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Design of arch bridges using non-linear analysis 
Master’s Thesis in the International Master’s Programme Structural Engineering  
EDINA SMLATIC AND MARCELL TENGELIN 
Department of Civil and Environmental Engineering 
Division of Structural Engineering 
Concrete Structures 
Chalmers University of Technology 

 

ABSTRACT 

During the process of concrete structures, linear analysis is used to obtain the cross-
sectional forces and moments. This method gives, in some cases, an overestimation of 
the amount of material needed, such as the reinforcement amount. In order to optimize 
the design of the structure, non-linear structural analysis can be used. 

The purpose of the thesis was to show the economical potential of using non-linear 
analysis as a design method for bridge design. The benefit can, in most cases, be seen 
for slender and compressed concrete structures. In this Master’s project the arch of the 
Munkedal Bridge was used as an example. 

The study was performed in two steps: linear analysis and non-linear analysis. The 
amount of reinforcement needed was first calculated using linear analysis according to 
the Boverket (2004), Engström (2001) and Handboken Bygg (1985). The 
reinforcement amount obtained was then reduced using non-linear analysis by 
iteratively updating of the cross-sectional constants Iekv, Aekv and xtp. The original 
cross-section of the arch was redesigned from a box girder section to a solid beam, in 
order to get a cross-section that would crack and, consequently, require bending 
reinforcement. 

The results from linear analysis and non-linear analysis were compared in order to 
determine if the economical profit was obtained. It was observed that with use of non-
linear analysis, the amount of reinforcement could be reduced with at least 20 % in 
the cross-sections with more than minimum reinforcement. The overall reduction for 
the whole arch was estimated to be about 17 %. Since the material dimensions were 
reduced so does the economical cost, in this case, the cost of reinforcement, decreases. 

It was concluded that the use of non-linear analysis in the design process is 
economical for slender and compressed concrete structures that has a need for 
reinforcement, if the reinforcement amount is large. 

 

 

 

Key words: linear analysis, non-linear analysis, arch bridge design, reinforced 
concrete.  
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Dimensionering av bågbroar med icke-linjär analys 
Examensarbete inom Internationella Masters Programmet Structural Engineering  
EDINA SMLATIC OCH MARCELL TENGELIN 
Institutionen för bygg- och miljöteknik 
Avdelningen för Konstruktionsteknik 
Betongbyggnad 
Chalmers tekniska högskola 

 

SAMMANFATTNING 

Vid dimensionering av betongkonstruktioner används linjär analys för att bestämma 
snittkrafter och -moment. Denna metod kan, i vissa fall, leda till överdimensionering, 
t ex av armeringsmängden. För att optimera konstruktionens dimensioner, kan icke-
linjär analys användas vid systemberäkning. 

Syftet med detta examensarbete var att visa att användning av icke-linjär analys som 
dimensioneringsmetod kan leda till ekonomiska besparingar. Vinsten med metoden 
framkommer som regel för slanka och tryckta betongkonstruktioner. I detta 
examensarbete användes Munkedalsbrons båge som exempel. 

Studien genomfördes i två steg: linjär analys och icke-linjär analys. Behovet av 
armeringen beräknades först med linjär analys i enlighet med Boverket (2004), 
Engström (2001) and Handboken Bygg (1985). Den beräknade armeringsmängden 
reducerades sedan med användning av icke-linjär analys. Detta genomfördes genom 
uppdateringar av tvärsnittskonstanterna Iekv, Aekv och xtp genom iteration. Bågens 
ursprungliga tvärsektion konstruerades om från lådbalksektion till ett homogent 
rektangulärt tvärsnitt, eftersom lådbalksektionen inte sprack och ingen armering 
utöver minimiarmering krävdes här.  

Resultaten från de båda analyserna jämfördes för att se om det var möjligt att 
åstadkomma några besparingar av armeringsmängden. Det observerades att med 
användning av icke-linjär analys kunde armeringsmängden reduceras med åtminstone 
20 % för de tvärsnitt som krävde mer än minimiarmering. Den totala minskningen i 
hela bågen uppskattades till ca 17 %. Eftersom armeringsmängden reducerades, 
reduceras följaktligen även kostnaden för projektet.  

Slutsatsen drogs att användning av icke-linjär analys under dimensioneringsskedet är 
ekonomisk för slanka och tryckta betongkonstruktioner som har behov av armering, 
om den erfordrade armeringsmängden är stor.  

 

 

Nyckelord: linjär analys, icke-linjär analys, bågbroar, armerad betong, 
betongkonstruktioner.
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Notations 
 

Roman upper case letters 
 
A  Axle load on the bridge deck 
 

ekvA  Equivalent area of the transformed concrete section  
 

sA  Steel area in tension 
 

stA  Steel area in compression 
 

1sA  Steel area 
 

cE  Design modulus of elasticity of concrete 
 

ckE  Characteristic modulus of elasticity of concrete 
 

sE  Design modulus of elasticity of steel 
 

skE  Characteristic modulus of elasticity of steel 
 

cF  Compressive concrete force 
 

csF  Shrinkage force  
 

sF  Tensile steel force 
 

stF  Compressive steel force 
 

cI  Moment of inertia of the compressive zone 
 

ekvI  Equivalent moment of inertia of the transformed concrete section  
 

dM  Bending moment capacity 
 

sM  Combined bending moment and normal force 
 

dsM  Design bending moment 
 

IM  Part of Ms taken by the concrete cross-section and the remaining tension 
reinforcement  
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IIM  Part of Ms taken by the compressive reinforcement including the 
corresponding part of the tension reinforcement 

 
dsN  Design normal force 

 
+T  Mean positive temperature 

 
−T  Mean negative temperature 

 
maxT  Maximum temperature 

 
minT  Minimum temperature 

 
+∆T  Positive temperature difference 

 
−∆T  Negative temperature difference 

 

Roman lower case letters 
 
b  Width of the cross-section 
 
d  Distance of the tension reinforcement from the top of the cross-section 
 

td   Distance of the compression reinforcement from the top of the cross-section 
 
e  Eccentricity of the normal force 
 

cckf  Characteristic compressive strength of concrete 
 

ccf  Design compressive strength of concrete 
 

sdf  Design tensile strength of the reinforcement 
 

stf  Tensile strength of the reinforcement 
 
h  Height of the cross-section 
 

rm  Relative moment 
 

balm  Balanced moment 
 
p  Evenly distributed load on the bridge deck 

 
x  Depth of the compressive zone 
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tpx  Gravity centre of the cross-section 
 
z  Local coordinate and starts from the equivalent concrete cross-section’s 

gravity centre  

 

Greek lower case letters 
 
α  Stress block factor 
 

efα  Effective ratio between the modulus of elasticity of steel and concrete  
 

lα  Length expansion coefficient for steel and concrete 
 
β  Stress block factor for the location of the stress resultant 
 

csε  Shrinkage strain for concrete 
 

cuε  Concrete strain 
 

sε  Steel strain, tension 
 

stε  Steel strain, compression 
 

syε  Steel strain, yielding 
 
φ  Reinforcement bar diameter 
 

nγ  Partial safety factor for safety class 
 

mγ  Partial safety factor for strength 
 
η  Partial safety factor for the material 
 

sσ  Steel stress in tension  
 

stσ  Steel stress in compression 
 
ω  Mechanical reinforcement content 
 

balω  Balanced mechanical reinforcement content 
 
ψ  Creep factor 
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1 Introduction 

1.1 Background 

During the design process of concrete structures, linear analysis is used to obtain the 
dimensions for the structure. This method gives, in some cases, an overestimation of 
the amount of material needed, for example the reinforcement content. To optimize 
the structure, non-linear analysis can be used. Generally, it is not practical to use non-
linear analysis in the design process since it is time consuming and since the 
superposition principle is then not applicable. The method is mostly used for 
evaluation of the response and behaviour of existing structures. A simplified method 
for non-linear analysis as a design method has been used at ELU Konsult AB to 
design an arch bridge, but it appeared to be both time consuming and expensive. 

 

1.2 Aim and implementation 

The main aim of the Master’s project ‘Design of arch bridges with non-linear 
analysis’ is to show the economical potential of using non-linear analysis for the 
bridge design. The profit can, in most cases, best be seen for slender and compressed 
concrete structures like the arch of the bridge in this Master’s project.  

The Master’s project was carried out in two steps. The first step was to obtain the 
preliminary design by the use of linear analysis. The second step was to optimize the 
design with the use of non-linear analysis. The results were then compared to see how 
much there is to save by using non-linear analysis in the design process. 

 

1.3 Limitations 

The Master’s Thesis was based on a concrete arch that is a part of a bridge consisting 
of a bridge deck that is connected to the arch with concrete columns. The arch and the 
bridge deck were considered as two separate structures, where the bridge deck loads 
were transferred to the arch through the columns as reaction forces obtained by the 
structural analysis program, Strip Step 2. In this Master’s project, only the design of 
the arch was of interest and that is why no calculations where made for the design of 
the bridge deck and columns. In the analysis of the bridge deck subjected to traffic 
load, it was assumed that the bridge deck was resting on a stiff arch. The calculations 
of the reinforcement needed in the arch were done under the assumption that the 
cross-sections are sufficient enough to resist the shear forces acting on it. In the 
design, some loads were not taken into account, such as wind load since the design 
was limited to two dimensions only and the effects of differential settlements since 
they have minor influence in this case. Concerning the design of the arch cross-
section, only the height of the arch could be altered since the width is fixed to 13 m in 
order to support the columns from the bridge deck.  
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2 The Munkedal Bridge 

2.1 Description 

The Munkedal Bridge is to be build over the river Örekilsälven which is situated north 
of Uddevalla. The main purpose for the Munkedal Bridge is to improve the 
accessibility of the highway rout E6. The bridge is designed as an arch, with the deck 
on top connected to the arch with columns, see Figure 2.1. The span of the Munkedal 
Bridge is 225 m with 3 % inclination and the maximum height is about 39 m from the 
ground.  

 

Figure 2.1 The Munkedal Bridge. 

 

The bridge deck is made of concrete and is supported by two steel box girders, see 
Figure 2.2. It is 23.30 m wide with 2.5 % inclination at both sides and has four lanes 
of traffic, two in each direction. The arch and the columns are made of concrete.  

 

 

Figure 2.2 The bridge deck profile. 

 

The boundary conditions and the model of the bridge created for the structural 
analysis program are described in detail in Chapter 4. 
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2.2 The Loads  

The main loads on the arch were the gravity loads due to self-weight of the structure 
and that of moving traffic. All the loads and the load coefficients were taken from 
Vägverket (2004).  

 

2.2.1 Permanent Loads 

Permanent loads are defined as dead loads from the self-weight of the structure which 
remain essentially unchanged during the life time of the bridge. The self-weight of the 
bridge deck and the columns were placed as point loads on the arch. The material 
properties are given in Table 2.1. Included in the permanent loads acting on the arch 
were also the loads imposed due to shrinkage and creep. For the detailed permanent 
load calculation, see Appendix A. 

Table 2.1 Material properties. 

Material Load [kN/m³] 

Concrete 25 

Asphalt 23 

Steel 1,6 

 

The drying of concrete due to evaporation of absorbed water causes shrinkage. If 
deformation of the structure is prevented, the shrinkage will lead to a constant 
shrinkage force. Creep is a long term effect leading to increased deformations with 
time of a loaded structure. The creep modifies the effect of shrinkage. This can be 
accounted for by reducing the modulus of elasticity of concrete. The shrinkage and 
creep characteristics of concrete induce internal stresses and deformations in the arch.  

Shrinkage force: csssc AEF ε⋅⋅=      (2.1) 

Effects of creep: )1( ψαα +⋅=ef      (2.2) 

where: 
c

s

E
E

=α      (2.3) 

 

2.2.2 Variable loads 

Variable loads are all loads other than the permanent loads, and have a varying 
duration. The variable loads acting on the bridge are the traffic load, the braking load 
and the temperature load.  
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The variable loads that were not taken into account in this Master’s project are 
fatigue, side force, snow, wind and different types of vehicle loads (emergency 
services vehicles, working vehicles etc). These loads have minor influence on the 
structure as compared to the traffic, braking and temperature loads.  

 

2.2.2.1 Traffic load 

According to Vägverket (2004), there are two types of traffic load that can be critical 
on this bridge: equivalent load type 1 and equivalent load type 5, see Figure 2.3. 
Equivalent load type 1 consists of an evenly distributed load p [kN/m] and one load 
group with three concentrated axle loads A [kN] with minimum longitudinal axle 
distances of 1.5 m and 6 m. Equivalent load type 5 consists of an evenly distributed 
load p [kN/m] and two load groups with three concentrated axle loads A [kN] with 
minimum longitudinal axle distances according to Figure 2.3 The values for the traffic 
loads A and p are given in Table 2.2. 

 

Figure 2.3 Equivalent load types, adapted from Vägverket (2004). 

 

Table 2.2 The magnitude of the traffic loads according to Vägverket (2004). 

A [kN] P [kN/m] Lane 

250 12 1

170 9 2

 6 3

 

In the design, the bridge deck was loaded with six lanes of traffic, even though the 
bridge has four lanes under normal traffic conditions. In this Master’s project, 
equivalent load type 5 was considered as the most critical and the bridge was designed 
for this load type. An example of the total traffic load in a cross section can be seen in 
Figure 2.4. 
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Figure 2.4 The total traffic load in a cross-section. 

 

2.2.2.2 Braking load  

According to Vägverket (2004), the braking load acting on the bridge is 800 kN as the 
bridge length is greater than 170 m. The horizontal braking force was applied on the 
bridge deck at the section where it is rigidly connected to the arch, through the 
shortest column. 

 

Figure 2.5 The breaking force acting on the arch. 
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2.2.2.3 Temperature load 

The temperature of the arch and its environment changes on a daily and seasonal 
basis. This influences both the overall movement of the structure and the stresses 
within it. The daily effects give rise to a temperature variation within the arch, which 
varies depending on cooling or heating. The idealized linear temperature gradient to 
be expected for a certain structure when heating or cooling can be seen in Table 2.3.  

Table 2.3 The idealized linear temperature gradient according to Vägverket 
(2004). 

Structure type Mean temperature °C 
in the structure 

Temperature 
difference °C 

 +T  −T  +∆T  −∆T  
1. Steel or aluminium bridge deck 

on box girder or I-beam of steel maxT + 15 minT -5 +20 -5 

2. Concrete or timber bridge deck 
on box girder or I-beam of steel maxT + 5 minT +5 +10 -5 

3. Concrete bridge deck on box 
girder or T-beam of concrete maxT  minT +10 +10 -5 

4. Timber bridge deck on timber 
beams maxT - 5 minT +10 +5 -5 

 
Values for Tmax and Tmin depend on the geographical location and are given in Figure 
2.6. 
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Figure 2.6 Values for Tmax and Tmin, adapted from Vägverket (2004). 

 
Structure type 3 was chosen as it fits the description of the bridge in this Master’s 
project. The values of the temperatures acting on the structure can be seen in Table 
2.4. 

Table 2.4 Temperatures acting on the structure. 

Mean temperature 
[°C] 

Temperature difference 
[°C] 

T+ T- ∆T+ ∆T- 
39 -27 10 -5 

 
The length expansion coefficient for steel and concrete is αl = 1·10-5 [1/°C] and was 
used for calculation of the deformation due to the temperature variation. 
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3 Structure Analysis Program, Strip Step 2 

3.1 Introduction 

The structural analysis program used for the design of the arch is called Strip Step 2. 
This program was developed in the 60’s and was modified to work with today’s 
computers. Strip Step 2 is one of the programs that can be used in bridge design, 
according to the Swedish Road Administration. This program is well established and 
efficient for the initiated user, and still widely used in Sweden even if it is old. 

The program is intended for calculations of structures that can be represented by 
elements with linear extension, such as frames and trusses. It allows for curved 
elements and even cross-section variation along the element. The load cases can 
consist of evenly distributed loads, point loads, temperature loads, traffic loads, pre-
stressing loads and support displacement loads. The load cases can then be combined 
to find the maximum cross-sectional forces and moments acting on the structure and 
the influence lines of the applied vertical loads. The calculations for creep and 
shrinkage are done through gradual iteration. 

 

3.2 Assumptions 

The calculations in the structural analysis program, Strip Step 2, are based on the 
theory of elasticity which states that the stress-strain relationship is linear. Also, the 
plane cross-section remains plane after deformation. The calculations are performed 
according to the 1st order (linear) theory. The calculations can also be performed 
assuming the 2nd order (non-linear) theory with respect to the deformations (not the 
material). Since the arch element function for the arched elements in the program was 
not working, the arch elements were modelled as plain beam elements. 

 

3.3 Structure 

The structure of the input data is not that difficult to understand even if it is in a DOS 
environment. Every input has a special four digit code that has a specific function, for 
instance, 2050 is the code describing the load on the structure. The program starts by 
defining the structure type and the material constants such as Young’s modulus and 
the Poissons ratio. The geometry of the elements and their cross-section parameters, 
such as height, area, gravity centre and moment of inertia are then given. The next 
step is to connect the elements and to specify their degrees of freedom. After this is 
done, the loads are then defined, combined and applied on the structure. Once the 
simulation is completed, the cross-sectional forces, stresses and influence-lines are 
obtained in a result file.  
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4 The Bridge Model 
The bridge was modelled as two separate structures, the bridge deck and the arch. The 
bridge deck was modelled as a beam with eight supports. The arch was modelled 
using beam elements connected to each other and with fixed supports at the 
abutments. The division was based on the assumption that the arch is stiffer than the 
bridge deck. This means that the arch has no displacements under the loading of the 
bridge deck. 

 

4.1 The bridge deck model 

4.1.1 Geometry and boundary conditions 

The function of the bridge deck model was to acquire the reaction force influence 
lines of the bridge deck caused by the traffic load acting on it. The bridge deck was 
modelled as a continuous beam with columns acting as supports. The bridge deck is a 
part of the highway route continuing on both sides of the bridge. In this project, the 
part of the bridge deck that is situated above the arch and that is connected to the arch 
through columns is taken into account. The rest of the bridge deck is supported by 
columns to the ground, and is not included in the model since loads on these parts of 
the deck have a very small influence on the maximum reaction forces transferred to 
the arch.  

The bridge deck is divided in seven elements between the eight columns supporting it. 
The supports B1, B5 and B8, were assumed partly fixed; that is no displacements 
were allowed and only rotations about the x-axis, see Figure 4.1. The rest of the 
supports were assumed simply supported, allowing for rotations about the x-axis and 
for displacements along the y-axis, see Figure 4.1. The bridge deck has an inclination 
of 3% which was taken into account when defining the geometry of the bridge deck. 

 

Figure 4.1 Boundary condition of the bridge deck. 

 

4.1.2 The analysis sequence of the bridge deck model 

The analysis sequence starts by dividing the bridge deck into elements and defining 
their degrees of freedom. The dead load of the bridge was introduced as an evenly 
distributed load. The braking force on the bridge deck was introduced at section B5, 
see Figure 4.1 and Figure 2.5, where the shortest support column is located. In this 
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way, the most of the braking force is transferred to the arch through the reaction force. 
At sections B1 and B8 the braking force was not applied since the supporting columns 
are long and very little of the braking force is transferred to the arch, see Figure 4.2. A 
distributed traffic load and two traffic load axle groups were introduced with different 
axle distances. Combination of the loads into load cases was made and influence lines 
of the reaction forces were calculated. 

 

4.1.3 Influence lines 

Bridge decks on arches should support both fixed and moving loads. Each element of 
a bridge must be designed for the most severe conditions that can possibly occur in 
that member. Live loads should be placed at the position where they will produce 
critical conditions in the member studied. The critical position for the live loads will 
not be the same for every member. A useful method of determining the most severe 
condition of loading is by using influence lines.  

An influence line for a particular response, such as the reaction force, is defined as a 
diagram, see Figure 4.2. Influence lines describe how, for example, the force in a 
given part of the structure varies as the applied unity load moves along the structure. 
Influence lines are primarily used to determine the critical positions of the live loads. 
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Figure 4.2 Example of an influence line for the reactions force at support 7 for the 
bridge deck. 

The influence lines were used to calculate the highest force that can act on the 
columns. For each traffic load position, giving a maximum column force, also the 
forces in the other columns were calculated. The calculated loads acting on the 
columns were then used as input traffic load on the arch model. From the bridge deck 
model, seven different load positions on the bridge deck gives seven different load 
cases, each one with the maximum force in one of the columns, see Appendix B.  

 

4.2 The arch model 

4.2.1 Geometry and boundary conditions 

The function of the arch model was to obtain the cross-sectional bending moments 
and the normal forces in the arch. The effects of creep and shrinkage were included in 
the simulation. 
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The arch was modelled as an arched structure with two abutments. The abutments 
were assumed fixed, that is no displacements and rotations were allowed. The arch 
was divided into fifteen sections creating fourteen elements that were coupled 
together through common degrees of freedom, see Figure 4.3. Each element’s cross-
sectional constants and geometry were defined in the structural analysis program. The 
coordinates and the degrees of freedom of each point are located at the gravity centre 
of each cross-section. 

 

Figure 4.3  The concrete arch divided into fifteen sections. 

 

In addition to the dead weight of the structure and the traffic load acting on it, 
temperature load caused by temperature difference across the cross-section of the arch 
was also taken into account as well as the braking force. 

 

4.2.2 The analysis sequence of the arch model 

The analysis sequence starts by defining the arch cross-sectional constants in each 
section. The dead load of the arch was applied as evenly distributed load, while the 
dead loads from columns and the bridge deck were applied as concentrated loads. The 
reaction force and the bending moment, obtained from the analysis of the bridge deck, 
from the braking load were applied on the arch as point loads. The different traffic 
load cases and the temperature load were introduced and the various load cases were 
combined. The maximum bending moments and the corresponding normal forces at 
each section were obtained in the result file. 

 

There were seven different traffic load combinations, resulting in seven different 
analyses. Each analysis gave different bending moments and normal forces in each 
cross-section of the arch. The results from each analysis were compared and the 
maximum value of the bending moment with the normal force from the same load 
case for each section were then selected and used for calculating the reinforcement 
area needed for each section. 
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5 Linear Analysis 

5.1 Introduction 

A linear analysis is often carried out in a simplified way, using the uncracked gross 
concrete sections and ignoring the reinforcement. It is generally assumed that the 
flexural rigidities along the structure are constant during the simulations. Linear 
analysis is only valid as long as the arch is uncracked. 

Cross-sectional normal forces and bending moments were calculated under the 
assumption of linear elasticity. The cross-section was then designed in the ultimate 
limit state with the concrete compression failure strain εcu= 3.5 ‰ as failure criteria. 
In the cross-sectional analysis, the strains were assumed to vary linearly across the 
cross-section and plane cross-sections were assumed to remain plane after 
deformation. 

In this project, the objective was to study a structure where the non-linear response 
has a significant influence on the required amount of reinforcement. Considering this, 
an arch with cross-sections that crack was needed for this Master’s project and once it 
was obtained, non-linear analysis would be required. 

It is possible that the original cross-section is strong enough to carry the bending 
moments and normal forces without the need for reinforcement. If this is the case, the 
cross-section constants such as height and thicknesses of the slabs will be reduced 
until the need for reinforcement is obtained, since the purpose of this thesis is to show 
that the amount of reinforcement can be minimized using non-linear analysis. 

 

5.2 Calculation of required reinforcement 

The calculations were carried out according to Engström (2004) in case of box girder 
cross-sections and according to Handboken Bygg (1985) in case of solid beam cross-
section. When using the method according to Engström (2004), the box girder cross-
section was simplified into an I-beam cross-section. First, this method was also 
applied to the solid beam cross-section design, and an over reinforced cross-section 
was obtained. In this case, the amount of compression reinforcement was guessed and 
the calculations were made iteratively until the required reinforcement was obtained. 
To avoid this long process, the method according to Handboken Bygg (1985) was 
used instead. Here the required amount of compression reinforcement was calculated 
first, assuming balanced reinforcement. From that amount, the needed tension 
reinforcement was calculated. Both methods are based on the method with the 
simplified compressive stress block: 

xbfF ccc ⋅⋅⋅= 8.0         (5.1) 

The bending moments and the normal forces for each cross-section were obtained 
from the linear structural analysis performed with the structural analysis program for 
the arch.  
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In order to make the calculations simple, the bending moment Msd and the normal 
force Nsd were combined into one moment Ms in both calculation methods, see Figure 
5.1. 

eNMM sdsds ⋅+=         (5.2) 

 

Figure 5.1 Bending moment combined with normal force. 

 

The calculations for both methods were performed under following assumptions: 

• The maximum concrete strain is limited to ‰ 5.3=cuε  

• The concrete cannot take tensile force in the cracked cross-section 

• The concrete compressive stress ccf  is constant in the compressive zone 

• The reinforcement is hot rolled and not pretensioned. 

 

5.2.1 Calculation method for the box girder cross-section 

To simplify the calculations, the box girder cross-section was divided into four equal 
I-beams, see Figure 5.2.  

 

Figure 5.2 The box girder cross-section divided into four I-beam cross-sections. 
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When calculating for I-beams there were some assumptions that had to be made. The 
compressive zone, 80% of it, could either be assumed to fit into the flange or not. If it 
was assumed that the 80% of the compressive zone fit in the flange, see Figure 5.3, 
the calculations were carried out as for the rectangular cross-sections and the 
following was valid: 

 

Figure 5.3 The compressive zone fits in the flange. 

 

For tx ≤⋅8,0  

Horizontal equilibrium: xbfF ccc ⋅⋅⋅= 8,0  sss AF ⋅= σ   (5.3) 

    sdsc NFF −=      (5.4) 

Moment equilibrium:  )4,0( xdFM cs ⋅−⋅=     (5.5) 

Deformation:    cus x
xd εε ⋅

−
=     (5.6) 

Steel stresses:   sss E εσ ⋅=  if sys εε ≤   (5.7) 

    sds f=σ  if sys εε ≥   (5.8) 

If on contrary, the 80% of the compressive zone does not fit into the flange, the shape 
of the cross-section had to be considered in calculations, see Figure 5.4. The 
following was valid: 
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Figure 5.4  The compressive zone does not fit in the flange. 

 

For tx >⋅8,0  

Horizontal equilibrium: xbfF wccc ⋅⋅⋅= 8,01  tbbfF wccc ⋅−⋅= )(2  (5.9) 

sss AF ⋅= σ      (5.10) 

sdscc NFFF +=+ 21     (5.11) 

Moment equilibrium:  )
2

()4,0( 21
tdFxdFM ccs −⋅+⋅−⋅=   (5.12) 

Deformation:   cus x
xd εε ⋅

−
=     (5.13) 

Steel stresses:   sss E εσ ⋅=  if sys εε ≤   (5.14) 

    sds f=σ  if sys εε ≥   (5.15) 

The needed amount of reinforcement in both cases was calculated from horizontal 
equilibrium conditions, (5.4) and (5.11). 

 

5.2.2 Calculation method for the solid cross-section 

The simple rectangular cross-section was calculated according to the method in 
Handboken Bygg (1985). For the solid beam cross-section, the equations according to 
Chapter 5.2.1, when the compressive zone fits into the flange, are valid. This equation 
system is expressed in a series of equations out of which the needed amount of 
reinforcement can be solved directly in case of the cross-section being normally 
reinforced with only tension reinforcement, i.e. the tension reinforcement yields 
before the concrete compression strain reaches ‰ 5.3=cuε . 
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cc

s
r fdb

M
m

⋅⋅
= 2         (5.16) 

)21(1 rm⋅−−=ω         (5.17) 

sd

cc
s f

fbdA ⋅⋅⋅
=
ω

1         (5.18) 

sd

sd
ss f

NAA −= 1         (5.19) 

In case of As being negative, the cross-section does not need reinforcement, since the 
compressive normal force is large and the cross-section is uncracked. 

To check if the cross-section is normally reinforced, calculated values of relative 
moment mr and mechanical reinforcement content ωr were compared with the values 
of these parameters for balanced reinforcement, see Table 5.1. Balanced 
reinforcement is obtained when the tensile reinforcement reaches yielding at the same 
time as the concrete compression strain reaches the failure strain ‰ 5.3=cuε . 

Table 5.1 Values for balanced reinforcement, according to Handboken Bygg 
(1985). 

Reinforcement balω  balm  

Ss 22 (s) 0,615 0,426

Ss 26 (s) 0,591 0,416

Ks 22 (s)    φ < 16 0,522 0,386

                   φ 20 - 25 0,532 0,390

                   φ 32 0,542 0,395

Ps/Ns/Nps/50 0,480 0,365

Ks 60 (s) 0,443 0,345

Bs/Ss/Nps/70 0,412 0,327

 

If mr < mbal and ω < ωbal a normally reinforced cross-section was obtained. 
Consequently, the steel area needed was calculated according to the equations (5.18) 
and (5.19). 

In case of relative moment being greater than the balanced moment, mr > mbal, the 
cross-section will be over-reinforced, i.e. the concrete fails in compression before the 
reinforcement yields. Measures can be taken in order to prevent over-reinforcement 
such as to include compression reinforcement or to increase d, b or fcc. Since the 
cross-section dimensions were already designed in this project, that is the d and b 
could not be changed and since the concrete strength chosen was already high, the 
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choice was here to include compression reinforcement. Accordingly, the needed 
compression reinforcement was calculated in the following way, assuming σst = fsd: 

 

 

Figure 5.5 Division of the cross-section into a section with compression 
reinforcement and a section without. 

 

stt

ccbals
st dd

fdbmMA
σ⋅−

⋅⋅⋅−
≥

)(

2

       (5.20) 

)( tststII ddAM −⋅⋅= σ        (5.21) 

IIsI MMM −=         (5.22) 

cc

I
r fdb

Mm
⋅⋅

= 2         (5.23) 

)21(1 rm⋅−−=ω         (5.24) 

⎟
⎠
⎞

⎜
⎝
⎛

⋅
−⋅=

d
dt

cust ω
εε 8.01        (5.25) 

Check the assumption: syst εε >  ⇒  sdst f=σ   (5.26) 

If the assumption (5.26) was not satisfied, the calculation had to be redone with 
stsst E εσ ⋅=  until convergence was obtained. When the assumption (5.26) was 

satisfied or convergence has been obtained for non-yielding compression 
reinforcement, the tension reinforcement was calculated as: 

 

sd

I
I fd

MA 1

)
2

1(
⋅

−⋅
=

ω
        (5.27) 
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sdt

II
II fdd

MA 1
⋅

−
=         (5.28) 

sd

sd
III f

N
A =          (5.29) 

IIIs AAA +=1          (5.30) 

IIIss AAA −= 1         (5.31) 

 

5.2.3 Check of the designed cross-section 

When the reinforcement needed is known and arranged in the cross-section, the x 
value of the compressive zone can be solved with the horizontal equilibrium and by 
assuming the steel strains in each steel level. 

 

Figure 5.6 Calculation conditions for the cross-section. 

 

Horizontal equilibrium: ssdstc FNFF +=+     (5.32) 

Compressive concrete force: xbfF ccc ⋅⋅⋅= α     (5.33) 

Tensile steel force:  sss AF ⋅= σ      (5.34) 

Compressive steel force: ststst AF ⋅= σ      (5.35) 

Strains:   sdssycus f
x

xd
=⇒>⋅

−
= σεεε   (5.36) 

ssssycus E
x

xd εσεεε ⋅=⇒<⋅
−

=   (5.37) 
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After the x was solved, the verification of the strain assumptions was done. If they 
were not satisfied, new strain assumptions had to be made and the new x calculated. In 
case that the assumptions were satisfied, the right x value was obtained. 

The next step was to check the moment capacity of the cross section by taking a 
moment equation around the lowest tension reinforcement layer. 

)()()( 1ddAddAxdxbfM sstststccd −⋅⋅−−⋅⋅+⋅−⋅⋅⋅⋅= σσβα   (5.38) 

When Md > Ms, the cross-section moment capacity is sufficient. 

Once all the assumptions and conditions are satisfied the amount of reinforcement 
needed is obtained and the cross-section is designed.  

 

5.3 Results from linear analysis 

5.3.1 Original box girder cross-section 

The cross section of the bridge is to be constructed as a box girder with two inner 
walls. The height of the cross-section varies across the arch. The thickness of the 
inner wall and the top slab is constant across the arch, while the thickness of the 
bottom slab varies along the arch, see Appendix C1. The dimensions of the cross-
section can be seen in Figure 5.7.  
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Figure 5.7 Original cross-sections for the arch. 

 

The calculations of the required reinforcement, input data tables and the results from 
the structural analysis program for the original cross-section are presented in 
Appendix C1. The bending moments Msd, the normal forces Nsd and the amount of 
reinforcement bars n obtained for the cross-section are presented in the Table 5.2.  
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Table 5.2 Maximum positive and negative bending moments, normal forces for 
the same load case and the required amount of tensile reinforcement 
bars, 20=φ mm. 

Section 1 3 5 7 9 11 13 15 

Msd 113426  44732 107698 113584 84480 30800  

-Nsd 162957  145297 140175 144533 149071 157897  

n -127  -126 -65 -64 -102 -154  

         

-Msd 67803 79288 36085   1870 33577 304456

-Nsd 158312 153890 142493   145771 158884 162780

n -142 -123 -129   -156 -153 -41 

 

As it can be seen from the Table 5.2, the cross-section is uncracked and does not need 
reinforcement (negative values for the reinforcement). Unfortunately, this cross-
section was not useful for this project since a reinforced arch with cracking cross-
section was required. Since the original cross-section was not useful, the height of the 
cross-section was reduced in order to obtain a cross-section that cracks and that 
requires reinforcement. 

 

5.3.2 Reduced height of the box girder cross-section, variable 
height 

In order to obtain a cracked cross-section, the height of the original cross-section was 
reduced. The height of the cross-section still varied along the arch. The thickness of 
the inner walls was kept the same as the original, but the thickness of the top slab was 
reduced from 0.35 m to 0.25 m. The thickness of the bottom slab was reduced as well, 
varying from 0.4 m at the abutments to 0.25 m at the mid section of the arch, for 
detailed values see Appendix C3. 

The bending moments Msd, the normal forces Nsd and the amount of reinforcement n 
obtained for the cross-section are presented in Appendix C3. As can be seen from the 
results, the cross-sections were still uncracked and do not need any reinforcement.  

Seeing that the cross-section is uncracked, several attempts were made to induce 
cracking and the need for reinforcement. The traffic load coefficient was increased 
stepwise from 1.5 to 1.7 and 1.9, to see if the cracking would occur. The obtained 
bending moments, the normal forces and the amount of reinforcement are presented in 
Appendix C3. 
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Seeing that the cross-section was still uncracked, a new reduction in height was made 
to obtain a need for reinforcement and a cracked cross-section. 

 

5.3.3 Reduced height of the box girder cross-section, constant 
height 

In order to obtain cross-sections that need to be reinforced, the height of the original 
cross-sections were further reduced to 2.5 m and was kept constant along the arch; 
that is no variation along the arch. This was the minimum height of the box girder 
cross-section as there must be free height of 2 m inside the box girder. The top and 
bottom slab thicknesses were reduced to 0.25 m and kept constant along the arch as 
well. The dimensions of the cross-section are presented in Figure 5.8. 

 

Figure 5.8 Cross-section of the box girder with constant height 

 

The bending moments Msd, the normal forces Nsd and the amount of reinforcement n 
obtained for the cross-section are presented in the Appendix C3. As can be seen, the 
cross-section started to crack at the supports where reinforcement was needed. 
However, the need for reinforcement was still quite small, and a larger amount was 
needed if the advantages with non-linear analysis should be shown. In order to obtain 
larger reinforcement amounts, it was decided to redesign the cross-section as a solid 
beam section. 

 

5.3.4 Solid beam section 

Redesigning the arch as a solid rectangular cross-section was the final attempt to find 
a section that cracks and requires reinforcement. The height of the cross-section was 
chosen to 1.5 m and the width was chosen to13 m. The cross-section is constant along 
the arch, and the shape can be seen in Figure 5.9. 
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Figure 5.9 Cross-section of the rectangular solid arch 

 

The calculations of the required reinforcement, input data tables and the results from 
the structural analysis program for the solid cross-section are presented in Appendix 
C2. The bending moments Msd, the normal forces Nsd and the amount of 
reinforcement bars n obtained for the cross-section are presented in the Table 5.3.  

Table 5.3 Maximum positive and negative bending moments, normal forces for 
corresponding load case and the required amount of reinforcement 
bars 20=φ mm in compression and tension. 

Section 1 3 5 7 9 11 13 15 

Msd 194902  13148 86438 98991 79401 65396  

-Nsd 189113  170620 164354 168705 174116 183246  

n 
compression 

750   150 238 64 64  

n tension 1075   64 100 64 64  

         

-Msd  68215 65496   4590  163314

-Nsd  180944 168304   171084  189220

n 
compression 

 64 64     552 

n tension  64 64     745 

 

Finally a cracked cross-section with a large amount of reinforcement needed was 
obtained. With these values for the bending moments, the normal forces and the 
reinforcement the next phase of the Master’s project, designing with non-linear 
analysis started. 
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6 Non-linear Analysis 

6.1 Introduction 

With non-linear analysis, it is possible to follow the real behaviour of a bridge, an 
arch or a structure. The non-linear analysis is not one unique method, but a range of 
methods at different levels of accuracy. Common for these approaches is that the non-
linear behaviour of the structure is in some way taken into account. In this Master’s 
project, a simplified use of non-linear analysis based on stepwise change of the 
flexural rigidity of the cross-section, based on a cracked cross-section where both 
concrete and reinforcing steel have elastic response (state II model), was used. 

 

6.2 Methodology 

The preliminary design of the cross-section was done using linear analysis, see 
Chapter 5. According to this, a preliminary amount of reinforcement needed was 
obtained. Usually, the amount obtained by linear analysis is an overestimation for 
structures under compression and in this chapter; the reinforcement amount will be 
reduced using non-linear analysis for improved design.  

The first step was to calculate the cross-sectional constants for the designed cross-
section using the moments, the normal forces and the amount of the reinforcement 
obtained from the linear analysis. The linear analysis process can be seen in Figure 
6.1. 

 

Figure 6.1 The linear analysis process. 

 

The cross-sectional constants were calculated according to the equations for state II 
cross-sectional modelling for sustained loading, where creep and shrinkage were 
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taken into account. The equations are presented in the following subchapters. Once 
the cross-sectional constants were calculated, they were inserted into the structural 
analysis program, Strip Step 2. The constants that were changed were the centre of 
gravity xtp, the equivalent moment of inertia Iekv and the equivalent area of the cross-
section Aekv. After running the program for the different traffic load cases, new lower 
moments and normal forces were obtained showing that the reinforcement amount 
could be reduced. 

The next step was to determine the decreased amount of reinforcement required by an 
iterative process. This started by guessing lower amounts of reinforcement than the 
ones calculated by linear analysis. With the decreased reinforcement amount and the 
moments and normal forces obtained in the previous step, new cross-sectional 
constants were calculated. Special attention was here needed to be given to the sign 
change of the bending moment, since the cross-sectional constants normally vary 
depending on whether the top or the bottom is cracked in tension. This is discussed 
more in detail in Chapter 6.3. The new cross-sectional constants were used in a new 
Strip Step 2 analysis for the different load cases in order to obtain new moments and 
normal forces. The sequence was repeated until the bending moments started to 
converge i.e. the change of the moment approaches zero. Once convergence was 
reached, the iteration was stopped, and the cross-section was finally designed for the 
new lower amount of reinforcement. The non-linear iteration process can be seen in 
Figure 6.2. 

 

Figure 6.2 Non-linear iteration. 
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6.3 Approximations 

The arch was divided into fifteen sections, see Figure 4.3, but in the calculations only 
eight of these were taken into account. Sections one and fifteen are the support 
sections, so they were important to look at as they would carry rather high moments. 
Sections three, five, seven, nine, eleven and thirteen were the other sections studied. 
These sections were chosen since they were loaded with concentrated loads 
transferred from the bridge deck through the columns and into the arch. Since the arch 
was loaded in these sections, the highest moments and normal forces would arise in 
these sections. For the sections in between: two, four, six, eight, ten and fourteen, the 
cross-sectional constants were not changed. This was to ease both the calculation and 
iteration process. 

Another approximation made concerns the bending moments. Some of the sections 
are exposed to both negative and positive bending moments, with belonging 
compressive normal forces, for different load cases. The sign change of the bending 
moment will affect the eccentricity, e, of the normal force. The eccentricity to the 
tension reinforcement will either increase causing a higher bending moment, or 
decrease leading to lower contribution to the bending moment. 

For the calculation of the cross-sectional constants, both the negative and the positive 
moments were inserted into equation (6.1). The higher of the two was chosen for the 
calculation and the cross-sectional constants were calculated accordingly. 

eNMM sdsds ⋅+=         (6.1) 

 

6.4 Calculation of the cross-sectional constants, state II 

The calculations for the cross-sectional constants were done based on the state II 
model calculation with sustained loading taken into account. State II model is based 
on a cracked cross-section where the concrete is assumed to carry no tensile stresses, 
and where both the concrete under compression and the reinforcing steel have elastic 
response. The long term effect of creep was introduced through the relation between 
the effective modulus of elasticity for steel and concrete, equation (6.2).  

( )ψα +⋅= 1
c

s
ef E

E         (6.2) 

whereψ  is the creep factor. 

 

6.4.1 Calculation of the depth of the compressive zone, x 

The first step was to calculate the x value, the depth of the compressive zone. This 
value was obtained by taking moment equilibrium for each section on the arch that 
was studied, according to: 
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eNddAddAxdxbfM sdsstststccd ⋅−−⋅⋅−−⋅⋅+⋅−⋅⋅⋅⋅= )()()( 1σσβα  (6.3) 

where sss E εσ ⋅=  for sys εε ≤      (6.4) 

sds f=σ  for sys εε ≥      (6.5) 

The same conditions for the steel stresses were valid for the compressive 
reinforcement as well. Once this value was attained, the new cross-sectional constants 
such as xtp, Aekv and Iekv were calculated with the formulas in the following chapters. 

It was discovered at the end of the Master’s project, that this calculation way was not 
correct since the depth of the compressive zone was calculated according to state III 
and not state II. The correct way is to iterate the x value with help of Navier’s 
formula, see equation (6.6).  

z
I

MeFeFeN
A

FFN
z

ekv

sdstcstscssd

ekv

cstcssd
c ⋅

+⋅+⋅+⋅
+

++
=)(σ   (6.6) 

 

Figure 6.3 Cracked reinforced concrete section exposed to bending moment and 
compressive normal force. 

 

where: z = sectional co-ordinate from the centre, positive 

e = eccentricity of axial force relative to the centre of the transformed section,       
positive downwards 

cstcs FF , = shrinkage restraint forces in the tension respectively compression 
reinforcement layer 

 tps xde −=  

 tptst xde −=  

 

The first step is to guess an x value and calculate the cross-sectional constants 
according to Chapters 6.4.2-6.4.4. The following step is to calculate the stresses at the 
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level of the guessed compression depth, the neutral zone. If the stress in the neutral 
zone is approximately zero, the correct x value has been guessed and obtained.  

0)( ≈−= tpc xxzσ  ⇒  correct x value 

If the stress in the neutral zone is not zero, a new x value has to be guessed and 
calculations redone until the stress is close to zero in the neutral zone. 

0)( ≠−= tpc xxzσ  ⇒  incorrect x value, guess a new x value 

Since this mistake was discovered at the end of the project a check was made to see 
the deviation in the cross-sectional constants with the two calculation ways. A 
deviation of approximately 5% was observed and it was decided that the change in 
cross-sectional constants with the 5%-deviation would not have a major impact on the 
calculations of bending moments and normal forces. Still, if the method is to be used, 
the correct way of calculating the x value in state II should be used.   

 

6.4.2 Calculation of the equivalent area, Aekv 

The effective area Aekv was calculated according to 

sefstefccekv AAAA ⋅+⋅−+= αα )1(       (6.7) 

where ccA = xb ⋅ , area of compressive zone 

stA = total area if compressive reinforcement 

sA = total area of tensile reinforcement. 

 

6.4.3 Calculation of the gravity centre of the transformed section, 
xtp 

The gravity centre of the transformed section xtp was calculated according to 

ekv

seftstefcc

tp A

dAdAxA
x

⋅⋅+⋅⋅−+⋅
=

αα )1(
2      (6.8) 

where x = depth  of the compressive zone 

td = depth of the compressive reinforcement 

d = depth of the tensile reinforcement. 
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6.4.4 Calculation of the moment of inertia of the transformed 
section, Iekv 

The moment of inertia of the transformed section Iekv, was calculated according to 

222 )()()1()( tpsefttpsteftpcccekv xdAdxAxxAII −⋅⋅+−⋅⋅−+−⋅+= αα  (6.9) 

where cI = moment of inertia of the compressive zone. 

 

6.5 Iteration results 

Presented in this chapter are the maximum positive and negative moments, normal 
forces for corresponding load cases and calculated cross-sectional constants for the 
iterations performed. Detailed calculations of the cross-sectional constants and the 
results from the structural analysis program for iteration one and five are presented in 
Appendix D1 and Appendix D2 respectively. A compilation of all the iteration results 
is presented in Appendix D3. 

 

6.5.1 Iteration zero 

Iteration zero was the start of the iteration process. The uncracked cross-section with 
state I sectional constants was analysed with the Strip Step 2 program giving the 
design moments and normal forces. The cross-section was designed for these loads, 
and the amount of reinforcement needed, determined in section 5.3.4, is summarised 
in Table 6.1. 

Table 6.1 The amount of reinforcement bars 20=φ mm obtained with linear 
analysis. 

Section 1 3 5 7 9 11 13 15 

Top 
reinforcement 

bars 
20=φ mm 

1075 64 64 64 100 64 64 745 

Bottom 
reinforcement 

bars 
20=φ mm 

750 64 64 150 238 64 64 552 

 

In sections three, five and thirteen, calculations showed no need for reinforcement. 
Since the rest of the sections were reinforced, it was decided to put in minimum 
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reinforcement in the sections where no reinforcement was required according to the 
calculations. 

The reinforcement was then placed into the cross-section and the cross-sectional 
constants for state II model were calculated for each section using the moments and 
normal forces obtained from the uncracked cross-sections, see section 5.3.4. The 
results are seen in Table 6.2. 

Table 6.2 Maximum positive and negative bending moments, normal forces for 
corresponding load case from linear analysis and cross-sectional 
constants for iteration zero. 

Section 1 3 5 7 9 11 13 15 

Msd 

[kNm] 
194902  13148 86438 98991 79401 65396  

-Nsd 

[kN] 
189113  170620 164354 168705 174116 183246  

-Msd 

[kNm] 
 68215 65496   4590  163314 

-Nsd 

[kN] 
 180944 168304   171084  189220 

xtp 

[m] 
0,517 0,371 0,348 0,438 0,493 0,384 0,368 0,497 

Aef 

[m2] 
19,033 9,504 8,789 10,462 11,903 9,92 9,426 16,563 

Ief 

[m4] 
4,9 0,828 0,77 1,43 2,015 0,868 0,821 3,975 

 

After the sectional constants for state II were calculated, the new values were used in 
a new Strip Step 2 analysis and new moments and normal forces were obtained. These 
are presented in the Table 6.3. 
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Table 6.3 Maximum positive and negative bending moments and normal forces 
for corresponding load case obtained in iteration zero. 

 

The new moments and normal forces indicated that the reinforcement amount could 
be reduced. A new lower amount of reinforcement was guessed and the iteration 
process started. 

 

6.5.2 First iteration 

For the first iteration, the reinforcement was reduced with 20 % from the original 
reinforcement amounts, calculated with linear analysis. In the cross-sections where 
the number of reinforcement bars was 64, no reduction was made since this was the 
minimum reinforcement. The new reinforcement amounts were fixed to the values 
according to Table 6.4. 

Table 6.4 The reduced amount of reinforcement bars presumed for the non-linear 
iteration. 

Section 1 3 5 7 9 11 13 15 

Top reinforcement 
bars 20=φ mm 860 64 64 64 80 64 64 596 

Bottom 
reinforcement bars 

20=φ mm 
600 64 64 120 190 64 64 442 

 

The new cross-sectional constants were calculated using the moments from Table 6.3 
from the iteration zero and the reduced amount of reinforcement from Table 6.4. The 
new calculated cross-sectional constants are presented in Table 6.5 and the new 
moments and normal forces due to the new sectional constants in Table 6.6. For the 
detailed calculations of the cross-sectional constants and results from the structural 
analysis program, see Appendix D1. 

Section 1 3 5 7 9 11 13 15 

Msd 125661 24062 72044 38888 69112 29105 6045 31621 

-Nsd 188632 169191 170373 163884 168287 173883 182866 187100 

-Msd  20204  33530  44391 32930 108697 

-Nsd  180533  166704  170507 184936 188549 
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Table 6.5 Cross-sectional constants for the first iteration. 

Section 1 3 5 7 9 11 13 15 

xtp [m] 0,493 0,415 0,264 0,426 0,505 0,414 0,389 0,489 

Aef [m2] 16,789 10,869 5,526 10,498 12,687 10,83 10,089 15,848 

Ief [m4] 4,226 0,979 0,646 1,26 1,855 0,974 0,886 3,445 

 

Table 6.6 Maximum positive and negative bending moments and normal forces 
for corresponding load case obtained in the first iteration. 

 

6.5.3 Final iteration 

The following iterations were made in the same way as the first iteration. The iteration 
results are summarised in Appendix D3. For the fifth and final iteration, detailed 
calculations of the cross-sectional constants and results obtained from the structural 
analysis program are shown in Appendix D2. The cross-sectional constants used are 
shown in Table 6.7. 

Table 6.7 Cross-sectional constants for the final iteration. 

Section 1 3 5 7 9 11 13 15 

xtp [m] 0,644 0,29 0,291 0,429 0,485 0,392 0,371 0,475 

Aef [m2] 25,213 6,709 6,748 10,602 11,946 10,18 10,154 14,86 

Ief [m4] 5,666 0,668 0,669 1,269 1,776 0,896 0,893 3,396 

 

The new moments and normal forces obtained from the Strip Step 2 analysis after 
inserting the new sectional constants are presented in Table 6.8. 

Section 1 3 5 7 9 11 13 15 

Msd 147185 48753  65890 92336 43714 1246 4657 

-Nsd 187765 168407  163060 167451 173053 182199 186507 

-Msd   111469 6224  31864 38436 134550 

-Nsd   166763 165847  169798 184193 187898 
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Table 6.8 Maximum positive and negative bending moments and normal forces 
for corresponding load case obtained in the final iteration. 

 

6.5.4 Comments on the iterations 

It was mentioned earlier in Chapter 6.2 that special attention needed to be given to the 
sign change of the bending moment, since the cross-sectional constants normally vary 
then as well. This means that when the bending moment is positive, the “bottom” 
reinforcement is in tension and the cross-sectional constants in state II should be 
determined accordingly. On the other hand, if the same section is exposed to a 
negative bending moment, the “top” reinforcement is in tension and the cross-
sectional constants will have new values. From linear analysis some of the sections 
obtained both the negative and the positive bending moments. The moments then used 
in calculations were calculated according to equation (6.1) in Chapter 6.3 and the 
sectional constants are calculated consequently.  

 

 

Section 1 3 5 7 9 11 13 15 

Msd 158447 54396  65679 90351 41726  5772 

-Nsd 187587 168008  162660 167127 172782  186107 

-Msd   112574 6563  32459 40317 131532 

-Nsd   166528 165530  169388 183928 187636 
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7 Results and Discussion 
The bridge was originally designed with a box girder cross-section. Box girders are 
very stable for arches, since the distribution of moments and normal forces is good 
throughout the cross-section. The original cross-section was very stiff and did not 
need to be reinforced. Due to this, the cross-section was redesigned as a solid cross-
section in order to illustrate the aim of this Master’s project. 

The amounts of reinforcement bars obtained with both linear and non-linear analysis 
for the solid cross-section are presented and compared in Table 7.1. With respect to 
that the brake load can act in both directions, and that the arch span of the bridge is 
almost symmetrical, a symmetric distribution of the required reinforcement has been 
assumed based on the results in Chapters 5 and 6. 

Table 7.1 Number of reinforcement bars, 20=φ mm, obtained with linear and 
non-linear analysis. 

Section 1 3 5 7 9 11 13 15 

 Linear analysis 

Top 
reinforcement 

bars 
1075 64 64 100 100 64 64 1075 

Bottom 
reinforcement 

bars  
750 64 64 238 238 64 64 750 

 Non-linear analysis 

Top 
reinforcement 

bars 
860 64 64 80 80 64 64 860 

Bottom 
reinforcement 

bars 
600 64 64 190 190 64 64 600 

 

The reduction of reinforcement was done with 20 % at each section, except for the 
ones with the minimum amount of reinforcement bars. As can be seen from the Table 
7.1, calculating with non-linear analysis, lower amounts of reinforcement bars were 
obtained. The total reduction of the required reinforcement amount was estimated to 
be around 17 %. With non-linear analysis the real behaviour of the structure was taken 
into account resulting in lower bending moments and showing that the use of linear 
analysis, in this case, leads to overestimation of the amount of reinforcement bars.  
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The loads on the structure in this Master’s project were limited to the vertical loads 
acting on it and other loads such as wind load were not taken into account. This was 
done in order to ease the calculations and keep the model in two dimensions only. In 
order to include the side loads, for example the wind load acting perpendicular to the 
bridge, a 3D-model should be created where the risk for torsion and buckling is taken 
into account. In this Master’s project this was not taken into account since the 
calculations get more extensive and a more advanced structural analysis program is 
required.  

In this Master’s project, the bridge was modelled as two separate structures, the bridge 
deck and the arch. This could have influenced the results in a negative way. If the arch 
is not stiff enough, i.e. the support points for the bridge deck are deflecting; the 
calculated loads on the arch can be incorrect. A test should be made to check whether 
the assumption of an infinity stiff arch holds with respect to the reaction forces in the 
columns. This can be made by including the arch, the bridge deck and the columns in 
one model. However, this was not made in this study, since this appeared to be too 
complicated with the analysis program used in this Master’s project. 

Another thing that could have influenced the results is the approximations made for 
the sections in between the ones studied. The stiffness of these sections was not 
updated during the iteration process, resulting in uneven distribution of the centre of 
gravity as well as of the stiffness along the arch. This might have had effects on the 
convergence of the bending moments. A test where all the sections are taken into 
account should be made to see if the stiffness and the centre of gravity would be more 
even along the arch, leading to a better convergence of the bending moments. 
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8 Conclusions 
The main aim of this Master’s project was to show the economical potential of using 
non-linear analysis as a design method, especially for slender and compressed 
concrete structures. This was successfully demonstrated in this Master’s project. In 
the study, the Munkedal Bridge, a planned highway bridge with an underlying 
concrete arch supporting the bridge deck on columns, was used as an example. 

The original box girder cross-section of the arch was heavily over-dimensioned and 
could carry the bridge loads without any need for reinforcement. In this study, the 
cross-section was gradually reduced to a slender solid beam cross-section in order to 
obtain cracking and a need for reinforcement in the arch.  

The required amount of reinforcement was calculated with both linear and non-linear 
analysis and it was observed that with non-linear analysis, the total amount of 
reinforcement could be reduced with at least 20 % in the cross-sections with more 
than minimum reinforcement. The reduction obtained with non-linear analysis was 
estimated to be about 17 % for the whole arch.  

The iteration process for the non-linear analysis was not as time consuming as 
expected. The most time consuming process was to find a cross-section that needed to 
be reinforced, as the original cross-section was over-dimensioned. It can be concluded 
that for a structure that needs to be reinforced from the start, it is economical to use 
non-linear analysis in order to reduce the amount of reinforcement obtained through 
linear analysis. On the other hand, for a structure that does not need to be reinforced 
from the start, this is not the case since the process in finding a structure that cracks 
and that needs to be reinforced could be time consuming. Consequently, such a 
process is economical only if a lower concrete amount or a more rational production 
can motivate the effort.  

A disadvantage with non-linear analysis is in general that the procedure requires a 
study with summarised loads, i.e. the law of superposition is not valid. However, with 
the methodology used in this Master’s project this has not to be the case. Within each 
iteration, the calculations are linear (with a reduced stiffness) and superposition can be 
used. However, this requires that the complete structure, the arch, the columns and the 
bridge deck, can be modelled as one structure in 3D and that the critical load 
combination is found within each iteration. 

Finally it can be concluded that the use of non-linear analysis in the design process is 
economical for slender and compressed concrete structures that has a need for 
reinforcement and if the reinforcement amount is large. 
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APPENDIX A: PERMANENT LOAD CALCULATIONS 
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Calculations for the permanent loads    

        
The material properties were taken from BBK04, Boverkets handbook in concrete structures. 

        
Material properties        
        
C40/50             Eck = 35 Mpa      
        
Partial safety factor        
        
Safety class 3        
                      ηγm = 1,2       
                       γn  = 1,2       
        
 
         
       Ec = 24,3 Mpa     
        
        
The design value of the modulus of elasticity of concrete C40/50  Ec = 24,3 Mpa    
was used in the Strip Step program.      
        
Material Load       
        
Concrete 25 kN/m³      
Asphalt 23 kN/m³      
Steel 1,6 kN/m²      
        
Cross-section constants of the bridge deck     
        
Deck area 9,1829 m²      
Asphalt area 2,1936 m²      
Cross-section length 24,07 m      
        
Permanent load        
        
Bridge deck Load       
Concrete 229,5725 kN/m      
Asphalt 50,4528 kN/m      
Steel 38,512 kN/m      
        

Total 318,5373 kN/m      
        
Column        
Concrete 25 kN/m³      
Diameter 2 m      
Area 3,14 m²      
Weight per length 78,5 kN/m      
        
 
        

mn

ck
c

E
E

γηγ
=
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 Length  Point load ( 2 columns )   
Column 1 19,858 m 3117,706 kN    
Column 2 7,938 m 1246,266 kN    
Column 3 1,8 m 282,6 kN    
Column 4 0,31 m 48,67 kN    
Column 5 4,309 m 676,513 kN    
Column 6 13,748 m 2158,436 kN    
        
Load on the arch       
        
The total point load on the arch is the sum of the permanent loads from the bridge deck and  
the columns. The Figure below illustrates the point load acting on section 13 of the arch.  
        
 
         
        
        
        
        
        
        
        
        
        

Section length [m] Load [kN] Total      
3 32,44 10333,35 13451,056 kN    
5 31,75 10113,56 11359,8253 kN    
7 31,75 10113,56 10396,1593 kN    
9 31,75 10113,56 10162,2293 kN    

11 31,75 10113,56 10790,0723 kN    
13 32,44 10333,35 12491,786 kN    

        
        
Self-weight of the arch        
Cross-section: Original       
        

Section Ac  Concrete Load     
 [m²] [kN/m³] [kN/m]     
        

1 19,674 25 491,85     
2 18,211 25 455,28     
3 16,825 25 420,63     
4 15,500 25 387,5     
5 14,914 25 372,86     
6 14,514 25 362,86     
7 14,278 25 356,94     
8 14,202 25 355,06     
9 14,287 25 357,18     

10 14,532 25 363,3     
11 14,938 25 373,46     
12 15,529 25 388,22     
13 16,857 25 421,43     
14 18,181 25 454,52     
15 19,618 25 490,45     
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Self-weight of the arch        
Cross-section: Box girder with reduced height     
        

Section Ac  Concrete Load     
 [m²] [kN/m³] [kN/m]     
        

1 15,250 25 381,25     
2 14,080 25 352     
3 12,856 25 321,4     
4 11,940 25 298,5     
5 11,735 25 293,375     
6 11,401 25 285,025     
7 11,202 25 280,05     
8 11,140 25 278,5     
9 11,210 25 280,25     

10 11,415 25 285,375     
11 11,756 25 293,9     
12 12,249 25 306,225     
13 13,454 25 336,35     
14 14,654 25 366,35     
15 15,949 25 398,725     

        
        
Self-weight of the arch        
Cross-section: Box girder with constant cross-section     
        

Section Ac  Concrete Load     
 [m²] [kN/m³] [kN/m]     
        

1 to 15 11,140 25 278,5     
        
        
        
Self-weight of the arch        
Cross-section: Solid beam with constant cross-section     
        

Section Ac  Concrete Load     
 [m²] [kN/m³] [kN/m]     
        

1 to 15 19,500 25 487,5     
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APPENDIX B: TRAFFIC LOAD CALCULATIONS 
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N newton:= kN 1000 N⋅:= GPa 109 Pa⋅:=

MPa 106Pa:= kNm 1000 N⋅ m⋅:=

Calculation for traffic load acting on the arch

Figure 1. Load type 5.

Figure 2. Traffic load in a cross-section.  
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Axle load

Quantity 

A1 250 kN⋅:= a1 2:= A1t A1 a1⋅:= A1t 5 105
× N=

A2 170kN:= a2 2:= A2t A2 a2⋅:= A2t 3.4 105
× N=

Total axle load Atot A1t A2t+:= Atot 840kN=

Figure 3. Influence line of section 7 of the bridge deck due to the load position.

Formula:   Rzn = Atot (Influence line values)  
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Rz27 0 N=Rz27 Atot 0( )⋅:=till 

Rz26 0 N=Rz26 Atot 0( )⋅:=till 

Rz25 8.4 103
× N=Rz25 Atot 0.01− 0.02+( )⋅:=till 

Rz24 1.68− 104
× N=Rz24 Atot 0.04− 0.02+( )⋅:=till 

Rz23 4.2 104
× N=Rz23 Atot 0.05− 0.1+( )⋅:=till 

Rz2 2.47− 106
× N=Rz2 Atot 0.98− 1− 0.96−( )⋅:=max 

Figure 4. Influence line of section 2 of the bridge deck due to the load position.

Section 3
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Rz37 1.756 105
× N=Rz37 Atot 0.11 0.055+ 0.044+( )⋅:=till 

Rz36 8.455− 105
× N=Rz36 Atot 0.5− 0.275− 0.219− 0.0125−( )⋅:=till 

Rz35 1.945− 106
× N=Rz35 Atot 0.655− 0.8325− 0.878− 0.05+( )⋅:=till 

Rz34 5.141 104
× N=Rz34 Atot 0.122 0.089+ 0.0722 0.2−+ 0.022−( )⋅:=till 

Rz32 2.856 104
× N=Rz32 Atot 0.067 0.033−( )⋅:=till 

Rz3 2.491− 106
× N=Rz3 Atot 0.894− 1− 0.99− 0.031− 0.025− 0.025−( )⋅:=max 

Figure 5. Influence line of section 3 of the bridge deck due to the load position.

Section 5
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Rz47 0 N=Rz47 Atot 0.01− 0.01+( )⋅:=till 

Rz46 8.4− 103
× N=Rz46 Atot 0.01 0.02−( )⋅:=till 

Rz45 7.56 104
× N=Rz45 Atot 0.05− 0.1+ 0.01+ 0.01+ 0.02+( )⋅:=till 

Rz43 2.352 105
× N=Rz43 Atot 0.03 0.15− 0.1+ 0.12+ 0.18+( )⋅:=till 

Rz42 2.293− 106
× N=Rz42 Atot 0.01− 0.05+ 0.98− 0.96− 0.83−( )⋅:=till 

Rz4 2.57− 106
× N=Rz4 Atot 0.98− 1− 0.96− 0.03− 0.04− 0.05−( )⋅:=max 

Figure 6. Influence line of section 4 of the bridge deck due to the load position.

Section 7
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Rz57 4.452− 103
× N=Rz57 Atot 0.0167 0.022−( )⋅:=till 

Rz56 2.1 104
× N=Rz56 Atot 0.05− 0.075+( )⋅:=till 

Rz54 1.48 105
× N=Rz54 Atot 0.044 0.1556− 0.077+ 0.0888+ 0.122+( )⋅:=till 

Rz53 2.026− 106
× N=Rz53 Atot 0.05 0.9− 0.875− 0.6875−( )⋅:=till 

Rz52 7.241− 105
× N=Rz52 Atot 0.011− 0.178− 0.233− 0.44−( )⋅:=till 

Rz5 2.744− 106
× N=Rz5 Atot 0.978− 1− 0.956− 0.022− 0.278− 0.033−( )⋅:=max 

Figure 7. Influence line of section 5 of the bridge deck due to the load position.

Section 9
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Rz67 1.68 104
× N=Rz67 Atot 0.05− 0.07+( )⋅:=till 

Rz65 2.041 105
× N=Rz65 Atot 0.055 0.099− 0.077+ 0.088+ 0.122+( )⋅:=till 

Rz64 2.118− 106
× N=Rz64 Atot 0.045 0.944− 0.911− 0.711−( )⋅:=

till 

Rz63 7.77− 105
× N=Rz63 Atot 0.2− 0.2375− 0.4875−( )⋅:=till 

Rz62 1.637 105
× N=Rz62 Atot 0.04 0.055+ 0.0999+( )⋅:=till 

Rz6 2.519− 106
× N=Rz6 Atot 0.98− 1− 0.92− 3 0.033⋅−( )⋅:=max 

Figure 8. Influence line of section 6 of the bridge deck due to the load position.

Section 11
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Rz76 1.05 105
× N=Rz76 Atot 0.03125 0.2125− 0.08125+ 0.1+ 0.125+( )⋅:=till 

Rz75 2.076− 106
× N=Rz75 Atot 0.055 0.939− 0.889− 0.699−( )⋅:=till 

Rz74 7.325− 105
× N=Rz74 Atot 0.011− 0.128− 0.244− 0.489−( )⋅:=till 

Rz73 1.89 105
× N=Rz73 Atot 0.05 0.0625+ 0.1125+( )⋅:=till 

Rz72 5.132− 104
× N=Rz72 Atot 0.0111− 0.0167− 0.0333−( )⋅:=till 

Rz7 2.509− 106
× N=Rz7 Atot 1.05− 1− 0.889− 0.028− 0.02−( )⋅:=max 

Figure 9. Influence line of section 7 of the bridge deck due to the load position.

Section 13
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Q13 9.627− 105
× N=Q13 ptot 0.018 0.049− 0.661− 17.136−( )⋅ m⋅ Rz27+:=till 

Q11 8.342− 105
× N=Q11 ptot 0.072− 0.197+ 2.679+ 18.252−( )⋅ m⋅ Rz26+:=till 

Q9 8.389− 105
× N=Q9 ptot 0.272 0.737− 17.989− 2.763+( )⋅ m⋅ Rz25+:=till 

Q7 9.351− 105
× N=Q7 ptot 1.01− 2.74+ 17.998− 0.737−( )⋅ m⋅ Rz24+:=till 

Q5 5.854− 105
× N=Q5 ptot 3.769 18.252− 2.669+ .196+( )⋅ m⋅ Rz23+:=till 

Q3 4.611− 106
× N=

Evenly distributed load

p1 4
kN

m2
:= p2 3

kN

m2
:= p3 2

kN

m2
:=

Quantity n 2:=

Lane width w 3 m⋅:=

ptot p1 p2+ p3+( ) n⋅ w⋅:= ptot 54
kN
m

=Total 

Formula:    Qn =  ptot ( Influence line areas ) + Rzn  

Figure 10. Influence line of section 2 of the bridge deck due to the load position.

Load case 3

max Q3 ptot 21.818− 17.136− 0.658− 0.048−( )⋅ m⋅ Rz2+:=
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Q9 ptot 0.272 2.7+ 17.989− 2.763+( )⋅ m⋅ Rz45+:= Q9 5.861− 105
× N=till 

Q11 ptot 18.252− 2.679+ 0.716− 0.072−( )⋅ m⋅ Rz46+:= Q11 8.919− 105
× N=till 

Q13 ptot 0.018 0.177+ 0.661− 17.136−( )⋅ m⋅ Rz47+:= Q13 9.505− 105
× N=till 

Load case 9

max Q9 ptot 0.737− 17.989− 18.038− 1.013−( )⋅ m⋅ Rz5+:= Q9 4.784− 106
× N=

till Q3 ptot 0.018 0.177+ 0.658− 17.136−( )⋅ m⋅ Rz52+:= Q3 1.674− 106
× N=

Q5 ptot 0.073− 0.719− 2.669+ 18.252−( )⋅ m⋅ Rz53+:= Q5 2.911− 106
× N=till 

Q7 ptot 0.272 2.7+ 17.998− 2.74+( )⋅ m⋅ Rz54+:= Q7 5.154− 105
× N=till 

Q11 ptot 3.78 17.935− 2.679+ 0.197+( )⋅ m⋅ Rz56+:= Q11 5.881− 105
× N=till 

Q13 ptot 21.818− 2.443+ 0.661− 0.049−( )⋅ m⋅ Rz57+:= Q13 1.089− 106
× N=till 

Load case 5

max Q5 ptot 18.252− 17.935− 0.719− 0.073−( )⋅ m⋅ Rz3+:= Q5 4.487− 106
× N=

till Q3 ptot 17.136− 2.455+ 0.177+ 0.018+( )⋅ m⋅ Rz32+:= Q3 7.537− 105
× N=

till Q7 ptot 2.74 18.019− 2.7+ 0.272+( )⋅ m⋅ Rz34+:= Q7 6.132− 105
× N=

till Q9 ptot 0.737− 2.7+ 18.038−+ 1.013−( )⋅ m⋅ Rz35+:= Q9 2.868− 106
× N=

till Q11 ptot 0.197 0.716− 17.935− 3.78+( )⋅ m⋅ Rz36+:= Q11 1.638− 106
× N=

till Q13 ptot 0.049− 0.177+ 2.443+ 21.818−( )⋅ m⋅ Rz37+:= Q13 8.638− 105
× N=

Load case 7

max Q7 ptot 1.01− 18.019− 17.998− 0.737−( )⋅ m⋅ Rz4+:= Q7 4.61− 106
× N=

till Q3 ptot 0.048− 0.658− 2.455+ 21.818−( )⋅ m⋅ Rz42+:= Q3 3.377− 106
× N=

Q5 ptot 0.196 2.669+ 17.935− 3.769+( )⋅ m⋅ Rz43+:= Q5 3.751− 105
× N=till 
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Load case 13

max Q13 ptot 0.049− 0.661− 17.136− 21.818−( )⋅ m⋅ Rz7+:= Q13 4.651− 106
× N=

till Q3 ptot 0.018 0.048− 0.658− 17.136−( )⋅ m⋅ Rz72+:= Q3 1.014− 106
× N=

till Q5 ptot 0.073− 0.196+ 2.669+ 18.252−( )⋅ m⋅ Rz73+:= Q5 6.458− 105
× N=

till Q7 ptot 0.272 0.737− 17.998− 2.740+( )⋅ m⋅ Rz74+:= Q7 1.582− 106
× N=

till Q9 ptot 1.013− 2.763+ 17.989− 0.737−( )⋅ m⋅ Rz75+:= Q9 2.993− 106
× N=

till Q11 ptot 3.780 18.252− 2.679+ 0.197+( )⋅ m⋅ Rz76+:= Q11 5.212− 105
× N=

Load case 11

max Q11 ptot 0.072− 0.716− 17.935− 18.252−( )⋅ m⋅ Rz6+:= Q11 4.516− 106
× N=

till Q3 ptot 0.048− 0.177+ 2.455+ 21.818−( )⋅ m⋅ Rz62+:= Q3 8.749− 105
× N=

till Q5 ptot 0.196 0.719− 17.935− 3.769+( )⋅ m⋅ Rz63+:= Q5 1.57− 106
× N=

till Q7 ptot 0.737− 2.7+ 18.019− 1.010−( )⋅ m⋅ Rz64+:= Q7 3.039− 106
× N=

Q9 ptot 2.763 18.038− 2.7+ 0.272+( )⋅ m⋅ Rz65+:= Q9 4.602− 105
× N=till 

till Q13 ptot 17.136− 2.443+ 0.177+ 0.018+( )⋅ m⋅ Rz67+:= Q13 7.661− 105
× N=
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APPENDIX C: LINEAR ANALYSIS 
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C1: Original box girder cross-section 

Input data for the structural analysis program 

Table 1  Input data for the original arch cross-section. 

Section h [m] Ac [m2] Ic [m4] Zc [m] 

1 5,340 19,674 84,988 2,714 

2 4,782 18,211 63,155 2,374 

3 4,272 16,825 46,415 2,064 

4 3,800 15,5 33,524 1,779 

5 3,434 14,914 26,251 1,609 

6 3,184 14,514 21,858 1,494 

7 3,036 14,278 19,47 1,425 

8 2,989 14,202 18,744 1,404 

9 3,042 14,287 19,563 1,428 

10 3,195 14,532 22,041 1,499 

11 3,449 14,938 26,53 1,616 

12 3,818 15,529 33,908 1,788 

13 4,292 16,857 46,939 2,074 

14 4,763 18,181 62,555 2,365 

15 5,305 19,618 83,659 2,696 

 

The results obtained from the structural analysis program 
        
Cross-section:  Original      
        
 
         
        
        
        
        
Load case 3       
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Section COMBI MAX-M COMBI MIN-M    

 M N M N    
1 42277 -147391 -67803 -158312    
3 -2459 -143501 -50425 -134496    
5 11816 -135917 -10187 -127434    
7 54296 -132666 36279 -124291    
9 63320 -133628 48055 -125231    

11 41499 -129937 23192 -137981    
13 17647 -148792 -10478 -139053    
15 -180361 -154358 -217589 -144632    

        
        
Load case 5       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 42277 -147391 -526 -166584    
3 -26108 -135274 -79288 -153890    
5 44732 -145297 -10187 -127434    
7 50720 -124710 31835 -141795    
9 80048 -143336 48055 -125231    

11 41499 -129937 17933 -148066    
13 14044 -139889 -17202 -157952    
15 -152573 -164303 -217589 -144632    

        
        
Load case 7       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 42277 -147391 -22594 -165463    
3 -26108 -135274 -57216 -150981    
5 7604 -127839 -21107 -143698    
7 107698 -140175 36279 -124291    
9 62499 -125566 36943 -141045    

11 41499 -129937 -1870 -145771    
13 20486 -156403 -10478 -139053    
15 -123048 -161896 -217589 -144632    

        
Load case 9       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 67951 -168200 6972 -146671    
3 -26108 -135274 -61117 -154332    
5 11841 -146510 -10187 -127434    
7 50720 -124710 27180 -142863    
9 113584 -144533 48055 -125231    

11 41499 -129937 4226 -149061    
13 14044 -139889 -23204 -159048    
15 -156697 -165396 -217589 -144632    
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Load case 11       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 101718 -166367 6972 -146671    
3 -26108 -135274 -62140 -153197    
5 7604 -127839 -21398 -145487    
7 68466 -142267 36279 -124291    
9 62499 -125566 43959 -142861    

11 84480 -149071 23403 -129623    
13 14044 -139889 -33577 -158884    
15 -182624 -145454 -253529 -164480    

        
        
Load case 13       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 113426 -162957 6972 -146671    
3 -25660 -150518 -50425 -134496    
5 7604 -127839 -36085 -142493    
7 53167 -139404 36279 -124291    
9 95963 -140520 48055 -125231    

11 41499 -129937 22493 -144866    
13 30800 -157897 -10478 -139053    
15 -182624 -145454 -304456 -162780    

        
        
Maximum values       

 
 
     

Section     
  

   

   
1 113426 -162957 -67803 -158312    
3   -79288 -153890    
5 44732 -145297 -36085 -142493    
7 107698 -140175      
9 113584 -144533      

11 84480 -149071 -1870 -145771    
13 30800 -157897 -33577 -158884    
15   -304456 -162780    

 

 

 

 

sdM sdMsdN sdN
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fcc 2.111 107
× Pa=

Stress block factors β 0.443:= α 0.877:=

Steel  

Partial safety factor 

ηγm 1.15:= ηγmes 1.05:= γn 1.2:=Safety class 3

Esm 200 GPa⋅:=fsk 500 MPa⋅:=

fsd
fsk

ηγm γn⋅
:= fsd 3.623 108

× Pa=

Es
Esm

ηγmes γn⋅
:= Es 1.587 1011

× Pa=

εsy
fsd
Es

:= εsy 2.283 10 3−
×=

N newton:= kN 1000 N⋅:= GPa 109 Pa⋅:=

MPa 106Pa:= kNm 1000 N⋅ m⋅:=

Calculation for steel area ( I cross-section )

Cross-section :  Original

Material properties

Concrete C40/50

Partial safety factor 

Safety class 3 γn 1.2:= ηγm 1.5:=

fcck 38 MPa⋅:= εcu 3.5 10 3−
⋅:=

fcc
fcck

ηγm γn⋅( )
:=
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Ms 1.351 105
× mkN=Ms Msd Nsd e⋅+:=

tb 0.5 m⋅:=b 4.2 m⋅:=

x1 0.0001m⋅:=tf 0.35 m⋅:=

bw 0.4 m⋅:=bf 1.9 m⋅:=

e 2.62m=e d
h
2

−:=

d 5.29m=d h cc−:=

cc 0.05 m⋅:=h 5.340 m⋅:=

Cross-section constants

Nsd 4.074 104
× kN=Msd 2.836 104

× kNm=

Nsd
162957

4
kN⋅:=Msd

113426
4

kNm⋅:=

Forces 

Positive moment

Section 1

Figure 1. Simplified I-beam section

For simplification of the calculations, we assumed that the cross-section is composed of 
4 identical I-beams, see Figure 1.
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Nsd 3.958 104
× kN=Msd 1.695 104

× kNm=

Nsd
158312

4
kN⋅:=Msd

67803
4

kNm⋅:=

Forces 

Negative moment

Section 1

Section does not need reinforcement

n 127.088−=n
As
Asi

:=

Amount of steel needed

Asi 3.142 10 4−
× m2

=Asi π
φ

2
⎛⎜
⎝

⎞
⎠

2
⋅:=

φ 20 mm⋅:=Steel diameter

As 0.04− m2
=

Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.37m=

0.8 x⋅ 0.296m=  < tf OK! 

εs
d x−

x
εcu⋅:= εs 0.046= > εsy 2.283 10 3−

×= OK! 

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 2.627 104
× kN=

Fs Fc Nsd−:= Fs 1.447− 104
× kN=

As
Fs
fsd

:=
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OK! 

εs
d x−

x
εcu⋅:= εs 0.053= > εsy 2.283 10 3−

×= OK! 

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 2.339 104
× kN=

Fs Fc Nsd−:= Fs 1.619− 104
× kN=

As
Fs
fsd

:= As 0.045− m2
=

Steel diameter φ 20 mm⋅:=

Asi π
φ

2
⎛⎜
⎝

⎞
⎠

2
⋅:= Asi 3.142 10 4−

× m2
=

Amount of steel needed

n
As
Asi

:= n 142.222−=

Section does not need reinforcement

Cross-section constants

h 5.340 m⋅:= cc 0.05 m⋅:=

d h cc−:= d 5.29m=

tb 0.5 m⋅:=b 4.2 m⋅:=

e d
h
2

−:= e 2.62m=

bf 1.9 m⋅:= bw 0.4 m⋅:=

tf 0.35 m⋅:= x1 0.0001m⋅:=

Ms Msd Nsd e⋅+:= Ms 1.206 105
× mkN=

Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.33m=

0.8 x⋅ 0.264m=  < tb
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Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.345m=

0.8 x⋅ 0.276m=  < tb OK! 

εs
d x−

x
εcu⋅:= εs 0.039= > εsy 2.283 10 3−

×= OK! 

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 2.451 104
× kN=

Fs Fc Nsd−:= Fs 1.397− 104
× kN=

As
Fs
fsd

:= As 0.039− m2
=

Amount of steel needed

n
As
Asi

:= n 122.705−=

Section does not need reinforcement

Section 3

Negative moment

Forces 

Msd
79288

4
kNm⋅:= Nsd

153890
4

kN⋅:=

Msd 1.982 104
× kNm= Nsd 3.847 104

× kN=

Cross-section constants

h 4.272 m⋅:= cc 0.05 m⋅:=

d h cc−:= d 4.222m=

e d
h
2

−:= e 2.086m=

bf 1.9 m⋅:= bw 0.4 m⋅:=

tf 0.35 m⋅:= x1 0.0001m⋅:=

tb 0.4 m⋅:=b 4.2 m⋅:=

Ms Msd Nsd e⋅+:= Ms 1.001 105
× mkN=
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Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.31m=

0.8 x⋅ 0.248m=  < tf OK! 

εs
d x−

x
εcu⋅:= εs 0.035= > εsy 2.283 10 3−

×= OK! 

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 2.201 104
× kN=

Fs Fc Nsd−:= Fs 1.432− 104
× kN=

As
Fs
fsd

:= As 0.04− m2
=

Amount of steel needed

n
As
Asi

:= n 125.796−=

Section does not need reinforcement

Section 5

Positive moment

Forces 

Msd
44732

4
kNm⋅:= Nsd

145297
4

kN⋅:=

Msd 1.118 104
× kNm= Nsd 3.632 104

× kN=

Cross-section constants

h 3.434 m⋅:= cc 0.05 m⋅:= bf 1.9 m⋅:= bw 0.4 m⋅:=

d h cc−:= d 3.384m= tf 0.35 m⋅:= x1 0.0001m⋅:=

e d
h
2

−:= e 1.667m= b 4.2 m⋅:= tb 0.35 m⋅:=

Ms Msd Nsd e⋅+:= Ms 7.174 104
× mkN=
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Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.295m=

0.8 x⋅ 0.236m=  < tb OK! 

εs
d x−

x
εcu⋅:= εs 0.037= > εsy 2.283 10 3−

×= OK! 

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 2.095 104
× kN=

Fs Fc Nsd−:= Fs 1.468− 104
× kN=

As
Fs
fsd

:= As 0.041− m2
=

Amount of steel needed

n
As
Asi

:= n 128.95−=

Section does not need reinforcement

Section 5

Negative moment

Forces 

Msd
36085

4
kNm⋅:= Nsd

142493
4

kN⋅:=

Msd 9.021 103
× kNm= Nsd 3.562 104

× kN=

Cross-section constants

h 3.434 m⋅:= cc 0.05 m⋅:= bf 1.9 m⋅:= bw 0.4 m⋅:=

d h cc−:= d 3.384m= tf 0.35 m⋅:= x1 0.0001m⋅:=

b 4.2 m⋅:= tb 0.35 m⋅:=e d
h
2

−:= e 1.667m=

Ms Msd Nsd e⋅+:= Ms 6.841 104
× mkN=
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Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.39m=

0.8 x⋅ 0.312m=  < tf OK! 

εs
d x−

x
εcu⋅:= εs 0.023= > εsy 2.283 10 3−

×= OK!

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 2.769 104
× kN=

Fs Fc Nsd−:= Fs 7.35− 103
× kN=

As
Fs
fsd

:= As 0.02− m2
=

Amount of steel needed

n
As
Asi

:= n 64.572−=

Section does not need reinforcement

Section 7

Positive moment

Forces 

Msd
107698

4
kNm⋅:= Nsd

140175
4

kN⋅:=

Msd 2.692 104
× kNm= Nsd 3.504 104

× kN=

Cross-section constants

h 3.036 m⋅:= cc 0.05 m⋅:= bf 1.9 m⋅:= bw 0.4 m⋅:=

d h cc−:= d 2.986m= tf 0.35 m⋅:= x1 0.0001m⋅:=

e d
h
2

−:= e 1.468m= b 4.2 m⋅:= tb 0.35 m⋅:=

Ms Msd Nsd e⋅+:= Ms 7.837 104
× mkN=
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x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.406m=

0.8 x⋅ 0.325m=  < tf OK! 

εs
d x−

x
εcu⋅:= εs 0.022= > εsy 2.283 10 3−

×= OK!

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 2.882 104
× kN=

Fs Fc Nsd−:= Fs 7.312− 103
× kN=

As
Fs
fsd

:= As 0.02− m2
=

Amount of steel needed

n
As
Asi

:= n 64.242−=

Section does not need reinforcement

Section 9

Positive moment

Forces 

Msd
113584

4
kNm⋅:= Nsd

144533
4

kN⋅:=

Msd 2.84 104
× kNm= Nsd 3.613 104

× kN=

Cross-section constants

h 3.042 m⋅:= cc 0.05 m⋅:= bf 1.9 m⋅:= bw 0.4 m⋅:=

d h cc−:= d 2.992m= tf 0.35 m⋅:= x1 0.0001m⋅:=

b 4.2 m⋅:= tb 0.35 m⋅:=e d
h
2

−:= e 1.471m=

Ms Msd Nsd e⋅+:= Ms 8.155 104
× mkN=

Assumption: Compressed area does fit in the flange
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Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.362m=

0.8 x⋅ 0.289m=  < tf OK! 

εs
d x−

x
εcu⋅:= εs 0.029= > εsy 2.283 10 3−

×= OK!

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 2.567 104
× kN=

Fs Fc Nsd−:= Fs 1.16− 104
× kN=

As
Fs
fsd

:= As 0.032− m2
=

Amount of steel needed

n
As
Asi

:= n 101.923−=

Section does not need reinforcement

Section 11

Positive moment

Forces 

Msd
84480

4
kNm⋅:= Nsd

149071
4

kN⋅:=

Msd 2.112 104
× kNm= Nsd 3.727 104

× kN=

Cross-section constants

h 3.449 m⋅:= cc 0.05 m⋅:= bf 1.9 m⋅:= bw 0.4 m⋅:=

d h cc−:= d 3.399m= tf 0.35 m⋅:= x1 0.0001m⋅:=

b 4.2 m⋅:= tb 0.35 m⋅:=e d
h
2

−:= e 1.675m=

Ms Msd Nsd e⋅+:= Ms 8.352 104
× mkN=
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Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.263m=

0.8 x⋅ 0.211m=  < tb OK! 

εs
d x−

x
εcu⋅:= εs 0.042= > εsy 2.283 10 3−

×= OK!

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 1.867 104
× kN=

Fs Fc Nsd−:= Fs 1.777− 104
× kN=

As
Fs
fsd

:= As 0.049− m2
=

Amount of steel needed

n
As
Asi

:= n 156.148−=

Section does not need reinforcement

Section 11

Negative moment

Forces 

Msd
1870

4
kNm⋅:= Nsd

145771
4

kN⋅:=

Msd 467.5kNm= Nsd 3.644 104
× kN=

Cross-section constants

h 3.449 m⋅:= cc 0.05 m⋅:= bf 1.9 m⋅:= bw 0.4 m⋅:=

d h cc−:= d 3.399m= tf 0.35 m⋅:= x1 0.0001m⋅:=

b 4.2 m⋅:= tb 0.35 m⋅:=e d
h
2

−:= e 1.675m=

Ms Msd Nsd e⋅+:= Ms 6.149 104
× mkN=
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Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.31m=

0.8 x⋅ 0.248m=  < tf OK! 

εs
d x−

x
εcu⋅:= εs 0.044= > εsy 2.283 10 3−

×= OK!

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 2.196 104
× kN=

Fs Fc Nsd−:= Fs 1.751− 104
× kN=

As
Fs
fsd

:= As 0.048− m2
=

Amount of steel needed

n
As
Asi

:= n 153.862−=

Section does not need reinforcement

Section 13

Positive moment

Forces 

Msd
30800

4
kNm⋅:= Nsd

157897
4

kN⋅:=

Msd 7.7 103
× kNm= Nsd 3.947 104

× kN=

Cross-section constants

h 4.292 m⋅:= cc 0.05 m⋅:= bf 1.9 m⋅:= bw 0.4 m⋅:=

d h cc−:= d 4.242m= tf 0.35 m⋅:= x1 0.0001m⋅:=

e d
h
2

−:= e 2.096m= b 4.2 m⋅:= tb 0.4 m⋅:=

Ms Msd Nsd e⋅+:= Ms 9.044 104
× mkN=
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Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.314m=

0.8 x⋅ 0.251m=  < tb OK! 

εs
d x−

x
εcu⋅:= εs 0.044= > εsy 2.283 10 3−

×= OK!

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 2.226 104
× kN=

Fs Fc Nsd−:= Fs 1.746− 104
× kN=

As
Fs
fsd

:= As 0.048− m2
=

Amount of steel needed

n
As
Asi

:= n 153.364−=

Section does not need reinforcement

Section 13

Negative moment

Forces 

Msd
33577

4
kNm⋅:= Nsd

158884
4

kN⋅:=

Msd 8.394 103
× kNm= Nsd 3.972 104

× kN=

Cross-section constants

h 4.292m⋅:= cc 0.05 m⋅:= bf 1.9 m⋅:= bw 0.4 m⋅:=

d h cc−:= d 4.242m= tf 0.35 m⋅:= x1 0.0001m⋅:=

b 4.2 m⋅:= tb 0.4 m⋅:=e d
h
2

−:= e 2.096m=

Ms Msd Nsd e⋅+:= Ms 9.165 104
× mkN=

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:37 C:18 

Assumption: Compressed area does fit in the flange

x root fcc b⋅ 0.8⋅ x1⋅ d 0.4 x1⋅−( )⋅ Ms− x1,⎡⎣ ⎤⎦:=

x 0.508m=

0.8 x⋅ 0.406m=  < tb OK! 

εs
d x−

x
εcu⋅:= εs 0.033= > εsy 2.283 10 3−

×= OK!

Fc fcc b⋅ 0.8⋅ x⋅:= Fc 3.603 104
× kN=

Fs Fc Nsd−:= Fs 4.664− 103
× kN=

As
Fs
fsd

:= As 0.013− m2
=

Amount of steel needed

n
As
Asi

:= n 40.974−=

Section does not need reinforcement

Section 15

Negative moment

Forces 

Msd
304456

4
kNm⋅:= Nsd

162780
4

kN⋅:=

Msd 7.611 104
× kNm= Nsd 4.069 104

× kN=

Cross-section constants

h 5.305 m⋅:= cc 0.05 m⋅:= bf 1.9 m⋅:= bw 0.4 m⋅:=

d h cc−:= d 5.255m= tf 0.35 m⋅:= x1 0.0001m⋅:=

b 4.2 m⋅:= tb 0.5 m⋅:=e d
h
2

−:= e 2.603m=

Ms Msd Nsd e⋅+:= Ms 1.82 105
× mkN=
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C2: Calculations for the solid beam section 

 

Input data for the structural analysis program 

Table 1  Input data for the original arch cross-section. 

Section h [m] Ac [m2] Ic [m4] Zc [m] 

1-15 1,5 19,5 3,66 0,75 

 

The results obtained from the structural analysis program 

 

Cross-section:  Solid       
 
          
         
         
         
         
         
         
         
Load case 3        
         

Section COMBI MAX-M  COMBI MIN-M    
 M N  M N    

1 132546 -173284  68317 -185166    
3 -10694 -169719  -48412 -161209    
5 -21544 -161393  -33201 -153000    
7 26505 -157435  20128 -149142    
9 46420 -149726  36532 -158615    
11 31301 -154665  21251 -163839    
13 39338 -174512  29168 -165375    
15 -80538 -180622  -97164 -170942    

         
         
Load case 5        
         

Section COMBI MAX-M  COMBI MIN-M    
 M N  M N    

1 141182 -193496  125405 -173089    
3 -42993 -161005  -68215 -180944    
5 13148 -170620  -33201 -153000    
7 26177 -148938  14683 -167033    
9 61136 -167890  40446 -150008    
11 31301 -154665  16734 -173779    
13 34581 -165099  22295 -184650    
15 -56375 -190435  -97164 -170942    
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Load case 7        
         

Section COMBI MAX-M  COMBI MIN-M    
 M N  M N    

1 132546 -173284  107790 -191784    
3 -40011 -177408  -48412 -161209    
5 -26878 -152793  -37470 -169199    
7 86438 -164354  20128 -149142    
9 46420 -149726  29023 -165793    
11 31301 -154665  -4590 -171084    
13 34581 -165099  27413 -181898    
15 -42076 -187671  -97164 -170942    

         
Load case 9        
         

Section COMBI MAX-M  COMBI MIN-M    
 M N  M N    

1 158373 -194112  125405 -173089    
3 -42993 -161005  -58780 -181063    
5 -22002 -171480  -33201 -153000    
7 26177 -148938  12058 -167728    
9 98991 -168705  40446 -150008    
11 31301 -154665  7647 -174394    
13 34581 -165099  19051 -185375    
15 -60812 -191162  -97164 -170942    

         
         
Load case 11        
         

Section COMBI MAX-M  COMBI MIN-M    
 M N  M N    

1 190736 -192621  125405 -173089    
3 -42993 -161005  -64054 -180284    
5 -26878 -152793  -49072 -171428    
7 40617 -166859  20128 -149142    
9 46420 -149726  36305 -167983    
11 79401 -174116  24813 -154947    
13 34581 -165099  18419 -185488    
15 -89895 -171215  -113285 -191062    

         
         
Load case 13        
         

Section COMBI MAX-M  COMBI MIN-M    
 M N  M N    

1 194902 -189113  125405 -173089    
3 -42993 -161005  -56432 -176710    
5 -26878 -152793  -65496 -168304    
7 26177 -148938  19521 -164063    
9 81338 -164882  40446 -150008    
11 37515 -170079  24813 -154947    
13 65396 -183246  29168 -165375    
15 -89895 -171215  -163314 -189220    
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Maximum values        

 
 
      

Section      
  

 

 

  

   
1 194902 -189113       
3    -68215 -180944    
5 13148 -170620  -65496 -168304    
7 86438 -164354       
9 98991 -168705       
11 79401 -174116  -4590 -171084    
13 65396 -183246       
15    -163314 -189220    

sdM sdMsdN sdN
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fcc 2.111 107
× Pa=

Stress block factors β 0.443:= α 0.877:=

Steel  K500  (Kamstång B500B) 

Partial safety factor 

ηγm 1.15:= ηγmes 1.05:= γn 1.2:=Safety class 3

Esm 200 GPa⋅:=fsk 500 MPa⋅:=

fsd
fsk

ηγm γn⋅
:= fsd 3.623 108

× Pa=

Es
Esm

ηγmes γn⋅
:= Es 1.587 1011

× Pa=

εsy
fsd
Es

:= εsy 2.283 10 3−
×=

N newton:= kN 1000 N⋅:= GPa 109 Pa⋅:=

MPa 106Pa:= kNm 1000 N⋅ m⋅:=

Calculation for steel area 

Cross-section : Solid  

Material properties

Concrete C40/50

Partial safety factor 

Safety class 3 γn 1.2:= ηγm 1.5:=

fcck 38 MPa⋅:= εcu 3.5 10 3−
⋅:=

fcc
fcck

ηγm γn⋅( )
:=
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mbal 0.365:=

Values for balanced reinforcement  K500

Asi 3.142 10 4−
× m2

=Asi π
φ

2
⎛⎜
⎝

⎞
⎠

2
⋅:=

φ 20 mm⋅:=Steel diameter

Ms 3.273 105
× kNm=Ms Msd Nsd e⋅+:=

e 0.7m=e d tp−:=

b 13 m⋅:=tp 0.75m:=

d 1.45m=d h cc−:=

cc 0.05 m⋅:=h 1.5 m⋅:=

Cross-section constants

Nsd 189113kN⋅:=Msd 194902kNm⋅:=

Forces 

Positive moment

Section 1

Figure 1. Solid beam cross-section
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As 0.236m2
=As As1

Nsd
fsd

−:=

As1 0.758m2
=As1

MI

d 1
ω

2
−⎛⎜

⎝
⎞
⎠

⋅

MII
d dt−

+
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

1
fsd
⋅:=

OK!εst εsy>
εst 3.299 10 3−

×=

εst εcu 1 0.8
dt
ω d⋅
⋅−

⎛
⎜
⎝

⎞

⎠
⋅:=

ω 0.48=ω 1 1 2 mr⋅−( )−:=

mr 0.365=
mr

MI

b d2
⋅ fcc⋅

:=

MI 2.106 105
× kNm=MI Ms MII−:=

MII 1.167 105
× kNm=MII Ast σst⋅ d dt−( )⋅:=

nt 733:=Choose: 

nt 732.127=nt
Ast
Asi

:=

Ast 0.23m2
=Ast

Ms mbal b⋅ d2
⋅ fcc⋅−

d dt−( ) σst⋅
:=

σst fsd:=Assume:  

dt 0.05 m⋅:=Try with putting compression reinforcement

The cross-section will be over reinforced

NOT OK  !mr mbal>mr 0.567=mr
Ms

b d2
⋅ fcc⋅

:=
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Astot As1 As2+ As3+ As4+:= Astot 0.236m2
=

Compression reinforcement:

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=

dt2 0.15 m⋅:= nt3 215:= Ast3 Asi nt3⋅:= Ast3 0.068m2
=

dt3 0.2 m⋅:= nt4 88:= Ast4 Asi nt4⋅:= Ast4 0.028m2
=

Asttot Ast1 Ast2+ Ast3+ Ast4+:= Asttot 0.23m2
=

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd Astot⋅− fsd Asttot⋅+ x1,( ):=

x 0.794m=

n
As
Asi

:= n 750.168=

Choose: n 750:=

Calculation for x

Assume: εs εs1, εs2, εs3 εsy>, εst εst1, εst2, εst3 εsy>,

Tension reinforcement:

d 1.44 m⋅:= n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 215:= As2 Asi n2⋅:= As2 0.068m2
=

d2 1.34 m⋅:= n3 215:= As3 Asi n3⋅:= As3 0.068m2
=

d3 1.29 m⋅:= n4 105:= As4 Asi n4⋅:= As4 0.033m2
=
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 > εsy 2.283 10 3−
×= OK !

εst2
x dt2−

x
εcu⋅:= εst2 2.839 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst3
x dt3−

x
εcu⋅:= εst3 2.618 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Change assumption: εs εs1, εs2 εsy>, εst εst1, εst2, εst3 εsy>,

εs3 εsy<

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd As1 As2+ As3+( )⋅− Es εcu⋅ As4⋅
d3 x1−

x1

⎛
⎜
⎝

⎞

⎠
⋅−

fsd Asttot⋅+

... x1,
⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

:=

x 0.792m=

Check assumption

εs
d x−

x
εcu⋅:= εs 2.864 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Check assumption

εs
d x−

x
εcu⋅:= εs 2.85 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs1
d1 x−

x
εcu⋅:= εs1 2.629 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs2
d2 x−

x
εcu⋅:= εs2 2.409 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs3
d3 x−

x
εcu⋅:= εs3 2.188 10 3−

×=  < εsy 2.283 10 3−
×= NOT OK 

εst
x dt−

x
εcu⋅:= εst 3.28 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst1
x dt1−

x
εcu⋅:= εst1 3.059 10 3−

×=
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εsy 2.283 10 3−
×= OK !

εst3
x dt3−

x
εcu⋅:= εst3 2.616 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Check moment capacity Md Ms>

Md α fcc⋅ b⋅ x⋅ d β x⋅−( )⋅ fsd Ast1⋅ d dt−( )⋅+ fsd Ast2⋅ d dt1−( )⋅+ fsd Ast3⋅ d dt2−( )⋅+

fsd Ast4⋅ d dt3−( )⋅ fsd As2⋅ d d1−( )⋅− fsd As3⋅ d d2−( )⋅−+

...

Es− εs3⋅ As4⋅ d d3−( )⋅⎡⎣ ⎤⎦+

...

:=

Md 3.13 105
× kNm=

Md Ms< NOT OK!

Ms 3.273 105
× kNm=

Increase compression steel area!

Calculation for x

Assume: εs εs1, εs2, εs3 εsy>, εst εst1, εst2, εst3 εsy>, εst4 εsy<

d 1.44 m⋅:= n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 215:= As2 Asi n2⋅:= As2 0.068m2
=

εs1
d1 x−

x
εcu⋅:= εs1 2.643 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs2
d2 x−

x
εcu⋅:= εs2 2.422 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs3
d3 x−

x
εcu⋅:= εs3 2.201 10 3−

×=  < εsy 2.283 10 3−
×=  OK !

εst
x dt−

x
εcu⋅:= εst 3.279 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst1
x dt1−

x
εcu⋅:= εst1 3.058 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst2
x dt2−

x
εcu⋅:= εst2 2.837 10 3−

×=  >
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Ast5 0.068m2
=

Asttot Ast1 Ast2+ Ast3+ Ast4+ Ast5+:= Asttot 0.338m2
=

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd Astot⋅− fsd Asttot Ast5−( )⋅+

Es εcu⋅ Ast5⋅
x1 dt4−

x1

⎛
⎜
⎝

⎞

⎠
⋅+

... x1,⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

:=

x 0.639m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 4.39 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs1
d1 x−

x
εcu⋅:= εs1 4.116 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs2
d2 x−

x
εcu⋅:= εs2 3.842 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs3
d3 x−

x
εcu⋅:= εs3 3.568 10 3−

×=  > εsy 2.283 10 3−
×= OK !

d2 1.34 m⋅:= n3 215:= As3 Asi n3⋅:= As3 0.068m2
=

d3 1.29 m⋅:= n4 105:= As4 Asi n4⋅:= As4 0.033m2
=

Astot As1 As2+ As3+ As4+:= Astot 0.236m2
=

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=

dt2 0.15 m⋅:= nt3 215:= Ast3 Asi nt3⋅:= Ast3 0.068m2
=

dt3 0.2 m⋅:= nt4 215:= Ast4 Asi nt4⋅:= Ast4 0.068m2
=

dt4 0.25 m⋅:= nt5 215:= Ast5 Asi nt5⋅:=

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:37 C:29

εsy 2.283 10 3−
×= OK !

Check moment capacity Md Ms>

Md α fcc⋅ b⋅ x⋅ d β x⋅−( )⋅ fsd Ast1⋅ d dt−( )⋅+ fsd Ast2⋅ d dt1−( )⋅+ fsd Ast3⋅ d dt2−( )⋅+

fsd Ast4⋅ d dt3−( )⋅ Es εst4⋅ Ast5⋅ d dt4−( )⋅+ fsd As2⋅ d d1−( )⋅− fsd As3⋅ d d2−( )⋅−+

...

fsd− As4⋅ d d3−( )⋅⎡⎣ ⎤⎦+

...

:=

Md 3.283 105
× kNm=

Md Ms> OK!

Ms 3.273 105
× kNm=

Section 3

Negative moment

Forces 

Msd 68215kNm⋅:= Nsd 180944kN⋅:=

Cross-section constants

h 1.5 m⋅:= cc 0.05 m⋅:=

d h cc−:= d 1.45m=

tp 0.75 m⋅:= b 13 m⋅:=

e d tp−:= e 0.7m=

εst
x dt−

x
εcu⋅:= εst 3.226 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst1
x dt1−

x
εcu⋅:= εst1 2.952 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst2
x dt2−

x
εcu⋅:= εst2 2.678 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst3
x dt3−

x
εcu⋅:= εst3 2.404 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst4
x dt4−

x
εcu⋅:= εst4 2.13 10 3−

×=  <
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n 64:= As n Asi⋅:= As 0.02m2
=

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.672m=

εs
d x−

x
εcu⋅:= εs 4 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.24 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

Ms Msd Nsd e⋅+:= Ms 1.949 105
× kNm=

Values for balanced reinforcement  K500

mbal 0.365:=

mr
Ms

b d2
⋅ fcc⋅

:= mr 0.338= mr mbal< OK  !

ωbal 0.480:=

ω 1 1 2 mr⋅−( )−:= ω 0.43= ω ωbal< OK  !

As1
ω d⋅ b⋅ fcc⋅

fsd
:= As1 0.473m2

=

As As1
Nsd
fsd

−:= As 0.027− m2
=

Section 3 does not need reinforcement.

Minimum reinforcement 

d 1.44 m⋅:=
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OK  !

ωbal 0.480:=

ω 1 1 2 mr⋅−( )−:= ω 0.396= ω ωbal< OK  !

As1
ω d⋅ b⋅ fcc⋅

fsd
:= As1 0.435m2

=

As As1
Nsd
fsd

−:= As 0.029− m2
=

Section 5 does not need reinforcement.

Minimum reinforcement 

d 1.44 m⋅:= n 64:= As n Asi⋅:= As 0.02m2
=

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

Section 5

Negative moment

Forces 

Msd 65496kNm⋅:= Nsd 168304kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.75 m⋅:= b 13 m⋅:=

e d tp−:= e 0.7m=

Ms Msd Nsd e⋅+:= Ms 1.833 105
× kNm=

Values for balanced reinforcement  K500

mbal 0.365:=

mr
Ms

b d2
⋅ fcc⋅

:= mr 0.318= mr mbal<
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d 1.45m=

tp 0.75 m⋅:= b 13 m⋅:=

e d tp−:= e 0.7m=

Ms Msd Nsd e⋅+:= Ms 1.326 105
× kNm=

Values for balanced reinforcement  K500

mbal 0.365:=

mr
Ms

b d2
⋅ fcc⋅

:= mr 0.23= mr mbal< OK  !

ωbal 0.480:=

ω 1 1 2 mr⋅−( )−:= ω 0.265= ω ωbal< OK  !

As1
ω d⋅ b⋅ fcc⋅

fsd
:= As1 0.291m2

=

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.617m=

εs
d x−

x
εcu⋅:= εs 4.673 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.216 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

Section 5

Positive moment

Forces 

Msd 13148kNm⋅:= Nsd 170620kN⋅:=

Cross-section constants

h 1.5 m⋅:= cc 0.05 m⋅:=

d h cc−:=
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εst 3.066 10 3−
×=  > εsy 2.283 10 3−

×= OK! 

Section 7

Positive moment

Forces 

Msd 86438kNm⋅:= Nsd 164354kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.75 m⋅:= b 13 m⋅:=

e d tp−:= e 0.7m=

Ms Msd Nsd e⋅+:= Ms 2.015 105
× kNm=

As As1
Nsd
fsd

−:= As 0.18− m2
=

Section 5 does not need reinforcement. 

Minimum reinforcement 

d 1.44 m⋅:= n 64:= As n Asi⋅:= As 0.02m2
=

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.403m=

εs
d x−

x
εcu⋅:= εs 8.995 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:=
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Choose: n 133:=

Calculation for x

Assume: εs εsy>

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd As⋅− x1,( ):=

x 0.745m=

Check assumption

εs
d x−

x
εcu⋅:= εs 3.309 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Check moment capacity: Md Ms>

Values for balanced reinforcement  K500

mbal 0.365:=

mr
Ms

b d2
⋅ fcc⋅

:= mr 0.349= mr mbal< OK  !

ωbal 0.480:=

ω 1 1 2 mr⋅−( )−:= ω 0.451= ω ωbal< OK  !

As1
ω d⋅ b⋅ fcc⋅

fsd
:= As1 0.495m2

=

As As1
Nsd
fsd

−:= As 0.041m2
=

n
As
Asi

:= n 132.088=
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OK !

Check moment capacity: Md Ms>

Md α fcc⋅ b⋅ x⋅ d β x⋅−( )⋅:=

Md 2.025 105
× kNm=

Md Ms>  OK!

Ms 2.015 105
× kNm=

Minimum compression reinforcement:

d 1.44 m⋅:= n 150:= As n Asi⋅:= As 0.047m2
=

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.705m=

Md α fcc⋅ b⋅ x⋅ d β x⋅−( )⋅:=

Md 2.009 105
× kNm=

Md Ms< NOT OK!

Ms 2.015 105
× kNm=

Increase the amount of steel!

nny 150:= Asny nny Asi⋅:= Asny 0.047m2
=

Assume: εs εsy>

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd Asny⋅− x1,( ):=

x 0.754m=

Check assumption

εs
d x−

x
εcu⋅:= εs 3.233 10 3−

×=  > εsy 2.283 10 3−
×=
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tp 0.75 m⋅:= b 13 m⋅:=

e d tp−:= e 0.7m=

Ms Msd Nsd e⋅+:= Ms 2.171 105
× kNm=

Values for balanced reinforcement  K500

mbal 0.365:=

mr
Ms

b d2
⋅ fcc⋅

:= mr 0.376= mr mbal> NOT OK  !

The cross-section will be over reinforced

Try with putting compression reinforcement dt 0.05 m⋅:=

Assumption: σst fsd:=

Ast
Ms mbal b⋅ d2

⋅ fcc⋅−

d dt−( ) σst⋅
:= Ast 0.013m2

=

εs
d x−

x
εcu⋅:= εs 3.648 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.252 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

Section 9

Positive moment

Forces 

Msd 98991kNm⋅:= Nsd 168705kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=
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As 0.075m2
=

n
As
Asi

:= n 237.948=

Choose: n 238:=

Calculation for x

Assume: εs εs1 εsy>, εst εsy>

Tension reinforcement

d 1.44 m⋅:= n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 23:= As2 Asi n2⋅:= As2 7.226 10 3−
× m2

=

nt
Ast
Asi

:= nt 40.616=

Choose: nt 41:=

MII Ast σst⋅ d dt−( )⋅:= MII 6.472 103
× kNm=

MI Ms MII−:= MI 2.106 105
× kNm=

mr
MI

b d2
⋅ fcc⋅

:= mr 0.365=

ω 1 1 2 mr⋅−( )−:= ω 0.48=

εst εcu 1 0.8
dt
ω d⋅
⋅−

⎛
⎜
⎝

⎞

⎠
⋅:=

εst 3.299 10 3−
×= εst εsy> OK!

As1
MI

d 1
ω

2
−⎛⎜

⎝
⎞
⎠

⋅

MII
d dt−

+
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

1
fsd
⋅:= As1 0.54m2

=

As As1
Nsd
fsd

−:=
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εsy 2.283 10 3−
×= OK !

εst
x dt−

x
εcu⋅:= εst 3.28 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Check moment capacity: Md Ms>

Md α fcc⋅ b⋅ x⋅ d β x⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ fsd As2⋅ d d1−( )⋅−:=

Md 2.143 105
× kNm=

Md Msd< NOT OK!

Ms 2.171 105
× kNm=

Increase the amount of compression reinforcement.

dt 0.05 m⋅:= nt 100:= Ast Asi nt⋅:= Ast 0.031m2
=

Assume: εs εs1 εsy>, εst εsy>

ntot n1 n2+:= ntot 238=

Astot As1 As2+:= Astot 0.075m2
=

Compression reinforcement

dt 0.05 m⋅:= nt 41:= Ast Asi nt⋅:= Ast 0.013m2
=

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd Astot⋅− fsd Ast⋅+ x1,( ):=

x 0.794m=

Check assumption

εs
d x−

x
εcu⋅:= εs 2.847 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs1
d1 x−

x
εcu⋅:= εs1 2.626 10 3−

×=  >
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 > εsy 2.283 10 3−
×= OK !

εs1
d1 x−

x
εcu⋅:= εs1 2.85 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst
x dt−

x
εcu⋅:= εst 3.272 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Check moment capacity: Md Ms>

Md α fcc⋅ b⋅ x⋅ d β x⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ fsd As2⋅ d d1−( )⋅−:=

Md 2.187 105
× kNm=

Md Ms>  OK!

Ms 2.171 105
× kNm=

Tension reinforcement

d 1.44 m⋅:= n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 23:= As2 Asi n2⋅:= As2 7.226 10 3−
× m2

=

ntot n1 n2+:= ntot 238=

Astot As1 As2+:= Astot 0.075m2
=

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd Astot⋅−( ) fsd Ast⋅+ x1,⎡⎣ ⎤⎦:=

x 0.766m=

Check assumption

εs
d x−

x
εcu⋅:= εs 3.078 10 3−

×=
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mr
Ms

b d2
⋅ fcc⋅

:= mr 0.349= mr mbal< OK  !

ωbal 0.480:=

ω 1 1 2 mr⋅−( )−:= ω 0.45= ω ωbal< OK  !

As1
ω d⋅ b⋅ fcc⋅

fsd
:= As1 0.494m2

=

As As1
Nsd
fsd

−:= As 0.014m2
=

n
As
Asi

:= n 44.081=

Choose: n 45:=

Section 11

Positive moment

Forces 

Msd 79401kNm⋅:= Nsd 174116kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.75 m⋅:= b 13 m⋅:=

e d tp−:= e 0.7m=

Ms Msd Nsd e⋅+:= Ms 2.013 105
× kNm=

Values for balanced reinforcement  K500

mbal 0.365:=
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NOT OK!

Ms 2.013 105
× kNm=

Increase the steel area.

nny 64:= Asny nny Asi⋅:= Asny 0.02m2
=

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd Asny⋅− x1,( ):=

x 0.754m=

Check assumption

εs
d x−

x
εcu⋅:= εs 3.234 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Calculation for x

Assume: εs εsy>

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd As⋅− x1,( ):=

x 0.744m=

Check assumption

εs
d x−

x
εcu⋅:= εs 3.319 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Check moment capacity: Md Ms>

Md α fcc⋅ b⋅ x⋅ d β x⋅−( )⋅:=

Md 2.007 105
× kNm=

Md Ms<
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εst 3.251 10 3−
×=  > εsy 2.283 10 3−

×= OK! 

Section 11 

Negative moment

Forces 

Msd 4590 kNm⋅:= Nsd 171084kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.75 m⋅:= b 13 m⋅:=

e d tp−:= e 0.7m=

Md α fcc⋅ b⋅ x⋅ d β x⋅−( )⋅:=

Md 2.025 105
× kNm=

Md Ms> OK!

Ms 2.013 105
× kNm=

Minimum compression reinforcement:

d 1.44 m⋅:= n1 64:= As1 Asi n1⋅:= As1 0.02m2
=

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.704m=

εs
d x−

x
εcu⋅:= εs 3.659 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:=

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:37 C:43

d 1.44 m⋅:= n1 64:= As1 Asi n1⋅:= As1 0.02m2
=

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.372m=

εs
d x−

x
εcu⋅:= εs 0.01=  > εsy 2.283 10 3−

×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.03 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

Ms Msd Nsd e⋅+:= Ms 1.243 105
× kNm=

Values for balanced reinforcement  K500

mbal 0.365:=

mr
Ms

b d2
⋅ fcc⋅

:= mr 0.216= mr mbal< OK  !

ωbal 0.480:=

ω 1 1 2 mr⋅−( )−:= ω 0.246= ω ωbal< OK  !

As1
ω d⋅ b⋅ fcc⋅

fsd
:= As1 0.27m2

=

As As1
Nsd
fsd

−:= As 0.202− m2
=

n
As
Asi

:= n 644.11−=

Section 11 does not need reinforcement. 

Minimum reinforcement 
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mbal 0.365:=

mr
Ms

b d2
⋅ fcc⋅

:= mr 0.336= mr mbal< OK  !

ωbal 0.480:=

ω 1 1 2 mr⋅−( )−:= ω 0.427= ω ωbal< OK  !

As1
ω d⋅ b⋅ fcc⋅

fsd
:= As1 0.469m2

=

As As1
Nsd
fsd

−:= As 0.037− m2
=

n
As
Asi

:= n 118.274−=

Section 13 does not need reinforcement.

Section 13

Positive moment 

Forces 

Msd 65396kNm⋅:= Nsd 183246kN⋅:=

Cross-section constants

h 1.5 m⋅:= cc 0.05 m⋅:=

d h cc−:= d 1.45m=

tp 0.75 m⋅:= b 13 m⋅:=

e d tp−:= e 0.7m=

Ms Msd Nsd e⋅+:= Ms 1.937 105
× kNm=

Values for balanced reinforcement  K500
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Negative moment

Forces 

Msd 163314kNm⋅:= Nsd 189220kN⋅:=

Cross-section constants

h 1.5m:= cc 0.05 m⋅:=

d h cc−:= d 1.45m=

tp 0.75 m⋅:= b 13 m⋅:=

e tp cc−:= e 0.7m=

Ms Msd Nsd e⋅+:= Ms 2.958 105
× kNm=

Values for balanced reinforcement  K500

mbal 0.365:=

mr
Ms

b d2
⋅ fcc⋅

:= mr 0.513= mr mbal> NOT OK  !

The cross-section will be over reinforced

Minimum reinforcement 

d 1.44 m⋅:= n1 64:= As1 Asi n1⋅:= As1 0.02m2
=

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.666m=

εs
d x−

x
εcu⋅:= εs 4.067 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.237 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

Section 15
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n 552:=Choose: 

n 551.475=n
As
Asi

:=

As 0.173m2
=As As1

Nsd
fsd

−:=

As1 0.695m2
=As1

MI

d 1
ω

2
−⎛⎜

⎝
⎞
⎠

⋅

MII
d dt−

+
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

1
fsd
⋅:=

OK!εst εsy>εst 3.299 10 3−
×=

εst εcu 1 0.8
dt
ω d⋅
⋅−

⎛
⎜
⎝

⎞

⎠
⋅:=

ω 0.48=ω 1 1 2 mr⋅−( )−:=

mr 0.365=
mr

MI

b d2
⋅ fcc⋅

:=

MI 2.106 105
× kNm=

MI Ms MII−:=

MII 8.516 104
× kNm=MII Ast σst⋅ d dt−( )⋅:=

nt 535:=Choose: 

nt 534.375=
nt

Ast
Asi

:=

Ast 0.168m2
=Ast

Ms mbal b⋅ d2
⋅ fcc⋅−

d dt−( ) σst⋅
:=

σst fsd:=Assumption: 

dt 0.05 m⋅:=Try with putting compression reinforcement
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dt2 0.15 m⋅:= nt3 105:= Ast3 Asi nt3⋅:= Ast3 0.033m2
=

nttot nt1 nt2+ nt3+:= nttot 535=

Asttot nttot Asi⋅:= Asttot 0.168m2
=

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd Astot⋅− fsd Asttot⋅+ x1,( ):=

x 0.794m=

Check assumption

εs
d x−

x
εcu⋅:= εs 2.846 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs1
d1 x−

x
εcu⋅:= εs1 2.626 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs2
d2 x−

x
εcu⋅:= εs2 2.405 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Calculation for x

Assume: εs εs1, εs2 εsy>, εst εst1, εst2 εsy>,

d 1.44 m⋅:= n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 215:= As2 Asi n2⋅:= As2 0.068m2
=

d2 1.34 m⋅:= n3 122:= As3 Asi n3⋅:= As3 0.038m2
=

ntot n1 n2+ n3+:= ntot 552=

Astot As1 As2+ As3+:= Astot 0.173m2
=

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=
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n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 215:= As2 Asi n2⋅:= As2 0.068m2
=

d2 1.34 m⋅:= n3 122:= As3 Asi n3⋅:= As3 0.038m2
=

ntot n1 n2+ n3+:= ntot 552=

Astot As1 As2+ As3+:= Astot 0.173m2
=

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=

dt2 0.15 m⋅:= nt3 215:= Ast3 Asi nt3⋅:= Ast3 0.068m2
=

εst
x dt−

x
εcu⋅:= εst 3.28 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst1
x dt1−

x
εcu⋅:= εst1 3.059 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst2
x dt2−

x
εcu⋅:= εst2 2.839 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Check moment capacity: Md Ms>

Md α fcc⋅ b⋅ x⋅ d β x⋅−( )⋅ fsd Ast1⋅ d dt−( )⋅+ fsd Ast2⋅ d dt1−( )⋅+ fsd Ast3⋅ d dt2−( )⋅+

fsd− As2⋅ d d1−( )⋅⎡⎣ ⎤⎦ fsd As3⋅ d d2−( )⋅−+

...:=

Md 2.876 105
× kNm=

Md Ms< NOT OK!

Ms 2.958 105
× kNm=

Increase compression steel area!

Assume: εs εs1, εs2 εsy>, εst εst1, εst2 εsy>,

d 1.44 m⋅:=
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εst
x dt−

x
εcu⋅:= εst 3.248 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst1
x dt1−

x
εcu⋅:= εst1 2.996 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst2
x dt2−

x
εcu⋅:= εst2 2.744 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst3
x dt3−

x
εcu⋅:= εst3 2.493 10 3−

×=  > εsy 2.283 10 3−
×= OK !

Check moment capacity: Md Ms>

Md α fcc⋅ b⋅ x⋅ d β x⋅−( )⋅ fsd Ast1⋅ d dt−( )⋅+ fsd Ast2⋅ d dt1−( )⋅+ fsd Ast3⋅ d dt2−( )⋅+

fsd Ast4⋅ d dt3−( )⋅ fsd As2⋅ d d1−( )⋅− fsd As3⋅ d d2−( )⋅−+

...:=

Md 2.992 105
× kNm=

Md Ms>  OK!

Ms 2.958 105
× kNm=

dt3 0.2 m⋅:= nt4 100:= Ast4 Asi nt4⋅:= Ast4 0.031m2
=

nttot nt1 nt2+ nt3+ nt4+:= nttot 745=

Asttot nttot Asi⋅:= Asttot 0.234m2
=

Horizontal equilibrium gives:

x1 0.0001m⋅:=

x root α fcc⋅ b⋅ x1⋅ Nsd− fsd Astot⋅− fsd Asttot⋅+ x1,( ):=

x 0.695m=

Check assumption

εs
d x−

x
εcu⋅:= εs 3.753 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs1
d1 x−

x
εcu⋅:= εs1 3.501 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs2
d2 x−

x
εcu⋅:= εs2 3.249 10 3−

×=  > εsy 2.283 10 3−
×= OK !
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C3: Compilation of the results for the different cross-sections 

Reduced height of the box girder cross-section, variable height 

Table 3 Dimensions of the reduced height arch cross- section.  

Section h  [m] Bottom slab  [m]

1 4 0,40 

2 3,58 0,35 

3 3,216 0,30 

4 3,000 0,25 

5 2,872 0,25 

6 2,663 0,25 

7 2,539 0,25 

8 2,500 0,25 

9 2,544 0,25 

10 2,672 0,25 

11 2,885 0,25 

12 3,193 0,25 

13 3,590 0,30 

14 3,984 0,35 

15 4,473 0,40 

 

Table 4 Obtained bending moments, normal forces and amount of the 
reinforcement bars. 

Section 1 3 5 7 9 11 13 15 

Msd 127482 12356 42737 94074 98372 77739 38484  

-Nsd 146971 129033 131997 127330 131614 135625 143462  

n -80 -131 -107 -40 -36 -79 -130  
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-Msd 34398 51923 32669   2843 16912 260578

-Nsd 142675 139773 129167   132748 144764 147511

n -134 -112 -112   -141 -145 -20 

 

Table 5 The traffic load coefficient increased to 1.7. 

Section 1 3 5 7 9 11 13 15 

Msd 136813 15741 47788 101543 105051 83457 40761  

-Nsd 149047 130149 134361 129426 134166 138187 145862  

n -74 -129 -105 -30 -28 -76 -131  

         

-Msd 43829 55209 36203   6245 19878 272099

-Nsd 144245 142392 131174   134934 147418 149930

n -130 -112 -111   -140 -146 -16 

 

Table 6 The traffic load coefficient increased to 1.9. 

Section 1 3 5 7 9 11 13 15 

Msd 146144 19127 52839 109011 111731 89176 43037  

-Nsd 151122 131265 136724 131522 136717 140749 148262  

n -68 -128 -103 -21 -24 -71 -132  

         

-Msd 53261 58495 39737   9646 22843 283621

-Nsd 145814 145012 133182   137120 150072 152349

n -126 -113 -110   -140 -147 -12 
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Reduced height of the box girder cross-section, constant height 

Table 7 Obtained bending moments, normal forces and amount of the 
reinforcement bars. 

 

 

 

 

 

 

 

 

 

 

Section 1 3 5 7 9 11 13 15 

Msd 132370 11558 38125 99224 105740 87871 67392  

-Nsd 144694 127669 130762 125715 130114 134481 141557  

n 2 -126 -104 -29 -20 -52 -81  

         

-Msd  49885 44074     164450

-Nsd  138824 128470     145099

n  -100 -95     65 
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APPENDIX D: NON-LINEAR ANALYSIS  
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D1: Iteration one, calculations and results from the Strip Step 2 
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Stress block factors β 0.443:= α 0.877:=

Steel  K500  (Kamstång B500B) 

Partial safety factor 

ηγm 1.15:= ηγmes 1.05:= γn 1.2:=Safety class 3

Esm 200 GPa⋅:=fsk 500 MPa⋅:=

fsd
fsk

ηγm γn⋅
:= fsd 3.623 108

× Pa=

Es
Esm

ηγmes γn⋅
:= Es 1.587 1011

× Pa=

εsy
fsd
Es

:= εsy 2.283 10 3−
×=

Steel diameter φ 20 mm⋅:=

Asi π
φ

2
⎛⎜
⎝

⎞
⎠

2
⋅:= Asi 3.142 10 4−

× m2
=

N newton:= kN 1000 N⋅:= GPa 109 Pa⋅:=

MPa 106Pa:= kNm 1000 N⋅ m⋅:=

Calculation for the compressive zone

Cross-section : Solid  

Iteration number:   1 Reduced reinforcement amount!

Material properties

Concrete C40/50

Partial safety factor 

Safety class 3 γn 1.2:= ηγm 1.5:=

fcck 38 MPa⋅:= εcu 3.5 10 3−
⋅:=

fcc
fcck

ηγm γn⋅( )
:= fcc 2.111 107

× Pa=
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n3 170:= As3 Asi n3⋅:= As3 0.053m2
=

ntot n1 n2+ n3+:= ntot 600=

As ntot Asi⋅:= As 0.188m2
=

Astot As1 As2+ As3+:= Astot 0.188m2
=

Compression reinforcement

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=

dt2 0.15 m⋅:= nt3 215:= Ast3 Asi nt3⋅:= Ast3 0.068m2
=

dt3 0.2 m⋅:= nt4 215:= Ast4 Asi nt4⋅:= Ast4 0.068m2
=

Section 1
Positive moment

Forces 

Msd 125661kNm⋅:= Nsd 188632kN⋅:=

Cross-section constants

h 1.5 m⋅:= cc 0.05 m⋅:=

d h cc−:= d 1.45m=

tp 0.517m:= b 13 m⋅:=

e d tp−:= e 0.933m=

x1 0.000001m⋅:=

Ms Msd Nsd e⋅+:= Ms 3.017 105
× kNm=

Tension reinforcement

d 1.45 m⋅:= n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 215:= As2 Asi n2⋅:= As2 0.068m2
=

d2 1.34 m⋅:=
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εsy 2.283 10 3−
×= OK !

εst
x dt−

x
εcu⋅:= εst 3.218 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst1
x dt1−

x
εcu⋅:= εst1 2.936 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst2
x dt2−

x
εcu⋅:= εst2 2.654 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst3
x dt3−

x
εcu⋅:= εst3 2.372 10 3−

×=  > εsy 2.283 10 3−
×= OK !

x = 0.621m

nttot nt1 nt2+ nt3+ nt4+:= nttot 860=

Ast nttot Asi⋅:= Ast 0.27m2
=

Asttot Ast1 Ast2+ Ast3+ Ast4+:= Asttot 0.27m2
=

εs εs1, εs2, εst, εst1, εst2, εst3 εsy>,Assume: 

x root α fcc⋅ b⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast1⋅ d dt−( )⋅+ fsd Ast2⋅ d dt1−( )⋅+ fsd Ast3⋅ d dt2−( )⋅+

fsd Ast4⋅ d dt3−( )⋅ Ms− fsd As2⋅ d d1−( )⋅−+

...

fsd− As3⋅ d d2−( )⋅⎡⎣ ⎤⎦+

...

x1,⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

:=

x 0.621m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 4.676 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs1
d1 x−

x
εcu⋅:= εs1 4.338 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs2
d2 x−

x
εcu⋅:= εs2 4.056 10 3−

×=  >
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Ast nt Asi⋅:= Ast 0.02m2
=

εs εst εsy>,Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.777m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 2.989 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.275 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.777m

Section 5
Positive moment

Forces 

Msd 72044kNm⋅:= Nsd 170373kN⋅:=

Section 3
Negative moment

Forces 

Msd 20204kNm⋅:= Nsd 180533kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.371 m⋅:= b 13 m⋅:=

e d tp−:= e 1.079m=

Ms Msd Nsd e⋅+:= Ms 2.15 105
× kNm=

Minimum reinforcement 

Tension reinforcement

d 1.44 m⋅:= n 64:= As n Asi⋅:= As 0.02m2
=

Compression reinforcement

dt 0.05 m⋅:= nt 64:=
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Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.366m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 0.01=  > εsy 2.283 10 3−

×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.022 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.366m

Section 7
Positive moment

Forces 

Msd 38888kNm⋅:= Nsd 163884kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.348 m⋅:= b 13 m⋅:=

e tp cc−:= e 0.298m=

Ms Msd Nsd e⋅+:= Ms 1.228 105
× kNm=

Minimum reinforcement 

Tension reinforcement

d 1.44 m⋅:= n 64:= As n Asi⋅:= As 0.02m2
=

Compression reinforcement

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

εs εst εsy>,
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εs
d x−

x
εcu⋅:= εs 3.483 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.258 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.722m

Section 9
Positive moment

Forces 

Msd 69112kNm⋅:= Nsd 168287kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.493 m⋅:= b 13 m⋅:=

d h cc−:= d 1.45m=

tp 0.438 m⋅:= b 13 m⋅:=

e d tp−:= e 1.012m=

Ms Msd Nsd e⋅+:= Ms 2.047 105
× kNm=

Tension reinforcement

d 1.44 m⋅:= n 120:= As n Asi⋅:= As 0.038m2
=

Compression reinforcement

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

εs εst εsy>,Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.722m=

Check assumptions:
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εst
x dt−

x
εcu⋅:= εst 3.294 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.85m

Section 11
Positive moment

Forces 

Msd 29105kNm⋅:= Nsd 173883kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.384 m⋅:= b 13 m⋅:=

e d tp−:= e 1.066m=

Ms Msd Nsd e⋅+:= Ms 2.145 105
× kNm=

d 1.44 m⋅:= n1 190:= As1 Asi n1⋅:= As1 0.06m2
=

ntot n1:= ntot 190=

Astot As1:= Astot 0.06m2
=

Compression reinforcement

dt 0.05 m⋅:= nt 80:= Ast nt Asi⋅:= Ast 0.025m2
=

εs εst εsy>,Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.85m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 2.432 10 3−

×=  > εsy 2.283 10 3−
×= OK! 
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Cross-section constants

h 1.5 m⋅:= cc 0.05 m⋅:=

d h cc−:= d 1.45m=

tp 0.368 m⋅:= b 13 m⋅:=

e d tp−:= e 1.082m=

Ms Msd Nsd e⋅+:= Ms 2.039 105
× kNm=

Tension reinforcement

d 1.44 m⋅:= n1 64:= As1 Asi n1⋅:= As1 0.02m2
=

Compression reinforcement

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

εs εst εsy>,Assume: 

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

εs εst εsy>,Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.774m=

εs
d x−

x
εcu⋅:= εs 3.014 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.274 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.774m

Section 13
Positive moment

Forces 

Msd 6045 kNm⋅:= Nsd 182866kN⋅:=
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b 13 m⋅:=

e d tp−:= e 0.953m=

x1 0.000001m⋅:=

Ms Msd Nsd e⋅+:= Ms 2.884 105
× kNm=

Tension reinforcement

d 1.44 m⋅:= n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 215:= As2 Asi n2⋅:= As2 0.068m2
=

d2 1.34 m⋅:= n3 12:= As3 Asi n3⋅:= As3 3.77 10 3−
× m2

=

ntot n1 n2+ n3+:= ntot 442=

Astot As1 As2+ As3+:= Astot 0.139m2
=

x 0.717m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 3.525 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.256 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.717m

Section 15
Negative moment

Forces 

Msd 108697kNm⋅:= Nsd 188549kN⋅:=

Cross-section constants

h 1.5m:= cc 0.05 m⋅:=

d h cc−:= d 1.45m=

tp 0.497 m⋅:=
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εs1
d1 x−

x
εcu⋅:= εs1 3.052 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs2
d2 x−

x
εcu⋅:= εs2 2.817 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst
x dt−

x
εcu⋅:= εst 3.264 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst1
x dt1−

x
εcu⋅:= εst1 3.029 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst2
x dt2−

x
εcu⋅:= εst2 2.793 10 3−

×=  > εsy 2.283 10 3−
×= OK !

x = 0.742m

Compression reinforcement

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=

dt2 0.15 m⋅:= nt3 166:= Ast3 Asi nt3⋅:= Ast3 0.052m2
=

nttot nt1 nt2+ nt3+:= nttot 596=

Asttot nttot Asi⋅:= Asttot 0.187m2
=

εs εs1, εs2, εst, εst1, εst2 εsy>,Assume: 

x root α fcc⋅ b⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast1⋅ d dt−( )⋅+ fsd Ast2⋅ d dt1−( )⋅+ fsd Ast3⋅ d dt2−( )⋅+

Ms− fsd As2⋅ d d1−( )⋅− fsd As3⋅ d d2−( )⋅−⎡⎣ ⎤⎦+

... x1,⎡
⎢
⎣

⎤
⎥
⎦

:=

x 0.742m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 3.288 10 3−

×=  > εsy 2.283 10 3−
×= OK !
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Vertical : 1.5 φ

Parallel: 2 φ 

Reinforcement spacing:

cc > 40 mm  and we choose 50 mm 

Concrete cover : Very aggressive environment, life span L2  

Condition

Es 158.73GPa=Es
Esk

ηγmes γn⋅
:=

Esk 200 GPa⋅:=

γn 1.2:=ηγmes 1.05:=e-module 

Partial safety factor 

Steel  K500  (Kamstång B500B) 

Ec 2.431 1010
× Pa=Ec

Eck
ηγmec γn⋅

:=

N newton:= kN 1000 N⋅:= GPa 109 Pa⋅:=

MPa 106Pa:= kNm 1000 N⋅ m⋅:=

Calculation for cross-sectional constants

Cross-section : Solid  

Iteration number:   1

Material properties

Concrete C40/50

Partial safety factor 

e-module ηγmec 1.2:= γn 1.2:=

Eck 35 GPa⋅:=
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As1 0.068m2
=As1 Asi n1⋅:=n1 215:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 1

αef 19.592=αef α 1 ψ+( )⋅:=creep 

ψ 2:=

Outside structure without heating:  Humidity  = 75% 

 creep

Long-term effects

Asi 3.142 10 4−
× m2

=Asi π
φ

2
⎛⎜
⎝

⎞
⎠

2
⋅:=

φ 20 mm⋅:=Steel diameter

Steel area

α 6.531=α
Es
Ec

:=

tp 0.75 m⋅:=

b 13 m⋅:=h 1.5 m⋅:=

Cross-section constants:
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nt3 215:= Ast3 Asi nt3⋅:= Ast3 0.068m2
=

dt3 0.2 m⋅:= nt4 215:= Ast4 Asi nt4⋅:= Ast4 0.068m2
=

nttot nt1 nt2+ nt3+ nt4+:= nttot 860=

Asttot Ast1 Ast2+ Ast3+ Ast4+:= Asttot 0.27m2
=

x-value: x 0.621 m⋅:=

Aekv b x⋅ αef Astot⋅+ αef 1−( ) Asttot⋅+:= Aekv 16.789m2
=

xs αef As1 d⋅ As2 d1⋅+ As3 d2⋅+( )⋅:=

xst αef 1−( ) Ast1 dt⋅ Ast2 dt1⋅+ Ast3 dt2⋅+ Ast4 dt3⋅+( )⋅:=

xc
b x2
⋅

2
:=

xtp
xc xs+ xst+

Aekv
:= xtp 0.493m=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

d1 1.39 m⋅:= n2 215:= As2 Asi n2⋅:= As2 0.068m2
=

d2 1.34 m⋅:= n3 170:= As3 Asi n3⋅:= As3 0.053m2
=

ntot n1 n2+ n3+:= ntot 600=

Astot As1 As2+ As3+:= Astot 0.188m2
=

Compression reinforcement

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=

dt2 0.15 m⋅:=
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xtp 0.415m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast⋅ dt⋅:=

xs αef As⋅ d⋅:=

Aekv 10.869m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.777 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.02m2
=As n Asi⋅:=n 64:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Negative moment

Section 3

EIekv 3.424 1010
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 4.226m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast1 xtp dt−( )2⋅ Ast2 xtp dt1−( )2⋅+

Ast3 xtp dt2−( )2⋅ Ast4 xtp dt3−( )2⋅++

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=

Is αef As1 d xtp−( )2⋅ As2 d1 xtp−( )2⋅+

As3 d2 xtp−( )2⋅+

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=
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xtp 0.264m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast⋅ dt⋅:=

xs αef As⋅ d⋅:=

Aekv 5.526m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.366 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.02m2
=As n Asi⋅:=n 64:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 5

EIekv 7.931 109
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 0.979m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast dt xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2005:37 D:18 

xtp 0.426m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast⋅ dt⋅:=

xs αef As⋅ d⋅:=

Aekv 10.498m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.722 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.038m2
=As Asi n⋅:=n 120:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 7

EIekv 5.236 109
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 0.646m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast dt xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=
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xtp 0.505m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast dt⋅( )⋅:=

xs αef As d⋅( )⋅:=

Aekv 12.687m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.85 m⋅:=x-value:

Ast 0.025m2
=Ast Asi nt⋅:=nt 80:=dt 0.05 m⋅:=

Compression reinforcement:

As 0.06m2
=As Asi n⋅:=n 190:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 9

EIekv 1.021 1010
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 1.26m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast dt xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=
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xc
b x2
⋅

2
:=

xst αef 1−( ) Ast⋅ dt⋅:=

xs αef As⋅ d⋅:=

Aekv 10.83m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.774 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.02m2
=As Asi n⋅:=n 64:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 11

EIekv 1.503 1010
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 1.855m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast xtp dt−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=
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xc
b x2
⋅

2
:=

xst αef 1−( ) Ast⋅ dt⋅:=

xs αef As⋅ d⋅:=

Aekv 10.089m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.717 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.02m2
=As Asi n⋅:=n 64:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 13

EIekv 7.89 109
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 0.974m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast dt xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

xtp 0.414m=xtp
xc xs+ xst+

Aekv
:=
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As2 Asi n2⋅:= As2 0.068m2
=

d2 1.34 m⋅:= n3 12:= As3 Asi n3⋅:= As3 3.77 10 3−
× m2

=

ntot n1 n2+ n3+:= ntot 442=

Astot As1 As2+ As3+:= Astot 0.139m2
=

Compression reinforcement

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=

xtp
xc xs+ xst+

Aekv
:= xtp 0.389m=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ist αef 1−( ) Ast dt xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Iekv Ic Is+ Ist+:= Iekv 0.886m4
=

EIekv
Ec

1 ψ+
Iekv⋅:= EIekv 7.179 109

× m2 N=

Section 15
Negative moment

Cross-section constants

Tension reinforcement

d 1.44 m⋅:= n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 215:=
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EIekv 2.791 1010
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 3.445m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast1 xtp dt−( )2⋅ Ast2 xtp dt1−( )2⋅+

Ast3 xtp dt2−( )2⋅+

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=

Is αef As1 d xtp−( )2⋅ As2 d1 xtp−( )2⋅+

As3 d2 xtp−( )2⋅+

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

xtp 0.489m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast1 dt⋅ Ast2 dt1⋅+ Ast3 dt2⋅+( )⋅:=

xs αef As1 d⋅ As2 d1⋅+ As3 d2⋅+( )⋅:=

Aekv 15.848m2
=Aekv b x⋅ αef Astot⋅+ αef 1−( ) Asttot⋅+:=

x 0.742 m⋅:=x-value:

Asttot 0.187m2
=Asttot Ast1 Ast2+ Ast3+:=

nttot 596=nttot nt1 nt2+ nt3+:=

Ast3 0.052m2
=Ast3 Asi nt3⋅:=nt3 166:=dt2 0.15 m⋅:=
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Results from Strip Step       
        
Iteration:  2       
        
 
         
        
        
        
        
        
        
        
        
Load case 3       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 82334 -172206 701 -183760    
3 48753 -168407 18449 -159804    
5 -76023 -151563 -80895 -159961    
7 8775 -147686 4553 -155961    
9 39792 -148484 33704 -156945    

11 2054 -153466 -5398 -162217    
13 -14696 -173286 -20441 -163945    
15 -46004 -179148 -61078 -169812    

        
        
Load case 5       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 84138 -192530 76401 -171986    
3 22115 -160036 3509 -179650    
5 -45979 -169498 -79957 -151734    
7 8775 -147686 -6224 -165847    
9 51496 -166741 36173 -148735    

11 2054 -153466 -13001 -172633    
13 -16888 -164252 -27944 -183289    
15 -7152 -189401 -61078 -169812    

        
        
Load case 7       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 82334 -172206 49524 -190672    
3 28152 -176418 18449 -159804    
5 -76023 -151563 -92252 -167900    
7 65890 -163060 5218 -147854    
9 39792 -148484 24493 -164468    

11 2054 -153466 -31864 -169798    
13 -16888 -164252 -21732 -180405    
15 4657 -186507 -61078 -169812    
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Load case 9       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 103855 -193042 76401 -171986    
3 22115 -160036 16578 -179661    
5 -76023 -151563 -81348 -170419    
7 8775 -147686 -5135 -166433    
9 92336 -167451 36173 -148735    

11 2054 -153466 -20417 -173150    
13 -16888 -164252 -31512 -183927    
15 -13564 -190043 -61078 -169812    

        
        
Load case 11       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 146121 -191627 76401 -171986    
3 22115 -160036 16779 -178981    
5 -76023 -151563 -100223 -170278    
7 19811 -165734 5218 -147854    
9 39792 -148484 28549 -166843    

11 43714 -173053 -2183 -153718    
13 -16888 -164252 -38436 -184193    
15 -54744 -170115 -71402 -190066    

        
        
Load case 13       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 147185 -187765 76401 -171986    
3 27242 -175261 18449 -159804    
5 -76023 -151563 -111469 -166763    
7 10041 -162341 5218 -147854    
9 74828 -163391 36173 -148735    

11 2705 -168654 -2183 -153718    
13 1246 -182199 -20441 -163945    
15 -54744 -170115 -134550 -187898    

        
        
Maximum values       

 
 
     

Section     
  

   

   
1 147185 -187765      
3 48753 -168407      
5   -111469 -166763    
7 65890 -163060 -6224 -165847    
9 92336 -167451      

11 43714 -173053 -31864 -169798    
13 1246 -182199 -38436 -184193    
15 4657 -186507 -134550 -187898    

sdM sdMsdN sdN
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D2: Iteration five, calculations and results from the Strip Step 2 
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β 0.443:= α 0.877:=

Steel  K500  (Kamstång B500B) 

Partial safety factor 

ηγm 1.15:= ηγmes 1.05:= γn 1.2:=Safety class 3

Esm 200 GPa⋅:=fsk 500 MPa⋅:=

fsd
fsk

ηγm γn⋅
:= fsd 3.623 108

× Pa=

Es
Esm

ηγmes γn⋅
:= Es 1.587 1011

× Pa=

εsy
fsd
Es

:= εsy 2.283 10 3−
×=

Steel diameter φ 20 mm⋅:=

Asi π
φ

2
⎛⎜
⎝

⎞
⎠

2
⋅:= Asi 3.142 10 4−

× m2
=

N newton:= kN 1000 N⋅:= GPa 109 Pa⋅:=

MPa 106Pa:= kNm 1000 N⋅ m⋅:=

Calculation for the compressive zone

Cross-section : Solid  

Iteration number:   5

Material properties

Concrete C40/50

Partial safety factor 

Safety class 3 γn 1.2:= ηγm 1.5:=

fcck 38 MPa⋅:= εcu 3.5 10 3−
⋅:=

fcc
fcck

ηγm γn⋅( )
:= fcc 2.111 107

× Pa=

Stress block factors
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n3 170:= As3 Asi n3⋅:= As3 0.053m2
=

ntot n1 n2+ n3+:= ntot 600=

As ntot Asi⋅:= As 0.188m2
=

Astot As1 As2+ As3+:= Astot 0.188m2
=

Compression reinforcement

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=

dt2 0.15 m⋅:= nt3 215:= Ast3 Asi nt3⋅:= Ast3 0.068m2
=

dt3 0.2 m⋅:= nt4 215:= Ast4 Asi nt4⋅:= Ast4 0.068m2
=

Section 1
Positive moment

Forces 

Msd 215925kNm⋅:= Nsd 194056kN⋅:=

Cross-section constants

h 1.5 m⋅:= cc 0.05 m⋅:=

d h cc−:= d 1.45m=

tp 0.499m:= b 13 m⋅:=

e d tp−:= e 0.951m=

x1 0.000001m⋅:=

Ms Msd Nsd e⋅+:= Ms 4.005 105
× kNm=

Tension reinforcement

d 1.45 m⋅:= n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 215:= As2 Asi n2⋅:= As2 0.068m2
=

d2 1.34 m⋅:=
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 < εsy 2.283 10 3−
×= OK !

εst
x dt−

x
εcu⋅:= εst 3.362 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst1
x dt1−

x
εcu⋅:= εst1 3.224 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst2
x dt2−

x
εcu⋅:= εst2 3.086 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst3
x dt3−

x
εcu⋅:= εst3 2.948 10 3−

×=  > εsy 2.283 10 3−
×= OK !

x = 1.269m

nttot nt1 nt2+ nt3+ nt4+:= nttot 860=

Ast nttot Asi⋅:= Ast 0.27m2
=

Asttot Ast1 Ast2+ Ast3+ Ast4+:= Asttot 0.27m2
=

εs εs1, εs2 εsy<, εst εst1, εst2, εst3 εsy>,Assume: 

x root α fcc⋅ b⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast1⋅ d dt−( )⋅+ fsd Ast2⋅ d dt1−( )⋅+ fsd Ast3⋅ d dt2−( )⋅+

fsd Ast4⋅ d dt3−( )⋅ Ms− Es εcu⋅
d1 x1−

x1

⎛
⎜
⎝

⎞

⎠
⋅ As2⋅ d d1−( )⋅−+

...

Es− εcu⋅
d2 x1−

x1

⎛
⎜
⎝

⎞

⎠
⋅ As3⋅ d d2−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

+

...

x1,⎡⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥⎦

:=

x 1.269m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 4.995 10 4−

×=  < εsy 2.283 10 3−
×= OK !

εs1
d1 x−

x
εcu⋅:= εs1 3.34 10 4−

×=  < εsy 2.283 10 3−
×= OK !

εs2
d2 x−

x
εcu⋅:= εs2 1.961 10 4−

×=
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Ast 0.02m2
=

εs εst εsy>,Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.457m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 7.54 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.117 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.457m

Section 5
Positive moment

Forces 

Msd 104537kNm⋅:= Nsd 172324kN⋅:=

Msd 110025kNm⋅:= Nsd 182336kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.248 m⋅:= b 13 m⋅:=

e tp cc−:= e 0.198m=

Ms Msd Nsd e⋅+:= Ms 1.461 105
× kNm=

Minimum reinforcement 

Tension reinforcement

d 1.44 m⋅:= n 64:= As n Asi⋅:= As 0.02m2
=

Compression reinforcement

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:=
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Ast 0.02m2
=

εs εst εsy>,Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.46m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 7.446 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.12 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.46m

Section 7
Positive moment

Forces 

Msd 46474kNm⋅:= Nsd 165890kN⋅:=

sd sd

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.297 m⋅:= b 13 m⋅:=

e tp cc−:= e 0.247m=

Ms Msd Nsd e⋅+:= Ms 1.471 105
× kNm=

Minimum reinforcement 

Tension reinforcement

d 1.44 m⋅:= n 64:= As n Asi⋅:= As 0.02m2
=

Compression reinforcement

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:=
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εs εsy<Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.73m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 3.4 10 3−

×=  < εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.26 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.73m

Section 9
Positive moment

Forces 

Msd 68323kNm⋅:= Nsd 170349kN⋅:=

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.486 m⋅:= b 13 m⋅:=

e d tp−:= e 0.964m=

Ms Msd Nsd e⋅+:= Ms 2.064 105
× kNm=

Tension reinforcement

d 1.44 m⋅:= n 120:= As n Asi⋅:= As 0.038m2
=

Compression reinforcement

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

εst εsy>
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dt 0.05 m⋅:= nt 80:= Ast nt Asi⋅:= Ast 0.025m2
=

εs εst εsy>,Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.793m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 2.856 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.279 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.793m

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.557 m⋅:= b 13 m⋅:=

e d tp−:= e 0.893m=

Ms Msd Nsd e⋅+:= Ms 2.204 105
× kNm=

Tension reinforcement

d 1.44 m⋅:= n1 190:= As1 Asi n1⋅:= As1 0.06m2
=

ntot n1:= ntot 190=

Astot As1:= Astot 0.06m2
=

Compression reinforcement
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Compression reinforcement

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

εs εst εsy>,Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.724m=

εs
d x−

x
εcu⋅:= εs 3.462 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.258 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.724m

Section 11
Positive moment

Forces 

Msd 26814kNm⋅:= Nsd 175882kN⋅:=

Cross-section constants

cc 0.05 m⋅:=h 1.5 m⋅:=

d h cc−:= d 1.45m=

tp 0.436 m⋅:= b 13 m⋅:=

e d tp−:= e 1.014m=

Ms Msd Nsd e⋅+:= Ms 2.052 105
× kNm=

Tension reinforcement

d 1.44 m⋅:= n1 64:= As1 Asi n1⋅:= As1 0.02m2
=
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Compression reinforcement

dt 0.05 m⋅:= nt 64:= Ast nt Asi⋅:= Ast 0.02m2
=

εs εst εsy>,Assume: 

x root fcc b⋅ α⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast⋅ d dt−( )⋅+ Ms− x1,⎡⎣ ⎤⎦:=

x 0.722m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 3.477 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

εst
x dt−

x
εcu⋅:= εst 3.258 10 3−

×=  > εsy 2.283 10 3−
×= OK! 

x = 0.722m

Section 13
Positive moment

Forces 

Msd 5464 kNm⋅:= Nsd 184788kN⋅:=

Cross-section constants

h 1.5 m⋅:= cc 0.05 m⋅:=

d h cc−:= d 1.45m=

tp 0.371 m⋅:= b 13 m⋅:=

e d tp−:= e 1.079m=

Ms Msd Nsd e⋅+:= Ms 2.049 105
× kNm=

Tension reinforcement

d 1.44 m⋅:= n1 64:= As1 Asi n1⋅:= As1 0.02m2
=
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d2 1.34 m⋅:= n3 12:= As3 Asi n3⋅:= As3 3.77 10 3−
× m2

=

ntot n1 n2+ n3+:= ntot 442=

Astot As1 As2+ As3+:= Astot 0.139m2
=

Compression reinforcement

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=

dt2 0.15 m⋅:= nt3 166:= Ast3 Asi nt3⋅:= Ast3 0.052m2
=

nttot nt1 nt2+ nt3+:= nttot 596=

Asttot nttot Asi⋅:= Asttot 0.187m2
=

Section 15
Negative moment

Forces 

Msd 97735kNm⋅:= Nsd 190459kN⋅:=

Cross-section constants

h 1.5m:= cc 0.05 m⋅:=

d h cc−:= d 1.45m=

tp 0.528 m⋅:= b 13 m⋅:=

e d tp−:= e 0.922m=

Ms Msd Nsd e⋅+:= Ms 2.733 105
× kNm=

Tension reinforcement

d 1.44 m⋅:= n1 215:= As1 Asi n1⋅:= As1 0.068m2
=

d1 1.39 m⋅:= n2 215:= As2 Asi n2⋅:= As2 0.068m2
=
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εsy 2.283 10 3−
×= OK !

εst
x dt−

x
εcu⋅:= εst 3.237 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst1
x dt1−

x
εcu⋅:= εst1 2.974 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εst2
x dt2−

x
εcu⋅:= εst2 2.712 10 3−

×=  > εsy 2.283 10 3−
×= OK !

x = 0.666m

εs εs1, εs2, εst, εst1, εst2 εsy>,Assume: 

x root α fcc⋅ b⋅ x1⋅ d β x1⋅−( )⋅ fsd Ast1⋅ d dt−( )⋅+ fsd Ast2⋅ d dt1−( )⋅+ fsd Ast3⋅ d dt2−( )⋅+

Ms− fsd As2⋅ d d1−( )⋅− fsd As3⋅ d d2−( )⋅−⎡⎣ ⎤⎦+

... x1,⎡
⎢
⎣

⎤
⎥
⎦

:=

x 0.666m=

Check assumptions:

εs
d x−

x
εcu⋅:= εs 4.069 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs1
d1 x−

x
εcu⋅:= εs1 3.806 10 3−

×=  > εsy 2.283 10 3−
×= OK !

εs2
d2 x−

x
εcu⋅:= εs2 3.543 10 3−

×=  >
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Vertical : 1.5 φ

Parallel: 2 φ 

Reinforcement spacing:

cc > 40 mm  and we choose 50 mm 

Concrete cover : Very aggressive environment, life span L2  

Condition

Es 158.73GPa=Es
Esk

ηγmes γn⋅
:=

Esk 200 GPa⋅:=

γn 1.2:=ηγmes 1.05:=e-module 

Partial safety factor 

Steel  K500  (Kamstång B500B) 

Ec 2.431 1010
× Pa=Ec

Eck
ηγmec γn⋅

:=

N newton:= kN 1000 N⋅:= GPa 109 Pa⋅:=

MPa 106Pa:= kNm 1000 N⋅ m⋅:=

Calculation for cross-sectional constants

Cross-section : Solid  

Iteration number:   2

Material properties

Concrete C40/50

Partial safety factor 

e-module ηγmec 1.2:= γn 1.2:=

Eck 35 GPa⋅:=
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As1 0.068m2
=As1 Asi n1⋅:=n1 215:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 1

αef 19.592=αef α 1 ψ+( )⋅:=creep 

ψ 2:=

Outside structure without heating:  Humidity  = 75% 

 creep

Long-term effects

Asi 3.142 10 4−
× m2

=Asi π
φ

2
⎛⎜
⎝

⎞
⎠

2
⋅:=

φ 20 mm⋅:=Steel diameter

Steel area

α 6.531=α
Es
Ec

:=

tp 0.75 m⋅:=

b 13 m⋅:=h 1.5 m⋅:=

Cross-section constants:
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nt3 215:= Ast3 Asi nt3⋅:= Ast3 0.068m2
=

dt3 0.2 m⋅:= nt4 215:= Ast4 Asi nt4⋅:= Ast4 0.068m2
=

nttot nt1 nt2+ nt3+ nt4+:= nttot 860=

Asttot Ast1 Ast2+ Ast3+ Ast4+:= Asttot 0.27m2
=

x-value: x 0.745 m⋅:=

Aekv b x⋅ αef Astot⋅+ αef 1−( ) Asttot⋅+:= Aekv 18.401m2
=

xs αef As1 d⋅ As2 d1⋅+ As3 d2⋅+( )⋅:=

xst αef 1−( ) Ast1 dt⋅ Ast2 dt1⋅+ Ast3 dt2⋅+ Ast4 dt3⋅+( )⋅:=

xc
b x2
⋅

2
:=

xtp
xc xs+ xst+

Aekv
:= xtp 0.51m=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

d1 1.39 m⋅:= n2 215:= As2 Asi n2⋅:= As2 0.068m2
=

d2 1.34 m⋅:= n3 170:= As3 Asi n3⋅:= As3 0.053m2
=

ntot n1 n2+ n3+:= ntot 600=

Astot As1 As2+ As3+:= Astot 0.188m2
=

Compression reinforcement

dt 0.05 m⋅:= nt1 215:= Ast1 Asi nt1⋅:= Ast1 0.068m2
=

dt1 0.1 m⋅:= nt2 215:= Ast2 Asi nt2⋅:= Ast2 0.068m2
=

dt2 0.15 m⋅:=
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xtp 0.254m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast⋅ dt⋅:=

xs αef As⋅ d⋅:=

Aekv 4.928m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.32 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.02m2
=As n Asi⋅:=n 64:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 3

EIekv 3.469 1010
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 4.281m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast1 xtp dt−( )2⋅ Ast2 xtp dt1−( )2⋅+

Ast3 xtp dt2−( )2⋅ Ast4 xtp dt3−( )2⋅++

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=

Is αef As1 d xtp−( )2⋅ As2 d1 xtp−( )2⋅+

As3 d2 xtp−( )2⋅+

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=
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xtp 0.291m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast⋅ dt⋅:=

xs αef As⋅ d⋅:=

Aekv 6.761m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.461 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.02m2
=As n Asi⋅:=n 64:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Negative moment

Section 5

EIekv 5.201 109
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 0.642m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast dt xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=
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xc
b x2
⋅

2
:=

xst αef 1−( ) Ast⋅ dt⋅:=

xs αef As⋅ d⋅:=

Aekv 12.578m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.882 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.038m2
=As Asi n⋅:=n 120:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 7

EIekv 5.427 109
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 0.67m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast dt xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=
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xst αef 1−( ) Ast dt⋅( )⋅:=

xs αef As d⋅( )⋅:=

Aekv 14.442m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.985 m⋅:=x-value:

Ast 0.025m2
=Ast Asi nt⋅:=nt 80:=dt 0.05 m⋅:=

Compression reinforcement:

As 0.06m2
=As Asi n⋅:=n 190:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 9

EIekv 1.223 1010
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 1.51m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast dt xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

xtp 0.488m=xtp
xc xs+ xst+

Aekv
:=
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xs αef As⋅ d⋅:=

Aekv 11.454m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.822 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.02m2
=As Asi n⋅:=n 64:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 11

EIekv 1.718 1010
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 2.12m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast xtp dt−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

xtp 0.555m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=
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Aekv 11.454m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.822 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.02m2
=As Asi n⋅:=n 64:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 11

EIekv 1.718 1010
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 2.12m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast xtp dt−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

xtp 0.555m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast dt⋅( )⋅:=
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Aekv 9.478m2
=Aekv b x⋅ αef As⋅+ αef 1−( ) Ast⋅+:=

x 0.67 m⋅:=x-value:

Ast 0.02m2
=Ast nt Asi⋅:=nt 64:=dt 0.05 m⋅:=

Compression reinforcement

As 0.02m2
=As Asi n⋅:=n 64:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Positive moment

Section 13

EIekv 8.597 109
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 1.061m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast dt xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

xtp 0.435m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast⋅ dt⋅:=

xs αef As⋅ d⋅:=
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ntot 442=ntot n1 n2+ n3+:=

As3 3.77 10 3−
× m2

=As3 Asi n3⋅:=n3 12:=d2 1.34 m⋅:=

As2 0.068m2
=As2 Asi n2⋅:=n2 215:=d1 1.39 m⋅:=

As1 0.068m2
=As1 Asi n1⋅:=n1 215:=d 1.44 m⋅:=

Tension reinforcement

Cross-section constants

Negative moment

Section 15

EIekv 6.69 109
× m2 N=EIekv

Ec
1 ψ+

Iekv⋅:=

Iekv 0.826m4
=Iekv Ic Is+ Ist+:=

Ist αef 1−( ) Ast dt xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Is αef As d xtp−( )2⋅⎡
⎣

⎤
⎦⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

xtp 0.37m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast⋅ dt⋅:=

xs αef As⋅ d⋅:=
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Is αef As1 d xtp−( )2⋅ As2 d1 xtp−( )2⋅+

As3 d2 xtp−( )2⋅+

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=

Ic
b x3
⋅

12
b x⋅

x
2

xtp−⎛⎜
⎝

⎞
⎠

2
⋅+:=

xtp 0.527m=xtp
xc xs+ xst+

Aekv
:=

xc
b x2
⋅

2
:=

xst αef 1−( ) Ast1 dt⋅ Ast2 dt1⋅+ Ast3 dt2⋅+( )⋅:=

xs αef As1 d⋅ As2 d1⋅+ As3 d2⋅+( )⋅:=

Aekv 17.863m2
=Aekv b x⋅ αef Astot⋅+ αef 1−( ) Asttot⋅+:=

x 0.897 m⋅:=x-value:

Asttot 0.187m2
=Asttot Ast1 Ast2+ Ast3+:=

nttot 596=nttot nt1 nt2+ nt3+:=

Ast3 0.052m2
=Ast3 Asi nt3⋅:=nt3 166:=dt2 0.15 m⋅:=

Ast2 0.068m2
=Ast2 Asi nt2⋅:=nt2 215:=dt1 0.1 m⋅:=

Ast1 0.068m2
=Ast1 Asi nt1⋅:=nt1 215:=dt 0.05 m⋅:=

Compression reinforcement

Astot 0.139m2
=Astot As1 As2+ As3+:=
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Ist αef 1−( ) Ast1 xtp dt−( )2⋅ Ast2 xtp dt1−( )2⋅+

Ast3 xtp dt2−( )2⋅+

...⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=

Iekv Ic Is+ Ist+:= Iekv 3.644m4
=

EIekv
Ec

1 ψ+
Iekv⋅:= EIekv 2.952 1010

× m2 N=
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Results from Strip Step       
        
Iteration:  6       
        
 
         
        
        
        
        
        
        
        
        
Load case 3       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 90860 -171989 4078 -183415    
3 54396 -168008 27292 -159551    
5 -77099 -151280 -83015 -159525    
7 8113 -147383 4230 -155497    
9 38151 -148174 33004 -156467    

11 915 -153155 -5739 -161739    
13 -16550 -172817 -21976 -163642    
15 -46058 -178684 -59391 -169512    

        
        
Load case 5       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 95139 -192299 85067 -171770    
3 30839 -159783 14571 -179381    
5 -46519 -169198 -80941 -151456    
7 8113 -147383 -6563 -165530    
9 49805 -166411 34594 -148425    

11 915 -153155 -14221 -172303    
13 -18448 -163945 -29672 -182967    
15 -5311 -189077 -59391 -169512    

        
        
Load case 7       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 90860 -171989 56985 -190381    
3 36660 -176079 27292 -159551    
5 -77099 -151280 -93394 -167529    
7 65679 -162660 4590 -147556    
9 38151 -148174 23487 -164059    

11 915 -153155 -32459 -169388    
13 -18448 -163945 -23321 -180006    
15 5772 -186107 -59391 -169512    
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Load case 9       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 114322 -192818 85067 -171770    
3 30839 -159783 27058 -179398    
5 -77099 -151280 -82293 -170129    
7 8113 -147383 -5887 -166122    
9 90351 -167127 34594 -148425    

11 915 -153155 -21762 -172824    
13 -18448 -163945 -33160 -183609    
15 -11424 -189723 -59391 -169512    

        
        
Load case 11       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 158292 -191445 85067 -171770    
3 31707 -178997 27292 -159551    
5 -77099 -151280 -101066 -170040    
7 18612 -165472 4590 -147556    
9 38151 -148174 25999 -166574    

11 41726 -172782 -3283 -153408    
13 -18448 -163945 -40317 -183928    
15 -53114 -169811 -68856 -189803    

        
        
Load case 13       
        

Section COMBI MAX-M COMBI MIN-M    
 M N M N    

1 158447 -187587 85067 -171770    
3 37748 -175049 27292 -159551    
5 -77099 -151280 -112574 -166528    
7 8778 -162081 4590 -147556    
9 72350 -163123 34594 -148425    

11 1021 -168384 -3283 -153408    
13 -257 -181930 -21976 -163642    
15 -53114 -169811 -131532 -187636    

        
        
Maximum values       

 
 
     

Section     
  

   

   
1 158447 -187587      
3 54396 -168008      
5   -112574 -166528    
7 65679 -162660 -6563 -165530    
9 90351 -167127      

11 41726 -172782 -32459 -169388    
13   -40317 -183928    
15 5772 -186107 -131532 -187636    

sdM sdMsdN sdN
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D3: Compilation of the results from the iterations 
      
Compilation of the iteration results   
      
The amount of reinforcement obtained by linear analysis  
      
Section  Tension Compression   

1  750 1075   
3  64 64   
5  64 64   
7  150 64   
9  238 100   

11  64 64   
13  64 64   
15  552 745   

      
      
      
Strip Step results     

 
 
  

 
   

Section    
   

  

 
1 194902 -189113    
3   -68215 -180944  
5 13148 -170620 -65496 -168304  
7 86438 -164354    
9 98991 -168705    

11 79401 -174116 -4590 -171084  
13 65396 -183246    
15   -163314 -189220  

      
Cross-sectional constants    
      
Section xtp Iekv Aekv xtp for Strip Step 2 
      

1 0,517 4,9 19,033 0,233  
3 0,371 0,828 9,504 0,379 negativ 
5 0,348 0,77 8,789 0,402 negativ 
7 0,438 1,43 10,462 0,312  
9 0,493 2,015 11,903 0,257  

11 0,384 0,868 9,92 0,366  
13 0,368 0,821 9,426 0,382  
15 0,497 3,975 16,563 0,253 negativ 

      
      

sdM sdMsdN sdN
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Reduced amount of reinforcement for iterations   
      

Section  Tension Compression   
1  600 860   
3  64 64   
5  64 64   
7  120 64   
9  190 80   

11  64 64   
13  64 64   
15  442 596   

      
Strip Step results for iteration one   
      
Section  
 

    
 

1 125661 -188632    
3 24062 -169191 -20204 -180533  
5 72044 -170373    
7 38888 -163884 -33530 -166704  
9 69112 -168287    

11 29105 -173883 -44391 -170507  
13 6045 -182866 -32930 -184936  
15 31621 -187100 -108697 -188549  

      
      
Cross-sectional constants    
      
Section xtp Iekv Aekv xtp for Strip Step 2 
      

1 0,493 4,226 16,789 0,257  
3 0,415 0,979 10,869 0,335 negativ 
5 0,264 0,646 5,526 0,486  
7 0,426 1,26 10,498 0,324  
9 0,505 1,855 12,687 0,245  

11 0,414 0,974 10,83 0,336  
13 0,389 0,886 10,089 0,361  
15 0,489 3,445 15,848 0,261 negative 

      
      
Strip Step results for iteration two   
      
Section  
 

    
 

1 147185 -187765    
3 48753 -168407    
5   -111469 -166763  
7 65890 -163060 -6224 -165847  
9 92336 -167451    

11 43714 -173053 -31864 -169798  
13 1246 -182199 -38436 -184193  
15 4657 -186507 -134550 -187898  

sdM sdMsdN sdN

sdM sdMsdN sdN
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Cross-sectional constants    
      
Section xtp Iekv Aekv xtp for Strip Step 2 
      

1 0,51 4,281 18,401 0,24  
3 0,254 0,642 4,928 0,496  
5 0,291 0,67 6,761 0,459 negativ 
7 0,488 1,51 12,578 0,262  
9 0,555 2,12 12,687 0,195  

11 0,435 1,061 11,454 0,315  
13 0,37 0,826 9,478 0,38  
15 0,527 3,644 17,863 0,223 negativ 

      
      
Strip Step results for iteration three   
      
Section  
 

    
 

1 217161 -194055    
3   -121900 -182323  
5 104981 -172320    
7 46590 -165878    
9 67819 -170344    

11 26636 -175878 -48835 -172550  
13 5430 -184783 -33416 -186881  
15 41745 -189048 -97279 -190454  

      
Cross-sectional constants    
      
Section xtp Iekv Aekv xtp for Strip Step 2 
      

1 0,641 5,611 25,07 0,109  
3 0,308 0,692 7,398 0,442 negative 
5 0,29 0,669 6,722 0,46  
7 0,428 1,268 10,589 0,322  
9 0,485 1,775 11,933 0,265  

11 0,392 0,896 10,18 0,358  
13 0,392 0,895 10,167 0,358  
15 0,475 3,395 14,847 0,275 negative 

      
      
Strip Step results for iteration four   
      
Section  
 

    
 

1 159995 -187589    
3 53042 -168021    
5   -111931 -166535  
7 65730 -162673 -6510 -165538  
9 90028 -167140    

11 40921 -172795 -33273 -169405  
13 2341 -181945 -37710 -183942  
15 4290 -186127 -133087 -187651  

      

sdM sdMsdN sdN

sdM sdMsdN sdN
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Cross-sectional constants    
      
Section xtp Iekv Aekv xtp for Strip Step 2 
      

1 0,499 4,24 17,4 0,251  
3 0,248 0,641 4,304 0,502  
5 0,297 0,678 7,008 0,453 negative 
7 0,486 1,498 12,5 0,264  
9 0,557 2,133 14,507 0,193  

11 0,436 1,069 11,506 0,314  
13 0,371 0,828 9,504 0,379  
15 0,528 3,655 17,941 0,222 negative 

      
      
Strip Step results for iteration four   
      
Section  
 

    
 

1 215925 -194056    
3   -110025 -182336  
5 104537 -172324    
7 46474 -165890 -25941 -168769  
9 68323 -170349    

11 26814 -175882 -48765 -172564  
13 5464 -184788 -33371 -186887  
15 41423 -189061 -97735 -190459  

      
Cross-sectional constants    
      
Section xtp Iekv Aekv xtp for Strip Step 2 
      

1 0,644 5,666 25,213 0,106  
3 0,29 0,668 6,709 0,46 negative 
5 0,291 0,669 6,748 0,459  
7 0,429 1,269 10,602 0,321  
9 0,485 1,776 11,946 0,265  

11 0,392 0,896 10,18 0,358  
13 0,371 0,893 10,154 0,379  
15 0,475 3,396 14,86 0,275 negativ 

      
      
Strip Step results for iteration five   
      
Section  
 

    
 

1 158447 -187587    
3 54396 -168008    
5   -112574 -166528  
7 65679 -162660 -6563 -165530  
9 90351 -167127    

11 41726 -172782 -32459 169388  
13   -40317 -183928  
15 5772 -186107 -131532 -187636  

 

sdM sdMsdN sdN

sdM sdMsdN sdN


