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Abstract

This thesis focuses on design and analysis of the control system structure for back-to-

back converter squirrel-cage induction machine drives. Particularly, sensorless control

of induction machines, meaning vector control without a mechanical shaft sensor, and

vector control of pulsewidth-modulated (PWM) rectifiers are considered.

The back electromotive force (EMF) is used as the basis for sensorless control in

this thesis. A variant of the classical “voltage model” is adopted for sensorless flux esti-

mation. It is shown that the estimator must be redesigned for the purpose of arbitrarily

placement of the closed-loop poles. A thorough stability analysis of the redesigned es-

timator shows that asymptotical stability can be guaranteed at nominal speeds. The

stability at very low frequencies is, however, largely affected by the knowledge of the

stator resistance. The presence of a singularity for zero stator frequency is found, which

makes it impossible to guarantee stable operation at very low frequencies, except for

the case of zero external load torque.

The underlying mechanisms behind the two widely acknowledged instability phe-

nomena for sensorless control at low frequencies are revealed. The most critical form of

instability is the infamous flux collapse: the flux collapses to approximately zero, giving

nearly total loss of torque, and uncontrolled rotation in the direction of the external

load torque. The less well-known instability phenomenon frequency lockup is not as

critical: the field orientation deteriorates, such that the torque reduces but not vanish,

and the stator frequency and rotor speed lock on to constant values close to zero.

A control system structure is developed for the PWM rectifier. The previously

proposed concept of virtual flux is adopted for grid-voltage synchronization, and three

different synchronization algorithms are analyzed. The PWM rectifier is also considered

for an active filtering application, for which a vector current control system designed

for the deadbeat response is designed. An analysis shows that the resulting deadbeat

control system is equivalent to previously proposed Smith predictor structures.

Index Terms: Flux estimation, induction motor, sensorless control, back-to-back con-

verter, pulsewidth-modulated rectifier, virtual flux, vector current control, active filter-

ing.
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Chapter 1

Introduction

Variable-speed electric machine drives are nowadays used various kinds of kinds indus-

trial processes, transportation systems, wind turbines and household appliances in the

western world. It has been estimated that electric drives consume 50 % of the produced

electrical energy in Europe [18]. The vast majority of drives are fairly primitive devices,

which hardly require any control at all, or perform well with fairly simple control meth-

ods. A very important but fairly small number of electric drives are, on the other hand,

used in demanding applications, where precise and fast control of the drive is essential.

For such applications, sophisticated and well-performing control design is a key issue.

1.1 Back-to-Back Converter

The back-to-back converter, depicted in Fig. 1.1, consists of two three-phase PWM

converters with a common dc-link voltage. For historical reasons, the grid-connected

PWM converter is normally referred to as PWM “rectifier,” while the machine-side

PWM converter is referred to as PWM “inverter.”

An important property of the back-to-back converter is that it allows for true

four-quadrant operation, meaning that the direction of the active power flow can be

reversed at any instant. Traditionally, four-quadrant operation has mainly been useful

for regenerative loads, where it is economically beneficial to feed back the braking power

of the ac machine to the utility grid [35]. Recently, the four-quadrant capability of the

back-to-back converter has also found use in new applications, of which variable-speed

wind turbines that employ the wound-rotor induction generator [3, 98] and HVDC light

[80] are perhaps the most well-known.

�
�
�

PWM “rectifier” DC link PWM “inverter”

Induction
machine

Utility grid

IM

Fig. 1.1. Structure of a back-to-back converter induction machine drive.
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Chapter 1. Introduction

In this thesis, control of the back-to-back converter squirrel-cage induction ma-

chine drive is studied. Particularly, so-called sensorless vector control of induction ma-

chines and vector control of PWM rectifiers are considered. These research topics are

partly decoupled from each other, even though some similarities will be shown, so the

resulting conclusions hold also for several other drive system structures. For instance,

the control system for the PWM rectifier are not dependent on what type of ac motor

that is connected to the PWM inverter.

1.2 Sensorless Control

Precise and accurate torque control for the induction machine (IM) can only be accom-

plished by vector control, as invented by Blaschke [15] in the late 1960s. In terms of

space vector theory [74], vector control implies that the instantaneous torque is con-

trolled by way of the stator current vector that is orthogonal to the rotor flux vector.

Precise knowledge of the rotor flux angle is therefore essential for a vector controlled

IM.

IMs do not allow the flux position to be easily measured, so most modern vector

controlled IM drives rely on flux estimation. This means that the flux angle is derived

from a flux estimator, which is a dynamic model of the IM. Given that the rotor speed

of the IM is measured by a mechanical shaft sensor, then flux estimation is a fairly

easy task. The famous “current model” (CM), for instance, is stable for all speeds and

torques [42, 115]. However, there has for several years now existed a strong development

towards sensorless control, which implies vector control of the IM without a mechanical

shaft sensor. The driving motivations behind the development in sensorless control are:

• Lower cost. For low- and medium-power drives, the cost of the shaft sensor can

be comparable to the cost of the IM itself.

• Reliability. Shaft sensors—tachometers, encoders, and resolvers are commonly

used [35]—are prone to eventually fail, just like any other component of an IM

drive. The removal of the shaft sensor results in one less critical component, thus

improving the availability of the IM drive.

• Operating environment. Shaft sensors are delicate mechanical devices that cannot

always be mounted in certain hostile environments, such as chemical plants.

Research in sensorless control has now been carried out for almost two decades, of which

some of the most remarkable achievements are referenced in Chapter 2. The topic is

therefore in many ways mature, and there are indeed several commercial sensorless IM

drives on the market. In Scandinavia, the most well-known commercial implementations

are perhaps the DTC family of ABB [111] and NFO Sinus [90]. Although commercial

sensorless IM drives are generally well-performing, no strict proof of stability—taken

into account inaccurate model parameters—is known to the author. There are also

strong indications that particularly low-speed operation is still being problematic, even

for commercial sensorless IM drives. A comprehensive survey [12], made two years ago by

the drive manufacturer Baldor Electric Co., showed that several commercial sensorless

2



1.3. Vector Control of PWM Rectifier

IM drives could not properly achieve stable low-speed-large-torque operation. Similar

findings have also been presented by the academic research community [32, 46, 94, 100].

Recently, some fairly drastic, but apparently required, control algorithms [31, 76] have

been proposed in order to secure stable sensorless control at low speeds. Therefore,

sensorless control at low speeds and large torques can still be improved. Sensorless

operation at nominal speeds, on the other hand, can no longer be considered as a

problem.

In this thesis, the flux EMF is used as the basis for sensorless control. The flux

EMF is the time derivative of the rotor flux, which is estimated by subtracting the

voltage drops across the stator resistance and the total leakage inductance from the

stator voltage. A rotor flux estimate can then be found from a flux estimator that

integrates the flux EMF. Traditionally, the “voltage model” (VM) [30, 116] is used for

this purpose, even though this flux estimator has several drawbacks [22, 47].

1.3 Vector Control of PWM Rectifier

An important reason for choosing a PWM rectifier over a simpler and less expensive

rectifier, such as a three-phase diode rectifier [35], is that bidirectional power flow is

enabled, as already discussed. In addition, a PWM rectifier offers the following advan-

tages:

• Good power quality. Nearly sinusoidal currents can be obtained by using fairly

small filters [55]. Moreover, the fully controlled input current of a vector controlled

PWM rectifier makes it possible to even improve the local power quality. This can,

for instance, be achieved by way of flicker mitigation or active filtering of current

harmonics. Such improvement of power quality is today commercially available,

the best-known example is perhaps the SVC light [43], albeit using a different

converter topology than here studied.

• Controllable dc-link voltage. The controllable dc-link voltage improves the immu-

nity of the electric drive towards voltage sags [117]. In addition, some applications

increase the dc-link voltage when the loading ac machine operates above base

speed [1]. This way, flux weakening for the machine is avoided and the maximum

torque is always available.

Vector control of a PWM rectifier requires knowledge of the grid voltage angle, which is

in close correspondence to the rotor flux angle of an IM. A virtual grid flux [36, 84, 85]

can be introduced, such that the problems of grid-flux and rotor-flux estimation become

nearly equivalent.

The vector control system of a PWM rectifier should preferably achieve good re-

jection of voltage disturbances, which are prone to appear in the utility grid. Otherwise,

the grid voltage disturbances easily spread to the PWM rectifier input currents, which

then become more distorted [20].

3



Chapter 1. Introduction

1.4 Scientific Contributions

The following results in Chapter 3 on sensorless control are considered as new, in the

opinion of the author:

• A variant of the VM [101], in this thesis referred to as the “statically compensated

voltage model” (SCVM), is adopted for sensorless flux estimation. The SCVM is

then redesigned, such that arbitrarily placement of the closed-loop poles is made

possible.

• The resulting dynamics from the SCVM are thoroughly analyzed. For accurate

model parameters, stability is shown at nominal speeds, while stability at low

speeds is guaranteed only for small machines. For inaccurate model parameters,

the presence of a singularity for zero stator frequency makes it impossible to

guarantee stable low-frequency operation for the SCVM, except for the case of

zero external load torque or if the stator resistance is perfectly known.

• The underlying mechanisms behind instability for sensorless control are believed
to be not well familiar. Based on the thorough stability analysis, these mechanisms

are revealed for the SCVM. It is argued that the instability phenomena to a large

extent are related to the physics of the IM itself, and can thus occur for any

flux-EMF-based flux estimator.

• Recommendable choices for model parameters selections, with respect to overes-
timation and underestimation, are given for the SCVM. These recommendations

cannot avoid instability, but may avoid total failure for a sensorless IM drive.

• Simple parameter selection rules are derived for the SCVM, reducing the amount
of trial-and-error work required in the design and tuning of the drive.

Some very thorough research has been carried out on the PWM rectifier, of which some

are referenced in Chapters 4–7. Even though not all of the following results cannot be

considered as entirely new, some problems for the PWM rectifier are addressed, and

several analyses provide interesting observations, believed to be not well-known.

In Chapter 5, three grid-flux estimators are analyzed, of which two estimators

are designed in this chapter. The SCVM is found to be applicable not only for flux

estimation of synchronous and induction motors [50], but also for vector control of a

PWM rectifier.

In Chapter 6, controllers for a PWM rectifier are derived and analyzed. A classical

cascaded control system structure is chosen, consisting of an inner vector current control

loop and an outer loop for dc voltage control.

In Chapter 7, deadbeat current control for active power filtering at a low switching

frequency is studied. The stability and the parameter sensitivity for the two-samples

deadbeat controller is assessed, and it is shown that the controller is equivalent to

previously proposed Smith predictor control structures.

For all three mentioned chapters regarding the PWM rectifier, simple controller

and estimator parameter selection rules are derived, reducing the amount of trial-and-

error work required in the design and tuning of the drive.

4



1.5. Publications

1.5 Publications

Many of the results in this thesis have been presented in the form of one Licentiate

Thesis, three conference papers and three accepted journal papers. In chronological

order, with references to where the paper appears in this thesis, the publications are:

1. J. Svensson and R. Ottersten. “Shunt active filtering of vector current-controlled

VSC at a moderate switching-frequency,” IEEE Trans. Ind. Applicat., vol. 35, no.

5, pp. 1083–1090, Sept./Oct. 1999.

The algorithms for active-power filtering in Chapter 7 were studied. These algo-

rithms have, essentially, remained unchanged throughout this project.

2. R. Ottersten. “Vector control of a double-sided PWM converter and induction

machine drive,” Lic. Thesis, Electrical Machines and Power Electronics, Dept. of

Electric Power Eng., Chalmers Univ. of Technology, Göteborg, Sweden, 2000.

A control scheme for the back-to-back converter was developed. Parts of this

control scheme is greatly improved in Chapters 5–6. The active filter algorithms

and a preliminary variant of the deadbeat current control structure in Chapter 7

were presented. A more thorough analysis of deadbeat current control is added in

the present thesis.

3. R. Ottersten and J. Svensson. “Active filtering using vector-current controlled

VSC—Deadbeat control and saturation strategies,” Proc. IEEE Nordic Workshop

Power and Industrial Electronics, Aalborg, Denmark, June 2000, vol. 1, pp. 278–

282.

The deadbeat current controller in the Licentiate Thesis and Chapter 7 was con-

sidered for an active filter application.

4. R. Ottersten and J. Svensson. “Vector current controlled voltage source conver-

ter—Deadbeat control and saturation strategies,” IEEE Trans. Power Electron.,

vol. 17, no. 2, pp. 279–285, Mar. 2002.

The deadbeat current controller in Chapter 7, more thoroughly analyzed in the

present thesis, was presented. A similar version of this paper appeared already in

1998 as:

R. Ottersten and J. Svensson. “Vector current controlled voltage source conver-

ter—Deadbeat control and saturation strategies,” Proc. IEEE Nordic Workshop

Power and Industrial Electronics, Espoo, Finland, Aug. 1998, vol. 1, pp. 65–70.

5. R. Ottersten and L. Harnefors. “Design and analysis of inherently sensorless rotor-
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Chapter 1. Introduction

Parts of this paper considered the SCVM in Chapter 3 for the induction machine

at nominal speeds. Moreover, the SCVM was compared to a phase-locked-loop

type estimator for sensorless operation of ac machines. This comparison is not

included in this thesis, but a similar study is made in Chapter 5 for a PWM

rectifier.

Some results are still unpublished, however, since they have been produced at a fairly

late stage in this project. The unpublished work includes the final version and the in-

depth analysis of the SCVM in Chapter 3, and the analysis of grid-flux estimators in

Chapter 5.
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Chapter 2

Induction Machine Dynamics and

Vector Control

The objective of this chapter is to derive and describe a model for the induction ma-

chine, see Appendix C for a list of glossary terms. We also analyze a few well-known flux

estimators for vector control, and discuss the limitations of each estimator. The fun-

damentals of speed-sensorless operation is treated thoroughly, and one speed-sensorless

flux estimator is selected for further analysis in the next chapter.

2.1 Induction Machine Model

The dynamic equivalent circuit of the squirrel-cage induction machine, which will be

defined in the following, is based on the common simplifications that the magnetomotive

force distribution along the airgap of the machine is sinusoidal, and that the hysteresis

loss and the eddy-current loss [39] of the machine are negligible.

Space vectors [74] are commonly used to describe the dynamics of the induction

machine, and these vectors are rms-value scaled in simulations and experiments in this

thesis. The space vector of the stator current, for instance, is therefore

iss =

√
2

3

[
a0is1 + a1is2 + a2is3

]
(2.1)

where a = ej2π/3 represents the spatial distribution of the stator winding for a three-

phase ac machine, while is1, is2 and is3 are the phase quantities of the stator current.

2.1.1 Electrical Subsystem Model

The inverse-Γ model [102] is used to model the induction machine. The inverse-Γ model

is mathematically equivalent, both dynamically and in the steady-state operation, to

the perhaps more well-known T model [102].

The electrical differential equations of the inverse-Γ model are obtained by ap-

plying the loop method to the equivalent circuit in Fig. 2.1. However, the loop method

alone is not sufficient to directly derive the differential equations in a convenient form.
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Fig. 2.1. Dynamic inverse-Γ circuit for the induction machine, where p=d/dt.

It is, for instance, desirable that the rotor current vanishes from the differential equa-

tions. This can be achieved by using the constitutive relations between the flux linkages

and the currents of the induction machine:

ψs = Lσis + ψR, ψR = LM(is + iR) (2.2)

where

LM , Lσ magnetizing and leakage inductance;

iR, is rotor and stator current;

ψR, ψs rotor and stator flux (linkage).

When selecting the stator current and the rotor flux as complex-valued state variables,

the two loops in Fig. 2.1 can be written as [102]

Lσ
dis
dt
= vs − (Rs + jω1Lσ) is − jω1ψR − dψR

dt
(2.3)

dψR
dt

= RRis −
[
RR
LM

+ j(ω1 − ωr)
]
ψR (2.4)

where

Rs, RR stator and rotor resistance;

ω1 synchronous (excitation) frequency;

ωr electrical rotor speed;

vs stator voltage.

The former equation, (2.3), is related to the stator circuit, while (2.4) concerns the rotor

circuit.

Stator-Oriented and Synchronous Reference Frames

The above dynamic model of the induction machine can be given in any two-axis ref-

erence frame. Mainly two reference frames are of interest for our purposes, though,

namely the stator-oriented reference frame and the synchronous reference frame.

From the perspective of the stator-oriented reference frame in the steady-state op-

eration, the real and the imaginary parts of a space vector vary sinusoidally in the time

domain. This is quite a natural property for an ac machine. However, sinusoidal quanti-

ties are not desirable in control applications. For instance, a proportional-plus-integral

(PI) controller with a sinusoidal input will not achieve a steady-state control error of

8



2.1. Induction Machine Model
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Fig. 2.2. The stator-oriented (αβ) and the synchronous (dq) reference frames.
(a) Estimated rotor flux. (b) True rotor flux.

zero. Only step-formed set points, which are dc quantities in the steady-state operation,

are adequate for a PI controller. It is, therefore, worthwhile to transform the dynamic

model of the induction machine to a reference frame where all quantities become dc in

the steady state. The synchronous reference frame is one such “dc” reference frame.

The transformation between the stator-oriented and the synchronous reference

frames is known as the Park transformation:

y = e−jθ1ys, ys = ejθ1y, θ1 =

∫
ω1dt (2.5)

where θ1 is the transformation angle, and y is an arbitrary complex-valued variable. The

transformation angle is given by the angle of the estimated rotor flux, ψ̂sR = ψ̂Re
jθ1. The

estimated flux is, therefore, real-valued in the synchronous reference frame, while the

true rotor flux, ψsR = ψRe
jθ, is generally not real-valued in the synchronous coordinate

system:

ψR = ψsRe
−jθ1 = ψRej(θ−θ1) = ψd + jψq. (2.6)

For the special case of perfect field orientation, meaning θ = θ1, the rotor flux is real-

valued as well though. Fig. 2.2 depicts the stator-oriented and the synchronous reference

frames, as well as the estimated and the true rotor flux.

In (2.3) and (2.4), the Park transformation has already been introduced, so these

equations are already given in the synchronous reference frame. As seen, variables in the

synchronous reference frame are in this thesis denoted without superscripts, e.g., ψR,
is, and vs. For stator coordinates, on the other hand, we put ω1 = 0 in (2.3) and (2.4),

and denote the variables with superscript “s.” The differential equations that describe

the electrical dynamics of the induction machine then become

Lσ
diss
dt
= vss −Rsiss −

dψsR
dt

(2.7)

dψsR
dt

= RRi
s
s −
(
RR
LM

− jωr
)
ψsR. (2.8)

The synchronous frequency ω1 = θ̇1 equals both the estimated rotor flux and the fre-

quency of the applied stator voltage. The latter implies that the synchronous frequency

is the excitation frequency of the machine, which equals the stator frequency in the

steady-state operation. Being the excitation frequency, ω1 can be considered as a con-

trol variable that is available for manipulation, as will be shown.
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Chapter 2. Induction Machine Dynamics and Vector Control

2.1.2 Flux EMF and Back EMF

The study of flux estimators that are based on the rotor-flux induced EMF is one

important objective of this thesis. The induced EMF is often referred to as the back

EMF, but the term flux EMF is preferred in this thesis. In order to properly define

the flux EMF, and to distinguish it from the back EMF, the following definition is

given [48]:
dψsR
dt︸︷︷︸

flux EMF

= RRi
s
s +

(
jωr − RR

LM

)
ψsR︸ ︷︷ ︸

back EMF

(2.9)

which results from (2.8). As seen, the flux EMF and the back EMF differ only by the

term RRi
s
s.

2.1.3 Parameter Variations

The model parameters of the equivalent circuit are usually not equal to the “true”

parameters of the induction machine. In the following, we briefly discuss the parameter

variations that may occur. Model parameters are, henceforth, denoted by a hat, e.g.,

L̂M , while “true” parameters are denoted without a hat, e.g., LM .

The stator resistance varies mainly due to thermal drift; the resistance increases

with increasing temperature. The temperature dependency of the stator resistance can

be modeled as [77]

Rs =
235 + T

235 + T0

Rs0 (2.10)

where T is a measure of the winding temperature, and Rs0 is the stator resistance for

a “cold” machine, at T0 = 20
◦C. The maximum winding temperature allowed is given

by the classification in Table 2.1 [89]. A class H winding is considered for a numerical

example, so Tmax = 170◦C. When the winding temperature rises from T0 to Tmax, the

relative increment in Rs becomes

ξ =
Rs
Rs0

=
235 + 170

235 + 20
≈ 1.6. (2.11)

“Cold” and “hot” values for Rs may therefore differ by up to 60 %. The variation of

the rotor resistance is similar to that of the stator resistance, although the variation for

RR is usually larger, due to the larger thermal resistance of the rotor [77].

The magnetization inductance LM varies with the modulus of the rotor flux [33],

due to magnetic saturation. An example of the variation of the magnetization induc-

tance is shown in Fig. 2.3. The graph has been derived from no-load measurements

on a 22-kW induction machine, see Appendix B for further details on this machine.

TABLE 2.1
Maximum winding temperature for medium polyphase motors

Motor type (37 W–370 kW) Class A Class B Class F Class H

Totally enclosed, nonventilated 105◦C 125◦C 150◦C 170◦C
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2.2. Time-Scale Separation
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Fig. 2.3. No-load magnetization characteristic (solid) and corresponding LM variation
(dashed) for the 22-kW test machine. Nominal ψR and LM are marked.

According to Fig. 2.3, LM increases by 15 % when the magnetization current is reduced

from its nominal value to half of its nominal value.

The leakage inductance Lσ depends mainly on the current modulus. The leakage

inductance can be considered as fairly constant for machines with open rotor slots [33],

because a large stator-current modulus (above the nominal value) is then required to

magnetically saturate Lσ. The picture is quite different for machines with closed rotor

slots, though, where larger variations in Lσ can be expected.

2.1.4 Mechanical Subsystem Model

Provided that the rotor shaft is stiff, the linearized mechanical dynamics of the induction

machine are given by
J

np

dωr
dt

= Te − Tl − b

np
ωr (2.12)

where

Te, Tl electro-mechanical torque and load torque disturbance;

np number of pole pairs;

J , b moment of inertia and viscous friction constant.

Space vectors are rms-value scaled in this thesis, so the electro-mechanical torque equals

[74]

Te = 3np Im{ψ∗
Ris} (2.13)

which for the special case of perfect field orientation reduces to

Te = 3np Im{(ψR − j0)(id + jiq)} = 3npψRiq. (2.14)

2.2 Time-Scale Separation

For closed-loop current control in the synchronous reference frame [69], a current rise

time of 1–5 ms is fully attainable [18]. This is normally much faster than the open-loop

dynamics of the rotor flux, which are governed by the rotor time constant LM/RR. For a

numerical example, parameters of three induction machines are listed in Table 2.2 [109].
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Chapter 2. Induction Machine Dynamics and Vector Control

TABLE 2.2
Per-unit parameters of three induction machines

Parameter 4-kW machine 22-kW machine 800-kW machine

RR 0.040 0.034 0.010

Rs 0.040 0.023 0.010

Lσ 0.16 0.21 0.3

LM 1.4 2.8 4.2

LM/RR 35 82 420

J 300 1000 1300

np 2 2 2

The rotor time constants of these machines correspond to rise times between 0.1 s and

1.3 s, which are roughly 20 to 1000 times slower than the closed-loop stator current

dynamics. The current dynamics and the rotor flux dynamics are, hence, characterized

by two totally different time scales, which is referred to as a singularly perturbed system

[70]. Consequently, the dynamics of the rotor flux and the stator current can be treated

separately for closed-loop current control [45, 58, 114].

Due to the time-scale separation, the stator current will in this thesis be considered

as the input signal to the induction machine when studying the dynamics of the rotor

flux. The stator voltage is then given by putting dis/dt = 0 in (2.3), splitting the real

and imaginary parts, and solving for vd and vq:

vd = (Rs +RR)id − ω1Lσiq − RR
LM

ψd − ωrψq (2.15)

vq = (Rs +RR)iq + ω1Lσid − RR
LM

ψq + ωrψd. (2.16)

The 22-kW machine in Table 2.2 will, henceforth, be referred to as the test machine,

since it is used for theoretical and experimental verifications in this thesis. Appendix B

contains a more detailed description of the test machine.

2.2.1 Component and Polar Representation of Flux Dynamics

One major objective of this thesis is to study the resulting dynamics from various

flux estimators. For this purpose, the dynamics of the rotor flux in (2.4) will often be

considered. Splitting the real and imaginary parts of this equation yields the component

representation of the rotor flux dynamics as

ψ̇d = RRid − RR
LM

ψd + (ω1 − ωr)ψq (2.17)

ψ̇q = RRiq − RR
LM

ψq − (ω1 − ωr)ψd. (2.18)

Occasionally, it is also useful to consider the rotor flux in polar form

ψR = ψRejθ̃ (2.19)
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2.3. Flux Estimation

where ψR is the modulus of the rotor flux, and θ̃ is the relative angle between the

rotor-flux-oriented and synchronous reference frames:

θ̃ = θ − θ1. (2.20)

Substituting ψR = ψRejθ̃ in (2.4), and evaluating the time derivative of ψR, provides
the polar representation of the rotor flux dynamics(

ψ̇R + j
˙̃θψR
)
ejθ̃ = RRis −

[
RR
LM

+ j(ω1 − ωr)
]
ψRe

jθ̃

⇒ ψ̇R + j
˙̃θψR = RRise

−jθ̃ −
[
RR
LM

+ j(ω1 − ωr)
]
ψR

(2.21)

which can be split into real and imaginary parts

ψ̇R = RR(id cos θ̃ + iq sin θ̃)− RR
LM

ψR (2.22)

˙̃θ =
RR
ψR
(iq cos θ̃ − id sin θ̃) + ωr − ω1. (2.23)

In the following, θ̃ is used as a measure for field-orientation accuracy, and will for this

purpose be referred to as the error angle (in the steady-state operation). Observe that

the special case θ̃ = 0 corresponds to perfect field orientation.

2.3 Flux Estimation

Vector control of electric machines is based on field orientation [15, 54], which requires

that the position of the rotor flux is known. However, induction machines do not allow

the rotor flux position to be easily measured, so flux estimation must normally be relied

upon. Some fundamental principles of field orientation are described in this section, and

two common flux estimators, namely the “current model” and the “voltage model,” are

studied.

2.3.1 Direct and Indirect Field Orientation

There are two fundamental principles to implement a flux estimator, which are often

referred to as direct field orientation (DFO) and indirect field orientation (IFO). DFO

implies that the flux estimator is implemented in the stator-oriented reference frame,

where the flux estimate becomes ψ̂sR = ψ̂
s
α + jψ̂

s
β. The transformation factors e

jθ1 and

e−jθ1 are then “directly” obtained from

ejθ1 =
ψ̂sR
ψ̂R

=
ψ̂sα + jψ̂

s
β√

(ψ̂sα)
2 + (ψ̂sβ)

2
, e−jθ1 =

(ψ̂sR)
∗

ψ̂R
=

ψ̂sα − jψ̂sβ√
(ψ̂sα)

2 + (ψ̂sβ)
2
. (2.24)

An IFO flux estimator, on the other hand, is implemented in the synchronous reference

frame. A so-called slip relation provides ω1, which is integrated in order to obtain the

transformation angle θ1:

θ1 =

∫
ω1dt. (2.25)
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Chapter 2. Induction Machine Dynamics and Vector Control

The transformation factors ejθ1 and e−jθ1 are then obtained “indirectly;”

ejθ1 = cos θ1 + j sin θ1, e−jθ1 = cos θ1 − j sin θ1. (2.26)

An important advantage for IFO is that one additional degree of freedom is present

compared to DFO [47], since complex-valued notation is no longer used. As will be

shown in the next chapter, the additional freedom for IFO manifests itself as an extra

gain parameter, which allows for arbitrarily placement of the resulting closed-loop poles.

IFO requires the calculation of cosine and sine, while DFO demands for the com-

putation of an inverse square root. This difference between IFO and DFO may be

important when implementing the flux estimator in hardware, although modern digital

signal processors and numerical algorithms tend to make this less important [49].

2.4 “Current Model”

The “current model” (CM) estimates the rotor flux by simulating the differential equa-

tion of the rotor flux that results from the rotor circuit. The DFO variant of the CM is

derived by substituting the true parameters in (2.8) with their model correspondences:

dψ̂sR
dt

= R̂Ri
s
s −
(
R̂R

L̂M
− jωr
)
ψ̂sR. (2.27)

The CM is the only flux estimator for which stability at low speeds has been proven [42,

115], at least for the realistic case of inaccurate model parameters. This makes the CM

a safe choice for demanding low-speed applications.

Speed-sensorless operation can be troublesome when using the CM, since ωr in

(2.27) must then be replaced by a speed estimate ω̂r. Speed estimation methods that rely

on saliency [67] or rotor-slot harmonics [63] have the ability to provide a very accurate

ω̂r, which can be safely substituted in (2.27). However, the former method requires

a special machine, while the latter method may fail for induction machines that have

skewed rotors [38]. Therefore, speed estimation methods that rely upon the fundamental

excitation (based on the flux EMF) often have to be used. Unfortunately, all flux-EMF-

based methods share the property that the speed estimate indirectly becomes a function

of the estimated flux [46]. Therefore, the flux-dependent speed estimate cannot be

substituted in a speed-sensored estimator, such as the CM, without completely altering

the system dynamics [46].

In addition to being less suitable for speed-sensorless operation, the CM has also a

fairly high parameter sensitivity [75], as will be shown below. The parameter sensitivity

results in inaccurate field orientation, which is not necessarily critical for stability [42,

115], but degrades the dynamic properties: a slow flux transient is initiated every time

iq changes. The flux transient affects the torque in particular [75, 79], but occasionally

also the rotor speed [57]. Due to the parameter sensitivity, the CM should be used at

low speeds only. A seamless transition from the CM to the less parameter sensitive

“voltage model” is preferred at nominal speeds [60, 66], even when the rotor speed is

measured.
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2.4. “Current Model”

2.4.1 Indirect Field Orientation

The IFO variant of the CM is derived by substituting the true parameters in (2.4) with

their model correspondences:

dψ̂R
dt

= R̂Ris −
[
R̂R

L̂M
+ j(ω1 − ωr)

]
ψ̂R. (2.28)

Observe that the estimated flux is now real-valued, since it is the angle of estimated

rotor flux itself that defines the position of the synchronous reference frame. By splitting

the imaginary and real parts of (2.28), the slip relation and the flux-modulus estimator

of the CM are found to be [41]

ω1 = ωr +
R̂Riq

ψ̂R
(2.29)

dψ̂R
dt

= R̂Rid − R̂R

L̂M
ψ̂R. (2.30)

The dynamic flux estimate is superfluous [99], provided that the setpoint for id is

selected via the relation id = ψref/L̂M , and ψref is constant. Then, ψ̂R converges to ψref

with the time constant L̂M/R̂R, which implies that the static estimate ψ̂R = ψref can

just as well be substituted in (2.29) directly:

ω1 = ωr +
R̂Riq
ψref

(2.31)

and (2.30) can be dropped. The selection of ω1 in (2.31) is referred to as the standard

slip relation, or the slip relation of the CM. A vector control scheme that uses the

standard slip relation is shown in Fig 2.4.

2.4.2 Parameter Sensitivity

This section describes how the error angle of the CM is affected when the true parame-

ters RR and LM are inaccurately modeled by R̂R and L̂M , respectively. Fairly accurate

model parameters are considered, meaning that θ̃ is small, so sin θ̃ ≈ θ̃ and cos θ̃ ≈ 1

can be assumed in the analysis.

Current
control
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IM drive
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sy.

st.

ˆ
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Fig. 2.4. IFO vector control system that uses the standard slip relation.
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The closed-loop dynamics resulting from the CM are found by repeating (2.22)

and by substituting the standard slip relation in (2.23):

ψ̇R = RR(id + iqθ̃)− RR
LM

ψR (2.32)

˙̃θ = θ̇ − ω1 =
RR
ψR
(iq − idθ̃)− R̂Riq

ψref

. (2.33)

Putting ψ̇R = 0 in the above equation, and solving for ψR, gives the following steady-

state relation between ψR and θ̃:

ψR = LM

(
ψref

L̂M
+ iqθ̃

)
. (2.34)

The convergence point for θ̃ can now be derived by substituting (2.34) in (2.33), putting
˙̃θ = 0, and solving for θ̃:

θ̃� =
(L̂MRR − LMR̂R)iqψref

RRψ2
ref + LM L̂MR̂Ri

2
q

≈ (L̂MRR − LM R̂R)iqψref

RR(ψ2
ref + L

2
M i

2
q)

=

(
R̃R
RR

− L̃M
LM

)
LM L̂M idiq

(L̂M id)2 + (LM iq)2
≈
(
R̃R
RR

− L̃M
LM

)
idiq
i2d + i

2
q

(2.35)

where

R̃R = RR − R̂R, L̃σ = Lσ − L̂σ (2.36)

are the errors in the model parameters. Based on (2.35), the following conclusions can

be drawn:

• Perfect field orientation, θ̃ = 0, results for accurate model parameters (R̃R =

L̃M = 0), at no load (iq = 0), or when the model errors cancel (R̃R/RR =

L̃M/LM). Otherwise, the field orientation is imperfect.

• The relative errors in the model parameters have similar impact on the error
angle, but the largest parameter error can be expected for the rotor resistance.

• The maximum error angle, obtained for iq = ±id, becomes

θ̃max =
1

2

(
R̃R
RR

− L̃M
LM

)
sign(iq). (2.37)

The values L̂M = LM , R̃R = 0.7RR and iq > 0 are considered for a numerical

example, which yields the maximum error angle θ̃max = 0.35 rad = 20
◦. This is a

fairly large error angle, which makes exact torque control impossible.

2.5 Inherently Sensorless Flux Estimation

As discussed in Section 2.4, a flux-EMF-based speed estimate unavoidably becomes a

function of the true rotor flux. In order to avoid that the speed estimate alters the closed-

loop dynamics, the preferred alternative for speed-sensorless operation is to use a flux
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2.5. Inherently Sensorless Flux Estimation

estimator that does not require knowledge of ωr. Such a flux estimator will, henceforth,

be referred to as inherently sensorless, and we shall only consider this type of speed-

sensorless flux estimation in this thesis. This section investigates the fundamentals of

inherently sensorless flux estimation. It is assumed that the stator voltage and the stator

current are accurately measured.

An inherently sensorless flux estimator must rely upon the information that is

available in the stator circuit loop, in order to estimate the flux angle. By consider-

ing (2.7):

vss = Rsi
s
s + Lσ

diss
dt
+
dψsR
dt

(2.38)

it becomes clear that this equation does not require knowledge of ωr. Specifically, it is

only the flux EMF

Esf =
dψsR
dt

= vss −Rsiss − Lσ
diss
dt

(2.39)

in (2.38) that contains information regarding the flux angle. Now, let us study how

this information is given. For this purpose, the polar representation of the rotor flux is

substituted in (2.39):

Esf =
d
(
ψRe

jθ
)

dt
= (ψ̇R + jθ̇ψR)e

jθ (2.40)

where ψR and θ are the true flux modulus and the true flux angle, respectively. With

Esf = Efe
jθ1 , vss = vse

jθ1 and iss = ise
jθ1, the flux EMF in the synchronous reference

frame becomes

Efe
jθ1 = (ψ̇R + jθ̇ψR)e

jθ = vse
jθ1 −Rsisejθ1 − Lσ

d
(
ise

jθ1
)

dt

⇒ Ef = (ψ̇R + jθ̇ψR)e
jθ̃ = vs −Rsis − jω1Lσis.

(2.41)

The above equation represents the “true” flux EMF in the synchronous reference frame,

but a flux estimator must, of course, rely on the estimated flux EMF. This estimate is

derived by substituting the true parameters in (2.41) with their model correspondences:

Êf = vs − R̂sis − jω1L̂σis. (2.42)

Provided accurate model parameters, R̂s = Rs and L̂σ = Lσ, the estimated flux EMF

actually equals the true flux EMF:

Êf = Ef = (ψ̇R + jθ̇ψR)e
jθ̃ (2.43)

which is called the fundamental relation for sensorless flux estimation [50], since any

inherently sensorless flux estimator must rely on it. Several interesting conclusions can

be directly drawn from (2.43):

• In order to maintain accurate field orientation, θ̃ = 0, a flux estimator must be

able to extract the information that is related to θ̃ from the flux EMF. However,

this information is given as a nonlinear combination of ψR, ψ̇R, θ̇, and θ̃, so a

change in θ̃ cannot for sure be separated from a change in ψR, for instance. This

is an indication of speed-sensorless operation being non-trivial, even for the ideal

case of accurate model parameters.
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• The estimated flux EMF is a function of the true rotor flux, so the flux estimate
of an inherently sensorless estimator must become a function of the true flux

as well. A nonlinear feedback of the true rotor flux is, therefore, introduced in

the closed-loop dynamics, which will now be demonstrated. Consider the angle

of the synchronous reference frame θ1(ψsR), which becomes a function of the true
rotor flux via a slip relation, dθ1/dt = ω1(ψsR). The angle is used in the Park
transformation, giving iss = ejθ1(ψ

s
R)is. By substituting this relation in (2.8), the

rotor flux dynamics are found to be

dψsR
dt

= RRe
jθ1(ψs

R)is −
(
RR
LM

− jωr
)
ψsR (2.44)

which is nonlinear with respect to ψR. Due to the nonlinear feedback, the result-
ing closed-loop dynamics are heavily dependent on how θ1(ψsR) is derived [47].
An inherently sensorless flux estimator must, thus, be carefully chosen, since a

small change in the estimator design may have a large influence on the resulting

dynamics.

For an IFO-type estimator, one may just as well argue that the nonlinear feedback

of the rotor flux is introduced by ω1(ψR). This can be deduced from (2.4):

dψR
dt

= RRis −
(
RR
LM

+ j
[
ω1(ψR)− ωr

])
ψR. (2.45)

One additional conclusion can be drawn from (2.45), namely that the nonlinear

feedback is present for all excitation frequencies except zero.

• Observe the difference between an inherently sensorless flux estimator and the
CM: the resulting dynamics from the CM are linear, since the standard slip rela-

tion, ω1 = ωr + R̂Riq/ψref, does not introduce feedback of the true rotor flux.

• An inherently sensorless estimator is, by necessity, only sensitive to the model
parameters R̂s and L̂σ, as seen from (2.42).

• The model parameter L̂M is also sensitive for some inherently sensorless estimators
[93]. This cannot be observed from (2.42), but will be discussed in a following

section.

• With respect to the accuracy of the field orientation and stability, it is well known
that R̂R is never a sensitive parameter for an inherently sensorless flux estima-

tor [100]. This can be deduced from the equivalent circuit in Fig. 2.1: neither

knowledge of ωr nor RR is required for an inherently sensorless flux estimator.

The real and imaginary parts of (2.43) are now split:

Êd = Ed = −θ̇ψR sin θ̃ + ψ̇R cos θ̃ (2.46)

Êq = Eq = θ̇ψR cos θ̃ + ψ̇R sin θ̃ (2.47)

which allow to draw the following additional conclusions on inherently sensorless flux

estimation, at nominal speeds and at low frequencies:
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2.5. Inherently Sensorless Flux Estimation

• Nominal speeds. It can be assumed that θ̇ ≈ ω1 dominates the flux EMF at

nominal speeds, so the influence from ψ̇R in (2.46)–(2.47) is then negligible. This

gives

Êd ≈ −ω1ψR sin θ̃ ≈ −ω1ψRθ̃ (2.48)

for small θ̃. A deviation from correct field orientation, θ̃ = 0, is thus immediately

seen in Êd. For similar reasons, Êq ≈ ω1ψR cos θ̃ ≈ ω1ψR at nominal speeds, so Êq
provides information about the flux modulus.

It is follows that speed-sensorless at nominal speeds should not produce any sig-

nificant difficulty, since the information regarding θ̃ is easily seen in Êd.

• Low frequencies. The influence from ψ̇R cannot be neglected at low frequencies.

A change in ψR, giving ψ̇R 
= 0, may then be misinterpreted by the flux estimator
as a change in θ̃. Consider θ̇ = 0 in (2.46), then

Êd = ψ̇R cos θ̃ ≈ ψ̇R (2.49)

for small θ̃, so a deviation from θ̃ = 0 cannot be seen in Êd, or at least not

be separated from ψ̇R. For similar reasons, Êq = ψ̇R sin θ̃ ≈ ψ̇Rθ̃, so neither Êq
provides useful information regarding θ̃: a change in θ̃ cannot be separated from

a change in ψ̇R.

It follows that speed-sensorless operation at low frequencies is, most likely, noto-

riously difficult, and stable operation for ω1 ≈ θ̇ = 0 is even impossible, which

can be deduced from (2.46)–(2.47).

As here discussed, instability phenomena for speed-sensorless operation at low

frequencies have indeed been reported [32, 46, 94, 100].

2.5.1 Speed Estimation

An inherently sensorless flux estimator does not require knowledge of ωr, so the choice

of speed estimator is not critical for the system stability. A simple and elegant solution

for estimating the rotor speed was presented in [116]; the standard slip relation can be

used backwards:

ω̂r = ω1 − R̂Riq

ψ̂R
. (2.50)

The speed estimate is sensitive to R̂R, but this is unavoidable, since a flux-EMF-based

speed estimate cannot be separated from an error in R̂R [100].

For IFO, ω1 is an explicit control variable that is readily available for the above

speed estimator. For DFO, however, ω1 needs to be calculated separately. The following

relation can be used for this purpose [116]:

ω1 =
dθ1
dt

=
d

dt

[
atan

(
ψ̂β

ψ̂α

)]
=
Êβψ̂α − Êαψ̂β
(ψ̂α)2 + (ψ̂β)2

. (2.51)

With fast and accurate stator current control, iq in (2.50) can be substituted with i
ref
q

in order to reduce the sensitivity to noise. For speed control, the speed estimator must
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Chapter 2. Induction Machine Dynamics and Vector Control

then be embedded in a low-pass filter [47]:

dω̂r
dt

= αf

(
ω1 −

R̂Ri
ref
q

ψ̂R
− ω̂r
)

(2.52)

in order to avoid the algebraic loop that would otherwise be created, due to that irefq
is the output of the speed controller, while ω̂r is the input. The above filter gain αf
should be chosen at least a decade larger than the bandwidth of the speed control loop,

in order to avoid that ω̂r lags ωr.

2.6 “Voltage Model”

The open-loop simulation of (2.7):

dψ̂sR
dt

= Êsf (2.53)

is known as the “voltage model” (VM). The VM is the traditional inherently sensorless

flux estimator but it has, unfortunately, little practical use in the form of (2.53). The

limited usefulness is due to the fact that the resulting closed-loop dynamics have poles

on the imaginary axis [47], and the VM is also known to cause problems with integrator

drift [22].

In spite of the mentioned problems, the VM is known to provide a very accurate

flux estimate at nominal speeds, but good low-speed operation can only be accomplished

through good knowledge of the stator resistance [116].

By substituting ψ̂sR = ψ̂Re
jθ1 and Esf = Efe

jθ1 in (2.53), the equivalent IFO

representation of the VM becomes

Êfe
jθ1 =

dψ̂R
dt
ejθ1 + jθ̇1ψ̂Re

jθ1

⇒ dψ̂R
dt

= Êf − jω1ψ̂R.

(2.54)

After splitting the real and imaginary parts of (2.54), and solving the imaginary part

for ω1, the flux-modulus estimator and the slip relation for the VM are found to be

dψ̂R
dt

= Êd (2.55)

ω1 =
Êq

ψ̂R
. (2.56)

An IFO vector control system that uses the VM is shown in Fig. 2.5.

Recall that the static flux estimate ψ̂R = ψref sufficed when using the CM. This

is not applicable for the VM, though: stability is lost when ωr and iq have different

signs [47] (and |ωr| > RR|iq|/ψref). A dynamic flux estimate is therefore useful for the

VM, at least marginal stability is then obtained [47].

Several VM variants have been proposed in order to circumvent the above dis-

cussed problems of the traditional VM. The following sections present an overview of

some VM variants, and one of these estimators will be selected for further studies.
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Fig. 2.5. IFO vector control system that uses the VM.

2.6.1 Lowpass Integrator

The damping of the VM can be slightly improved by transforming the direct integration

in (2.53) to the following lowpass integrator

ψ̂sR =
Êsf

p+ αv
(2.57)

where p = d/dt. The filter bandwidth αv should increase with increasing stator fre-

quency, in order to obtain a reasonable trade-off between sufficient damping and field

orientation accuracy [22]. Henceforth, we select αv = λ|ω1|, where λ is a gain parameter
that is greater than zero.

Unfortunately, the lowpass integrator does not allow for the combination of a well-

damped system and accurate field orientation [47, 99]. Consider (2.39) with accurate

model parameters in the steady-state operation, then Êsf = jω1ψsR. Substituting this
in (2.57) gives

ψ̂sR =
jω1

jω1 + λ|ω1|ψ
s
R =

1

1− jλ sign(ω1)
ψsR (2.58)

for which the error angle becomes

θ̃ = arg

(
ψsR
ψ̂sR

)
= − arctan(λ) sign(ω1). (2.59)

A small λ must clearly be chosen in order to obtain a small error angle. For a numer-

ical example, the selections λ = 0.1 and λ = 0.2 yield θ̃ = ±5.7◦ and θ̃ = ±11.3◦,
respectively, which are fairly small error angles. However, a closed-loop analysis, not to

be included here, would reveal that the system becomes poorly damped when selecting

such a small λ. The lowpass integrator offers, therefore, only a modest improvement

compared to the voltage model.

2.6.2 Modified Voltage Models

Reference [93] presented a modified VM, in which feedback of the quantity ψrefe
jθ1 − ψ̂sR

was introduced in the flux estimator. Although good results were shown, a drawback of

this estimator is that sensitivity to L̂M is introduced, via the selection of id = ψref/L̂M .
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Chapter 2. Induction Machine Dynamics and Vector Control

The sensitivity to L̂M can be avoided by using other modified schemes, since R̂s and

L̂σ are the only, by necessity, sensitive model parameters for an inherently sensorless

flux estimator.

Reference [61] presented three modified variants of the VM. The most interesting

modified scheme was referred to as Algorithm 3, which introduced an additional state

variable. This estimator is only sensitive to the model parameters R̂s and L̂σ, but

the additional state variable complicates the analysis and the implementation of this

estimator.

Reference [101], similar variants have also appeared in [56, 64], presented a com-

pensation method for the lowpass integrator in (2.57):

ψ̂sR =
jω1 + λ|ω1|

jω1

Êsf
p+ λ|ω1| . (2.60)

We shall, henceforth, refer to this flux estimator as the statically compensated voltage

model (SCVM). The ingenious property of the SCVM is that the “correct” flux estimate

of the VM is restored in the steady-state operation. The restoration to the VM can be

deduced by substituting p → jω1 in (2.60), which recovers the open-loop integrator

ψ̂sR = Êsf/jω1.

2.6.3 Discussion

It appears that the SCVM is the most promising alternative, of the ones here discussed,

for inherently sensorless flux estimation. Although the VM variants in [61] and [93]

are viable flux estimators, they have drawbacks that can be avoided. The SCVM is,

therefore, selected for further analysis and development, which will be the topic of the

following chapter.

22



Chapter 3

Analysis and Development of the

SCVM

The previous results of [56, 64, 101] for the SCVM will be extended in this chapter, by

analyzing and developing the flux estimator.

The IFO implementation of the SCVM that results directly from DFO will in

this chapter be modified, by introducing a new gain parameter. This new parameter

enables arbitrarily pole placement for the SCVM, which is impossible for the previ-

ously presented SCVM. A thorough stability analysis follows, which provides several

enlightening observations and design guidelines for the SCVM. It is shown that the

dynamics resulting from the SCVM are asymptotically stable for small machines. For

large machines, however, stability at low speeds can only be ensured for lighter loads.

Recommendable gain parameters for nominal and low speeds are given.

The parameter sensitivity for the SCVM is analyzed. The existence of a singularity

for zero stator frequency is demonstrated, which makes operation at very low frequencies

difficult for the SCVM. Recommendations for proper selection of the model parameters

are given.

The chapter concludes with a discussion on various implementation issues for the

SCVM and experimental evaluation.

3.1 Indirect Field Orientation

The equivalent IFO implementation of the SCVM is derived by substituting p→ p+jω1

in (2.60), removing superscripts “s,” and taking ψ̂R real-valued:

ψ̂R =
jω1 + λ|ω1|

jω1

1

p+ jω1 + λ|ω1|Êf =
1− jλ sign(ω1)

p+ jω1 + λ|ω1|Êf . (3.1)

By splitting (3.1) into real and imaginary parts, and solving for ω1 in the imaginary

part, the slip relation and the flux-modulus estimator are found to be

ψ̂R =
Êd + λ sign(ω1)Êq

p+ λ|ω1| (3.2)

ω1 =
Êq − λ sign(ω1)Êd

ψ̂R
. (3.3)
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Chapter 3. Analysis and Development of the SCVM

Eqs. (3.2)–(3.3) are obtained directly from DFO. In the present form, the estimator has

therefore one degree of freedom [47], since only the gain parameter λ is available for

pole placement. A new coefficient µ is hereby introduced:

ψ̂R =
µÊd + λ sign(ω1)Êq

p+ λ|ω1| (3.4)

ω1 =
Êq − λ sign(ω1)Êd

ψ̂R
(3.5)

in order to take advantage of the additional degree of freedom that is present for IFO.

We thus had µ = 1 in (3.2). The below presented stability analysis will show that

µ enables arbitrarily pole placement for the closed-loop system, which is not possible

otherwise. Meanwhile, µ does not affect the accuracy of the field orientation in the

steady-state operation.

Let us study the estimated flux modulus in (3.4). Solving this equation for dψ̂R/dt

yields
dψ̂R
dt

= µÊd + λ sign(ω1)Êq − λ sign(ω1)ω1︸ ︷︷ ︸
|ω1|

ψ̂R. (3.6)

When substituting (3.5) in this relation, the flux-modulus estimator reduces to

dψ̂R
dt

= µÊd + λ sign(ω1)Êq − λ sign(ω1)
Êq − λ sign(ω1)Êd

ψ̂R
ψ̂R = (µ+ λ

2)Êd (3.7)

which reveals that ψ̂R does not depend on Êq. An equivalent but slightly simpler variant

of the SCVM can therefore be used:

dψ̂R
dt

= γÊd (3.8)

ω1 =
Êq − λ sign(ω1)Êd

ψ̂R
(3.9)

where γ = µ + λ2. These equations represent the flux estimator that will, henceforth,

be referred to as the SCVM, while the previous variant of the SCVM, resulting from

DFO (µ=1), will be referred to as the original SCVM.

Observe that the conventional VM or the original SCVM can easily be recovered

from (3.8)–(3.9): [λ, γ] = [0, 1] and γ = 1 + λ2 yield the VM and the SCVM variant

that results from DFO, respectively.

3.1.1 Slip Relation in Disguise

For analysis purposes, the flux EMF can be expressed in terms of the rotor circuit loop

in (2.8):

Esf =
dψsR
dt

= RRi
s
s −
(
RR
LM

− jωr
)
ψsR. (3.10)
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By substituting d/dt → d/dt + jω1, and removing superscript “s,” the corresponding

expression in the synchronous reference frame becomes

Ef =
dψR
dt

+ jω1ψR = RRis −
(
RR
LM

− jωr
)
ψR (3.11)

which has the following real and imaginary parts

Ed =
RR
LM

(LM id − ψd)− ωrψq (3.12)

Eq = RRiq + ωrψd − RR
LM

ψq. (3.13)

Accurate model parameters are now assumed, meaning that Êf = Ef and id = ψref/LM .

By substituting the above expressions for Ed and Eq in (3.9), the relation between the

excitation frequency and the true flux components is then found to be

ω1 =

ωrψd +RRiq − RR
LM

ψq − λ sign(ω1)

(
RR
LM

(ψref − ψd)− ωrψq
)

ψ̂R
. (3.14)

Provided that the resulting dynamics from the SCVM are stable, ψd and ψ̂R both

converge to ψref and ψq converges to zero. Eq. (3.14) then simplifies to ω1 = ωr +

RRiq/ψR. Even though (3.14) appears complicated at a first glance, it is, hence, simply

the standard slip relation in disguise. This is not very surprising: ω1 = ωr + RRiq/ψR
must hold for any flux estimator during perfect field orientation, which can be deduced

from (2.18).

3.2 Stability Analysis

The following stability analysis considers the dynamics that result when substituting

the slip relation of the SCVM in (2.4):

dψR
dt

= RRis −
(
RR
LM

+ j
[
ω1(ψR, ψ̂R)− ωr

])
ψR. (3.15)

Together with the flux-modulus estimator in (3.8), these differential equations form the

closed-loop system model of the SCVM.

It is necessary to introduce some simplifications before initiating the stability

analysis. As discussed in Section 2.2, the stator current dynamics are disregarded, and

the rotor speed is assumed to be slowly varying for simplicity reasons. Therefore, ωr, id =

irefd , and iq = i
ref
q will be treated as quasi-static parameters in the following analysis. The

model parameters are all assumed to be accurate, since the stability analysis becomes

far too complex to be tractable otherwise. The case of inaccurate model parameters will

eventually be treated separately, by studying the resulting error angle in the steady-

state operation.

Due to the assumptions, the below analysis is valid for a somewhat idealized case,

but several enlightening conclusions can still be drawn, as will be seen.
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3.2.1 Nonlinear Dynamics Resulting from the SCVM

Provided the above assumptions, the dynamics resulting from the SCVM are governed

by the following equations:

dψd
dt

= RRid − RR
LM

ψd + (ω1 − ωr)ψq (3.16)

dψq
dt

= RRiq − RR
LM

ψq − (ω1 − ωr)ψd (3.17)

dψ̂R
dt

= γEd = γ

(
RRid − RR

LM
ψd − ωrψq

)
(3.18)

where id = ψref/LM , and ω1 is given by (3.14). Eqs. (3.16)–(3.18) represent a third-

order nonlinear system. The nonlinearity is introduced by the synchronous frequency ω1,

which is a function of the real-valued state variables ψd, ψq and ψ̂R.

3.2.2 Equilibrium Points

By putting ψ̇d = ψ̇q =
˙̂ψR = 0, and solving (3.16)–(3.18) for ψd, ψq and ψ̂R, the following

two equilibrium points are found:
 ψ�d,1ψ�q,1
ψ̂�R,1


 =

 ψref

0

ψref


 (3.19)




ψ�d,2

ψ�q,2

ψ̂�R,2



=




RR(RRψref − ωrL2
M iq)

(ωrLM)2 +R2
R

RRLM(ωrψref +RRiq)

(ωrLM)2 +R2
R

R2
R[ψ

2
ref + (LM iq)

2]

ψref[(ωrLM)2 +R2
R]



. (3.20)

These convergence points are henceforth labeled EP1 and EP2, respectively. The field

orientation at EP1 is perfect, while the error angle at EP2 is

tan θ̃ =
ψ�q,2
ψ�d,2

=
RR(ωrψref +RRiq)

−ωrRRLM iq +R2
Rid
. (3.21)

EP1 is hence the desirable convergence point, and should ideally be stable (sink) for

all speeds and torques, while EP2 should be unstable (source or saddle point). Unfor-

tunately, this is not the case. The following analysis will show that EP1 may become

unstable at low speeds, which results in various instability phenomena that concern

EP2.

When substituting the expressions for EP2 in (3.14), the resulting excitation fre-

quency is found to become

ω1(ψ
�
d,2, ψ

�
q,2, ψ̂

�
R,2) = 0. (3.22)

Hence, ω1 ≈ 0 for operation about EP2. This is an important observation, which in

a following section will help us to understand the instability phenomena of speed-

sensorless flux estimation.
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3.2. Stability Analysis

Inaccurately Modeled LM

For simplicity, L̂M = LM has been assumed in the present stability analysis. This does

not affect the validity of the analysis, which can be deduced by substituting id = ψref/L̂M

in (3.16)–(3.18), putting ψ̇d = ψ̇q =
˙̂ψR = 0, and solving for ψd, ψq and ψ̂R. The following

then results

ψ�d,1 = ψ̂
�
R,1 =

LM

L̂M
ψref, ψ�q,1 = 0 (3.23)

for the equilibrium point that corresponds to the above EP1. The q-axis flux being

ψ�q,1 = 0 implies perfect field orientation, so L̂M affects the flux modulus only. Since L̂M
and ψref have similar effect on the flux modulus, L̂M 
= LM can therefore be modeled

in the present analysis by altering the value for ψref.

3.2.3 Linearization of Closed-Loop System

Linearization about EP1

The three nonlinear differential equations in (3.16)–(3.18) are linearized about EP1.

The resulting state-space system is found to become

d

dt



ψ̃d

ψq

ψ̃R


 =



−RR
LM

RRiq
ψref

0

−
(
ωr + ω2 +

RR
LM

λs

)
−λsωr ωr + ω2

−RR
LM

γ −γωr 0






ψ̃d

ψq

ψ̃R


 (3.24)

where λs = λ sign(ω1), ω2 = RRiq/ψref, and the error variables

ψ̃d = ψd − ψref, ψ̃R = ψ̂R − ψref (3.25)

are introduced. Apparently, the standard slip relation appears in the matrix A. This

is in consequence of that accurate model parameters are assumed and the linearization

around the ideal operating point [ψd = ψ̂R = ψref, ψq = 0], which in polar form becomes

[ψR = ψ̂R = ψref, θ̃ = 0]. According to (2.23), the relation ωr + ω2 = θ̇ = ω1 then holds,

which can, thus, be substituted in (3.24):

d

dt



ψ̃d

ψq

ψ̃R


 =



−RR
LM

ω1 − ωr 0

−
(
ω1 +

RR
LM

λs

)
−λsωr ω1

−RR
LM

γ −γωr 0




︸ ︷︷ ︸
AEP1



ψ̃d

ψq

ψ̃R


 . (3.26)

This provides a slightly simpler representation of the system matrix, which alleviates

the following analysis.
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Analysis of the Linearized Dynamics about EP1

Due to the coupling between ψ̃d, ψq and ψ̃R, the full complex nature of the dynamics

resulting from the SCVM is not easily grasped, not even from the linearization about

EP1 in (3.26). The purpose of the following analysis is therefore mainly to point out

some essential characteristics of the dynamics that result from the SCVM for operation

about EP1.

The d direction in (3.26) is independent of the choice of gain parameters. For

small iq, ψd converges to ψref with the rotor time constant LM/RR, independently of

ψq:
dψ̃d
dt

= −RR
LM

ψ̃d +
RRiq
ψref

ψq. (3.27)

The q direction in (3.26) is, on the other hand, very dependent on the gain parameter

λ:
dψq
dt

= −
(
ω1 +

RR
LM

λ sign(ω1)

)
ψ̃d − λ sign(ω1)ωrψq + ω1ψ̃R. (3.28)

For λ = 0, the open-loop integration of the traditional VM is recovered in the closed-

loop dynamics, due to the lack of ψq in the right-hand side of (3.28). This indicates an

oscillating behavior for the traditional VM. Interestingly, the damping of ψq is greatly

improved for λ 
= 0: at moderate speeds λsign(ω1)ωr 
 RR/LM is reasonable to assume,

so the dynamics of ψq are then much faster than those of ψd. Provided that EP1 is

stable, this implies that accurate field orientation, ψq = 0, is retrieved quickly after a

disturbance of some kind. However, at low speeds, then λ 
= 0 appears to be troublesome.
Consider the term −λ sign(ω1)ωrψq in (3.28): sign(ω1) 
= sign(ωr) leads to ψ̇q ∼ +λψq,

i.e., ψq has then positive feedback.

The dynamics of ψ̂R appear to be open loop, since there is no ψ̃R in the right-hand

side of (3.26):
dψ̃R
dt

= −γ RR
LM

ψ̃d − γωrψq. (3.29)

This is not the case, though, since ψq and ψ̃R are coupled: a deviation from ψq = 0

is easily seen in ψ̃R at nominal speeds. This provides negative feedback to ψq, via the

above equation and (3.28). The picture is quite different for low frequencies, however:

the coupling between ψq and ψ̃R vanishes for ω1 = 0. Moreover, for sign(ω1) 
= sign(ωr),
then ψ̃R provides positive feedback to ψq.

Based on the above observations, it appears that stability problems at EP1 may

arise for the operation mode sign(ω1) 
= sign(ωr). Below, this is confirmed strictly, by

analyzing the characteristic polynomial of EP1 at low speeds.

Linearization about EP2

The three nonlinear differential equations in (3.16)–(3.18) have been linearized about

EP2. Unfortunately, the resulting state-space system was found to be too complicated

to be tractable. In order to simplify the analysis, it is therefore assumed that ωr = 0.

This assumption follows from ω1 ≈ 0 at EP2, which leads to ωr ≈ −RRiq/ψR ≈ 0, on

condition that the mechanical dynamics are stable.
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3.2. Stability Analysis

Due to the assumption on ωr = 0, the below analysis about EP2 is valid for a

slightly idealized case. Nevertheless, the approximation is fairly accurate for a specific

operation mode at EP2 (which will be referred to as “frequency lockup”), so some

valuable conclusions can still be drawn, as will be seen.

The linearization about EP2 involves the following steps:

• The assumption ωr = 0 is substituted in (3.20). EP2 then simplifies to: ψ�d,2 = ψref,

ψ�q,2 = LM iq, and ψ̂
�
R,2 = ψref + (LM iq)

2/ψref.

• Error variables are introduced: ψ̃d = ψd−ψ�d,2, ψ̃q = ψq−ψ�q,2, and ψ̃R = ψ̂R−ψ̂�R,2,
where the equilibrium points are the ones that result from ωr = 0.

• The assumption ωr = 0 is substituted in the resulting state-space system.
By performing these steps, the linearized dynamics about EP2 are found to be

d

dt



ψ̃d

ψ̃q

ψ̃R


 =



−RR
LM

+
RRiqψrefλs

ψ2
ref + (LM iq)

2
− RRiqψref

ψ2
ref + (LM iq)

2
0

− RRψ
2
refλs

LM [ψ2
ref + (LM iq)

2]

RRLM i
2
q

ψ2
ref + (LM iq)

2
0

−γ RR
LM

0 0




︸ ︷︷ ︸
AEP2



ψ̃d

ψ̃q

ψ̃R


 (3.30)

where λs = λ sign(ω1). It can be seen from (3.30) that ψ̂R is decoupled from both ψd
and ψq, since there are only zeros in the third column of AEP2.

Characteristic Polynomial of EP2

The characteristic polynomial of (3.30), belonging to EP2, can be factorized to

det(pI − AEP2) = p

(
p+

RR
LM

)(
p+

RRLM i
2
q

ψ2
ref + (LM iq)

2
− RRiqψrefλ sign(ω1)

ψ2
ref + (LM iq)

2

)
(3.31)

which has the following roots (poles of linearized system about EP2)

p1 = 0, p2 = −RR
LM

, p3 =
RRiqψrefλ sign(ω1)−RRLM i2q

ψ2
ref + (LM iq)

2
. (3.32)

The pole p1 being at the origin is a reminder of that ψ̂R is open loop in (3.30). Since

ψ̂R is no longer involved in the “physical” dynamics of ψR, this means that p1 and the

dynamics of ψ̂R can be disregarded when analyzing EP2. Having drawn this observation,

the stability for EP2 is thus governed by p2 and p3.

The pole p2 is stable, while p3 may be either stable or unstable. By substituting

ψref = LM id in p3, the following condition results

|iq| > idλ sign(ω1) sign(iq) (3.33)

for stable operation about EP2. EP2 is thus bound to be stable for sign(iq) 
= sign(ω1).

Stable operation is also guaranteed for |iq| > |idλ|, which requires that iq is fairly large.
This means that the undesirable convergence point EP2 is, unfortunately, not unstable

for all speeds and torques. By recalling our previous observation ω1 ≈ 0 about EP2,

EP2 may hence be stable for small ω1 and large iq.
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Characteristic Polynomial of EP1

The characteristic polynomial of (3.26), belonging to EP1, is found to be

det(pI − AEP1) = p
3 + k2p

2 + k1p+ k0 (3.34a)

where

k2 =
RR
LM

+ λ sign(ω1)ωr (3.34b)

k1 = ω1

(
ω1 +

RR
LM

λ sign(ω1) + (γ − 1)ωr
)

(3.34c)

k0 = γ
RR
LM

ω2
1 . (3.34d)

Stable operation about EP1 requires that all coefficients in the characteristic polynomial

are positive, and that the elements in the first column of the Routh array

p3 1 k1

p2 k2 k0

p1 k′ =
k2k1 − k0

k2

0

p0 k0 0

(3.35)

are positive as well, giving the additional constraint k′ > 0. Since k2 > 0 is required for

stability, k′ > 0 is equivalent to

k = k2k1 − k0 > 0. (3.36)

Henceforth, k will be analyzed instead of k′, due to its simpler expression. This analysis
will be carried out in the following two sections, where the two cases of nominal and

low speeds are treated separately.

3.2.4 Stability Analysis for EP1 at Nominal Speeds

The slip is negligible at nominal speeds, meaning that ω1 = ωr holds approximately.

The coefficients in (3.34) then simplify to

k2 =
RR
LM

+ λ sign(ωr)ωr =
RR
LM

+ λ|ωr| (3.37)

k1 = ωr

(
ωr +

RR
LM

λ sign(ωr) + (γ − 1)ωr
)
=
RR
LM

λ|ωr|+ γω2
r (3.38)

k0 = γ
RR
LM

ω2
r (3.39)

which give the following characteristic polynomial

det(pI − AEP1) ≈ p3 +

(
RR
LM

+ λ|ωr|
)
p2 +

(
γω2

r +
RR
LM

λ|ωr|
)
p+

RR
LM

γω2
r

=

(
p+

RR
LM

)(
p2 + λ|ωr|p+ γω2

r

)
.

(3.40)
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3.2. Stability Analysis

The characteristic polynomial at nominal speeds has the following roots (poles of the

linearized system):

p1 = −RR
LM

, p2,3 = −(λ± j√4γ − λ2
) |ωr|
2
. (3.41)

Based on (3.41), the following conclusions can be drawn:

• The system is always asymptotically stable for λ > 0, since this selection yields

poles that are located in the left-hand side of the complex plane.

• The traditional VM is recovered for λ = 0, γ = 1. The poles are then located at

p2,3 = ±jωr, giving a system that is marginally stable.

• For small λ and γ = 1, the closed-loop poles of the SCVM approximately coincide

with the poles of the uncompensated VM with lowpass integrator. With λ = 0.2—

see Section 2.6.1 for the corresponding error angle—the poles are at p2,3 ≈ −(0.1±
j)|ωr|. This corresponds to an angle of 84◦ relative the negative real axis, which
is only a modest improvement compared to the damping of the traditional VM.

• The selection γ = 1+λ2 recovers the original variant of the SCVM, which results

from DFO. The system is then still fairly poorly damped, since the poles p2,3 are

located at an angle of arctan[
√
4/λ2 + 3] relative the negative real axis. Even if a

large λ is selected, an angle of less than 60◦ relative the negative real axis cannot
be obtained.

• The additional degree of freedom for IFO (µ 
= 1) enables arbitrarily pole place-
ment. A rule of thumb is that poles at 45◦ relative the negative real axis yield
sufficient damping. Such poles are obtained by selecting γ according to

γ =
λ2

2
⇒ p2,3 = −λ(1± j) |ωr|

2
= − λ√

2
|ωr|e±jπ/4. (3.42)

Henceforth, the specific gain parameters

λ =
√
2, γ = 1 (3.43)

are selected at nominal speeds, giving poles at p2,3 = −|ωr|e±jπ/4. The usefulness
of these gain parameters, and particularly γ = 1, will become apparent in the

following analysis at low speeds.

• Interestingly, the above gain parameters reveal a close relationship between the
SCVM and the traditional VM. Consider the SCVM in (3.8)–(3.9) with γ = 1:

dψ̂R
dt

= Êd, ω1 =
Êq − λ sign(ω1)Êd

ψ̂R
(3.44)

and compare this to the VM in (2.55)–(2.56):

dψ̂R
dt

= Êd, ω1 =
Êq

ψ̂R
. (3.45)
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The two estimators differ only by the introduction of Êd in the slip relation of the

SCVM. As discussed in Section 2.5: Êd ≈ −ω1ψRθ̃ and Êq ≈ ω1ψR for small θ̃ at

nominal speeds. Substituting these relations in the SCVM slip relation results in

ω1 ≈ ψR

ψ̂R
(ω1 + λ|ω1|θ̃). (3.46)

The additional feedback of θ̃ is, hence, the explanation to the well-damped dy-

namics resulting from the SCVM at nominal speeds.

3.2.5 Stability Analysis for EP1 at Low Speeds

The above selection γ = 1 at nominal speeds can also be recommended for low speeds.

Consider (3.34c): γ = 1 clears the dependency on ωr in k1, and this ensures k1 ≥ 0.

Regarding λ, the following analysis will reveal that λ =
√
2 is suitable for nominal

speeds only, while a better choice exists for low speeds.

By repeating the expression for k2 from (3.34b), substituting γ = 1 in (3.34c)–

(3.34d), and evaluating k in (3.36), the following coefficients

k2 =
RR
LM

+ λ sign(ω1)ωr (3.47)

k1 = ω1

(
ω1 +

RR
LM

λ sign(ω1)

)
(3.48)

k0 =
RR
LM

ω2
1 (3.49)

k = ω1

(
RR
LM

+ λ sign(ω1)ωr

)(
ω1 +

RR
LM

λ sign(ω1)

)
− RR
LM

ω2
1

= λ|ω1|
[(
RR
LM

)2

+

(
ω1 +

RR
LM

λ sign(ω1)

)
ωr

] (3.50)

must remain positive for stable operation at low speeds. Based on (3.47)–(3.50), the

following conclusions can be drawn:

• Marginal stability is obtained for ω1 = 0, since the coefficients then become k1 =

k0 = k = 0. As discussed in Section 2.5, it is impossible to extract information

regarding θ̃ from the flux EMF at zero excitation frequency.

• For ω1 
= 0 and sign(ω1) = sign(ωr), then {k2, k1, k0, k} > 0. The dynamics

resulting from the SCVM are therefore asymptotically stable when ω1 and ωr
have equal signs, which is always fulfilled for normal operation at nominal speeds.

• Stability cannot be ensured for sign(ω1) 
= sign(ωr): the coefficients k1 and k0

are then still positive, but at least one of the coefficients k2 or k may become

negative. The troublesome operation mode sign(ω1) 
= sign(ωr) was indicated

already in Section 3.2.3.

• The following observations can be made for the critical mode sign(ω1) 
= sign(ωr):
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3.2. Stability Analysis

1. A speed reversal under load (non-zero slip) is problematic. The critical mo-

ment for stability occurs immediately after a reversal of either ω1 or ωr, such

that the signs of ω1 and ωr differ.

2. A speed reversal for an application where the load torque is zero at standstill

should be a relatively easy task. The slip for such a load is (almost) zero at

zero speed, so ω1 and ωr change signs (almost) simultaneously.

3. The selection L̂M < LM is recommended, which can be achieved by per-

forming the usual no-load test at a stator voltage that is slightly above the

nominal value. This selection ensures, via the relation irefd = ψref/L̂M , that

the machine is not operating below the nominal rotor flux. Consequently, the

slip is slightly reduced, and the region where sign(ω1) 
= sign(ωr) is made

smaller.

This recommendation for L̂M is the opposite compared to [46], but the flux

estimator in this reference used ψ̂R = ψref instead of a dynamic ψ̂R.

Consider a slow speed reversal under non-zero load torque for accurate field orientation.

Immediately after a sign change in ω1, then ωr = −RRiq/ψref. Substituting this in (3.47)

gives the following necessary condition for stability:

k2 =
RR
LM

− λ sign(ω1)
RRiq
ψref

=
RR
LM

(
1− λ sign(ω1)

iq
id

)
> 0 (3.51)

which is equivalent to

id > iqλ sign(ω1). (3.52)

For stability, iq can therefore be no larger than

iq <
id
λ
, ω1 > 0

iq > − id
λ
, ω1 < 0.

(3.53)

The following additional conclusions can now be drawn on low-speed operation about

EP1:

• Only loads requiring |iq| < id/
√
2 can be safely reversed when λ =

√
2. The

critical moment for stability is when ω1 ≈ 0, and the sign of ω1 equals the sign

of iq. This corresponds to that the signs of ω1 and ωr differ, and agrees with the

above conclusions.

• With respect to the requirement k2 > 0, the gain parameter λ must be lowered

in order to allow for |iq| > id/
√
2. This can be accomplished with

λ = ρ|ω1|, ρ > 0 (3.54)

for instance. It can be observed that this selection for λ, and γ = 1, recovers the

traditional VM for ω1 = 0.

33



Chapter 3. Analysis and Development of the SCVM

The coefficients k2 and k will now be investigated for the selection λ = ρ|ω1|, since
these two coefficients are the ones that may become negative at low speeds. By seeking

the minima for the coefficients, it will be shown that the dynamics resulting from the

SCVM can be made asymptotically stable for small machines, even for the critical mode

sign(ω1) 
= sign(ωr).

Analysis of k2

Substituting λ = ρ|ω1| and ωr = ω1 − ω2 in (3.47) gives

k2 =
RR
LM

+ ρ|ω1| sign(ω1)(ω1 − ω2) = ρω
2
1 − ρω2ω1 +

RR
LM

. (3.55)

The second derivative of k2 with respect to ω1 is 2ρ, which is positive for ρ > 0.

Therefore, k2 has a global minimum when

∂k2

∂ω1

= 2ρω1 − ρω2 = 0. (3.56)

Solving this equation for ω1 yields the critical frequency

ω1 =
ω2

2
. (3.57)

Substituting this in (3.55) gives the minimal value for k2

k2,min = −ρω
2
2

4
+
RR
LM

. (3.58)

By solving the inequality k2,min > 0 for ρ, and considering ρ > 0, the following constraint

0 < ρ <
4RR
ω2

2LM
=

{
ω2 =

RRiq
ψref

}
=
LM
RR

(
2id
iq

)2

(3.59)

is found to ensure k2 > 0, which can be fulfilled by selecting sufficiently small ρ.

Unfortunately, a stricter constraint is imposed on ρ for k > 0, as will be shown in

the next section.

Analysis of k

The minimum of k coincides with the minimum of

ξ =
k

λ|ω1| =
(
RR
LM

)2

+

(
ω1 +

RR
LM

λ sign(ω1)

)
ωr (3.60)

since λ|ω1| > 0 for all ω1 
= 0. The case ω1 = 0 can be neglected in the present analysis,

since it unavoidably yields a system that is only marginally stable. Substituting λ =

ρ|ω1| and ωr = ω1 − ω2 in ξ gives

ξ =

(
RR
LM

)2

+

(
ω1 +

RR
LM

ρ|ω1| sign(ω1)

)
(ω1 − ω2)

=

(
1 +

ρRR
LM

)
ω2

1 −
(
1 +

ρRR
LM

)
ω2ω1 +

(
RR
LM

)2

.

(3.61)
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The second derivative of k2 with respect to ω1 is 2(1 + ρRR/LM), which is positive for

ρ > −LM/RR. Therefore, k2 has a global minimum when

∂ξ

∂ω1

=

(
1 +

ρRR
LM

)
2ω1 −
(
1 +

ρRR
LM

)
ω2 = 0. (3.62)

Solving this equation for ω1 yields the critical frequency

ω1 =
ω2

2
. (3.63)

Hence, k2 and k have the same critical frequency. By substituting the critical frequency

in (3.61), the minimal value for ξ is found to be

ξmin = −
(
1 +

ρRR
LM

)
ω2

2

4
+

(
RR
LM

)2

. (3.64)

For stability, ξmin > 0 is required. By solving this inequality for ρ, and considering

ρ > 0, the following constraint

0 < ρ <
4RR
ω2

2LM
− LM
RR

=
LM
RR

[(
2id
iq

)2

− 1
]

(3.65)

is found is to ensure k > 0. Based on (3.65), the following conclusions can be drawn:

• The constraint in (3.65) is stricter than the one that results from k2 > 0. Eq.

(3.65) is therefore the ultimate condition for stable operation about EP1.

• The maximum iq that can be safely reversed, for R̂s = Rs, becomes(
2id
iq

)2

− 1 > 0 ⇒ |iq| < 2id. (3.66)

However, this requires a very small value for ρ, which provides poor damping.

Recall that ρ ≈ 0 results in λ ≈ 0, which recovers the marginally stable VM. The

following ρ is instead recommended:

ρ =

√
2

ω1,min

(3.67)

in order to achieve a reasonable damping at low speeds. By substituting this in

(3.54), the following λ is then obtained:

λ =

√
2|ω1|
ω1,min

, |ω1| ≤ ω1,min (3.68)

for frequencies below ω1,min. Except reasonable damping, this selection also allows

for a smooth transition between nominal speeds (λ =
√
2) and low speeds, which

is depicted in Fig. 3.1. The parameter ω1,min should be selected much smaller than

the nominal frequency, i.e., in the range of 0.05–0.1 pu.
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Fig. 3.1. Selection of λ.

Let us study the above gain parameter selection, and see what loads that can be safely

reversed. By substituting ρ =
√
2/ω1,min in (3.65), the condition for stability is found

to be: √
2

ω1,min

<
LM
RR

[(
2id
iq

)2

− 1
]

⇒
(
iq
id

)2

<
4

1 +

√
2RR

ω1,minLM

. (3.69)

The current components are hereby expressed as iq =
√|is|2max − i2d and id = ψref/LM ,

which are then substituted in the above inequality:

|is|2max − i2d
i2d

=

(
LM |is|max

ψref

)2

− 1 < 4

1 +

√
2RR

ω1,minLM

. (3.70)

This inequality has been solved numerically for LM , with the values ψref = 0.9 pu,

|is|max = 1 pu, RR = 0.04 pu and ω1,min = 0.05 pu. The resulting condition for LM was

found to be

LM < 1.6 pu. (3.71)

With the exception of ω1 = 0, this condition implies that reversal of rotation with rated

current is guaranteed to be stable for small machines, i.e., machines that have small

LM . For larger machines, reversal of rotation is guaranteed to be stable only for lighter

loads.

Observe that EP1 is asymptotically stable for {k2, k} > 0, but global stability has

not been shown. Therefore, even if k2 > 0 and k > 0, a large disturbance of some kind

may make EP1 unstable.

Fig. 3.2 shows pole loci for a stable rotation reversal with |is| = 1 pu. The loci are
plotted for a small machine, which has LM = 1.4 pu. As seen, the pole loci for ω1 ≤ 0

and ω1 ≥ 0 are quite different. Poor damping is indicated in Fig. 3.2(b), where the poles

for ω1 > 0 initially slide along the imaginary axis. Two of the poles are at the origin

for ω1 = 0, which confirms marginal stability for zero excitation frequency.

3.3 Instability Phenomena

As already indicated in Section 2.5, and now confirmed analytically, speed-sensorless

operation is not necessarily stable at low frequencies. The above stability analysis pro-

vided an accurate description of when instability phenomena are present, i.e., when EP1

becomes unstable. However, the analysis can only partly explain how these phenomena

manifest themselves, since also the mechanical dynamics need then to be considered.
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Fig. 3.2. Pole loci for the linearized dynamics resulting from the SCVM. Stable rotation
reversal with ω1,min=0.05 pu, |is|=1 pu, ψref = 0.9 pu, LM=1.4 pu, iq=0.77 pu. (a) ω1 ≤ 0.
(b) ω1 ≥ 0.

Two instability phenomena are present for speed-sensorless flux estimation. These

are here referred to flux collapse [46] and frequency lockup. Frequency lockup has pre-

viously been reported in [32], where it was referred to as “speed estimation failure.”

We shall now extend the results of [32, 46], by discussing the underlying mechanisms

behind these instability phenomena. The resulting conclusions are verified by simula-

tions made on the 22-kW test machine in Table 2.2. The simulation parameters are:

ω1,min = 0.05 pu, L̂σ = 1.1Lσ, L̂M = 1.1LM , R̂R = 0.9RR, ψref = 0.8 pu, and the band-

width of the speed control loop is 0.02 pu. The critical model parameter R̂s is explicitly

stated for each simulation.

3.3.1 Instability and Flux Dynamics

Once EP1 becomes unstable, [ψd, ψq, ψ̂R] converge to EP2, where either flux collapse or

frequency lockup may occur. In order to gain a better understanding of these instability

phenomena, the flux dynamics in (2.22) must be considered:

ψ̇R = RR(id cos θ̃ + iq sin θ̃)− RR
LM

ψR (3.72)

which for small θ̃, such that sin θ̃ ≈ θ̃ and cos θ̃ ≈ 1, simplifies to

ψ̇R ≈ RR(id + iqθ̃)− RR
LM

ψR. (3.73)

This approximation is sufficiently accurate for our discussion purposes. It will now be

argued that the above product of iq and θ̃, which may be large at EP2, determines the

resulting instability phenomenon at EP2.

3.3.2 Flux Collapse

Consider sign(θ̃) 
= sign(iq) in (3.73). In consequence of the resulting magnetizing cur-
rent in the rotor-flux-oriented reference frame:

iRd = id + iqθ̃ = id − |iqθ̃| (3.74)
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Fig. 3.3. Instability phenomena. (a) Flux collapse: θ̃ > 0 and iq < 0, giving iRd < id and
ψ̇R < 0. (b) Frequency lockup: θ̃ > 0 and iq > 0, giving iRd > id and ψ̇R > 0.

then being smaller than id, or even negative for |iqθ̃| > id, the flux modulus begins to
decrease. Fig. 3.3(a) depicts this process as a space-vector diagram. For a constant iq,

the reduced flux modulus in turn reduces the electro-mechanical torque. Unless the load

torque is almost zero at zero rotor speed, the speed is then being accelerated by the

load torque. Since ω1 ≈ 0 at EP2, this implies that the slip frequency increases, and the

breakdown torque of the machine is eventually exceeded. Provided that the load torque

remains constant, the rotor speed may now reach a very high value. By substituting a

large value for ωr in (3.20), this asymptotically leads to

ψd ≈ 0, ψq ≈ 0. (3.75)

The machine is thus being nearly fully demagnetized—the flux collapses—and the ma-

chine is therefore incapable of developing torque. With respect to the equivalent circuit,

the rotor appears as short-circuited seen from the stator terminal, due to the large slip

now present, so the current through the magnetizing inductance is close to zero.

A simulation of flux collapse is shown in Fig. 3.4, where R̂s = 0.7Rs. The speed

reference in Fig. 3.4(a) is initially stepped through the sequence –0.2, 0.2, 0, –0.02 pu,

and a constant load torque that requires iq = 0.6 pu is applied after one second.

Eventually, the speed reference is slowly positively ramped at t = 8 s. For t < 8 s, the

performance is good, except for some minor deviations from θ̃ = 0, which are seen in

Fig. 3.4(c). These deviations occur when the speed reference is stepped from –0.2 pu to

0.2 pu, and for zero rotor speed. Observe that zero rotor speed is not necessarily critical

for stability, at least not for non-zero slip. Unfortunately, the slow positive speed ramp

against the load torque eventually results in flux collapse at t = 10 s. The following

additional remarks can be made on flux collapse:

• Flux collapse results in total failure for a speed-sensorless drive, since neither the
torque nor the speed can be controlled.

• For a reversal of rotation, the greatest risk for flux collapse occurs when the load
torque opposes the speed reversal. Otherwise, the speed reversal may be completed

by the load torque, such that stable operation at EP1 once again results. However,
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3.3. Instability Phenomena

this is not a general rule, since the load torque must be capable of reversing the

speed faster than the flux modulus decreases.

• For speed closed-loop control, flux collapse is sensed by the speed controller as
a deviation from the speed setpoint. In an attempt to correct this, the speed

controller requests for a larger q-axis current, and eventually the maximum iq
allowed is reached. As seen in (3.73), this accelerates the reduction of the flux

modulus. Flux collapse is, hence, initially a fairly slow process, essentially governed

by the rotor time constant LM/RR, but this is speeded up the speed controller.

Alternatively, the speed controller may trigger a tendency to flux collapse into

complete collapse.

• If the speed reversal is made sufficiently fast, the flux modulus is initially reduced,
but there is not sufficient time for the flux collapse to fully develop. After all, the

flux modulus cannot change instantaneously. A similar phenomenon was in [46]

referred to as flux excursion. Consequently, flux collapse can only occur if ω1

dwells at low excitation frequencies.

• The flux modulus is hardly affected at all if the low-speed region is ridden through
quickly or if iq is small, where the latter implies small load torque for zero speed.

The risk for flux collapse is then minimal.
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3.3.3 Frequency Lockup

Consider sign(θ̃) = sign(iq) in (3.73). This is the opposite case compared to flux col-

lapse, so the flux modulus now begins to increase. Fig. 3.3(b) depicts this process as

a space-vector diagram. Practically, the flux modulus can only become slightly larger

compared to the nominal rotor flux, due to magnetic saturation, but this operation

mode can at least not result in flux collapse. In contrast to flux collapse, the machine

is therefore capable of developing torque and the mechanical dynamics are stable. Al-

though frequency lockup is here referred to as an instability phenomena, the lockup

hence corresponds to stable flux and speed dynamics about the undesirable equilibrium

point EP2. In consequence of the stable mechanical dynamics and ω1 ≈ 0 for operation

about EP2, both ω1 and ωr lock on to constant values.

Frequency lockup has much in common to an induction machine in the open-

loop operation, since the SCVM provides almost no feedback for operation about EP2.

According to (3.68), λ is selected small for small ω1. Hence, the SCVM provides only

minor feedback for operation about EP2, where ω1 ≈ 0. In addition, the SCVM provides

no feedback at all for ω1 ≡ 0, as discussed in Section 2.5.

The final settling point for frequency lockup results when the mechanical subsys-

tem reaches the steady-state operation. Substituting (2.19) in (2.12), putting ω̇r = 0

and assuming b = 0, gives:

0 = 3npψR(iq cos θ̃ − id sin θ̃)− Tl. (3.76)

We now consider the above equation for a small load torque, such that Tl ≈ 0. This is

a somewhat doubtful assumption, however, since EP1 is normally stable for zero load

torque at low speeds, meaning that frequency lockup is unlikely to occur. Bearing this

remark in mind, Tl = 0 is substituted in (3.76), which is then solved for θ̃:

tan θ̃ =
iq
id
. (3.77)

The above equation can be interpreted as the error angle opposes any attempt to

increase the electro-mechanical torque through iq.

Let us now compare (3.77) with the error angle for EP2 in (3.21), which resulted

from the stability analysis of the electrical subsystem. Since ω1 ≈ 0 about EP2, the

no-load operation must correspond to ωr ≈ 0. By substituting this in (3.21), the error

angle for the no-load operation at EP2 becomes

tan θ̃ =
iq
id
. (3.78)

This is identical to (3.77), which indicates that frequency lockup indeed corresponds to

operation about EP2 for stable mechanical dynamics.

A simulation of frequency lockup is shown in Fig. 3.5. Similar to the above simu-

lation of flux collapse, the slow ramping of the speed reference against the load torque

is critical. The flux modulus in 3.5(c) does not collapse, but the field orientation dete-

riorates, and the synchronous frequency in Fig. 3.5(a) locks on to a value close to zero

at t = 10 s. The speed controller attempts to complete the speed reversal by increasing
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Chapter 3. Analysis and Development of the SCVM

iq, but this does not increase the torque since the error angle meanwhile increases, as

seen in (3.77). It can be observed from Fig. 3.5(a) that the speed estimate is fairly

accurate for frequency lockup; the stationary values for the speed and the speed esti-

mate become ωr ≈ −RRiq/ψR and ω̂r = ω1 − R̂Riq/ψ̂R ≈ −R̂Riq/ψ̂R, respectively. The
following additional remarks can be made on frequency lockup:

• For a reversal of rotation, frequency lockup can only occur if the load torque op-
poses the speed reversal. Otherwise, the load torque completes the speed reversal

when Te reduces, so the equilibrium in (3.76) cannot occur.

• The flux modulus is hardly affected at all if the low-speed region is ridden through
quickly, or if iq is small, i.e., the load torque is almost zero for zero speed. Then,

the risk for frequency lockup is minimal.

• Fig. 3.5(c) reveals that ψ̂R is much larger than ψref for frequency lockup. This can

be deduced from the equilibrium point in (3.20): ψ̂�R,2 > ψref for small ωr.

3.4 Parameter Sensitivity

Although the above analysis of the dynamics resulting from the SCVM has provided

several enlightening observations and design guidelines, the complete picture is in reality

even more complicated. This is partly due to that accurate model parameters have, until

now, been assumed.

By subtracting the true flux EMF in (2.41) from the estimated one in (2.42), the

parameter sensitivity of the SCVM is revealed:

Êf = (Rs + jω1Lσ)is + (ψ̇R + jθ̇ψR)e
jθ̃ − (R̂s + jω1L̂σ)is

= (R̃s + jω1L̃σ)is + (ψ̇R + jθ̇ψR)e
jθ̃︸ ︷︷ ︸

Ef

. (3.79)

where

R̃s = Rs − R̂s, L̃σ = Lσ − L̂σ (3.80)

are the errors in the model parameters. The steady-state operation is now considered

in order to derive the error angle. By substituting the real part of (3.79):

Êd = R̃sid − ω1L̃σiq + ψ̇R cos θ̃ − θ̇ψR sin θ̃ (3.81)

in (3.8), putting ψ̇R =
˙̂ψR = 0, and solving for θ̃, the error angle is found to be

θ̃ = arcsin

(
R̃sid

θ̇ψR
− ω1L̃σiq

θ̇ψR

)
≈ arcsin

(
R̃sid
ω1ψR

− L̃σiq
ψR

)
(3.82)

where the latter approximation assumes θ̇1 ≈ ω1. Eq. (3.82) holds for operation at

both EP1 and EP2, since Êd, via (3.8), is always forced to zero by the flux-modulus

estimator.
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At nominal speeds, the resistive part in (3.82) is small and the inductive part

dominates:

θ̃ ≈ − arcsin
(
L̃σiq
ψR

)
. (3.83)

The values L̃σ = 0.1 pu, iq = 1 pu and ψR = 0.9 pu are considered for a numerical

example, i.e., a fairly large L̃σ and a large current. These values give the error angle θ̃ =

−0.11 rad = −6.4◦. This is a small error angle, which shows that the field orientation
of SCVM is accurate at nominal speeds. In the field-weakening region, where ψR must

be lowered, slightly less accurate field orientation can be expected.

The picture at low speeds is the opposite to the above; the resistive part of θ̃ then

dominates:

θ̃ = arcsin

(
R̃sid
ω1ψR

)
≈ arcsin

(
R̃s
ω1LM

)
(3.84)

where the latter approximation assumes ψR ≈ LM id. It can be seen that ω1 = 0

yields a singularity in (3.84). The singularity is due to that the error R̃sid in (3.81)

is misinterpreted by the flux estimator as a change in θ̃, which has a devastating effect

on the field orientation. If ω1 dwells at ω1 ≈ 0 for too long, the dynamics of θ̃ are

given sufficient time for the field orientation to fully deteriorate, even for R̂s ≈ Rs. Not
surprisingly, this is highly critical for the stability of EP1.

To avoid the singularity for ω1 = 0, the preferred alternative would be if the

sensitivity to R̂s were less severe, or if R̂s could be accurately estimated. Two approaches

are thus possible for making R̂s less critical a model parameter:

1. Design the flux estimator such that it does not require knowledge of R̂s. Such

estimators were studied in [97], which used an MRAS scheme, and [47], which used

an estimator that was referred to as the “reactive power model.” Unfortunately,

at least the reactive power model was found to be unstable for sign(ωr) 
= sign(iq)
[47].

2. Estimate Rs “on-line.” Such schemes have been around for a long time, see for

instance [16, 45]. However, this approach may very well be equivalent to the above

one, i.e., to design a flux estimator that does not require knowledge of R̂s.

We consider both methods as interesting, but leave them to future research.

3.4.1 Selection of Model Parameters

Neither flux collapse nor frequency lockup is desirable, but at least flux collapse must

be avoided, since it is the most critical instability phenomenon. As discussed in Section

3.3.3, flux collapse cannot occur if sign(θ̃) = sign(iq). The following model parameters

aim to satisfy this relation, such that frequency lockup results when EP1 becomes

unstable. For this purpose, (3.82) is considered for small θ̃, such that sin θ̃ ≈ θ̃:

θ̃ ≈ R̃s
ω1LM

− L̃σiq
ψR

. (3.85)
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Essentially, only the sign of θ̃ is relevant in following discussion. The assumption on

small θ̃ is therefore valid for |θ̃| < 90◦. Based on (3.85), the following recommendations
can be given for L̂σ and R̂s in order to achieve sign(θ̃) = sign(iq):

L̂σ: Make sure that L̂σ > Lσ, such that L̃σ = Lσ − L̂σ < 0. The signs of θ̃ and the

inductive part in (3.85) are then related as

sign(θ̃) = − sign
(
L̃σiq
ψR

)
= sign(iq). (3.86)

Interestingly, L̂σ > Lσ agrees with the recommended L̂σ for field-weakening con-

trol in [53].

R̂s: Theoretically, R̂s should be selected as:

R̂s ≤ Rs, sign(ω1) = sign(iq) (3.87a)

R̂s ≥ Rs, sign(ω1) 
= sign(iq) (3.87b)

such that R̃s and the product ω1iq have equal signs. The signs of θ̃ and the resistive

part in (3.85) are then related as

sign(θ̃) = sign

(
ω1iq
ω1LM

)
= sign(iq). (3.88)

It may be difficult to fulfill the above selection for R̂s in practice, however, since

the true Rs is generally unknown. If Rs is greatly overestimated or greatly un-

derestimated by R̂s, then frequency lockup may occur at low frequencies even

for seemingly “simple” operation. It is hence preferred that Rs is confined to a

well-defined and relatively small interval. Such an interval can possibly be found

from a thermal model of the machine [112].

Fig. 3.6 shows a simulation where the system is forced to frequency lockup via R̂s. Notice

that the flux modulus remains fairly constant about ψref, so the critical flux collapse is

safely avoided. The resulting performance is still far from satisfactory, however, since

the speed reversal cannot be completed.

3.4.2 Lower Limit for Sustained Low-Frequency Operation

For inaccurately modeled Rs, an approximate value of the lowest stator frequency al-

lowed in the steady-state operation can be calculated from (3.84). Solving this equation

for ω1, and considering θ̃ = 20
◦ = 0.34 rad as the maximum error angle allowed, gives

ω1,min =
R̃s,max

LM sin(0.34)
≈ 3

R̃s,max

LM
(3.89)

where R̃s,max is the maximum model error for Rs. For a worst-case scenario, a 60 %

model error of Rs is considered:

ω1,min = 3
0.6Rs,cold

LM
= 1.8

Rs,cold

LM
(3.90)
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Fig. 3.6. Selection of stator resistance to avoid flux collapse; a constant load torque is
applied at t=1 s, resulting in iq=0.6 pu. The estimate R̂s is varied between 0.9Rs and 1.4Rs,
in order to avoid flux collapse.

where Rs,cold is the resistance of a “cold” machine. Small machines, with relatively

large Rs and small LM , will have the largest ω1,min, so the 4-kW machine in Table 2.2

is considered for a numerical example. With Rs,cold = 0.04 pu and LM = 1.4 pu, then

ω1,min = 1.8 · 0.04/1.4 ≈ 0.05 pu. Hence, in order to be prepared for a very incorrect

R̂s, sustained speed-sensorless operation for |ω1| < 0.05 pu should be avoided.

A method to avoid sustained low-frequency operation was presented in [31], and a

similar algorithm also appeared in [76]. The synchronous frequency is with this method

controlled by the flux modulus, such that the time spent in the low-frequency region is

reduced to a minimum. However, this procedure demands for a large current modulus,

since the flux modulus must be lowered quickly by id. We find this algorithm interesting;

it is already patented and used in practice [34]. However, since a large current modulus is

required (the inverter must be designed to allow over-current), the method is henceforth

not considered.
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3.5 Destabilization of Frequency Lockup

If frequency lockup has resulted from EP1 being unstable, then it may be possible to

destabilize this instability phenomenon, such that stable operation about EP1 once

again results. Below, two remedies that may accomplish this are discussed. Both meth-

ods presume that is possible to avoid flux collapse by proper selection of R̂s, as described

in Section 3.4.1.

According to (3.33), frequency lockup (operation about EP2 with stable flux and

mechanical dynamics) is stable for

|iq| > idλ sign(ω1) sign(iq). (3.91)

This condition must be falsified in order to destabilize frequency lockup. Once EP2

has been made unstable, stable operation about EP1 is hopefully recovered. As seen

from the above inequality, there are several alternatives that may destabilize EP2, but

only two of these possibilities will be explored here: destabilization of EP2 by means of

decreasing iq, and destabilization by means of increasing λ. Consider (3.91): given that

iq and ω1 have equal signs, then λid > |iq| destabilizes frequency lockup. Thus, both
decreasing iq and increasing λ have similar destabilizing effects on frequency lockup.

3.5.1 Destabilization through iq

Fig. 3.7 shows a simulation of making frequency lockup unstable via iq through speed

control. A constant load torque is applied at t=1 s, resulting in iq=0.6 pu. The frequency

lockup is first detected from ψR being much larger than ψref. Then, the intended speed

reversal is temporarily abandoned by selecting a negative speed reference. In conse-

quence of the negative ωref, the speed controller demands for a smaller iq, which has a

destabilizing affect on frequency lockup according to (3.91). As seen in Fig. 3.7(c), ac-

curate field orientation is retrieved at t = 10 s, and ψ̂R approaches ψref. Once ψ̂R ≈ ψref,

then a faster attempt to reverse ωr is triggered. This leads to a successful rotation

reversal, since there is not sufficient time for frequency lockup to develop this time.

Even though the rotation of reversal is eventually completed, the drawback of the

described algorithm is that the true rotor speed must temporarily deviate from ωref.

3.5.2 Destabilization through λ

As observed in Section 3.3.3, ψ̂R is larger than ψref for frequency lockup. In order to

make frequency lockup unstable by means of increasing λ, this observation is integrated

with our previous choice for λ at low frequencies in (3.68):

λ =

√
2|ω1|
ω1,min

+ λp(ψ̂R − ψref), |ω1| ≤ ω1,min (3.92)

where λp is a positive gain parameter. As seen, feedback of the quantity ψ̂R−ψref is added

to λ for |ω1| ≤ ω1,min. For stable operation about EP1, then ψ̂R ≈ ψR and the feedback
hardly affects λ at all. For frequency lockup, on the other hand, the feedback gains

λ, which in turn makes (3.91) false, such that stable operation about EP1 hopefully
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results. Given that ω1 and iq have equal signs, then the following selection for λp falsifies

(3.91) for ψ̂R > 1.4ψref:

λp = 3
|iq|
id
. (3.93)

Fig. 3.8 shows a simulation of the described algorithm. Frequency lockup is about to

occur at t = 9.5 s, which can be seen from the large θ̃ in Fig. 3.8(c). The flux estimate

in Fig. 3.8(c) increases due to the lockup, which in turn gains λ via the feedback in

(3.92). This makes EP2 unstable—accurate field orientation is retrieved—and the large

accumulated iq provides a fast and successful speed reversal, since there is not sufficient

time for frequency lockup to once again develop.

Even though the speed reversal in Fig. 3.8 is completed in nearly the intended

manner, the success of the method relies on that flux collapse is avoided through proper

selection of R̂s, and stability has not been proven. Nevertheless, the promising result

indicates that it may be possible to overcome the large sensitivity to R̂s for sensorless

control. As discussed in Section 3.4, the preferred alternative would be if this could be

directly integrated in the flux estimator design.
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Fig. 3.7. Destabilization of EP2 through iq; a constant load torque is applied at t=1 s,
resulting in iq=0.6 pu.
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3.6 Implementation Issues

SCVM cannot be directly implemented in the form of (3.8)–(3.9). This is due to

that (3.9) has an algebraic loop; both Êd and Êq are functions of ω1. In [50], this

algebraic loop was broken up by embedding the selection of ω1 within a first-order low-

pass filter. This is a perfectly viable solution, but it is here preferred to solve (3.9) for

ω1. Splitting the real and imaginary parts of (2.42) gives

Êd = vd − R̂sid + ω1L̂σiq, Êq = vq − R̂sid − ω1Lσid. (3.94)

By substituting these relations in (3.8)–(3.9) and solving (3.9) for ω1, the following

practical implementation of the SCVM results

ω1 =
vq − R̂siq − λ sign(ω1)(vd − R̂sid)
ψ̂R + L̂σ

[
id + λ sign(ω1)iq

] (3.95)

dψ̂R
dt

= γ(vd − R̂sid + ω1L̂σiq) (3.96)

where

λ =




√
2, |ω1| > ω1,min√

2|ω1|
ω1,min

, |ω1| ≤ ω1,min

(3.97)

γ = 1. (3.98)

It is recommended to select ω1,min equal to the above discussed lower limit for sustained

low-frequency operation, which means ω1,min = 0.05 pu.

With fast and accurate stator current control, id and iq in the above SCVM

equations can be replaced with irefd and irefq . This reduces the sensitivity to noise.

3.6.1 Discrete Implementation

The discrete form of the SCVM, using the forward difference approximation [10], is

ω1,k =
vq,k − R̂siq,k − λk sign(ω1,k−1)(vd,k − R̂sid,k)

ψ̂R,k + L̂σ
[
id,k + λk sign(ω1,k−1)iq,k

] (3.99)

ψ̂R,k+1 = ψ̂R,k + γTs(vd,k − R̂sid,k + ω1,kL̂σiq,k) (3.100)

where Ts is the sampling period. Note that sign(ω1,k) is approximated with sign(ω1,k−1)

in the right-hand side of (3.99). This approximation is incorrect for one sampling instant

only, namely immediately after a sign change in ω1.

3.6.2 Summary of Recommended Model Parameters

The following model parameters are recommended:
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R̂s: If Rs is known within a well-defined and relatively small interval, such that

Rs,min < Rs < Rs,max, the following selection is recommended

R̂s < Rs,min, sign(ω1) = sign(iq) (3.101a)

R̂s > Rs,max, sign(ω1) 
= sign(iq) (3.101b)

since this avoids flux collapse, as long as |θ̃| < 90◦. If no well-defined interval for
Rs exists, we resign to the recommendation R̂s = Rs,cold.

L̂σ: Make sure that L̂σ > Lσ. This can be achieved by performing the usual blocked-

rotor test at a stator current that is below the nominal value, and possibly adding

some extra margin by hand for machines with closed rotor slots.

L̂M : Make sure that L̂M < LM , so that the machine, via the relation i
ref
d = ψref/L̂M , is

not running under-fluxed at low speeds. This can be achieved by performing the

usual no-load test at a stator voltage that is slightly above the nominal value.

Alternatively, the recommendation for L̂M can be formulated as: make sure that

ψR ≈ ψR,nom at low speeds, or use preferably even a larger ψR if possible. This

reduces the slip and, consequently, the region where sign(ω1) 
= sign(ωr).
R̂R: It is recommended to overestimate the “cold” value for RR by, say, 20 %, giving

R̂R = 1.2RR,cold. This yields an accurate speed estimate, via the relation ω̂r =

ω1 − R̂Riq/ψ̂R, even for some heating of the rotor.

3.6.3 Combined “Current Model” and SCVM

Based on the discussion in Section 3.4.2, sustained low-frequency operation using the

SCVM is only recommended if one of the following requirements is fulfilled:

• the stator resistance is confined within a relatively small interval;
• the load torque is almost zero for zero rotor speed.

If neither of these two requirements is fulfilled, the SCVM should be used for nominal

speeds only, and the speed-sensored CM should be used for low speeds. This combines

the low parameter sensitivity of the SCVM with the low-speed stability of the CM. The

following allows for a smooth transition between the SCVM and the CM [48]:

ω1 =
[
1− ftr(ω1)

]vq − R̂siq − λ sign(ω1)(vd − R̂sid)
ψ̂R + L̂σ

[
id + λ sign(ω1)iq

]
+ ftr(ω1)

(
ωr +

RRiq
ψref

) (3.102)

dψ̂R
dt

=

{
γÊd, |ω1| ≥ ω∆1

αf(ψref − ψ̂R), |ω1| < ω∆1
(3.103)

where the filter gain αf is chosen at least a decade larger than the speed control loop

bandwidth, such that ψ̂R converges quickly to ψref for frequencies below ω∆1. The func-

tion ftr(·) makes a linear transition from 0 and 1 between the frequencies ω∆1 and ω∆2
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Fig. 3.9. Graph of ftr(ω1).

(recommended choices for these are 0.1 and 0.2 pu, respectively) [48]:

ftr(ω1) =



1, |ω1| < ω∆1

ω∆2 − |ω1|
ω∆2 − ω∆1

, ω∆1 ≤ ω1 < ω∆2

0, |ω1| ≥ ω∆2.

(3.104)

Fig 3.9 depicts ftr(·). With the above method, the CM is used for frequencies below

ω∆1, the SCVM (λ =
√
2 and γ = 1 can be used) for frequencies above ω∆2, and a

“compromise” of the two estimators is used in between.

3.7 Experimental Results

This section presents experimental evaluation of the SCVM. Only experiments at low

speeds are conducted, since speed-sensorless operation at nominal speeds is unproblem-

atic, as already shown in this chapter.

The experiments are carried out on the 22-kW test machine, which is described in

Appendix B. Temperature sensors (PT-100, for monitoring only) are used to ensure that

the machine is “cold” before each experiment, such that the “true” stator resistance

is accurately represented by Rs = 0.023 pu. In addition, the resistance of the feeding

power cable and cable interfaces is R = 0.006 pu. The cable resistance is added to R̂s
in the experiments, but not included in the following discussion nor in the presented

graphs.

The induction machine is loaded by a separately excited dc machine, which acts

as a constant load torque. The armature current of the dc machine is controlled by

way of a thyristor converter. In contrast to the simulations in this chapter, the load

torque that requires iq = 0.6 pu is applied before t = 0. This is made for reasons of

simplicity, and does not affect the results of the experiments. The model parameters

for the experiments are:

L̂σ = 1.1Lσ, L̂M = 0.9LM , R̂R = 0.9RR

while the critical model parameter R̂s is explicitly stated for each experiment. The

SCVM is implemented as described in Section 3.6, and ω1,min = 0.05 pu. The command

stator voltage vector is used for flux estimation, meaning that the true stator voltage

is not measured.

Closed-loop current and speed control according to Chapter 6 is implemented.

The bandwidths of the current control loop and the speed control loop are 2.5 pu and
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0.02 pu, respectively, which correspond to approximate rise times of 2.8 ms and 0.35

s. The filter bandwidth of the speed estimator in (2.52) is αf = 0.2 pu. The rotor flux

reference is set to ψref =0.9 pu, and the maximum allowed stator current modulus is 1

pu.

The PWM inverter is based on a Skippack 342GD120-314CTV, and the dc-link

voltage is 400 V. The control computer is an IEA-MIMO [24], which uses a Texas

TMS320C30 floating-point processor, and 4.9 kHz sampling and switching frequency

is used for the experiments. Fluctuations in the dc-link voltage, as well as the blank-

ing time and on-state voltage drop of the semiconductor valves, are compensated as

described in [88]. RMS-value scaling is used between the three-phase system and the

stator-oriented reference frame. A resolver is used for speed and position measurement

(for monitoring only).

3.7.1 Very Accurately Modeled Stator Resistance

The purpose of this experiment is to investigate the ideal case of a very accurately

modeled stator resistance. The speed reference is stepped through the sequence

t (s) ≈ 0 2 4 6

ωref (pu) −0.2 0.2 0 −0.2
and then slowly positively ramped at t = 8 s, starting from ωref = −0.2 pu. The
machine is throughout the entire experiment loaded by a constant load torque that

requires iq = 0.6, and the stator resistance estimate is R̂s = Rs.

Fig. 3.10 shows the results of the experiment. The performance is generally good,

but some “bumps” can be seen in ψ̂R and iq for zero-speed operation and for zero-speed

crossing. These “bumps” can be due to one, or several, of the following three reasons.

Firstly, there is a small poorly damped region about ω1 = 0, as seen from the pole loci

in Fig. 3.2. Secondly, stable low-speed operation with R̂s = Rs cannot be guaranteed

for this machine, since LM = 2.8 pu is larger than the condition for stability in (3.71).

Thirdly, it is unlikely that the stator resistance is perfectly modeled.
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Fig. 3.10. Successful operation for the ideal case R̂s = Rs: experiment.

3.7.2 Flux Collapse

The purpose of this experiment is to verify the instability phenomenon flux collapse,

for the SCVM in particular. The speed reference is stepped through the same sequence

as above described, and an identical load torque is present, but the stator resistance

estimate is now R̂s = 0.7Rs.

Fig. 3.11 shows the results of the experiment. Good agreement to the correspond-

ing simulation in Fig. 3.4 can be observed, albeit the speed step from –0.2 pu to 0.2 pu

is more troublesome in the experiment. At t = 9.5 s, flux collapse occurs for the slow

speed ramping against the load torque, and the experiment is interrupted on purpose

at t = 10.5 s.

3.7.3 Frequency Lockup

The purpose of this experiment is to verify the instability phenomenon frequency lockup,

for the SCVM in particular. The speed setpoint is varied in the same manner as de-

scribed in the first experiment, and the same load torque is present, but the stator

resistance estimate is now R̂s = 1.4Rs.

Fig. 3.12 shows the results of the experiment. Good agreement to the correspond-

ing simulation in Fig. 3.5 can be observed, even though a more oscillatory behavior can

be spotted in the experiment for the zero-speed operation, indicating stability problems.

The slow positive speed ramp against the load torque is once again critical for stability,

and frequency lockup occurs at t = 10 s.
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Fig. 3.11. Flux collapse with R̂s = 0.7Rs: experiment.
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Fig. 3.12. Frequency lockup with R̂s = 1.4Rs: experiment.
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3.7.4 Very Slow Speed Ramping

The purpose of this experiment is to investigate the performance of the SCVM for an

even slower speed ramping and larger load torque than in the previous experiments.

The speed setpoint is slowly ramped from 0.2 to –0.2 pu in ten seconds, and then slowly

ramped from –0.2 to 0.2 pu. The load torque is meanwhile constant, corresponding to

iq = 0.8 pu. In contrast to the previous experiments, R̂s is selected as described in

Section 3.6.2 in order to avoid flux collapse. The underestimated and the overestimated

values are R̂s = 0.7Rs and R̂s = 1.4Rs, respectively.

Fig. 3.13 shows the results of the experiment. The negative speed ramp is stable,

while frequency lockup results at t = 16 s for the positive speed ramp against the load

torque. It can be seen from Fig. 3.13(c) that λ is close to zero for frequency lockup,

so the SCVM provides almost no feedback to the closed-loop dynamics. If λ were not

lowered, however, then the resulting dynamics from the SCVM would be fairly unstable

at low frequencies even when R̂s = Rs, as shown in Section 3.2.5.

3.7.5 Destabilization of Frequency Lockup through λ

The purpose of this experiment is to verify that frequency lockup, once it has occurred,

can be destabilized through the gain parameter λ. The speed setpoint is varied in the

same manner as above described for the experiment on very slow speed ramping.

Fig. 3.14 shows the results of the experiment. It can be seen that the speed is now

successfully reversed for the positive speed ramping, although tendencies to frequency

lockup can be spotted in ψ̂R and iq. These tendencies are suppressed by λ increasing,

so frequency lockup does not fully develop.
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Fig. 3.13. Very slow speed ramping with alternating R̂s: experiment.
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Fig. 3.14. Very slow speed ramping with alternating R̂s and destabilization through λ:
experiment.
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Chapter 4

PWM Rectifier Models and Vector

Control

The objective of this chapter is to derive and describe models for a PWM rectifier,

see Appendix C for a list of glossary terms. Moreover, the concepts of grid flux and

grid-flux estimation are described, and some grid voltage disturbances that may occur

are discussed.

4.1 PWM Rectifier Models

An ideal lossless representation of the back-to-back converter, depicted in Fig. 4.1 is

assumed. Since a single PWM converter has an efficiency of 94–98 % [14], the lossless

approximation is reasonable for our modeling purposes. It is also assumed that the

PWM rectifier is connected to a stiff utility grid, such that a grid filter constitutes the

grid current dynamics.

Motor references are used for both the utility grid and the ac machine. The positive

reference directions for the grid power, Pg, and the machine power, Ps, are therefore as

indicated in Fig. 4.1. Observe that the true directions for Pg and Ps may change at any

instant, due to the four-quadrant capability of the back-to-back converter.

�

AC machine
Inductor

filter

�

�

�

�

�

DC link

gP sP

PWM
“inverter”

PWM
“rectifier”Utility

grid

Fig. 4.1. Back-to-back converter model.
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4.1.1 Introducing Grid Flux

References [36, 84, 85] all proposed the same idea, namely to introduce a virtual grid

flux, ψg, in order to fully acknowledge the similarities between vector control of PWM
rectifiers and field orientation of ac machines. The grid flux vector is defined by the

following static quantity:

ψsg �
Esg
jωg

= ψge
jθg (4.1)

where

Esg grid voltage;

ωg angular grid frequency;

ψg, θg grid flux modulus and grid flux angle.

The grid frequency is normally almost constant. According to Swedish standard, for

instance, the grid frequency remains within 50 ± 0.1 Hz, except for a few hours every
year [108]. Consequently, the grid flux is directly related to the grid voltage. Field

orientation for a PWM rectifier can therefore be expressed either in terms of grid voltage

or grid flux—the latter alternative is preferred in this thesis.

4.1.2 Synchronous and Stator-Oriented Reference Frames

Similar to the induction machine, space vectors given in the stator-oriented reference

frame are denoted with superscript “s,” e.g., ψsg = ψge
jθg , while space vectors given

in the synchronous reference frame are denoted without superscript, e.g., ψg = ψgejθ̃.
Of course, the synchronous coordinates for a PWM rectifier and an induction machine

are two totally different reference systems; the synchronous reference frame is for a

PWM rectifier defined by the estimated grid flux, i.e., ψ̂sg = ψ̂ge
jθ1. Fig. 4.2 shows the

synchronous and the stator-oriented reference systems for a PWM rectifier.

4.1.3 Dynamic Inductor Filter Model

A filter is required to reduce the ripple of the grid current, and thereby comply with

standards such as [65]. A variety of filters are available, for instance inductor filters,

LCL filters [55, 82], and filters that are tuned for resonance at multiples of the switch-

ing frequency [110]. Only inductor filters are henceforth considered, we refer to the

mentioned references for details on the other filter topologies.
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Fig. 4.2. The synchronous (dq) and the stator-oriented (αβ) reference frames.
(a) Estimated grid flux and grid voltage. (b) True grid flux and grid voltage.

60



4.1. PWM Rectifier Models
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Fig. 4.3. Dynamic model of the inductor filter. The point of common connection (PCC) is
indicated.

Fig. 4.3 shows the dynamic equivalent circuit of an inductor filter in the syn-

chronous reference frame, which can be written as

Lg
dig
dt
= vg − (Rg + jω1Lg)ig −Eg (4.2)

where

vg terminal voltage of the PWM rectifier;

Eg grid voltage;

ig grid current;

Lg, Rg inductance and resistance of the inductor filter.

The equivalent circuit in the stator-oriented reference frame is obtained by putting

ω1 = 0 in (4.2), and adding superscripts “s” to ig, Eg, vg.

In the following, the grid current dynamics in (4.2) will normally be neglected,

which is done for similar reasons as described in Section 2.2. By putting di/dt = 0,

solving for vg, and splitting the real and the imaginary parts of vg, the components of

the terminal voltage are then found to be

vd = Rgid − ω1Lgiq + Ed (4.3)

vq = Rgiq + ω1Lgid + Eq. (4.4)

The grid current dynamics are only considered in Chapter 6, where current control is

studied.

4.1.4 Grid Voltage Disturbances

Various disturbances are present in the grid voltage, so Esα(t), for instance, is therefore

not a perfect sinusoid. The grid voltage disturbances are often due to voltage harmonics

or voltage dips [37], and these disturbances are here discussed and modeled. Note that

there are also other types of types of disturbances, such as swells and unbalances [37],

but these will essentially be covered by our resulting grid voltage model.

Voltage Harmonics

The grid voltage harmonics may contain all odd multiples of the fundamental fre-

quency, i.e., [5ωg, 7ωg, 11ωg, . . . ], including triplen harmonics, i.e., [3ωg, 9ωg, 15ωg, . . . ].

The triplens are not critical for a PWM rectifier, as they are zero sequences [37] and,

hence, disappear from the phase currents due to the absence of a neutral conductor.
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Voltage Dips

A voltage dip is a decrease in the grid voltage magnitude from 1 pu to 0.1–0.9 pu,

having a duration of between 0.5 cycles up to one minute [37].

Symmetrical voltage dips are due to three-phase faults, and result in a simultane-

ous reduction of the voltage modulus in all three phases. Large symmetrical voltage dips

are highly critical for a PWM rectifier. In order to maintain a certain active power, the

reduced voltage modulus must be compensated by a larger current modulus. This is,

however, only possible as long as the grid current modulus remains below the maximum

value allowed.

Non-symmetrical voltage dips are due to single-phase and two-phase faults. Gen-

erally, the grid voltage during a non-symmetrical voltage dip can be described by a

positive sequence, a negative sequence and a zero sequence [37]. The positive and nega-

tive sequences both have the same frequency, equal to the fundamental grid frequency,

but their space-vector correspondences rotate in the counter-clockwise and clockwise

directions, respectively.

A voltage dip is often associated with a so-called “phase-angle jump,” which is a

sudden change in the grid voltage angle. The “phase-angle jump” is essentially due to

that the grid impedance changes during the fault [37].

Model of Grid Voltage Disturbances

The grid voltage disturbances are modeled as

Esg = jE
+
1 e

jθg + jE−
1 e

−j(θg+φ1) + jE5e
−j(5θg+φ5) + jE7e

j(7θg+φ7) (4.5)

where

E+
1 , E

−
1 magnitudes of the positive and negative sequence voltages;

E5, E7 magnitudes of the fifth- and the seventh-order voltage harmonics.

The magnitude of the negative-sequence voltage may be as large as the magnitude of

the positive-sequence voltage for a non-symmetrical fault, but is normally small for

normal operation [37].

It is for modeling purposes useful to transform the grid voltage to the synchronous

reference frame. By substituting Esg = Ege
jθ1 in (4.5), the grid voltage vector then

transforms to

Eg = jE
+
1 e

jθ̃ + jE−
1 e

−j(2θg−θ̃+φ1) + jE5e
−j(6θg−θ̃+φ5) + jE7e

j(6θg+θ̃+φ7)

= jE+
1 e

jθ̃ + E2,6
g

(4.6)

where θ̃ = θg−θ1 is the error angle, and E2,6
g is the “total” grid voltage disturbance. The

frequency of the negative sequence, formed by E−
1 , appears as 2ωg in the synchronous

reference frame, while the fifth- and seventh-order harmonics appear as −6ωg and 6ωg,
respectively.

For the special case of the grid voltage being a pure sinusoid, (4.6) reduces to

Eg = jEge
jθ̃ = jωgψge

jθ̃. (4.7)

Eq. (4.7) will, henceforth, be considered for stability analyses, while (4.6) will be used

for designating the disturbance reduction of different flux estimators.
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4.1.5 Active and Reactive Power

The instantaneous active power and the instantaneous reactive power [4] at the point

of common connection, see Fig. 4.3, are

Pg = 3Re{Egi∗g} = 3Eg(iq cos θ̃ − id sin θ̃) (4.8)

Qg = 3 Im{Egi∗g} = 3Eg(iq sin θ̃ + id cos θ̃). (4.9)

respectively. Due to the small losses of the inductor filter, Pg more or less equals the

active power at the terminal of a PWM rectifier.

For accurate field orientation, (4.8)–(4.9) simplify to

Pg = 3Egiq, Qg = 3Egid (4.10)

so the active power and the reactive power can now be controlled independently via iq
and id, respectively. Often id = 0 is selected, which provides unity power factor at the

point of common connection and the minimal modulus for ig.

4.1.6 DC-Link Model

The dc-link is modeled as a pure capacitor. The dynamic equivalent circuit of the dc-link

is shown in Fig. 4.4, where

C dc-link capacitance;

vdc, iC dc-link voltage, capacitor current;

Ps load power that results from the ac machine, Ps = 3Re{vsi∗s}.
The electrolytic capacitor bank at the dc-link is an energy storage, where the stored

electrical energy is Cv2
dc/2. The time derivative of the stored energy must equal the sum

of the instantaneous grid power and Ps. For accurate field orientation, the dc voltage

dynamics can thus be written as

1

2
C
d(v2

dc)

dt
= −Pg − Ps = −3Egiq − Ps (4.11)

which is nonlinear with respect to vdc. The time derivative of v
2
dc in the above differential

equation can be evaluated as

Cvdc
dvdc
dt

= −Pg − Ps (4.12)

which yields an alternative expression for the dc voltage dynamics. The equivalent

circuit in Fig. 4.4 is based on this alternative expression.

C

−

+

dcv

Ci

gP

dcv
sP

dcv

Fig. 4.4. Dynamic equivalent circuit of the dc link.
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4.2 Grid-Flux Estimation

Grid-flux estimation for a PWM rectifier has many similarities to inherently sensorless

flux estimation for an induction machine, since the grid voltage can be considered as

the correspondence to the flux EMF. In contrast to an induction machine, however,

the grid flux is hardly affected by a single PWM rectifier. The problem of grid-flux

estimation is therefore a matter of synchronizing the vector control system to the grid

flux vector (or grid voltage vector). This means that there is no correspondence to

the CM for grid-flux estimation, and that the grid flux angle is initially unknown at

startup of a PWM rectifier. The former issue is unavoidable, but the latter one can

be circumvented by either measuring the grid voltage or, if the grid voltage is not

measured, by implementing a special startup procedure [11].

The classical grid flux “estimator” is derived by measuring the grid voltage, giving

the following “estimated” grid flux [72, 73]:

ψ̂sg =
Esg
jω1

=
Esβ − jEsα

ω1

. (4.13)

This can be considered as a DFO-type estimator, so the transformation factors ejθ1 and

e−jθ1 are then readily available from

ejθ1 =
ψ̂sg
ψ̂g
=

Esβ − jEsα√(
Esβ
)2
+
(
Esα
)2 (4.14)

e−jθ1 =

(
ψ̂sg
)∗

ψ̂g
=

Esβ + jE
s
α√(

Esβ
)2
+
(
Esα
)2 . (4.15)

Unfortunately, disturbances in Eg are for this method directly transmitted to e
jθ1 and

e−jθ1, and will therefore be reproduced in the grid current [36]. To circumvent this
problem, a phase-locked-loop (PLL) type estimator is often applied for grid-flux esti-

mation [11, 28, 36]. The PLL-type estimator improves the rejection of the grid voltage

disturbances, as will be shown in the next chapter. Ideally, the grid voltage disturbances

should be fully rejected, such that the synchronous reference frame is aligned with the

fundamental grid flux only. This is here defined as perfect field orientation for a PWM

rectifier, and corresponds to θ̃ = 0 in (4.6).

The flux “estimator” in (4.14)–(4.15) is static, since the field orientation is re-

trieved instantaneously. For a dynamic flux estimator, such as a PLL-type estimator,

field orientation is not retrieved instantaneously. This is unavoidable, since a dynamic

estimator should have a fairly low bandwidth in order to reduce grid voltage harmon-

ics [28]. The dynamics of a grid flux estimator are not coupled to the “true” static

grid flux though, so the resulting dynamics are not as complex as for flux estimation

of an induction machine. It is nonetheless important to properly assess the dynamics,

for at least the following two reasons. Firstly, an estimator that rejects grid voltage

harmonics poorly, or a poorly damped flux estimator, introduces harmonics in isg via

the Park transformation. Secondly, active and reactive power can only be controlled

independently for accurate field orientation, as discussed in Section 4.1.5.
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4.2.1 Voltage-Sensorless Flux Estimation

As described in [85], and similar proposals have also appeared in [11, 84, 91], it is

not necessary to achieve grid-flux orientation by measuring the grid voltage. We shall

refer to this as voltage-sensorless flux estimation, and discuss the fundamentals of such

estimation in the following.

By solving (4.2) for Eg, assuming dig/dt = 0, the true grid voltage vector is found

to be

Eg = vg − (Rg + jω1Lg)ig. (4.16)

This vector is, however, unknown for a voltage-sensorless flux estimator, which must

rely on the estimated grid voltage. The estimated grid voltage is derived by substituting

the true parameters in the above expression with their model correspondences:

Êg = vref − R̂gig − jω1L̂gig. (4.17)

Observe that the estimate does not use the true measured terminal voltage, since not

much would have been gained by eliminating the grid voltage sensors otherwise. The

estimated grid voltage must instead rely on the command terminal voltage, vref, which

results from the current control loop.

By subtracting (4.16) from (4.17), assuming vref = vg, and solving for Êg, the

parameter sensitivity of voltage-sensorless flux estimation is revealed:

Êg = (R̃g + jω1L̃g)ig + Eg (4.18)

where

R̃g = Rg − R̂g, L̃g = Lg − L̂g (4.19)

are the errors in the model parameters. As seen, Êg = Eg for accurate model parame-

ters. Moreover, a good agreement can be expected for inaccurate model parameters as

well, since the resistive and inductive parts of the above equation are normally small

compared to Eg. This means that similar performance can be expected for sensored and

voltage-sensorless operation with respect to field orientation, as previously noticed in

[11, 84, 85, 91]. Fig. 4.5 shows a voltage-sensored vector control system for a PWM

rectifier, while Fig. 4.6 depicts a voltage-sensorless system.

As for inherently sensorless flux estimation, information regarding the grid flux

angle (or grid voltage angle) is mainly seen in Êd. Substituting (4.7) in (4.18), assuming

accurate model parameters, and splitting the real and the imaginary parts, gives

Êd = Ed = −ωgψg sin θ̃, Êq = Eq = ωgψg cos θ̃ (4.20)

which for small θ̃, such that sin θ̃ ≈ θ̃ and cos θ̃ ≈ 1, can be approximated by

Êd = Ed ≈ −ωgψgθ̃, Êq = Eq ≈ ωgψg. (4.21)

Since the grid frequency for normal operation is constant at ωg = 1 pu, a deviation

from accurate field orientation, meaning θ̃ = 0, is hence always seen directly in Êd.
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Fig. 4.5. Vector control system for the PWM rectifier that uses the measured grid voltage
for field orientation, consisting of a “flux estimator,” a dc voltage controller that yields the
setpoint for the q-axis current, and a current controller.
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Fig. 4.6. Vector control system for the PWM rectifier that uses an IFO voltage-sensorless
flux estimator.

4.2.2 VM for Grid-Flux Estimation

In addition to the PLL-type estimator, also the traditional VM has been proposed for

dynamic grid-flux estimation [85]:

dψ̂sg
dt

= Esg. (4.22)

Observe that the VM is here expressed in terms of the measured grid voltage, but a

grid voltage estimate may just as well be used for input. The dynamics of the VM are

derived by substituting ψ̂sg = ψ̂ge
jθ1 and Esg = jωψge

jθg in (4.22):

( ˙̂ψg + jθ̇1ψ̂g)ejθ1 = jωgψgejθg

⇒ ˙̂ψg = jωgψge
jθ̃ − jθ̇1ψ̂g.

(4.23)

By splitting the real and imaginary parts of this equation, substituting θ1 = θg − θ̃,
and solving the imaginary part for dθ̃/dt, the resulting nonlinear dynamics of the VM

become

dψ̂g
dt

= −ωgψg sin θ̃ (4.24)

dθ̃

dt
= θ̇g − θ̇1 = ωg

(
1− ψg

ψ̂g
cos θ̃

)
. (4.25)
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For ψ̂g ≈ ψg, the quotient in the above equation can be approximated by
ψg

ψ̂g
=

ψg
ψg + ψ̃g

≈ 1− ψ̃g
ψg
. (4.26)

By substituting this in (4.25), and assuming small θ̃ in (4.24)–(4.25), such that cos θ̃ ≈ 1

and sin θ̃ ≈ θ̃, the following state-space system results for the VM:

d

dt

[
ψ̃g
θ̃

]
=

[
0 −ωgψg

ωg/ψg 0

] [
ψ̃g
θ̃

]
. (4.27)

It can be directly seen that the poles resulting from the VM are located at ±jωg, so
the dynamics are quite oscillatory. This is a similar conclusion that was drawn for the

induction machine in Section 2.6. The damping of the VM can be slightly improved by

using various lowpass-filtered variants [22, 36], but a better solution was described in

Section 3.1: the SCVM. The analysis of the SCVM for grid-flux estimation is partly the

content of the following chapter.
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Chapter 5

Analysis and Development of Grid

Flux Estimators

Three grid-flux estimators are analyzed in this chapter, both dynamically and for the

steady-state operation. These estimators are the commonly used PLL-type estimator,

the SCVM, and a simplified variant of the SCVM, which is developed in this chapter.

The PLL-type estimator has previously been proposed for grid-flux estimation in [11,

28], albeit our design is closest in spirit with that in [52] for speed-sensorless vector

control of ac machines.

The SCVM is found to be applicable not only for flux estimation of synchronous

and induction motors [50], but also for vector control of a PWM rectifier. The position

for the SCVM as a universal flux estimator [50] is strengthened.

The static nature of the grid flux implies that it is unnecessary to use a dynamic

estimate for this quantity. A simplified variant of the SCVM is designed for this purpose,

which will be referred to as the MCVM.

The steady-state performances of the PLL-type estimator and the MCVM are

studied. Provided that both estimators are designed for similar dynamic response times,

the analysis shows that the MCVM is more robust against disturbances coming from

grid voltage harmonics.

5.1 SCVM

The SCVM is adapted for grid-flux estimation by repeating the expression for (3.8) and

putting sign(ω1) = 1 in (3.9), since the grid frequency is constant and greater than zero:

dψ̂g
dt

= γÊd (5.1)

ω1 =
Êq − λÊd
ψ̂g

. (5.2)

Of course, Êd and Êq now refer to the estimated (or measured) grid voltage, and not

to the estimated flux EMF of an ac machine.
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5.1.1 Stability Analysis

The system model for the SCVM results from (5.1) and the dynamics of the error angle:

dθ̃

dt
= ωg − ω1 = ωg − Êq − λÊd

ψ̂g
. (5.3)

After substituting (4.20) in these equations, the system model becomes:

dψ̂g
dt

= γEd = −γωgψg sin θ̃ (5.4)

dθ̃

dt
= ωg − Êq − λÊd

ψ̂g
= ωg

[
1− ψg

ψ̂g
(cos θ̃ + λ sin θ̃)

]
. (5.5)

By putting dψ̂g/dt = dθ̃/dt = 0, and solving for ψ̂g and θ̃, the following equilibrium

points are obtained

ψ̂�g,1 = ψg, θ̃�1 = 2nπ, n = 0,±1,±2, . . . (5.6)

ψ̂�g,2 = −ψg, θ̃�2 = nπ, n = ±1,±3,±5, . . . (5.7)

These points are henceforth labeled EP1 and EP2, respectively. In addition to the above

convergence points, θ̃ = ψ̂g = 0 is a form of saddle point, even though θ̃ is undefined

for ψ̂g = 0, which yields a singularity in (5.5).

Once the SCVM has reached steady-state operation, then the periodicity for EP1

and EP2 is irrelevant: the system cannot separate θ̃ = 0 from θ̃ = 2nπ, for instance. All

convergence points related to EP1 and EP2, respectively, are thus equal for practical

purposes.

EP1 corresponds to accurate field orientation, and is therefore the desirable equi-

librium point. The linearization of (5.4)–(5.5) about EP1 follows the same procedure

as in Section 4.2.2, i.e., small θ̃ and ψ̂g ≈ ψg are assumed, such that sin θ̃ ≈ θ̃, cos θ̃ ≈ 1

and ψg/ψ̂g ≈ 1− ψ̃g/ψg. By also introducing the scaled flux-modulus estimation error

ξ = ωgψ̃g/ψg (5.8)

in order to make a better comparison to the PLL-type estimator in the next section,

the linearized dynamics about EP1 become

d

dt

[
ξ

θ̃

]
=

[
0 −γω2

g

1 −λωg

]
︸ ︷︷ ︸
ASCVM

[
ξ

θ̃

]
. (5.9)

The characteristic polynomial of ASCVM is

det(pI − ASCVM) = p
2 + λωgp+ γω

2
g . (5.10)

The SCVM is thus asymptotically stable about EP1, given that λ and γ are both greater

than zero.
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Fig. 5.1. Phase portrait for the SCVM, with Eg=1 pu, ωg=1 pu, and ρ=0.4; ψ̂g and θ̃

converge to either EP1 or EP2, depending on the initial value for ψ̂g. The dashed lines are
the separatrices of the singularity ψ̂g = 0.

The roots of (5.10) (poles of the linearized system) can be arbitrary placed. It is

recommended to place both poles on the negative real axis, since grid voltage distur-

bances may introduce oscillations in θ1 for a poorly damped estimator. A double pole

at p1,2 = −ρ implies that det(pI − ASCVM) = (p + ρ)
2, and solving this equation for λ

and γ provides the following gain parameters

λ =
2ρ

ωg
, γ =

ρ2

ω2
g

. (5.11)

Fig. 5.1 shows a phase portrait of the nonlinear dynamics in (5.4)–(5.5). Both equi-

librium points are sinks (stable), so operation about EP1 does not necessarily result.

Fortunately, convergence to EP1 can be ensured by restricting ψ̂g to a confined in-

terval [ψmin, ψmax], where the lower and the upper boundaries satisfy the condition

0 < ψmin < Eg/ωg < ψmax. As seen in Fig. 5.1, both the undefined ψ̂g = 0 and EP2 are

avoided when using such an interval for ψ̂g.

5.2 PLL-Type Estimator

The PLL-type estimator that will be studied in this section is given by [50]

ω̇1 = γ1ε (5.12)

θ̇1 = ω1 + γ2ε (5.13)

where γ1 and γ2 are gain parameters and ε is the error signal. Similar to [28, 50], the

error signal ε = −Êd is here selected.

5.2.1 Stability Analysis

According to (4.20), the resulting error signal becomes

ε = −Ed = Eg sin θ̃. (5.14)
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The dynamics of the PLL-type estimator are derived by substituting this resulting error

signal in (5.12)–(5.13). Via the introduction of the error variables

ω̃ = ωg − ω1, θ̃ = θg − θ1 (5.15)

the system model for the PLL-type estimator becomes

dω̃

dt
= ω̇g − ω̇1 = −γ1Eg sin θ̃ (5.16)

dθ̃

dt
= ωg − (ω1 − γ2Ed) = ω̃ − γ2Eg sin θ̃ (5.17)

under the reasonable assumption that the grid frequency is constant, meaning that

ω̇g = 0 is assumed. By putting dω̃/dt = dθ̃/dt = 0, and solving for ω̃ and θ̃, the

equilibrium points of (5.16)–(5.17) are found to be

ω̃�1 = 0, θ̃�1 = 2nπ, n = 0,±1,±2, . . . (5.18)

ω̃�2 = 0, θ̃�2 = nπ, n = ±1,±3,±5, . . . (5.19)

These are henceforth labeled EQ1 and EQ2, respectively. Similar to the SCVM, all

convergence points related to EQ1 and EQ2 are equal for practical purposes. It can be

shown that EQ1 is asymptotically stable, while EQ2 is a saddle point [52].

The PLL is said to be phase locked when θ1 ≈ θ, which corresponds to operation
about EQ1. Since θ̃ is small for phase-locked operation, sin θ̃ ≈ θ̃ is reasonable to

assume. By substituting this in (5.16)–(5.17), the following linearized system model

about EQ1 results:
d

dt

[
ω̃

θ̃

]
=

[
0 −γ1Eg
1 −γ2Eg

]
︸ ︷︷ ︸

APLL

[
ω̃

θ̃

]
. (5.20)

The characteristic polynomial of APLL is

det(pI − APLL) = p
2 + γ2Egp+ γ1Eg. (5.21)

It is recommended to place the poles of the PLL-type estimator on the negative real axis,

in order to ensure good damping. A double pole at p1,2 = −ρ implies that det(pI−A) =
(p+ ρ)2, and solving this equation for γ1 and γ2 yields the following gain parameters:

γ1 =
ρ2

Êg
, γ2 =

2ρ

Êg
, Êg =

√
Ê2
d + Ê

2
q . (5.22)

Note that the gain parameters are selected inversely proportional to the estimated

grid voltage modulus Êg. Consistent dynamics are thereby ensured for the PLL-type

estimator, even when Eg is smaller than the nominal grid voltage. This variant of “gain

scheduling” is not required for the SCVM, though, since the estimated flux modulus of

the SCVM takes Eg into consideration by default.

Fig. 5.2 shows a typical phase portrait for the PLL-type estimator. As seen, EQ1

is stable (sink), while EQ2 is a saddle point. Interestingly, the phase portrait for the

PLL-type estimator is completely different compared to the SCVM in Fig. 5.1, but

their linearized dynamics in (5.20) and (5.9), respectively, are essentially identical. This

indicates similar dynamics for the PLL-type estimator and the SCVM in the vicinity

of EQ1 and EP1, respectively, but different responses to large disturbances.
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Fig. 5.2. Phase portrait for the PLL-type estimator, with Eg=1 pu, ωg=1 pu, and ρ=0.4.
The dashed lines represent the separatrices of the saddle point (EQ2).

5.2.2 Rejection of Voltage Harmonics

The distorted grid voltage model in (4.6) is now considered in order to study how the

PLL-type estimator rejects grid voltage harmonics. The real part and imaginary parts

of this equation are

Ed = −E+
1 sin θ̃ + E

2,6
d , Eq = E

+
1 cos θ̃ + E

2,6
q . (5.23)

Thus, we had E2,6
d = 0 and Eg = E+

1 in (5.14)–(5.17). Of special interest is how

harmonics present in E2,6
d affect the error angle θ̃. Ideally, the PLL-type estimator

should synchronize to the fundamental grid flux only, resulting in θ̃ = 0. By repeating

the above calculations with consideration taken to the grid voltage disturbances, the

linearized state-space system about EQ1 then becomes

d

dt

[
ω̃

θ̃

]
=

[
0 −γ1E

+
1

1 −γ2E
+
1

]
︸ ︷︷ ︸

A

[
ω̃

θ̃

]
+

[
γ1

γ2

]
︸ ︷︷ ︸
B

E2,6
d (5.24)

which is fairly similar to (5.20). With C = [0, 1], the transfer function from E2,6
d to θ̃ is

θ̃ = C(pI − A)−1BE2,6
d =

γ2p+ γ1

p2 + γ2E
+
1 p+ γ1E

+
1

E2,6
d . (5.25)

On condition that the grid voltage harmonics are small compared to the fundamental

voltage, then Êg ≈ E+
1 can be assumed. Under this assumption, and by substituting γ1

and γ2 with the selections in (5.22), the above transfer function reduces to

θ̃ =
ρ(2p+ ρ)

(p+ ρ)2
E2,6
d

E+
1

= HPLL(p)
E2,6
d

E+
1

. (5.26)

The static gain for HPLL(p) at nωg becomes

|HPLL(jnωg)| = ρ
√
4(nωg)2 + ρ2

(nωg)2 + ρ2
. (5.27)

As seen from (5.27), and not surprisingly, a low bandwidth should be selected for good

rejection of grid voltage harmonics. This analytical observation agrees well with the

experimental finding in [28].
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5.3 Modified Compensated Voltage Model

The SCVM uses a dynamic flux-modulus estimate, which appears to be strange when

considering the static nature of the virtual grid flux in (4.1); why should the estimator

be different compared to the underlying system? Due to this observation, the following

considers the estimator that results when a static flux estimate in (5.2), while (5.1)

is, hence, dropped. The obvious static flux estimate results directly from the grid flux

definition in (4.1):

ψ̂g =
Êg
ω̂g

(5.28)

where ω̂g is a “model parameter” for the grid frequency; we shall henceforth assume

ωg = ω̂g = 1 pu. Substituting the above static estimate in (5.2) gives the following

estimator

ω1 =
ω̂g(Êq − λÊd)

Êg
= ω̂g

(
Êq

Êg
− λÊd

Êg

)
. (5.29)

The above quotient Êq/Êg can be approximated by 1, since the error angle is mainly

seen in Êd, and Êq = Êg = Eg for accurate field orientation. This gives the final

representation of this flux estimator as

ω1 = ω̂g

(
1− λÊd

Êg

)
(5.30)

which will be referred to as the modified compensated voltage model (MCVM).

5.3.1 Stability Analysis

The dynamics of the MCVM are given by the error angle as

dθ̃

dt
= ωg − ω1 = ωg − ω̂g

(
1− λÊd

Êg

)
= λωg

Ed
Eg

= −λωg sin θ̃. (5.31)

given that the model parameters are accurate and ωg = ω̂g. By putting dθ̃/dt = 0, and

solving for θ̃, the following equilibrium points result

θ̃� =

{
2nπ, n = 0,±1,±2, . . .
nπ, n = ±1,±3,±5, . . . (5.32)

From direct inspection of (5.31), it can be seen that the MCVM is asymptotically stable

about θ̃ = 2nπ, n being an integer. To verify this strictly, though, the stability of the

MCVM is below analyzed by means of the direct method of Lyapunov [103].

Consider the Lyapunov function candidate

V (θ̃) = 1− cos θ̃. (5.33)

The function candidate satisfies V (θ̃) > 0 for θ̃ 
= 2nπ, and

V̇ = ˙̃θ sin θ̃ = −λωg sin2 θ̃ ≤ 0 (5.34)
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is negative semi-definite for λ > 0. Therefore, V (θ̃) is indeed a Lyapunov function.

Locally, V̇ is negative definite (V̇ < 0) in the region

(2n− 1)π < θ̃ < (2n+ 1)π, n = 0,±1,±2, . . . (5.35)

so θ̃ = 2nπ is asymptotically stable. The convergence point θ̃ = nπ, n being an odd

integer, is a saddle point.

For small variations about θ̃ = 2nπ, then sin θ̃ ≈ θ̃ can be assumed. Substituting
this in (5.31) provides the linearized dynamics of the MCVM as

dθ̃

dt
= −λωgθ̃. (5.36)

The pole of the linearized system can be placed at −ρ, via the selection of
λ = ρ/ω̂g. (5.37)

Observe that the MCVM is less suitable for so-called island operation [19], where the

grid frequency may temporarily deviate from the nominal value. For the less common

case ωg 
= ω̂g, corresponding to island operation, then (5.31) becomes
dθ̃

dt
= ωg − ω̂g − λω̂g sin θ̃. (5.38)

Putting dθ̃/dt = 0, and solving for θ̃, provides the following error angle

θ̃ = arcsin

(
ω̃g
λω̂g

)
(5.39)

where ω̃g = ωg−ω̂g is the frequency error. The values ω̃g = −0.1 pu, λ = 0.6 pu and ω̂g =
1 pu are considered for a numerical example, which result in θ̃ = arcsin(−0.1/0.6) =
−0.17 rad = −10◦. This is not particularly a large error angle, but it may still be
preferred to use the PLL-type estimator or the SCVM for island operation, since these

estimators are insensitive to ωg in the steady-state operation.

5.3.2 Rejection of Voltage Harmonics

A fair approximation is that the estimated grid voltage is dominated by the fundamental

grid voltage, Êg ≈ E+
1 , since the grid voltage harmonics are normally much smaller

compared to the fundamental grid voltage. Under this assumption, and by substituting

Êd and Êq with the distorted grid voltage in (5.23), the system model for the MCVM

becomes
dθ̃

dt
= λωg

−E+
1 sin θ̃ + E

2,6
d

E+
1

. (5.40)

The grid voltage harmonics are mostly troublesome in the steady-state operation, i.e.,

when θ̃ ≈ 0. For small θ̃, such that sin θ̃ ≈ θ̃, and by substituting λ = ρ/ωg, (5.40)

reduces to

dθ̃

dt
≈ ρ−E

+
1 θ̃ + E

2,6
d

E+
1

⇒ θ̃ =
ρ

p+ ρ

E2,6
d

E+
1

= HMCVM(p)
E2,6
d

E+
1

(5.41)
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The static gain for HMCVM(p) at nωg is found to be

|HMCVM(jnωg)| = ρ√
(nωg)2 + ρ2

(5.42)

which can be compared to the static gain for the PLL-type estimator in (5.27):

|HPLL(jnωg)| = ρ
√
4(nωg)2 + ρ2

(nωg)2 + ρ2
. (5.43)

A small bandwidth is required for good rejection of the voltage harmonics. Under the

assumption that nωg 
 ρ, the above static gains become

|HMCVM(jnωg)| ≈ ρ

nωg
, |HPLL(jnωg)| ≈ 2ρ

nωg
. (5.44)

As seen, the static gain for the MCVM is only half of the gain for the PLL-type estima-

tor, provided that both estimators have the same bandwidth about θ̃ ≈ 0. The MCVM

should therefore provide less amplification, and better rejection of voltage harmonics,

compared to the PLL-type estimator.

For a specific gain |HMCVM|, the corresponding required bandwidth ρ results from
(5.42) as

ρ =
nωg|HMCVM(jnωg)|√
1− |HMCVM(jnωg)|2

. (5.45)

At least |HMCVM(j6ωg)| = 0.1 is required for good rejection of the fifth- and the seventh-
order harmonics. Therefore, as a rule of thumb, no more than ρ = 6 ·1 ·0.1/√1− 0.12 ≈
0.6 pu should be selected for the MCVM.

5.3.3 Modified PLL-Type Estimator

In addition to the SCVM, the PLL-type estimator in (5.12)–(5.13) can also be modified

for grid-flux estimation. The modified PLL-type estimator is derived by dropping (5.12)

and using only the flux angle estimator of the PLL:

θ̇1 = ω1 = ω̂g + γ2ε, ε = −Êd. (5.46)

By letting the gain parameter equal γ2 = λω̂g/Êg, the modified PLL-type estimator

then becomes

θ̇1 = ω1 = ω̂g

(
1− λÊd

Êg

)
. (5.47)

This is the exactly the same expression that was obtained for the MCVM in (5.30).

Hence, although derived quite differently, the MCVM and the modified PLL-type esti-

mator are equivalent.
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5.3.4 Implementation Issues

The implementation of the MCVM is straightforward for voltage-sensored operation:

ω1 = ω̂g

(
1− λEd

Eg

)
, Eg =

√
E2
d + E

2
q . (5.48)

where λ should be selected smaller than 0.6 pu. The synchronous frequency must be

integrated in order to obtain the transformation angle θ1:

θ1 =

∫
ω1dt (5.49)

which can be easily discretized by the forward difference approximation [10]. The trans-

formation factors ejθ1 and e−jθ1, required in the Park transformation, are then obtained
from:

ejθ1 = cos θ1 + j sin θ1, e−jθ1 = cos θ1 − j sin θ1. (5.50)

An algebraic loop is created for voltage-sensorless operation, however, since both Êd
and Êq are functions of ω1. This loop is, on the other hand, easily circumvented via the

following remedy:

Êd = v
ref
d − R̂gid + ω̂gL̂giq (5.51)

Êq = v
ref
q − R̂giq − ω̂gL̂gid (5.52)

Êg =
√
Ê2
d + Ê

2
q (5.53)

ω1 = ω̂g

(
1− λÊd

Êg

)
. (5.54)

As seen, the inductive voltage drop is expressed in terms of ω̂g instead of ω1, so the

algebraic loop is avoided. This approximation is correct in the steady-operation, and

fairly correct also for the transient operation, since ω1 and ωg approximately equal.

There are several possibilities for simplifying the implementation of the MCVM.

The resistive voltage drop in the estimated grid voltage can mostly be neglected, since

the filter resistance is small for the purpose of small resistive loss. In addition, the grid

voltage modulus can be approximated by Êg = Eg = Enom, where Enom is the nominal

grid voltage modulus. This makes the computation of the square roots for Êg and Eg
superfluous but, on the other hand, the dynamics for the MCVM will no longer be

consistent, so the settling time for θ̃ slacken when Eg < Enom.

5.4 Simulations

This section presents simulation results of the studied flux estimators. The simulations

are essentially focused on the responses to various grid voltage disturbances. The sim-

ulation parameters are: Lg = 0.07 pu, L̂g = 1.1Lg, Rg = 0.007 pu, R̂g = 0.7Rg pu,

C = 5 pu, Eg = 1 pu, ωg = 1 pu and the bandwidth of the dc voltage control loop is
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0.8 pu. The dc voltage setpoint is 2 pu, see Appendix A for further details on the per-

unit system. The current dynamics are neglected, meaning that ig = irefg . A dc voltage

controller, which is described Chapter 6, provides the setpoint for iq, while the d-axis

current is held constant at id = 0.

5.4.1 Rejection of Voltage Harmonics

Fig. 5.3 shows a simulation of the MCVM, where the dc voltage reference is held con-

stant at 2 pu. A load power step that requires iq = 0.5 pu is applied after 0.02 s, and this

causes the dc voltage to increase by 0.3 pu. A fifth-order harmonic with the magnitude

E5 = 0.02 pu appears at t = 0.04 s, which results in a slightly distorted more distorted

grid current. The voltage harmonic also introduces fluctuations in the dc voltage. These

fluctuations are due to that the distortion Eg and ig cause Pg to fluctuate, and the in-

stantaneous power fluctuations spread to the dc-link, which will be further discussed in

the next chapter.

Fig. 5.4 shows the error angle for the MCVM, the PLL-type estimator, and the

SCVM, for the last 0.01 s in the above simulation. The bandwidth of all three flux

estimators is 0.5 pu in the vicinity of θ̃ = 0. Even though all three estimators reduce

the grid voltage harmonic quite satisfactorily, the MCVM has an edge over the PLL-

type estimator and the SCVM. The larger angle magnitude of the SCVM is due to that

this estimator uses both Êd and Êq, for which the distortion sum up, while the MCVM

and the PLL-type estimation use Êd only.

Fig. 5.5 shows a simulation, made under the same conditions as Fig. 5.3, of the

classical DFO “flux estimator” in (4.14)–(4.15). It can be seen that the error angle in

Fig. 5.5(d) and the grid current in Fig. 5.5(c) are more distorted than for the “dynamic”

flux estimators in Fig. 5.4. Observe that the larger current distortion is not seen from

iq in Fig. 5.5(b), since the distortion in the transformation factors e
jθ1 and e−jθ1 ideally

cancel each other for the synchronous reference frame.
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Fig. 5.3. Simulation of the MCVM for a grid voltage disturbance. (a) DC voltage. (b) q-axis
current. (c) Grid current and grid voltage in the α direction.
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Fig. 5.4. Comparison of rejection to grid voltage disturbances, by means of the resulting
error angle. The studied flux estimators are: the MCVM (solid), the PLL-type estimator
(dashed), and the SCVM (dash-dotted).
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Fig. 5.5. Simulation of the classical DFO grid flux “estimator.” (a) DC voltage. (b) q-axis
current. (c) Grid current and grid voltage in the α direction. (d) Error angle.
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5.4.2 Response to Phase-Angle Jump

Fig. 5.6 shows the simulated responses to a “phase-angle jump” for the MCVM, the

PLL-type estimator and the SCVM. All three estimators are designed for a bandwidth

0.5 pu in the vicinity of θ̃ = 0.

The response to the load power step at t = 0.02 s is similar for all three estimators.

A symmetrical voltage dip occurs at t = 0.05 s, which is associated with a “phase-angle

jump” of θ = 0.78 rad = 45◦ (this is a large “jump” [20]) and the grid voltage modulus
reduces by 0.2 pu. All three estimators converge to θ̃ ≈ 0 at approximately 0.02 s after

the dip appeared. The convergence rate of the SCVM is slow immediately after the

voltage dip. The field orientation therefore remains inaccurate, and the instantaneous

active power for a given iq and id = 0, Pg = 3Egiq cos θ̃, reduces. This is seen in

Figs. 5.6(b)–(c): the SCVM yields the largest deviation in vdc from the dc voltage

setpoint, in contrast to having the largest iq at t = 0.55 s.
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Fig. 5.6. Comparative study of the responses to a 45◦ “phase-angle jump” for the MCVM
(solid), the PLL-type estimator (dashed), and the SCVM (dash-dotted). (a) α-axis grid volt-
age. (b) DC voltage. (c) q-axis current. (d) Error angle.
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5.5 Summary

The emphasis of this chapter was on grid-flux estimation, and three estimators were

analyzed. All three estimators were found to be asymptotically stable, and suitable

estimator parameters were given in terms of the desired bandwidth and the grid voltage

modulus.

A grid flux estimator should be designed for a fairly low bandwidth, since this

improves the rejection of grid voltage harmonics. The MCVM was proven to be very

robust against the grid voltage harmonics, albeit less suitable for island operation. For

such operation, the PLL-type estimator can instead be recommended. The SCVM is

not recommended at all for grid-flux estimation, since simulations indicate that this

estimator is associated with fairly poor rejection of grid voltage disturbances. Further

analytical studies are, however, required in order to stringently verify this.
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Chapter 6

Controller Design

This chapter describes a classical cascaded control system structure for the back-to-back

converter. The resulting control design is closely related to previously published work,

and this is acknowledged where appropriate. Initially, the fundamentals of the control

theory that will be used is presented, and the controller designs then follow.

The principle for feedback current control here chosen is traditional synchronous-

frame PI control [69], which is preferably used in combination with carrier-based PWM

and regular sampling [59]. We also acknowledge the numerous other variants available

for current control, see [69] for a comprehensive survey.

The fairly few contributions of this chapter are related to the control of the PWM

rectifier. The design of the fast inner grid current control loop and the design of the

outer feedback loop for dc voltage control are described. The reduction of grid voltage

disturbances is analyzed, and possible routes to improvements are pointed out. The

chapter concludes with a simulation study of the resulting control system structure.

6.1 Internal Model Control

This section provides a brief tutorial on internal model control (IMC) [87] for real-

and complex-valued single-loop feedback systems. IMC is a model-based technique for

controller design, for which the resulting controller becomes directly parameterized in

terms of the plant model parameters and the desired closed-loop bandwidth.

Fig. 6.1 depicts the control system structure of IMC as a block diagram, where

( )r t ( )u t

( )d t

( )y t

(̂ )y t

( )G p

ˆ( )G p

�

�

�

�

( )C p

�

� ( )e t

Fig. 6.1. Block diagram of IMC structure.
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G(p), Ĝ(p), C(p) plant, plant model, IMC controller;

u(t), y(t), ŷ(t) input, output, modeled output;

r(t), e(t), d(t) reference signal, error signal, load disturbance.

Provided that the plant is accurately modeled and that no disturbances are present,

i.e., Ĝ(p) = G(p) and d(t) = 0, then y(t) is canceled by ŷ(t) in the feedback loop. The

closed-loop system then equals the open-loop system:

Gc(p) = G(p)C(p). (6.1)

A not far-fetched idea would be to select the “optimal” IMC controller C(p) = Ĝ−1(p),

which would cancel all plant dynamics, giving Gc(p) = 1 and y(t) = r(t) for all t. This

choice for C(p) is not physically realizable, however, for the following reasons:

• Ĝ−1(p) is unstable if Ĝ(p) has at least one zero in the right-hand side of the

complex plane.

• Ĝ−1(p) cannot be implemented unless it is proper, which means that the degree of

the numerator must be equal or lower than the degree of denominator. However,

Ĝ−1(p) is never proper for a physical process, since the degree of the denominator

for a physical G(p) is always higher than the degree of the numerator.

• The choice C(p) = Ĝ−1(p) would demand for excessive control action, so u(t)

would be large, and the system would be highly sensitive to model errors.

These issues can be resolved by detuning the “optimal” controller with a lowpass filter.

With L(p) being the lowpass filter, the detuned C(p) becomes

C(p) = L(p)Ĝ−1(p) (6.2a)

L(p) =

(
α

p+ α

)n
. (6.2b)

Consequently, the closed-loop system equals L(p) for accurate model parameters:

Gc(p) = L(p)Ĝ
−1(p)G(p) = L(p). (6.2c)

Notice that all poles of L(p) have for simplicity been placed in α, but this is no gen-

eral requirement for IMC. The degree of the filter, though, must be chosen sufficiently

large for C(p) to become proper. Hence, n must be larger or, preferably, equal to the

denominator degree of G(p).

It is for practical purposes suitable to rearrange the IMC structure in Fig. 6.1 to

the “classical” control system structure in Fig. 6.2, where F (p) is a “classical” controller.

This controller is given by the transfer function from e(t) to u(t):

F (p) =
C(p)

1− C(p)Ĝ(p) =
αn

(p+ α)n − αn Ĝ
−1(p). (6.3)

For the important case that G(p) is a first-order system, then the classical controller

reduces to

F (p) =
α

p
Ĝ−1(p), n = 1 (6.4)
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Fig. 6.2. The IMC rearranged as the “classical” control system structure.

while the following controller results for a second-order G(p):

F (p) =
α2

p2 + 2αp
Ĝ−1(p), n = 2. (6.5)

For the inner current control loop, the bandwidth α should always be selected smaller

than a decade below the sampling frequency [51]. The maximum bandwidth allowed

is not always attainable, however, since this choice may demand for excessive control

action that frequently saturates the control system [51]. A smaller bandwidth should

then be chosen.

The closed-loop bandwidth can occasionally be directly selected from the easily

derived formula [48]

α =
ln 9

tr
≈ 2.2

tr
(6.6)

where tr is the desired rise time (from 10 % to 90 % of the final value) for y(t). This for-

mula holds exactly for real-valued first-order systems, and approximately for first-order

complex-valued systems as well, albeit a complex-valued first-order system stringently

is a second-order real-valued system [45].

6.1.1 Two-Degrees-of-Freedom IMC

A drawback of IMC is that the resulting control system structure may reject load

disturbances poorly. Consider the transfer function from the load disturbance d(t) to

the output y(t) in Fig. 6.2:

Gdy(p) =
G(p)

1 + F (p)G(p)
=

p

p+ α
G(p). (6.7)

If the dynamics of G(p) are fast, or much faster, compared to the dynamics of the

closed-loop system, then the load disturbance rejection should be sufficient, or else the

rejection can be improved by increasing α. However, the dynamics of G(p) are normally

much slower compared to the dynamics of the closed-loop system, so the disturbance

reduction is to a great extent determined by the sluggish process.

The principle of two-degrees-of-freedom IMC [87] can be implemented in order

to speed up the load disturbance rejection for IMC. Such a control system structure

is depicted in Fig. 6.3, where the additional degree of freedom is introduced by the

feedback controller F ′(p) in the inner loop. The controller F ′(p) is generally dynamic,
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Fig. 6.3. Block diagram of two-degrees-of-freedom IMC. An inner loop provides additional
feedback of y(t) through F ′(p).

but will for our purposes be static. For a static F ′ and a first-order G(p), the inner loop
solely provides additional damping to G(p), and we shall therefore refer to two-degrees-

of-freedom IMC as active damping.

6.1.2 Back-Calculation

The input signal u(t) is for practical operation limited to a maximum and a minimal

value. Once u(t) becomes limited, the integrator part of a PI controller may intro-

duce the well-known phenomenon integrator windup [9]. Integrator windup normally

manifests itself as an overshoot in the step response of the output signal.

Back-calculation [9, 51] is a simple and effective technique to circumvent the

problem of integrator windup. Consider a conventional PI controller, where u(t) has

become limited to u(t), due to too large e(t):

dI(t)

dt
= e(t) (6.8)

u(t) = kpe(t) + kiI(t) (6.9)

u(t) = [u(t)]max
min . (6.10)

In order to avoid integrator windup, the integrator sum I(t) should not be updated

with the too large e(t), as in (6.8), but with the modified error e′(t) that would have
given u(t) = u(t) precisely:

u(t) = kpe
′(t) + kiI(t). (6.11)

By subtracting (6.9) from (6.11), and solving for e′(t), the modified error is back-
calculated as [48]

e′(t) =
1

kp

[
u(t)− u(t) + kpe(t)

]
= e(t) +

1

kp

[
u(t)− u(t)] (6.12)

so the following controller results:

dI(t)

dt
= e′(t) (6.13)

u(t) = kpe(t) + kiI(t) (6.14)

u(t) = [u(t)]max
min . (6.15)

86



6.2. Grid Current Control

Observe that the proportional part of the controller still uses the original error e(t).

The upper and the lower boundary for the limited input signal u depends on

certain physical constraints, which are application-dependent. Take for instance speed

control, which is here assumed to be accompanied by a current control loop. Then, the

input signal corresponds to the setpoint for the q-axis current, which must be confined

within a permissible interval in order to avoid over-current for a PWM converter. The

permissible interval is given by the maximum and the minimal q-axis current allowed:

iq,max =
√
|i|2max − i2d, iq,min = −

√
|i|2max − i2d (6.16)

where |i|2max is the maximum current modulus allowed. The procedure of confining irefq
to the interval [iq,min, iq,max] is in this chapter denoted by

ırefq =
[
irefq
]max

min
(6.17)

where ırefq is the modified q current setpoint. For a current controller, on the other

hand, the input signal corresponds to the command voltage vector v. For large current

steps, the current controller may demand for a v that exceeds the maximum realizable

voltage modulus of the PWM converter, which is referred to as voltage saturation. In

this chapter, voltage saturation is denoted by:

v = PWM(v, θ1) (6.18)

where v is the modified command voltage vector, and PWM stands for pulsewidth

modulation. Voltage saturation is further treated in Chapter 7.

6.2 Grid Current Control

The basic structure of the following grid current controller follows the guidelines given

in [51, 99] and [29], the latter with respect to active damping. Therefore, novelty is not

claimed for the basic controller design, but we shall in the following thoroughly analyze

the reduction of the grid voltage disturbances for the resulting controller design.

The grid current dynamics in (4.2) are

Lg
dig
dt
= vg − (Rg + jω1Lg)ig − Eg. (6.19)

The transfer function from vg to ig, which represents the process model, is therefore

G(p) =
1

pLg +Rg + jω1Lg
. (6.20)
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Fig. 6.4. Grid current control with inner feedback loop for current decoupling and active
damping.

The inductor resistance Rg is designed to be small, so the grid voltage disturbances will

be poorly damped by G(p) unless active damping is introduced. The first step in the

controller design is therefore to introduce the inner feedback loop in Fig. 6.3. The inner

loop has two purposes. Firstly, the cross-coupling between id and iq, due to the term

jω1Lgig, should be canceled. Provided that Lg is fairly accurately modeled, this is easily

accomplished by adding jω1L̂gig to F
′. Secondly, the disturbance rejection should be

speeded up by adding active damping. The active damping and the current decoupling

are introduced by selecting vg as follows:

vg = v′
g − (Ra − jω1L̂g)ig (6.21)

where Ra is the active resistance [29], and v
′
g is the command voltage vector that results

from the outer feedback loop in Fig. 6.3. By substituting (6.21) in (6.19), the system

model is then

Lg
dig
dt
= v′

g − (Ra +Rg + jω1L̃g)ig −Eg (6.22)

where L̃g = Lg − L̂g. Fig. 6.4 depicts the system model as a block diagram. From the

perspective of the outer feedback loop, the process model for accurate model parameters

is given by the transfer function from v′
g to ig:

G′(p) =
G(p)

1 + (Ra − jω1Lg)G(p)
=

1

pLg +Ra +Rg
. (6.23)

Following (6.4), since G′(p) as a first-order system, the current controller becomes

F(p) =
αc
p
G′−1(p) = αcL̂g +

αc
p
(R̂g +Ra) (6.24)

where αc is the desired bandwidth for the current control loop. As seen from the above

equation, F(p) becomes an ordinary PI controller. A suitable choice is to make the

inner feedback loop as fast as the closed-loop system. Placing the pole of G′(p) at −αc
provides the active resistance as

Rg +Ra
Lg

= αc ⇒ Ra = αcL̂g − R̂g. (6.25)
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Fig. 6.5. Digitally implemented grid current controller. The integrator part of the controller
is discretized by using the forward difference approximation [10]. “D” denotes the unit-delay
operator and “Ts” is the sampling period.

The following summarizes the resulting current controller:

e = iref − ig (6.26)

dI

dt
= e+

1

kp

(
vref − vref

)
(6.27)

vref = kpe+ kiI+ (jω1L̂g − Ra)is (6.28)

vref = PWM(vref, θ1) (6.29)

where

kp = αcL̂g, ki = αc(R̂g +Ra) = α
2
cL̂g, Ra = αcL̂g − R̂g ≈ αcL̂g (6.30)

are the proportional gain, the integration gain and the active resistance, respectively, of

the grid current controller. Note that back-calculation has been introduced, as described

in Section 6.1.2. Fig. 6.5 shows a block diagram of the digital implementation for the

current controller.

6.2.1 Assessment of Disturbance Reduction

For accurate model parameters in the above controller design, the transfer function

from the grid voltage disturbance Eg to the error signal e is found to be

GEe(p) =
G′(p)

1 + F(p)G′(p)
=

p

p+ αc
G′(p) =

p

Lg(p+ αc)2
. (6.31)

The static gain for GEe(p) at the harmonic frequency nωg becomes

|GEe(jnωg)| = nωg

Lg
[
(nωg)2 + α2

c

] . (6.32)

The values ωg = 1 pu, Lg = 0.1 pu and αc = 7 pu, the latter corresponding to a current

rise time of approximately 1 ms, are considered for a numerical example. We also recall

from Section 4.1.4 that the negative sequence and the fifth-order/seventh-order voltage

harmonics can be represented by n = 2 and n = 6, respectively. For these numerical

values, the following static gains result:

|GEe(j2ωg)| = 2/[0.1 · (22 + 72)] ≈ 0.4, |GEe(j6ωg)| ≈ 0.7. (6.33)

89



Chapter 6. Controller Design

The voltage disturbances are, hence, fairly poorly rejected for the present current con-

troller, in spite of active damping being used. This means that the grid voltage distur-

bances distort the grid current.

The disturbance reduction can be improved by increasing either the closed-loop

bandwidth or the filter inductance Lg, as seen from (6.32). Alternatively, better dis-

turbance reduction be obtained by complementing the above feedback control with a

feedforward design. Such a design has been proposed in [17, 106, 107] and [71], where

the latter reference considered only the negative sequence of Eg. Finally, so-called “dual

current control” [105] may possibly be used for improved disturbance rejection. Except

for some simulations made below, the topic of disturbance reduction for grid current

control is not further considered in this thesis.

6.3 DC Voltage Control

6.3.1 Feedback Linearization

The design of the dc voltage controller is facilitated through use of feedback linearization

[103]. The feedback linearization transforms the nonlinear dc voltage dynamics in (4.11)

to an equivalent linear system representation, on which traditional linear controller

techniques can be applied.

The following new state variable is introduced for the purpose of feedback lin-

earization:

W = v2
dc. (6.34)

Substituting this in (4.11) gives the new system model as

1

2
C
dW

dt
= −3Egiq − Ps (6.35)

which is linear with respect to W . The physical interpretation of the state-variable

substitution is that the “energy” is chosen to represent the dc voltage dynamics, instead

of the dc voltage itself.

Similar variants for feedback linearization of the dc voltage dynamics have pre-

viously appeared in [62, 96]. We shall partly extend the results of these references by

introducing active damping for the dc voltage controller, and by thoroughly investigat-

ing the load power rejection of the resulting control system structure.

Remark: References [21, 24, 83] proposed a different feedback linearization method

compared to the above described one. Consider the alternative expression for the dc

voltage dynamics in (4.12):

C
dvdc
dt

= −3Egiq
vdc

− Ps
vdc
. (6.36)

This can be linearized, in the sense of feedback linearization, by selecting iq to

ı̂C = −3Egiq
vdc

− Ps
vdc

(6.37)
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where ı̂C is the new input (note that this ideally equals the true capacitor current in

Fig. 4.4). By substituting ı̂C in (6.36), the new linear system model then becomes

Cv̇dc = ı̂C . (6.38)

This is the starting-point for the controller designs in [21, 24, 83]. The linearization

in (6.37) is slightly more complicated compared to (6.34), however, so the linearized

system resulting from the new state variable is preferred in the following controller

design.

6.3.2 Controller Design

The transfer function from iq to W in (6.35) is found to be

G(p) = −6Eg
pC

(6.39)

which has a pole in the origin, so an inner loop for active damping is here highly

motivated. The inner loop is introduced by selecting iq as

iq = i
′
q +GaW (6.40)

where Ga is the active conductance that provides active damping, and i′q results from
the outer feedback loop in Fig. 6.3. By substituting (6.40) in (6.35), the system model

transforms to

1

2
C
dW

dt
= −3Egi′q − 3EgGaW − Ps (6.41)

which is depicted as a block diagram in Fig. 6.6. The transfer function from i′q to W ,
which describes the resulting process model from the perspective of the controllerF (p),

becomes

G′(p) = − 6Eg
pC + 6EgGa

. (6.42)

Following (6.4), since G′(p) is a first-order system, the following dc voltage controller
results

F (p) =
αd
p
G′−1(p) = − αdĈ

6Enom

− αdGa
p

(6.43)
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Fig. 6.6. DC voltage closed-loop control with inner feedback loop for active damping.
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Fig. 6.7. Digitally implemented dc voltage controller. The integrator part of the controller
is discretized by using the forward difference approximation [10]. “D” denotes the unit-delay
operator and “Ts” is the sampling period.

which is an ordinary PI controller. Observe that IMC would have led to a proportional

controller unless active damping were used. However, a PI controller is required for zero

remaining error after a load power step, and such a controller results directly from IMC

when using active damping.

A suitable choice is to make the inner feedback loop as fast as the closed-loop

system. Placing the pole of G′(p) at −αd provides the active conductance as

6EgGa

Ĉ
= αd ⇒ Ga =

αdĈ

6Enom
. (6.44)

The following summarizes the above design for the dc voltage controller:

ed =Wref −W = (vref
dc )

2 − v2
dc (6.45)

dId
dt

= ed +
1

kp

(
ırefq − irefq

)
(6.46)

irefq = kped + kiId +Gav
2
dc (6.47)

ırefq =
[
irefq
]max

min
(6.48)

where

kp = − αdĈ

6Enom
, ki = − α2

dĈ

6Enom
, Ga =

αdĈ

6Enom
(6.49)

are the proportional gain, the integration gain, and the active conductance, respectively,

of the dc voltage controller. The bandwidth αd of the dc voltage control loop must be

chosen at least a decade smaller than the bandwidth of the grid current control loop,

since the grid current dynamics have been neglected in the present design. Fig. 6.7

shows the digital implementation of the dc voltage controller as a block diagram.

6.3.3 Assessment of Disturbance Reduction

For accurate model parameters in the above controller design, the transfer function

from the load power disturbance Ps to the error signal ed in Fig. 6.6 becomes

GPe(p) = − 1

3Eg

G′(p)
1 + F (p)G′(p)

= − p

p+ αd

G′(p)
3Eg

=
2p

C(p+ αd)2
. (6.50)
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The load power Ps is capable of changing quickly, since it is roughly proportional to ωrTe,

and Te may change as fast as the closed-loop stator current dynamics. Let us therefore

study the step response of ed(t). Provided that the load power changes stepwise from

zero to P at t = 0, then ed(t) becomes:

ed = L−1

{
GPe(p)

P

p

}
= L−1

{
2P

C(p+ αd)2

}
=
2P

C
te−αdt. (6.51)

The time derivative of ed(t) is

ded
dt

=
2P

C
(1− αdt)e−αdt (6.52)

which has a local maximum for t = 1/αd. By substituting this in (6.51), the maximum

error is found to be

ed,max =
2P

αdC
e−1 ≈ 0.7Ps

αdC
. (6.53)

Given that P is positive, and by considering vdc = 0.9vref
dc as the minimal dc voltage

allowed, then the maximum error for the load power step must remain below

ed,max <
(
vref
dc

)2 − (0.9vref
dc

)2 ≈ 0.2
(
vref
dc

)2
. (6.54)

When solving this inequality for αd, the following constraint results

αd >
0.7P

0.2C
(
vref
dc

)2 ≈ 4P

C
(
vref
dc

)2 . (6.55)

The values C = 20 pu, vref
dc = 2 pu and P = 4 pu are considered for a numerical

example (see Appendix A for details on the per-unit system), which give αd > 0.2 pu.

This bandwidth corresponds to a dc voltage rise time of tr < 35 ms, which can be

considered as fast, but not unattainable for a PWM rectifier.

If only small values for ed(t) are allowed, or if C is small, it may then be necessary

complement the feedback control with a feedforward design, as proposed in [72]. The

feedforward compensation should be used with caution, however, since Ps may become

highly distorted if the ac machine appears as an unsymmetrical load [83]. The distortion

in Ps then spread directly to iq, via the feedforward compensation, resulting in more a

distorted grid current.

The feedforward compensation is introduced by subtracting Ps/(3Enom) from

(6.40):

iq = i
′
q +GaW − Ps

3Enom

(6.56)

where Enom is the nominal grid voltage modulus, which is preferred over Eg in order to

avoid that grid voltage disturbances spread to iq. By substituting (6.56) in (6.35), the

dc voltage dynamics become

1

2
C
dW

dt
= −3Egi′q − 3EgGaW +

(
Eg
Enom

− 1
)
Ps (6.57)

so the load power theoretically cancels in the differential equation for W , provided that

Enom = Eg. In practice, however, further design considerations may be required if C is

very small, we refer to [24, 62] for details on this topic.
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Discussion of Grid Voltage Disturbances and Load Unsymmetrics

The dc voltage dynamics are in practice slightly more complicated than so far discussed,

since vdc is also affected by grid voltage disturbances, harmonics in ig and by load un-

symmetrics [83]. This is not critical with respect to the dc voltage control, but increases

the grid current distortion. Consider Fig. 6.6: if either one of Eg, iq, or Ps (or all three)

is distorted, then this distortion appears in vdc, and is also further transmitted to iq
via the dc voltage control loop. The following two methods, at least, can be applied in

order reduce the distortion in ig:

Design the dc voltage control loop for a small bandwidth, or use different band-

widths for the transient and the steady-state operation [44, 96]. The dc voltage fluctu-

ations are thereby allowed, given that the harmonic frequencies are at least a decade

larger than the bandwidth of the dc voltage control loop. The allowed dc voltage fluc-

tuations are not crucial for the proper operation of the back-to-back converter, since

minor variations in vdc are taken into consideration by the pulsewidth modulator [7].

Add zeros to the feedback loop of the dc voltage controller. These zeros should be

selected such that the harmonics in the dc voltage are blocked from the feedback path.

The dc voltage harmonics are thereby allowed by the controller, as they do not affect

the setpoint for iq.

These methods will not be further investigated, we leave them to future research.

6.4 Induction Machine Controllers

The following briefly describes the controller designs in [52, 99] for the purpose of provid-

ing a complete control system structure for the back-to-back converter. The method-

ology to design these controllers is similar to the procedure described in the present

chapter, we refer to the mentioned references for further details. The controllers are

here given in their analog form, which can be converted to digital form by using the

forward difference method [10], for instance.

The following summarizes the current controller in [52, 99] for an induction ma-

chine:

e = iref − is (6.58)

dI

dt
= e+

1

kp

(
vref − vref) (6.59)

vref = kpe+ kiI+ (jω1L̂σ − Ra)is (6.60)

vref = PWM(vref, θ1) (6.61)

where

kp = αcL̂σ, ki = αc(R̂s + Ra) = α
2
cL̂σ, Ra = αcL̂σ − R̂s (6.62)

are the proportional gain, the integration gain, and the active resistance, respectively,

and αc is the desired bandwidth for the stator current control loop. As seen, the con-

troller does not differ much from the previously described grid current controller. The

essential differences are that the filter inductance is replaced by the leakage inductance,

and the filter resistance is substituted with the stator resistance.
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The following summarizes the speed controller in [99] for an induction machine:

es = ωref − ω̂r (6.63)

dIs
dt
= es +

1

kp

(
ırefq − irefq

)
(6.64)

irefq = kpes + kiIs +Baω̂r (6.65)

ırefq =
[
irefq
]max

min
(6.66)

where

kp =
αsĴ

3n2
pψref

, ki =
α2
sĴ

3n2
pψref

, Ba =
αsĴ − b̂
3n2

pψref

(6.67)

are the proportional gain, the integration gain, and the active viscous friction, respec-

tively, and αs is the desired bandwidth of the speed control loop. This speed controller

is for constant-inertia loads, a variable-inertia load may require a more sophisticated

control system structure [5].

6.5 Simulation of PWM Rectifier

This section presents simulation results of the, in this chapter described, control system

structure for the PWM rectifier. The bandwidths of the current control loop is 7 pu,

corresponding to a current rise time of 1 ms, while the bandwidth of the dc voltage

control loop is explicitly stated for each simulation. Only feedback control is used for

both control loops, meaning that no kind of feedforward compensation is implemented.

The MCVM is used for grid flux estimation, having a bandwidth of ρ = 0.3 pu in

the vicinity of θ̃ = 0. The filter parameters are Lg = 0.1 pu, Rg = 0.01 pu and the dc

link capacitance is C = 10 pu. The corresponding model parameters are L̂g = 1.1Lg,

R̂g = 0.9Rg and Ĉ = 1.1C.

The dc voltage setpoint is stepped from 2 pu to 2.5 pu at t = 0, and a load power

step of 2 pu, corresponding to iq = −0.7 pu, is applied at t = 0.04 s. A negative sequence
voltage, accompanied by a “phase-angle jump” of −45◦ and voltage dip of 0.2 pu, occurs
at t = 0.08 s. The negative sequence vanishes and fundamental voltage recovers at

t = 0.12 s, which coincides with the occurrence of a fifth-order voltage harmonic. Table

6.1 summarizes the applied test sequence of steps and voltage disturbances.

TABLE 6.1
Simulation test sequence

t (s) < 0 0 0.04 0.08 0.12
vref
dc (pu) 2 2.5 2.5 2.5 2.5

Ps (pu) 0 0 2 2 2
E+

1 (pu) 1 1 1 0.8 1
E−

1 (pu) 0 0 0 0.3 0
E5 (pu) 0 0 0 0 0.1
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6.5.1 Fast DC Voltage Control Loop

Fig. 6.8 shows a simulation of the PWM rectifier with a dc voltage control bandwidth

of 0.7 pu, corresponding to a rise time of 10 ms for the squared dc voltage. This rise

time also approximately agrees with that of vdc, as seen in Fig. 6.8(b).

Harmonics appear in the grid current, due to the fairly poor rejection of grid volt-

age disturbances for the studied control system structure. It can be seen from Fig. 6.8(a)

that iq is distorted when grid voltage disturbances are present. This distortion results

from both the dc voltage and the grid current control loops. The MCVM, on the other

hand, provides a good rejection of the voltage disturbances. As seen from Fig. 6.8(a),

the maximum oscillation in θ̃ has a magnitude of only θ̃ ≈ 0.1 rad = 5.7◦. Meanwhile,
the “phase-angle jump” at t = 0.08 s is quickly tracked by the MCVM.

6.5.2 Slow DC Voltage Control Loop

This simulation is made under similar conditions as above described, but the closed-

loop bandwidth for W = v2
dc is now 0.2 pu. This corresponds to a rise time of 35 ms for

the squared dc voltage.

Fig. 6.9 shows the results of the simulation. Compared to Fig. 6.8, the smaller dc

voltage bandwidth in this simulation reduces the distortion in iq, as previously noticed

in [44, 96]. However, the smaller bandwidth also yields a slower response to load power

disturbance at t = 0.04 s, which leads to a dip in vdc of 0.2 pu. The response can be

speeded up by adding feedforward compensation for the load power, as noticed in [72]

and also described in Section 6.3.3.
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Fig. 6.8. Simulation of PWM rectifier with αd = 0.7 pu.
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Fig. 6.9. Simulation of PWM rectifier with αd = 0.2 pu.
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Chapter 7

Active Power Filtering and

Deadbeat Current Control

In this chapter, the fully controlled grid current of a PWM rectifier is exploited for

the purpose of shunt active power filtering at a moderate switching frequency. This

application put special demands on the control system structure for the PWM rectifier,

so the current controller design made in the previous chapter will not be used here.

Instead, this chapter deals with current controllers that are tuned for the deadbeat

response.

The chapter consists of two main parts. The first part deals with active filtering;

some aspects for active filtering are initially described, and the studied system config-

uration is introduced. Five algorithms for identifying the harmonics to be filtered are

then reviewed; these are referred to as harmonic detection algorithms. Experimental

evaluation of active filtering follows. The second part of the chapter deals with analysis

and development of the deadbeat current control loop. Deadbeat controllers designed

to achieve the current command both in one and in two sampling periods are designed.

Moreover, various methods to limit a command voltage vector that exceeds the maxi-

mum realizable voltage modulus are reviewed.

7.1 Active Filtering

An adjustable-speed drive (ASD) is often fed via a diode or thyristor rectifier. These

are simple and cost-effective rectifiers, but produce distorted grid currents. In order

to reduce the harmonic distortion of a group of ASDs, an active filter (AF) can be

installed in parallel with the ASD [4, 13]. Alternatively, some of the ASDs may use

PWM rectifiers that operate both as rectifiers and as AFs. The latter alternative leads

to a cost-effective solution, since the size of the PWM rectifier only increases moderately

when active filtering functionality is added [2].

Many proposed AFs use a hysteresis current controller with a high switching

frequency of about 20 kHz. A classical method for active filtering is the so-called in-

stantaneous reactive power principle [4], accompanied by an analog hysteresis current

controller. The switching frequency of a conventional PWM rectifier is, however, usually

around 5-to-7-kHz, in order to keep the switching loss of the semiconductor valves at
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an acceptable level. The low switching frequency limits the maximum attainable band-

width for the current control loop, so active filtering becomes more difficult to achieve.

In addition, a computational delay is often introduced for a digitally implemented con-

trol system structure, which further complicates active filtering.

An AF may be programmed to only remove current harmonics that exceed a

certain level, for instance, the level set in [65]. We shall refer to this as selective filtering,

and study two methods for such type of filtering in the following. An advantage of

selective filtering is that the required current modulus for the AF becomes smaller.

7.1.1 System Configuration

The studied system configuration is shown in Fig. 7.1. The system consists of two

ASDs, which are fed via a thyristor rectifier and a PWM rectifier, respectively. The

PWM rectifier operates as an AF, attempting to filter the harmonic load current of

the thyristor rectifier. Unlike the terminology used in the previous chapters, we shall

now reserve the term grid current for the sum of the currents that originate from the

thyristor and the PWM rectifiers, i.e., the current that is referred to as igrid in Fig. 7.1.

In the following, the ASD connected to the PWM rectifier is in the no-load opera-

tion, so the current of the thyristor rectifier, denoted by iL, is the resulting load current

of the system. The load current in the three-phase system can therefore be described

by the following periodic sequences

iL,1(t) =
∑
n

iL(n) cos
(
nωgt+ φL(n)

)
(7.1)

iL,2(t) =
∑
n

iL(n) cos
(
nωgt+ φL(n) − n2π

3

)
(7.2)

iL,3(t) =
∑
n

iL(n) cos
(
nωgt+ φL(n) − n4π

3

)
(7.3)

where iL(n) is the nth harmonic amplitude of the load current, and φL(n) is the nth

harmonic phase shift between the load current and the fundamental grid voltage. In

the following, current harmonics up to the thirteenth-order are considered, excluding

the triplens, since a conventional PWM rectifier is incapable of filtering triplen current

harmonics.

The vector-current controller [82, 106] that is used for the PWM rectifier for the

purpose of active filtering is depicted in Fig. 7.2. The controller is designed for the

deadbeat response, so the current reference irefg ideally equals the desired value for the

true current ig at the next sampling instant. However, a current response time of two

sampling periods is effectively obtained, since the control computer for the studied

system configuration introduces a computational delay of one sampling period.

A special form of delay-time compensation is used by the vector-current controller,

in order to tackle the computational delay of the control computer, we refer to [82, 106]

for further details on this compensation method.

The AF functionality for the PWM rectifier is essentially introduced by the fol-

lowing three steps. Firstly, the currents originating from the thyristor rectifier, iL, are

measured by the control system of the PWM rectifier. Secondly, the current harmonics
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of iL are separated from the fundamental load current, through use of special software

for harmonic detection. Once the harmonics of iL have been detected, these harmonics

determine the reference current for the active filter, which is denoted by irefAF. Thirdly,

irefAF is added to irefg , which imaginary part i
ref
q results from the dc voltage controller,

while the real part irefd is for open-loop control of the reactive power.

7.1.2 Effect of Delayed Current Response

The ideal AF would be able to track the reference irefAF immediately, without time delay.

Of course, this is not physically realizable; a delayed current response is unavoidable. For

the studied AF vector control system, the current response time is two sampling periods.
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This delay greatly affects the capability of the AF to cancel current harmonics, especially

if the sampling frequency is low: once the true AF current has reached the desired

setpoint irefAF, then the load current harmonics no longer remain in the states they were

at two sampling periods ago. The true AF current iAF, hence, appears as phase shifted

with respect to the harmonics in iL. The sampling frequency 5 kHz and the fundamental

frequency 50 Hz are considered for numerical example, which give that the phase shift

for the eleventh-order harmonic becomes φL(11) = 11 · 2π50 · 2/5000 ≈ 1.4 rad ≈ 80◦.
Evidently, this phase shift reduces for larger sampling frequencies, but is critical for

active filtering at a low sampling and switching rate.

Various methods for phase shift compensation have been presented. Reference [40]

proposed an adaptive filter, while [81] used a phase leading compensator filter, which

was implemented in analog hardware. If the harmonics are stationary, the phase shift

can also be compensated by using old load current measurements (half a fundamental

grid period minus two samples back) that are stored in RAM [2]. An alternative to this

method is to phase compensate each harmonic separately, by using predicted values for

the phase shifts of each individual harmonic. This method is only applicable for selective

active filtering, though, since it requires that each harmonic is detected separately. We

shall investigate the two latter methods for phase shift compensation, i.e., old load

current measurements stored in RAM, and individual phase shift compensation.

7.1.3 Selective Active Filtering

Selective active filtering implies that the AF is not attempting to cancel all of the

harmonics that are present in iL; only individual harmonic currents, which are selected

by the AF control system, are canceled. Since the phase shift for each harmonic can

easily be predicted, an effective compensation method for selective active filtering is

to add the predicted phase shift to the space vector angle of each detected current

harmonic.

In the stator-oriented reference frame, the phase shifts for each harmonic during

the delayed current response of two sampling periods are

∆φsL =

{
nωg2Ts, n = 7, 13, 19, . . .

−nωg2Ts, n = 5, 11, 17, . . . (7.4)

where n is the harmonic order, ωg is the angular grid frequency, and 2Ts represents the

delayed current response of two sampling periods. As seen, negative phase shifts result

for n = 5, 11, 17, . . ., since these harmonics form negative sequences.

Eq. (7.4) holds only in the stator-oriented reference frame, since also the rotating

nature of the coordinate system should be considered for the synchronous reference

frame. The total phase shift then equals the sum of the phase shift for each harmonic

and the phase shift introduced by the rotation of the synchronous reference system. The

predicted phase shifts for the harmonics in the synchronous coordinates thus become

∆φL =

{
(n− 1)ωg2Ts, n = 7, 13, 19, . . .

−(n+ 1)ωg2Ts, n = 5, 11, 17, . . . (7.5)

which are, henceforth, referred to as the predicted phase shifts. As seen, the fifth- and

the seventh-order harmonics have similar phase shifts, albeit their signs differ, and a
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similar observation can be made for the eleventh- and the thirteenth-order harmonics.

This is due to that the fifth- and the eleventh-order harmonics form negative sequences,

while the seventh- and the thirteenth-order harmonic form positive sequences. Fig. 7.3

illustrates the resulting phase shifts for the fifth- and the seventh-order harmonics.

Selective active filtering can be based on various algorithms. Some of the proposed

methods use bandpass filters [92] or Fourier series [2] to extract individual current

harmonics, and a recently proposed method uses synchronously rotating coordinate

systems for each of the individual current harmonics [68]. We shall in the following

consider the latter two methods for selective filtering.

7.1.4 Detection of Current Harmonics

Direct Active Filtering Method

The direct active filtering method (D method) separates the fundamental load current

from the load current distortion. Consequently, individual harmonics are not detected.

The D method relies on that the fundamental part of iL appears as a dc quantity

in the synchronous reference frame, which can be separated from the harmonics by

implementing lowpass filters in the d and the q directions; one filter is required in each

direction. The load current distortion is calculated by subtracting the output signals of

the lowpass filters from the non-filtered variants of iL,d and iL,q, which is depicted in

Fig. 7.4. Observe that the lowpass filter does not phase shift the fundamental, which

is a dc signal in the synchronous reference frame. Second-order Butterworth lowpass

filters, all having the cut-off frequency 20 kHz, are here used for the D method.

The delayed current response of two sampling periods can for the D method be

circumvented by taking advantage of the periodicity of the load current, provided that

the load remains in the steady-state operation. In essence, the load current for the

previous half period are stored in RAM [2], which are then used to predict the AF

reference current two samples ahead. This procedure is henceforth referred to as the

direct method using phase shift compensation (DP).
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Fourier Method

The Fourier method, henceforth referred to as the F method, uses a numerical imple-

mentation of a moving Fourier series to detect the harmonics of the load current [2].

Due to the assumed three-phase symmetry, it suffices to detect the harmonics in one

of the three phases. In the three-phase system, the periodic load phase current can be

written in the discrete form as

iL(k) =

∞∑
n=1

iL(n) cos(nΩgkTs + φL(n)) (7.6)

where iL,(n) is the magnitude of the nth order load current harmonic, and Ωg = 2π/N ,

N being the number of samples for one fundamental period. Writing the load current

as a discrete-time Fourier series yields

iL(k) =
∞∑
n=1

a(n) cos(nΩgkTs) + b(n) sin(nΩgkTs) (7.7)

where a(n) and b(n) are the Fourier coefficients. The coefficients a(n) and b(n) can be

written recursively as

a(n)(k) = a(n)(k − 1) + 4

N

[
iL(k) + iL

(
k − N

2

)]
· cos(nΩgkTs) (7.8)

b(n)(k) = b(n)(k − 1) + 4

N

[
iL(k) + iL

(
k − N

2

)]
· sin(nΩgkTs). (7.9)

The magnitudes of the individual harmonics and their corresponding phase angles be-

come

iL(n) =
√
a2

(n) + b
2
(n), φL(n) = arg(a(n) − jb(n)) (7.10)

respectively. Since the phase angle of each harmonic is individually derived, phase shift

compensation can be accomplished by adding the predicted phase shift for each har-

monic to their corresponding phase angle.

Fig. 7.5 depicts the resulting algorithm for the F method as a block diagram. The

phase shifts caused by the delayed current response are added to the phase angles of each

harmonic in the block “phase compensation.” The block entitled “reference reduction”

controls the amount of compensation for each harmonic, by scaling the amplitudes

of the detected harmonics with the scale factors r . For instance, r5=0 would imply
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that the fifth-order harmonic is allowed by the AF. Once the phase shifts have been

compensated and the amplitudes have been scaled, the resulting detected harmonics

are transformed to the synchronous reference frame. The resulting space vector irefAF

becomes the reference current vector for the AF.

Transformation Method

The transformation method (T method) [68] can be considered as the opposite approach

compared to the D method. Instead of separating the fundamental from the load current

distortion in the synchronous reference frame, the T method separates the individual

harmonics from the fundamental load current. This is performed by lowpass filtering

the load current in several coordinate systems, where the rotation frequency of each

system equals the frequency of a specific current harmonic. For instance, the fifth-order

harmonic appears as a dc signal in a reference frame that rotates with −5ωg, with
respect to the stator-oriented system.

Two lowpass filters are required in each rotating reference frame, since the real

and the imaginary directions require one filter each. Consequently, totally eight lowpass

filters are needed to detect the harmonics of order 5–13. Each lowpass filter has the

Butterworth characteristic, and is designed for a cut-off frequency of 20 Hz. The filters

are only of the first-order, in order to increase the execution speed of the T method.

Fig. 7.6 depicts the T method as a block diagram. As seen, the phase shift com-

pensation, to circumvent the delayed current response of two sampling periods, is ac-

complished by adding the predicted phase shifts ∆φL(n) when transforming from the

different reference frames of the current harmonics to the synchronous reference frame.

Response Times of the Harmonic Detection Methods

The response time of the F method is 0.5 cycles, i.e., 10 ms for the fundamental fre-

quency 50 Hz, while the response times of the T method and the D method depend

on how the lowpass filters are designed. For the present designs, the T method and

the D method use first-order and second-order Butterworth filters, respectively, and

all filters have the cut-off frequency 20 Hz. Therefore, both the T method and the D

method have similar response times, which approximately equal 25 ms. Compared to

the D method, the DP method has an additional response time of 0.5 cycles compared

to the D method, which is due to that the DP method requires 0.5 cycles to store the

previous load current measurements in RAM.

The above presented harmonic detection methods will operate well provided that

the load current is periodic, i.e., iL(t) = iL(t−Tp), Tp being the period time of the funda-
mental. However, the response times of the detection methods are at least 10 ms, which

makes the presented algorithms less suitable if the current harmonics are non-periodic,

i.e., iL(t) 
= iL(t− Tp). More advanced harmonics detection methods are required if the
operating mode iL(t) 
= iL(t−Tp) occurs too frequently. Such advanced algorithms may,
for instance, rely on predictive signal processing [113].
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7.1.5 Experiments

The experimental AF is a PWM rectifier, equipped with IGBT valves (Toshiba MG400-

Q1US41 1200V, 400A) and a TMS320C30 control computer. The base values for the

PWM rectifier are 400-V rms phase-to-phase and 35-A rms. Variations in the dc-link

voltage, as well as the blanking time and on-state voltage drop of the semiconductor

valves, are compensated by the control program. The harmonic load current is produced

by a thyristor rectifier, which has a smoothing inductor Ldc and a load resistor Rdc on

the dc-side. Furthermore, a commutation inductor Lac is placed between the grid and

the thyristor rectifier in order to reduce commutation notches. The sampling frequency,

fs, equals the switching frequency, fsw, of the PWM rectifier. Table 7.1 summarizes

characteristic parameters of the experimental system.

TABLE 7.1
Characteristic parameters of experimental system

Lg = 0.071 pu Eg = 1.0 pu ωg = 2π50 rad/s fs = fsw = 6.0 kHz

Rg = 0.012 pu vdc = 2.0 pu Ts=167 µs Rdc = 1.8 pu

Lac = 0.021 pu Ldc = 1.9 pu

TABLE 7.2
Execution times for the harmonic detection methods

Algorithm Execution time (µs) Algorithm Execution time (µs)
D 14 F 17
DP 16 T 34

The controller program is written in the C language, in order to facilitate the devel-

opment of the control code. The execution speeds for the different harmonic detection

methods are listed in Table 7.2. The T method is the most time-demanding algorithm,

since it uses eight first-order lowpass filters, while the D method uses only two second-

order lowpass filters.

In the following, all currents are normalized to the magnitude of the fundamental

load current. The measured load current and its frequency spectrum are shown in

Fig. 7.7, where the peak value for the current equals 35 A.

It was necessary to reduce the load current modulus when using the D method

and the DP method, since these algorithms provide the total load current distortion.

Given the load current in Fig. 7.7, steep current steps appear in irefAF, and these steps

unavoidably forces the deadbeat current controller into voltage saturation for the D and

the DP methods. Unfortunately, the voltage saturation resulted in integrator windup for

the here used current controller, which in turn led to poor active filtering performance.

The reduced load current alleviated these problems for the here used deadbeat current

controller.

Fig. 7.8 shows the performance of active filtering for the D method and the DP

method. As seen from the harmonic spectra in Fig. 7.8(b), the grid current is almost

as distorted when using the D method as when no AF is used at all (load). This is
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Fig. 7.7. (a) The load current as a function of time. (b) The frequency spectrum of the load
current.

due to that the D method does not consider the phase shifts of the current harmonics

during the delayed current response. The performance of the DP method is better, since

the load current harmonics are reduced by a factor two, at least, in the resulting grid

current.

Three experiments were conducted in order to investigate the performance of the

selective active filtering methods, i.e., the F method and the T method. In the first

experiment, the load current harmonics of the orders 5, 7, 11, and 13 were filtered,

while only the fifth-order harmonic was filtered in the second experiment. The third

experiment considered active filtering of the seventh-, the eleventh-, and the thirteenth-

order harmonics, while the fifth-order harmonic was allowed by the AF. The results

of these experiments are shown in Figs. 7.9–7.11. As seen, the current harmonics are

successfully canceled by the AF, and the F method has an edge over the T method

with respect to filtering capability. This is due that the T method uses only first-order

lowpass filters, so the current harmonics cannot be properly separated from the load

current fundamental. The T method would have benefitted from higher-order filters,

but such filters would also have increased the execution time for the T method.
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Fig. 7.8. (a) Grid current using DP method. (b) Harmonic spectrum of the grid current
for: without AF (load), with AF using the D and DP methods.
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Fig. 7.9. The fifth-, the seventh-, the eleventh-, and the thirteenth-order harmonics of isL
are filtered. (a) Resulting grid current when using the F method. (b) Harmonic spectrum of
the grid current for: without AF (load), AF using the F and T methods.
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but the fifth-order harmonic is allowed. (a) Resulting grid current when using the F method.
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Fig. 7.11. Only the fifth-order harmonic is filtered, the remaining harmonics are allowed by
the AF.(a) Resulting grid current when using the F method. (b) Harmonic spectrum of the
grid current for: without AF (load), AF using the F and T methods.
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7.1.6 Summary

This chapter has so far demonstrated that active filtering can be achieved when using

6 kHz switching and sampling frequencies together with a sub-oscillating PWM and a

digitally implemented vector-current controller. All three active filtering methods that

use phase shift compensation (i.e., the D method, the F method and the T method)

operate satisfactorily. Experimental tests show that individual harmonic cancelations

up to the thirteenth order were successful. However, the experiments conveyed that the

deadbeat current controller was incapable of handling voltage saturation in a desirable

manner. We shall therefore in the remaining part of this chapter investigate the proper

design a deadbeat current controller.

7.2 Deadbeat Control and Saturation Strategies

The following sections investigate deadbeat current control for a PWM rectifier. The

presence of computational delay in the control system is described, and two current

controllers with finite settling times (deadbeat) are designed and analyzed. One of

these deadbeat current controllers is designed to achieve the current command in one

sampling period (will be referred to as one-sample deadbeat), while the other ideally

achieves the current command in two sampling periods (will be referred to as two-

samples deadbeat).

Various algorithms to limit a voltage vector that exceeds the maximum realizable

voltage modulus of a PWM converter are also described. These limiting algorithms are

applicable for any vector current controller, but are particularly valuable for a deadbeat

controller: the large proportional gain of a deadbeat controller easily leads to voltage

saturation, even for fairly small current steps. Finally, the study concludes with an

experimental evaluation of the resulting control system structure.

7.2.1 Computational Delay

The design of a digitally implemented controller depends on whether the computa-

tional time of the control computer, which host the control algorithm, is negligible or

not compared to the settling time of the feedback control system. Consider Fig. 7.12.

The computational time in Fig. 7.12(a) is much smaller than the sampling period. Con-

sequently, a feedback controller can be designed under the assumption on a delay-free

control computer. In Fig. 7.12(b), however, the computational time equals the sam-

pling period time. The computational delay is negligible for feedback systems where the

kt 1kt �

gi gv gvgi

kt 1kt �

gi gv

(a) (b)

Fig. 7.12. Computational times. (a) Delay-free control computer. (b) One-sample delayed
control computer.
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closed-loop bandwidth is much smaller than the sampling frequency. Then, the feedback

controller can be designed in a similar manner as if a truly delay-free control computer

were used. For the one-sample deadbeat controller, however, the computational delay

is highly critical: the one-sample settling time then equals the computational delay. It

will be below shown that the one-sample deadbeat controller is only marginally stable

in the presence of computational delay, while the two-samples deadbeat controller is

stable, albeit highly sensitive to the accuracy of the model parameters.

7.2.2 Design of Deadbeat Current Controllers

A deadbeat controller is a special variant of internal model control; both the deadbeat

and IMC controller cancel the process dynamics, and then place the closed-loop poles

at the desired location. IMC can therefore be used for designing deadbeat controllers,

even though the deadbeat response requires that digital control system design is used.

Active damping will not be considered in the following text, since the experiments

in this chapter were conducted at an early stage during the development of the present

thesis. Instead of active damping, a feedforward design is implemented in order to speed

up the response to grid voltage disturbances [107].

References [17, 78] proposed to use the Smith predictor [95, 104] in order to over-

come the computational delay of a “slow” control computer for the one-sample deadbeat

controller. In the following, it is demonstrated that the resulting control system struc-

ture of the Smith predictor is identical to the two-samples deadbeat controller that

results from IMC.

Discretization of the Process Model

The first step in the controller design is to cancel to cross-coupling between id and iq in

(4.2), and to implement the feedforward design for Eg. These issues are accomplished

by selecting vg to [107]

vg = v′
g + jω1L̂gig + Eg. (7.11)

where v′
g results from the feedback control loop. By substituting (7.11) in (4.2), the

grid current dynamics become

Lg
dig
dt
= v′

g −Rgig (7.12)

under the assumption that L̂g = Lg, and that the feedforward compensation cancels Eg
perfectly. Consequently, the transfer function from v′

g to ig becomes

G(p) =
1

pLg +Rg
. (7.13)

The second step in the deadbeat controller design is to discretize the continuous process

model G(p). However, vg is pulsewidth modulated [59] in nature, so G(p) is hard to

meaningfully discretize. It is here assumed that v′
g can be approximated as piecewise
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constant in one sampling period (often referred to as zero-order hold [10]), which gives

the following discrete model:

G(z) = (1− z−1)Z
[
L−1

{
G(p)

p

}]
=

1− e−RgTs/Lg

Rg
(
z − e−RgTs/Lg

) (7.14)

where z = epTs . For small Rg or small Ts, this can be simplified by series expanding

e−RgTs/Lg about zero:

e−RgTs/Lg ≈ 1− RgTs
Lg

. (7.15)

The quality factor q = ωgLg/Rg = 5 and Ts=0.1 pu, corresponding to a sampling

frequency of 3 kHz, are considered in order to verify this assumption numerically. This

gives

e−ωgTs/q = e−1·0.1/5 = 0.9802, 1− ωgTs
q

= 1− 1 · 0.1
5

= 0.9800 (7.16)

which are clearly in close agreement, so (7.15) can safely be substituted in (7.14):

G(z) ≈
RgTs
Lg

Rg

(
z − 1 + RgTs

Lg

) = 1
z − 1
Ts

Lg +Rg

. (7.17)

This is, not surprisingly, identical to the forward difference approximation [10] of G(p).

We henceforth consider (7.17) as a sufficiently accurate discrete representation of G(p).

Discretization of the Current Decoupling Term

The current decoupling term jω1L̂gig in (7.11) must be converted to discrete form for

a digital implementation. This is, however, not trivial, since a digital decoupling term

cannot perfectly cancel the analog nature of the cross-coupling between id and iq in the

continuous-time domain. The current decoupling is particularly troublesome to achieve

for a deadbeat control system structure, where the low sampling rate in relation to the

large closed-loop bandwidth makes it difficult to approximate ig digitally.

Reference [8] proposed to approximate ig in one sampling period by the following

averaged value:

iaveg,k,k+1 ≈
1

2

(
ig,k+1 + ig,k

)
=
1

2

(
irefg,k + ig,k

)
(7.18)

where the latter equality holds for the one-sample deadbeat controller, i.e., ig,k+1 = irefg,k
ideally. A similar approximation to the above one can be introduced also for the two-

samples deadbeat controller:

iaveg,k,k+2 ≈
1

2

(
ig,k+2 + ig,k

)
=
1

2

(
irefg,k + ig,k

)
. (7.19)
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The discrete form of (7.11) can hence be approximated by

vg,k = v′
g,k + jω1L̂g

irefg,k + ig,k

2
+ Eg,k (7.20)

regardless of whether the current control loop is designed to achieve the current com-

mand in one or two sampling periods

One-Sample Deadbeat Controller

The one-sample deadbeat controller will be designed by means of IMC. Since G(z) is

a first-order system, the controller design should rely on the discrete variant of (6.4).

By using the forward difference method on (6.4), the controller resulting from IMC

becomes

F1(z) =
α

z − 1
Ts

Ĝ−1(z). (7.21)

The closed-loop system can be evaluated in order to deduce what α that corresponds

to the one-sample deadbeat response. For accurate model parameters, the closed-loop

system is

Gc(z) =
F1(z)G(z)

1 + F1(z)G(z)
=

αTs
z − 1 + αTs . (7.22)

Hence, α = 1/Ts represents the one-sample deadbeat response for IMC, since this

bandwidth yields Gc(z) = z
−1. This observation can easily be extended to hold for all

deadbeat controllers resulting from IMC, given that the process model is accurately

discretized by the forward difference approximation. The closed-loop system must then

equal the forward-difference discretized variant of (6.2b):

L(z) =
(αTs)

n

(z − 1 + αTs)n . (7.23)

It can from this equation be concluded that α = 1/Ts always represents the dead-

beat response for IMC. The resulting current settling time depends on the filter order,

however, so the closed-loop deadbeat system for accurate model parameters becomes

Gc(z) = L(z) = z−n.
The sampling frequency and the deadbeat bandwidth are related as

ωs
α
=
2π/Ts
1/Ts

≈ 6.3. (7.24)

This is slightly smaller than the recommended selection ωs ≥ 10α [45, 86], which is

required for good correspondence between the true mixed continuous-time-discrete-time

system and the digital approximation.

By substituting α = 1/Ts in (7.21), the following one-sample deadbeat controller

results:

F1(z) =
Ĝ−1(z)

z − 1 =
L̂g
Ts
+
R̂g
Ts

Ts
z − 1 =

L̂g
Ts
+
R̂g
Ts

Tsz
−1

1− z−1
. (7.25)

The gain parameters in the above equation agree well with the parameters of the one-

sample deadbeat controller in [7], albeit the controller in this reference was derived in

114



7.2. Deadbeat Control and Saturation Strategies

�

� g
�v

( )zG
gi

ref

gi

1( )zF

e
1

z
�

( )z�G

Comp.
delay

Fig. 7.13. Feedback control system structure for the one-sample deadbeat controller in the
presence of computational delay.

a different manner. The deadbeat response essentially originates from the proportional

gain being L̂g/Ts, which was first observed in [107].

As discussed in Section 7.2.1, the one-sample deadbeat controller is only applicable

for delay-free control computers. Consider the feedback control system structure in Fig.

7.13, where the computational delay of the control computer is represented by the block

“z−1.” The delay can be combined with G(z), in order to form the following “delayed”

process model:

G′(z) = z−1G(z) (7.26)

for which the closed-loop system becomes

Gc(z) =
F1(z)G

′(z)
1 + F1(z)G′(z)

=
F1(z)G(z)

z + F1(z)G(z)
=

1

z2 − z + 1 . (7.27)

under the assumption on accurate model parameters. The denominator of Gc(z) has

the following roots (poles of the closed-loop system)

z1,2 =
1

2

(
1± j

√
3
)
= e±jπ/3. (7.28)

Only marginal stability is hence obtained, since z1,2 are located at the unit circle. Con-

sequently, the one-sample deadbeat controller can only be used when the computational

time of the control computer is negligible compared to the sampling period time.

Two-Samples Deadbeat Controller

The two-samples deadbeat controller will be designed by means of IMC for the “delayed”

process model G′(z). Since G′(z) is a second-order system, the controller design must
now rely on (6.5), instead of the previously used (6.4). By discretizing (6.5) with the

forward difference method, the following controller results:

F2(z) =
α2(

z − 1
Ts

)2

+ 2α
z − 1
Ts

Ĝ′−1(z)

=
(αTs)

2

z2 + 2(αTs − 1)z + 1− 2αTs Ĝ
′−1(z).

(7.29)

Substituting the deadbeat bandwidth α = 1/Ts in F2(z) provides the two-samples

deadbeat controller as

F2(z) =
Ĝ′−1(z)

z2 − 1 =
zĜ−1(z)

(z + 1)(z − 1) =
Ĝ−1(z)

(1 + z−1)(z − 1) . (7.30)
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Interestingly, F2(z) is closely related to the one-sample deadbeat controller in (7.25):

F2(z) =
F1(z)

1 + z−1
=

1

1 + z−1

(
L̂g
Ts
+
R̂g
Ts

Tsz
−1

1− z−1

)
. (7.31)

Both the one-sample and the two-samples deadbeat controller can hence be summarized

by the following difference equations:

Ik = Ik−1 + Ts
(
irefg,k−1 − ig,k−1

)
, v′

g,k =
L̂g
Ts
(irefg,k − ig,k

)
+
R̂g
Ts

Ik − lv′
g,k−1 (7.32)

where l = 0 and l = 1 for one-sample and two-samples deadbeat, respectively.

Let us compare (7.31) with the control system structure of the one-sample dead-

beat controller implemented on a “slow” control computer, where the one-sample com-

putational delay is circumvented by the Smith predictor [17, 78]. The underlying prin-

ciple of the Smith predictor can be understood from Fig. 7.14(a): the output of the

“delayed” process model should ideally cancel the true process output ig, such that

only the output of the “non-delayed” process model appears in the feedback path. It

can be observed that Fig. 7.14(a) is similar to the IMC structure in Fig. 6.1. In order

to further study this similarity, Fig. 7.14(a) is rearranged into the “classical” control

structure in Fig. 7.14(b). The “classical” controller Fsp(z) in Fig. 7.14(b) is found to be

Fsp(z) =
F1(z)

1 + F1(z)Ĝ(z)(1− z−1)
=

F1(z)

1 +
1− z−1

z − 1
=

F1(z)

1 + z−1
(7.33)

which is identical to the two-samples deadbeat controller in (7.31), resulting from IMC.

This implies that the Smith predictor control structure and the IMC structure are

completely equivalent, which was first noticed in [23].

The following summarizes the practical implementation of the two-samples dead-
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Fig. 7.15. Implementation of the two-samples deadbeat grid current controller, “D” denotes
the unit-delay operator.

beat design for grid current control:

ek = irefg,k − ig,k (7.34)

Ik = Ik−1 + Ts

[
ek−1 +

1

kp

(
vref
g,k−1 − vref

g,k−1

)]
(7.35)

vg,k = kpek + kiIk − v′
g,k−1︸ ︷︷ ︸

v′
g,k

+jω1L̂g
irefg,k + ig,k

2
+ Eg,k (7.36)

vg,k = PWM(vg,k, θ1) (7.37)

v′
g,k = vref

g,k − jω1L̂g
irefg,k + ig,k

2
− Eg,k (7.38)

where

kp =
L̂g
Ts
, ki =

R̂g
Ts

(7.39)

are the proportional gain and the integration gain, respectively. As seen, back-calcula-

tion is implemented for the integrator part (as described in Section 6.1.2), and the

decoupling and the feedforward terms in (7.20) are added to v′
g. Notice that it is required

to “back-calculate” v′
g,k from the resulting voltage command vector vg,k, in order to

account for voltage saturation. Fig. 7.15 depicts the two-samples deadbeat controller as

a block diagram.

The following trick [6] can be applied in order to slightly improve the transient

response of the two-samples deadbeat controller:

vsg,k = e
j(θ1,k+3Ts/2)vg,k. (7.40)

An additional angle of 3Ts/2 is thus added to θ1,k when transforming the resulting

command vector to the stator-oriented reference frame, where PWM is implemented.

This trick accounts for the phase shift in Esg during the computational delay, and centers

vsg,k in the sampling period following the delay.
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7.2.3 Stability Analysis of the Two-Samples Deadbeat Con-

troller

The following stability analysis considers the closed-loop dynamics that result from

the two-samples deadbeat controller. The analysis is performed for the realistic case of

inaccurate model parameters, so it cannot be assumed that the current cross-coupling

perfectly cancel in the process model, as in (7.13). The stringent analytic treatment

of the current cross-coupling is difficult to achieve, however, since the coupling partly

depends on the accuracy of L̂g, and partly on how well (7.19) approximates ig. It is

here assumed that (7.19) perfectly corresponds to ig in one sampling period, such that

the true continuous-time process and the approximate digital process model are

G(p) =
1

pLg + jω1(Lg − L̂g) +Rg
. (7.41)

G(z) =
1

z − 1
Ts

Lg + jω1(Lg − L̂g) +Rg
. (7.42)

The here studied control system structure is depicted in Fig. 7.16, where F2(z) and

G(z) are given by (7.31) and (7.42), respectively. The closed-loop transfer function

from irefg to ig is

Gc(z) =
F2(z)G

′(z)
1 + F2(z)G′(z)

(7.43)

which has been found to be

Gc(z) =

(
1− L̃g

Lg

)
z − 1 + L̃g

Lg
+
RgTs
Lg

− R̃gTs
Lg

z3 −
(
1− RgTs

Lg
− jω1Ts

L̃g
Lg

)
z2 − L̃g

Lg
z +

L̃g
Lg

− R̃gTs
Lg

− jω1Ts
L̃g
Lg

(7.44)

where

L̃g = Lg − L̂g, R̃g = Rg − R̂g (7.45)

are the model parameter errors. For small Ts, such that terms involving Ts in Gc(z) are

negligible, the process model can be approximated by

Gc(z) ≈

(
1− L̃g

Lg

)
z − 1 + L̃g

Lg

z3 − z2 − L̃g
Lg
z +

L̃g
Lg

=

(z − 1)
(
1− L̃g

Lg

)

(z − 1)
(
z2 − L̃g

Lg

) = 1− L̃g
Lg

z2 − L̃g
Lg

. (7.46)

In consequence of this approximation, the resistive voltage drop and the current cross-

coupling are henceforth neglected.

Let us now study (7.46). As expected, Gc(z) = z−2 for L̃g = 0. Moreover, the

denominator of Gc(z) has the following roots (poles of the closed-loop system)

z1 =

√
L̃g
Lg
, z2 = −

√
L̃g
Lg
. (7.47)
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Fig. 7.16. Feedback control system structure for the two-samples deadbeat controller.

It can be directly seen that the poles are at the origin for L̂g = Lg only, and the

closed-loop dynamics are stable for |L̃g| < Lg, which corresponds to 0 < L̂g < 2Lg.
It is, in this case, necessary to assess the transient response in the continuous-time

domain in order to further analyze the closed-loop dynamics. For this purpose, z2 = −z1
is substituted in (7.46), which is then decomposed into partial fractions:

Gc(z) =
1− L̃g/Lg

(z + z1)(z − z1) =
1

2z1

(
1− L̃g

Lg

)(
1

z − z1 − 1

z + z1

)
. (7.48)

The inverse Z-transform of Gc(z) is found to be

gc,k =
1

2z1

(
1− L̃g

Lg

)[
zk−1
1 − (−z1)k−1

]
=
zk−2
1

2

(
1− L̃g

Lg

)[
1 + (−1)k], k ≥ 1.

(7.49)

Since 1 + (−1)k = 0 for all odd k, gc,k can be rewritten as

gc,k =




0, k = 1, 3, 5, . . .

zk−2
1

(
1− L̃g

Lg

)
, k = 2, 4, 6, . . .

(7.50)

The following conclusions can now be drawn on the closed-loop dynamics resulting from

the two-samples deadbeat controller:

• The poles z1 and z2 are complex valued for L̂g > Lg. As expected, the dynamics
are then poorly damped, which is due to that zk−2

1 in gc,k changes sign for every

other even k.

• Real-valued poles, which are symmetrically placed about the origin, result from
L̂g < Lg. In contrast to what could have been expected from the negative real-

valued pole, the closed-loop dynamics are then well damped. This slightly sur-

prising finding originates, as above shown, from the oscillatory response of the

negative pole, (−1)k, being canceled by the positive pole for all odd k.

• The step response of ig is given by the convolution of the unit step and gc, which
on recursive form becomes

ig,k = ig,k−1 + gc,k, k ≥ 0, ig,0 = 0. (7.51)
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On condition that irefg = j for k ≥ 0, the “initial” response in iq at k = 2 then

becomes

iq,2 =
z2−2
1

2

(
1− L̃g

Lg

)[
1 + (−1)2] = 1− L̃g

Lg
(7.52)

which can be seen to be directly related to L̃g. The two-samples deadbeat response

results for L̂g = Lg, while L̂g = 1.4Lg, for instance, results in an initial overshoot:

iq,2 = 1.4 pu.

• The true filter inductance should, unless it can be “perfectly” modeled, preferably
be underestimated by L̂g, since this choice provides well-damped dynamics. Poor

damping easily results for L̂g > Lg, as will be shown in the analysis that now

follows.

Correspondence Between Damping in the Continuous-Time and

Discrete-Time Domains

Fig. 7.17 shows the pole locus of (7.46) for −Lg ≤ L̃g ≤ Lg. As above discussed,

the closed-loop dynamics are poorly damped for complex-valued poles only, while real-

valued poles provide good damping. The shaded region in the figure corresponds to

poles within 45◦ relative the negative real axis in the continuous-time domain. As seen,
complex-valued z1,2 are easily located outside this well-damped region; there is “little

room” for parameters errors. This graphical observation will now be verified analytically.

Consider poles at 45◦ relative the negative real axis in the continuous-time domain:

p1,2 = −σ(1± j), σ > 0. (7.53)

which are related to the digital poles as z1,2 = e
p1,2Ts . Solving the imaginary part and

the real part of this relation for σ and L̃g, respectively, gives

σ =
1

Ts

(π
2
+ nπ
)
, n = 0, 1, 2, . . . (7.54)

L̃g = −e−(1+2n)πLg. (7.55)
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Fig. 7.17. Pole locus for −Lg ≤ L̃g ≤ Lg. The shaded region represents poles within 45◦

relative the negative real axis in the continuous-time domain, the dashed line is the unit circle.

120



7.2. Deadbeat Control and Saturation Strategies

Multiple solutions appear for L̃g, but we are interested in the maximum |L̃g| that results
for n = 0:

L̃g = −e−πLg ≈ −0.04Lg. (7.56)

The parameter Lg should hence not be overestimated by no more than 4 % for poles

within 45◦ relative the negative real axis. According to (7.50), this corresponds to an
initial overshoot of 4 % in the current step response.

The parameter sensitivity of the deadbeat controller is not critical when the grid

is stiff, such that the grid filter constitute the open-loop current dynamics. Then, the

grid inductance can be neglected, and Lg equals the easily measurable filter induc-

tance. Problems may arise, however, for operation towards a weak grid, where the grid

inductance is not negligible and not easily modeled.

Simulation Results

This section presents simulation results of the two-samples deadbeat controller for grid

current control. Particularly, the simulated step response in the continuous-time domain

is compared to the discrete-time step response, which is described by (7.51).

The simulation parameters are Ts = 0.1 pu, R̂g = 0.9Rg and, except where ex-

plicitly stated, vdc =
√
3(1 + 1.4) = 4.2 pu. The fairly large dc voltage, see Appendix

A for details on the per-unit system, avoids voltage saturation for the continuous step

response. The influence from voltage saturation is instead studied in one separate sim-

ulation.

Fig. 7.18 shows the simulated step responses for discrete-time and continuous-time

models. It can be seen that the models agree well. The step response for L̂g = 0.6Lg in

Fig. 7.18(a) is, as predicted, well damped, while the overestimated filter inductance in

Fig. 7.18(b) provides an oscillatory response.

Fig. 7.19(a) shows the simulated step response for L̂g ≈ Lg, which yields the ideal
two-samples deadbeat behavior.

The simulations in Fig. 7.19(b) are made under similar conditions as in Fig.

7.18(b), but the dc voltage is now chosen to a smaller value. The smaller dc volt-

age results in voltage saturation for the continuous-time model, while the discrete-time

model here studied does not consider saturation. For voltage saturation, a PWM recti-

fier can no longer deliver the large voltage modulus that is required to attain the initial

oscillatory transients that would have been present in the unsaturated step response.

Consequently, large current steps that force the PWM rectifier into voltage saturation

tend to be better damped for the two-samples deadbeat controller than expected, as

seen in Fig. 7.19(b).

7.2.4 Overmodulation and Saturation

Fig. 7.20 shows the eight realizable voltage vectors for a three-phase PWM converter.

The PWM converter is capable of delivering voltage vectors within a voltage hexagon

that is spanned by the six active voltage vectors. Linear modulation is possible up to

the radius of the maximum circle that can be fitted within the hexagon. Control in the
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Fig. 7.18. Comparison of discrete-time (solid) and continuous-time (dashed) step responses;
irefq is stepped from 0 to 1 pu at t=0. (a) L̂g = 0.6Lg, vdc = 4.2 pu. (b) L̂g = 1.4Lg, vdc = 4.2
pu.
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Fig. 7.19. Comparison of discrete-time (solid) and continuous-time (dashed) step responses;
irefq is stepped from 0 to 1 pu at t=0. (a) L̂g = Lg, vdc = 4.2 pu. (b) L̂g = 1.4Lg, vdc = 2.4 pu.
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range of 0.91 < m < 1 [59], i.e., the region outside the circle but within the hexagon, is

possible but results in low-frequency current harmonics. However, control in this region,

often referred to as the overmodulation region, may be preferable in order to enhance

the transient response of the current control loop. The maximum realizable voltage

modulus is obtained at the hexagon boundary, which results in the six-step operation

mode [59].

For large steps in the reference current, the vector-current controller may demand

for a voltage vector outside the hexagon. This exceeds the maximum realizable voltage

modulus for a PWM converter, and leads therefore to voltage saturation. Voltage sat-

uration is particularly likely to occur for a positive step in the q-axis current, since the

back EMF of an ac machine, or the grid voltage vector, is aligned with the q axis.

7.2.5 Limiting Command Voltage Vector

To maintain a proper current control, it is necessary to detect and appropriately limit

command voltage vectors that exceed the maximum realizable voltage modulus of a

PWM converter. Geometrically, only command voltage vectors that are located within

the above described voltage hexagon can be achieved. The transient behavior of the

current control loop partly depends on how the command voltage vector is limited.

This section will present a review of methods for limiting a command voltage vector

outside the voltage hexagon of a PWM rectifier.

Detecting Voltage Saturation

Voltage saturation can be detected by transforming the command voltage vector vref
g

to the xy-coordinate system, presented in Fig. 7.20. The transformation between the

synchronous reference frame and the xy-coordinate system becomes

vxy,refg = vref
g e

j(θ1−θxy) (7.57)

where θxy is the angle between the α-axis and the x-axis, defined by

θxy =
(
1 + 2(n− 1)

)π
6

(7.58)
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Fig. 7.20. Eight realizable voltage vector of three-phase PWM converter.
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Fig. 7.21. (a) Principle of the CL. (b) Principle of the MVAE.

and n is the sector where vs,refg is located. The real axis of the xy-coordinate system

is always located in between two active voltage vectors in each sector. The maximum

realizable voltage vector is, therefore, readily defined by vmax
x = vdc/

√
3 and vmax

y = vdc/3

from the perspective of the xy-system. This can be deduced from Fig. 7.20, where the

xy-coordinate system happens to be located in the third sector. A command voltage

vector outside the hexagon, i.e., voltage saturation, is detected from

vxy,refx >
vdc√
3
. (7.59)

Once voltage saturation has been detected, the command voltage vector vref
g should be

modified, such that it is precisely located on the boundary of the voltage hexagon.

Circular Limit Method

The circular limit (CL) method chooses the largest voltage vector on the maximum

circle within the hexagon that is oriented in the same direction as the original command

voltage vector, as shown in Fig. 7.21(a). Thus, sinusoidal voltages are ensured at all

times. The CL method is activated if the following condition is true:

|vref
g | > vdc√

3
(7.60)

and the modified voltage vector is given by

vref
g =

vdcv
ref
g√

3|vref
g | . (7.61)

Unfortunately, the transient behavior of the CL method will be rather sluggish, since

it does not make use of the available voltage in the overmodulation region.

Minimum Voltage Amplitude Error Method

The minimum voltage amplitude error (MVAE) limit method chooses the voltage vec-

tor on the hexagon boundary that is located nearest the original command voltage

vector, such that the voltage amplitude error is maintained at a minimum, as shown

in Fig. 7.21(b). In the xy-coordinate system, the components of the modified command
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voltage vector become

vref
x =

vdc√
3

(7.62)

vref
y =



vref
y , |vref

y | < vdc
3

vdc
3
sign(vref

y ), |vref
y | ≥ vdc

3
.

(7.63)

The modified command voltage vector,

vxy,refg = vref
x + jvref

y (7.64)

is then transformed to the synchronous reference frame:

vref
g = ej(θxy−θ1)vxy,refg . (7.65)

Minimum Voltage Phase Error Method

The minimum voltage phase error (MVPE) limit method chooses the voltage vector on

the hexagon boundary that is oriented in the same direction as the original command

voltage vector, as shown in Fig. 7.22. The modified voltage vector components can be

determined by using simple geometry as

vref
x =

vdc√
3
, vref

y =
vref
x

vref
x

vref
y . (7.66)

The modified command voltage vector is then transformed to the synchronous reference

frame, in a similar manner as for the MVAE method.

Minimum Current Phase Error Method

The minimum current phase error (MCPE) method was first presented in [25]. Fig. 7.23

shows the principle of the MCPE method. When a command voltage vector outside the

hexagon has been detected, the MCPE considers the current dynamics and the hexagon

boundary, and attempts to force the current vector to move in the same direction as

intended by the vector-current controller. Consequently, the minimum current phase

error results, which minimizes the cross-coupling between the d- and the q-axis currents,

as will be shown.

In Fig. 7.23, Ee is the voltage vector demanded by the current controller excluding

the proportional term and v′
g, given by

Ee,k = kiIk + jω1L̂g
irefg,k + ig,k

2
+ Eg,k (7.67)
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which is dominated by Eg,k, and vp is

vxyp,k = e
j(θ1,k−θxy,k)(kpek − v′

g,k−1). (7.68)

The MCPE chooses the components of the modified command voltage vector by using

simple geometry in Fig. 7.23

v′p,x = v
ref
x − vdc√

3
, v′p,y =

vp,y
vp,x

v′p,x (7.69)

vref
x =

vdc√
3
, vref

y = vref
y − v′p,y (7.70)

where all expressions are given in the xy-reference frame.

dq-Axis Cross-Coupling Method

The dq-axis cross-coupling (DQCC) method was presented in [27] as a simplified version

of the “minimum time current control,” presented in [26]. The DQCC is not a command

voltage vector limiting method, but a method to enhance the response to q current steps.

The dynamics of the q-axis current in the synchronous reference frame are

diq
dt
=
1

Lg

(
vq − Eq

)
− Rg
Lg
iq − ω1id. (7.71)

Normally, a reference step of the q-axis current is handled by the q-axis voltage vq.

According to (7.71), though, the response of the q-axis current can be slightly enhanced

by utilizing the cross-coupling of the d-axis current. It was proposed by [27] that the

d-axis reference current would be modified to

irefd = iq − irefq + irefd . (7.72)

Furthermore, the resulting d current should be limited to

max{irefd } =
√
|ig|2max − i2q (7.73)

where |ig|max maximum grid current modulus allowed.
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7.2.6 Experimental Results

This section will demonstrate experimental results of the redesigned deadbeat vector-

current controller. The system parameters are shown in Table 7.3, the voltage and the

current base values are Ub = 400 V and Ib = 35 A, respectively, and the impedance of

the utility grid is negligible, i.e., the grid is stiff.

The positive reference current steps are triggered when Esg = Eg + j0. The mea-

surements have been performed for a step in the reference d current with constant

reference q current, and vice versa. The current reference is stepped from –0.5 pu to

0.5 pu at t = 0, and from 0.5 pu to –0.5 pu at t = 10 ms. The signal “sat” indicates

voltage saturation in the following graphs.

TABLE 7.3
Parameters of the system

Eg ωg fs = fsw Lg=L̂g Rg=R̂g vdc

1.0 pu 2π50 rad/s 6.0 kHz 0.071 pu 0.012 pu 2.0 pu

Steps in Reference q Current

The experimental results in Figs. 7.24–7.28 show the reference q current step responses

of the investigated vector-current controller, for various voltage limiting methods.

Fig. 7.24 shows the response of the vector-current controller using the CL method.

The transient behavior for the q current is rather sluggish for the positive step, since

the available voltage in the overmodulation region is not used.

Fig. 7.25 shows the response of the vector-current controller using the MVAE

method. The current response is faster compared to the CL method, but there is a dip

in the d current.

Fig. 7.26 shows the response of the vector-current controller using the MVPE.

The response is approximately as fast as when using the MVAE method, and the d

current is almost constant during the step.

Fig. 7.27 shows the response using the vector-current controller and the MCPE

method. The result is almost identical to the MVPE.

Fig. 7.28 shows the response using the vector-current controller and the DQCC.

The response is slightly faster compared to the MVAE, the MVPE method, and the

MCPE method, but at the expense of a huge dip in the d current. This dip is intended,

though, since it speeds up the step response slightly.

For comparison, Fig. 7.29 shows the response of the original deadbeat vector-

current controller that was used for the previous experiments on active power filtering.

The response is rather sluggish, there is a dip in the d current, and the q current

overshoots due to integrator windup.
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Fig. 7.24. The vector-current controller and the CL, with i∗q = irefq ; steps in iq.
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Fig. 7.25. Vector-current controller and the MVAE; steps in iq.
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Fig. 7.26. Vector-current controller and the MVPE; steps in iq.
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Fig. 7.27. Vector-current controller and the MCPE; steps in iq.
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Fig. 7.28. Vector-current controller and the DQCC; steps in iq.
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Fig. 7.29. Original deadbeat vector-current controller and the MVAE; steps in iq.
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Steps in Reference d-Current

The experimental results in Figs. 7.30–7.32 show the reference d current step responses

using the MVAE, the MVPE and the MCPE methods. There is more “available” volt-

age in the d direction, due to that the grid voltage vector is aligned with the q axis.

Consequently, voltage saturation is less severe for the d current steps. The current

cross-coupling differs between the different limiting methods. The MCPE method has

the lowest cross-coupling, i.e., the minimum current phase error for the d current step.
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Fig. 7.30. Vector-current controller and the MVAE, with i∗d = irefd ; steps in id.
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Fig. 7.31. Vector-current controller and the MVPE; steps in id.

-0.6

-0.4
-0.2

0

0.2
0.4

0.6

0 2 4 6 8 10 12
(b) Time (ms)

id*

i
,i

(p
u)

d
q iq

id

sat

S
at

ur
at

io
n

0

1

Fig. 7.32. Vector-current controller and the MCPE; steps in id.

7.2.7 Summary

This section has investigated a deadbeat vector-current controller that is designed to

handle voltage saturation. It was shown the two-samples deadbeat controller is equiv-

alent to previously presented Smith predictor structures. A significant improvement is

obtained compared to the deadbeat current controller that was used for active filtering.

Various methods for limiting the command voltage vector were investigated. Only

the MCPE yields a constant q-axis current during the reference step in the d-axis

current, which makes the MCPE suitable for an active power filter. There are only

minor differences between the different limiting methods for the positive q current steps,
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with the exception of the sluggish response of the CL method. Many applications will

therefore perform well, regardless of the voltage limiting method used. Unless d current

steps occur frequently, the MVPE method can be recommended, since it allows for a

simple implementation.

131



Chapter 7. Active Power Filtering and Deadbeat Current Control

132



Chapter 8

Conclusion

8.1 Summary

In this thesis, control of the back-to-back converter sensorless induction machine drive

was studied. Particularly, sensorless control of the induction machine, meaning vector

control without a mechanical shaft sensor, and vector control of the PWM rectifier

were considered. It can be concluded that the converter topology is very well suited for

high-performance applications, particularly for those that benefit from four-quadrant

operation. It is also fully possible to exploit the fully controlled grid current of the

PWM rectifier to improve local power quality.

The following summarizes the most important conclusions from Chapter 3 regard-

ing sensorless control of the induction machine:

• The SCVM was redesigned, such that arbitrarily placement of the closed-loop

poles was enabled.

• The resulting dynamics from the SCVM were thoroughly analyzed. For accurate

model parameters, stability at nominal speeds were shown, while only small ma-

chines were found to be stable at low speeds. For inaccurate model parameters,

the stability at very low frequencies was found to be greatly dependent on the

accuracy of the modeled stator resistance. The presence of a singularity for zero

stator frequency makes it impossible to guarantee stable low-frequency operation

for the SCVM, except for the case of zero external load torque or if the stator

resistance is perfectly known.

• The underlying mechanisms behind instability for sensorless control were revealed,
of which flux collapse was the most critical instability phenomena, resulting in

total failure for a speed-sensorless induction machine.

• Recommendable choices for model parameters selections were given. These rec-
ommendations cannot avoid instability, only avoid the critical flux collapse.

• Simple parameter selection rules were derived for the SCVM, such that trial-and-
error tuning of the estimator is eliminated.
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The following summarizes the most important conclusions from Chapters 5–7 regarding

the PWM rectifier:

• In Chapter 5, three grid-flux estimators were analyzed, of which two estimators
were designed in this chapter. The MCVM was proven to be very robust against

the grid voltage harmonics, albeit less suitable for island operation. For such

operation, the PLL-type estimator can instead be recommended.

• In Chapter 6, a control system structure for the PWM rectifier was designed,

consisting of an inner vector current control loop and an outer loop for dc volt-

age control. Analyses and simulations showed that the designed control system

structure is well suited for normal operation, but large grid voltage disturbances

are fairly poorly rejected.

• In Chapter 7, deadbeat current control for active power filtering at a low switching
frequency was studied. The stability and the parameter sensitivity for the two-

samples deadbeat controller were assessed, and the controller was found to be

equivalent to previously proposed Smith predictor control structures.

For all three mentioned chapters concerning the PWM rectifier, simple controller and

estimator parameter selection rules were derived.

8.2 Future Research

The following topics are considered suitable for future research:

• Find a speed-sensorless flux estimator that is less sensitive to Rs. Can the reactive
power model in [47] be merged with the SCVM to form a stable sensorless flux

estimator that does not require knowledge of the stator resistance? Control algo-

rithms for minimizing the time spent in the low-frequency region, as in [31, 76],

are also of interest.

• Verify the conclusions for the PWM rectifier in Chapters 5–6 experimentally.

• Analyze the impact from grid voltage disturbances and load unsymmetrics on the
grid current of the PWM rectifier.

• Improve the rejection of grid voltage disturbances for the PWM rectifier.

• Study the PWM rectifier connected to a weak grid, using a more advanced grid

filter topology than considered in this thesis.
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Appendix A

Per-Unit System

Table A.1 defines base values of the per-unit system that is used in the present thesis.

This system is for a machine with rated phase-to-phase voltage
√
3Vn, rated current In,

rated electric angular frequency ωn, and np pole pairs.

The nominal stator flux linkage is 1 pu, but the nominal rotor flux is slightly smaller.

TABLE A.1
Base values of the per-unit system

Quantity Base value

Base voltage, Ub Vn

Base dc voltage, Udc,b
√
2Vn

Base current, Ib In

Base angular frequency, ωb ωn

Base flux linkage, ψb
Vn
ωn

Base power, Pb, Qb, Sb VnIn

Base torque, Tb
VnIn
ωn

Base impedance, Zb
Vn
In

Base dc conductance, Gdc,b
In
2Vn

Base inertia, Jb
VnIn
ω3
n

Base viscous friction, bb
VnIn
ω2
n

Base time, tb
1
ωn
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The parameters of the test machine are considered for the following no-load calculation:

ψR,n =
LM

LM + Lσ
ψn =

2.8

2.8 + 0.2
· 1 ≈ 0.93 pu (A.1)

which demonstrates that the nominal rotor flux is less than 1 pu.

It is believed that the definitions of the base power and the base torque in Ta-

ble A.1 are not commonly used. The motivation for using these definitions is that they

allow to use the same formulas for torque and power, i.e., Te = 3np Im{ψ∗
Ris} and

Ps = 3Re{usi∗s}, for both the SI system and the per-unit system. However, nominal

torque and nominal power will not, by far, correspond to 1 pu. Instead, the nominal

torque and the nominal power correspond to approximately 2.6np pu and 2.6 pu, re-

spectively, using this per-unit system. For instance, with ψR = 0.9 pu and LM = 2.8 pu

(giving id ≈ 0.3 pu), the nominal torque becomes

Te,n = 3npψR

√
1− i2d = 3np · 0.9 ·

√
1− 0.32 ≈ 2.6np pu. (A.2)

The definitions for Jb and bb have little physical relevance, as they are merely quantities

that are obtained when normalizing the equation of motion

J

np

dωr
dt

= Te − Tl − b

np
ωr (A.3)

with the base torque and the base frequency, giving

J

np

ω2
b

VnIn
ωb

d

(
ωr
ωb

)
d(ωbt)

=
Te − Tl
VnIn
ωb

− b

np

ωb
VnIn
ωb

ωr
ωb

(A.4)

which can be considered as the per-unit equation of motion:

Jpu

np

dωr,pu

dtpu
= Te,pu − Tl,pu − bpu

np
ωr,pu. (A.5)

From (A.4) and (A.5), the inertia and the viscous friction base values become

Jb � VnIn
ω3
b

, bb � VnIn
ω2
b

. (A.6)

All angles, such as the rotor position θr, are the same in the per-unit and in the SI

system:

ωr =
dθr
dt

⇔ ωr
ωb
=

dθr
d(ωbt)

⇔ ωr,pu =
dθr
dtpu

. (A.7)

The dc voltage of the back-to-back converter must at least be vdc,min =
√
3 ≈ 1.7 pu,

in order to deliver a phase voltage of 1 pu. This minimal dc voltage equals vdc,min =√
3Udc,b =

√
6Vn in the SI system, which is identical to the peak value of the phase-to-

phase voltage.
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The definition of the base value for the dc conductance, Gb, results when normal-

izing the dc voltage dynamics (4.11):

1

2
Cωb2V

2
n

d

(
v2
dc

2V 2
n

)
d(ωbt)

= −
(
Pg
VnIn

+
Ps
VnIn

)
VnIn (A.8)

⇒ 1

2
Cpu

d(v2
dc,pu)

dtpu

= −Pg,pu − Ps,pu (A.9)

where

Gdc,b � In
2Vn

, Cpu =
ωbC

Gdc,b
. (A.10)

137



Appendix A. Per-Unit System

138



Appendix B

Induction Machine Data

The induction machine that is used in the simulation and experimental parts of this

thesis (the “test machine”) is a wound-rotor induction machine of type ASEA MAG

180L 55-4. This machine is operated as an ordinary vector controlled squirrel-cage

induction machine, which means that the PWM inverter is connected to the stator

terminal, the rotor terminal is short-circuited, and the measurable rotor currents are

not used in the control algorithms.

The rated values of the machine are given in Table B.1, where the machine pa-

rameters are given as defined by the inverse-Γ model [102]. The stator resistance is

determined from a conventional dc test on a “cold” machine.

The induction machine is loaded by a separately excited dc machine. The inertia

of the dc machine has been estimated to 0.6 kg·m2, so the total inertia of the two

machines becomes 0.93 kg·m2, or 2800 pu.

TABLE B.1
Rated values of the induction machine

Connection Y

Voltage,
√
3Vn 400 V

Current, In 44 A

Angular frequency, ωn 2π50 rad/s

Power 22 kW

Power factor 0.89

Rotor speed (mechanical) 1440 r/min

Torque 150 N·m
Machine parameters (cold machine at 50 Hz):

Rotor resistance, RR 0.18 Ω, 0.034 pu

Stator resistance, Rs 0.12 Ω, 0.023 pu

Leakage inductance, Lσ 3.5 mH, 0.21 pu

Magnetizing inductance, LM 47 mH, 2.8 pu

Rotor inertia, J 0.33 kg·m2, 1000 pu
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Appendix C

Glossary of Symbols, Subscripts,

Superscripts and Abbreviations

Symbols:

A system matrix

b viscous friction constant

B input matrix

C dc-link capacitance or (less common) output matrix

D unit-delay operator

e, e real-valued and complex-valued control error

Ef , Ef flux EMF modulus and space vector

Eg, Eg grid voltage modulus and space vector

fs, fsw sampling and switching frequency

F , F real-valued and complex-valued controller

G, G real-valued and complex-valued process

Gc, Gc real-valued and complex-valued closed-loop transfer function

Ga active conductance

H transfer function

ig, ig grid current modulus and space vector

is, is stator current modulus and space vector

I identity matrix

j
√−1

J inertia

k coefficient or (less common) sampling instant at t = kTs
kp proportional gain

ki integration gain

L inductance

L Laplace transform

np number of pole pairs

p d/dt

P instantaneous active power

Q instantaneous reactive power

R resistance
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Ra active resistance

t time

tr time constant

S instantaneous apparent power

T , T0 temperature

Ts sampling period

Te instantaneous electro-mechanical torque

Tl load torque disturbance

Tp period time

vg, vg terminal voltage of the PWM rectifier: modulus and space vector

vs, vs stator voltage modulus and space vector

vdc dc-link voltage

W v2
dc

z epTs

Z z transform

α bandwidth

ε error signal for phase-locked loop

ψg, ψg grid flux modulus and space vector

ψR, ψR rotor flux modulus and space vector

λ, µ, γ, ρ gain parameters of flux estimators, normally the SCVM

θ true rotor flux angle

θg true grid flux angle

θ1 angle of the synchronous reference frame

θ̃ error angle, θ̃ = θ − θ1 or θ̃ = θg − θ1
ω1 synchronous (excitation) frequency

ωg grid frequency

ωr electrical rotor speed

Ω discrete-time frequency

ξ denotes a relative quantity

φ phase shift

ˆ estimated

˜ error

modified, resulting

Subscripts:

a active damping

b base value

c current

d real part in the synchronous reference frame

e electro-mechanical

g grid

k sampling instant at t = kTs
L load

M mutual, inverse-Γ model

n nominal
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(n) harmonic order

q imaginary part in the synchronous reference frame

r rotor

R rotor, inverse-Γ model

s stator or (less common) speed

α real part in the stator-orientated reference frame

β imaginary part in the stator-orientated reference frame

σ leakage, inverse-Γ model

Superscripts:

R rotor-flux-oriented reference frame

s stator-oriented reference frame

∗ complex conjugate

A equilibrium point

+, − positive and negative sequence

Space vectors without superscripts are given in the synchronous

reference frame.

Abbreviations:

ac alternating current

AF active filter

ASD adjustable speed drive

CM current model

D direct method

DP direct method with phase shift compensation

dc direct current

det determinant

DFO direct field orientation

EMF electromotive force

F Fourier method

IFO indirect field orientation

Im imaginary

IM induction machine

max maximum

MCVM modified compensated voltage model

min minimal

nom nominal

PCC point of common connection

PI proportional plus integral

PLL phase-locked loop

pu per unit

PWM pulsewidth modulation, pulsewidth modulated

Re real

ref reference

sat voltage saturation
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SCVM statically compensated voltage model

T transformation method

VM voltage model
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Errata
to

“On Control of Back-to-Back Converters

and Sensorless Induction Machine Drives”

by Rolf Ottersten

• Chapter 1 (Page 1)

The first line of the page reads “...are nowadays used various kinds of kinds industrial...,”

however, it should read “...are nowadays used in various kinds of industrial...”

• Chapter 3 (Page 35)

The first two lines on page 35 read “...derivative of k2 with respect to ω1 is 2(1+ρRR/LM),

which is positive for ρ > −LM/RR. Therefore, k2 has a global minimum when.” They

should read “...derivative of ξ with respect to ω1 is 2(1 + ρRR/LM), which is positive for

ρ > −LM/RR. Therefore, ξ has a global minimum when.”

• Chapter 3 (Page 23)

The eigth line (from the top) reads “...dynamics resulting from the SCVM are asymptot-

ically stable for small machines.” It should read “...dynamics resulting from the SCVM

are asymptotically stable for small machines, given accurate model parameters.”

• Chapter 3 (Page 38)

In Fig. 3.3(a), the direction of the rotor MMF and q-axis stator current in the rotor-

flux-oriented reference frame coincide. For correctness, the rotor MMF should oppose the

q-axis current, even though this not affect the discussion of the instability phenomenon.

• Chapter 4 (Page 60)

The third line (from the bottom) reads “...and filters that are tuned for resonance at

multiples of the switching frequency [110].” It should read “...and damped LC filters

[110].”

• Chapter 4 (Page 66)

The line that precedes (4.23) reads “...by substituting ψ̂s
g = ψ̂ge

jθ1...,” however, it should

read “...by substituting ψ̂s
g = ψ̂ge

jθ1...”

• Chapter 6 (Page 95)

Eq. (6.65) reads

irefq = kpes + kiIs +Baω̂r.

It should read

irefq = kpes + kiIs −Baω̂r.



• Chapter 7 (Page 117)

Eq. (7.38) reads

v′

g,k = vref

g,k − jω1L̂g

irefg,k + ig,k

2
− Eg,k.

It should read

v′

g,k = vg,k − jω1L̂g

irefg,k + ig,k

2
− Eg,k.

• Appendix B (Page 139)

It reads on line 7 (from the top) “...are given in Table B.1 on the next page, where the

machine...” This line should read “...are given in Table B.1, where the machine...”

• Appendix C (Page 143)

The following two abbreviations should be included in the list:

ave average

IMC internal model control
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