Design of arch bridges using non-linear analysis

Master’s Thesis in the International Master’s Programme Structural Engineering

EDINA SMLATIC AND MARCELL TENGELIN

Department of Civil and Environmental Engineering
Division of Structural Engineering
Concrete Structures
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Design of arch bridges using non-linear analysis

Master’s Thesis in the International Master’s Programme Structural Engineering

EDINA SMLATIC AND MARCELL TENGELIN

Department of Civil and Environmental Engineering
Division of Structural Engineering
Concrete Structures
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2005
Design of arch bridges using non-linear analysis

Master’s Thesis in the International Master’s Programme Structural Engineering
EDINA SMLATIC AND MARCELL TENGELIN

© EDINA SMLATIC AND MARCELL TENGELIN, 2005

Master’s Thesis 2005:37
Department of Civil and Environmental Engineering
Division of Structural Engineering
Concrete Structures
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Cover:
The Munkedal Bridge

Reproservice / Department of Civil and Environmental Engineering
Göteborg, Sweden 2005
ABSTRACT

During the process of concrete structures, linear analysis is used to obtain the cross-sectional forces and moments. This method gives, in some cases, an overestimation of the amount of material needed, such as the reinforcement amount. In order to optimize the design of the structure, non-linear structural analysis can be used.

The purpose of the thesis was to show the economical potential of using non-linear analysis as a design method for bridge design. The benefit can, in most cases, be seen for slender and compressed concrete structures. In this Master’s project the arch of the Munkedal Bridge was used as an example.

The study was performed in two steps: linear analysis and non-linear analysis. The amount of reinforcement needed was first calculated using linear analysis according to the Boverket (2004), Engström (2001) and Handboken Bygg (1985). The reinforcement amount obtained was then reduced using non-linear analysis by iteratively updating of the cross-sectional constants I_{ekv}, A_{ekv} and x_{yp}. The original cross-section of the arch was redesigned from a box girder section to a solid beam, in order to get a cross-section that would crack and, consequently, require bending reinforcement.

The results from linear analysis and non-linear analysis were compared in order to determine if the economical profit was obtained. It was observed that with use of non-linear analysis, the amount of reinforcement could be reduced with at least 20 % in the cross-sections with more than minimum reinforcement. The overall reduction for the whole arch was estimated to be about 17 %. Since the material dimensions were reduced so does the economical cost, in this case, the cost of reinforcement, decreases.

It was concluded that the use of non-linear analysis in the design process is economical for slender and compressed concrete structures that has a need for reinforcement, if the reinforcement amount is large.

Key words: linear analysis, non-linear analysis, arch bridge design, reinforced concrete.
Dimensionering av bågbroar med icke-linjär analys
Examensarbete inom Internationella Masters Programmet Structural Engineering
EDINA SMLATIC OCH MARCELL TENGELIN
Institutionen för bygg- och miljöteknik
Avdelningen för Konstruktionssteknik
Betonbyggnad
Chalmers tekniska högskola

SAMMANFATTNING

Vid dimensionering av betongkonstruktioner används linjär analys för att bestämma snittkrafter och -moment. Denna metod kan, i vissa fall, leda till överdimensionering, t ex av armeringsmängden. För att optimera konstruktionens dimensioner, kan icke-linjär analys användas vid systemberäkning.

Syftet med detta examensarbete var att visa att användning av icke-linjär analys som dimensioneringsmetod kan leda till ekonomiska besparingar. Vinsten med metoden framkommer som regel för slanka och tryckta betongkonstruktioner. I detta examensarbete användes Munkedalsbrons båge som exempel.

Resultaten från de båda analyserna jämfördes för att se om det var möjligt att åstadkomma några besparingar av armeringsmängden. Det observerades att med användning av icke-linjär analys kunde armeringsmängden reduceras med åtminstone 20 % för de tvärnitt som krävde mer än minimiarmering. Den totala minskningen i hela bågen uppskattades till ca 17 %. Eftersom armeringsmängden reducerades, reduceras följaktligen även kostnaden för projektet.

Slutsatsen drogs att användning av icke-linjär analys under dimensioneringsskedet är ekonomisk för slanka och tryckta betongkonstruktioner som har behov av armering, om den erfordrade armeringsmängden är stor.

Nyckelord: linjär analys, icke-linjär analys, bågbroar, armerad betong, betongkonstruktioner.
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Calculation method for the box girder cross-section</td>
<td>14</td>
</tr>
<tr>
<td>5.2.2 Calculation method for the solid cross-section</td>
<td>16</td>
</tr>
<tr>
<td>5.2.3 Check of the designed cross-section</td>
<td>19</td>
</tr>
<tr>
<td>5.3 Results from linear analysis</td>
<td>20</td>
</tr>
<tr>
<td>5.3.1 Original box girder cross-section</td>
<td>20</td>
</tr>
<tr>
<td>5.3.2 Reduced height of the box girder cross-section, variable height</td>
<td>22</td>
</tr>
<tr>
<td>5.3.3 Reduced height of the box girder cross-section, constant height</td>
<td>23</td>
</tr>
<tr>
<td>5.3.4 Solid beam section</td>
<td>23</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>25</td>
</tr>
<tr>
<td>6.2 Methodology</td>
<td>25</td>
</tr>
<tr>
<td>6.3 Approximations</td>
<td>27</td>
</tr>
<tr>
<td>6.4 Calculation of the cross-sectional constants, state II</td>
<td>27</td>
</tr>
<tr>
<td>6.4.1 Calculation of the depth of the compressive zone, x</td>
<td>27</td>
</tr>
<tr>
<td>6.4.2 Calculation of the equivalent area, A_{ekv}</td>
<td>29</td>
</tr>
<tr>
<td>6.4.3 Calculation of the gravity centre of the transformed section, x_{tp}</td>
<td>29</td>
</tr>
<tr>
<td>6.4.4 Calculation of the moment of inertia of the transformed section, I_{ekv}</td>
<td>30</td>
</tr>
<tr>
<td>6.5 Iteration results</td>
<td>30</td>
</tr>
<tr>
<td>6.5.1 Iteration zero</td>
<td>30</td>
</tr>
<tr>
<td>6.5.2 First iteration</td>
<td>32</td>
</tr>
<tr>
<td>6.5.3 Final iteration</td>
<td>33</td>
</tr>
<tr>
<td>6.5.4 Comments on the iterations</td>
<td>34</td>
</tr>
<tr>
<td>7 RESULTS AND DISCUSSION</td>
<td>35</td>
</tr>
<tr>
<td>8 CONCLUSIONS</td>
<td>37</td>
</tr>
<tr>
<td>9 REFERENCES</td>
<td>38</td>
</tr>
<tr>
<td>APPENDIX A: PERMANENT LOAD CALCULATIONS</td>
<td>A:1</td>
</tr>
<tr>
<td>APPENDIX B: TRAFFIC LOAD CALCULATIONS</td>
<td>B:1</td>
</tr>
<tr>
<td>APPENDIX C: LINEAR ANALYSIS</td>
<td>C:1</td>
</tr>
<tr>
<td>C1: Original box girder cross-section</td>
<td>C:2</td>
</tr>
<tr>
<td>C2: Calculations for the solid beam section</td>
<td>C:19</td>
</tr>
<tr>
<td>C3: Compilation of the results for the different cross-sections</td>
<td>C:50</td>
</tr>
<tr>
<td>APPENDIX D: NON-LINEAR ANALYSIS</td>
<td>D:1</td>
</tr>
<tr>
<td>D1: Iteration one, calculations and results from the Strip Step 2</td>
<td>D:2</td>
</tr>
<tr>
<td>D2: Iteration five, calculations and results from the Strip Step 2</td>
<td>D:26</td>
</tr>
<tr>
<td>D3: Compilation of the results from the iterations</td>
<td>D:53</td>
</tr>
</tbody>
</table>
Preface

This Master’s Thesis was carried out from October 2004 to March 2005 at ELU Konsult AB. The thesis has been developed based on the initiation of ELU Konsult AB and the support from Division of Structural Engineering, Concrete Structures, Chalmers University of Technology, Göteborg, Sweden.

The thesis has been carried out with Per Olof Johansson as a supervisor at ELU Konsult AB and Mario Plos as an examiner at Division of Structural Engineering, Concrete Structures, Chalmers University of Technology. Our sincere gratitude has to be given to both of them for their guidance and support throughout the duration of this thesis.

An extension of our gratitude has to be made to all the staff at ELU Konsult AB for their support, advices and making us feel as part of their group.

Finally, it should be noted that we are forever grateful for the support and patience of our closest ones throughout this project. We would also like to thank all those who have been directly or indirectly related to the successful accomplishment of this project.

Göteborg, March 2005

Edina Smlatic

Marcell Tengelin
Notations

Roman upper case letters

\(A \) Axle load on the bridge deck
\(A_{ekv} \) Equivalent area of the transformed concrete section
\(A_s \) Steel area in tension
\(A_{st} \) Steel area in compression
\(A_{s1} \) Steel area
\(E_c \) Design modulus of elasticity of concrete
\(E_{ch} \) Characteristic modulus of elasticity of concrete
\(E_s \) Design modulus of elasticity of steel
\(E_{sk} \) Characteristic modulus of elasticity of steel
\(F_c \) Compressive concrete force
\(F_{cs} \) Shrinkage force
\(F_s \) Tensile steel force
\(F_{st} \) Compressive steel force
\(I_c \) Moment of inertia of the compressive zone
\(I_{ekv} \) Equivalent moment of inertia of the transformed concrete section
\(M_d \) Bending moment capacity
\(M_s \) Combined bending moment and normal force
\(M_{sd} \) Design bending moment
\(M_I \) Part of \(M_s \) taken by the concrete cross-section and the remaining tension reinforcement
\(M_{ll} \) Part of \(M_s \) taken by the compressive reinforcement including the corresponding part of the tension reinforcement

\(N_{xd} \) Design normal force

\(T^+ \) Mean positive temperature

\(T^- \) Mean negative temperature

\(T_{\text{max}} \) Maximum temperature

\(T_{\text{min}} \) Minimum temperature

\(\Delta T^+ \) Positive temperature difference

\(\Delta T^- \) Negative temperature difference

Roman lower case letters

\(b \) Width of the cross-section

\(d \) Distance of the tension reinforcement from the top of the cross-section

\(d_\ell \) Distance of the compression reinforcement from the top of the cross-section

\(e \) Eccentricity of the normal force

\(f_{ck} \) Characteristic compressive strength of concrete

\(f_{cc} \) Design compressive strength of concrete

\(f_{sd} \) Design tensile strength of the reinforcement

\(f_{st} \) Tensile strength of the reinforcement

\(h \) Height of the cross-section

\(m_r \) Relative moment

\(m_{bal} \) Balanced moment

\(p \) Evenly distributed load on the bridge deck

\(x \) Depth of the compressive zone
\(x_q \) Gravity centre of the cross-section
\(z \) Local coordinate and starts from the equivalent concrete cross-section’s gravity centre

Greek lower case letters

\(\alpha \) Stress block factor
\(\alpha_{ef} \) Effective ratio between the modulus of elasticity of steel and concrete
\(\alpha_i \) Length expansion coefficient for steel and concrete
\(\beta \) Stress block factor for the location of the stress resultant
\(\varepsilon_{cs} \) Shrinkage strain for concrete
\(\varepsilon_{cu} \) Concrete strain
\(\varepsilon_s \) Steel strain, tension
\(\varepsilon_{st} \) Steel strain, compression
\(\varepsilon_{sy} \) Steel strain, yielding
\(\phi \) Reinforcement bar diameter
\(\gamma_u \) Partial safety factor for safety class
\(\gamma_m \) Partial safety factor for strength
\(\eta \) Partial safety factor for the material
\(\sigma_s \) Steel stress in tension
\(\sigma_{st} \) Steel stress in compression
\(\omega \) Mechanical reinforcement content
\(\omega_{bal} \) Balanced mechanical reinforcement content
\(\psi \) Creep factor
1 Introduction

1.1 Background

During the design process of concrete structures, linear analysis is used to obtain the dimensions for the structure. This method gives, in some cases, an overestimation of the amount of material needed, for example the reinforcement content. To optimize the structure, non-linear analysis can be used. Generally, it is not practical to use non-linear analysis in the design process since it is time consuming and since the superposition principle is then not applicable. The method is mostly used for evaluation of the response and behaviour of existing structures. A simplified method for non-linear analysis as a design method has been used at ELU Konsult AB to design an arch bridge, but it appeared to be both time consuming and expensive.

1.2 Aim and implementation

The main aim of the Master’s project ‘Design of arch bridges with non-linear analysis’ is to show the economical potential of using non-linear analysis for the bridge design. The profit can, in most cases, best be seen for slender and compressed concrete structures like the arch of the bridge in this Master’s project.

The Master's project was carried out in two steps. The first step was to obtain the preliminary design by the use of linear analysis. The second step was to optimize the design with the use of non-linear analysis. The results were then compared to see how much there is to save by using non-linear analysis in the design process.

1.3 Limitations

The Master’s Thesis was based on a concrete arch that is a part of a bridge consisting of a bridge deck that is connected to the arch with concrete columns. The arch and the bridge deck were considered as two separate structures, where the bridge deck loads were transferred to the arch through the columns as reaction forces obtained by the structural analysis program, Strip Step 2. In this Master’s project, only the design of the arch was of interest and that is why no calculations were made for the design of the bridge deck and columns. In the analysis of the bridge deck subjected to traffic load, it was assumed that the bridge deck was resting on a stiff arch. The calculations of the reinforcement needed in the arch were done under the assumption that the cross-sections are sufficient enough to resist the shear forces acting on it. In the design, some loads were not taken into account, such as wind load since the design was limited to two dimensions only and the effects of differential settlements since they have minor influence in this case. Concerning the design of the arch cross-section, only the height of the arch could be altered since the width is fixed to 13 m in order to support the columns from the bridge deck.
2 The Munkedal Bridge

2.1 Description

The Munkedal Bridge is to be build over the river Örekilsälven which is situated north of Uddevalla. The main purpose for the Munkedal Bridge is to improve the accessibility of the highway rout E6. The bridge is designed as an arch, with the deck on top connected to the arch with columns, see Figure 2.1. The span of the Munkedal Bridge is 225 m with 3 % inclination and the maximum height is about 39 m from the ground.

![Figure 2.1 The Munkedal Bridge.](image)

The bridge deck is made of concrete and is supported by two steel box girders, see Figure 2.2. It is 23.30 m wide with 2.5 % inclination at both sides and has four lanes of traffic, two in each direction. The arch and the columns are made of concrete.

![Figure 2.2 The bridge deck profile.](image)

The boundary conditions and the model of the bridge created for the structural analysis program are described in detail in Chapter 4.
2.2 The Loads

The main loads on the arch were the gravity loads due to self-weight of the structure and that of moving traffic. All the loads and the load coefficients were taken from Vägverket (2004).

2.2.1 Permanent Loads

Permanent loads are defined as dead loads from the self-weight of the structure which remain essentially unchanged during the life time of the bridge. The self-weight of the bridge deck and the columns were placed as point loads on the arch. The material properties are given in Table 2.1. Included in the permanent loads acting on the arch were also the loads imposed due to shrinkage and creep. For the detailed permanent load calculation, see Appendix A.

<table>
<thead>
<tr>
<th>Material</th>
<th>Load [kN/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>25</td>
</tr>
<tr>
<td>Asphalt</td>
<td>23</td>
</tr>
<tr>
<td>Steel</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table 2.1 Material properties.

The drying of concrete due to evaporation of absorbed water causes shrinkage. If deformation of the structure is prevented, the shrinkage will lead to a constant shrinkage force. Creep is a long term effect leading to increased deformations with time of a loaded structure. The creep modifies the effect of shrinkage. This can be accounted for by reducing the modulus of elasticity of concrete. The shrinkage and creep characteristics of concrete induce internal stresses and deformations in the arch.

Shrinkage force: \[F_s = E_s \cdot A_s \cdot \varepsilon_{cs} \] (2.1)

Effects of creep: \[\alpha_{ef} = \alpha \cdot (1 + \psi) \] (2.2)

where: \[\alpha = \frac{E_s}{E_c} \] (2.3)

2.2.2 Variable loads

Variable loads are all loads other than the permanent loads, and have a varying duration. The variable loads acting on the bridge are the traffic load, the braking load and the temperature load.
The variable loads that were not taken into account in this Master’s project are fatigue, side force, snow, wind and different types of vehicle loads (emergency services vehicles, working vehicles etc). These loads have minor influence on the structure as compared to the traffic, braking and temperature loads.

2.2.2.1 Traffic load

According to Vägverket (2004), there are two types of traffic load that can be critical on this bridge: equivalent load type 1 and equivalent load type 5, see Figure 2.3. Equivalent load type 1 consists of an evenly distributed load p [kN/m] and one load group with three concentrated axle loads A [kN] with minimum longitudinal axle distances of 1.5 m and 6 m. Equivalent load type 5 consists of an evenly distributed load p [kN/m] and two load groups with three concentrated axle loads A [kN] with minimum longitudinal axle distances according to Figure 2.3 The values for the traffic loads A and p are given in Table 2.2.

Figure 2.3 Equivalent load types, adapted from Vägverket (2004).

Table 2.2 The magnitude of the traffic loads according to Vägverket (2004).

<table>
<thead>
<tr>
<th>A [kN]</th>
<th>P [kN/m]</th>
<th>Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>170</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

In the design, the bridge deck was loaded with six lanes of traffic, even though the bridge has four lanes under normal traffic conditions. In this Master’s project, equivalent load type 5 was considered as the most critical and the bridge was designed for this load type. An example of the total traffic load in a cross section can be seen in Figure 2.4.
2.2.2.2 Braking load

According to Vägverket (2004), the braking load acting on the bridge is 800 kN as the bridge length is greater than 170 m. The horizontal braking force was applied on the bridge deck at the section where it is rigidly connected to the arch, through the shortest column.

Figure 2.4 The total traffic load in a cross-section.

Figure 2.5 The braking force acting on the arch.
2.2.2.3 Temperature load

The temperature of the arch and its environment changes on a daily and seasonal basis. This influences both the overall movement of the structure and the stresses within it. The daily effects give rise to a temperature variation within the arch, which varies depending on cooling or heating. The idealized linear temperature gradient to be expected for a certain structure when heating or cooling can be seen in Table 2.3.

Table 2.3 The idealized linear temperature gradient according to Vägverket (2004).

<table>
<thead>
<tr>
<th>Structure type</th>
<th>Mean temperature °C in the structure</th>
<th>Temperature difference °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T^+)</td>
<td>(T^-)</td>
</tr>
<tr>
<td>1. Steel or aluminium bridge deck on box girder or I-beam of steel</td>
<td>(T_{\text{max}} + 15)</td>
<td>(T_{\text{min}} -5)</td>
</tr>
<tr>
<td>2. Concrete or timber bridge deck on box girder or I-beam of steel</td>
<td>(T_{\text{max}} + 5)</td>
<td>(T_{\text{min}} + 5)</td>
</tr>
<tr>
<td>3. Concrete bridge deck on box girder or T-beam of concrete</td>
<td>(T_{\text{max}})</td>
<td>(T_{\text{min}} + 10)</td>
</tr>
<tr>
<td>4. Timber bridge deck on timber beams</td>
<td>(T_{\text{max}} - 5)</td>
<td>(T_{\text{min}} + 10)</td>
</tr>
</tbody>
</table>

Values for \(T_{\text{max}} \) and \(T_{\text{min}} \) depend on the geographical location and are given in Figure 2.6.
Structure type 3 was chosen as it fits the description of the bridge in this Master’s project. The values of the temperatures acting on the structure can be seen in Table 2.4.

Table 2.4 Temperatures acting on the structure.

<table>
<thead>
<tr>
<th>Mean temperature [°C]</th>
<th>Temperature difference [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>ΔT</td>
</tr>
<tr>
<td>T^+</td>
<td>ΔT^+</td>
</tr>
<tr>
<td>39</td>
<td>-27</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>-5</td>
</tr>
</tbody>
</table>

The length expansion coefficient for steel and concrete is $\alpha_l = 1 \cdot 10^{-5}$ [1/°C] and was used for calculation of the deformation due to the temperature variation.
3 Structure Analysis Program, Strip Step 2

3.1 Introduction

The structural analysis program used for the design of the arch is called Strip Step 2. This program was developed in the 60’s and was modified to work with today’s computers. Strip Step 2 is one of the programs that can be used in bridge design, according to the Swedish Road Administration. This program is well established and efficient for the initiated user, and still widely used in Sweden even if it is old.

The program is intended for calculations of structures that can be represented by elements with linear extension, such as frames and trusses. It allows for curved elements and even cross-section variation along the element. The load cases can consist of evenly distributed loads, point loads, temperature loads, traffic loads, pre-stressing loads and support displacement loads. The load cases can then be combined to find the maximum cross-sectional forces and moments acting on the structure and the influence lines of the applied vertical loads. The calculations for creep and shrinkage are done through gradual iteration.

3.2 Assumptions

The calculations in the structural analysis program, Strip Step 2, are based on the theory of elasticity which states that the stress-strain relationship is linear. Also, the plane cross-section remains plane after deformation. The calculations are performed according to the 1st order (linear) theory. The calculations can also be performed assuming the 2nd order (non-linear) theory with respect to the deformations (not the material). Since the arch element function for the arched elements in the program was not working, the arch elements were modelled as plain beam elements.

3.3 Structure

The structure of the input data is not too difficult to understand even if it is in a DOS environment. Every input has a special four digit code that has a specific function, for instance, 2050 is the code describing the load on the structure. The program starts by defining the structure type and the material constants such as Young’s modulus and the Poisson’s ratio. The geometry of the elements and their cross-section parameters, such as height, area, gravity centre and moment of inertia are then given. The next step is to connect the elements and to specify their degrees of freedom. After this is done, the loads are then defined, combined and applied on the structure. Once the simulation is completed, the cross-sectional forces, stresses and influence-lines are obtained in a result file.
4 The Bridge Model

The bridge was modelled as two separate structures, the bridge deck and the arch. The bridge deck was modelled as a beam with eight supports. The arch was modelled using beam elements connected to each other and with fixed supports at the abutments. The division was based on the assumption that the arch is stiffer than the bridge deck. This means that the arch has no displacements under the loading of the bridge deck.

4.1 The bridge deck model

4.1.1 Geometry and boundary conditions

The function of the bridge deck model was to acquire the reaction force influence lines of the bridge deck caused by the traffic load acting on it. The bridge deck was modelled as a continuous beam with columns acting as supports. The bridge deck is a part of the highway route continuing on both sides of the bridge. In this project, the part of the bridge deck that is situated above the arch and that is connected to the arch through columns is taken into account. The rest of the bridge deck is supported by columns to the ground, and is not included in the model since loads on these parts of the deck have a very small influence on the maximum reaction forces transferred to the arch.

The bridge deck is divided in seven elements between the eight columns supporting it. The supports B1, B5 and B8, were assumed partly fixed; that is no displacements were allowed and only rotations about the x-axis, see Figure 4.1. The rest of the supports were assumed simply supported, allowing for rotations about the x-axis and for displacements along the y-axis, see Figure 4.1. The bridge deck has an inclination of 3% which was taken into account when defining the geometry of the bridge deck.

![Figure 4.1 Boundary condition of the bridge deck.](image)

4.1.2 The analysis sequence of the bridge deck model

The analysis sequence starts by dividing the bridge deck into elements and defining their degrees of freedom. The dead load of the bridge was introduced as an evenly distributed load. The braking force on the bridge deck was introduced at section B5, see Figure 4.1 and Figure 2.5, where the shortest support column is located. In this
way, the most of the braking force is transferred to the arch through the reaction force. At sections B1 and B8 the braking force was not applied since the supporting columns are long and very little of the braking force is transferred to the arch, see Figure 4.2. A distributed traffic load and two traffic load axle groups were introduced with different axle distances. Combination of the loads into load cases was made and influence lines of the reaction forces were calculated.

4.1.3 Influence lines

Bridge decks on arches should support both fixed and moving loads. Each element of a bridge must be designed for the most severe conditions that can possibly occur in that member. Live loads should be placed at the position where they will produce critical conditions in the member studied. The critical position for the live loads will not be the same for every member. A useful method of determining the most severe condition of loading is by using influence lines.

An influence line for a particular response, such as the reaction force, is defined as a diagram, see Figure 4.2. Influence lines describe how, for example, the force in a given part of the structure varies as the applied unity load moves along the structure. Influence lines are primarily used to determine the critical positions of the live loads.
Figure 4.2 Example of an influence line for the reactions force at support 7 for the bridge deck.

The influence lines were used to calculate the highest force that can act on the columns. For each traffic load position, giving a maximum column force, also the forces in the other columns were calculated. The calculated loads acting on the columns were then used as input traffic load on the arch model. From the bridge deck model, seven different load positions on the bridge deck gives seven different load cases, each one with the maximum force in one of the columns, see Appendix B.

4.2 The arch model

4.2.1 Geometry and boundary conditions

The function of the arch model was to obtain the cross-sectional bending moments and the normal forces in the arch. The effects of creep and shrinkage were included in the simulation.
The arch was modelled as an arched structure with two abutments. The abutments were assumed fixed, that is no displacements and rotations were allowed. The arch was divided into fifteen sections creating fourteen elements that were coupled together through common degrees of freedom, see Figure 4.3. Each element’s cross-sectional constants and geometry were defined in the structural analysis program. The coordinates and the degrees of freedom of each point are located at the gravity centre of each cross-section.

![Figure 4.3 The concrete arch divided into fifteen sections.](image)

In addition to the dead weight of the structure and the traffic load acting on it, temperature load caused by temperature difference across the cross-section of the arch was also taken into account as well as the braking force.

4.2.2 The analysis sequence of the arch model

The analysis sequence starts by defining the arch cross-sectional constants in each section. The dead load of the arch was applied as evenly distributed load, while the dead loads from columns and the bridge deck were applied as concentrated loads. The reaction force and the bending moment, obtained from the analysis of the bridge deck, from the braking load were applied on the arch as point loads. The different traffic load cases and the temperature load were introduced and the various load cases were combined. The maximum bending moments and the corresponding normal forces at each section were obtained in the result file.

There were seven different traffic load combinations, resulting in seven different analyses. Each analysis gave different bending moments and normal forces in each cross-section of the arch. The results from each analysis were compared and the maximum value of the bending moment with the normal force from the same load case for each section were then selected and used for calculating the reinforcement area needed for each section.
5 Linear Analysis

5.1 Introduction

A linear analysis is often carried out in a simplified way, using the uncracked gross concrete sections and ignoring the reinforcement. It is generally assumed that the flexural rigidities along the structure are constant during the simulations. Linear analysis is only valid as long as the arch is uncracked.

Cross-sectional normal forces and bending moments were calculated under the assumption of linear elasticity. The cross-section was then designed in the ultimate limit state with the concrete compression failure strain $\varepsilon_{cu} = 3.5$ % as failure criteria. In the cross-sectional analysis, the strains were assumed to vary linearly across the cross-section and plane cross-sections were assumed to remain plane after deformation.

In this project, the objective was to study a structure where the non-linear response has a significant influence on the required amount of reinforcement. Considering this, an arch with cross-sections that crack was needed for this Master’s project and once it was obtained, non-linear analysis would be required.

It is possible that the original cross-section is strong enough to carry the bending moments and normal forces without the need for reinforcement. If this is the case, the cross-section constants such as height and thicknesses of the slabs will be reduced until the need for reinforcement is obtained, since the purpose of this thesis is to show that the amount of reinforcement can be minimized using non-linear analysis.

5.2 Calculation of required reinforcement

The calculations were carried out according to Engström (2004) in case of box girder cross-sections and according to Handboken Bygg (1985) in case of solid beam cross-section. When using the method according to Engström (2004), the box girder cross-section was simplified into an I-beam cross-section. First, this method was also applied to the solid beam cross-section design, and an over reinforced cross-section was obtained. In this case, the amount of compression reinforcement was guessed and the calculations were made iteratively until the required reinforcement was obtained. To avoid this long process, the method according to Handboken Bygg (1985) was used instead. Here the required amount of compression reinforcement was calculated first, assuming balanced reinforcement. From that amount, the needed tension reinforcement was calculated. Both methods are based on the method with the simplified compressive stress block:

$$ F_c = f_{cc} \cdot b \cdot 0.8 \cdot x \quad (5.1) $$

The bending moments and the normal forces for each cross-section were obtained from the linear structural analysis performed with the structural analysis program for the arch.
In order to make the calculations simple, the bending moment M_{sd} and the normal force N_{sd} were combined into one moment M_s in both calculation methods, see Figure 5.1.

$$M_s = M_{sd} + N_{sd} \cdot e$$ \hspace{1cm} (5.2)

Figure 5.1 Bending moment combined with normal force.

The calculations for both methods were performed under following assumptions:

- The maximum concrete strain is limited to $\varepsilon_{cu} = 3.5 \%$
- The concrete cannot take tensile force in the cracked cross-section
- The concrete compressive stress f_{cc} is constant in the compressive zone
- The reinforcement is hot rolled and not pretensioned.

5.2.1 Calculation method for the box girder cross-section

To simplify the calculations, the box girder cross-section was divided into four equal I-beams, see Figure 5.2.

Figure 5.2 The box girder cross-section divided into four I-beam cross-sections.
When calculating for I-beams there were some assumptions that had to be made. The compressive zone, 80% of it, could either be assumed to fit into the flange or not. If it was assumed that the 80% of the compressive zone fit in the flange, see Figure 5.3, the calculations were carried out as for the rectangular cross-sections and the following was valid:

\[F_c = f_{cx} \cdot b \cdot 0.8 \cdot x \quad F_s = \sigma_s \cdot A_s \] (5.3)

\[F_c = F_s - N_{sd} \] (5.4)

\[M_s = F_c \cdot (d - 0.4 \cdot x) \] (5.5)

\[\varepsilon_s = \frac{d - x}{x} \cdot \varepsilon_{cu} \] (5.6)

Steel stresses:

\[\sigma_s = E_s \cdot \varepsilon_s \quad \text{if} \quad \varepsilon_s \leq \varepsilon_{sy} \] (5.7)

\[\sigma_s = f_{sd} \quad \text{if} \quad \varepsilon_s \geq \varepsilon_{sy} \] (5.8)

If on contrary, the 80% of the compressive zone does not fit into the flange, the shape of the cross-section had to be considered in calculations, see Figure 5.4. The following was valid:
Figure 5.4 The compressive zone does not fit in the flange.

For $0.8 \cdot x > t$

Horizontal equilibrium:
$F_{c1} = f_{cc} \cdot b_w \cdot 0.8 \cdot x \quad F_{c2} = f_{cc} \cdot (b - b_w) \cdot t \quad (5.9)$

$F_s = \sigma_s \cdot A_s \quad (5.10)$

$F_{c1} + F_{c2} = F_s + N_{sd} \quad (5.11)$

Moment equilibrium:
$M_x = F_{c1} \cdot (d - 0.4 \cdot x) + F_{c2} \cdot (d - \frac{t}{2}) \quad (5.12)$

Deformation:
$\varepsilon_s = \frac{d - x}{x} \cdot \varepsilon_{cu} \quad (5.13)$

Steel stresses:
$\sigma_s = E_s \cdot \varepsilon_s \quad \text{if} \quad \varepsilon_s \leq \varepsilon_{sy} \quad (5.14)$

$\sigma_s = f_{sd} \quad \text{if} \quad \varepsilon_s \geq \varepsilon_{sy} \quad (5.15)$

The needed amount of reinforcement in both cases was calculated from horizontal equilibrium conditions, (5.4) and (5.11).

5.2.2 Calculation method for the solid cross-section

The simple rectangular cross-section was calculated according to the method in Handboken Bygg (1985). For the solid beam cross-section, the equations according to Chapter 5.2.1, when the compressive zone fits into the flange, are valid. This equation system is expressed in a series of equations out of which the needed amount of reinforcement can be solved directly in case of the cross-section being normally reinforced with only tension reinforcement, i.e. the tension reinforcement yields before the concrete compression strain reaches $\varepsilon_{cu} = 3.5\%$.
\[m_r = \frac{M}{b \cdot d^2 \cdot f_{cc}} \]
(5.16)

\[\omega = 1 - \sqrt{(1 - 2 \cdot m_r)} \]
(5.17)

\[A_{s1} = \frac{\omega \cdot d \cdot b \cdot f_{cc}}{f_{sd}} \]
(5.18)

\[A_s = A_{s1} - \frac{N_{sd}}{f_{sd}} \]
(5.19)

In case of \(A_s \) being negative, the cross-section does not need reinforcement, since the compressive normal force is large and the cross-section is uncracked.

To check if the cross-section is normally reinforced, calculated values of relative moment \(m_r \) and mechanical reinforcement content \(\omega_r \) were compared with the values of these parameters for balanced reinforcement, see Table 5.1. Balanced reinforcement is obtained when the tensile reinforcement reaches yielding at the same time as the concrete compression strain reaches the failure strain \(\varepsilon_{cu} = 3.5\% \).

Table 5.1 Values for balanced reinforcement, according to Handboken Bygg (1985).

<table>
<thead>
<tr>
<th>Reinforcement</th>
<th>(\omega_{bal})</th>
<th>(m_{bal})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ss 22 (s)</td>
<td>0.615</td>
<td>0.426</td>
</tr>
<tr>
<td>Ss 26 (s)</td>
<td>0.591</td>
<td>0.416</td>
</tr>
<tr>
<td>Ks 22 (s)</td>
<td>(\phi < 16)</td>
<td>0.522</td>
</tr>
<tr>
<td></td>
<td>(\phi 20 - 25)</td>
<td>0.532</td>
</tr>
<tr>
<td></td>
<td>(\phi 32)</td>
<td>0.542</td>
</tr>
<tr>
<td>Ps/Ns/NPs/50</td>
<td>0.480</td>
<td>0.365</td>
</tr>
<tr>
<td>Ks 60 (s)</td>
<td>0.443</td>
<td>0.345</td>
</tr>
<tr>
<td>Bs/Ss/NPs/70</td>
<td>0.412</td>
<td>0.327</td>
</tr>
</tbody>
</table>

If \(m_r < m_{bal} \) and \(\omega < \omega_{bal} \) a normally reinforced cross-section was obtained. Consequently, the steel area needed was calculated according to the equations (5.18) and (5.19).

In case of relative moment being greater than the balanced moment, \(m_r > m_{bal} \), the cross-section will be over-reinforced, i.e. the concrete fails in compression before the reinforcement yields. Measures can be taken in order to prevent over-reinforcement such as to include compression reinforcement or to increase \(d \), \(b \) or \(f_{cc} \). Since the cross-section dimensions were already designed in this project, that is the \(d \) and \(b \) could not be changed and since the concrete strength chosen was already high, the
choice was here to include compression reinforcement. Accordingly, the needed compression reinforcement was calculated in the following way, assuming $\sigma_{st} = f_{sd}$.

$$A_{st} \geq \frac{M_s - m_{bal} \cdot b \cdot d^2 \cdot f_{ce}}{(d - d_t) \cdot \sigma_{st}}$$ (5.20)

$$M_{II} = A_{st} \cdot \sigma_{st} \cdot (d - d_t)$$ (5.21)

$$M_I = M_s - M_{II}$$ (5.22)

$$m_t = \frac{M_I}{b \cdot d^2 \cdot f_{ce}}$$ (5.23)

$$\omega = 1 - \sqrt{(1 - 2 \cdot m_t)}$$ (5.24)

$$\varepsilon_{st} = \varepsilon_{cu} \cdot \left(1 - 0.8 \cdot \frac{d_t}{\omega \cdot d}\right)$$ (5.25)

Check the assumption: $\varepsilon_{st} > \varepsilon_{sy} \Rightarrow \sigma_{st} = f_{sd}$ (5.26)

If the assumption (5.26) was not satisfied, the calculation had to be redone with $\sigma_{st} = E_s \cdot \varepsilon_{st}$ until convergence was obtained. When the assumption (5.26) was satisfied or convergence has been obtained for non-yielding compression reinforcement, the tension reinforcement was calculated as:

$$A_t = \frac{M_I}{d \cdot (1 - \frac{\omega}{2}) \cdot f_{sd}}$$ (5.27)
\[A_{II} = \frac{M_{II}}{d - d_t} \cdot \frac{1}{f_{sd}} \]

(5.28)

\[A_{III} = \frac{N_{sd}}{f_{sd}} \]

(5.29)

\[A_{s1} = A_I + A_{II} \]

(5.30)

\[A_s = A_{s1} - A_{III} \]

(5.31)

5.2.3 Check of the designed cross-section

When the reinforcement needed is known and arranged in the cross-section, the \(x \) value of the compressive zone can be solved with the horizontal equilibrium and by assuming the steel strains in each steel level.

\[
\varepsilon_{\text{eq}} = 3.5\% \\
F_N = F_{c} + F_{st} = N_{sd} + F_s \\
F_c = \alpha \cdot f_{ce} \cdot b \cdot x \\
F_s = \sigma_s \cdot A_s \\
F_{st} = \sigma_{st} \cdot A_{st} \\
\varepsilon_s = \frac{d - x}{x} \cdot \varepsilon_{cu} > \varepsilon_{sy} \Rightarrow \sigma_s = f_{sd} \\
\varepsilon_s = \frac{d - x}{x} \cdot \varepsilon_{cu} < \varepsilon_{sy} \Rightarrow \sigma_s = E_s \cdot \varepsilon_s
\]

(5.36)

(5.37)
After the x was solved, the verification of the strain assumptions was done. If they were not satisfied, new strain assumptions had to be made and the new x calculated. In case that the assumptions were satisfied, the right x value was obtained.

The next step was to check the moment capacity of the cross section by taking a moment equation around the lowest tension reinforcement layer.

$$M_d = a \cdot f_{cc} \cdot b \cdot x \cdot (d - \beta \cdot x) + \sigma_{s} \cdot A_s \cdot (d - d_i) - \sigma_{s} \cdot A_s \cdot (d - d_i)$$

(5.38)

When $M_d > M_s$, the cross-section moment capacity is sufficient.

Once all the assumptions and conditions are satisfied the amount of reinforcement needed is obtained and the cross-section is designed.

5.3 Results from linear analysis

5.3.1 Original box girder cross-section

The cross section of the bridge is to be constructed as a box girder with two inner walls. The height of the cross-section varies across the arch. The thickness of the inner wall and the top slab is constant across the arch, while the thickness of the bottom slab varies along the arch, see Appendix C1. The dimensions of the cross-section can be seen in Figure 5.7.
Figure 5.7 Original cross-sections for the arch.

The calculations of the required reinforcement, input data tables and the results from the structural analysis program for the original cross-section are presented in Appendix C1. The bending moments M_{sd}, the normal forces N_{sd} and the amount of reinforcement bars n obtained for the cross-section are presented in the Table 5.2.
Table 5.2 Maximum positive and negative bending moments, normal forces for the same load case and the required amount of tensile reinforcement bars, $\phi = 20 \text{ mm}$.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sd}</td>
<td>113426</td>
<td>44732</td>
<td>107698</td>
<td>113584</td>
<td>84480</td>
<td>30800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>162957</td>
<td>145297</td>
<td>140175</td>
<td>144533</td>
<td>149071</td>
<td>157897</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>-127</td>
<td>-126</td>
<td>-65</td>
<td>-64</td>
<td>-102</td>
<td>-154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-M_{sd}$</td>
<td>67803</td>
<td>79288</td>
<td>36085</td>
<td></td>
<td>1870</td>
<td>33577</td>
<td>304456</td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>158312</td>
<td>153890</td>
<td>142493</td>
<td>145771</td>
<td>158884</td>
<td>162780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>-142</td>
<td>-123</td>
<td>-129</td>
<td></td>
<td>-156</td>
<td>-153</td>
<td>-41</td>
<td></td>
</tr>
</tbody>
</table>

As it can be seen from the Table 5.2, the cross-section is uncracked and does not need reinforcement (negative values for the reinforcement). Unfortunately, this cross-section was not useful for this project since a reinforced arch with cracking cross-section was required. Since the original cross-section was not useful, the height of the cross-section was reduced in order to obtain a cross-section that cracks and that requires reinforcement.

5.3.2 Reduced height of the box girder cross-section, variable height

In order to obtain a cracked cross-section, the height of the original cross-section was reduced. The height of the cross-section still varied along the arch. The thickness of the inner walls was kept the same as the original, but the thickness of the top slab was reduced from 0.35 m to 0.25 m. The thickness of the bottom slab was reduced as well, varying from 0.4 m at the abutments to 0.25 m at the mid section of the arch, for detailed values see Appendix C3.

The bending moments M_{sd}, the normal forces N_{sd} and the amount of reinforcement n obtained for the cross-section are presented in Appendix C3. As can be seen from the results, the cross-sections were still uncracked and do not need any reinforcement.

Seeing that the cross-section is uncracked, several attempts were made to induce cracking and the need for reinforcement. The traffic load coefficient was increased stepwise from 1.5 to 1.7 and 1.9, to see if the cracking would occur. The obtained bending moments, the normal forces and the amount of reinforcement are presented in Appendix C3.
Seeing that the cross-section was still uncracked, a new reduction in height was made to obtain a need for reinforcement and a cracked cross-section.

5.3.3 Reduced height of the box girder cross-section, constant height

In order to obtain cross-sections that need to be reinforced, the height of the original cross-sections were further reduced to 2.5 m and was kept constant along the arch; that is no variation along the arch. This was the minimum height of the box girder cross-section as there must be free height of 2 m inside the box girder. The top and bottom slab thicknesses were reduced to 0.25 m and kept constant along the arch as well. The dimensions of the cross-section are presented in Figure 5.8.

![Figure 5.8 Cross-section of the box girder with constant height](image)

The bending moments M_{sd}, the normal forces N_{sd} and the amount of reinforcement n obtained for the cross-section are presented in the Appendix C3. As can be seen, the cross-section started to crack at the supports where reinforcement was needed. However, the need for reinforcement was still quite small, and a larger amount was needed if the advantages with non-linear analysis should be shown. In order to obtain larger reinforcement amounts, it was decided to redesign the cross-section as a solid beam section.

5.3.4 Solid beam section

Redesigning the arch as a solid rectangular cross-section was the final attempt to find a section that cracks and requires reinforcement. The height of the cross-section was chosen to 1.5 m and the width was chosen to 13 m. The cross-section is constant along the arch, and the shape can be seen in Figure 5.9.
Figure 5.9 Cross-section of the rectangular solid arch

The calculations of the required reinforcement, input data tables and the results from the structural analysis program for the solid cross-section are presented in Appendix C2. The bending moments M_{sd}, the normal forces N_{sd} and the amount of reinforcement bars n obtained for the cross-section are presented in the Table 5.3.

Table 5.3 Maximum positive and negative bending moments, normal forces for corresponding load case and the required amount of reinforcement bars $\phi = 20\text{ mm}$ in compression and tension.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sd}</td>
<td>194902</td>
<td>13148</td>
<td>86438</td>
<td>98991</td>
<td>79401</td>
<td>65396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>189113</td>
<td>170620</td>
<td>164354</td>
<td>168705</td>
<td>174116</td>
<td>183246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n compression</td>
<td>750</td>
<td>150</td>
<td>238</td>
<td>64</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n tension</td>
<td>1075</td>
<td>64</td>
<td>100</td>
<td>64</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-M_{sd}$</td>
<td>68215</td>
<td>65496</td>
<td>4590</td>
<td>163314</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>180944</td>
<td>168304</td>
<td>171084</td>
<td>189220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n compression</td>
<td>64</td>
<td>64</td>
<td>552</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n tension</td>
<td>64</td>
<td>64</td>
<td>745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finally a cracked cross-section with a large amount of reinforcement needed was obtained. With these values for the bending moments, the normal forces and the reinforcement the next phase of the Master’s project, designing with non-linear analysis started.
6 Non-linear Analysis

6.1 Introduction

With non-linear analysis, it is possible to follow the real behaviour of a bridge, an arch or a structure. The non-linear analysis is not one unique method, but a range of methods at different levels of accuracy. Common for these approaches is that the non-linear behaviour of the structure is in some way taken into account. In this Master’s project, a simplified use of non-linear analysis based on stepwise change of the flexural rigidity of the cross-section, based on a cracked cross-section where both concrete and reinforcing steel have elastic response (state II model), was used.

6.2 Methodology

The preliminary design of the cross-section was done using linear analysis, see Chapter 5. According to this, a preliminary amount of reinforcement needed was obtained. Usually, the amount obtained by linear analysis is an overestimation for structures under compression and in this chapter; the reinforcement amount will be reduced using non-linear analysis for improved design.

The first step was to calculate the cross-sectional constants for the designed cross-section using the moments, the normal forces and the amount of the reinforcement obtained from the linear analysis. The linear analysis process can be seen in Figure 6.1.

![Figure 6.1 The linear analysis process.](image)

The cross-sectional constants were calculated according to the equations for state II cross-sectional modelling for sustained loading, where creep and shrinkage were
taken into account. The equations are presented in the following subchapters. Once the cross-sectional constants were calculated, they were inserted into the structural analysis program, Strip Step 2. The constants that were changed were the centre of gravity x_{tp}, the equivalent moment of inertia I_{eq}, and the equivalent area of the cross-section A_{eq}. After running the program for the different traffic load cases, new lower moments and normal forces were obtained showing that the reinforcement amount could be reduced.

The next step was to determine the decreased amount of reinforcement required by an iterative process. This started by guessing lower amounts of reinforcement than the ones calculated by linear analysis. With the decreased reinforcement amount and the moments and normal forces obtained in the previous step, new cross-sectional constants were calculated. Special attention was here needed to be given to the sign change of the bending moment, since the cross-sectional constants normally vary depending on whether the top or the bottom is cracked in tension. This is discussed more in detail in Chapter 6.3. The new cross-sectional constants were used in a new Strip Step 2 analysis for the different load cases in order to obtain new moments and normal forces. The sequence was repeated until the bending moments started to converge i.e. the change of the moment approaches zero. Once convergence was reached, the iteration was stopped, and the cross-section was finally designed for the new lower amount of reinforcement. The non-linear iteration process can be seen in Figure 6.2.

Non-linear analysis

![Diagram](image)

Figure 6.2 Non-linear iteration.
6.3 Approximations

The arch was divided into fifteen sections, see Figure 4.3, but in the calculations only eight of these were taken into account. Sections one and fifteen are the support sections, so they were important to look at as they would carry rather high moments. Sections three, five, seven, nine, eleven and thirteen were the other sections studied. These sections were chosen since they were loaded with concentrated loads transferred from the bridge deck through the columns and into the arch. Since the arch was loaded in these sections, the highest moments and normal forces would arise in these sections. For the sections in between: two, four, six, eight, ten and fourteen, the cross-sectional constants were not changed. This was to ease both the calculation and iteration process.

Another approximation made concerns the bending moments. Some of the sections are exposed to both negative and positive bending moments, with belonging compressive normal forces, for different load cases. The sign change of the bending moment will affect the eccentricity, \(e \), of the normal force. The eccentricity to the tension reinforcement will either increase causing a higher bending moment, or decrease leading to lower contribution to the bending moment.

For the calculation of the cross-sectional constants, both the negative and the positive moments were inserted into equation (6.1). The higher of the two was chosen for the calculation and the cross-sectional constants were calculated accordingly.

\[
M_x = M_{sd} + N_{sd} \cdot e
\]

6.4 Calculation of the cross-sectional constants, state II

The calculations for the cross-sectional constants were done based on the state II model calculation with sustained loading taken into account. State II model is based on a cracked cross-section where the concrete is assumed to carry no tensile stresses, and where both the concrete under compression and the reinforcing steel have elastic response. The long term effect of creep was introduced through the relation between the effective modulus of elasticity for steel and concrete, equation (6.2).

\[
\alpha_{ef} = \frac{E_s}{E_c} \cdot (1 + \psi)
\]

where \(\psi \) is the creep factor.

6.4.1 Calculation of the depth of the compressive zone, \(x \)

The first step was to calculate the \(x \) value, the depth of the compressive zone. This value was obtained by taking moment equilibrium for each section on the arch that was studied, according to:
\[M_d = \alpha \cdot f_{ce} \cdot b \cdot x \cdot (d - \beta \cdot x) + \sigma_{st} \cdot A_{st} \cdot (d - d_t) - \sigma_s \cdot A_s \cdot (d - d_t) - N_{sd} \cdot e \quad (6.3) \]

where \[\sigma_s = E_s \cdot \varepsilon_s \quad \text{for} \quad \varepsilon_s \leq \varepsilon_{sy} \quad (6.4) \]

\[\sigma_s = f_{sd} \quad \text{for} \quad \varepsilon_s \geq \varepsilon_{sy} \quad (6.5) \]

The same conditions for the steel stresses were valid for the compressive reinforcement as well. Once this value was attained, the new cross-sectional constants such as \(x_{tp} \), \(A_{ekv} \) and \(I_{ekv} \) were calculated with the formulas in the following chapters.

It was discovered at the end of the Master’s project, that this calculation way was not correct since the depth of the compressive zone was calculated according to state III and not state II. The correct way is to iterate the \(x \) value with help of Navier’s formula, see equation (6.6).

\[\sigma_s(z) = \frac{N_{sd} + F_{cs} + F_{ct}}{A_{ekv}} + \frac{N_{sd} \cdot e + F_{cs} \cdot e_s + F_{ct} \cdot e_{st} + M_{sd} \cdot z}{I_{ekv}} \quad (6.6) \]

Figure 6.3 Cracked reinforced concrete section exposed to bending moment and compressive normal force.

where: \(z \) = sectional co-ordinate from the centre, positive
\[e = \text{eccentricity of axial force relative to the centre of the transformed section, positive downwards} \]
\[F_{cs}, F_{ct} = \text{shrinkage restraint forces in the tension respectively compression reinforcement layer} \]
\[e_s = d - x_{tp} \]
\[e_{st} = d_t - x_{tp} \]

The first step is to guess an \(x \) value and calculate the cross-sectional constants according to Chapters 6.4.2-6.4.4. The following step is to calculate the stresses at the
level of the guessed compression depth, the neutral zone. If the stress in the neutral zone is approximately zero, the correct x value has been guessed and obtained.

$$\sigma_c(z = x - x_{tp}) \approx 0 \quad \Rightarrow \quad \text{correct } x \text{ value}$$

If the stress in the neutral zone is not zero, a new x value has to be guessed and calculations redone until the stress is close to zero in the neutral zone.

$$\sigma_c(z = x - x_{tp}) \neq 0 \quad \Rightarrow \quad \text{incorrect } x \text{ value, guess a new } x \text{ value}$$

Since this mistake was discovered at the end of the project a check was made to see the deviation in the cross-sectional constants with the two calculation ways. A deviation of approximately 5% was observed and it was decided that the change in cross-sectional constants with the 5%-deviation would not have a major impact on the calculations of bending moments and normal forces. Still, if the method is to be used, the correct way of calculating the x value in state II should be used.

6.4.2 Calculation of the equivalent area, A_{ekv}

The effective area A_{ekv} was calculated according to

$$A_{ekv} = A_{cc} + (\alpha_{ef} - 1) \cdot A_s + \alpha_{ef} \cdot A_s$$

(6.7)

where $A_{cc} = b \cdot x$, area of compressive zone

$A_s =$ total area if compressive reinforcement

$A_s =$ total area of tensile reinforcement.

6.4.3 Calculation of the gravity centre of the transformed section, x_{tp}

The gravity centre of the transformed section x_{tp} was calculated according to

$$x_{tp} = \frac{A_{cc} \cdot \frac{x}{2} + (\alpha_{ef} - 1) \cdot A_s \cdot d_t + \alpha_{ef} \cdot A_s \cdot d}{A_{ekv}}$$

(6.8)

where $x =$ depth of the compressive zone

$d_t =$ depth of the compressive reinforcement

$d =$ depth of the tensile reinforcement.
6.4.4 Calculation of the moment of inertia of the transformed section, I_{ekv}

The moment of inertia of the transformed section I_{ekv}, was calculated according to

$$I_{ekv} = I_c + A_{cc} \cdot (x_{yp} - x)^2 + (\alpha_{sf} - 1) \cdot A_{st} \cdot (x_{yp} - d_t)^2 + \alpha_{sf} \cdot A_s \cdot (d - x_{yp})^2$$ (6.9)

where $I_c = $ moment of inertia of the compressive zone.

6.5 Iteration results

Presented in this chapter are the maximum positive and negative moments, normal forces for corresponding load cases and calculated cross-sectional constants for the iterations performed. Detailed calculations of the cross-sectional constants and the results from the structural analysis program for iteration one and five are presented in Appendix D1 and Appendix D2 respectively. A compilation of all the iteration results is presented in Appendix D3.

6.5.1 Iteration zero

Iteration zero was the start of the iteration process. The uncracked cross-section with state I sectional constants was analysed with the Strip Step 2 program giving the design moments and normal forces. The cross-section was designed for these loads, and the amount of reinforcement needed, determined in section 5.3.4, is summarised in Table 6.1.

| Table 6.1 | The amount of reinforcement bars $\phi = 20\, \text{mm}$ obtained with linear analysis.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top reinforcement bars $\phi = 20, \text{mm}$</td>
<td>1075</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>100</td>
<td>64</td>
<td>64</td>
<td>745</td>
</tr>
<tr>
<td>Bottom reinforcement bars $\phi = 20, \text{mm}$</td>
<td>750</td>
<td>64</td>
<td>64</td>
<td>150</td>
<td>238</td>
<td>64</td>
<td>64</td>
<td>552</td>
</tr>
</tbody>
</table>

In sections three, five and thirteen, calculations showed no need for reinforcement. Since the rest of the sections were reinforced, it was decided to put in minimum
reinforcement in the sections where no reinforcement was required according to the calculations.

The reinforcement was then placed into the cross-section and the cross-sectional constants for state II model were calculated for each section using the moments and normal forces obtained from the uncracked cross-sections, see section 5.3.4. The results are seen in Table 6.2.

Table 6.2 Maximum positive and negative bending moments, normal forces for corresponding load case from linear analysis and cross-sectional constants for iteration zero.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sd} $[kNm]$</td>
<td>194902</td>
<td>13148</td>
<td>86438</td>
<td>98991</td>
<td>79401</td>
<td>65396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$ $[kN]$</td>
<td>189113</td>
<td>170620</td>
<td>164354</td>
<td>168705</td>
<td>174116</td>
<td>183246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-M_{sd}$ $[kNm]$</td>
<td>68215</td>
<td>65496</td>
<td>4590</td>
<td>163314</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$ $[kN]$</td>
<td>180944</td>
<td>168304</td>
<td>171084</td>
<td>189220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{tp} $[m]$</td>
<td>0,517</td>
<td>0,371</td>
<td>0,348</td>
<td>0,438</td>
<td>0,493</td>
<td>0,384</td>
<td>0,368</td>
<td>0,497</td>
</tr>
<tr>
<td>A_{ef} $[m^2]$</td>
<td>19,033</td>
<td>9,504</td>
<td>8,789</td>
<td>10,462</td>
<td>11,903</td>
<td>9,92</td>
<td>9,426</td>
<td>16,563</td>
</tr>
<tr>
<td>I_{ef} $[m^4]$</td>
<td>4,9</td>
<td>0,828</td>
<td>0,77</td>
<td>1,43</td>
<td>2,015</td>
<td>0,868</td>
<td>0,821</td>
<td>3,975</td>
</tr>
</tbody>
</table>

After the sectional constants for state II were calculated, the new values were used in a new Strip Step 2 analysis and new moments and normal forces were obtained. These are presented in the Table 6.3.
Table 6.3 Maximum positive and negative bending moments and normal forces for corresponding load case obtained in iteration zero.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sd}</td>
<td>125661</td>
<td>24062</td>
<td>72044</td>
<td>38888</td>
<td>69112</td>
<td>29105</td>
<td>6045</td>
<td>31621</td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>188632</td>
<td>169191</td>
<td>170373</td>
<td>163884</td>
<td>168287</td>
<td>173883</td>
<td>182866</td>
<td>187100</td>
</tr>
<tr>
<td>$-M_{sd}$</td>
<td>20204</td>
<td>33530</td>
<td>44391</td>
<td>32930</td>
<td>108697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>180533</td>
<td>166704</td>
<td>170507</td>
<td>184936</td>
<td>188549</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The new moments and normal forces indicated that the reinforcement amount could be reduced. A new lower amount of reinforcement was guessed and the iteration process started.

6.5.2 First iteration

For the first iteration, the reinforcement was reduced with 20 % from the original reinforcement amounts, calculated with linear analysis. In the cross-sections where the number of reinforcement bars was 64, no reduction was made since this was the minimum reinforcement. The new reinforcement amounts were fixed to the values according to Table 6.4.

Table 6.4 The reduced amount of reinforcement bars presumed for the non-linear iteration.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top reinforcement bars $\phi = 20$ mm</td>
<td>860</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>80</td>
<td>64</td>
<td>64</td>
<td>596</td>
</tr>
<tr>
<td>Bottom reinforcement bars $\phi = 20$ mm</td>
<td>600</td>
<td>64</td>
<td>64</td>
<td>120</td>
<td>190</td>
<td>64</td>
<td>64</td>
<td>442</td>
</tr>
</tbody>
</table>

The new cross-sectional constants were calculated using the moments from Table 6.3 from the iteration zero and the reduced amount of reinforcement from Table 6.4. The new calculated cross-sectional constants are presented in Table 6.5 and the new moments and normal forces due to the new sectional constants in Table 6.6. For the detailed calculations of the cross-sectional constants and results from the structural analysis program, see Appendix D1.
Table 6.5 Cross-sectional constants for the first iteration.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{tp} [m]</td>
<td>0.493</td>
<td>0.415</td>
<td>0.264</td>
<td>0.426</td>
<td>0.505</td>
<td>0.414</td>
<td>0.389</td>
<td>0.489</td>
</tr>
<tr>
<td>I_{ef} [m4]</td>
<td>4.226</td>
<td>0.979</td>
<td>0.646</td>
<td>1.26</td>
<td>1.855</td>
<td>0.974</td>
<td>0.886</td>
<td>3.445</td>
</tr>
</tbody>
</table>

Table 6.6 Maximum positive and negative bending moments and normal forces for corresponding load case obtained in the first iteration.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sd}</td>
<td>147185</td>
<td>48753</td>
<td>65890</td>
<td>92336</td>
<td>43714</td>
<td>1246</td>
<td>4657</td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>187765</td>
<td>168407</td>
<td>163060</td>
<td>167451</td>
<td>173053</td>
<td>182199</td>
<td>186507</td>
<td></td>
</tr>
<tr>
<td>$-M_{sd}$</td>
<td>111469</td>
<td>6224</td>
<td>31864</td>
<td>38436</td>
<td>134550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>166763</td>
<td>165847</td>
<td>169798</td>
<td>184193</td>
<td>187898</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.5.3 Final iteration

The following iterations were made in the same way as the first iteration. The iteration results are summarised in Appendix D3. For the fifth and final iteration, detailed calculations of the cross-sectional constants and results obtained from the structural analysis program are shown in Appendix D2. The cross-sectional constants used are shown in Table 6.7.

Table 6.7 Cross-sectional constants for the final iteration.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{tp} [m]</td>
<td>0.644</td>
<td>0.29</td>
<td>0.291</td>
<td>0.429</td>
<td>0.485</td>
<td>0.392</td>
<td>0.371</td>
<td>0.475</td>
</tr>
<tr>
<td>I_{ef} [m4]</td>
<td>5.666</td>
<td>0.668</td>
<td>0.669</td>
<td>1.269</td>
<td>1.776</td>
<td>0.896</td>
<td>0.893</td>
<td>3.396</td>
</tr>
</tbody>
</table>

The new moments and normal forces obtained from the Strip Step 2 analysis after inserting the new sectional constants are presented in Table 6.8.
Table 6.8 Maximum positive and negative bending moments and normal forces for corresponding load case obtained in the final iteration.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sd}</td>
<td>158447</td>
<td>54396</td>
<td>65679</td>
<td>90351</td>
<td>41726</td>
<td>5772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>187587</td>
<td>168008</td>
<td>162660</td>
<td>167127</td>
<td>172782</td>
<td>186107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-M_{sd}$</td>
<td>112574</td>
<td>6563</td>
<td>32459</td>
<td>40317</td>
<td>131532</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>166528</td>
<td>165530</td>
<td>169388</td>
<td>183928</td>
<td>187636</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.5.4 Comments on the iterations

It was mentioned earlier in Chapter 6.2 that special attention needed to be given to the sign change of the bending moment, since the cross-sectional constants normally vary then as well. This means that when the bending moment is positive, the “bottom” reinforcement is in tension and the cross-sectional constants in state II should be determined accordingly. On the other hand, if the same section is exposed to a negative bending moment, the “top” reinforcement is in tension and the cross-sectional constants will have new values. From linear analysis some of the sections obtained both the negative and the positive bending moments. The moments then used in calculations were calculated according to equation (6.1) in Chapter 6.3 and the sectional constants are calculated consequently.
7 Results and Discussion

The bridge was originally designed with a box girder cross-section. Box girders are very stable for arches, since the distribution of moments and normal forces is good throughout the cross-section. The original cross-section was very stiff and did not need to be reinforced. Due to this, the cross-section was redesigned as a solid cross-section in order to illustrate the aim of this Master’s project.

The amounts of reinforcement bars obtained with both linear and non-linear analysis for the solid cross-section are presented and compared in Table 7.1. With respect to that the brake load can act in both directions, and that the arch span of the bridge is almost symmetrical, a symmetric distribution of the required reinforcement has been assumed based on the results in Chapters 5 and 6.

Table 7.1 Number of reinforcement bars, $\phi = 20 \text{mm}$, obtained with linear and non-linear analysis.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top reinforcement bars</td>
<td>1075</td>
<td>64</td>
<td>64</td>
<td>100</td>
<td>100</td>
<td>64</td>
<td>64</td>
<td>1075</td>
</tr>
<tr>
<td>Bottom reinforcement bars</td>
<td>750</td>
<td>64</td>
<td>64</td>
<td>238</td>
<td>238</td>
<td>64</td>
<td>64</td>
<td>750</td>
</tr>
<tr>
<td>Non-linear analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top reinforcement bars</td>
<td>860</td>
<td>64</td>
<td>64</td>
<td>80</td>
<td>80</td>
<td>64</td>
<td>64</td>
<td>860</td>
</tr>
<tr>
<td>Bottom reinforcement bars</td>
<td>600</td>
<td>64</td>
<td>64</td>
<td>190</td>
<td>190</td>
<td>64</td>
<td>64</td>
<td>600</td>
</tr>
</tbody>
</table>

The reduction of reinforcement was done with 20 % at each section, except for the ones with the minimum amount of reinforcement bars. As can be seen from the Table 7.1, calculating with non-linear analysis, lower amounts of reinforcement bars were obtained. The total reduction of the required reinforcement amount was estimated to be around 17 %. With non-linear analysis the real behaviour of the structure was taken into account resulting in lower bending moments and showing that the use of linear analysis, in this case, leads to overestimation of the amount of reinforcement bars.
The loads on the structure in this Master’s project were limited to the vertical loads acting on it and other loads such as wind load were not taken into account. This was done in order to ease the calculations and keep the model in two dimensions only. In order to include the side loads, for example the wind load acting perpendicular to the bridge, a 3D-model should be created where the risk for torsion and buckling is taken into account. In this Master’s project this was not taken into account since the calculations get more extensive and a more advanced structural analysis program is required.

In this Master’s project, the bridge was modelled as two separate structures, the bridge deck and the arch. This could have influenced the results in a negative way. If the arch is not stiff enough, i.e. the support points for the bridge deck are deflecting; the calculated loads on the arch can be incorrect. A test should be made to check whether the assumption of an infinity stiff arch holds with respect to the reaction forces in the columns. This can be made by including the arch, the bridge deck and the columns in one model. However, this was not made in this study, since this appeared to be too complicated with the analysis program used in this Master’s project.

Another thing that could have influenced the results is the approximations made for the sections in between the ones studied. The stiffness of these sections was not updated during the iteration process, resulting in uneven distribution of the centre of gravity as well as of the stiffness along the arch. This might have had effects on the convergence of the bending moments. A test where all the sections are taken into account should be made to see if the stiffness and the centre of gravity would be more even along the arch, leading to a better convergence of the bending moments.
8 Conclusions

The main aim of this Master’s project was to show the economical potential of using non-linear analysis as a design method, especially for slender and compressed concrete structures. This was successfully demonstrated in this Master’s project. In the study, the Munkedal Bridge, a planned highway bridge with an underlying concrete arch supporting the bridge deck on columns, was used as an example.

The original box girder cross-section of the arch was heavily over-dimensioned and could carry the bridge loads without any need for reinforcement. In this study, the cross-section was gradually reduced to a slender solid beam cross-section in order to obtain cracking and a need for reinforcement in the arch.

The required amount of reinforcement was calculated with both linear and non-linear analysis and it was observed that with non-linear analysis, the total amount of reinforcement could be reduced with at least 20% in the cross-sections with more than minimum reinforcement. The reduction obtained with non-linear analysis was estimated to be about 17% for the whole arch.

The iteration process for the non-linear analysis was not as time consuming as expected. The most time consuming process was to find a cross-section that needed to be reinforced, as the original cross-section was over-dimensioned. It can be concluded that for a structure that needs to be reinforced from the start, it is economical to use non-linear analysis in order to reduce the amount of reinforcement obtained through linear analysis. On the other hand, for a structure that does not need to be reinforced from the start, this is not the case since the process in finding a structure that cracks and that needs to be reinforced could be time consuming. Consequently, such a process is economical only if a lower concrete amount or a more rational production can motivate the effort.

A disadvantage with non-linear analysis is in general that the procedure requires a study with summarised loads, i.e. the law of superposition is not valid. However, with the methodology used in this Master’s project this has not to be the case. Within each iteration, the calculations are linear (with a reduced stiffness) and superposition can be used. However, this requires that the complete structure, the arch, the columns and the bridge deck, can be modelled as one structure in 3D and that the critical load combination is found within each iteration.

Finally it can be concluded that the use of non-linear analysis in the design process is economical for slender and compressed concrete structures that has a need for reinforcement and if the reinforcement amount is large.
9 References

APPENDIX A: PERMANENT LOAD CALCULATIONS
Calculations for the permanent loads

The material properties were taken from BBK04, Boverkets handbook in concrete structures.

Material properties

C40/50 \(E_{ck} = 35 \) Mpa

Partial safety factor

Safety class 3

\[\eta_{ym} = 1.2 \]
\[\gamma_n = 1.2 \]

\[E_c = \frac{E_{ck}}{\eta_{ym}\gamma_n} \]

\[E_c = 24.3 \] Mpa

The design value of the modulus of elasticity of concrete C40/50 \(E_c = 24.3 \) Mpa was used in the Strip Step program.

Material Load

Concrete 25 \(\text{kN/m}^3 \)
Asphalt 23 \(\text{kN/m}^3 \)
Steel 1.6 \(\text{kN/m}^2 \)

Cross-section constants of the bridge deck

Deck area 9,1829 \(\text{m}^2 \)
Asphalt area 2,1936 \(\text{m}^2 \)
Cross-section length 24,07 \(\text{m} \)

Permanent load

Bridge deck Load

Concrete 229,5725 \(\text{kN/m} \)
Asphalt 50,4528 \(\text{kN/m} \)
Steel 38,512 \(\text{kN/m} \)

Total 318,5373 \(\text{kN/m} \)

Column

Concrete 25 \(\text{kN/m}^3 \)
Diameter 2 \(\text{m} \)
Area 3.14 \(\text{m}^2 \)
Weight per length 78,5 \(\text{kN/m} \)
Length Point load (2 columns)

<table>
<thead>
<tr>
<th>Column</th>
<th>Length [m]</th>
<th>Load [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19,858</td>
<td>3117,706</td>
</tr>
<tr>
<td>2</td>
<td>7,938</td>
<td>1246,266</td>
</tr>
<tr>
<td>3</td>
<td>1.8</td>
<td>282,6</td>
</tr>
<tr>
<td>4</td>
<td>0.31</td>
<td>48,67</td>
</tr>
<tr>
<td>5</td>
<td>4,309</td>
<td>676,513</td>
</tr>
<tr>
<td>6</td>
<td>13,748</td>
<td>2158,436</td>
</tr>
</tbody>
</table>

Load on the arch

The total point load on the arch is the sum of the permanent loads from the bridge deck and the columns. The Figure below illustrates the point load acting on section 13 of the arch.

Self-weight of the arch

Cross-section: Original

<table>
<thead>
<tr>
<th>Section</th>
<th>A_c [m²]</th>
<th>Concrete Load [kN/m³]</th>
<th>Load [kN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.674</td>
<td>25</td>
<td>491.85</td>
</tr>
<tr>
<td>2</td>
<td>18.211</td>
<td>25</td>
<td>455.28</td>
</tr>
<tr>
<td>3</td>
<td>16.825</td>
<td>25</td>
<td>420.63</td>
</tr>
<tr>
<td>4</td>
<td>15.500</td>
<td>25</td>
<td>387.5</td>
</tr>
<tr>
<td>5</td>
<td>14.914</td>
<td>25</td>
<td>372.86</td>
</tr>
<tr>
<td>6</td>
<td>14.514</td>
<td>25</td>
<td>362.86</td>
</tr>
<tr>
<td>7</td>
<td>14.278</td>
<td>25</td>
<td>356.94</td>
</tr>
<tr>
<td>8</td>
<td>14.202</td>
<td>25</td>
<td>355.06</td>
</tr>
<tr>
<td>9</td>
<td>14.287</td>
<td>25</td>
<td>357.18</td>
</tr>
<tr>
<td>10</td>
<td>14.532</td>
<td>25</td>
<td>363.3</td>
</tr>
<tr>
<td>11</td>
<td>14.938</td>
<td>25</td>
<td>373.46</td>
</tr>
<tr>
<td>12</td>
<td>15.529</td>
<td>25</td>
<td>388.22</td>
</tr>
<tr>
<td>13</td>
<td>16.857</td>
<td>25</td>
<td>421.43</td>
</tr>
<tr>
<td>14</td>
<td>18.181</td>
<td>25</td>
<td>454.52</td>
</tr>
<tr>
<td>15</td>
<td>19.618</td>
<td>25</td>
<td>490.45</td>
</tr>
</tbody>
</table>
Self-weight of the arch

Cross-section: Box girder with reduced height

<table>
<thead>
<tr>
<th>Section</th>
<th>A_c [m2]</th>
<th>Concrete [kN/m3]</th>
<th>Load [kN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15,250</td>
<td>25</td>
<td>381,25</td>
</tr>
<tr>
<td>2</td>
<td>14,080</td>
<td>25</td>
<td>352</td>
</tr>
<tr>
<td>3</td>
<td>12,856</td>
<td>25</td>
<td>321,4</td>
</tr>
<tr>
<td>4</td>
<td>11,940</td>
<td>25</td>
<td>298,5</td>
</tr>
<tr>
<td>5</td>
<td>11,735</td>
<td>25</td>
<td>293,375</td>
</tr>
<tr>
<td>6</td>
<td>11,401</td>
<td>25</td>
<td>285,025</td>
</tr>
<tr>
<td>7</td>
<td>11,202</td>
<td>25</td>
<td>280,05</td>
</tr>
<tr>
<td>8</td>
<td>11,140</td>
<td>25</td>
<td>278,5</td>
</tr>
<tr>
<td>9</td>
<td>11,210</td>
<td>25</td>
<td>280,25</td>
</tr>
<tr>
<td>10</td>
<td>11,415</td>
<td>25</td>
<td>285,375</td>
</tr>
<tr>
<td>11</td>
<td>11,756</td>
<td>25</td>
<td>293,9</td>
</tr>
<tr>
<td>12</td>
<td>12,249</td>
<td>25</td>
<td>306,225</td>
</tr>
<tr>
<td>13</td>
<td>13,454</td>
<td>25</td>
<td>336,35</td>
</tr>
<tr>
<td>14</td>
<td>14,654</td>
<td>25</td>
<td>366,35</td>
</tr>
<tr>
<td>15</td>
<td>15,949</td>
<td>25</td>
<td>398,725</td>
</tr>
</tbody>
</table>

Self-weight of the arch

Cross-section: Box girder with constant cross-section

<table>
<thead>
<tr>
<th>Section</th>
<th>A_c [m2]</th>
<th>Concrete [kN/m3]</th>
<th>Load [kN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 15</td>
<td>11,140</td>
<td>25</td>
<td>278,5</td>
</tr>
</tbody>
</table>

Self-weight of the arch

Cross-section: Solid beam with constant cross-section

<table>
<thead>
<tr>
<th>Section</th>
<th>A_c [m2]</th>
<th>Concrete [kN/m3]</th>
<th>Load [kN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 15</td>
<td>19,500</td>
<td>25</td>
<td>487,5</td>
</tr>
</tbody>
</table>
APPENDIX B: TRAFFIC LOAD CALCULATIONS
Calculation for traffic load acting on the arch

Figure 1. Load type 5.

Figure 2. Traffic load in a cross-section.
Axle load

Quantity

\[A_1 := 250 \text{kN} \]
\[a_1 := 2 \]
\[A_{1t} := A_1 a_1 \]
\[A_{1t} = 5 \times 10^5 \text{ N} \]

\[A_2 := 170 \text{kN} \]
\[a_2 := 2 \]
\[A_{2t} := A_2 a_2 \]
\[A_{2t} = 3.4 \times 10^5 \text{ N} \]

Total axle load

\[A_{\text{tot}} := A_{1t} + A_{2t} \]
\[A_{\text{tot}} = 840 \text{kN} \]

Figure 3. Influence line of section 7 of the bridge deck due to the load position.

Formula: \[R_{zn} = A_{\text{tot}} \text{ (Influence line values)} \]
Figure 4. Influence line of section 2 of the bridge deck due to the load position.

\[
\begin{align*}
\max & \quad R_{z2} := A_{\text{tot}}(-0.98 - 1 - 0.96) \\
\text{till} & \quad R_{z23} := A_{\text{tot}}(-0.05 + 0.1) \\
\text{till} & \quad R_{z24} := A_{\text{tot}}(-0.04 + 0.02) \\
\text{till} & \quad R_{z25} := A_{\text{tot}}(-0.01 + 0.02) \\
\text{till} & \quad R_{z26} := A_{\text{tot}}(0) \\
\text{till} & \quad R_{z27} := A_{\text{tot}}(0)
\end{align*}
\]

\[
\begin{align*}
R_{z2} & = -2.47 \times 10^6 \text{ N} \\
R_{z23} & = 4.2 \times 10^4 \text{ N} \\
R_{z24} & = -1.68 \times 10^4 \text{ N} \\
R_{z25} & = 8.4 \times 10^3 \text{ N} \\
R_{z26} & = 0 \text{ N} \\
R_{z27} & = 0 \text{ N}
\end{align*}
\]
Section 5

Figure 5. Influence line of section 3 of the bridge deck due to the load position.

\[
\begin{align*}
\text{max} & \quad R_{z3} := A_{tot} (-0.894 - 1 - 0.99 - 0.031 - 0.025 - 0.025) \\
till & \quad R_{z32} := A_{tot} (0.067 - 0.033) \\
till & \quad R_{z34} := A_{tot} (0.122 + 0.089 + 0.0722 - 0.2 - 0.022) \\
till & \quad R_{z35} := A_{tot} (-0.655 - 0.8325 - 0.878 + 0.05) \\
till & \quad R_{z36} := A_{tot} (-0.5 - 0.275 - 0.219 - 0.0125) \\
till & \quad R_{z37} := A_{tot} (0.11 + 0.055 + 0.044)
\end{align*}
\]

\[
\begin{align*}
R_{z3} &= -2.491 \times 10^6 \text{ N} \\
R_{z32} &= 2.856 \times 10^4 \text{ N} \\
R_{z34} &= 5.141 \times 10^4 \text{ N} \\
R_{z35} &= -1.945 \times 10^6 \text{ N} \\
R_{z36} &= -8.455 \times 10^5 \text{ N} \\
R_{z37} &= 1.756 \times 10^5 \text{ N}
\end{align*}
\]
Figure 6. Influence line of section 4 of the bridge deck due to the load position.

\[
\begin{align*}
\text{max} & \quad R_{z4} := A_{\text{tot}} \cdot (0.98 - 1 - 0.96 - 0.03 - 0.04 - 0.05) \\
\text{till} & \quad R_{z42} := A_{\text{tot}} \cdot (-0.01 + 0.05 - 0.98 - 0.96 - 0.83) \\
\text{till} & \quad R_{z43} := A_{\text{tot}} \cdot (0.03 - 0.15 + 0.1 + 0.12 + 0.18) \\
\text{till} & \quad R_{z45} := A_{\text{tot}} \cdot (-0.05 + 0.1 + 0.01 + 0.01 + 0.02) \\
\text{till} & \quad R_{z46} := A_{\text{tot}} \cdot (0.01 - 0.02) \\
\text{till} & \quad R_{z47} := A_{\text{tot}} \cdot (-0.01 + 0.01)
\end{align*}
\]

\[
\begin{align*}
R_{z4} & = -2.57 \times 10^6 \text{ N} \\
R_{z42} & = -2.293 \times 10^6 \text{ N} \\
R_{z43} & = 2.352 \times 10^5 \text{ N} \\
R_{z45} & = 7.56 \times 10^4 \text{ N} \\
R_{z46} & = -8.4 \times 10^3 \text{ N} \\
R_{z47} & = 0 \text{ N}
\end{align*}
\]
Figure 7. Influence line of section 5 of the bridge deck due to the load position.

\[
\begin{align*}
\max R_{Z5} &= A_{tot} \cdot (-0.978 - 1 - 0.956 - 0.022 - 0.278 - 0.033) \\
till R_{Z52} &= A_{tot} \cdot (-0.011 - 0.178 - 0.233 - 0.44) \\
till R_{Z53} &= A_{tot} \cdot (0.05 - 0.9 - 0.875 - 0.6879) \\
till R_{Z54} &= A_{tot} \cdot (0.044 - 0.1556 + 0.077 + 0.0888 + 0.122) \\
till R_{Z56} &= A_{tot} \cdot (-0.05 + 0.075) \\
till R_{Z57} &= A_{tot} \cdot (0.0167 - 0.022)
\end{align*}
\]

\[
\begin{align*}
R_{Z5} &= -2.744 \times 10^6 \text{ N} \\
R_{Z52} &= -7.241 \times 10^5 \text{ N} \\
R_{Z53} &= -2.026 \times 10^6 \text{ N} \\
R_{Z54} &= 1.48 \times 10^5 \text{ N} \\
R_{Z56} &= 2.1 \times 10^4 \text{ N} \\
R_{Z57} &= -4.452 \times 10^3 \text{ N}
\end{align*}
\]
Section 11

Figure 8. Influence line of section 6 of the bridge deck due to the load position.

\[
\text{max} \quad R_{z6} := A_{\text{tot}}(-0.98 - 1 - 0.92 - 3\cdot 0.033) \quad \Rightarrow R_{z6} = -2.519 \times 10^6 \text{ N}
\]

\[
\text{till} \quad R_{z62} := A_{\text{tot}}(0.04 + 0.055 + 0.099) \quad \Rightarrow R_{z62} = 1.637 \times 10^6 \text{ N}
\]

\[
\text{till} \quad R_{z63} := A_{\text{tot}}(-0.2 - 0.2375 - 0.4875) \quad \Rightarrow R_{z63} = -7.77 \times 10^5 \text{ N}
\]

\[
\text{till} \quad R_{z64} := A_{\text{tot}}(0.045 - 0.944 - 0.911 - 0.711) \quad \Rightarrow R_{z64} = -2.118 \times 10^6 \text{ N}
\]

\[
\text{till} \quad R_{z65} := A_{\text{tot}}(0.055 - 0.099 + 0.077 + 0.088 + 0.122) \quad \Rightarrow R_{z65} = 2.041 \times 10^6 \text{ N}
\]

\[
\text{till} \quad R_{z67} := A_{\text{tot}}(-0.05 + 0.07) \quad \Rightarrow R_{z67} = 1.68 \times 10^4 \text{ N}
\]
Figure 9. Influence line of section 7 of the bridge deck due to the load position.

\[
\text{max } R_{z7} := A_{\text{tot}}(-1.05 - 1 - 0.889 - 0.028 - 0.02) \\
\text{till } R_{z72} := A_{\text{tot}}(-0.011 - 0.0167 - 0.0333) \\
\text{till } R_{z73} := A_{\text{tot}}(0.05 + 0.0625 + 0.1125) \\
\text{till } R_{z74} := A_{\text{tot}}(-0.011 - 0.128 - 0.244 - 0.489) \\
\text{till } R_{z75} := A_{\text{tot}}(0.055 - 0.939 - 0.889 - 0.699) \\
\text{till } R_{z76} := A_{\text{tot}}(0.03125 - 0.2125 + 0.08125 + 0.1 + 0.125)
\]

\[
R_{z7} = -2.509 \times 10^6 \text{ N} \\
R_{z72} = -5.132 \times 10^4 \text{ N} \\
R_{z73} = 1.89 \times 10^5 \text{ N} \\
R_{z74} = -7.325 \times 10^5 \text{ N} \\
R_{z75} = -2.076 \times 10^6 \text{ N} \\
R_{z76} = 1.05 \times 10^5 \text{ N}
\]
Evenly distributed load

\[
p_1 := 4 \frac{kN}{m^2} \quad p_2 := 3 \frac{kN}{m^2} \quad p_3 := 2 \frac{kN}{m^2}
\]

Quantity
\[n := 2\]

Lane width
\[w := 3 \cdot m\]

Total
\[p_{tot} := (p_1 + p_2 + p_3) \cdot n \cdot w\]
\[p_{tot} = 54 \frac{kN}{m}\]

Formula:
\[Q_n = p_{tot} \cdot (\text{Influence line areas}) + R_{zn}\]

Figure 10. Influence line of section 2 of the bridge deck due to the load position.

Load case 3

max \(Q_3 := p_{tot} \cdot (-21.818 - 17.136 - 0.658 - 0.048) \cdot m + R_{z2} \)
\[Q_3 = -4.611 \times 10^6 N\]

till \(Q_5 := p_{tot} \cdot (3.769 - 18.252 + 2.669 + 0.196) \cdot m + R_{z23} \)
\[Q_5 = -5.854 \times 10^5 N\]

till \(Q_7 := p_{tot} \cdot (-1.01 + 2.74 - 17.998 - 0.737) \cdot m + R_{z24} \)
\[Q_7 = -9.351 \times 10^5 N\]

till \(Q_9 := p_{tot} \cdot (0.272 - 0.737 - 17.989 + 2.763) \cdot m + R_{z25} \)
\[Q_9 = -8.389 \times 10^5 N\]

till \(Q_{11} := p_{tot} \cdot (-0.072 + 0.197 + 2.679 - 18.252) \cdot m + R_{z26} \)
\[Q_{11} = -8.342 \times 10^5 N\]

till \(Q_{13} := p_{tot} \cdot (0.018 - 0.049 - 0.661 - 17.136) \cdot m + R_{z27} \)
\[Q_{13} = -9.627 \times 10^5 N\]
Load case 5

\[
\begin{align*}
\text{max} & \quad Q_5 := p_{\text{tot}}(-18.252 - 17.935 - 0.719 - 0.073) \cdot m + R_{z3} & Q_5 &= -4.487 \times 10^6 \text{ N} \\
\text{till} & \quad Q_3 := p_{\text{tot}}(-17.136 + 2.455 + 0.177 + 0.018) \cdot m + R_{z32} & Q_3 &= -7.537 \times 10^5 \text{ N} \\
\text{till} & \quad Q_7 := p_{\text{tot}}(2.74 - 18.019 + 2.7 + 0.272) \cdot m + R_{z34} & Q_7 &= -6.132 \times 10^5 \text{ N} \\
\text{till} & \quad Q_9 := p_{\text{tot}}(-0.737 + 2.7 + -18.038 - 1.013) \cdot m + R_{z35} & Q_9 &= -2.868 \times 10^6 \text{ N} \\
\text{till} & \quad Q_{11} := p_{\text{tot}}(0.197 - 0.716 - 17.935 + 3.78) \cdot m + R_{z36} & Q_{11} &= -1.638 \times 10^6 \text{ N} \\
\text{till} & \quad Q_{13} := p_{\text{tot}}(-0.049 + 0.177 + 2.443 - 21.818) \cdot m + R_{z37} & Q_{13} &= -8.638 \times 10^5 \text{ N}
\end{align*}
\]

Load case 7

\[
\begin{align*}
\text{max} & \quad Q_7 := p_{\text{tot}}(-1.01 - 18.019 - 17.998 - 0.737) \cdot m + R_{z4} & Q_7 &= -4.61 \times 10^6 \text{ N} \\
\text{till} & \quad Q_3 := p_{\text{tot}}(-0.048 - 0.658 + 2.455 - 21.818) \cdot m + R_{z42} & Q_3 &= -3.377 \times 10^6 \text{ N} \\
\text{till} & \quad Q_5 := p_{\text{tot}}(0.196 + 2.669 - 17.935 + 3.769) \cdot m + R_{z43} & Q_5 &= -3.751 \times 10^5 \text{ N} \\
\text{till} & \quad Q_9 := p_{\text{tot}}(0.272 + 2.7 - 17.989 + 2.763) \cdot m + R_{z45} & Q_9 &= -5.861 \times 10^5 \text{ N} \\
\text{till} & \quad Q_{11} := p_{\text{tot}}(-18.252 + 2.679 - 0.716 - 0.072) \cdot m + R_{z46} & Q_{11} &= -8.919 \times 10^5 \text{ N} \\
\text{till} & \quad Q_{13} := p_{\text{tot}}(0.018 + 0.177 - 0.661 - 17.139) \cdot m + R_{z47} & Q_{13} &= -9.505 \times 10^5 \text{ N}
\end{align*}
\]

Load case 9

\[
\begin{align*}
\text{max} & \quad Q_9 := p_{\text{tot}}(-0.737 - 17.989 - 18.038 - 1.013) \cdot m + R_{z5} & Q_9 &= -4.784 \times 10^6 \text{ N} \\
\text{till} & \quad Q_3 := p_{\text{tot}}(0.018 + 0.177 - 0.658 - 17.139) \cdot m + R_{z52} & Q_3 &= -1.674 \times 10^6 \text{ N} \\
\text{till} & \quad Q_5 := p_{\text{tot}}(-0.073 - 0.719 + 2.669 - 18.252) \cdot m + R_{z53} & Q_5 &= -2.911 \times 10^6 \text{ N} \\
\text{till} & \quad Q_7 := p_{\text{tot}}(0.272 + 2.7 - 17.998 + 2.74) \cdot m + R_{z54} & Q_7 &= -5.154 \times 10^5 \text{ N} \\
\text{till} & \quad Q_{11} := p_{\text{tot}}(3.78 - 17.935 + 2.679 + 0.197) \cdot m + R_{z56} & Q_{11} &= -5.881 \times 10^5 \text{ N} \\
\text{till} & \quad Q_{13} := p_{\text{tot}}(-21.818 + 2.443 - 0.661 - 0.049) \cdot m + R_{z57} & Q_{13} &= -1.089 \times 10^6 \text{ N}
\end{align*}
\]
Load case 11

max \(Q_{11} := p_{\text{tot}}(-0.072 - 0.716 - 17.935 - 18.252)\cdot m + R_{z6} \) \[Q_{11} = -4.516 \times 10^6 \text{ N} \]

till \(Q_3 := p_{\text{tot}}(-0.048 + 0.177 + 2.455 - 21.818)\cdot m + R_{z62} \) \[Q_3 = -8.749 \times 10^5 \text{ N} \]

till \(Q_5 := p_{\text{tot}}(0.196 - 0.719 - 17.935 + 3.769)\cdot m + R_{z63} \) \[Q_5 = -1.57 \times 10^6 \text{ N} \]

till \(Q_7 := p_{\text{tot}}(-0.737 + 2.7 - 18.019 - 1.010)\cdot m + R_{z64} \) \[Q_7 = -3.039 \times 10^6 \text{ N} \]

till \(Q_9 := p_{\text{tot}}(2.763 - 18.038 + 2.7 + 0.272)\cdot m + R_{z65} \) \[Q_9 = -4.602 \times 10^5 \text{ N} \]

till \(Q_{13} := p_{\text{tot}}(-17.136 + 2.443 + 0.177 + 0.018)\cdot m + R_{z67} \) \[Q_{13} = -7.661 \times 10^5 \text{ N} \]

Load case 13

max \(Q_{13} := p_{\text{tot}}(-0.049 - 0.661 - 17.136 - 21.818)\cdot m + R_{z7} \) \[Q_{13} = -4.651 \times 10^6 \text{ N} \]

till \(Q_3 := p_{\text{tot}}(0.018 - 0.048 - 0.658 - 17.136)\cdot m + R_{z72} \) \[Q_3 = -1.014 \times 10^6 \text{ N} \]

till \(Q_5 := p_{\text{tot}}(-0.073 + 0.196 + 2.669 - 18.252)\cdot m + R_{z73} \) \[Q_5 = -6.458 \times 10^5 \text{ N} \]

till \(Q_7 := p_{\text{tot}}(2.72 - 0.737 - 17.998 + 2.740)\cdot m + R_{z74} \) \[Q_7 = -1.582 \times 10^6 \text{ N} \]

till \(Q_9 := p_{\text{tot}}(-1.013 + 2.763 - 17.989 - 0.737)\cdot m + R_{z75} \) \[Q_9 = -2.993 \times 10^6 \text{ N} \]

till \(Q_{11} := p_{\text{tot}}(3.780 - 18.252 + 2.679 + 0.197)\cdot m + R_{z76} \) \[Q_{11} = -5.212 \times 10^5 \text{ N} \]
C1: Original box girder cross-section

Input data for the structural analysis program

Table 1 Input data for the original arch cross-section.

<table>
<thead>
<tr>
<th>Section</th>
<th>h [m]</th>
<th>A_c [m²]</th>
<th>I_c [m⁴]</th>
<th>Z_c [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.340</td>
<td>19,674</td>
<td>84,988</td>
<td>2,714</td>
</tr>
<tr>
<td>2</td>
<td>4.782</td>
<td>18,211</td>
<td>63,155</td>
<td>2,374</td>
</tr>
<tr>
<td>3</td>
<td>4.272</td>
<td>16,825</td>
<td>46,415</td>
<td>2,064</td>
</tr>
<tr>
<td>4</td>
<td>3.800</td>
<td>15.5</td>
<td>33,524</td>
<td>1,779</td>
</tr>
<tr>
<td>5</td>
<td>3.434</td>
<td>14,914</td>
<td>26,251</td>
<td>1,609</td>
</tr>
<tr>
<td>6</td>
<td>3.184</td>
<td>14,514</td>
<td>21,858</td>
<td>1,494</td>
</tr>
<tr>
<td>7</td>
<td>3.036</td>
<td>14,278</td>
<td>19,47</td>
<td>1,425</td>
</tr>
<tr>
<td>8</td>
<td>2.989</td>
<td>14,202</td>
<td>18,744</td>
<td>1,404</td>
</tr>
<tr>
<td>9</td>
<td>3.042</td>
<td>14,287</td>
<td>19,563</td>
<td>1,428</td>
</tr>
<tr>
<td>10</td>
<td>3,195</td>
<td>14,532</td>
<td>22,041</td>
<td>1,499</td>
</tr>
<tr>
<td>11</td>
<td>3,449</td>
<td>14,938</td>
<td>26,53</td>
<td>1,616</td>
</tr>
<tr>
<td>12</td>
<td>3,818</td>
<td>15,529</td>
<td>33,908</td>
<td>1,788</td>
</tr>
<tr>
<td>13</td>
<td>4,292</td>
<td>16,857</td>
<td>46,939</td>
<td>2,074</td>
</tr>
<tr>
<td>14</td>
<td>4,763</td>
<td>18,181</td>
<td>62,555</td>
<td>2,365</td>
</tr>
<tr>
<td>15</td>
<td>5,305</td>
<td>19,618</td>
<td>83,659</td>
<td>2,696</td>
</tr>
</tbody>
</table>

The results obtained from the structural analysis program

Cross-section: Original
<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>42277</td>
<td>-147391</td>
</tr>
<tr>
<td>3</td>
<td>-2459</td>
<td>-143501</td>
</tr>
<tr>
<td>5</td>
<td>11816</td>
<td>-135917</td>
</tr>
<tr>
<td>7</td>
<td>54296</td>
<td>-132666</td>
</tr>
<tr>
<td>9</td>
<td>63320</td>
<td>-133628</td>
</tr>
<tr>
<td>11</td>
<td>41499</td>
<td>-129937</td>
</tr>
<tr>
<td>13</td>
<td>17647</td>
<td>-148792</td>
</tr>
<tr>
<td>15</td>
<td>-180361</td>
<td>-154358</td>
</tr>
</tbody>
</table>

Load case 5

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>42277</td>
<td>-147391</td>
</tr>
<tr>
<td>3</td>
<td>-26108</td>
<td>-135274</td>
</tr>
<tr>
<td>5</td>
<td>44732</td>
<td>-145297</td>
</tr>
<tr>
<td>7</td>
<td>50720</td>
<td>-124710</td>
</tr>
<tr>
<td>9</td>
<td>80048</td>
<td>-143336</td>
</tr>
<tr>
<td>11</td>
<td>41499</td>
<td>-129937</td>
</tr>
<tr>
<td>13</td>
<td>14044</td>
<td>-139889</td>
</tr>
<tr>
<td>15</td>
<td>-152573</td>
<td>-164303</td>
</tr>
</tbody>
</table>

Load case 7

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>42277</td>
<td>-147391</td>
</tr>
<tr>
<td>3</td>
<td>-26108</td>
<td>-135274</td>
</tr>
<tr>
<td>5</td>
<td>7604</td>
<td>-127839</td>
</tr>
<tr>
<td>7</td>
<td>107698</td>
<td>-140175</td>
</tr>
<tr>
<td>9</td>
<td>62499</td>
<td>-125566</td>
</tr>
<tr>
<td>11</td>
<td>41499</td>
<td>-129937</td>
</tr>
<tr>
<td>13</td>
<td>20486</td>
<td>-156403</td>
</tr>
<tr>
<td>15</td>
<td>-123048</td>
<td>-161896</td>
</tr>
</tbody>
</table>

Load case 9

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>67951</td>
<td>-168200</td>
</tr>
<tr>
<td>3</td>
<td>-26108</td>
<td>-135274</td>
</tr>
<tr>
<td>5</td>
<td>11841</td>
<td>-146510</td>
</tr>
<tr>
<td>7</td>
<td>50720</td>
<td>-124710</td>
</tr>
<tr>
<td>9</td>
<td>113584</td>
<td>-144533</td>
</tr>
<tr>
<td>11</td>
<td>41499</td>
<td>-129937</td>
</tr>
<tr>
<td>13</td>
<td>14044</td>
<td>-139889</td>
</tr>
<tr>
<td>15</td>
<td>-156697</td>
<td>-165396</td>
</tr>
</tbody>
</table>
Load case 11

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>101718</td>
<td>-166367</td>
</tr>
<tr>
<td>3</td>
<td>-26108</td>
<td>-135274</td>
</tr>
<tr>
<td>5</td>
<td>7604</td>
<td>-127839</td>
</tr>
<tr>
<td>7</td>
<td>68466</td>
<td>-142267</td>
</tr>
<tr>
<td>9</td>
<td>62499</td>
<td>-125566</td>
</tr>
<tr>
<td>11</td>
<td>84480</td>
<td>-149071</td>
</tr>
<tr>
<td>13</td>
<td>14044</td>
<td>-139889</td>
</tr>
<tr>
<td>15</td>
<td>-182624</td>
<td>-145454</td>
</tr>
</tbody>
</table>

Load case 13

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>113426</td>
<td>-162957</td>
</tr>
<tr>
<td>3</td>
<td>25660</td>
<td>-150518</td>
</tr>
<tr>
<td>5</td>
<td>7604</td>
<td>-127839</td>
</tr>
<tr>
<td>7</td>
<td>95963</td>
<td>-140520</td>
</tr>
<tr>
<td>9</td>
<td>41499</td>
<td>-129937</td>
</tr>
<tr>
<td>11</td>
<td>30800</td>
<td>-157897</td>
</tr>
<tr>
<td>13</td>
<td>-182624</td>
<td>-145454</td>
</tr>
</tbody>
</table>

Maximum values

<table>
<thead>
<tr>
<th>Section</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>113426</td>
<td>-162957</td>
<td>-67803</td>
<td>-158312</td>
</tr>
<tr>
<td>3</td>
<td>44732</td>
<td>-145297</td>
<td>-36085</td>
<td>-142493</td>
</tr>
<tr>
<td>5</td>
<td>107698</td>
<td>-140175</td>
<td>-1870</td>
<td>-145771</td>
</tr>
<tr>
<td>7</td>
<td>113584</td>
<td>-144533</td>
<td>-33577</td>
<td>-158884</td>
</tr>
<tr>
<td>9</td>
<td>84480</td>
<td>-149071</td>
<td>-304456</td>
<td>-162780</td>
</tr>
<tr>
<td>11</td>
<td>30800</td>
<td>-157897</td>
<td>-304456</td>
<td>-162780</td>
</tr>
<tr>
<td>13</td>
<td>30800</td>
<td>-157897</td>
<td>-304456</td>
<td>-162780</td>
</tr>
<tr>
<td>15</td>
<td>-182624</td>
<td>-145454</td>
<td>-253529</td>
<td>-164480</td>
</tr>
</tbody>
</table>
Calculation for steel area (I cross-section)

Cross-section: Original

Material properties

Concrete C40/50

Partial safety factor

\[\gamma_n := 1.2 \]

Safety class 3

\[f_{cc} := 38 \text{ MPa} \]
\[e_{cu} := 3.5 \times 10^{-3} \]
\[f_{cc} := \frac{f_{cc}}{(\eta\gamma_m\gamma_n)} \]
\[f_{cc} = 2.111 \times 10^7 \text{ Pa} \]

Stress block factors

\[\beta := 0.443 \]
\[\alpha := 0.877 \]

Steel

Partial safety factor

\[\eta\gamma_m := 1.15 \]
\[\eta\gamma_{mes} := 1.05 \]
\[\gamma_n := 1.2 \]

\[f_{sk} := 500 \text{ MPa} \]
\[E_{sm} := 200 \text{ GPa} \]
\[f_{sd} := \frac{f_{sk}}{\eta\gamma_m\gamma_n} \]
\[f_{sd} = 3.623 \times 10^8 \text{ Pa} \]
\[E_s := \frac{E_{sm}}{\eta\gamma_{mes}\gamma_n} \]
\[E_s = 1.587 \times 10^{11} \text{ Pa} \]
\[\varepsilon_{sy} := \frac{f_{sd}}{E_s} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
For simplification of the calculations, we assumed that the cross-section is composed of 4 identical I-beams, see Figure 1.

Section 1

Positive moment

Forces

\[M_{sd} := \frac{113426}{4} \text{kNm} \quad N_{sd} := \frac{162957}{4} \text{kN} \]

\[M_{sd} = 2.836 \times 10^4 \text{kNm} \quad N_{sd} = 4.074 \times 10^4 \text{kN} \]

Cross-section constants

\[h := 5.340 \text{m} \quad cc := 0.05 \text{m} \]

\[d := h - cc \quad d = 5.29 \text{m} \]

\[e := d - \frac{h}{2} \quad e = 2.62 \text{m} \]

\[b_w := 1.9 \text{m} \]

\[t_f := 0.35 \text{m} \quad x_1 := 0.001 \text{m} \]

\[b := 4.2 \text{m} \quad t_b := 0.5 \text{m} \]

\[M_s := M_{sd} + N_{sd} e \quad M_s = 1.351 \times 10^5 \text{mkN} \]
Assumption: Compressed area does fit in the flange

\[x := \text{root} \left[f_{cc} \cdot b \cdot 0.8 x_1 \left(d - 0.4 x_1 \right) - M_{sd} x_1 \right] \]

\[x = 0.37 \text{m} \]

\[0.8 x = 0.296 \text{m} \quad < t_f \quad \text{OK!} \]

\[\varepsilon_s := \frac{d - x}{x} \varepsilon_{cu} \quad \varepsilon_s = 0.046 \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[F_c := f_{cc} \cdot b \cdot 0.8 x \quad F_c = 2.627 \times 10^4 \text{kN} \]

\[F_s := F_c - N_{sd} \quad F_s = -1.447 \times 10^4 \text{kN} \]

\[A_s := \frac{F_s}{f_{sd}} \quad A_s = -0.04 \text{m}^2 \]

Steel diameter

\[\phi := 20 \text{mm} \]

\[A_{si} := \pi \left(\frac{\phi}{2} \right)^2 \quad A_{si} = 3.142 \times 10^{-4} \text{m}^2 \]

Amount of steel needed

\[n := \frac{A_s}{A_{si}} \quad n = -127.088 \]

\textbf{Section does not need reinforcement}

\textbf{Section 1}

Negative moment

\textbf{Forces}

\[M_{sd} := \frac{67803}{4} \text{kNm} \quad N_{sd} := \frac{158312}{4} \text{kN} \]

\[M_{sd} = 1.695 \times 10^4 \text{kNm} \quad N_{sd} = 3.958 \times 10^4 \text{kN} \]
Cross-section constants

\[h := 5.340 \text{ m} \quad \text{cc} := 0.05 \text{ m} \]
\[d := h - \text{cc} \quad d = 5.29 \text{ m} \]
\[b := 4.2 \text{ m} \quad t_b := 0.5 \text{ m} \]
\[e := d - \frac{h}{2} \quad e = 2.62 \text{ m} \]
\[b_f := 1.9 \text{ m} \quad b_w := 0.4 \text{ m} \]
\[t_f := 0.35 \text{ m} \quad x_1 := 0.0001 \text{ m} \]
\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 1.206 \times 10^5 \text{ mkN} \]

Assumption: Compressed area does fit in the flange

\[x := \sqrt{f_{cc} \cdot b \cdot 0.8 \cdot x_1 \left(d - 0.4 \cdot x_1 \right) - M_s \cdot x_1} \]
\[x = 0.33 \text{ m} \]
\[0.8 \cdot x = 0.264 \text{ m} < t_b \quad \text{OK!} \]
\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 0.053 > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
\[F_c := f_{cc} \cdot b \cdot 0.8 \cdot x \quad F_c = 2.339 \times 10^4 \text{ kN} \]
\[F_s := F_c - N_{sd} \quad F_s = -1.619 \times 10^4 \text{ kN} \]
\[A_s := \frac{F_s}{f_{sd}} \quad A_s = -0.045 \text{ m}^2 \]

Steel diameter
\[\phi := 20 \text{ mm} \]
\[A_{si} := \pi \left(\frac{\phi}{2} \right)^2 \quad A_{si} = 3.142 \times 10^{-4} \text{ m}^2 \]

Amount of steel needed
\[n := \frac{A_s}{A_{si}} \quad n = -142.222 \]

Section does not need reinforcement
Section 3

Negative moment

Forces

\[
\begin{align*}
M_{sd} := & \frac{79288}{4} \text{kNm} \\
N_{sd} := & \frac{153890}{4} \text{kN}
\end{align*}
\]

\[
M_{sd} = 1.982 \times 10^4 \text{kNm} \\
N_{sd} = 3.847 \times 10^4 \text{kN}
\]

Cross-section constants

\[
\begin{align*}
h & := 4.272 \text{ m} \\
d & := h - cc \\
e & := d - \frac{h}{2} \\
b_f & := 1.9 \text{ m} \\
t_f & := 0.35 \text{ m} \\
b & := 4.2 \text{ m}
\end{align*}
\]

\[
\begin{align*}
cc & := 0.05 \text{ m} \\
d & = 4.222 \text{ m} \\
e & = 2.086 \text{ m} \\
b_w & := 0.4 \text{ m} \\
x_1 & := 0.0001 \text{ m} \\
t_b & := 0.4 \text{ m}
\end{align*}
\]

\[
M_s := M_{sd} + N_{sd} \cdot e \\
M_s = 1.001 \times 10^5 \text{ mkN}
\]

Assumption: Compressed area does fit in the flange

\[
x := \text{root} \left[f_{cc} \cdot b \cdot 0.8 \cdot x_1 \left(d - 0.4 \cdot x_1 \right) - M_s \cdot x_1 \right]
\]

\[
x = 0.345 \text{ m}
\]

\[
0.8 \cdot x = 0.276 \text{ m} < t_b \quad \text{OK!}
\]

\[
\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu}
\]

\[
\varepsilon_s = 0.039 \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[
F_c := f_{cc} \cdot b \cdot 0.8 \cdot x
\]

\[
F_c = 2.451 \times 10^4 \text{ kN}
\]

\[
F_s := F_c - N_{sd}
\]

\[
F_s = -1.397 \times 10^4 \text{ kN}
\]

\[
A_s := \frac{F_s}{f_{sd}}
\]

\[
A_s = -0.039 \text{ m}^2
\]

Amount of steel needed

\[
n := \frac{A_s}{A_{si}}
\]

\[
n = -122.705
\]

Section does not need reinforcement
Section 5

Positive moment

\[M_{sd} := \frac{44732}{4} \, \text{kNm} \quad N_{sd} := \frac{145297}{4} \, \text{kN} \]

\[M_{sd} = 1.118 \times 10^4 \, \text{kNm} \quad N_{sd} = 3.632 \times 10^4 \, \text{kN} \]

Cross-section constants

\[h := 3.434 \, \text{m} \quad cc := 0.05 \, \text{m} \quad b_f := 1.9 \, \text{m} \quad b_w := 0.4 \, \text{m} \]
\[d := h - cc \quad d = 3.384 \, \text{m} \quad t_f := 0.35 \, \text{m} \quad x_1 := 0.0001 \, \text{m} \]
\[e := d - \frac{h}{2} \quad e = 1.667 \, \text{m} \quad b := 4.2 \, \text{m} \quad t_b := 0.35 \, \text{m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 7.174 \times 10^4 \, \text{mkN} \]

Assumption: Compressed area does fit in the flange

\[x := \sqrt{\frac{f_{cc} \cdot b \cdot 0.8 \cdot x_1 \cdot (d - 0.4 \cdot x_1) - M_s \cdot x_1}{M_{sd}}} \]
\[x = 0.31 \, \text{m} \]
\[0.8 \cdot x = 0.248 \, \text{m} \quad < \quad t_f \quad \text{OK!} \]
\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 0.035 \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
\[F_c := f_{cc} \cdot b \cdot 0.8 \cdot x \quad F_c = 2.201 \times 10^4 \, \text{kN} \]
\[F_s := F_c - N_{sd} \quad F_s = -1.432 \times 10^4 \, \text{kN} \]
\[A_s := \frac{F_s}{f_{sd}} \quad A_s = -0.04 \, \text{m}^2 \]

Amount of steel needed

\[n := \frac{A_s}{A_{si}} \quad n = -125.796 \]

Section does not need reinforcement
Section 5

Negative moment

Forces

\[M_{sd} := \frac{36085}{4} \text{kNm} \quad N_{sd} := \frac{142493}{4} \text{kN} \]

\[M_{sd} = 9.021 \times 10^3 \text{kNm} \quad N_{sd} = 3.562 \times 10^4 \text{kN} \]

Cross-section constants

\[h := 3.434 \text{m} \quad cc := 0.05 \text{m} \quad b_f := 1.9 \text{m} \quad b_w := 0.4 \text{m} \]
\[d := h - cc \quad d = 3.384 \text{m} \quad t_f := 0.35 \text{m} \quad x_1 := 0.0001 \text{m} \]
\[e := d - \frac{h}{2} \quad e = 1.667 \text{m} \quad b := 4.2 \text{m} \quad t_b := 0.35 \text{m} \]

\[M_s := M_{sd} + N_{sd} e \quad M_s = 6.841 \times 10^4 \text{mkN} \]

Assumption: Compressed area does fit in the flange

\[x := \text{root}[f_{cc} \cdot b \cdot 0.8 \cdot x_1 \cdot (d - 0.4 \cdot x_1) - M_s, x_1] \]
\[x = 0.295 \text{m} \]
\[0.8 \cdot x = 0.236 \text{m} < t_b \quad \text{OK!} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \]
\[\varepsilon_s = 0.037 > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[F_c := f_{cc} \cdot b \cdot 0.8 \cdot x \]
\[F_c = 2.095 \times 10^4 \text{kN} \]

\[F_s := F_c - N_{sd} \]
\[F_s = -1.468 \times 10^4 \text{kN} \]

\[A_s := \frac{F_s}{f_{sd}} \]
\[A_s = -0.041 \text{m}^2 \]

Amount of steel needed

\[n := \frac{A_s}{A_{si}} \]
\[n = -128.95 \]

Section does not need reinforcement

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:37
Section 7

Positive moment

Forces

\[M_{sd} := \frac{107698}{4} \text{ kNm} \quad N_{sd} := \frac{140175}{4} \text{ kN} \]

\[M_{sd} = 2.692 \times 10^4 \text{ kNm} \quad N_{sd} = 3.504 \times 10^4 \text{ kN} \]

Cross-section constants

\[h := 3.036 \text{ m} \quad cc := 0.05 \text{ m} \quad b_f := 1.9 \text{ m} \quad b_w := 0.4 \text{ m} \]
\[d := h - cc \quad d = 2.986 \text{ m} \quad t_f := 0.35 \text{ m} \quad x_1 := 0.0001 \text{ m} \]
\[e := d - \frac{h}{2} \quad e = 1.468 \text{ m} \quad b := 4.2 \text{ m} \quad t_b := 0.35 \text{ m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 7.837 \times 10^4 \text{ mkN} \]

Assumption: Compressed area does fit in the flange

\[x := \sqrt{\frac{f_{cc} \cdot b \cdot 0.8 \cdot x_1 \cdot (d - 0.4 \cdot x_1) - M_s}{e_s}} \]
\[x = 0.39 \text{ m} \]
\[0.8 \times x = 0.312 \text{ m} \quad < \quad t_f \quad \text{OK!} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 0.023 \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[F_c := f_{cc} \cdot b \cdot 0.8 \times x \quad F_c = 2.769 \times 10^4 \text{ kN} \]
\[F_s := F_c - N_{sd} \quad F_s = -7.35 \times 10^3 \text{ kN} \]
\[A_s := \frac{F_s}{f_{sd}} \quad A_s = -0.02 m^2 \]

Amount of steel needed

\[n := \frac{A_s}{A_{si}} \quad n = -64.572 \]

Section does not need reinforcement
Section 9

Positive moment

Forces

\[M_{sd} := \frac{113584}{4} \text{kNm} \quad N_{sd} := \frac{144533}{4} \text{kN} \]

\[M_{sd} = 2.84 \times 10^4 \text{kNm} \quad N_{sd} = 3.613 \times 10^4 \text{kN} \]

Cross-section constants

\[h := 3.042 \text{m} \quad cc := 0.05 \text{m} \quad b_f := 1.9 \text{m} \quad b_w := 0.4 \text{m} \]
\[d := h - cc \quad d = 2.992 \text{m} \quad t_f := 0.35 \text{m} \quad x_1 := 0.001 \text{m} \]
\[e := \frac{d - h}{2} \quad e = 1.471 \text{m} \quad b := 4.2 \text{m} \quad t_b := 0.35 \text{m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 8.155 \times 10^4 \text{ mkN} \]

Assumption: Compressed area does fit in the flange

\[x := \text{root}\left[f_{cc} \cdot b \cdot 0.8 \cdot x_1 \left(d - 0.4 \cdot x_1 \right) - M_s \cdot x_1 \right] \]
\[x = 0.406 \text{m} \]
\[0.8 \cdot x = 0.325 \text{m} \quad < \quad t_f \quad \text{OK!} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 0.022 \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[F_c := f_{cc} \cdot b \cdot 0.8 \cdot x \quad F_c = 2.882 \times 10^4 \text{ kN} \]
\[F_s := F_c - N_{sd} \quad F_s = -7.312 \times 10^3 \text{ kN} \]
\[A_s := \frac{F_s}{f_{sd}} \quad A_s = -0.02 \text{m}^2 \]

Amount of steel needed

\[n := \frac{A_s}{A_{si}} \quad n = -64.242 \]

Section does not need reinforcement
Section 11

Positive moment

Forces

\[M_{sd} := \frac{84480}{4} \text{kNm} \]
\[N_{sd} := \frac{149071}{4} \text{kN} \]

\[M_{sd} = 2.112 \times 10^4 \text{kNm} \]
\[N_{sd} = 3.727 \times 10^4 \text{kN} \]

Cross-section constants

\[h := 3.449 \text{m} \]
\[cc := 0.05 \text{m} \]
\[b_f := 1.9 \text{m} \]
\[b_w := 0.4 \text{m} \]
\[d := h - cc \]
\[d = 3.399 \text{m} \]
\[t_f := 0.35 \text{m} \]
\[x_1 := 0.001 \text{m} \]
\[\frac{e}{2} := \frac{h}{2} \]
\[e = 1.675 \text{m} \]
\[b := 4.2 \text{m} \]
\[t_b := 0.35 \text{m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \]
\[M_s = 8.352 \times 10^4 \text{mkN} \]

Assumption: Compressed area does fit in the flange

\[x := \sqrt{f_{cc} \cdot b \cdot 0.8 \cdot x_1 \cdot (d - 0.4 \cdot x_1) - M_s \cdot x_1} \]
\[x = 0.362 \text{m} \]
\[0.8 \cdot x = 0.289 \text{m} < t_f \quad \text{OK!} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \]
\[\varepsilon_s = 0.029 > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[F_c := f_{cc} \cdot b \cdot 0.8 \cdot x \]
\[F_c = 2.567 \times 10^4 \text{kN} \]

\[F_s := F_c - N_{sd} \]
\[F_s = -1.16 \times 10^4 \text{kN} \]

\[\Lambda_s := \frac{F_s}{f_{sd}} \]
\[\Lambda_s = -0.032 \text{m}^2 \]

Amount of steel needed

\[n := \frac{\Lambda_s}{A_{si}} \]
\[n = -101.923 \]

Section does not need reinforcement
Section 11

Negative moment

Forces

\[
\begin{align*}
M_{sd} & := \frac{1870}{4} \text{kNm} \\
N_{sd} & := \frac{145771}{4} \text{kN}
\end{align*}
\]

\[M_{sd} = 467.5 \text{kNm} \quad N_{sd} = 3.644 \times 10^4 \text{kN}\]

Cross-section constants

\[
\begin{align*}
h & := 3.449 \text{m} & cc & := 0.05 \text{m} & b_f & := 1.9 \text{m} & b_w & := 0.4 \text{m} \\
d & := h - cc & d & := 3.399 \text{m} & t_f & := 0.35 \text{m} & x_1 & := 0.0001 \text{m} \\
e & := d - \frac{h}{2} & e & := 1.675 \text{m} & b & := 4.2 \text{m} & t_b & := 0.35 \text{m}
\end{align*}
\]

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 6.149 \times 10^4 \text{mkN}\]

Assumption: Compressed area does fit in the flange

\[x := \sqrt{\frac{f_{cc} \cdot b \cdot 0.8 \cdot x_1 \cdot (d - 0.4 \cdot x_1) - M_s \cdot x_1}{M_s}}\]

\[x = 0.263 \text{m}\]

\[0.8 \cdot x = 0.211 \text{m} \quad < \quad t_b \quad \text{OK!}\]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu}\]

\[\varepsilon_s = 0.042 \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}\]

\[F_c := f_{cc} \cdot b \cdot 0.8 \cdot x \quad F_c = 1.867 \times 10^4 \text{kN}\]

\[F_s := F_c - N_{sd} \quad F_s = -1.777 \times 10^4 \text{kN}\]

\[A_s := \frac{F_s}{f_{sd}} \quad A_s = -0.049 \text{m}^2\]

Amount of steel needed

\[n := \frac{A_s}{A_{si}} \quad n = -156.148\]

Section does not need reinforcement
Section 13

Positive moment

Forces

\[M_{sd} := \frac{30800}{4} \text{kNm} \quad N_{sd} := \frac{157897}{4} \text{kN} \]

\[M_{sd} = 7.7 \times 10^3 \text{kNm} \quad N_{sd} = 3.947 \times 10^4 \text{kN} \]

Cross-section constants

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>4.292 m</td>
</tr>
<tr>
<td>cc</td>
<td>0.05 m</td>
</tr>
<tr>
<td>b_f</td>
<td>1.9 m</td>
</tr>
<tr>
<td>b_w</td>
<td>0.4 m</td>
</tr>
<tr>
<td>d</td>
<td>h - cc</td>
</tr>
<tr>
<td>d</td>
<td>4.242 m</td>
</tr>
<tr>
<td>t_f</td>
<td>0.35 m</td>
</tr>
<tr>
<td>x_f</td>
<td>0.001 m</td>
</tr>
<tr>
<td>e</td>
<td>\frac{h}{2}</td>
</tr>
<tr>
<td>e</td>
<td>2.096 m</td>
</tr>
<tr>
<td>b</td>
<td>4.2 m</td>
</tr>
<tr>
<td>t_b</td>
<td>0.4 m</td>
</tr>
</tbody>
</table>

\[M_S := M_{sd} + N_{sd} \cdot e \quad M_S = 9.044 \times 10^4 \text{mkN} \]

Assumption: Compressed area does fit in the flange

\[x := \text{root}\left[F_{cc} \cdot b \cdot 0.8 \cdot x_1 \left(d - 0.4 \cdot x_1 \right) - M_S \cdot x_1 \right] \]

\[x = 0.31 \text{m} \]

\[0.8 \cdot x = 0.248 \text{m} \quad < \quad t_f \quad \text{OK!} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 0.044 \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[F_c := F_{cc} \cdot b \cdot 0.8 \cdot x \quad F_c = 2.196 \times 10^4 \text{kN} \]

\[F_s := F_c - N_{sd} \quad F_s = -1.751 \times 10^4 \text{kN} \]

\[A_s := \frac{F_s}{f_{sd}} \quad A_s = -0.048 \text{m}^2 \]

Amount of steel needed

\[n := \frac{A_s}{A_{si}} \quad n = -153.862 \]

Section does not need reinforcement
Section 13
Negative moment

Forces

\[M_{sd} := \frac{33577}{4} \text{kNm} \quad N_{sd} := \frac{158884}{4} \text{kN} \]

\[M_{sd} = 8.394 \times 10^3 \text{kNm} \quad N_{sd} = 3.972 \times 10^4 \text{kN} \]

Cross-section constants

\[h := 4.292 \text{m} \quad cc := 0.05 \text{m} \quad b_f := 1.9 \text{m} \quad b_w := 0.4 \text{m} \]
\[d := h - cc \quad d = 4.242 \text{m} \quad t_f := 0.35 \text{m} \quad x_1 := 0.0001 \text{m} \]
\[e := d - \frac{h}{2} \quad e = 2.096 \text{m} \quad b := 4.2 \text{m} \quad t_b := 0.4 \text{m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 9.165 \times 10^4 \text{mkN} \]

Assumption: Compressed area does fit in the flange

\[x := \sqrt{f_{cc} \cdot b \cdot 0.8 \cdot x_1 \left(d - 0.4 \cdot x_1 \right) - M_s \cdot x_1} \]

\[x = 0.314 \text{m} \]
\[0.8 \cdot x = 0.251 \text{m} \quad < \quad t_b \quad \text{OK!} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 0.044 \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[F_c := f_{cc} \cdot b \cdot 0.8 \cdot x \quad F_c = 2.226 \times 10^4 \text{kN} \]

\[F_s := F_c - N_{sd} \quad F_s = -1.746 \times 10^4 \text{kN} \]

\[A_s := \frac{F_s}{f_{sd}} \quad A_s = -0.048 \text{m}^2 \]

Amount of steel needed

\[n := \frac{A_s}{A_{si}} \quad n = -153.364 \]

Section does not need reinforcement
Section 15

Negative moment

Forces

\[M_{sd} := \frac{304456}{4} \text{kNm} \]
\[N_{sd} := \frac{162780}{4} \text{kN} \]
\[M_{sd} = 7.611 \times 10^4 \text{kNm} \]
\[N_{sd} = 4.069 \times 10^4 \text{kN} \]

Cross-section constants

\[h := 5.305 \text{m} \quad cc := 0.05 \text{m} \quad b_f := 1.9 \text{m} \quad b_w := 0.4 \text{m} \]
\[d := h - cc \quad d = 5.255 \text{m} \quad t_f := 0.35 \text{m} \quad x_1 := 0.0001 \text{m} \]
\[e := d - \frac{h}{2} \quad e = 2.603 \text{m} \quad b := 4.2 \text{m} \quad t_b := 0.5 \text{m} \]
\[M_s := M_{sd} + N_{sd} e \quad M_s = 1.82 \times 10^5 \text{mkN} \]

Assumption: Compressed area does fit in the flange

\[x := \text{root} \left[f_{cc} \cdot b \cdot 0.8 \cdot x_1 (d - 0.4 \cdot x_1) - M_s \cdot x_1 \right] \]
\[x = 0.508 \text{m} \]
\[0.8 \cdot x = 0.406 \text{m} \quad < \quad t_b \quad \text{OK!} \]
\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 0.033 \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
\[F_c := f_{cc} \cdot b \cdot 0.8 \cdot x \quad F_c = 3.603 \times 10^4 \text{kN} \]
\[F_s := F_c - N_{sd} \quad F_s = -4.664 \times 10^3 \text{kN} \]
\[A_s := \frac{F_s}{f_{sd}} \quad A_s = -0.013 \text{m}^2 \]

Amount of steel needed

\[n := \frac{A_s}{A_{si}} \quad n = -40.974 \]

Section does not need reinforcement
C2: Calculations for the solid beam section

Input data for the structural analysis program

Table 1 Input data for the original arch cross-section.

<table>
<thead>
<tr>
<th>Section</th>
<th>h [m]</th>
<th>A_e [m^2]</th>
<th>I_c [m^4]</th>
<th>Z_c [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-15</td>
<td>1,5</td>
<td>19,5</td>
<td>3,66</td>
<td>0,75</td>
</tr>
</tbody>
</table>

The results obtained from the structural analysis program

Cross-section: Solid

Load case 3

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>132546</td>
<td>-173284</td>
</tr>
<tr>
<td>3</td>
<td>-10694</td>
<td>-169719</td>
</tr>
<tr>
<td>5</td>
<td>-21544</td>
<td>-161393</td>
</tr>
<tr>
<td>7</td>
<td>26505</td>
<td>-157435</td>
</tr>
<tr>
<td>9</td>
<td>46420</td>
<td>-149726</td>
</tr>
<tr>
<td>11</td>
<td>31301</td>
<td>-154665</td>
</tr>
<tr>
<td>13</td>
<td>39338</td>
<td>-174512</td>
</tr>
<tr>
<td>15</td>
<td>-80538</td>
<td>-180622</td>
</tr>
</tbody>
</table>

Load case 5

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>141182</td>
<td>-193496</td>
</tr>
<tr>
<td>3</td>
<td>-42993</td>
<td>-161005</td>
</tr>
<tr>
<td>5</td>
<td>13148</td>
<td>-170620</td>
</tr>
<tr>
<td>7</td>
<td>26177</td>
<td>-148938</td>
</tr>
<tr>
<td>9</td>
<td>61136</td>
<td>-167890</td>
</tr>
<tr>
<td>11</td>
<td>31301</td>
<td>-154665</td>
</tr>
<tr>
<td>13</td>
<td>34581</td>
<td>-165099</td>
</tr>
<tr>
<td>15</td>
<td>-56375</td>
<td>-190435</td>
</tr>
</tbody>
</table>
Load case 7

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>132546</td>
<td>-173284</td>
</tr>
<tr>
<td>3</td>
<td>-40011</td>
<td>-177408</td>
</tr>
<tr>
<td>5</td>
<td>-26878</td>
<td>-152793</td>
</tr>
<tr>
<td>7</td>
<td>86438</td>
<td>-164354</td>
</tr>
<tr>
<td>9</td>
<td>46420</td>
<td>-149726</td>
</tr>
<tr>
<td>11</td>
<td>31301</td>
<td>-154665</td>
</tr>
<tr>
<td>13</td>
<td>34581</td>
<td>-165099</td>
</tr>
<tr>
<td>15</td>
<td>-42076</td>
<td>-187671</td>
</tr>
</tbody>
</table>

Load case 9

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>158373</td>
<td>-194112</td>
</tr>
<tr>
<td>3</td>
<td>-42993</td>
<td>-161005</td>
</tr>
<tr>
<td>5</td>
<td>-22002</td>
<td>-171480</td>
</tr>
<tr>
<td>7</td>
<td>26177</td>
<td>-148938</td>
</tr>
<tr>
<td>9</td>
<td>98991</td>
<td>-168705</td>
</tr>
<tr>
<td>11</td>
<td>31301</td>
<td>-154665</td>
</tr>
<tr>
<td>13</td>
<td>34581</td>
<td>-165099</td>
</tr>
<tr>
<td>15</td>
<td>-60812</td>
<td>-191162</td>
</tr>
</tbody>
</table>

Load case 11

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>190736</td>
<td>-192621</td>
</tr>
<tr>
<td>3</td>
<td>-42993</td>
<td>-161005</td>
</tr>
<tr>
<td>5</td>
<td>-26878</td>
<td>-152793</td>
</tr>
<tr>
<td>7</td>
<td>40617</td>
<td>-166859</td>
</tr>
<tr>
<td>9</td>
<td>46420</td>
<td>-149726</td>
</tr>
<tr>
<td>11</td>
<td>79401</td>
<td>-174116</td>
</tr>
<tr>
<td>13</td>
<td>34581</td>
<td>-165099</td>
</tr>
<tr>
<td>15</td>
<td>-89895</td>
<td>-171215</td>
</tr>
</tbody>
</table>

Load case 13

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>194902</td>
<td>-189113</td>
</tr>
<tr>
<td>3</td>
<td>-42993</td>
<td>-161005</td>
</tr>
<tr>
<td>5</td>
<td>-26878</td>
<td>-152793</td>
</tr>
<tr>
<td>7</td>
<td>26177</td>
<td>-148938</td>
</tr>
<tr>
<td>9</td>
<td>81338</td>
<td>-164882</td>
</tr>
<tr>
<td>11</td>
<td>37515</td>
<td>-170079</td>
</tr>
<tr>
<td>13</td>
<td>65396</td>
<td>-183246</td>
</tr>
<tr>
<td>15</td>
<td>-89895</td>
<td>-171215</td>
</tr>
</tbody>
</table>
Maximum values

<table>
<thead>
<tr>
<th>Section</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>194902</td>
<td>-189113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>-68215</td>
<td>-180944</td>
</tr>
<tr>
<td>5</td>
<td>13148</td>
<td>-170620</td>
<td>-65496</td>
<td>-168304</td>
</tr>
<tr>
<td>7</td>
<td>86438</td>
<td>-164354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>98991</td>
<td>-168705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>79401</td>
<td>-174116</td>
<td>-4590</td>
<td>-171084</td>
</tr>
<tr>
<td>13</td>
<td>65396</td>
<td>-183246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>-163314</td>
<td>-189220</td>
</tr>
</tbody>
</table>
\[f_{cc} = \frac{f_{cck}}{(\eta \gamma_m \gamma_n)} \]

Stress block factors
\[\beta := 0.443 \quad \alpha := 0.877 \]

Steel K500 (Kamstång B500B)

Partial safety factor
\[\eta \gamma_m := 1.15 \quad \eta \gamma_{mes} := 1.05 \quad \gamma_n := 1.2 \]

\[f_{sk} := 500 \text{ MPa} \]
\[f_{sd} := \frac{f_{sk}}{\eta \gamma_m \gamma_n} \]
\[E_s := \frac{E_{sm}}{\eta \gamma_{mes} \gamma_n} \]
\[\varepsilon_{sy} := \frac{f_{sd}}{E_s} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
Section 1

Positive moment

Forces

\[M_{sd} := 194902 \text{kNm} \] \[N_{sd} := 189113 \text{kN} \]

Cross-section constants

\[h := 1.5 \text{ m} \] \[cc := 0.05 \text{ m} \]
\[d := h - cc \] \[d = 1.45 \text{ m} \]
\[tp := 0.75 \text{ m} \] \[b := 13 \text{ m} \]
\[e := d - tp \] \[e = 0.7 \text{ m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \] \[M_s = 3.273 \times 10^5 \text{ kNm} \]

Steel diameter

\[\phi := 20 \text{ mm} \]

\[A_{si} := \pi \left(\frac{\phi}{2} \right)^2 \] \[A_{si} = 3.142 \times 10^{-4} \text{ m}^2 \]

Values for balanced reinforcement K500

\[m_{bu1} := 0.365 \]
\[m_t := \frac{M_s}{b \cdot d^2 \cdot f_{cc}} \]

\[m_t = 0.567 \]

\[m_t > m_{bal} \quad \text{NOT OK!} \]

The cross-section will be over reinforced

Try with putting compression reinforcement

\[d_t := 0.05 \text{ m} \]

Assume:

\[\sigma_{st} := f_{sd} \]

\[A_{st} := \frac{M_s - m_{bal} \cdot b \cdot d^2 \cdot f_{cc}}{(d - d_t) \cdot \sigma_{st}} \]

\[A_{st} = 0.23 \text{ m}^2 \]

\[n_t := \frac{A_{st}}{A_{si}} \]

\[n_t = 732.127 \]

Choose:

\[n_t := 733 \]

\[M_{II} := A_{st} \cdot \sigma_{st} \cdot (d - d_t) \]

\[M_{II} = 1.167 \times 10^5 \text{ kNm} \]

\[M_I := M_s - M_{II} \]

\[M_I = 2.106 \times 10^5 \text{ kNm} \]

\[m_r := \frac{M_I}{b \cdot d^2 \cdot f_{cc}} \]

\[m_r = 0.365 \]

\[\omega := 1 - \sqrt{(1 - 2 \cdot m_r)} \]

\[\omega = 0.48 \]

\[\varepsilon_{st} := \varepsilon_{cu} \cdot \left(1 - 0.8 \cdot \frac{d_t}{\omega \cdot d}\right) \]

\[\varepsilon_{st} = 3.299 \times 10^{-3} \]

\[\varepsilon_{st} > \varepsilon_{sy} \quad \text{OK!} \]

\[A_{s1} := \left[\frac{M_I}{d \cdot \left(1 - \frac{\omega}{2}\right)} + \frac{M_{II}}{d - d_t} \right] \cdot \frac{1}{f_{sd}} \]

\[A_{s1} = 0.758 \text{ m}^2 \]

\[A_s := A_{s1} - \frac{N_{sd}}{f_{sd}} \]

\[A_s = 0.236 \text{ m}^2 \]
Choose: \(n := 750 \)

Calculation for \(x \)

Assume: \(\varepsilon_s, \varepsilon_s \varepsilon_s, \varepsilon, > \varepsilon_{sy} \)

Compression reinforcement:

\[
\begin{align*}
A_s & := \frac{A_s}{A_{si}} & n := 750.168 \\
A_{st} & := A_{si} \cdot n \\
A_{stot} & := A_{st1} + A_{st2} + A_{st3} + A_{st4} \\
\end{align*}
\]

Tension reinforcement:

\[
\begin{align*}
d & := 1.44 \text{ m} & n_1 := 215 & A_{s1} := A_{si} \cdot n_1 & A_{s1} = 0.068 \text{ m}^2 \\
& := 1.39 \text{ m} & n_2 := 215 & A_{s2} := A_{si} \cdot n_2 & A_{s2} = 0.068 \text{ m}^2 \\
& := 1.34 \text{ m} & n_3 := 215 & A_{s3} := A_{si} \cdot n_3 & A_{s3} = 0.068 \text{ m}^2 \\
& := 1.29 \text{ m} & n_4 := 105 & A_{s4} := A_{si} \cdot n_4 & A_{s4} = 0.033 \text{ m}^2 \\
A_{stot} & := A_{s1} + A_{s2} + A_{s3} + A_{s4} \\
\end{align*}
\]

Horizontal equilibrium gives:

\[
\begin{align*}
x_1 & := 0.001 \text{ m} \\
x & := \text{root} \left(\alpha \cdot f_{ce} \cdot b \cdot x_1 - N_{sd} - f_{sd} \cdot A_{stot} + f_{sd} \cdot A_{stot} \cdot x_1 \right) \\
x & = 0.794 \text{ m} \\
\end{align*}
\]
Check assumption

\[\varepsilon_s := \frac{d - x}{x} \varepsilon_{cu} \]
\[\varepsilon_s = 2.85 \times 10^{-3} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
\[\text{OK!} \]

\[\varepsilon_{s1} := \frac{d_1 - x}{x} \varepsilon_{cu} \]
\[\varepsilon_{s1} = 2.629 \times 10^{-3} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
\[\text{OK!} \]

\[\varepsilon_{s2} := \frac{d_2 - x}{x} \varepsilon_{cu} \]
\[\varepsilon_{s2} = 2.409 \times 10^{-3} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
\[\text{OK!} \]

\[\varepsilon_{s3} := \frac{d_3 - x}{x} \varepsilon_{cu} \]
\[\varepsilon_{s3} = 2.188 \times 10^{-3} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
\[\text{NOT OK} \]

\[\varepsilon_{st} := \frac{x - d_1}{x} \varepsilon_{cu} \]
\[\varepsilon_{st} = 3.28 \times 10^{-3} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
\[\text{OK!} \]

\[\varepsilon_{st1} := \frac{x - d_1}{x} \varepsilon_{cu} \]
\[\varepsilon_{st1} = 3.059 \times 10^{-3} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
\[\text{OK!} \]

\[\varepsilon_{st2} := \frac{x - d_2}{x} \varepsilon_{cu} \]
\[\varepsilon_{st2} = 2.839 \times 10^{-3} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
\[\text{OK!} \]

\[\varepsilon_{st3} := \frac{x - d_3}{x} \varepsilon_{cu} \]
\[\varepsilon_{st3} = 2.618 \times 10^{-3} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
\[\text{OK!} \]

Change assumption: \[\varepsilon_s, \varepsilon_{s1}, \varepsilon_{s2} > \varepsilon_{sy} \]
\[\varepsilon_{st}, \varepsilon_{st1}, \varepsilon_{st2}, \varepsilon_{st3} > \varepsilon_{sy} \]
\[\varepsilon_{s3} < \varepsilon_{sy} \]

Horizontal equilibrium gives:

\[x_1 := 0.0001 \text{m} \]

\[x := \text{root} \left[\alpha \cdot f_{cc} \cdot b \cdot x_1 - N_{sd} - f_{sd} \left(A_{s1} + A_{s2} + A_{s3} \right) - E_s \cdot \varepsilon_{cu} \cdot A_{s4} \left(\frac{d_3 - x_1}{x_1} \right) \ldots, x_1 \right] \]

\[+ f_{sd} \cdot A_{stot} \]

\[x = 0.792 \text{m} \]

Check assumption

\[\varepsilon_s := \frac{d}{x} \varepsilon_{cu} \]
\[\varepsilon_s = 2.864 \times 10^{-3} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]
\[\text{OK!} \]
\[\varepsilon_{s1} := \frac{d_1 - x}{x} \varepsilon_{cu} \quad \varepsilon_{s2} = 2.643 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{s2} := \frac{d_2 - x}{x} \varepsilon_{cu} \quad \varepsilon_{s2} = 2.422 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{s3} := \frac{d_3 - x}{x} \varepsilon_{cu} \quad \varepsilon_{s3} = 2.201 \times 10^{-3} < \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st} := \frac{x - d_t}{x} \varepsilon_{cu} \quad \varepsilon_{st} = 3.279 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st1} := \frac{x - d_{t1}}{x} \varepsilon_{cu} \quad \varepsilon_{st1} = 3.058 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st2} := \frac{x - d_{t2}}{x} \varepsilon_{cu} \quad \varepsilon_{st2} = 2.837 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st3} := \frac{x - d_{t3}}{x} \varepsilon_{cu} \quad \varepsilon_{st3} = 2.616 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

Check moment capacity \(M_d > M_s \)

\[
M_d := \alpha \cdot f_{cc} \cdot b \cdot x \cdot (d - \beta \cdot x) + f_{sd} \cdot A_{st1} \cdot (d - d_1) + f_{sd} \cdot A_{st2} \cdot (d - d_1) + f_{sd} \cdot A_{st3} \cdot (d - d_2) + f_{sd} \cdot A_{st4} \cdot (d - d_3) + \ldots
\]

\[M_d = 3.13 \times 10^5 \text{ kNm} \quad M_d < M_s \quad \text{NOT OK!} \]

\[M_s = 3.273 \times 10^5 \text{ kNm} \]

Increase compression steel area

Calculation for \(x \)

Assume: \(\varepsilon_{s}, \varepsilon_{s1}, \varepsilon_{s2}, \varepsilon_{s3} > \varepsilon_{sy} \quad \varepsilon_{st}, \varepsilon_{st1}, \varepsilon_{st2}, \varepsilon_{st3} > \varepsilon_{sy} \quad \varepsilon_{st4} < \varepsilon_{sy} \)

\[d := 1.44 \text{ m} \quad n_1 := 215 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.068 \text{m}^2 \]

\[d_1 := 1.39 \text{ m} \quad n_2 := 215 \quad A_{s2} := A_{si} \cdot n_2 \quad A_{s2} = 0.068 \text{m}^2 \]
\[d_2 := 1.34 \text{m} \quad n_3 := 215 \quad A_{s3} := A_{s1} \cdot n_3 \quad A_{s3} = 0.068 \text{m}^2 \]
\[d_3 := 1.29 \text{m} \quad n_4 := 105 \quad A_{s4} := A_{s1} \cdot n_4 \quad A_{s4} = 0.033 \text{m}^2 \]
\[A_{stot} := A_{s1} + A_{s2} + A_{s3} + A_{s4} \quad A_{stot} = 0.236 \text{m}^2 \]
\[d_4 := 0.05 \text{m} \quad n_{t1} := 215 \quad A_{st1} := A_{s1} \cdot n_{t1} \quad A_{st1} = 0.068 \text{m}^2 \]
\[d_{t1} := 0.1 \text{m} \quad n_{t2} := 215 \quad A_{st2} := A_{s1} \cdot n_{t2} \quad A_{st2} = 0.068 \text{m}^2 \]
\[d_{t2} := 0.15 \text{m} \quad n_{t3} := 215 \quad A_{st3} := A_{s1} \cdot n_{t3} \quad A_{st3} = 0.068 \text{m}^2 \]
\[d_{t3} := 0.2 \text{m} \quad n_{t4} := 215 \quad A_{st4} := A_{s1} \cdot n_{t4} \quad A_{st4} = 0.068 \text{m}^2 \]
\[d_{t4} := 0.25 \text{m} \quad n_{t5} := 215 \quad A_{st5} := A_{s1} \cdot n_{t5} \quad A_{st5} = 0.068 \text{m}^2 \]
\[A_{stot} := A_{st1} + A_{st2} + A_{st3} + A_{st4} + A_{st5} \quad A_{stot} = 0.338 \text{m}^2 \]

Horizontal equilibrium gives:

\[x_1 := 0.0001 \text{m} \]

\[x := \sqrt{\alpha \cdot f_{cc} \cdot b \cdot x_1 - N_{sd} - f_{sd} \cdot A_{stot} + f_{sd} \left(A_{stot} - A_{st5} \right) \cdots x_1} \]

\[+ E_s \cdot \varepsilon_{cu} \cdot A_{st5} \left(\frac{x_1 - d_{t4}}{x_1} \right) \]

\[x = 0.639 \text{m} \]

Check assumptions:

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 4.39 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
\[\varepsilon_{s_1} := \frac{d_1 - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{s_1} = 4.116 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
\[\varepsilon_{s_2} := \frac{d_2 - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{s_2} = 3.842 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
\[\varepsilon_{s_3} := \frac{d_3 - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{s_3} = 3.568 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
Check moment capacity \(M_d > M_s \)

\[
M_d := \alpha \cdot f_{cc} \cdot b \cdot x (d - \beta \cdot x) + f_{sd1} \cdot A_{st1} \cdot (d - d_1) + f_{sd2} \cdot A_{st2} \cdot (d - d_2) + f_{sd3} \cdot A_{st3} \cdot (d - d_3) + f_{sd4} \cdot A_{st4} \cdot (d - d_4) + f_{sd5} \cdot A_{st5} \cdot (d - d_5) \]
\[
+ f_{sd6} \cdot A_{st6} \cdot (d - d_6) + f_{sd7} \cdot A_{st7} \cdot (d - d_7) \]

\[
M_d = 3.283 \times 10^5 \text{ kNm} \quad M_d > M_s \quad \text{OK!}
\]

\[
M_s = 3.273 \times 10^5 \text{ kNm}
\]

Section 3

Negative moment

Forces

\[
M_{sd} := 68215 \text{ kNm} \quad N_{sd} := 180944 \text{ kN}
\]

Cross-section constants

\[
\begin{align*}
h & := 1.5 \text{ m} \\
d & := h - cc \\
tp & := 0.75 \text{ m} \\
e & := d - tp
\end{align*}
\]

\[
\begin{align*}
cc & := 0.05 \text{ m} \\
d & = 1.45 \text{ m} \\
b & := 13 \text{ m} \\
e & = 0.7 \text{ m}
\end{align*}
\]
\[M_s := M_{sd} + N_{sd} \cdot \varepsilon \quad M_s = 1.949 \times 10^5 \text{kNm} \]

Values for balanced reinforcement K500

\[m_{\text{bal}} := 0.365 \]

\[m_t := \frac{M_s}{b \cdot d^2 \cdot f_{cc}} \quad m_t = 0.338 \quad m_t < m_{\text{bal}} \quad \text{OK} ! \]

\[\omega_{\text{bal}} := 0.480 \]

\[\omega := 1 - \sqrt{1 - 2 \cdot m_t} \quad \omega = 0.43 \quad \omega < \omega_{\text{bal}} \quad \text{OK} ! \]

\[A_{s1} := \frac{\omega \cdot d \cdot b \cdot f_{cc}}{f_{sd}} \quad A_{s1} = 0.473 \text{m}^2 \]

\[A_s := A_{s1} = \frac{N_{sd}}{f_{sd}} \quad A_s = -0.027 \text{m}^2 \]

Section 3 does not need reinforcement.

Minimum reinforcement

\[d := 1.44 \text{m} \quad n := 64 \quad A_s := n \cdot A_{s1} \quad A_s = 0.02 \text{m}^2 \]

\[d_t := 0.05 \text{m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{s1} \quad A_{st} = 0.02 \text{m}^2 \]

\[x := \text{root} \left[f_{cc} \cdot b \cdot \alpha \cdot x_1 \left(d - \beta \cdot x_1 \right) + f_{sd} \cdot A_{st} \left(d - d_t \right) - M_s \cdot x_1 \right] \]

\[x = 0.672 \text{m} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 4 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st} := \frac{x - d_t}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.24 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
Section 5

Negative moment

Forces

\[M_{sd} := 65496 \text{kNm} \quad N_{sd} := 168304 \text{kN} \]

Cross-section constants

\[h := 1.5 \text{m} \quad cc := 0.05 \text{m} \]
\[d := h - cc \quad d = 1.45 \text{m} \]
\[tp := 0.75 \text{m} \quad b := 13 \text{m} \]
\[e := d - tp \quad e = 0.7 \text{m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 1.833 \times 10^5 \text{kNm} \]

Values for balanced reinforcement K500

\[\omega_{bal} := 0.480 \]
\[\omega := 1 - \sqrt{(1 - 2 \cdot m_t)} \quad \omega = 0.396 \quad \omega < \omega_{bal} \quad \text{OK!} \]

\[\omega := \frac{M_s}{b \cdot d^2 \cdot f_{cc}} \quad m_t = 0.318 \quad m_t < m_{bal} \quad \text{OK!} \]

\[A_{s1} := \frac{\omega \cdot d \cdot b \cdot f_{cc}}{f_{sd}} \quad A_{s1} = 0.435 \text{m}^2 \]

\[A_s := A_{s1} - \frac{N_{sd}}{f_{sd}} \quad A_s = -0.029 \text{m}^2 \]

Section 5 does not need reinforcement.

Minimum reinforcement

\[d := 1.44 \text{m} \quad n := 64 \quad A_s := n \cdot A_{si} \quad A_s = 0.02 \text{m}^2 \]
\[d_t := 0.05 \text{m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{m}^2 \]
Section 5

Positive moment

Forces

\[M_{sd} := 13148 \text{kNm} \quad N_{sd} := 170620 \text{kN} \]

Cross-section constants

\[h := 1.5 \text{ m} \quad c := 0.05 \text{ m} \]
\[d := h - c \quad d = 1.45 \text{ m} \]
\[t_p := 0.75 \text{ m} \quad b := 13 \text{ m} \]
\[e := d - t_p \quad e = 0.7 \text{ m} \]
\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 1.326 \times 10^5 \text{kNm} \]

Values for balanced reinforcement K500

\[m_{bal} := 0.365 \]
\[m_t := \frac{M_s}{b \cdot d \cdot f_{cc}^2} \quad m_t = 0.23 \quad m_t < m_{bal} \quad \text{OK!} \]
\[\omega_{bal} := 0.480 \]
\[\omega := 1 - \sqrt{1 - 2 \cdot m_t} \quad \omega = 0.265 \quad \omega < \omega_{bal} \quad \text{OK!} \]
\[A_{s1} := \frac{\omega \cdot d \cdot b \cdot f_{cc}}{f_{sd}} \quad A_{s1} = 0.291 \text{m}^2 \]
\[A_s := A_{s1} = \frac{N_{sd}}{f_{sd}} \quad A_s = -0.18 \text{ m}^2 \]

Section 5 does not need reinforcement.

Minimum reinforcement

\[d := 1.44 \text{ m} \quad n := 64 \quad A_s := n \cdot A_{si} \quad A_s = 0.02 \text{ m}^2 \]

\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{ m}^2 \]

\[x := \text{root} \left[f_{cc} \cdot b \cdot \alpha \cdot x_1 \left(d - \beta \cdot x_1 \right) + f_{sd} \cdot A_{st} \left(d - d_t \right) - M_s \cdot x_1 \right] \]

\[x = 0.403 \text{ m} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 8.995 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st :=} \frac{x - d_t}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.066 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

Section 7

Positive moment

Forces

\[M_{sd} := 86438 \text{ kNm} \quad N_{sd} := 164354 \text{ kN} \]

Cross-section constants

\[h := 1.5 \text{ m} \quad cc := 0.05 \text{ m} \]

\[d := h - cc \quad d = 1.45 \text{ m} \]

\[tp := 0.75 \text{ m} \quad b := 13 \text{ m} \]

\[e := d - tp \quad e = 0.7 \text{ m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 2.015 \times 10^5 \text{ kNm} \]
Values for balanced reinforcement K500

\[m_{\text{bal}} := 0.365 \]
\[m_y := \frac{M_s}{b \cdot d^2 \cdot f_{\text{cc}}} \]
\[m_y = 0.349 \]
\[m_y < m_{\text{bal}} \quad \text{OK !} \]
\[\omega_{\text{bal}} := 0.480 \]
\[\omega := 1 - \sqrt{1 - 2 \cdot m_y} \]
\[\omega = 0.451 \]
\[\omega < \omega_{\text{bal}} \quad \text{OK !} \]
\[A_{s1} := \frac{\omega \cdot d \cdot b \cdot f_{\text{cc}}}{f_{sd}} \]
\[A_{s1} = 0.495 m^2 \]
\[A_s := A_{s1} - \frac{N_{sd}}{f_{sd}} \]
\[A_s = 0.041 m^2 \]
\[n := \frac{A_s}{A_{si}} \]
\[n = 132.088 \]

Choose: \[n := 133 \]

Calculation for x

Assume: \[\varepsilon_s > \varepsilon_{sy} \]

Horizontal equilibrium gives:

\[x_1 := 0.0001 m \]
\[x := \text{root} \left(\alpha \cdot f_{\text{cc}} \cdot b \cdot x_1 - N_{sd} - f_{sd} \cdot A_s \cdot x_1 \right) \]
\[x = 0.745 m \]

Check assumption

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \]
\[\varepsilon_s = 3.309 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK !} \]

Check moment capacity:

\[M_d > M_s \]
Check moment capacity:

\[M_d = \alpha f_{cc} b x (d - \beta x) \]
\[M_d = 2.009 \times 10^5 \text{kNm} \]
\[M_d < M_s \quad \text{NOT OK!} \]
\[M_s = 2.015 \times 10^5 \text{kNm} \]

Increase the amount of steel!

\[n_{ny} := 150 \quad A_{sny} := n_{ny} \cdot A_{si} \quad A_{sny} = 0.047 \text{m}^2 \]

Assume: \(\varepsilon_s > \varepsilon_{sy} \)

Horizontal equilibrium gives:

\[x_1 := 0.0001 \text{m} \]
\[x := \text{root} \left(\alpha f_{cc} b x_1 - N_{sd} - f_{sd} A_{sny} x_1 \right) \]
\[x = 0.754 \text{m} \]

Check assumption

\[\varepsilon_s := \frac{d - x}{x} \varepsilon_{cu} \quad \varepsilon_s = 3.233 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

Check moment capacity:

\[M_d > M_s \]
\[M_d := \alpha f_{cc} b x (d - \beta x) \]
\[M_d = 2.025 \times 10^5 \text{kNm} \quad M_d > M_s \quad \text{OK!} \]
\[M_s = 2.015 \times 10^5 \text{kNm} \]

Minimum compression reinforcement:

\[d := 1.44 \text{m} \quad n := 150 \quad A_s := n \cdot A_{si} \quad A_s = 0.047 \text{m}^2 \]
\[d_1 := 0.05 \text{m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{m}^2 \]
\[x := \text{root} \left[f_{cc} b x_1 (d - \beta x_1) + f_{sd} A_{st} (d - d_1) - M_s x_1 \right] \]
\[x = 0.705 \text{m} \]
Section 9

Positive moment

Forces

\[M_{sd} := 98991 \text{kNm} \]
\[N_{sd} := 168705 \text{kN} \]

Cross-section constants

\[h := 1.5 \text{ m} \]
\[cc := 0.05 \text{ m} \]
\[d := h - cc \]
\[d = 1.45 \text{ m} \]
\[t_p := 0.75 \text{ m} \]
\[b := 13 \text{ m} \]
\[e := d - t_p \]
\[e = 0.7 \text{ m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \]
\[M_s = 2.171 \times 10^5 \text{ kNm} \]

Values for balanced reinforcement K500

\[m_{bal} := 0.365 \]

\[m_r := \frac{M_s}{b \cdot d^2 \cdot f_{cc}} \]
\[m_r = 0.376 \]
\[m_r > m_{bal} \]

NOT OK!

The cross-section will be over reinforced

Try with putting compression reinforcement

\[d_t := 0.05 \text{ m} \]

Assumption: \[\sigma_{st} := f_{sd} \]

\[A_{st} := \frac{M_s - m_{bal} \cdot b \cdot d^2 \cdot f_{cc}}{(d - d_t) \cdot \sigma_{st}} \]
\[A_{st} = 0.013 \text{ m}^2 \]
Choose: \(n_i := 41 \)

\[
M_{II} := A_{si} \cdot \sigma_{st} \left(d - d_i \right)
\]

\[
M_I := M_s - M_{II}
\]

\[
m_i := \frac{M_I}{b \cdot d_i^2 \cdot f_{cc}}
\]

\[
\omega := 1 - \sqrt{1 - 2 \cdot m_i}
\]

\[
\varepsilon_{st} := \varepsilon_{cu} \left(1 - 0.8 \frac{d_i}{\omega \cdot d} \right)
\]

\[
\varepsilon_{st} = 3.299 \times 10^{-3}
\]

\[
\varepsilon_{st} > \varepsilon_{sy} \quad \text{OK!}
\]

\[
A_{s1} := \left[\frac{M_I}{d \left(1 - \frac{\omega}{2} \right)} + \frac{M_{II}}{d - d_i} \right] \frac{1}{f_{sd}}
\]

\[
A_{s1} = 0.54\text{m}^2
\]

\[
A_s := A_{s1} - \frac{N_{sd}}{f_{sd}}
\]

\[
A_s = 0.075\text{m}^2
\]

\[
n := \frac{A_s}{A_{si}}
\]

\[
n = 237.948
\]

Choose: \(n := 238 \)

Calculation for x

Assume: \(\varepsilon_{s}, \varepsilon_{s1} > \varepsilon_{sy} \quad \varepsilon_{st} > \varepsilon_{sy} \)

Tension reinforcement

\[
d := 1.44\text{m} \quad n_1 := 215 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.068\text{m}^2
\]

\[
d_1 := 1.39\text{m} \quad n_2 := 23 \quad A_{s2} := A_{si} \cdot n_2 \quad A_{s2} = 7.226 \times 10^{-3} \text{m}^2
\]
\[n_{\text{tot}} := n_1 + n_2 \quad n_{\text{tot}} = 238 \]

\[A_{\text{stot}} := A_{s1} + A_{s2} \quad A_{\text{stot}} = 0.075 \text{m}^2 \]

Compression reinforcement

\[d_t := 0.05 \text{ m} \quad n_t := 41 \quad A_{\text{st}} := A_{si} \cdot n_t \quad A_{\text{st}} = 0.013 \text{m}^2 \]

Horizontal equilibrium gives:

\[x_1 := 0.0001 \text{ m} \]

\[x := \text{root} \left(\alpha \cdot f_{cc} \cdot b \cdot x_1 - N_{sd} - f_{sd} \cdot A_{stot} + f_{sd} \cdot A_{st} \cdot x_1 \right) \]

\[x = 0.794 \text{ m} \]

Check assumption

\[\varepsilon_s := \frac{d - x}{x} \varepsilon_{cu} \quad \varepsilon_s = 2.847 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{s1} := \frac{d_1 - x}{x} \varepsilon_{cu} \quad \varepsilon_{s1} = 2.626 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st} := \frac{x - d_1}{x} \varepsilon_{cu} \quad \varepsilon_{st} = 3.28 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

Check moment capacity:

\[M_d > M_s \]

\[M_d := \alpha \cdot f_{cc} \cdot b \cdot x \left(d - \beta \cdot x \right) + f_{sd} \cdot A_{stot} \left(d - d_1 \right) - f_{sd} \cdot A_{s2} \left(d - d_1 \right) \]

\[M_d = 2.143 \times 10^5 \text{ kNm} \]

\[M_s = 2.171 \times 10^5 \text{ kNm} \]

\[M_d < M_{sd} \quad \text{NOT OK!} \]

Increase the amount of compression reinforcement.

\[d_t := 0.05 \text{ m} \quad n_t := 100 \quad A_{\text{st}} := A_{si} \cdot n_t \quad A_{\text{st}} = 0.031 \text{m}^2 \]

Assume:

\[\varepsilon_s, \varepsilon_{s1} > \varepsilon_{sy} \quad \varepsilon_{st} > \varepsilon_{sy} \]
Tension reinforcement

\[d := 1.44 \text{ m} \quad n_1 := 215 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.068 \text{ m}^2 \]

\[d_1 := 1.39 \text{ m} \quad n_2 := 23 \quad A_{s2} := A_{si} \cdot n_2 \quad A_{s2} = 7.226 \times 10^{-3} \text{ m}^2 \]

\[n_{tot} := n_1 + n_2 \quad n_{tot} = 238 \]

\[A_{sot} := A_{s1} + A_{s2} \quad A_{sot} = 0.075 \text{ m}^2 \]

Horizontal equilibrium gives:

\[x_1 := 0.0001 \text{ m} \]

\[x := \text{root} \left[\left(\alpha \cdot f_{cc} \cdot b \cdot x_1 - N_{sd} - f_{sd} \cdot A_{sot} \right) + f_{sd} \cdot A_{st} \cdot x_1^2 \right] \]

\[x = 0.766 \text{ m} \]

Check assumption

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 3.078 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK !} \]

\[\varepsilon_{s1} := \frac{d_1 - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{s1} = 2.85 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK !} \]

\[\varepsilon_{st} := \frac{x - d_1}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.272 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK !} \]

Check moment capacity: \(M_d > M_s \)

\[M_d := \alpha \cdot f_{cc} \cdot b \cdot x \left(d - \beta \cdot x \right) + f_{sd} \cdot A_{st} \left(d - d_1 \right) - f_{sd} \cdot A_{s2} \left(d - d_1 \right) \]

\[M_d = 2.187 \times 10^5 \text{ kNm} \quad M_d > M_s \quad \text{OK}! \]

\[M_s = 2.171 \times 10^5 \text{ kNm} \]
Section 11
Positive moment

Forces
\[M_{sd} := 79401 \text{kNm} \quad N_{sd} := 174116 \text{kN} \]

Cross-section constants
\[
\begin{align*}
 h &:= 1.5 \text{ m} & \text{cc} &:= 0.05 \text{ m} \\
 d &:= h - \text{cc} & d &= 1.45 \text{ m} \\
 tp &:= 0.75 \text{ m} & b &:= 13 \text{ m} \\
 e &:= d - tp & e &= 0.7 \text{ m} \\
 M_s &:= M_{sd} + N_{sd} \cdot e & M_s &= 2.013 \times 10^5 \text{kNm}
\end{align*}
\]

Values for balanced reinforcement K500
\[
\begin{align*}
 m_{bal} &:= 0.365 \\
 \omega_{bal} &:= 0.480 \\
 \omega &:= 1 - \sqrt{1 - 2 \cdot m_r} & \omega &= 0.45 \\
 A_{s1} &:= \frac{\omega \cdot d \cdot b \cdot f_{cc}}{f_{sd}} & A_{s1} &= 0.494 \text{m}^2 \\
 A_s &:= A_{s1} - \frac{N_{sd}}{f_{sd}} & A_s &= 0.014 \text{m}^2 \\
 n &:= \frac{A_s}{A_{s1}} & n &= 44.081
\end{align*}
\]

Choose: \(n := 45 \)
Calculation for x

Assume: $\epsilon_s > \epsilon_{sy}$

Horizontal equilibrium gives:

$x_1 := 0.0001\, \text{m}$

$x := \sqrt{\left(\alpha \cdot f_{cc} \cdot b \cdot x_1 - N_{sd} - f_{sd} \cdot A_s \cdot x_1\right)}$

$x = 0.744\, \text{m}$

Check assumption

$$\epsilon_s := \frac{d - x}{x} \cdot \epsilon_{cu} \quad \epsilon_s = 3.319 \times 10^{-3} > \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}$$

Check moment capacity: $M_d > M_s$

$$M_d := \alpha \cdot f_{cc} \cdot b \cdot x \cdot (d - \beta \cdot x)$$

$M_d = 2.007 \times 10^5\, \text{kNm}$

$M_d < M_s \quad \text{NOT OK!}$

$M_s = 2.013 \times 10^5\, \text{kNm}$

Increase the steel area.

$n_{ny} := 64 \quad A_{sny} := n_{ny} \cdot A_s \quad A_{sny} = 0.02\, \text{m}^2$

Horizontal equilibrium gives:

$x_1 := 0.0001\, \text{m}$

$x := \sqrt{\left(\alpha \cdot f_{cc} \cdot b \cdot x_1 - N_{sd} - f_{sd} \cdot A_{sny} \cdot x_1\right)}$

$x = 0.754\, \text{m}$

Check assumption

$$\epsilon_s := \frac{d - x}{x} \cdot \epsilon_{cu} \quad \epsilon_s = 3.234 \times 10^{-3} > \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}$$
\[M_d := \alpha \cdot f_{cc} \cdot b \cdot x \left(d - \beta \cdot x \right) \]

\[M_d = 2.025 \times 10^5 \text{ kNm} \quad M_d > M_s \quad \text{OK!} \]

\[M_s = 2.013 \times 10^5 \text{ kNm} \]

Minimum compression reinforcement:

\[d := 1.44 \text{ m} \quad n_1 := 64 \quad \bar{A}_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.02 \text{ m}^2 \]

\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad \bar{A}_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{ m}^2 \]

\[x := \sqrt{\frac{f_{cc} \cdot b \cdot \alpha \cdot x_1 \left(d - \beta \cdot x_1 \right) + f_{sd} \cdot A_{st} \left(d - d_t \right) - M_s \cdot x_1}{x}} \]

\[x = 0.704 \text{ m} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 3.659 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st} := \frac{x - d_t}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.251 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

Section 11

Negative moment

Forces

\[M_{sd} := 4590 \text{ kNm} \quad N_{sd} := 171084 \text{ kN} \]

Cross-section constants

\[h := 1.5 \text{ m} \quad cc := 0.05 \text{ m} \]

\[d := h - cc \quad d = 1.45 \text{ m} \]

\[tp := 0.75 \text{ m} \quad b := 13 \text{ m} \]

\[e := d - tp \quad e = 0.7 \text{ m} \]
\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 1.243 \times 10^5 \text{kNm} \]

Values for balanced reinforcement K500

\[m_{bal} := 0.365 \]
\[m_1 := \frac{M_s}{b \cdot d^2 \cdot f_{cc}} \]
\[m_1 = 0.216 \quad m_1 < m_{bal} \quad \text{OK !} \]
\[\omega_{bal} := 0.480 \]
\[\omega := 1 - \sqrt{1 - 2 \cdot m_1} \]
\[\omega = 0.246 \quad \omega < \omega_{bal} \quad \text{OK !} \]
\[A_{s1} := \frac{\omega \cdot d \cdot b \cdot f_{cc}}{f_{sd}} \]
\[A_{s1} = 0.27 \text{m}^2 \]
\[A_s := A_{s1} - \frac{N_{sd}}{f_{sd}} \]
\[A_s = -0.202 \text{m}^2 \]
\[n := \frac{A_s}{A_{si}} \quad n = -644.11 \]

Section 11 does not need reinforcement.

Minimum reinforcement

\[d := 1.44 \text{m} \quad n_1 := 64 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.02 \text{m}^2 \]
\[d_1 := 0.05 \text{m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{m}^2 \]
\[x := \sqrt{f_{cc} \cdot b \cdot \alpha \cdot x_1 \left(d - \beta \cdot x_1\right) + f_{sd} \cdot A_{st} \left(d - d_1\right)} - M_s \cdot x_1 \]
\[x = 0.372 \text{m} \]
\[\varepsilon_s := \frac{d - x}{x} \cdot e_{cu} \quad \varepsilon_s = 0.01 > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
\[\varepsilon_{st} := \frac{x - d_1}{x} \cdot e_{cu} \quad \varepsilon_{st} = 3.03 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
Section 13
Positive moment

Forces

\[M_{sd} := 65396 \text{kNm} \quad N_{sd} := 183246 \text{kN} \]

Cross-section constants

\[h := 1.5 \text{ m} \quad cc := 0.05 \text{ m} \]
\[d := h - cc \quad d = 1.45 \text{ m} \]
\[tp := 0.75 \text{ m} \quad b := 13 \text{ m} \]
\[e := d - tp \quad e = 0.7 \text{ m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 1.937 \times 10^5 \text{ kNm} \]

Values for balanced reinforcement K500

\[m_{bal} := 0.365 \]
\[m_t := \frac{M_s}{b \cdot d^2 \cdot f_{cc}} \quad m_t = 0.336 \quad m_t < m_{bal} \quad \text{OK!} \]
\[\omega_{bal} := 0.480 \]
\[\omega := 1 - \sqrt{1 - 2 \cdot m_t} \quad \omega = 0.427 \quad \omega < \omega_{bal} \quad \text{OK!} \]
\[A_{s1} := \frac{\omega \cdot d \cdot b \cdot f_{cc}}{f_{sd}} \quad A_{s1} = 0.469 \text{ m}^2 \]
\[A_s := A_{s1} - \frac{N_{sd}}{f_{sd}} \quad A_s = -0.037 \text{ m}^2 \]
\[n := \frac{A_s}{A_{si}} \quad n = -118.274 \]

Section 13 does not need reinforcement.
Negative moment

Forces

\[M_{sd} := 163314 \text{kNm} \quad N_{sd} := 189220 \text{kN} \]

Cross-section constants

\[h := 1.5 \text{m} \quad cc := 0.05 \text{m} \]
\[d := h - cc \quad d = 1.45 \text{m} \]
\[tp := 0.75 \text{m} \quad b := 13 \text{m} \]
\[e := tp - cc \quad e = 0.7 \text{m} \]
\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 2.958 \times 10^5 \text{kNm} \]

Values for balanced reinforcement K500

\[m_{bal} := 0.365 \]
\[m_y := \frac{M_s}{b \cdot d^2 \cdot f_{cc}} \quad m_y = 0.513 \quad m_y > m_{bal} \quad \text{NOT OK!} \]

The cross-section will be over reinforced
Try with putting compression reinforcement
\[d_t := 0.05 \text{ m} \]

Assumption: \[\sigma_{\text{st}} := f_{\text{sd}} \]

\[A_{\text{st}} := \frac{M_s - m_{b\text{al}} \cdot b \cdot d_t^2 \cdot f_{\text{cc}}}{(d - d_t) \sigma_{\text{st}}} \]

\[A_{\text{st}} = 0.168 \text{ m}^2 \]

\[n_t := \frac{A_{\text{st}}}{A_{\text{si}}} \]

\[n_t = 534.375 \]

Choose: \[n_t := 535 \]

\[M_{\text{II}} := A_{\text{st}} \cdot \sigma_{\text{st}} \cdot (d - d_t) \]

\[M_{\text{II}} = 8.516 \times 10^4 \text{ kNm} \]

\[M_{\text{I}} := M_s - M_{\text{II}} \]

\[M_{\text{I}} = 2.106 \times 10^5 \text{ kNm} \]

\[m_r := \frac{M_{\text{I}}}{b \cdot d_t \cdot f_{\text{cc}}} \]

\[m_r = 0.365 \]

\[\omega := 1 - \sqrt{1 - 2 \cdot m_r} \]

\[\omega = 0.48 \]

\[\varepsilon_{\text{st}} := \varepsilon_{\text{cu}} \left(1 - 0.8 \frac{d_t}{\omega \cdot d} \right) \]

\[\varepsilon_{\text{st}} = 3.299 \times 10^{-3} \]

\[\varepsilon_{\text{st}} > \varepsilon_{\text{sy}} \quad \text{OK!} \]

\[A_{s1} := \left[\frac{M_{\text{I}}}{d_t \left(1 - \frac{\omega}{2} \right)} + \frac{M_{\text{II}}}{d - d_t} \right] \frac{1}{f_{\text{sd}}} \]

\[A_{s1} = 0.695 \text{ m}^2 \]

\[A_s := A_{s1} - \frac{N_{\text{sd}}}{f_{\text{sd}}} \]

\[A_s = 0.173 \text{ m}^2 \]

\[n := \frac{A_s}{A_{s1}} \]

\[n = 551.475 \]

Choose: \[n := 552 \]
Calculation for x

Assume: $\varepsilon_s, \varepsilon_{s1}, \varepsilon_{s2} > \varepsilon_{sy}$

\[
d := 1.44 \text{ m}
\]
\[
n_1 := 215
\]
\[
A_{s1} := A_s \cdot n_1
\]
\[
A_{s1} = 0.068 \text{ m}^2
\]

\[
d_1 := 1.39 \text{ m}
\]
\[
n_2 := 215
\]
\[
A_{s2} := A_s \cdot n_2
\]
\[
A_{s2} = 0.068 \text{ m}^2
\]

\[
d_2 := 1.34 \text{ m}
\]
\[
n_3 := 122
\]
\[
A_{s3} := A_s \cdot n_3
\]
\[
A_{s3} = 0.038 \text{ m}^2
\]

\[
n_{tot} := n_1 + n_2 + n_3
\]
\[
n_{tot} = 552
\]
\[
A_{stot} := A_{s1} + A_{s2} + A_{s3}
\]
\[
A_{stot} = 0.173 \text{ m}^2
\]

\[
d_{t} := 0.05 \text{ m}
\]
\[
n_{t1} := 215
\]
\[
A_{st1} := A_s \cdot n_{t1}
\]
\[
A_{st1} = 0.068 \text{ m}^2
\]

\[
d_{t1} := 0.1 \text{ m}
\]
\[
n_{t2} := 215
\]
\[
A_{st2} := A_s \cdot n_{t2}
\]
\[
A_{st2} = 0.068 \text{ m}^2
\]

\[
d_{t2} := 0.15 \text{ m}
\]
\[
n_{t3} := 105
\]
\[
A_{st3} := A_s \cdot n_{t3}
\]
\[
A_{st3} = 0.033 \text{ m}^2
\]

\[
n_{ttot} := n_{t1} + n_{t2} + n_{t3}
\]
\[
n_{ttot} = 535
\]
\[
A_{sttot} := n_{ttot} \cdot A_s
\]
\[
A_{sttot} = 0.168 \text{ m}^2
\]

Horizontal equilibrium gives:

\[
x_1 := 0.0001 \text{ m}
\]
\[
N_{sd} = f_{sd} \cdot A_{stot} \cdot x_1
\]
\[
N_{sd} = f_{sd} \cdot A_{sttot} \cdot x_1
\]
\[
x = 0.794 \text{ m}
\]

Check assumption

\[
\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu}
\]
\[
\varepsilon_s = 2.846 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[
\varepsilon_{s1} := \frac{d_1 - x}{x} \cdot \varepsilon_{cu}
\]
\[
\varepsilon_{s1} = 2.626 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[
\varepsilon_{s2} := \frac{d_2 - x}{x} \cdot \varepsilon_{cu}
\]
\[
\varepsilon_{s2} = 2.405 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]
\[e_{st} := \frac{x - d_t}{x} \varepsilon_{cu} \quad \varepsilon_{st} = 3.28 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[e_{st1} := \frac{x - d_{t1}}{x} \varepsilon_{cu} \quad \varepsilon_{st1} = 3.059 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[e_{st2} := \frac{x - d_{t2}}{x} \varepsilon_{cu} \quad \varepsilon_{st2} = 2.839 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

Check moment capacity: \(M_d > M_s \)

\[
M_d := \alpha \cdot f_{ce} \cdot b \cdot x (d - \beta \cdot x) + f_{sd} \cdot A_{st1} \cdot (d - d_t) + f_{sd} \cdot A_{st2} \cdot (d - d_{t1}) + f_{sd} \cdot A_{st3} \cdot (d - d_{t2}) \]

\[
+ [-f_{sd} \cdot A_{s2} \cdot (d - d_{t1}) - f_{sd} \cdot A_{s3} \cdot (d - d_{t2})] ...
\]

\[M_d = 2.876 \times 10^5 \text{ kNm} \]

\[M_s = 2.958 \times 10^5 \text{ kNm} \]

Increase compression steel area!

Assume: \(\varepsilon_s, \varepsilon_{s1}, \varepsilon_{s2} > \varepsilon_{sy} \quad \varepsilon_{st}, \varepsilon_{st1}, \varepsilon_{st2} > \varepsilon_{sy} \)

\[d := 1.44 \text{ m} \quad n_1 := 215 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.068 \text{ m}^2 \]

\[d_1 := 1.39 \text{ m} \quad n_2 := 215 \quad A_{s2} := A_{si} \cdot n_2 \quad A_{s2} = 0.068 \text{ m}^2 \]

\[d_2 := 1.34 \text{ m} \quad n_3 := 122 \quad A_{s3} := A_{si} \cdot n_3 \quad A_{s3} = 0.038 \text{ m}^2 \]

\[n_{tot} := n_1 + n_2 + n_3 \quad n_{tot} = 552 \]

\[A_{stot} := A_{s1} + A_{s2} + A_{s3} \quad A_{stot} = 0.173 \text{ m}^2 \]

\[d_t := 0.05 \text{ m} \quad n_{t1} := 215 \quad A_{st1} := A_{si} \cdot n_{t1} \quad A_{st1} = 0.068 \text{ m}^2 \]

\[d_{t1} := 0.1 \text{ m} \quad n_{t2} := 215 \quad A_{st2} := A_{si} \cdot n_{t2} \quad A_{st2} = 0.068 \text{ m}^2 \]

\[d_{t2} := 0.15 \text{ m} \quad n_{t3} := 215 \quad A_{st3} := A_{si} \cdot n_{t3} \quad A_{st3} = 0.068 \text{ m}^2 \]
\[\varepsilon_{st} := \epsilon_{cu} \cdot \frac{d_{t3}}{0.2} = 3.753 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \text{ OK!} \]

\[\varepsilon_{st1} := \frac{\varepsilon_{st} - \varepsilon_{cu}}{\frac{d_{t3}}{0.2}} = 3.501 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \text{ OK!} \]

\[\varepsilon_{st2} := \frac{\varepsilon_{st} - \varepsilon_{cu}}{\frac{d_{t3}}{0.2}} = 3.249 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \text{ OK!} \]

\[\varepsilon_{st3} := \frac{\varepsilon_{st} - \varepsilon_{cu}}{\frac{d_{t3}}{0.2}} = 2.493 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \text{ OK!} \]

Check moment capacity: \(M_d > M_s \)

\[
M_d := \alpha \cdot f_{cc} \cdot b \cdot \left(d - x \cdot \varepsilon_{cu} \right) + f_{sd} \cdot A_{st1} \left(d - d_{t1} \right) + f_{sd} \cdot A_{st2} \left(d - d_{t2} \right) + f_{sd} \cdot A_{st3} \left(d - d_{t3} \right) \]

\[M_d = 2.992 \times 10^5 \text{ kNm} \]

\[M_s = 2.958 \times 10^4 \text{ kNm} \]

\(M_d > M_s \) \text{ OK!}
C3: Compilation of the results for the different cross-sections

Reduced height of the box girder cross-section, variable height

Table 3 Dimensions of the reduced height arch cross-section.

<table>
<thead>
<tr>
<th>Section</th>
<th>h [m]</th>
<th>Bottom slab [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0.40</td>
</tr>
<tr>
<td>2</td>
<td>3.58</td>
<td>0.35</td>
</tr>
<tr>
<td>3</td>
<td>3.216</td>
<td>0.30</td>
</tr>
<tr>
<td>4</td>
<td>3.000</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>2.872</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>2.663</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>2.539</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>2.500</td>
<td>0.25</td>
</tr>
<tr>
<td>9</td>
<td>2.544</td>
<td>0.25</td>
</tr>
<tr>
<td>10</td>
<td>2.672</td>
<td>0.25</td>
</tr>
<tr>
<td>11</td>
<td>2.885</td>
<td>0.25</td>
</tr>
<tr>
<td>12</td>
<td>3.193</td>
<td>0.25</td>
</tr>
<tr>
<td>13</td>
<td>3.590</td>
<td>0.30</td>
</tr>
<tr>
<td>14</td>
<td>3.984</td>
<td>0.35</td>
</tr>
<tr>
<td>15</td>
<td>4.473</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Table 4 Obtained bending moments, normal forces and amount of the reinforcement bars.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sd}</td>
<td>127482</td>
<td>12356</td>
<td>42737</td>
<td>94074</td>
<td>98372</td>
<td>77739</td>
<td>38484</td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>146971</td>
<td>129033</td>
<td>131997</td>
<td>127330</td>
<td>131614</td>
<td>135625</td>
<td>143462</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>-80</td>
<td>-131</td>
<td>-107</td>
<td>-40</td>
<td>-36</td>
<td>-79</td>
<td>-130</td>
<td></td>
</tr>
</tbody>
</table>
Table 5 The traffic load coefficient increased to 1.7.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sd}</td>
<td>136813</td>
<td>15741</td>
<td>47788</td>
<td>101543</td>
<td>105051</td>
<td>83457</td>
<td>40761</td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>149047</td>
<td>130149</td>
<td>134361</td>
<td>129426</td>
<td>134166</td>
<td>138187</td>
<td>145862</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>-74</td>
<td>-129</td>
<td>-105</td>
<td>-30</td>
<td>-28</td>
<td>-76</td>
<td>-131</td>
<td></td>
</tr>
</tbody>
</table>

$-M_{sd}$	43829	55209	36203			6245	19878	272099
$-N_{sd}$	144245	142392	131174			134934	147418	149930
n	-130	-112	-111			-140	-146	-16

Table 6 The traffic load coefficient increased to 1.9.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sd}</td>
<td>146144</td>
<td>19127</td>
<td>52839</td>
<td>109011</td>
<td>111731</td>
<td>89176</td>
<td>43037</td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>151122</td>
<td>131265</td>
<td>136724</td>
<td>131522</td>
<td>136717</td>
<td>140749</td>
<td>148262</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>-68</td>
<td>-128</td>
<td>-103</td>
<td>-21</td>
<td>-24</td>
<td>-71</td>
<td>-132</td>
<td></td>
</tr>
</tbody>
</table>

$-M_{sd}$	53261	58495	39737			9646	22843	283621
$-N_{sd}$	145814	145012	133182			137120	150072	152349
n	-126	-113	-110			-140	-147	-12
Reduced height of the box girder cross-section, constant height

Table 7 Obtained bending moments, normal forces and amount of the reinforcement bars.

<table>
<thead>
<tr>
<th>Section</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sd}</td>
<td>132370</td>
<td>11558</td>
<td>38125</td>
<td>99224</td>
<td>105740</td>
<td>87871</td>
<td>67392</td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>144694</td>
<td>127669</td>
<td>130762</td>
<td>125715</td>
<td>130114</td>
<td>134481</td>
<td>141557</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>-126</td>
<td>-104</td>
<td>-29</td>
<td>-20</td>
<td>-52</td>
<td>-81</td>
<td></td>
</tr>
<tr>
<td>$-M_{sd}$</td>
<td>49885</td>
<td>44074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>164450</td>
<td></td>
</tr>
<tr>
<td>$-N_{sd}$</td>
<td>138824</td>
<td>128470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145099</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>-100</td>
<td>-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
</tbody>
</table>
APPENDIX D: NON-LINEAR ANALYSIS
D1: Iteration one, calculations and results from the Strip Step 2
Calculation for the compressive zone

Cross-section : Solid

Iteration number: 1 Reduced reinforcement amount!

Material properties

Concrete C40/50

Partial safety factor

Safety class 3

\[\gamma_n := 1.2 \]
\[\eta_{\gamma_m} := 1.5 \]

\[f_{cck} := 38 \text{ MPa} \]
\[e_{cu} := 3.5 \times 10^{-3} \]

\[f_{cc} := \frac{f_{cck}}{(\eta_{\gamma_m} \gamma_n)} \]
\[f_{cc} = 2.111 \times 10^7 \text{ Pa} \]

Stress block factors

\[\beta := 0.443 \]
\[\alpha := 0.877 \]

Steel K500 (Kamstång B500B)

Partial safety factor

Safety class 3

\[\eta_{\gamma_m} := 1.15 \]
\[\eta_{\gamma_{mes}} := 1.05 \]
\[\gamma_n := 1.2 \]

\[f_{sk} := 500 \text{ MPa} \]
\[E_{sm} := 200 \text{ GPa} \]

\[f_{sd} := \frac{f_{sk}}{\eta_{\gamma_m} \gamma_n} \]
\[f_{sd} = 3.623 \times 10^8 \text{ Pa} \]

\[E_s := \frac{E_{sm}}{\eta_{\gamma_{mes}} \gamma_n} \]
\[E_s = 1.587 \times 10^{11} \text{ Pa} \]

\[\varepsilon_{sy} := \frac{f_{sd}}{E_s} \]
\[\varepsilon_{sy} = 2.283 \times 10^{-3} \]

Steel diameter

\[\phi := 20 \text{ mm} \]

\[A_{si} := \pi \left(\frac{\phi}{2} \right)^2 \]
\[A_{si} = 3.142 \times 10^{-4} \text{ m}^2 \]
Section 1
Positive moment

Forces

\[M_{sd} := 125661 \text{kNm} \quad N_{sd} := 188632 \text{kN} \]

Cross-section constants

\[h := 1.5 \text{ m} \quad cc := 0.05 \text{ m} \]
\[d := h - cc \quad d = 1.45 \text{ m} \]
\[tp := 0.517 \text{ m} \quad b := 13 \text{ m} \]
\[e := d - tp \quad e = 0.933 \text{ m} \]
\[x_1 := 0.000001 \text{ m} \]
\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 3.017 \times 10^5 \text{kNm} \]

Tension reinforcement

\[d := 1.45 \text{ m} \quad n_1 := 215 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.068 \text{m}^2 \]
\[d_1 := 1.39 \text{ m} \quad n_2 := 215 \quad A_{s2} := A_{si} \cdot n_2 \quad A_{s2} = 0.068 \text{m}^2 \]
\[d_2 := 1.34 \text{ m} \quad n_3 := 170 \quad A_{s3} := A_{si} \cdot n_3 \quad A_{s3} = 0.053 \text{m}^2 \]
\[n_{tot} := n_1 + n_2 + n_3 \quad n_{tot} = 600 \]
\[A_s := n_{tot} \cdot A_{si} \quad A_s = 0.188 \text{m}^2 \]
\[A_{s\text{tot}} := A_{s1} + A_{s2} + A_{s3} \quad A_{s\text{tot}} = 0.188 \text{m}^2 \]

Compression reinforcement

\[d_t := 0.05 \text{ m} \quad n_{t1} := 215 \quad A_{st1} := A_{si} \cdot n_{t1} \quad A_{st1} = 0.068 \text{m}^2 \]
\[d_{t1} := 0.1 \text{ m} \quad n_{t2} := 215 \quad A_{st2} := A_{si} \cdot n_{t2} \quad A_{st2} = 0.068 \text{m}^2 \]
\[d_{t2} := 0.15 \text{ m} \quad n_{t3} := 215 \quad A_{st3} := A_{si} \cdot n_{t3} \quad A_{st3} = 0.068 \text{m}^2 \]
\[d_{t3} := 0.2 \text{ m} \quad n_{t4} := 215 \quad A_{st4} := A_{si} \cdot n_{t4} \quad A_{st4} = 0.068 \text{m}^2 \]
\[n_{ttot} := n_{t1} + n_{t2} + n_{t3} + n_{t4} \]
\[A_{st} := n_{ttot} \cdot A_s \]
\[A_{sttot} := A_{st1} + A_{st2} + A_{st3} + A_{st4} \]

Assume: \[\varepsilon_s, \varepsilon_{s1}, \varepsilon_{s2}, \varepsilon_{st}, \varepsilon_{st1}, \varepsilon_{st2}, \varepsilon_{st3} > \varepsilon_{sy} \]

\[x := \text{root} \left[\alpha \cdot f_{cc} \cdot b \cdot x_1 \cdot \left(d - \beta \cdot x_1 \right) + f_{sd} \cdot A_{st1} \cdot \left(d - d_1 \right) + f_{sd} \cdot A_{st2} \cdot \left(d - d_{11} \right) + f_{sd} \cdot A_{st3} \cdot \left(d - d_{12} \right) \ldots \right] \]
\[+ f_{sd} \cdot A_{st4} \cdot \left(d - d_{2} \right) - M_s - f_{sd} \cdot A_{s2} \cdot \left(d - d_1 \right) \]
\[+ f_{sd} \cdot A_{s3} \cdot \left(d - d_2 \right) \]

\[x = 0.621 \text{m} \]

Check assumptions:

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 4.676 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{s1} := \frac{d_1 - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{s1} = 4.338 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{s2} := \frac{d_2 - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{s2} = 4.056 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st} := \frac{x - d_t}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.218 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st1} := \frac{x - d_{t1}}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st1} = 2.936 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st2} := \frac{x - d_{t2}}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st2} = 2.654 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st3} := \frac{x - d_{t3}}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st3} = 2.372 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[x = 0.621 \text{m} \]
Section 3

Negative moment

Forces

\[M_{sd} := 20204 \text{kNm} \quad N_{sd} := 180533 \text{kN} \]

Cross-section constants

\[
\begin{align*}
&h := 1.5 \text{ m} & cc := 0.05 \text{ m} \\
d := h - cc & d = 1.45 \text{ m} \\
&tp := 0.371 \text{ m} & b := 13 \text{ m} \\
e := d - tp & e = 1.079 \text{ m} \\
M_s := M_{sd} + N_{sd} \epsilon & M_s = 2.15 \times 10^5 \text{kNm}
\end{align*}
\]

Minimum reinforcement

Tension reinforcement

\[d := 1.44 \text{ m} \quad n := 64 \quad A_s := n \cdot A_{si} \quad A_s = 0.02 \text{m}^2 \]

Compression reinforcement

\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{m}^2 \]

Assume: \[\epsilon_s, \epsilon_{st} > \epsilon_{sy} \]

\[x := \text{root} \left[f_{cc} \cdot b \cdot x_1 \left(d - \beta \cdot x_1 \right) + f_{sd} \cdot A_{si} \left(d - d_t \right) - M_s \cdot x_1 \right] \]

\[x = 0.777 \text{m} \]

Check assumptions:

\[\epsilon_s := \frac{d - x}{x} \epsilon_{cu} \quad \epsilon_s = 2.989 \times 10^{-3} \quad > \quad \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\epsilon_{st} := \frac{x - d_t}{x} \epsilon_{cu} \quad \epsilon_{st} = 3.275 \times 10^{-3} \quad > \quad \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[x = 0.777 \text{m} \]

Section 5

Positive moment

Forces

\[M_{sd} := 72044 \text{kNm} \quad N_{sd} := 170373 \text{kN} \]
Cross-section constants

\[
\begin{align*}
\text{h} & := 1.5 \text{ m} & \text{cc} & := 0.05 \text{ m} \\
\text{d} & := \text{h} - \text{cc} & \text{d} & := 1.45 \text{ m} \\
\text{tp} & := 0.348 \text{ m} & \text{b} & := 13 \text{ m} \\
\text{e} & := \text{tp} - \text{cc} & \text{e} & := 0.298 \text{ m}
\end{align*}
\]

\[
M_s := M_{sd} + N_{sd} \cdot e
\]

\[
M_s = 1.228 \times 10^5 \text{ kNm}
\]

Minimum reinforcement

Tension reinforcement
\[
d := 1.44 \text{ m} & \quad n := 64 & \quad A_s := n \cdot A_{si} & \quad A_s = 0.02 \text{ m}^2
\]

Compression reinforcement
\[
d_t := 0.05 \text{ m} & \quad n_t := 64 & \quad A_{st} := n_t \cdot A_{si} & \quad A_{st} = 0.02 \text{ m}^2
\]

Assume: \(\varepsilon_s \cdot \varepsilon_{st} > \varepsilon_{sy} \)

\[
x := \sqrt{\frac{f_{cc} \cdot b \cdot \alpha \cdot x_1 \cdot (d - \beta \cdot x_1) + f_{sd} \cdot A_{st} \cdot (d - d_t) - M_s \cdot x_1}{}}
\]

\(x = 0.366 \text{ m} \)

Check assumptions:

\[
\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 0.01 > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[
\varepsilon_{st} := \frac{x - d_t}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.022 \times 10^{-3} > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\(x = 0.366 \text{ m} \)

Section 7

Positive moment

Forces

\[
M_{sd} := 38888 \text{ kNm} & \quad N_{sd} := 163884 \text{ kN}
\]

Cross-section constants

\[
\text{h} := 1.5 \text{ m} & \quad \text{cc} := 0.05 \text{ m}
\]
\[d := h - cc \quad \quad \quad \quad d = 1.45m \]

\[tp := 0.438m \quad \quad b := 13m \]

\[e := d - tp \quad \quad e = 1.012m \]

\[M_s := M_{sd} + N_{sd}\cdot e \quad M_s = 2.047 \times 10^5 \text{ kNm} \]

Tension reinforcement

\[d := 1.44m \quad \quad n := 120 \quad A_s := n\cdot A_{si} \quad A_s = 0.038m^2 \]

Compression reinforcement

\[d_t := 0.05m \quad \quad n_t := 64 \quad A_{st} := n_t\cdot A_{si} \quad A_{st} = 0.02m^2 \]

Assume: \[\varepsilon_s, \varepsilon_{st} > \varepsilon_{sy} \]

\[x := \text{root} \left[f_{cc}\cdot b\cdot \alpha\cdot x_1 (d - \beta\cdot x_1) + f_{sd}\cdot A_{st} (d - d_t) - M_s, x_1 \right] \]

\[x = 0.722m \]

Check assumptions:

\[\varepsilon_s := \frac{d - x}{x}\cdot \varepsilon_{cu} \quad \varepsilon_s = 3.483 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st} := \frac{x - d_t}{x}\cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.258 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[x = 0.722m \]

Section 9

Positive moment

Forces

\[M_{sd} := 69112\text{kNm} \quad \quad N_{sd} := 168287\text{kN} \]

Cross-section constants

\[h := 1.5m \quad \quad cc := 0.05m \]

\[d := h - cc \quad \quad d = 1.45m \]

\[tp := 0.493m \quad \quad b := 13m \]
\[d := 1.44 \text{ m} \quad n_1 := 190 \quad A_{s1} := A_{si} \cdot n_1 \quad A_s = 0.06 \text{ m}^2 \]
\[n_{tot} := n_1 \quad n_{tot} = 190 \]
\[A_{stot} := A_{s1} \quad A_{stot} = 0.06 \text{ m}^2 \]

Compression reinforcement
\[d_t := 0.05 \text{ m} \quad n_t := 80 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.025 \text{ m}^2 \]

Assume: \(\varepsilon_s, \varepsilon_{st} > \varepsilon_{sy} \)

\[
x := \text{root} \left[\int_{cc}^{\varepsilon_{cu}} b \cdot \alpha \cdot x_1 \left(d - \beta \cdot x_1 \right) + f_{sd} \cdot A_{st} \left(d - d_t \right) - M_s \cdot x_1 \right]
\]
\[x = 0.85 \text{ m} \]

Check assumptions:
\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 2.432 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]
\[\varepsilon_{st} := \frac{x - d_t}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.294 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[x = 0.85 \text{ m} \]

Section 11
Positive moment

Forces
\[M_{sd} := 29105 \text{kNm} \quad N_{sd} := 173883 \text{kN} \]

Cross-section constants
\[h := 1.5 \text{ m} \quad cc := 0.05 \text{ m} \]
\[d := h - cc \quad d = 1.45 \text{ m} \]
\[t_p := 0.384 \text{ m} \quad b := 13 \text{ m} \]
\[e := d - t_p \quad e = 1.066 \text{ m} \]
\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 2.145 \times 10^5 \text{kNm} \]
\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t A_{si} \quad A_{st} = 0.02 \text{ m}^2 \]

Assume: \(\varepsilon_s, \varepsilon_{st} > \varepsilon_{sy} \)

\[x := \text{root} \left[f_{cc} \cdot b \cdot \alpha \cdot x_1 \left(d - \beta \cdot x_1 \right) + f_{sd} \cdot A_{st} \left(d - d_t \right) - M_s \cdot x_1 \right] \]

\[x = 0.774 \text{ m} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 3.014 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st} := \frac{x - d_t}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.274 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[x = 0.774 \text{ m} \]

Section 13

Positive moment

Forces

\[M_{sd} := 6045 \text{ kNm} \quad N_{sd} := 182866 \text{ kN} \]

Cross-section constants

\[h := 1.5 \text{ m} \quad cc := 0.05 \text{ m} \]

\[d := h - cc \quad d = 1.45 \text{ m} \]

\[tp := 0.368 \text{ m} \quad b := 13 \text{ m} \]

\[e := d - tp \quad e = 1.082 \text{ m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 2.039 \times 10^5 \text{ kNm} \]

Tension reinforcement

\[d := 1.44 \text{ m} \quad n_1 := 64 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.02 \text{ m}^2 \]

Compression reinforcement

\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t A_{si} \quad A_{st} = 0.02 \text{ m}^2 \]

Assume: \(\varepsilon_s, \varepsilon_{st} > \varepsilon_{sy} \)
\[x = 0.717 \text{m} \]

Check assumptions:
\[
\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 3.525 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]
\[
\varepsilon_{st} := \frac{x - d_1}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.256 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[x = 0.717 \text{m} \]

Section 15

Negative moment

Forces

\[M_{sd} := 108697\text{kNm} \quad N_{sd} := 188549\text{kN} \]

Cross-section constants

\[h := 1.5\text{m} \quad c_c := 0.05\text{m} \]
\[d := h - c_c \quad d = 1.45\text{m} \]
\[t_p := 0.497\text{m} \quad b := 13\text{m} \]
\[c := d - t_p \quad e = 0.953\text{m} \]
\[x_l := 0.000001\text{m} \]
\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 2.884 \times 10^5 \text{kNm} \]

Tension reinforcement

\[d := 1.44\text{m} \quad n_1 := 215 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.068\text{m}^2 \]
\[d_1 := 1.39\text{m} \quad n_2 := 215 \quad A_{s2} := A_{si} \cdot n_2 \quad A_{s2} = 0.068\text{m}^2 \]
\[d_2 := 1.34\text{m} \quad n_3 := 12 \quad A_{s3} := A_{si} \cdot n_3 \quad A_{s3} = 3.77 \times 10^{-3}\text{m}^2 \]
\[n_{tot} := n_1 + n_2 + n_3 \quad n_{tot} = 442 \]
\[A_{stot} := A_{s1} + A_{s2} + A_{s3} \quad A_{stot} = 0.139\text{m}^2 \]
Compression reinforcement

\[\begin{align*}
\varepsilon_{s} & := 3.288 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \\
\varepsilon_{s1} & := 3.052 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \\
\varepsilon_{s2} & := 2.817 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \\
\varepsilon_{st} & := 3.264 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \\
\varepsilon_{st1} & := 3.029 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \\
\varepsilon_{st2} & := 2.793 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\end{align*} \]

\[x = 0.742 \text{m} \]
Calculation for cross-sectional constants

Cross-section: Solid

Iteration number: 1

Material properties

Concrete C40/50

Partial safety factor

e-module

\[\eta_{\text{mec}} := 1.2 \quad \gamma_n := 1.2 \]

\[E_c := \frac{E_{\text{ck}}}{\eta_{\text{mec}} \gamma_n} \]

\[E_c = 2.431 \times 10^{10} \text{ Pa} \]

Steel K500 (Kamstång B500B)

Partial safety factor

\[\eta_{\text{mes}} := 1.05 \quad \gamma_n := 1.2 \]

\[E_s := \frac{E_{\text{sk}}}{\eta_{\text{mes}} \gamma_n} \]

\[E_s = 158.73 \text{ GPa} \]

Condition

Concrete cover: Very aggressive environment, life span L2

cc > 40 mm and we choose 50 mm

Reinforcement spacing:

Parallel: 2 \(\phi \)

Vertical: 1.5 \(\phi \)
Cross-section constants:

\[h := 1.5 \text{ m} \quad b := 13 \text{ m} \]
\[t_p := 0.75 \text{ m} \]
\[\alpha := \frac{E_s}{E_c} \quad \alpha = 6.531 \]

Steel area

Steel diameter \(\phi := 20 \text{ mm} \)
\[A_{si} := \pi \left(\frac{\phi}{2} \right)^2 \]
\[A_{si} = 3.142 \times 10^{-4} \text{ m}^2 \]

Long-term effects

creep

Outside structure without heating: Humidity = 75%
\[\nu := 2 \]
\[\text{creep} \quad \alpha_{cf} := \alpha (1 + \nu) \quad \alpha_{cf} = 19.592 \]

Section 1

Positive moment

Cross-section constants

Tension reinforcement
\[d := 1.44 \text{ m} \quad n_1 := 215 \]
\[A_{s1} := A_{si} n_1 \quad A_{s1} = 0.068 \text{ m}^2 \]
\[d_1 := 1.39 \text{ m} \quad n_2 := 215 \quad A_{s2} := A_{si} \cdot n_2 \quad A_{s2} = 0.068 \text{ m}^2 \]

\[d_2 := 1.34 \text{ m} \quad n_3 := 170 \quad A_{s3} := A_{si} \cdot n_3 \quad A_{s3} = 0.053 \text{ m}^2 \]

\[n_{\text{tot}} := n_1 + n_2 + n_3 \quad n_{\text{tot}} = 600 \]

\[A_{\text{stot}} := A_{s1} + A_{s2} + A_{s3} \quad A_{\text{stot}} = 0.188 \text{ m}^2 \]

Compression reinforcement

\[d_4 := 0.05 \text{ m} \quad n_{t1} := 215 \quad A_{st1} := A_{si} \cdot n_{t1} \quad A_{st1} = 0.068 \text{ m}^2 \]

\[d_{t1} := 0.1 \text{ m} \quad n_{t2} := 215 \quad A_{st2} := A_{si} \cdot n_{t2} \quad A_{st2} = 0.068 \text{ m}^2 \]

\[d_{t2} := 0.15 \text{ m} \quad n_{t3} := 215 \quad A_{st3} := A_{si} \cdot n_{t3} \quad A_{st3} = 0.068 \text{ m}^2 \]

\[d_{t3} := 0.2 \text{ m} \quad n_{t4} := 215 \quad A_{st4} := A_{si} \cdot n_{t4} \quad A_{st4} = 0.068 \text{ m}^2 \]

\[n_{\text{ttot}} := n_{t1} + n_{t2} + n_{t3} + n_{t4} \quad n_{\text{ttot}} = 860 \]

\[A_{sttot} := A_{st1} + A_{st2} + A_{st3} + A_{st4} \quad A_{sttot} = 0.27 \text{ m}^2 \]

x-value:

\[x := 0.621 \text{ m} \]

\[A_{ekv} := b \cdot x + a_{ef} \cdot A_{\text{stot}} + \left(a_{ef} - 1 \right) \cdot A_{\text{stot}} \quad A_{ekv} = 16.789 \text{ m}^2 \]

\[x_s := a_{ef} \left(A_{s1} \cdot d_1 + A_{s2} \cdot d_1 + A_{s3} \cdot d_2 \right) \]

\[x_{st} := \left(a_{ef} - 1 \right) \left(A_{st1} \cdot d_1 + A_{st2} \cdot d_{t1} + A_{st3} \cdot d_{t2} + A_{st4} \cdot d_{t3} \right) \]

\[x_c := \frac{b \cdot x^2}{2} \]

\[x_p := \frac{x_c + x_s + x_{st}}{A_{ekv}} \quad x_p = 0.493 \text{ m} \]

\[I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_p \right)^2 \]
\[I_s := \alpha_{ef} \left[A_{s1} (d - x_{tp})^2 + A_{s2} (d_1 - x_{tp})^2 + \ldots \right] \]
\[I_{st} := (\alpha_{ef} - 1) \left[A_{st1} (x_{tp} - d_1)^2 + A_{st2} (x_{tp} - d_{t1})^2 + \ldots \right] \]
\[I_{ekv} := I_c + I_s + I_{st} \]
\[E I_{ekv} := \frac{E_c}{1 + \psi} I_{ekv} \]

Section 3

Negative moment

Cross-section constants

Tension reinforcement
\[d := 1.44 \text{ m} \quad n := 64 \quad A_s := n \cdot A_{si} \quad A_s = 0.02 \text{ m}^2 \]

Compression reinforcement
\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{ m}^2 \]

x-value:
\[x := 0.777 \text{ m} \]
\[A_{ekv} := b \cdot x + \alpha_{ef} \cdot A_s + \left(\alpha_{ef} - 1 \right) \cdot A_{st} \quad A_{ekv} = 10.869 \text{ m}^2 \]
\[x_c := \frac{b \cdot x^2}{2} \]
\[x_{tp} := \frac{x_c + x_s + x_{st}}{A_{ekv}} \quad x_{tp} = 0.415 \text{ m} \]
\[I_c := \frac{b \cdot x^2}{12} + b \cdot x \left(\frac{x}{2} - x_{tp} \right)^2 \]

\[I_s := \alpha_{ef} \left[A_s \left(d - x_{tp} \right)^2 \right] \]

\[I_{st} := \left(\alpha_{ef} - 1 \right) \left[A_{st} \left(d_t - x_{tp} \right)^2 \right] \]

\[I_{ekv} := I_c + I_s + I_{st} \]

\[E_{I_{ekv}} := \frac{E_c}{1 + \psi} I_{ekv} \]

\[A_{ekv} := b \cdot x + \alpha_{ef} A_s + \left(\alpha_{ef} - 1 \right) A_{st} \]

\[x := 0.366 \text{ m} \]

\[A_{ekv} = 5.526 \text{ m}^2 \]

\[x_{st} := \left(\alpha_{ef} - 1 \right) A_{st} \cdot d_t \]

\[x_{tp} := \frac{x_c + x_s + x_{st}}{A_{ekv}} \]

\[x_{tp} = 0.264 \text{ m} \]
\[I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_p \right)^2 \]

\[I_s := \alpha_{ef} A_s (d - x_p)^2 \]

\[I_{st} := (\alpha_{ef} - 1) \left[A_{st} (d_t - x_p)^2 \right] \]

\[I_{ekv} := I_c + I_s + I_{st} \quad I_{ekv} = 0.646 \text{m}^4 \]

\[E_{ekv} := \frac{E_c}{1 + \psi} I_{ekv} \quad E_{ekv} = 5.236 \times 10^9 \text{ m}^2 \text{N} \]

Section 7

Positive moment

Cross-section constants

Tension reinforcement

\(d := 1.44 \text{ m} \quad n := 120 \quad A_s := A_{st} \cdot n \quad A_s = 0.038 \text{m}^2 \)

Compression reinforcement

\(d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{m}^2 \)

\(x\)-value: \(x := 0.722 \text{ m} \)

\[A_{ekv} := b \cdot x + \alpha_{ef} A_s + \left(\alpha_{ef} - 1 \right) A_{st} \quad A_{ekv} = 10.498 \text{m}^2 \]

\[x_c := \alpha_{ef} A_s \cdot d \]

\[x_{st} := (\alpha_{ef} - 1) A_{st} \cdot d_t \]

\[x_c := \frac{b \cdot x^2}{2} \]

\[x_p := \frac{x_c + x_s + x_{st}}{A_{ekv}} \quad x_p = 0.426 \text{m} \]
\[I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_{tp}\right)^2 \]

\[I_s := \alpha_{ef} A_s (d - x_{tp})^2 \]

\[I_{st} := (\alpha_{ef} - 1) A_{st} (d_t - x_{tp})^2 \]

\[I_{ekv} := I_c + I_s + I_{st} \]

\[\begin{align*}
 E_{ekv} &= E_c \cdot I_{ekv} \\
 E_{ekv} &= 1.26 \text{m}^4 \\
 I_{ekv} &= 1.021 \times 10^{10} \text{m}^2
\end{align*} \]

Section 9

Positive moment

Cross-section constants

Tension reinforcement

\[d := 1.44 \text{m} \quad n := 190 \quad A_s := A_{si} \cdot n \quad A_s = 0.06 \text{m}^2 \]

Compression reinforcement:

\[d_t := 0.05 \text{m} \quad n_t := 80 \quad A_{st} := A_{si} \cdot n_t \quad A_{st} = 0.025 \text{m}^2 \]

x-value:

\[x := 0.85 \text{m} \]

\[A_{ekv} := b \cdot x + \alpha_{ef} A_s + (\alpha_{ef} - 1) A_{st} \quad A_{ekv} = 12.687 \text{m}^2 \]

\[x_s := \alpha_{ef} (A_s \cdot d) \]

\[x_{st} := (\alpha_{ef} - 1) (A_{st} \cdot d_t) \]

\[x_c := \frac{b \cdot x^3}{2} \]

\[x_{tp} := \frac{x_s + x_c + x_{st}}{A_{ekv}} \quad x_{tp} = 0.505 \text{m} \]
\[I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_{tp} \right)^2 \]
\[I_s := \alpha_{ef} \left[A_s \left(d - x_{tp} \right)^2 \right] \]
\[I_{st} := (\alpha_{ef} - 1) \left[A_{st} \left(x_{tp} - d_t \right)^2 \right] \]
\[I_{ekv} := I_c + I_s + I_{st} \quad I_{ekv} = 1.855 \, m^4 \]
\[E_{ekv} := \frac{E_c}{1 + \psi} I_{ekv} \quad E_{ekv} = 1.503 \times 10^{10} \, m^2 \, N \]

Section 11

Positive moment

Cross-section constants

Tension reinforcement

\[d := 1.44 \, m \quad n := 64 \quad A_s := A_{si} \cdot n \quad A_s = 0.02 \, m^2 \]

Compression reinforcement

\[d_t := 0.05 \, m \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \, m^2 \]

x-value:

\[x := 0.774 \, m \]

\[A_{ekv} := b \cdot x + \alpha_{ef} A_s + (\alpha_{ef} - 1) A_{st} \quad A_{ekv} = 10.83 \, m^2 \]

\[x_s := \alpha_{ef} A_s \cdot d \]

\[x_{st} := (\alpha_{ef} - 1) A_{st} \cdot d_t \]

\[x_c := \frac{b \cdot x^2}{2} \]
\[x_p := \frac{x_c + x_s + x_{st}}{A_{ekv}} \]

\[x_p = 0.414 \text{m} \]

\[I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_p \right)^2 \]

\[I_s := \alpha_{ef} \left[A_s \left(d - x_p \right)^2 \right] \]

\[I_{st} := \left(\alpha_{ef} - 1 \right) \left[A_{st} \left(d_t - x_p \right)^2 \right] \]

\[I_{ekv} := I_c + I_s + I_{st} \]

\[I_{ekv} = 0.974 \text{m}^4 \]

\[E I_{ekv} := \frac{E_c}{1 + \psi} I_{ekv} \]

\[E I_{ekv} = 7.89 \times 10^6 \text{ m}^2 \text{ N} \]

Section 13

Positive moment

Cross-section constants

Tension reinforcement

\[d := 1.44 \text{ m} \quad n := 64 \quad A_s := A_{si} \cdot n \quad A_s = 0.02 \text{m}^2 \]

Compression reinforcement

\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{m}^2 \]

x-value:

\[x := 0.717 \text{ m} \]

\[A_{ekv} := b \cdot x + \alpha_{ef} \cdot A_s + \left(\alpha_{ef} - 1 \right) \cdot A_{st} \quad A_{ekv} = 10.089 \text{m}^2 \]

\[x_s := \alpha_{ef} \cdot A_s \cdot d \]

\[x_{st} := \left(\alpha_{ef} - 1 \right) \cdot A_{st} \cdot d_t \]

\[x_c := \frac{b \cdot x^2}{2} \]
\[\chi_p := \frac{\chi_c + \chi_s + \chi_{st}}{\chi_{ekv}} \quad \chi_p = 0.389m \]

\[I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - \chi_p \right)^2 \]

\[I_s := \alpha_{cf} \left[A_s \left(d - \chi_p \right)^2 \right] \]

\[I_{st} := (\alpha_{ef} - 1) \left[A_{st} \left(d_t - \chi_p \right)^2 \right] \]

\[I_{ekv} := I_c + I_s + I_{st} \quad I_{ekv} = 0.886m^4 \]

\[E_{ekv} := \frac{E_c}{1 + \psi} I_{ekv} \quad E_{ekv} = 7.179 \times 10^9 \text{ m}^2 \text{ N} \]

Section 15

Negative moment

Cross-section constants

Tension reinforcement

\[d := 1.44 \text{ m} \quad n_1 := 215 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.068m^2 \]

\[d_1 := 1.39 \text{ m} \quad n_2 := 215 \quad A_{s2} := A_{si} \cdot n_2 \quad A_{s2} = 0.068m^2 \]

\[d_2 := 1.34 \text{ m} \quad n_3 := 12 \quad A_{s3} := A_{si} \cdot n_3 \quad A_{s3} = 3.77 \times 10^{-3} \text{ m}^2 \]

\[n_{tot} := n_1 + n_2 + n_3 \quad n_{tot} = 442 \]

\[A_{stot} := A_{s1} + A_{s2} + A_{s3} \quad A_{stot} = 0.139m^2 \]

Compression reinforcement

\[d_t := 0.05 \text{ m} \quad n_{t1} := 215 \quad A_{st1} := A_{si} \cdot n_{t1} \quad A_{st1} = 0.068m^2 \]

\[d_{t1} := 0.1 \text{ m} \quad n_{t2} := 215 \quad A_{st2} := A_{si} \cdot n_{t2} \quad A_{st2} = 0.068m^2 \]
d_{t2} := 0.15 \text{m} \quad n_{t3} := 166 \quad A_{st3} := A_{si} \cdot n_{t3} \quad A_{st3} = 0.052 \text{m}^2

n_{ttot} := n_{t1} + n_{t2} + n_{t3} \quad n_{ttot} = 596

A_{sttot} := A_{st1} + A_{st2} + A_{st3} \quad A_{sttot} = 0.187 \text{m}^2

\textit{x-value:} \quad x := 0.742 \text{m}

A_{ekv} := b \cdot x + \alpha_{ef} \cdot A_{stot} + \left(\alpha_{ef} - 1\right) \cdot A_{sttot} \quad A_{ekv} = 15.848 \text{m}^2

x_s := \alpha_{ef} \left(A_{s1} \cdot d_1 + A_{s2} \cdot d_1 + A_{s3} \cdot d_2 \right)

x_{st} := \left(\alpha_{ef} - 1\right) \left(A_{st1} \cdot d_1 + A_{st2} \cdot d_{t1} + A_{st3} \cdot d_{t2} \right)

x_c := \frac{b \cdot x^2}{2}

x_p := \frac{x_c + x_s + x_{st}}{A_{ekv}} \quad x_p = 0.489 \text{m}

I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - \frac{x_p}{A_{ekv}} \right)^2

I_s := \alpha_{ef} \left[A_{s1} \left(d - x_p \right)^2 + A_{s2} \left(d_1 - x_p \right)^2 \ldots \right. \\
+ A_{s3} \left(d_2 - x_p \right)^2 \\
\ldots \left. \right]

I_{st} := \left(\alpha_{ef} - 1\right) \left[A_{st1} \left(x_p - d_1 \right)^2 + A_{st2} \left(x_p - d_{t1} \right)^2 \ldots \right. \\
+ A_{st3} \left(x_p - d_{t2} \right)^2 \\
\ldots \left. \right]

I_{ekv} := I_c + I_s + I_{st} \quad I_{ekv} = 3.445 \text{m}^4

E_{ekv} := \frac{E_c}{1 + \psi} \cdot I_{ekv} \quad E_{ekv} = 2.791 \times 10^{10} \text{m}^2 \text{N}
Results from Strip Step

Iteration: 2

Load case 3

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>82334</td>
<td>-172206</td>
</tr>
<tr>
<td>3</td>
<td>48753</td>
<td>-168407</td>
</tr>
<tr>
<td>5</td>
<td>-76023</td>
<td>-151563</td>
</tr>
<tr>
<td>7</td>
<td>8775</td>
<td>-147686</td>
</tr>
<tr>
<td>9</td>
<td>39792</td>
<td>-148484</td>
</tr>
<tr>
<td>11</td>
<td>2054</td>
<td>-153466</td>
</tr>
<tr>
<td>13</td>
<td>-14696</td>
<td>-173286</td>
</tr>
<tr>
<td>15</td>
<td>-46004</td>
<td>-179148</td>
</tr>
</tbody>
</table>

Load case 5

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>84138</td>
<td>-192530</td>
</tr>
<tr>
<td>3</td>
<td>22115</td>
<td>-160036</td>
</tr>
<tr>
<td>5</td>
<td>-45979</td>
<td>-169498</td>
</tr>
<tr>
<td>7</td>
<td>8775</td>
<td>-147686</td>
</tr>
<tr>
<td>9</td>
<td>51496</td>
<td>-166741</td>
</tr>
<tr>
<td>11</td>
<td>2054</td>
<td>-153466</td>
</tr>
<tr>
<td>13</td>
<td>-16888</td>
<td>-164252</td>
</tr>
<tr>
<td>15</td>
<td>-7152</td>
<td>-189401</td>
</tr>
</tbody>
</table>

Load case 7

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>82334</td>
<td>-172206</td>
</tr>
<tr>
<td>3</td>
<td>28152</td>
<td>-176418</td>
</tr>
<tr>
<td>5</td>
<td>-76023</td>
<td>-151563</td>
</tr>
<tr>
<td>7</td>
<td>65890</td>
<td>-163060</td>
</tr>
<tr>
<td>9</td>
<td>39792</td>
<td>-148484</td>
</tr>
<tr>
<td>11</td>
<td>2054</td>
<td>-153466</td>
</tr>
<tr>
<td>13</td>
<td>-16888</td>
<td>-164252</td>
</tr>
<tr>
<td>15</td>
<td>4657</td>
<td>-186507</td>
</tr>
</tbody>
</table>
Load case 9

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M M</th>
<th>COMBI MIN-M M</th>
<th>COMBI MAX-M N</th>
<th>COMBI MIN-M N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>103855</td>
<td>-193042</td>
<td>76401</td>
<td>-171986</td>
</tr>
<tr>
<td>3</td>
<td>22115</td>
<td>-160036</td>
<td>16578</td>
<td>-179661</td>
</tr>
<tr>
<td>5</td>
<td>-76023</td>
<td>-151563</td>
<td>-81348</td>
<td>-170419</td>
</tr>
<tr>
<td>7</td>
<td>8775</td>
<td>-147686</td>
<td>-5135</td>
<td>-166433</td>
</tr>
<tr>
<td>9</td>
<td>92336</td>
<td>-167451</td>
<td>36173</td>
<td>-148735</td>
</tr>
<tr>
<td>11</td>
<td>2054</td>
<td>-153466</td>
<td>-20417</td>
<td>-173150</td>
</tr>
<tr>
<td>13</td>
<td>-16888</td>
<td>-164252</td>
<td>-31512</td>
<td>-183927</td>
</tr>
<tr>
<td>15</td>
<td>-13564</td>
<td>-190043</td>
<td>-61078</td>
<td>-169812</td>
</tr>
</tbody>
</table>

Load case 11

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M M</th>
<th>COMBI MIN-M M</th>
<th>COMBI MAX-M N</th>
<th>COMBI MIN-M N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>146121</td>
<td>-191627</td>
<td>76401</td>
<td>-171986</td>
</tr>
<tr>
<td>3</td>
<td>22115</td>
<td>-160036</td>
<td>16779</td>
<td>-178981</td>
</tr>
<tr>
<td>5</td>
<td>-76023</td>
<td>-151563</td>
<td>-100223</td>
<td>-170278</td>
</tr>
<tr>
<td>7</td>
<td>19811</td>
<td>-165734</td>
<td>28549</td>
<td>-166843</td>
</tr>
<tr>
<td>9</td>
<td>39792</td>
<td>-148484</td>
<td>-2183</td>
<td>-153718</td>
</tr>
<tr>
<td>11</td>
<td>43714</td>
<td>-173053</td>
<td>-38436</td>
<td>-184193</td>
</tr>
<tr>
<td>13</td>
<td>-16888</td>
<td>-164252</td>
<td>-134550</td>
<td>-187898</td>
</tr>
</tbody>
</table>

Load case 13

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M M</th>
<th>COMBI MIN-M M</th>
<th>COMBI MAX-M N</th>
<th>COMBI MIN-M N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>147185</td>
<td>-187765</td>
<td>76401</td>
<td>-171986</td>
</tr>
<tr>
<td>3</td>
<td>27242</td>
<td>-175261</td>
<td>18449</td>
<td>-159804</td>
</tr>
<tr>
<td>5</td>
<td>-76023</td>
<td>-151563</td>
<td>-111469</td>
<td>-166763</td>
</tr>
<tr>
<td>7</td>
<td>10041</td>
<td>-162341</td>
<td>5218</td>
<td>-147854</td>
</tr>
<tr>
<td>9</td>
<td>74828</td>
<td>-163391</td>
<td>36173</td>
<td>-148735</td>
</tr>
<tr>
<td>11</td>
<td>2705</td>
<td>-168654</td>
<td>-2183</td>
<td>-153718</td>
</tr>
<tr>
<td>13</td>
<td>1246</td>
<td>-182199</td>
<td>-20441</td>
<td>-163945</td>
</tr>
<tr>
<td>15</td>
<td>-54744</td>
<td>-170115</td>
<td>-134550</td>
<td>-187898</td>
</tr>
</tbody>
</table>

Maximum values

<table>
<thead>
<tr>
<th>Section</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>147185</td>
<td>-187765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>48753</td>
<td>-168407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-111469</td>
<td>-166763</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>65890</td>
<td>-163060</td>
<td>-6224</td>
<td>-165847</td>
</tr>
<tr>
<td>9</td>
<td>92336</td>
<td>-167451</td>
<td>-31864</td>
<td>-169798</td>
</tr>
<tr>
<td>11</td>
<td>43714</td>
<td>-173053</td>
<td>-134550</td>
<td>-187898</td>
</tr>
<tr>
<td>13</td>
<td>1246</td>
<td>-182199</td>
<td>-38436</td>
<td>-184193</td>
</tr>
<tr>
<td>15</td>
<td>4657</td>
<td>-186507</td>
<td>-134550</td>
<td>-187898</td>
</tr>
</tbody>
</table>
D2: Iteration five, calculations and results from the Strip Step 2
\[\beta = 0.443 \quad \alpha = 0.877 \]

\[\eta_{\gamma} m = 1.15 \quad \eta_{\gamma} mes = 1.05 \quad \gamma_n = 1.2 \]

Steel K500 (Kamstång B500B)

\[f_{sk} = 500 \text{ MPa} \quad E_{sm} = 200 \text{ GPa} \]
\[f_{sd} = \frac{f_{sk}}{\eta_{\gamma} m \gamma_n} = 3.623 \times 10^8 \text{ Pa} \]
\[E_s = \frac{E_{sm}}{\eta_{\gamma} mes \gamma_n} = 1.587 \times 10^{11} \text{ Pa} \]
\[\varepsilon_{sy} = \frac{f_{sd}}{E_s} = 2.283 \times 10^{-3} \]

Steel diameter
\[\phi = 20 \text{ mm} \]
\[A_{si} = \pi \left(\frac{\phi}{2} \right)^2 = 3.142 \times 10^{-4} \text{ m}^2 \]
Section 1
Positive moment

Forces

\[M_{sd} := 215925 \text{kNm} \quad \quad N_{sd} := 194056 \text{kN} \]

Cross-section constants

\[
\begin{align*}
\text{h} & := 1.5 \text{ m} \\
d & := \text{h} - \text{cc} \\
p_t & := 0.499 \text{m} \\
e & := \text{d} - \text{p}_t \\
x_1 & := 0.000001 \text{m} \\
\text{M}_s & := M_{sd} + N_{sd} e \\
\text{M}_s & = 4.005 \times 10^5 \text{kNm}
\end{align*}
\]

Tension reinforcement

\[
\begin{align*}
d & := 1.45 \text{ m} \\
n_1 & := 215 \\
A_{s1} & := A_{si} n_1 \\
A_{s1} & = 0.068 \text{m}^2 \\
d_1 & := 1.39 \text{ m} \\
n_2 & := 215 \\
A_{s2} & := A_{si} n_2 \\
A_{s2} & = 0.068 \text{m}^2 \\
d_2 & := 1.34 \text{ m} \\
n_3 & := 170 \\
A_{s3} & := A_{si} n_3 \\
A_{s3} & = 0.053 \text{m}^2 \\
n_{tot} & := n_1 + n_2 + n_3 \\
A_s & := n_{tot} A_{si} \\
A_s & = 0.188 \text{m}^2 \\
A_{sTot} & := A_{s1} + A_{s2} + A_{s3} \\
A_{sTot} & = 0.188 \text{m}^2
\end{align*}
\]

Compression reinforcement

\[
\begin{align*}
d_1 & := 0.05 \text{ m} \\
n_{t1} & := 215 \\
A_{st1} & := A_{si} n_{t1} \\
A_{st1} & = 0.068 \text{m}^2 \\
d_{t1} & := 0.1 \text{ m} \\
n_{t2} & := 215 \\
A_{st2} & := A_{si} n_{t2} \\
A_{st2} & = 0.068 \text{m}^2 \\
d_{t2} & := 0.15 \text{ m} \\
n_{t3} & := 215 \\
A_{st3} & := A_{si} n_{t3} \\
A_{st3} & = 0.068 \text{m}^2 \\
d_{t3} & := 0.2 \text{ m} \\
n_{t4} & := 215 \\
A_{st4} & := A_{si} n_{t4} \\
A_{st4} & = 0.068 \text{m}^2
\end{align*}
\]
\[n_{\text{tot}} := n_{t1} + n_{t2} + n_{t3} + n_{t4} \]

\[A_{st} := n_{\text{tot}} \cdot A_{si} \]

\[A_{\text{st tot}} := A_{st1} + A_{st2} + A_{st3} + A_{st4} \]

Assume: \(\epsilon_s, \epsilon_{s1}, \epsilon_{s2} < \epsilon_{sy} \) \(\epsilon_{st1}, \epsilon_{st2}, \epsilon_{st3} > \epsilon_{sy} \)

\[x = 1.269 \text{ m} \]

Check assumptions:

\[\epsilon_s := \frac{d - x}{x} \epsilon_{cu} \]
\[\epsilon_s = 4.995 \times 10^{-4} < \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\epsilon_{s1} := \frac{d_1 - x}{x} \epsilon_{cu} \]
\[\epsilon_{s1} = 3.34 \times 10^{-4} < \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\epsilon_{s2} := \frac{d_2 - x}{x} \epsilon_{cu} \]
\[\epsilon_{s2} = 1.961 \times 10^{-4} < \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\epsilon_{st} := \frac{x - d_1}{x} \epsilon_{cu} \]
\[\epsilon_{st} = 3.362 \times 10^{-3} > \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\epsilon_{st1} := \frac{x - d_{t1}}{x} \epsilon_{cu} \]
\[\epsilon_{st1} = 3.224 \times 10^{-3} > \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\epsilon_{st2} := \frac{x - d_{t2}}{x} \epsilon_{cu} \]
\[\epsilon_{st2} = 3.086 \times 10^{-3} > \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\epsilon_{st3} := \frac{x - d_{t3}}{x} \epsilon_{cu} \]
\[\epsilon_{st3} = 2.948 \times 10^{-3} > \epsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[x = 1.269 \text{ m} \]
\[M_{sd} := 110025 \text{kNm} \quad \quad \quad N_{sd} := 182336 \text{kN} \]

Cross-section constants

\[
\begin{align*}
h & := 1.5 \text{ m} \\
d & := h - cc \\
\rho & := 0.248 \text{ m} \\
e & := \rho - cc
\end{align*}
\]

\[
\begin{align*}
h & := 1.5 \text{ m} \\
d & := h - cc \\
\rho & := 0.248 \text{ m} \\
e & := \rho - cc
\end{align*}
\]

\[
M_s := M_{sd} + N_{sd}e \\
M_s = 1.461 \times 10^5 \text{kNm}
\]

Minimum reinforcement

Tension reinforcement

\[
\begin{align*}
d & := 1.44 \text{ m} \\
n & := 64 \\
A_s & := n \cdot A_{si} \\
A_s & = 0.02 \text{m}^2
\end{align*}
\]

Compression reinforcement

\[
\begin{align*}
d_t & := 0.05 \text{ m} \\
n_t & := 64 \\
A_{st} & := n_t \cdot A_{si} \\
A_{st} & = 0.02 \text{m}^2
\end{align*}
\]

Assume: \(\varepsilon_s, \varepsilon_{st} > \varepsilon_{sy} \)

\[
x := \text{root} \left[f_{cc} \cdot b \cdot \alpha \cdot x_1 \left(d - \beta \cdot x_1 \right) + f_{sd} \cdot \alpha_s \cdot \left(d - d_1 \right) - M_s, x_1 \right]
\]

\[
x = 0.457 \text{m}
\]

Check assumptions:

\[
\begin{align*}
\varepsilon_s & := \frac{d - x}{x} \cdot \varepsilon_{cu} \\
\varepsilon_s & = 7.54 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\end{align*}
\]

\[
\begin{align*}
\varepsilon_{st} & := \frac{x - d_1}{x} \cdot \varepsilon_{cu} \\
\varepsilon_{st} & = 3.117 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\end{align*}
\]

\[
x = 0.457 \text{m}
\]

Section 5

Positive moment

Forces

\[
\begin{align*}
M_{sd} := 104537 \text{kNm} \\
N_{sd} := 172324 \text{kN}
\end{align*}
\]
Cross-section constants

\[h := 1.5 \text{ m} \]
\[d := h - cc \]
\[tp := 0.297 \text{ m} \]
\[e := tp - cc \]
\[M_s := M_{sd} + N_{sd} \cdot e \]
\[M_s = 1.471 \times 10^5 \text{ kNm} \]

Minimum reinforcement

Tension reinforcement
\[d := 1.44 \text{ m} \]
\[A_s := n \cdot A_{si} \]
\[A_s = 0.02 \text{ m}^2 \]

Compression reinforcement
\[d_t := 0.05 \text{ m} \]
\[A_{st} := n_t \cdot A_{si} \]
\[A_{st} = 0.02 \text{ m}^2 \]

Assume: \(\varepsilon_s, \varepsilon_{st} > \varepsilon_{sy} \)

\[x := \text{root}[f_{cc} \cdot b \cdot \alpha \cdot x_t \cdot (d - \beta \cdot x_t) + f_{sd} \cdot A_{st} \cdot (d - d_t) - M_s \cdot x_t] \]
\[x = 0.46 \text{ m} \]

Check assumptions:
\[\varepsilon_s := \frac{d - x}{x} \varepsilon_{cu} \]
\[\varepsilon_s = 7.446 \times 10^{-3} \]
\[\varepsilon_s > \varepsilon_{sy} = 2.283 \times 10^{-3} \]

OK!

\[\varepsilon_{st} := \frac{x - d_t}{x} \varepsilon_{cu} \]
\[\varepsilon_{st} = 3.12 \times 10^{-3} \]
\[\varepsilon_{st} > \varepsilon_{sy} = 2.283 \times 10^{-3} \]

OK!

\[x = 0.46 \text{ m} \]

Section 7
Positive moment

Forces
\[M_{sd} := 46474 \text{ kNm} \]
\[N_{sd} := 165890 \text{ kN} \]
\(h := 1.5 \text{ m} \quad cc := 0.05 \text{ m} \)
\(d := h - cc \quad d = 1.45 \text{ m} \)
\(tp := 0.486 \text{ m} \quad b := 13 \text{ m} \)
\(e := d - tp \quad e = 0.964 \text{ m} \)

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 2.064 \times 10^5 \text{ kNm} \]

Tension reinforcement
\(d := 1.44 \text{ m} \quad n := 120 \quad A_s := n \cdot A_{si} \quad A_s = 0.038 \text{ m}^2 \)

Compression reinforcement
\(d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{ m}^2 \)

\(\text{Assume: } \varepsilon_{st} > \varepsilon_{sy} \quad \varepsilon_s < \varepsilon_{sy} \)

\(x := \text{root}\left[f_{cc} \cdot b \cdot \alpha \cdot x_t \cdot d - \beta \cdot x_t + f_{sd} \cdot A_{st} \cdot (d - d_t) - M_s \cdot x_t \right] \)

\(x = 0.73 \text{ m} \)

Check assumptions:
\(\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 3.4 \times 10^{-3} < \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \)
\(\varepsilon_{st} := \frac{d_t - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.26 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \)

\(x = 0.73 \text{ m} \)

Section 9
Positive moment

Forces
\(M_{sd} := 68323 \text{ kNm} \quad N_{sd} := 170349 \text{ kN} \)
Cross-section constants

\[h := 1.5 \text{ m} \]
\[d := h - cc \]
\[tp := 0.557 \text{ m} \]
\[e := d - tp \]

\[M_s := M_{sd} + N_{sd} \cdot e \]
\[M_s = 2.204 \times 10^5 \text{ kNm} \]

Tension reinforcement

\[d := 1.44 \text{ m} \]
\[n_1 := 190 \]
\[A_{s1} := A_{si} \cdot n_1 \]
\[A_{s1} = 0.06 \text{ m}^2 \]
\[n_{tot} := n_1 \]
\[n_{tot} = 190 \]

\[A_{stot} := A_{s1} \]
\[A_{stot} = 0.06 \text{ m}^2 \]

Compression reinforcement

\[d_t := 0.05 \text{ m} \]
\[n_t := 80 \]
\[A_{st} := n_t \cdot A_{si} \]
\[A_{st} = 0.025 \text{ m}^2 \]

Assume: \[\varepsilon_s, \varepsilon_{st} > \varepsilon_{sy} \]

\[x := \text{root} \left[f_{cc} \cdot b \cdot \alpha \cdot x_1 \left(d - \beta \cdot x_1 \right) + f_{sd} \cdot A_{st} \left(d - d_t \right) - M_s \cdot x_1 \right] \]

\[x = 0.793 \text{ m} \]

Check assumptions:

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 2.856 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st} := \frac{x - d_t}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.279 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[x = 0.793 \text{ m} \]
Section 11
Positive moment

Forces

\[M_{sd} := 26814 \text{kNm} \quad N_{sd} := 175882 \text{kN} \]

Cross-section constants

\[
\begin{align*}
 h &:= 1.5 \text{ m} \\
 d &:= h - cc \\
 tp &:= 0.436 \text{ m} \\
 e &:= d - tp
\end{align*}
\]

\[d = 1.45 \text{ m} \]

\[b := 13 \text{ m} \]

\[e = 1.014 \text{ m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \quad M_s = 2.052 \times 10^5 \text{kNm} \]

Tension reinforcement

\[d := 1.44 \text{ m} \quad n_1 := 64 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.02 \text{m}^2 \]

Compression reinforcement

\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{m}^2 \]

Assume: \(\varepsilon_s, \varepsilon_{st} > \varepsilon_{sy} \)

\[x := \text{root}\left[\frac{f_{cc} \cdot b \cdot \alpha \cdot x_1 \cdot (d - \beta \cdot x_1)}{f_{sd} \cdot A_{st} \cdot (d - d_t)} - M_s \cdot x_1 \right] \]

\[x = 0.724 \text{m} \]

\[\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 3.462 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st} := \frac{x - d_t}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.258 \times 10^{-3} > \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[x = 0.724 \text{m} \]
Section 13
Positive moment

Forces

\[M_{sd} := 5464 \text{kNm} \quad N_{sd} := 184788 \text{kN} \]

Cross-section constants

\[h := 1.5 \text{ m} \quad cc := 0.05 \text{ m} \]
\[d := h - cc \quad d = 1.45 \text{ m} \]
\[tp := 0.371 \text{ m} \quad b := 13 \text{ m} \]
\[e := d - tp \quad e = 1.079 \text{ m} \]

\[M_s := M_{sd} + N_{sd} \cdot e \]
\[M_s = 2.049 \times 10^5 \text{ kNm} \]

Tension reinforcement

\[d := 1.44 \text{ m} \quad n_1 := 64 \]
\[A_{sl} := A_{si} \cdot n_1 \quad A_{sl} = 0.02 \text{ m}^2 \]

Compression reinforcement

\[d_t := 0.05 \text{ m} \quad n_t := 64 \]
\[A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{ m}^2 \]

Assume: \(\varepsilon_s, \varepsilon_{st} > \varepsilon_{sy} \)

\[x := \text{root} \left[f_{cc} \cdot b \cdot \alpha \cdot x_1 \left(d - \beta \cdot x_1 \right) + f_{sd} \cdot A_{st} \left(d - d_t \right) - M_s, x_1 \right] \]

\[x = 0.722 \text{ m} \]

Check assumptions:

\[\varepsilon_s := \frac{d - x}{x} \cdot \epsilon_{cu} \quad \varepsilon_s = 3.477 \times 10^{-3} \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[\varepsilon_{st} := \frac{x - d_t}{x} \cdot \epsilon_{cu} \quad \varepsilon_{st} = 3.258 \times 10^{-3} \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!} \]

\[x = 0.722 \text{ m} \]
Section 15
Negative moment

Forces

\[M_{sd} := 97735 \text{kNm} \quad N_{sd} := 190459 \text{kN} \]

Cross-section constants

\[h := 1.5 \text{m} \quad \text{cc} := 0.05 \text{m} \]
\[d := h - \text{cc} \quad d = 1.45 \text{m} \]
\[tp := 0.528 \text{m} \quad b := 13 \text{m} \]
\[c := d - tp \quad c = 0.922 \text{m} \]
\[M_s := M_{sd} + N_{sd} \cdot c \quad M_s = 2.733 \times 10^5 \text{kNm} \]

Tension reinforcement

\[d := 1.44 \text{m} \quad n_1 := 215 \quad A_{s1} := A_{si} \cdot n_1 \quad A_{s1} = 0.068 \text{m}^2 \]
\[d_1 := 1.39 \text{m} \quad n_2 := 215 \quad A_{s2} := A_{si} \cdot n_2 \quad A_{s2} = 0.068 \text{m}^2 \]
\[d_2 := 1.34 \text{m} \quad n_3 := 12 \quad A_{s3} := A_{si} \cdot n_3 \quad A_{s3} = 3.77 \times 10^{-3} \text{m}^2 \]
\[n_{tot} := n_1 + n_2 + n_3 \quad n_{tot} = 442 \]
\[A_{stot} := A_{s1} + A_{s2} + A_{s3} \quad A_{stot} = 0.139 \text{m}^2 \]

Compression reinforcement

\[d_1 := 0.05 \text{m} \quad n_{t1} := 215 \quad A_{st1} := A_{si} \cdot n_{t1} \quad A_{st1} = 0.068 \text{m}^2 \]
\[d_{t1} := 0.1 \text{m} \quad n_{t2} := 215 \quad A_{st2} := A_{si} \cdot n_{t2} \quad A_{st2} = 0.068 \text{m}^2 \]
\[d_{t2} := 0.15 \text{m} \quad n_{t3} := 166 \quad A_{st3} := A_{si} \cdot n_{t3} \quad A_{st3} = 0.052 \text{m}^2 \]
\[n_{ttot} := n_{t1} + n_{t2} + n_{t3} \quad n_{ttot} = 596 \]
\[A_{sttot} := n_{ttot} \cdot A_{si} \quad A_{sttot} = 0.187 \text{m}^2 \]
Assume: \[\varepsilon_s, \varepsilon_{s1}, \varepsilon_{s2}, \varepsilon_{st}, \varepsilon_{st1}, \varepsilon_{st2} > \varepsilon_{sy} \]

\[
x := \text{root} \left[\alpha \cdot b \cdot x_d \left(d - \beta \cdot x_d \right) + f_{sd} \cdot A_{st1} \left(d - d_{t1} \right) + f_{sd} \cdot A_{st2} \left(d - d_{t2} \right) + f_{sd} \cdot A_{st3} \left(d - d_{t3} \right) \ldots, x_d \right]
\]

\[
\alpha = 0.666m
\]

Check assumptions:

\[
\varepsilon_s := \frac{d - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_s = 4.069 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[
\varepsilon_{s1} := \frac{d_{t1} - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{s1} = 3.806 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[
\varepsilon_{s2} := \frac{d_{t2} - x}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{s2} = 3.543 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[
\varepsilon_{st} := \frac{x - d_t}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st} = 3.237 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[
\varepsilon_{st1} := \frac{x - d_{t1}}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st1} = 2.974 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[
\varepsilon_{st2} := \frac{x - d_{t2}}{x} \cdot \varepsilon_{cu} \quad \varepsilon_{st2} = 2.712 \times 10^{-3} \quad > \quad \varepsilon_{sy} = 2.283 \times 10^{-3} \quad \text{OK!}
\]

\[
x = 0.666m
\]
Calculation for cross-sectional constants

Cross-section : Solid

Iteration number: 2

Material properties

Concrete C40/50

Partial safety factor

\(\eta'_{mec} := 1.2\)

\(\gamma_n := 1.2\)

\(E_{ck} := 35\) GPa

\(E_c := \frac{E_{ck}}{\eta'_{mec}\gamma_n}\)

\(E_c = 2.431 \times 10^{10}\) Pa

Steel K500 (Kamstång B500B)

Partial safety factor

\(\eta'_{mes} := 1.05\)

\(\gamma_n := 1.2\)

\(E_{sk} := 200\) GPa

\(E_s := \frac{E_{sk}}{\eta'_{mes}\gamma_n}\)

\(E_s = 158.73\) GPa

Condition

Concrete cover : Very aggressive environment, life span L2

\(cc > 40\) mm and we choose 50 mm

Reinforcement spacing:

Parallel: 2 \(\phi\)

Vertical : 1.5 \(\phi\)
Cross-section constants:

\[h := 1.5 \text{ m} \quad b := 13 \text{ m} \]

\[t_p := 0.75 \text{ m} \]

\[\alpha := \frac{E_s}{E_c} \quad \alpha = 6.531 \]

Steel area

\[A_{si} := \pi \left(\frac{\phi}{2} \right)^2 \]

\[A_{si} = 3.142 \times 10^{-4} \text{ m}^2 \]

Long-term effects

creep

Outside structure without heating: Humidity = 75%

\[\psi := 2 \]

\[\alpha_{ef} := \alpha (1 + \psi) \quad \alpha_{ef} = 19.592 \]

Section 1

Positive moment

Cross-section constants

Tension reinforcement

\[d := 1.44 \text{ m} \quad n_1 := 215 \quad A_{s1} := A_{si} n_1 \quad A_{s1} = 0.068 \text{ m}^2 \]
\[d_1 := 1.39 \text{ m} \quad n_2 := 215 \quad A_{s2} := A_{si} \cdot n_2 \quad A_{s2} = 0.068m^2 \]
\[d_2 := 1.34 \text{ m} \quad n_3 := 170 \quad A_{s3} := A_{si} \cdot n_3 \quad A_{s3} = 0.053m^2 \]
\[n_{tot} := n_1 + n_2 + n_3 \quad n_{tot} = 600 \]
\[A_{stot} := A_{s1} + A_{s2} + A_{s3} \quad A_{stot} = 0.188m^2 \]

Compression reinforcement

\[d_t := 0.05 \text{ m} \quad n_{t1} := 215 \quad A_{st1} := A_{si} \cdot n_{t1} \quad A_{st1} = 0.068m^2 \]
\[d_{t1} := 0.1 \text{ m} \quad n_{t2} := 215 \quad A_{st2} := A_{si} \cdot n_{t2} \quad A_{st2} = 0.068m^2 \]
\[d_{t2} := 0.15 \text{ m} \quad n_{t3} := 215 \quad A_{st3} := A_{si} \cdot n_{t3} \quad A_{st3} = 0.068m^2 \]
\[d_{t3} := 0.2 \text{ m} \quad n_{t4} := 215 \quad A_{st4} := A_{si} \cdot n_{t4} \quad A_{st4} = 0.068m^2 \]
\[n_{tot} := n_{t1} + n_{t2} + n_{t3} + n_{t4} \quad n_{tot} = 860 \]
\[A_{sstot} := A_{st1} + A_{st2} + A_{st3} + A_{st4} \quad A_{sstot} = 0.27m^2 \]

x-value: \[x := 0.745 \text{ m} \]

\[A_{ekv} := b \cdot x + a_{cf} \cdot A_{stot} + \left(a_{cf} - 1 \right) \cdot A_{sstot} \quad A_{ekv} = 18.401m^2 \]
\[x_s := a_{cf} \left(A_{s1} \cdot d_1 + A_{s2} \cdot d_2 \right) \]
\[x_{st} := \left(a_{cf} - 1 \right) \left(A_{st1} \cdot d_t + A_{st2} \cdot d_{t1} + A_{st3} \cdot d_{t2} + A_{st4} \cdot d_{t3} \right) \]
\[x_c := \frac{b \cdot x^2}{2} \]

\[x_{tp} := \frac{x_c + x_s + x_{st}}{A_{ekv}} \quad x_{tp} = 0.51 \text{ m} \]
\[l_c := \frac{3}{12} + b \cdot x \left(\frac{x}{2} - x_{tp} \right)^2 \]
\[I_s := \alpha_{ef} \left[A_{s1} \left(d - x_{tp} \right)^2 + A_{s2} \left(d_1 - x_{tp} \right)^2 \right] \]
\[I_{st} := (\alpha_{ef} - 1) \left[A_{st1} \left(x_{tp} - d_t \right)^2 + A_{st2} \left(x_{tp} - d_{t1} \right)^2 \right] \]
\[I_{ekv} := I_c + I_s + I_{st} \]
\[E_{ekv} := \frac{E_c}{1 + \psi} \cdot I_{ekv} \]

Section 3

Positive moment

Cross-section constants

Tension reinforcement
\[d := 1.44 \text{ m} \quad n := 64 \quad A_s := n \cdot A_{si} \quad A_s = 0.02 \text{ m}^2 \]

Compression reinforcement
\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{ m}^2 \]

x-value:
\[x := 0.32 \text{ m} \]
\[A_{ekv} := b \cdot x + \alpha_{ef} \cdot A_s + (\alpha_{ef} - 1) \cdot A_{st} \quad A_{ekv} = 4.928 \text{ m}^2 \]
\[x_c := \alpha_{ef} \cdot A_s \cdot d \]
\[x_{st} := (\alpha_{ef} - 1) \cdot A_{st} \cdot d_t \]
\[x_c := \frac{b \cdot x^2}{2} \]
\[x_{tp} := \frac{x_c + x_s + x_{st}}{A_{ekv}} \quad x_{tp} = 0.254 \text{ m} \]
\[
I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_{tp}\right)^2
\]

\[
I_s := \alpha_{ef} \left[A_s \left(d - x_{tp}\right)^2 \right]
\]

\[
I_{st} := \left(\alpha_{ef} - 1 \right) \left[A_{st} \left(d_t - x_{tp}\right)^2 \right]
\]

\[
I_{ekv} := I_c + I_s + I_{st}
\]

\[
E_{ekv} = 0.642\text{m}^4
\]

\[
E_{ekv} = 5.201 \times 10^9 \text{m}^2 \text{N}
\]

Section 5

Negative moment

Cross-section constants

Tension reinforcement

\[
d := 1.44 \text{m} \quad n := 64 \quad A_s := n \cdot A_{si} \quad A_s = 0.02\text{m}^2
\]

Compression reinforcement

\[
d_t := 0.05 \text{m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02\text{m}^2
\]

\[
x := 0.461 \text{m}
\]

\[
A_{ekv} := b \cdot x + \alpha_{ef} A_s + \left(\alpha_{ef} - 1 \right) A_{st}
\]

\[
A_{ekv} = 6.761\text{m}^2
\]

\[
x_c := \alpha_{ef} A_s \cdot d
\]

\[
x_s := \left(\alpha_{ef} - 1 \right) A_{st} \cdot d_t
\]

\[
x_c := \frac{b \cdot x^2}{2}
\]

\[
x_{tp} := \frac{x_c + x_s + x_{st}}{A_{ekv}}
\]

\[
x_{tp} = 0.291\text{m}
\]
\[I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_{tp} \right)^2 \]

\[I_s := \alpha_{ef} \left[A_s \left(d - x_{tp} \right)^2 \right] \]

\[I_{st} := \left(\alpha_{ef} - 1 \right) \left[A_{st} \left(d_t - x_{tp} \right)^2 \right] \]

\[I_{ekv} := I_c + I_s + I_{st} \]

\[E_{ekv} := \frac{E_c}{1 + \psi} I_{ekv} \]

Section 7
Positive moment

Cross-section constants

Tension reinforcement
\[d := 1.44 \text{ m} \quad n := 120 \quad A_s := A_{si} \cdot n \quad A_s = 0.038 \text{ m}^2 \]

Compression reinforcement
\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{ m}^2 \]

\(x \)-value:
\[x := 0.882 \text{ m} \]

\[A_{ekv} := b \cdot x + \alpha_{ef} A_s + \left(\alpha_{ef} - 1 \right) A_{st} \]

\[\chi_s := \alpha_{ef} A_s \cdot d \]

\[\chi_{st} := \left(\alpha_{ef} - 1 \right) A_{st} \cdot d_t \]

\[\chi_c := \frac{b \cdot x^2}{2} \]
\[
x_{tp} := \frac{x_c + x_s + x_{st}}{A_{ekv}}
\]
\[
x_{tp} = 0.488\text{m}
\]
\[
I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_{tp}\right)^2
\]
\[
I_s := \alpha_{ef} \left[A_s \left(d - x_{tp}\right)^2\right]
\]
\[
I_{st} := \left(\alpha_{ef} - 1\right) \left[A_{st} \left(d_{t} - x_{tp}\right)^2\right]
\]
\[
I_{ekv} := I_c + I_s + I_{st}
\]
\[
E_{I_{ekv}} := \frac{E_c}{1 + \psi} I_{ekv}
\]
\[
I_{ekv} = 1.51 \text{m}^4
\]
\[
E_{I_{ekv}} = 1.223 \times 10^{10} \text{m}^2 \text{N}
\]

\section*{Section 9}

Positive moment

\textbf{Cross-section constants}

\textbf{Tension reinforcement}
\[
d := 1.44 \text{m} \quad n := 190 \quad A_s := A_{st} \cdot n \quad A_s = 0.06 \text{m}^2
\]

\textbf{Compression reinforcement}
\[
d_{t} := 0.05 \text{m} \quad n_{t} := 80 \quad A_{st} := A_{si} \cdot n_{t} \quad A_{st} = 0.025 \text{m}^2
\]

\textbf{x-value:}
\[
x := 0.985 \text{m}
\]
\[
A_{ekv} := b \cdot x + \alpha_{ef} A_s + \left(\alpha_{ef} - 1\right) A_{st} \quad A_{ekv} = 14.442 \text{m}^2
\]
\[
x_s := \alpha_{ef} (A_s \cdot d)
\]
\[
x_{st} := (\alpha_{ef} - 1) (A_{st} \cdot d_{t})
\]
\[x_c := \frac{b \cdot x^2}{2} \]

\[x_p := \frac{x_c + x_s + x_{st}}{A_{ekv}} \]

\[l_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_p \right)^2 \]

\[l_s := \alpha_{ef} \left[A_s (d - x_p)^2 \right] \]

\[l_{st} := \left(\alpha_{ef} - 1 \right) \left[A_{st} (x_p - d)_t^2 \right] \]

\[l_{ekv} := l_c + l_s + l_{st} \]

\[E_{ekv} := \frac{F_c}{1 + \psi} l_{ekv} \]

\[x := 0.822 \text{ m} \]

\[A_{ekv} := b \cdot x + \alpha_{ef} A_s + \left(\alpha_{ef} - 1 \right) A_{st} \]

\[x_s := \alpha_{ef} A_s \cdot d \]

\[x_p = 0.555 \text{ m} \]

\[l_{ekv} = 2.12 \text{ m}^4 \]

\[E_{ekv} = 1.718 \times 10^{10} \text{ m}^2 \text{ N} \]

Section 11
Positive moment

Cross-section constants

Tension reinforcement
\[d := 1.44 \text{ m} \quad n := 64 \quad A_s := A_{si} \cdot n \quad A_s = 0.02 \text{ m}^2 \]

Compression reinforcement
\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{ m}^2 \]
\[x_{st} := (\alpha_{ef} - 1) (A_{st} \cdot d_t)\]

\[x_c := \frac{b \cdot x^2}{2}\]

\[x_p := \frac{x_c + x_s + x_{st}}{A_{ekv}}\]

\[x_p = 0.555\text{m}\]

\[I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_p\right)^2\]

\[I_s := \alpha_{ef} \left[A_s \left(d - x_p\right)^2\right]\]

\[I_{st} := \left(\alpha_{ef} - 1\right) \left[A_{st} \left(x_p - d_t\right)^2\right]\]

\[I_{ekv} := I_c + I_s + I_{st}\]

\[I_{ekv} = 2.12\text{m}^4\]

\[E_{ekv} := \frac{E_c}{1 + \psi} \cdot I_{ekv}\]

\[E_{ekv} = 1.718 \times 10^{10}\text{ m}^2\text{ N}\]

Section 11

Positive moment

Cross-section constants

Tension reinforcement

\[d := 1.44\text{ m}\]
\[n := 64\]
\[A_s := A_{si} \cdot n\]
\[A_s = 0.02\text{m}^2\]

Compression reinforcement

\[d_t := 0.05\text{ m}\]
\[n_t := 64\]
\[A_{st} := n_t \cdot A_{si}\]
\[A_{st} = 0.02\text{m}^2\]

\[x-value: x := 0.822\text{ m}\]

\[A_{ekv} := b \cdot x + \alpha_{ef} A_s + \left(\alpha_{ef} - 1\right) A_{st}\]

\[A_{ekv} = 11.454\text{m}^2\]
\[x_c := \alpha_{ef} A_s \cdot d \]
\[x_{st} := (\alpha_{ef} - 1) \cdot A_{st} \cdot d_t \]
\[x_p := \frac{b \cdot x^2}{2} \]
\[x_{tp} := \frac{x_c + x_s + x_{st}}{A_{ekv}} \quad x_{tp} = 0.435 \text{m} \]
\[I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_p \right)^2 \]
\[I_s := \alpha_{ef} \left[A_s \left(d - x_p \right)^2 \right] \]
\[I_{st} := (\alpha_{ef} - 1) \left[A_{st} \left(d_t - x_p \right)^2 \right] \]
\[I_{ekv} := I_c + I_s + I_{st} \quad I_{ekv} = 1.061 \text{m}^4 \]
\[E I_{ekv} := \frac{E_c}{1 + \psi} I_{ekv} \quad E I_{ekv} = 8.597 \times 10^9 \text{ m}^2 \text{ N} \]

Section 13
Positive moment

Cross-section constants

Tension reinforcement
\[d := 1.44 \text{ m} \quad n := 64 \quad A_s := A_{si} \cdot n \quad A_s = 0.02 \text{m}^2 \]

Compression reinforcement
\[d_t := 0.05 \text{ m} \quad n_t := 64 \quad A_{st} := n_t \cdot A_{si} \quad A_{st} = 0.02 \text{m}^2 \]

x-value: \[x := 0.67 \text{ m} \]
\[A_{ekv} := b \cdot x + \alpha_{ef} A_s + (\alpha_{ef} - 1) A_{st} \quad A_{ekv} = 9.478 \text{m}^2 \]
\[x_s := \alpha_{ef} A_s \cdot d \]
\[x_{st} := (\alpha_{ef} - 1) \cdot A_{st} \cdot d_t \]
\[x_c := \frac{b \cdot x^2}{2} \]
\[x_p := \frac{x_c + x_s + x_{st}}{A_{ekv}} \quad x_p = 0.37 m \]
\[I_c := \frac{b \cdot x^3}{12} + b \cdot x \left(\frac{x}{2} - x_p \right)^2 \]
\[I_s := \alpha_{ef} \left[A_s \left(d - x_p \right)^2 \right] \]
\[I_{st} := (\alpha_{ef} - 1) \left[A_{st} \left(d_t - x_p \right)^2 \right] \]
\[I_{ekv} := I_c + I_s + I_{st} \quad I_{ekv} = 0.826 m^4 \]
\[E_{ekv} := \frac{E_c}{1 + \psi} I_{ekv} \quad E_{ekv} = 6.69 \times 10^9 m^2 N \]

Section 15

Negative moment

Cross-section constants

Tension reinforcement

\[d := 1.44 m \quad n_1 := 215 \quad A_{s1} := A_{st} \cdot n_1 \quad A_{s1} = 0.068 m^2 \]
\[d_1 := 1.39 m \quad n_2 := 215 \quad A_{s2} := A_{st} \cdot n_2 \quad A_{s2} = 0.068 m^2 \]
\[d_2 := 1.34 m \quad n_3 := 12 \quad A_{s3} := A_{st} \cdot n_3 \quad A_{s3} = 3.77 \times 10^{-3} m^2 \]
\[n_{tot} := n_1 + n_2 + n_3 \quad n_{tot} = 442 \]
\[A_{\text{stot}} := A_{s1} + A_{s2} + A_{s3} \]

\[A_{\text{stot}} = 0.139 \text{m}^2 \]

Compression reinforcement

\[d_1 := 0.05 \text{m} \]

\[n_{t1} := 215 \]

\[A_{st1} := A_{si\cdot n_{t1}} \]

\[A_{st1} = 0.068 \text{m}^2 \]

\[d_{t1} := 0.1 \text{m} \]

\[n_{t2} := 215 \]

\[A_{st2} := A_{si\cdot n_{t2}} \]

\[A_{st2} = 0.068 \text{m}^2 \]

\[d_{t2} := 0.15 \text{m} \]

\[n_{t3} := 166 \]

\[A_{st3} := A_{si\cdot n_{t3}} \]

\[A_{st3} = 0.052 \text{m}^2 \]

\[n_{\text{tot}} := n_{t1} + n_{t2} + n_{t3} \]

\[n_{\text{tot}} = 596 \]

\[A_{\text{stot}} := A_{st1} + A_{st2} + A_{st3} \]

\[A_{\text{stot}} = 0.187 \text{m}^2 \]

\[x := 0.897 \text{m} \]

\[x_{\text{kp}} := \frac{x_c + x_s + x_{st}}{A_{\text{ekv}}} \]

\[x_{\text{kp}} = 0.527 \text{m} \]

\[I_c := b \cdot x^3 \frac{12}{12} + b \cdot x \left(\frac{x}{2} - x_{\text{kp}} \right)^2 \]

\[I_s := \alpha_{ef} \left[A_{s1} \left(d_{t1} - x_{\text{kp}} \right)^2 + A_{s2} \left(d_{t1} - x_{\text{kp}} \right)^2 \right. \]

\[+ A_{s3} \left(d_{t2} - x_{\text{kp}} \right)^2 \]
\[I_{st} := (\alpha_{et} - 1) \left[A_{st1} (s_{tp} - d_1)^2 + A_{st2} (s_{tp} - d_{t1})^2 \ldots \right] \\
\left[+ A_{st3} (s_{tp} - d_{t2})^2 \right] \]

\[I_{ekv} := I_c + I_s + I_{st} \]

\[EI_{ekv} := \frac{E_c}{1 + \psi} I_{ekv} \]

\[I_{ekv} = 3.644 m^4 \]

\[EI_{ekv} = 2.952 \times 10^{10} m^2 N \]
Results from Strip Step

Iteration: 6

![Diagram of a structural component](image)

Load case 3

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>90860</td>
<td>-171989</td>
</tr>
<tr>
<td>3</td>
<td>54396</td>
<td>-168008</td>
</tr>
<tr>
<td>5</td>
<td>-77099</td>
<td>-151280</td>
</tr>
<tr>
<td>7</td>
<td>8113</td>
<td>-147383</td>
</tr>
<tr>
<td>9</td>
<td>38151</td>
<td>-148174</td>
</tr>
<tr>
<td>11</td>
<td>915</td>
<td>-153155</td>
</tr>
<tr>
<td>13</td>
<td>-16550</td>
<td>-172817</td>
</tr>
<tr>
<td>15</td>
<td>-46058</td>
<td>-178684</td>
</tr>
</tbody>
</table>

Load case 5

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>95139</td>
<td>-192299</td>
</tr>
<tr>
<td>3</td>
<td>30839</td>
<td>-159783</td>
</tr>
<tr>
<td>5</td>
<td>-46519</td>
<td>-169198</td>
</tr>
<tr>
<td>7</td>
<td>8113</td>
<td>-147383</td>
</tr>
<tr>
<td>9</td>
<td>49805</td>
<td>-166411</td>
</tr>
<tr>
<td>11</td>
<td>915</td>
<td>-153155</td>
</tr>
<tr>
<td>13</td>
<td>-18448</td>
<td>-163945</td>
</tr>
<tr>
<td>15</td>
<td>-5311</td>
<td>-189077</td>
</tr>
</tbody>
</table>

Load case 7

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>90860</td>
<td>-171989</td>
</tr>
<tr>
<td>3</td>
<td>36660</td>
<td>-176079</td>
</tr>
<tr>
<td>5</td>
<td>-77099</td>
<td>-151280</td>
</tr>
<tr>
<td>7</td>
<td>65679</td>
<td>-162660</td>
</tr>
<tr>
<td>9</td>
<td>38151</td>
<td>-148174</td>
</tr>
<tr>
<td>11</td>
<td>915</td>
<td>-153155</td>
</tr>
<tr>
<td>13</td>
<td>-18448</td>
<td>-163945</td>
</tr>
<tr>
<td>15</td>
<td>5772</td>
<td>-186107</td>
</tr>
</tbody>
</table>
Load case 9

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>114322</td>
<td>-192818</td>
</tr>
<tr>
<td>3</td>
<td>30839</td>
<td>-159783</td>
</tr>
<tr>
<td>5</td>
<td>-77099</td>
<td>-151280</td>
</tr>
<tr>
<td>7</td>
<td>8113</td>
<td>-147383</td>
</tr>
<tr>
<td>9</td>
<td>90351</td>
<td>-167127</td>
</tr>
<tr>
<td>11</td>
<td>915</td>
<td>-153155</td>
</tr>
<tr>
<td>13</td>
<td>-18448</td>
<td>-163945</td>
</tr>
<tr>
<td>15</td>
<td>-11424</td>
<td>-189723</td>
</tr>
</tbody>
</table>

Load case 11

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>158292</td>
<td>-191445</td>
</tr>
<tr>
<td>3</td>
<td>31707</td>
<td>-178997</td>
</tr>
<tr>
<td>5</td>
<td>-77099</td>
<td>-151280</td>
</tr>
<tr>
<td>7</td>
<td>18612</td>
<td>-165472</td>
</tr>
<tr>
<td>9</td>
<td>38151</td>
<td>-148174</td>
</tr>
<tr>
<td>11</td>
<td>41726</td>
<td>-172782</td>
</tr>
<tr>
<td>13</td>
<td>-18448</td>
<td>-163945</td>
</tr>
<tr>
<td>15</td>
<td>-53114</td>
<td>-169811</td>
</tr>
</tbody>
</table>

Load case 13

<table>
<thead>
<tr>
<th>Section</th>
<th>COMBI MAX-M</th>
<th>COMBI MIN-M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>158447</td>
<td>-187587</td>
</tr>
<tr>
<td>3</td>
<td>37748</td>
<td>-175049</td>
</tr>
<tr>
<td>5</td>
<td>-77099</td>
<td>-151280</td>
</tr>
<tr>
<td>7</td>
<td>8778</td>
<td>-162081</td>
</tr>
<tr>
<td>9</td>
<td>72350</td>
<td>-163123</td>
</tr>
<tr>
<td>11</td>
<td>1021</td>
<td>-168384</td>
</tr>
<tr>
<td>13</td>
<td>-257</td>
<td>-181930</td>
</tr>
<tr>
<td>15</td>
<td>-53114</td>
<td>-169811</td>
</tr>
</tbody>
</table>

Maximum values

<table>
<thead>
<tr>
<th>Section</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>158447</td>
<td>-187587</td>
<td>-112574</td>
<td>-166528</td>
</tr>
<tr>
<td>3</td>
<td>54396</td>
<td>-168008</td>
<td>-6563</td>
<td>-165530</td>
</tr>
<tr>
<td>5</td>
<td>34053</td>
<td>-161278</td>
<td>-32459</td>
<td>-169388</td>
</tr>
<tr>
<td>7</td>
<td>41726</td>
<td>-172782</td>
<td>-40317</td>
<td>-183928</td>
</tr>
<tr>
<td>9</td>
<td>5772</td>
<td>-186107</td>
<td>-131532</td>
<td>-187636</td>
</tr>
</tbody>
</table>
D3: Compilation of the results from the iterations

Compilation of the iteration results

The amount of reinforcement obtained by linear analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Tension</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>750</td>
<td>1075</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>150</td>
<td>64</td>
</tr>
<tr>
<td>9</td>
<td>238</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>552</td>
<td>745</td>
</tr>
</tbody>
</table>

Strip Step results

\[
M_{sd} \quad N_{sd} \quad M_{sd} \quad N_{sd}
\]

<table>
<thead>
<tr>
<th>Section</th>
<th>(M_{sd})</th>
<th>(N_{sd})</th>
<th>(M_{sd})</th>
<th>(N_{sd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>194902</td>
<td>-189113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-68215</td>
<td>-180944</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13148</td>
<td>-170620</td>
<td>-5496</td>
<td>-168304</td>
</tr>
<tr>
<td>7</td>
<td>86438</td>
<td>-164354</td>
<td>-4590</td>
<td>-171084</td>
</tr>
<tr>
<td>9</td>
<td>98991</td>
<td>-168705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>79401</td>
<td>-174116</td>
<td>-4590</td>
<td>-171084</td>
</tr>
<tr>
<td>13</td>
<td>65396</td>
<td>-183246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-163314</td>
<td>-189220</td>
<td></td>
</tr>
</tbody>
</table>

Cross-sectional constants

<table>
<thead>
<tr>
<th>Section</th>
<th>xtp</th>
<th>lekv</th>
<th>Aekv</th>
<th>xtp for Strip Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,517</td>
<td>4,9</td>
<td>19,033</td>
<td>0,233</td>
</tr>
<tr>
<td>3</td>
<td>0,371</td>
<td>0,828</td>
<td>9,504</td>
<td>0,379 negativ</td>
</tr>
<tr>
<td>5</td>
<td>0,348</td>
<td>0,77</td>
<td>8,789</td>
<td>0,402 negativ</td>
</tr>
<tr>
<td>7</td>
<td>0,438</td>
<td>1,43</td>
<td>10,462</td>
<td>0,312</td>
</tr>
<tr>
<td>9</td>
<td>0,493</td>
<td>2,015</td>
<td>11,903</td>
<td>0,257</td>
</tr>
<tr>
<td>11</td>
<td>0,384</td>
<td>0,868</td>
<td>9,92</td>
<td>0,366</td>
</tr>
<tr>
<td>13</td>
<td>0,368</td>
<td>0,821</td>
<td>9,426</td>
<td>0,382</td>
</tr>
<tr>
<td>15</td>
<td>0,497</td>
<td>3,975</td>
<td>16,563</td>
<td>0,253 negativ</td>
</tr>
</tbody>
</table>
Reduced amount of reinforcement for iterations

<table>
<thead>
<tr>
<th>Section</th>
<th>Tension</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600</td>
<td>860</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>64</td>
</tr>
<tr>
<td>9</td>
<td>190</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>442</td>
<td>596</td>
</tr>
</tbody>
</table>

Strip Step results for iteration one

<table>
<thead>
<tr>
<th>Section</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125661</td>
<td>-188632</td>
<td>-20204</td>
<td>-180533</td>
</tr>
<tr>
<td>3</td>
<td>24062</td>
<td>-169191</td>
<td>-33530</td>
<td>-166704</td>
</tr>
<tr>
<td>5</td>
<td>72044</td>
<td>-170373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>38888</td>
<td>-163884</td>
<td>-33530</td>
<td>-166704</td>
</tr>
<tr>
<td>9</td>
<td>69112</td>
<td>-168287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>29105</td>
<td>-173883</td>
<td>-44391</td>
<td>-170507</td>
</tr>
<tr>
<td>13</td>
<td>6045</td>
<td>-182866</td>
<td>-32930</td>
<td>-184936</td>
</tr>
<tr>
<td>15</td>
<td>31621</td>
<td>-187100</td>
<td>-108697</td>
<td>-188549</td>
</tr>
</tbody>
</table>

Cross-sectional constants

<table>
<thead>
<tr>
<th>Section</th>
<th>xtp</th>
<th>$lekv$</th>
<th>$Aekv$</th>
<th>xtp for Strip Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,493</td>
<td>4,226</td>
<td>16,789</td>
<td>0,257</td>
</tr>
<tr>
<td>3</td>
<td>0,415</td>
<td>0,979</td>
<td>10,869</td>
<td>0,335 negativ</td>
</tr>
<tr>
<td>5</td>
<td>0,264</td>
<td>0,646</td>
<td>5,526</td>
<td>0,486</td>
</tr>
<tr>
<td>7</td>
<td>0,426</td>
<td>1,26</td>
<td>10,498</td>
<td>0,324</td>
</tr>
<tr>
<td>9</td>
<td>0,505</td>
<td>1,855</td>
<td>12,687</td>
<td>0,245</td>
</tr>
<tr>
<td>11</td>
<td>0,414</td>
<td>0,974</td>
<td>10,83</td>
<td>0,336</td>
</tr>
<tr>
<td>13</td>
<td>0,389</td>
<td>0,886</td>
<td>10,089</td>
<td>0,361</td>
</tr>
<tr>
<td>15</td>
<td>0,489</td>
<td>3,445</td>
<td>15,848</td>
<td>0,261 negative</td>
</tr>
</tbody>
</table>

Strip Step results for iteration two

<table>
<thead>
<tr>
<th>Section</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>147185</td>
<td>-187765</td>
<td>-111469</td>
<td>-166763</td>
</tr>
<tr>
<td>3</td>
<td>48753</td>
<td>-168407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-111469</td>
<td>-166763</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>65890</td>
<td>-163060</td>
<td>-6224</td>
<td>-165847</td>
</tr>
<tr>
<td>9</td>
<td>92336</td>
<td>-167451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>43714</td>
<td>-173053</td>
<td>-31864</td>
<td>-169798</td>
</tr>
<tr>
<td>13</td>
<td>1246</td>
<td>-182199</td>
<td>-38436</td>
<td>-184193</td>
</tr>
<tr>
<td>15</td>
<td>4657</td>
<td>-186507</td>
<td>-134550</td>
<td>-187898</td>
</tr>
</tbody>
</table>
Cross-sectional constants

<table>
<thead>
<tr>
<th>Section</th>
<th>x_{tp}</th>
<th>l_{ekv}</th>
<th>A_{ekv}</th>
<th>x_{tp} for Strip Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.51</td>
<td>4.281</td>
<td>18.401</td>
<td>0.24</td>
</tr>
<tr>
<td>3</td>
<td>0.254</td>
<td>0.642</td>
<td>4.928</td>
<td>0.496</td>
</tr>
<tr>
<td>5</td>
<td>0.291</td>
<td>0.67</td>
<td>6.761</td>
<td>0.459 negative</td>
</tr>
<tr>
<td>7</td>
<td>0.488</td>
<td>1.51</td>
<td>12.578</td>
<td>0.262</td>
</tr>
<tr>
<td>9</td>
<td>0.555</td>
<td>2.12</td>
<td>12.687</td>
<td>0.195</td>
</tr>
<tr>
<td>11</td>
<td>0.435</td>
<td>1.061</td>
<td>11.454</td>
<td>0.315</td>
</tr>
<tr>
<td>13</td>
<td>0.37</td>
<td>0.826</td>
<td>9.478</td>
<td>0.38</td>
</tr>
<tr>
<td>15</td>
<td>0.527</td>
<td>3.644</td>
<td>17.863</td>
<td>0.223 negative</td>
</tr>
</tbody>
</table>

Strip Step results for iteration three

<table>
<thead>
<tr>
<th>Section</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>217161</td>
<td>-194055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>104981</td>
<td>-172320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>46590</td>
<td>-165878</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>67819</td>
<td>-170344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>26636</td>
<td>-175878</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5430</td>
<td>-184783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>41745</td>
<td>-189048</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cross-sectional constants

<table>
<thead>
<tr>
<th>Section</th>
<th>x_{tp}</th>
<th>l_{ekv}</th>
<th>A_{ekv}</th>
<th>x_{tp} for Strip Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.641</td>
<td>5.611</td>
<td>25.07</td>
<td>0.109</td>
</tr>
<tr>
<td>3</td>
<td>0.308</td>
<td>0.692</td>
<td>7.398</td>
<td>0.442 negative</td>
</tr>
<tr>
<td>5</td>
<td>0.29</td>
<td>0.669</td>
<td>6.722</td>
<td>0.46</td>
</tr>
<tr>
<td>7</td>
<td>0.428</td>
<td>1.268</td>
<td>10.589</td>
<td>0.322</td>
</tr>
<tr>
<td>9</td>
<td>0.485</td>
<td>1.775</td>
<td>11.933</td>
<td>0.265</td>
</tr>
<tr>
<td>11</td>
<td>0.392</td>
<td>0.896</td>
<td>10.18</td>
<td>0.358</td>
</tr>
<tr>
<td>13</td>
<td>0.392</td>
<td>0.895</td>
<td>10.167</td>
<td>0.358</td>
</tr>
<tr>
<td>15</td>
<td>0.475</td>
<td>3.395</td>
<td>14.847</td>
<td>0.275 negative</td>
</tr>
</tbody>
</table>

Strip Step results for iteration four

<table>
<thead>
<tr>
<th>Section</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>159995</td>
<td>-187589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>53042</td>
<td>-168021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>65730</td>
<td>-162673</td>
<td>-6510</td>
<td>-165538</td>
</tr>
<tr>
<td>7</td>
<td>90028</td>
<td>-167140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>40921</td>
<td>-172795</td>
<td>-33273</td>
<td>-169405</td>
</tr>
<tr>
<td>13</td>
<td>2341</td>
<td>-181945</td>
<td>-37710</td>
<td>-183942</td>
</tr>
<tr>
<td>15</td>
<td>4290</td>
<td>-186127</td>
<td>-133087</td>
<td>-187651</td>
</tr>
</tbody>
</table>
Cross-sectional constants

<table>
<thead>
<tr>
<th>Section</th>
<th>xtp</th>
<th>lekv</th>
<th>Aekv</th>
<th>xtp for Strip Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.499</td>
<td>4.24</td>
<td>17.4</td>
<td>0.251</td>
</tr>
<tr>
<td>3</td>
<td>0.248</td>
<td>0.64</td>
<td>4.304</td>
<td>0.502</td>
</tr>
<tr>
<td>5</td>
<td>0.297</td>
<td>0.678</td>
<td>7.008</td>
<td>0.453 negative</td>
</tr>
<tr>
<td>7</td>
<td>0.486</td>
<td>1.498</td>
<td>12.5</td>
<td>0.264</td>
</tr>
<tr>
<td>9</td>
<td>0.557</td>
<td>2.133</td>
<td>14.507</td>
<td>0.193</td>
</tr>
<tr>
<td>11</td>
<td>0.436</td>
<td>1.069</td>
<td>11.506</td>
<td>0.314</td>
</tr>
<tr>
<td>13</td>
<td>0.371</td>
<td>0.828</td>
<td>9.504</td>
<td>0.379</td>
</tr>
<tr>
<td>15</td>
<td>0.528</td>
<td>3.655</td>
<td>17.941</td>
<td>0.222 negative</td>
</tr>
</tbody>
</table>

Strip Step results for iteration four

<table>
<thead>
<tr>
<th>Section</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>215925</td>
<td>-194056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>104537</td>
<td>-172324</td>
<td>-110025</td>
<td>-182336</td>
</tr>
<tr>
<td>5</td>
<td>46474</td>
<td>-165890</td>
<td>-25941</td>
<td>-168769</td>
</tr>
<tr>
<td>7</td>
<td>68323</td>
<td>-170349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>26814</td>
<td>-174882</td>
<td>-48765</td>
<td>-172564</td>
</tr>
<tr>
<td>11</td>
<td>5464</td>
<td>-184788</td>
<td>-33371</td>
<td>-186887</td>
</tr>
<tr>
<td>13</td>
<td>41423</td>
<td>-189061</td>
<td>-97735</td>
<td>-190459</td>
</tr>
</tbody>
</table>

Cross-sectional constants

<table>
<thead>
<tr>
<th>Section</th>
<th>xtp</th>
<th>lekv</th>
<th>Aekv</th>
<th>xtp for Strip Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.644</td>
<td>5.666</td>
<td>25.213</td>
<td>0.106</td>
</tr>
<tr>
<td>3</td>
<td>0.29</td>
<td>0.668</td>
<td>6.709</td>
<td>0.46 negative</td>
</tr>
<tr>
<td>5</td>
<td>0.291</td>
<td>0.669</td>
<td>6.748</td>
<td>0.459</td>
</tr>
<tr>
<td>7</td>
<td>0.429</td>
<td>1.269</td>
<td>10.602</td>
<td>0.321</td>
</tr>
<tr>
<td>9</td>
<td>0.485</td>
<td>1.776</td>
<td>11.946</td>
<td>0.265</td>
</tr>
<tr>
<td>11</td>
<td>0.392</td>
<td>0.896</td>
<td>10.18</td>
<td>0.358</td>
</tr>
<tr>
<td>13</td>
<td>0.371</td>
<td>0.893</td>
<td>10.154</td>
<td>0.379</td>
</tr>
<tr>
<td>15</td>
<td>0.475</td>
<td>3.396</td>
<td>14.86</td>
<td>0.275 negative</td>
</tr>
</tbody>
</table>

Strip Step results for iteration five

<table>
<thead>
<tr>
<th>Section</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
<th>M_{sd}</th>
<th>N_{sd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>158447</td>
<td>-187587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>54396</td>
<td>-168008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>65679</td>
<td>-162660</td>
<td>-112574</td>
<td>-166528</td>
</tr>
<tr>
<td>7</td>
<td>90351</td>
<td>-167127</td>
<td>-6563</td>
<td>-165530</td>
</tr>
<tr>
<td>9</td>
<td>41726</td>
<td>-172782</td>
<td>-32459</td>
<td>169388</td>
</tr>
<tr>
<td>11</td>
<td>5772</td>
<td>-186107</td>
<td>-40317</td>
<td>-183928</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>-131532</td>
<td>-187636</td>
</tr>
</tbody>
</table>