites. 

Group II contained NRPS genes that showed a reciprocal correlation pattern compared to 
group I. Thus, the NRPS genes from group II were negatively correlated to the 
degradation of amino acids, fatty acids and propanoate. On the other hand, biosynthesis 
of amino acids and purines were positively correlated to this group. The negative 
correlation to degradation suggests that this part of secondary metabolism is active during 
nutrient excess or growth conditions, and thus represent the opposite nutritional 
requirements compared to group I backbone genes. 
For group III, there was only sporadic information of which specific parts of metabolism 
the PKS and NRPS genes were correlated to. For two NRPSs of this group, a negative 
correlation to secondary metabolite biosynthesis was observed. This group could 
constitute secondary metabolite biosynthesis pathways which expression is highly 
specialized, and dependent on specific environmental stimuli. 

Metabolic regulation is tailored for production of secondary metabolites  

In our transcriptome analysis, we have identified conserved processes that defines the 
transcriptional landscape of Penicillium during secondary metabolite inducing and 
nutrient limited conditions. We found that the main pathway that were correlated to the 
expression of PKS and NRPS genes of group I and II, involved the same pathways that 
were enriched among differentially expressed gene sets, and among the enriched 
pathways in the coexpression modules. The pathways that were defining for metabolism 
of the species, included amino acid degradation in particular of BCAAs and tyrosine, fatty 
acid degradation through b-oxidation and 2MCC for propanoate degradation (Figure 16B 
and Figure 19A,B). The metabolic context of these pathways proved mainly to revolve 
around the mitochondrial and peroxisomal acetyl-CoA pools, and might constitute the 
main routes for precursor supply for the secondary metabolism (Figure 20). 

Precursor formation for secondary metabolite production in fungi has only been studied 
to a limited extent. Acetyl-CoA generation through b-oxidation of fatty acids has been 
shown to play an important role in PK biosynthesis (Maggio-Hall et al. 2005). By 
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disrupting both mitochondrial and peroxisomal b-oxidation individually, the authors 
observed reduced levels of the PK sterigmatocystin, in A. nidulans when grown in planta. 
The mitochondrial b-oxidation and the degradation of valine and isoleucine are further 
known to be closely linked as they share an enoyl-CoA hydratase, ECHA, and an acyl-
CoA dehydrogenase, SCDA (Maggio-Hall and Keller 2004; Maggio-Hall et al. 2008). 
Metabolomics profiling of A. parasiticus suggested that aside from and b-oxidation, also 
BCAA degradation contributes towards precursor formation of the PK aflatoxin, and 
these pathways proved further to be regulated by the global transcriptional regulator of 
secondary metabolism VeA, (Roze et al. 2010). 

 

 
Figure 20. Metabolic pathways correlated with secondary metabolite backbone genes. Heatmaps represent 
backbone genes in the columns (as specified in the figure key) and orthologous groups (OG) responsible for the 
catalysis of the reactions in the pathways as rows. The figure key indicates PKSs in purple and NRPSs in green. 
Coexpression of genes marked with an asterisk (*) was only calculated for five of the species. 

Our systematic analysis, combined with previous experimental investigations, suggests a 
metabolic signature of Penicillium during secondary metabolite biosynthetic conditions 
(Figure 20). Since our results are conserved across six diverse Penicillium species and 
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agrees with experimental work conducted in Aspergillus species, it is likely to believe 
that this metabolic signature is conserved across secondary metabolite producing 
filamentous fungi in general. 

Precursors for PKs and NRPs 

One important question arises from our analysis: Why does NRPS genes correlate with 
acetyl-CoA yielding pathways, when NRPs consists of amino acid building blocks and 
not acetyl-CoA? Global regulators such as the velvet complex (VeA) in Aspergillus and 
Penicillium controls the expression of several secondary metabolite pathways at the same 
time (Becker et al. 2016; Wang et al. 2017). The correlations of NRPS genes with acetyl-
CoA generating pathways, might thus be an indirect correlation, based on the common 
transcriptional activation through global regulators. One could, however, further 
speculate that the acetyl-CoA production could be important in the biosynthesis of NRPs 
as well. The by-products from the degradation of BCAAs: acetyl-CoA, glutamate and 
NADH, constitutes a favourable starting point for the biosynthesis of many amino acids, 
as it provides the carbon, nitrogen, and reducing power needed. The BCAA degradation 
could thus be used to supply building blocks for biosynthesis of other amino acids needed 
for NRP biosynthesis. On the other hand, we did not observe any specific amino acid 
biosynthesis pathways that correlated with NRPS genes. Another explanation could be 
that amino acid precursors are generated from degradation of proteins, as it is reasonable 
to assume that proteins are degraded upon nutrient limitation similarly as observed for 
fatty acids and amino acids. Possibly, the protein degradation might be the real driver for 
the precursor supply of secondary metabolism as it would generate amino acids for NRP 
biosynthesis and BCAAs for acetyl-CoA generation for PK biosynthesis. This is, 
however, speculative and would require further investigations. 

Implications for development of cell factories 

Our analysis shows that not only is secondary metabolism correlated to acetyl-CoA 
generation, but metabolism as a whole is strongly defined by these processes during 
nutrient limitation. The fact that some of the defining metabolic processes we observed 
were correlated to secondary metabolism, suggest that filamentous fungi tailor their 
metabolism to meet the demands for secondary metabolite biosynthesis. This insight 
suggests that native fungal producers of secondary metabolites have their metabolism 
optimized for biosynthesis of specific secondary metabolites and their precursors. Based 
on this, it might be possible to identify wild type fungal species that are naturally 
optimized for production of specific secondary metabolites, and optimization of such 
natural producers might thus constitute a promising path towards generation of high 
yielding industrial cell factories. Further, our results can aid in designing metabolic 
engineering strategies to optimize production in native secondary metabolite producers 
e.g. by overexpression of precursor generating pathways. 
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Paper VI: Metabolic modeling of Penicillium 

Genome-scale metabolic modeling offer a compelling approach to gain insights into the 
topology and flux distributions of metabolic networks. Although GEMs have proved 
powerful in predicting microbial phenotypes (Edwards et al. 2001) and aiding in design 
of metabolic engineering strategies (Asadollahi et al. 2009), few examples exists where 
fungal secondary metabolite production has been investigated in the context of GEMs 
(Nielsen and Nielsen 2017). This lack, has partly been due to a limited understanding of 
secondary metabolite biosynthesis pathways. With the availability of genome sequences 
for an increasingly large number of organisms and the improvement of databases 
containing information on secondary metabolite biosynthesis, the study of secondary 
metabolism in GEMs is becoming increasingly tractable. The aim of Paper IV, was to 
develop a fast and efficient way of assessing the biosynthetic capabilities of non-model 
organisms, with limited experimental characterization. We tested a model reconstruction 
framework on the 24 genome-sequenced Penicillium species analyzed in Paper III. 

GEM reconstruction and metabolic versatility of Penicillium 

A semi-automatic reconstruction process of GEMs was developed and applied to the 24 
species analyzed in Paper III. The reconstruction was based on a previously published 
GEM of P. rubens Wisconsin54-1255, as template model (Agren et al. 2013) as well as 
on the MetaCyc database (Caspi et al. 2014). The advantage of utilizing both resources 
was the complementarity of the data: The P. rubens GEM has been manually curated and 
contain an accurate description of aspects of metabolism that are not well covered in 
databases, such as lipid metabolism. The MetaCyc database is comprehensive and allows 
for addition of reactions to the models that are not in P. rubens, and that might not have 
been experimentally characterized in Penicillia. Additionally, the MetaCyc database has 
recently undergone a thorough manual curation of secondary metabolite biosynthesis 
pathways, and a large fraction of secondary metabolism could thus be automatically 
implemented in the models. Part of the aim of this study was to assess how well this recent 
development of the MetaCyc database automatically could describe secondary 
metabolism. 

Draft metabolic networks were reconstructed based on inferring orthology between 
protein sequences of the 24 species, the enzymes in the P. rubens GEM and the MetaCyc 
database, and adding the corresponding reactions to the metabolic networks. A biomass 
function was added to the individual GEMs by adapting the biomass function of the P. 
rubens GEM and adapting it to the encoded nucleotide and amino acid distributions in 
the individual genomes. This was followed by a gap-filling process ensuring that the 
models could produce biomass (Prigent et al. 2017). The resulting functional GEMs 
contained reactions in the range 2,211-2,658 per model and these were associated with 
1,276-1,977 genes, corresponding to roughly 16% of the genomes (Figure 21). 
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Figure 21. Overview of the size of Penicillium GEMs. The GEMs consisted of 2,211-2,658 metabolic reactions 
and were based on 1,276-1,977 metabolic genes. 

Metabolic clustering and functional analysis 

The metabolic networks of related organisms are known to be shaped by environmental 
adaptation (Borenstein et al. 2008) and evolutionary distance (Mazurie et al. 2010). In 
order to assess how these factors have influenced the metabolism of the Penicillium 
species, we compared a hierarchical clustering of the metabolic networks, to the 
phylogeny and habitats of the species (Figure 22). The clustering of the metabolic 
networks, based on the presence of reactions, was divided into eight metabolic clades, 
and these proved in most cases to be in accordance with the phylogenetic clades. 
However, some noteworthy differences were observed: For example, P. expansum is a 
pome fruit pathogen, and grouped with another pome fruit pathogen from a different 
phylogenetic clade, P. solitum. Here the shared habitats seemed to have resulted in a 
metabolic similarity between these two species, compared to P. italicum and P. digitatum 
that are citrus fruit pathogens, but phylogenetically related to P. expansum. By comparing 
the reactions unique to each of the two groups, some reactions in sphingolipid metabolism 
proved to be missing in P. expansum and P. solitum. Another interesting observation was 
the metabolic grouping of P. griseofulvum and P. flavigenum that swapped position 
relative to their phylogenetic groups. We could not correlate this change to any habitat 
preferences or any major differences in metabolic pathways that differentiated the species 
in the two clades. 

We further performed an enrichment analysis between all metabolic clades, to assess 
which pathways that were enriched among reactions that differentiated clades, relative to 
the pan-reactome, i.e. the union of all reactions in the 24 GEMs (hypergeometric test, 
p<0.01). We found some notable differences in metabolic clade 3 that proved to contain 
unique reactions for degradation of chlorobenzenes, while metabolic clade 3 and 6 where 
depleted for reactions involved in creatinine degradation. Secondary metabolism, 
however, proved to be the main driver of the metabolic grouping and differences 
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observed, in agreement with the findings in Paper III, that showed that secondary 
metabolism constitute the greatest variation within the genomes. 

 

 
Figure 22. Clustering of Penicillium species based on metabolic reactions and phylogeny. The presence or 
absence of metabolic reactions were used to cluster the species into eight different metabolic clades. The metabolic 
clades were compared to phylogenetic clades and the habitats of the species.  

Secondary metabolite pathways in GEMs 

One of the goals of this study was to evaluate the accuracy of the annotation of the 
secondary metabolism obtained by the automatic reconstruction processes. A total of 33 
different pathways associated to secondary metabolism according to MetaCyc were 
present in the 24 GEMs (Figure 23). Among the predicted pathways, several proved to 
accurately agree with known species:metabolite associations (Frisvad et al. 2004; Nielsen 
et al. 2017). These included conserved fungal pathways, such as geranylgeranyl 
diphosphate, mevalonate and ergotamine biosynthesis, as well as some pathways that are 
more specific, such as patulin, penicillin, tryptoquialanine, griseofulvin and aurofusarin 
biosynthesis. Other pathways were clearly false positives, and over-predicted in 
abundance such as stipitatate biosynthesis which was predicted to be present in 14 
species, but only production of the related compound puberulonic acid is known to be 
taking place in some of the species (P. freii and P. polonicum) (Nielsen et al. 2017). Taken 
together, the automatic annotation of secondary metabolism, can be used as a good 
starting point for identifying many secondary metabolite pathways, but it does require 
subsequent curation to obtain a reliable description of the secondary metabolism. 

FBA simulations were conducted for all Penicillium GEMs for the production of the PK 
griseofulvin and the NRP penicillin. Biosynthesis pathways were added to all models and 
maximized based on glucose as the sole carbon source and biomass production being 
fixed. The maximum theoretical yields proved to be very similar among all models: 0.43 
mole penicillin/mole glucose, and 0.35 mole griseofulvin/mole glucose. 
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Figure 23. Secondary metabolite biosynthesis predicted in the Penicillium GEMs. Each node represents a 
species and the corresponding compounds is given on top of each clusters. All secondary metabolites are grouped 
into boxes of chemical classes. 

It is interesting to speculate how one could improve these predictions, in order to identify 
species that might possess a greater potential for secondary metabolite production. 
According to our network analysis of metabolism, central carbon metabolism is very 
conserved among the species, and since precursor formation for secondary metabolism 
takes place in the central carbon metabolism, this might be the reason for the observed 
similarities in secondary metabolite production. Regulations that activate/repress 
different pathways in metabolism, might be a way fungi attain metabolic differences, 
while the full metabolic potential is conserved. Determining which pathways are active 
could be identified by integrating omics data in the network analysis (Machado and 
Herrgård 2014). Another factor that might be important in particular in secondary 

Terpenoids

Ergotamine α-cyclopiazonate

Chanoclavine I 
aldehyde

Tryptoquialanine

Acetylaszonalenin

Alkaloids
Citreoisocoumarin 
and bikisocoumarin Fusaridione A Patulin

Dechlorogriseofulvin Equisetin
Bassianin  and 
desmethylbassianin Griseofulvin

Bikaverin

Viridicatumtoxin

Aurofusarin

Polyketides

Trans-cinnamoyl-CoA

Atromentin

Phenylpropanoids

Stipitatate

Myo-inositolVersicolorin B Paspaline

Methyl phomopsenoate Stellatic acidEpoxysqualene Mevalonate

Geranylgeranyl diphosphate Ophiobolin F 
Nivalenol

Glycyrrhetinate

Deoxynivalenol

T-2 toxin

4-hydroxy-2(1H)-quinolone

Others

P. camemberti

P. fuscoglaucum

P. solitum

P. biforme

P. freii

P. polonicum

P. steckii

P. oxalicum

P. decumbens

P. brasilianum

P. digitatum

P. italicum

P. expansum

P. carneum

P. roqueforti

P. paneum

P. coprophilum

P. griseofulvum

P. vulpinum

P. nalgiovense

P. flavigenum

P. rubens

P. arizonense

P. antarcticum

Non-ribosomal peptides
Gliotoxin inactivation Penicillin



Part II: Characterizing secondary metabolism using systems biology 

  49 

metabolism is the costs of protein synthesis relative to the activity of the enzymes. PKSs 
and NRPSs are known to be very large enzymes with a low catalytic activity (Thykaer 
and Nielsen 2003), and these parameters indicate that enzyme biosynthesis could be a 
major energy expenditure in secondary metabolite production. In yeast, the development 
of an enzyme constrained metabolic model, has shown to increase the accuracy of 
predictions, and accurately describe experimental data (Sánchez et al. 2017). Thus, the 
implementation of such kinetic enzyme parameters in GEMs of species that synthesize 
secondary metabolites might be a way of improving phenotype predictions related to 
secondary metabolism. 
In this part, I have shown that Penicillium biodiversity shows potential for industrial 
exploitations as secondary metabolite producing cell factories. A physiological 
characterization suggests that uncharacterized Penicillium species can be cultivated and 
perform well in submerged bioreactor fermentations in terms of growth and production 
of secondary metabolites. Further, these wild type species holds an intrinsic metabolic 
potential for secondary metabolite production and further optimization. The availability 
of GEMs of these species provides the basis for optimization studies of metabolism and 
enables further studies of Penicillium metabolism. 
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Conclusions and perspectives

This thesis constitutes a thorough investigation of the capabilities of filamentous fungi 
for production of secondary metabolites. In particular, the fungal genus of Penicillium 
has been the center of attention in this endeavour to increase the understanding of 
genetically encoded biosynthesis pathways, the physiology and metabolism of secondary 
metabolite production. 
In part I of the thesis, two studies showcased methods for connecting BGCs to secondary 
metabolites as reviewed in Paper I. In Paper II, the overall aim was to describe a new 
fungal species, Penicillium arizonense. We were interested in not only providing the basis 
for future identification of the species, but also enabling further biotechnological 
exploitation. We identified a genetic potential for production of a large number of 
secondary metabolites as well as degradative enzymes. Seven different families of 
secondary metabolites were detected in culture extracts of the species, and many of these 
had bioactive properties of pharmaceutical relevance. For six of these compounds, we 
were able to link them to BGCs identified in the genome. Our approach, constituted a 
low-throughput, but accurate evaluation of secondary metabolite biosynthesis in a single 
species. In Paper III, we developed a high-throughput automated pipeline to group and 
annotate BGCs in 24 Penicillium genomes. The automatic BGC annotation was followed 
by an evaluation of the accuracy of the predictions and the majority (89 of 127) of the 
species:metabolite associations could be validated based on literature or chemical 
analysis conducted in the study. Our analysis demonstrated that only 16% of PKS and 
NRPS BGCs in 24 Penicillium genomes could be assigned to a pathway, thus highlighting 
a major untapped biosynthetic potential.  

In total, we found 1,317 BGCs in the 24 genomes and this high number makes it evident 
that the characterization of new BGC cannot keep pace with genome mining approaches 
identifying orphan BGCs. Consequently, a major challenge for future secondary 
metabolite research is the prioritization of such BGCs in the hunt for new 
pharmaceuticals. In our study, we decided to focus on yanuthones, since the presence of 
an extra gene in the Penicillium version of the BGC suggested that the pathway might be 
extended compared to the characterized pathway in A. niger (Holm et al. 2014). A recent 
study identified an extended austinol pathway in A. calidoustus and showed that new 
austinol compounds from the pathway had more specific insecticidal activity compared 
to austinols known from A. nidulans (Valiante et al. 2017). We identified a novel 
compound from the yanuthone pathway, but further studies are required to evaluate if this 
compound has increased specificity or potency compared to the antifungal properties of 
yanuthones from the A. niger pathway. 
This method of identifying extended pathways, doesn’t allow for exploration of unknown 
pathways and thus does not provide a fully satisfying solution to the problem of 
prioritizing BGCs. Self-resistance genes, however, could potentially be used for 
predicting the activity of the end-product of a secondary metabolite pathway. The benefit 
of self-resistance genes is that they can easily be identified in the genome and it can be 
evaluated if they map to a BGC. Features such as known resistance genes, essential core 
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genes and horizontal gene transfer events, are used in the ARTS server mentioned 
previously, to identify potential self-resistance genes and prioritize BGCs that could 
encode antibiotic pathways, and this is a major step towards more targeted BGC mining 
for antibiotic discovery (Alanjary et al. 2017). The ARTS server is however, specialized 
towards bacterial gene clusters, and since most secondary metabolite research is based on 
bacteria, efforts should be made to adapt such tools to fungal specific parameters as well. 

In part II, the focus was more applied and aimed at elucidating fungal physiology in 
relation to secondary metabolite production. Bioreactor batch fermentations were 
conducted in Paper IV and revealed that all ten genome-sequenced Penicillium species 
grew in a reproducible and exponential fashion in rich medium, and produced secondary 
metabolites. Considering that submerged conditions is not a natural state for most 
Penicillium species, it was encouraging to find that all species showed beneficial growth 
characteristics that suggest the use of native secondary metabolite producers as potential 
cell factories. The majority of secondary metabolite studies in fungi is conducted on solid 
media, and we found that fewer secondary metabolites were produced under submerged 
conditions. This reduced number of produced secondary metabolites might be beneficial 
for production, since competition from other secondary metabolite pathways is reduced. 
Thus, species that grow fast and produce few secondary metabolites in submerged 
conditions might constitute a good starting point to establish a production process. 
Further analysis of the cultivated species using comparative transcriptomics in Paper V, 
showed that metabolism of filamentous fungi is tailored towards secondary metabolite 
production, and this might be an important realization in the development of new cell 
factories. The successful optimization of penicillin production by random mutagenesis of 
P. rubens (van den Berg et al. 2008), might be directly attributable to the fact that 
metabolism of filamentous fungi is natively wired for secondary metabolite production, 
and thus can be further improved with only few genetic modifications. Conversely, over-
production of secondary metabolites in a heterologous host such as S. cerevisiae, that is 
not natively producing secondary metabolites, might prove difficult as it will require 
fundamental rewiring of metabolism to achieve the same titres as native producers. 
Further, there is a striking lack of examples of heterologous expression of secondary 
metabolite pathways in yeast, which suggests that some fundamental features for 
secondary metabolite production is missing, e.g. compartmentalization of biosynthesis 
steps (Kistler et al. 2015). An alternative could be heterologous production in model 
secondary metabolite producers such has Aspergillus species (Anyaogu and Mortensen 
2015) or P. rubens, that has already been improved for production of NRPs (penicillin) 
(van den Berg et al. 2008). 

A transcriptional coexpression analysis further identified a metabolic signature for 
secondary metabolite biosynthesis, in particular acetyl-CoA precursor supply for PKs 
during nutrient limitation. Our findings were strongly supported by previous studies on 
Aspergillus species suggesting mitochondrial acetyl-CoA through BCAA and fatty acid 
degradation to constitute important pathways for secondary metabolite precursors (Roze 
et al. 2010). We extended these precursor-generating pathways to include tyrosine 
degradation as well. The conservation across Penicillium and Aspergillus species, 
suggests that these pathways are generally responsible for secondary metabolite precursor 
formation in filamentous fungi. Utilizing this knowledge to develop metabolic 
engineering strategies, e.g. by overexpressing precursor pathways, could be a promising 
strategy to increase the production of secondary metabolites in native producers. 
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In Paper IV, we focused specifically on metabolism of the Penicillium genus by 
reconstructing GEMs for the 24 species analyzed in Paper III. The aim was to evaluate 
if metabolism could be accurately reconstructed for genome sequenced organisms with 
minor experimental characterization. We found that the metabolic networks of the 24 
species were very similar, but showed variations in secondary metabolite biosynthesis 
pathways. The similarities in central metabolism of the species also manifested in very 
similar maximum theoretical yields of penicillin and griseofulvin based on FBA 
simulations of the models. Future improvements of model accuracy, e.g. by implementing 
kinetic parameters, might increase the predictive power of the GEMs, and constitute a 
promising way of screening which species has the better intrinsic capabilities for 
production of specific secondary metabolites. 
In the introduction of this thesis, I stated that the aim was to contribute to the development 
of novel antibiotics. Although no new antibiotics were experimentally validated in the 
work presented here, I would argue that most likely a number of new antibiotics have 
been found. I highlighted the diversity in secondary metabolite biosynthesis pathways in 
the Penicillium genus, and defined which species contain which pathways. Future 
developments of prioritization strategies among the detected BGC will push this work 
forward, as discussed above. I further suggest that despite developments in establishing 
platform cell factories such as S. cerevisiae for production of chemicals, native secondary 
metabolite producers might still represent efficient platforms that are naturally geared for 
production. I hope that the work presented in this thesis has contributed to the 
understanding of fungal secondary metabolite production, and will facilitate future 
development of fungal derived antibiotics. 
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