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DANIEL EKSTRÖM 
LARS-LEVI KIERI 
Department of Civil and Environmental Engineering 
Division of Structural Engineering  
Concrete Structures 
Chalmers University of Technology 

 

ABSTRACT 

Today, the design of railway bridges to withstand dynamic loads caused by high 
speed trains is both complicated and time consuming. Therefore simplifications are 
desirable in order to facilitate the calculations. Based on literature studies some 
simplified methods used to analyse beams subjected to dynamic loads are compiled 
and also compared with finite element analysis in order to verify the results. 

The method of transforming and reducing deformable structures into a single degree 
of freedom system, giving calculations that are easy to handle, is discussed and 
investigated in this thesis. When a beam is simplified into a single degree of freedom 
system the beam is assumed to have a specific shape of deformation and therefore 
tabled beam equations can be used in order to estimate the capacity of the beam. 
These simplifications of the beam equations can also be applicable for dynamic loads, 
and used to describe the system response.  

In this thesis a single degree of freedom system is examined for various simple types 
of loading, where the main focus has been to compare the response of displacement 
and acceleration between different load types. This comparison gives a basic 
understanding of the dynamic phenomena that causes oscillations and also their 
effects.  

Further the loading in the single degree of freedom system is modified to resemble a 
train load model, HSLM-A. The results between the system and a finite element 
model of a simply supported beam are compared, where the results show that the 
system can be used to give an approximation of the response on the beam.       

The simplified methods discussed above are only investigated for mutual parameters. 
Since railway bridges often are made of reinforced concrete, which have a complex 
structure and behaviour, the responses from the simplified methods due to dynamic 
loads needs to be studied more in detail.  

 

Key words: Beam vibrations, damping, differential equation, dynamics, SDOF 
system, train load model HSLM 
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Dynamiska analyser av järnvägsbroar 
Förenklad modellering med genom användande av enfrihetsgradsystem 
Examensarbete inom Civilingenjörsprogrammet Väg och vattenbyggnad 

DANIEL EKSTRÖM 

LARS-LEVI KIERI 
Institutionen för bygg- och miljöteknik 
Avdelningen för Betongbyggnad 
 
Chalmers tekniska högskola 

 

SAMMANFATTNING 

Analyser och beräkningar av järnvägsbroar utsatta för dynamiska laster från 
höghastighetståg är idag komplicerade och tidskrävande, därför är förenklade 
beräkningsmetoder önskvärda för att underlätta analyserna. Genom litteraturstudier 
har en förenklad beräkningsmetod studerats och sedan undersökts i denna rapport. 
Resultat beräknade med hjälp av den förenklade beräkningsmetoden är jämförda med 
resultat från finita element analyser av balkar för att kunna verifiera metoden. 

Balkar, och andra deformerbara kroppar, kan omvandlas till ett enfrihetsgradsystem 
som tillskrivs ekvivalenta egenskaper för att ge samma deformation som den 
deformerbara kroppen. När balken har omvandlats till ett enfrihetsgradsystem kan 
tabellerade, så kallade, balkekvationer användas för att direkt uppskatta balkens 
respons.   

Den här rapporten behandlar och undersöker responsen av ett enfrihetsgradsystem 
som belastas av olika typer av laster. Responsen för systemet är i huvudsak undersökt 
i form av förskjutningar och accelerationer och dessa skall ge grundläggande 
förståelse för dynamiska svängningar och dess effekter.  

Ytterligare så modifieras lasten i enfrihetsgradsystemet för att beskriva tåglast-
modellen HSLM- A. Resultat mellan enfrihetsgradsystemet och en fritt upplagd balk 
visar att ett enfrihetsgradsystem ger en god approximation av balkens respons.   

De förenklade beräkningsmetoderna är endast undersökta för inbördes jämförelse. 
Eftersom järnvägsbroar som dimensioneras för dynamiska laster oftast är gjorda av 
armerad betong med komplexa material egenskaper, bör denna förenkling analyseras 
och verifieras mer i detalj. 

 

Nyckelord: Balk vibrationer, differential ekvation, dynamik, dämpning, SDOF 
system, tåglastmodell HSLM  
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1 Introduction 

1.1 Background 

Recently the Swedish railway bridge codes were upgraded by the Swedish Railway 
Administration, Banverket, due to the structural requirements of bridges trafficked by 
high speed trains. Therefore all bridges subjected to high speed trains that have a 
speed of more than 200 km/h needs to be checked regarding their dynamic behaviour.  

Dynamic analyses of railway bridges are today very complicated and time consuming, 
because of the large, complex 2D- and 3D computer models and the different load 
cases from high speed train models. Therefore the company Reinertsen has interest in 
examining the dynamic phenomena’s and find out if there is a more simple way to 
analyse bridge structures than the 2D modelling.    

 

1.2 Aim 

The aim of this thesis is analysing and increasing the knowledge of the dynamic 
behaviour of railway bridges. This thesis should give a basic understanding of 
dynamic phenomena that causes bridges to oscillate and give a guidance of 
simplifications that can be made during modelling of bridges. The simplifications are 
mainly aimed to be used in the early stages in the design process and lead to simpler 
models than those used today. Further, the study aims to make it possible to decide if 
any of the high speed train models can be neglected.    

      

1.3 Method 

Literature studies have been done in order to find, understand and compile different 
simple methods used when analysing the behaviour of structures exposed for dynamic 
loads. Literature studies have also been made in order to get a deeper understanding of 
dynamics, their appearance and effects. The agreement between such simple methods 
is investigated by comparing results from simple models with the real behaviour, 
assumed to be found by using a multi degree finite element model. The finite element 
analyses are made by means of the commercial finite element software ADINA 
(2004).  

 

1.4 Limitations 

The methods described in this thesis, used in order to simplify analyses of structures 
subjected to dynamic loads, can be used on different types of deformable structures. 
However, only the application on single degree of freedom systems (SDOF systems) 
and simply supported beams are treated in this thesis. 
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The geometry on the investigated beams is chosen to be simple to make the dynamic 
analysis easier to understand. 

When investigating the train load, only the model HSLM-A1 is used and the 
investigated responses are displacement, velocity and acceleration. The reason for 
using only one train model is due to the limited time for this thesis. 

Complex material behaviour leads to complex calculations and expressions and 
therefore only idealized material behaviours; linear elastic and viscous elastic, are 
used here. When analysing the beam, only the traffic load generated by the train is 
taken into account. 

Dynamic loads and their effects on railway bridges is a huge subject which requires 
long time to fully understand. Due to the limited time and in order to keep this scope 
within reasonable limits only SDOF systems and simply supported beams that are 
subjected to a dynamic load are discussed in this thesis. 

 

1.5 General layout 

The outline of the report can be divided into three major parts; basic theory   
(Chapters 2 to 5), design methods (Chapter 6) and finally problem descriptions and 
results (Chapters 7 to 10). 

In chapters 2 to 5 the basic theories of material responses, dynamics and solution 
methods for differential equations are shown in order to facilitate the understanding 
for the rest of the report. Since analyses of the response of beams subjected to 
dynamic loads requires a good knowledge of dynamics and heavy calculations, not 
manageable to perform by hand, it is of interest to simplify these calculations. In 
Chapter 4 it is discussed how the response of beams subjected to dynamic loads can 
be calculated by transforming the beam to an equivalent single degree of freedom 
system (SDOF system) which will achieve the same displacement as a prescribed 
point in the beam, the so called system point. When beams are transformed to 
equivalent single degree of freedom systems, the transformation factors for the load, 
mass and the internal force are used, which are derived for linear elastic material.   

Chapter 6 describes some of the rules that the Swedish railway administration has for 
designing bridges for train speeds above 200 km/h.  

Chapters 7 and 8 describe the SDOF system and how it is examined for various types 
of loading. The responses of the SDOF system are calculated and the behaviour of the 
system is examined for both undamped and damped systems with various loading. 
Chapters 9 and 10 describe the finite element model of a simply supported beam that 
is investigated for various loading. The response of the beam is calculated by use of 
this finite element model and its behaviour is examined for both undamped and 
damped beams with various loading. The results from the finite element model are 
compared with the results from the SDOF system. 

Chapter 11 presents conclusions and ideas on further investigations are presented. 
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2 Material  
The response of a loaded structure is highly dependent of the choice of material and 
its behaviour. In this report only linear elastic material and viscous elastic material are 
discussed, where the behaviour of both linear elastic material and viscous elastic 
material is time dependent. This chapter will only describe the material responses and 
behaviour for a 1D model, but the principle is same for 2D and 3D models.    

 

2.1 Linear elastic material 

In a linear elastic material the stress is linear proportional to the strain and it is 
described with Hooke’s law as:   

εσ E=  (2.1)

The proportional constant E is called the modulus of elasticity. The principle relation 
between stress and strain of a linear elastic material is shown in Figure 2.1(a). The 
linear elastic material can be described by a spring, see Figure 2.1(b). A loading of the 
structure with the stress σ=σ0 gives the response of a strain ε0. If the load is removed 
at time t1 the strain will also disappear, see Figure 2.1(c-d).   

 

Figure 2.1:  The behaviour of a linear elastic material. 

The elastic force FE in a 1D structure subjected to a load will thus be linear 
proportional to the displacement u, i.e.: 

kuu
L

EAEAAFE ==== εσ  (2.2)

where k is the stiffness of the 1D spring. A principle relation between the elastic force 
and the displacement for a 1D linear elastic material is shown in Figure 2.2. 

t
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Figure 2.2: The principal relation between the elastic force and the displacement 
for a 1D linear elastic material. 

 

2.2 Viscous elastic material 

The deformations that arise from a linear elastic material are modelled to be time 
independent, but in reality all deformations in materials are time dependent. Time 
dependent elastic materials are called viscous elastic materials and the deformation 
can be divided into two different types of phenomena’s; creep and relaxation. In a 
creep situation the strain increases with a constant stress, see Figure 2.3(a-b), and in a 
relaxation situation the stress decreases with a constant strain, see Figure 2.3(c-d). In 
this report the creep and relaxation are not further discussed. Viscous elastic materials 
can be described by different types of models, but in this thesis only models for a 
Newton material and a Kelvin material are discussed.  

 

 (a)   (b)   (c)   (d) 

Figure 2.3:  The creep and relaxation phenomena for a viscous elastic material. 

 

2.2.1 Newton material 

For a Newton material the constitutive relation is stated as: 

The stress is linearly proportional to the time dependent strain and η is the constant of 
viscosity, see Figure 2.4(a). An instantaneous loading of the structure with the stress 
σ=σ0 gives the response of a time dependent strain. If the load is removed at time t1 

η
σεεε

=== Ndt
d

&&    (2.3)
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the structure receives a remaining strain, see Figure 2.4(b-c), and the remaining strain 
is derived as:    

The Newton material can be described by a model of a damper, see Figure 2.4(d). 

 (a)   (b)   (c)   (d) 

Figure 2.4:  The behaviour for a Newton material. 

The damping force FD in a 1D structure with area A subjected to a load will thus be 
linearly proportional to the velocity u& , i.e.: 

ucAFD && == εη  (2.5)

where c is the damping of the 1D structure. A schematic relation between the damping 
force and the velocity for a viscous elastic material is shown in Figure 2.5. 

  

Figure 2.5:  The principle relation between damping force and the velocity for a 
viscous elastic material. 
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2.2.2 Kelvin material 

The Kelvin material consists of a parallel coupling between an elastic material and a 
viscous elastic material, i.e. Hooke and Newton material respectively, see Figure 2.6. 

 

 

 

 

 

Figure 2.6:  The model for a Kelvin material. 

The constitutive relation and the differential equation for the Kelvin material can be 
derived as: 

εηεηεεσσσ &+=+=+= EE NHNH   where 
η
σε

η
ε =+

E
&  (2.6)

To be able to describe instantaneous loading of the structure with a stress σ=σ0, the 
derivative of the strain has to be rewritten by use of the chain rule as: 

σ
σ
εσ

σ
εεε &&

d
d

dt
d

d
d

dt
d

===  (2.7)

By combining Equation (2.6) and Equation (2.7) gives: 

η
σ

σ
ε

ησσ
ε

&&

11
=+

E
d
d  (2.8)

For instantaneous loading at time t=0 it holds that if ∞→σ&  Equation (2.8) gives: 

( ) =⇒= σε
σ
ε 0

d
d Constant 

 but since 0=ε , when 0=σ  this means that 0=
σ
ε

d
d  

(2.9)

The solution of Equation (2.6) with t>0 and σ=σ0 is: 

E
Ce

tE
0σ

ε η +=
−

 (2.10)

The initial condition of ε(0)=0 gives C=-σ0/E and the strain is then: 

σ ε  

Nεε =2Hεε =1

Nσσ =2Hσσ =1

( )1 ( )2
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tE

e
EE

ησσ
ε

−

−= 00  (2.11)

The instantaneous loading at t=0 affects at first the viscous part only which carries the 
whole stress σ=σ0. When t→∞ the strain limit is obtained: 

E
0σ

ε =∞  (2.12)

The strain at time t1 is: 











−=−=

−−
11

1000
1

tEtE

e
E

e
EE

ηη σσσ
ε  (2.13)

If the loading is released at time t=t1, such that σ(t<t1)≠0 and σ(t1)=0, see Figure 
2.4(b), this will give no jump in the strain ε according to Equation (2.9). The 
differential equation in Equation (2.6) can now be solved with the condition σ(t1)=0. 

t ≥ t1:  0=+ ε
η

ε E
&  (2.14)

The differential equation has the solution:  

tE

Ce ηε
−

=  (2.15)

The initial condition is ε(t1)=ε1 according to Equation (2.14) which gives the solution 
of Equation (2.16): 

( )1

1

ttE

e
−

−

= ηεε  for t > t1 (2.16)

When t → ∞ means that ε → 0 and there is no remaining deformation, see Figure 2.7. 

Time [s]

 

Hooke material
Newton material

Kelvin material

ε

tη/E t1

σ0/E

ε
∞

 

Figure 2.7:  The behaviour of a Kelvin material. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:8  8 

3 Basic dynamics 
The basic theory of dynamics includes both the terms of kinematics and kinetics. 
Kinematics describes the geometrical movement of a particle or a body in terms of 
displacement, velocity and acceleration, while kinetics is the science of a body 
movement caused by a force. This chapter treats free and forced vibrations, both 
damped and undamped. In the case of forced vibrations, only the case with systems 
excited by harmonic loads are treated and derived analytically. Later in this thesis, 
non harmonic loading is used and these cases are solved with numerical methods and 
then verified through comparison with results based on this chapter. 

 

3.1 Kinematics 

The linear motion of a particle is the simplest way to describe a movement of the 
particle. A particle P, see Figure 3.1, is restricted to move along the s-axis and the 
position is described by a function f (t), where t is the time. At time t the particle has 
the position s and with a provided time step of ∆t the particle moves a distance ∆s. 

 

 

Figure 3.1: Linear motion of a particle.  

 

3.1.1 Velocity 

The velocity for the same particle as described in Figure 3.1 is derived by studying 
how fast the position of the particle is changing. When the time changes from t to t+∆t 
the particle moves a distance ∆s and by that the mean velocity during the movement 
can be stated as: 

t
sv

∆
∆

=  (3.1)

The velocity of the particle is stated by letting the time step ∆t go towards zero. That 
will lead to P′ moves closer to P and the mean velocity will approach a boundary 
value. Therefore the velocity of the particle at time t is defined by the boundary value 
as:  

s
dt
ds

t
svtv

t
&≡=

∆
∆

==
→∆ 0

lim)(  (3.2)

  s   
s   
t   

s s ∆ +  
t t ∆ +  

P  P′  
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When v>0, the particle movement is defined to be positive along the s-axis and 
negative when v<0. 

 

3.1.2 Acceleration 

It is often interesting to know how fast the velocity varies as the particle is moving, 
therefore the velocity of the particle is studied in the points P and P′, see Figure 3.1. 
The particle in these points has a velocity of v and v+∆v respectively. The mean value 
of the acceleration is defined as the mean velocity change per time unit with a particle 
movement from point P to P′. The mean value of the acceleration can be stated as: 

t
va
∆
∆

=  (3.3)

In the same way as when deriving the velocity of the particle the acceleration can be 
written as: 

s
dt

sdv
dt
dv

t
vata

t
&&& ≡=≡=

∆
∆

==
→∆ 2

2

0
lim)(  (3.4)

An important aspect of describing the particle movement is that there can occur 
several combinations of sign changes of the values v and a. In the case when the 
particle moves in a positive direction along the s-axis, the velocity has a positive value 
and an increasing acceleration will lead to an increasing velocity. If the acceleration 
would decrease, this instead corresponds to a decreasing velocity. The same 
phenomena occur if the particle moves in the negative direction along the s-axis, but 
instead with a negative velocity.   

 

3.2 Kinetics 

The response of bodies subjected to dynamic forces can be described by means of 
differential equations abbreviated as DE. This chapter will only describe linear 
vibrations with a single degree of freedom abbreviated as SDOF. In a SDOF system 
the position for the body is defined by one coordinate. Before deriving these equations 
of motion for dynamic loads the Newton’s second law is defined.  

 

3.2.1 Newton’s second law 

Newton’s formulation of the second law is: “The change in the quantity of motion is 
proportional to the pressing force and occurs along the straight line, where the force is 
acting”. This can be defined as an inertia force: 

( )mv
dt
dkFI =  (3.5)
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The quantity of motion corresponds to mv, the “change” corresponds to the derivative 
d/dt and k is a constant of proportionality. By using SI units, which will give k=1, and 
assuming that the mass is constant, Equation (3.5) can be written as:  

( ) smmamv
dt
dFI &&===  (3.6)

    

3.2.2 Single degree of freedom (SDOF) system 

A simple SDOF system consists of a vertical spring and damper attached to a rigid 
body with a mass m, see Figure 3.2. The mass can move only in the vertical direction 
and therefore has only one degree of freedom. The spring is assumed to be light and 
linear elastic, with the stiffness k and damping c.  

In a stable equilibrium position the force in the spring is equal to the gravity force of 
the mass. The force changes with the deformation of the spring, while the gravity 
force is independent of the position.   

k  c  
 

m  

 

Figure 3.2: Mass-Spring system with single degree of freedom. 

Dynamic vibrations occur when the system is disturbed from its stable equilibrium 
position. The disturbance creates internal forces that try to bring back the system to its 
equilibrium position and this phenomena causes oscillations. The system will oscillate 
around its equilibrium position until the damping has reduced the oscillation to zero 
and finally a new stable equilibrium has occurred.  

 

3.2.3 Free vibration – Undamped 

Consider a mass attached to a spring as illustrated in Figure 3.3. The unloaded 
equilibrium position for the system is noted as ue and is the static equilibrium position 
when the dead weight is the only presented load. u is the coordinate describing the 
distance from the unloaded equilibrium position to the current position. The elastic 
force FE for the system, described in Section 2.1, can be expressed as: 

kuFE =   (3.7)
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k  
k  

m  

m  

eu  

u  
mg

um &&

kumg +

 

Figure 3.3: System with undamped free vibration. 

When the body is moved a distance u from the unloaded equilibrium position and then 
released the system will undergo an undamped free vibration about the unloaded 
equilibrium position. The forces acting on the isolated body is shown in Figure 3.3 
where mg is the dead weight of the system. 

Due to dynamic equilibrium conditions the sum of the forces shall be zero. 

( ) 0=−+− umkumgmg &&  (3.8)

where the displacement u varies in time i.e. u=u(t). 

The DE of motion is linear, homogenous and it has constant coefficients. The DE is 
defined as: 

0=+ kuum &&  (3.9)

By introducing the circular frequency ω, Equation (3.9) can be written as: 

02 =+ uu ω&&  where 
m
k

=ω  (Circular frequency) (3.10)

The general solutions of the differential Equation (3.10) are: 

( ) ( )θω += tAtu sin  or ( ) tCtCtu ωω cossin 21 +=  (3.11)

where the A and θ respectively C1 and C2 are constants of integration and they are 
determined from the boundary conditions. 

When the system has started to oscillate, it will oscillate endlessly with the same 
amplitude A since the system is not affected by any kind of damping, see Figure 3.4.         
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T

t

u u(t)=Asin(ωt+θ)

θ/ω

 

Figure 3.4: Oscillation of an undamped system.  

The oscillation can be described by terms of frequency f, amplitude A, phase constant 
θ and period T. The frequency for the system describes how often an occurrence 
appears during a time period. The phase constant determines the amount that u(t) lags 
the function sin ωt and the period describes the time for an oscillation to move from 
one position and return to the same position. It should be remembered that this 
undamped case is a solely theoretical state. All structures in reality have some kind of 
damping. 

 

3.2.4 Free vibration - Damped 

Using the same notations as in the case of undamped free vibrations, see           
Section 3.2.3, and also taking the damping into consideration the differential equation 
of motion of a damped free system can be derived. 

The system in Figure 3.5, reminds a lot about the Kelvin material described in Section 
2.2.2. So, here the properties for the spring and damper are combined together. The 
damping of the system is noted as c and the damping force FD for the system, 
described in Section 2.2.1, can be expressed as:   

ucFD &=   (3.12)

k  
k  

m  

m  

eu  

u  

c

c  

mg

um &&

kumg +
uc &

 

Figure 3.5: System with damped free vibration. 

A  - Amplitude   

π
ω
2

=f -Frequency     

ω
π21

==
f

T - Period 

θω +t - Phase angular 

(If A>0) 

θ - Phase constant 
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When the body is moved a distance u from the unloaded equilibrium position and then 
released the system will undergo a damped free vibration about the unloaded 
equilibrium position. The forces acting on the isolated body is shown above. 

Due to dynamic equilibrium conditions the sum of the forces shall be zero. 

( ) 0=−−+− ucumkumgmg &&&  (3.13)

where the displacement u varies in time i.e. u=u(t). 

The DE of motion is linear, homogenous and it has constant coefficients. The DE is 
defined as: 

0=++ kuucum &&&   (3.14)

By introducing the damping coefficient ξ and the circular frequency ω,              
Equation (3.14) can be written as: 

02 2 =++ uuu ωξω &&&  where 
km
c

c
c

cr 2
==ξ  and 

m
k

=ω  (3.15)

As can be seen in Equation (3.15), ξ is a percentage of the critical damping ccr, see 
Section 3.2.4.1. Setting u=eλt gives the characteristic equation as:  

02 22 =++ ωλξωλ u  with roots ( )ωξξλ 12
2,1 −±−=  (3.16)

Hence the general solution of the differential Equation (3.16) is: 

( ) tt eCeCtu 21
21

λλ +=   (3.17)

Depending on whether 12 −ξ  is imaginary, real or zero, the value of u(t) has 
different mathematical form: 

Critical damping: ξ =1   Strong damping: ξ >1   Weak damping: ξ <1  

 

3.2.4.1 Critical damping ξ =1   

The two roots of Equation (3.16) have the same value and that leads to a solution that 
contains a polynomial. In this case of a first order equation as:   

( ) ( ) teBAttu ω−+=  (3.18)

where A and B is constants of integration and they are determined from the boundary 
conditions. This function is also a non-periodic and has the same principal shape as in 
Figure 3.6. 
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3.2.4.2 Strong damping ξ >1 

If the roots for Equation (3.16) are both real this result in a general solution as: 

( ) tt eCeCtu 21
21

λλ +=   (3.19)

where C1 and C2 are constants of integration that are real and determined from the 
boundary conditions. 

 

Figure 3.6: Example of typical oscillation of a damped system with critical and 
strong damping. 

The boundary conditions for the system decide the curvature of the oscillation and a 
period can not be found. The amplitude approaches exponentially towards zero with 
time due to the roots of Equation (3.16) are negative, see Figure 3.6.    

 

3.2.4.3 Weak damping ξ <1    

If the roots for Equation (3.16) are imaginary, then the general solutions of the 
differential equation (3.14) are: 

( ) ( )tBtBetu dd
t ωωξω cossin 21 += −  or ( ) ( )θωξω += − tAetu d

t sin  

where 21 ξωω −=d  - Damped circular frequency 
(3.20)

B1 and B2 are constants of integration that are real and determined from the boundary 
conditions.  

ξ=1 

ξ >1 

u 

t 
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Figure 3.7: Oscillation of a damped system with weak damping. 

The difference between the undamped and the weak damped case is that the amplitude 
is decreasing exponentially with time and the oscillation has a lower circular 
frequency ωd, which leads to a longer period Td, see Figure 3.7. According to Bergan 
and Larsen (1986), the case of critical and strong damping rarely or never occurs in 
real structures and therefore only weak damping will be treated further in this thesis. 
Whenever damping is discussed or mentioned it is the case of weak damping. 

 

3.2.5 Forced vibration – Undamped with a harmonic load 

Consider again the system shown in Section 3.2.3. Now the system is subjected to an 
external dynamic load p(t) and in this case the damping is neglected as shown in 
Figure 3.8. 

mg
um &&

kumg +

)(tp  

Figure 3.8: System with undamped forced vibration. 
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Due to dynamic equilibrium conditions the sum of the forces shall be zero. 

( ) 0)( =−+−+ umkumgtpmg &&  (3.21)

where the displacement u varies in time i.e. u=u(t). 

The DE of motion is linear, inhomogeneous and it has constant coefficients. The DE 
is defined as: 

)(tpkuum =+&&  (3.22)

Assume that the load in this case is harmonic and therefore periodic and has a shape 
of sinus function. The load is defined as: 

tptp pωsin)( 0=  where  pω  is the load circular frequency (3.23)

The DE with a harmonic load can thus be written as: 

tpkuum pωsin0=+&&  (3.24)

The general solution to the DE consists of a homogenous solution uh(t) and a 
particular solution up(t). The system is undamped and therefore the homogenous 
solution is the same as in Equation (3.11). The general solution is defined as:  

( ) ( ) ( )tututu ph +=  where ( ) tCtCtuh ωω cossin 21 +=  (3.25)

Assume the particular solution as: 

tCtu pp ωsin)( 3=  (3.26)

The constant C3 is solved by combing Equation (3.24) and Equation (3.26).  

( ) tptCkm ppp ωωω sinsin 03
2 =+−   where 

              2
0

2
0

2
0

3 1
1

1

1
β

ω
ωω −

=









−

=
−

=
k
p

k
p

mk
p

C
pp

  and 
ω
ω

β p=  (3.27)

The general solution for the DE is then: 

( ) ( ) t
k
p

tCtCtu pω
β

ωω sin
1

1cossin 2
0

21 −
++=  (3.28)

where C1 and C2 are constants of integration that are determined from the boundary 
conditions.  
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3.2.6 Forced vibration – Damped with a harmonic load 

Again consider the damped mass-spring system in Section 3.2.4 but now subjected to 
an external dynamic load p(t) as shown in Figure 3.9. 

)(tp

um &&

kumg +
uc &

mg

 

Figure 3.9: System with damped forced vibration. 

Due to dynamic equilibrium conditions the sum of the forces shall be zero. 

( ) 0)( =−−+−+ ucumkumgtpmg &&&  (3.29)

where the displacement u varies in time i.e. u=u(t). 

The DE of motion is linear, inhomogeneous and it has constant coefficients. The DE 
is defined as: 

)(tpkuucum =++ &&&  (3.30)

Assume that the load in this case is harmonic and therefore periodic and has a shape 
of a sinus function. The load is defined as: 

( ) tptp pωsin0=  (3.31)

The DE with a harmonic load can be written as: 

tpkuucum pωsin0=++ &&&  (3.32)

The general solution to the DE consists of a homogenous solution and a particular 
solution. The damping is assumed to be weak and therefore the homogenous solution 
is same as in Equation (3.20). The general solution is defined as:  

( ) ( ) ( )tututu ph +=   where  ( ) ( )tBtBetu dd
t

h ωωξω cossin 21 += −  (3.33)

Assume the particular solution as: 

  
  
  

k   
k   

m   

m  

e u   

u   

c  

c   

) ( t p   

p(t)
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( ) tCtCtu ppp ωω cossin 21 +=  (3.34)

The constant C1 and C2 are solved by combing Equation (3.32) and Equation (3.34).  

( ) ( )222

2
0

1
21

1
ξββ

β

+−

−
=

k
p

C   where 
ω
ω

β p=  

( ) ( )222

0
2

21
2

ξββ

ξβ

+−
−=

k
p

C  

(3.35)

The particular solution for the DE is then: 

( )
( ) ( )

( )[ ]tt
k
p

tu ppp ωξβωβ
ξββ

cos2sin1
21

1 2
222

0 −−
+−

=  (3.36)

The general solution for the DE is then: 

( ) ( )++= − tBtBetu dd
t ωωξω cossin 21   

+ ( ) ( )
( )[ ]tt

k
p

pp ωξβωβ
ξββ

cos2sin1
21

1 2
222

0 −−
+−

 (3.37)

where B1 and B2 are constants of integration that are determined from the boundary 
conditions. 

The particular solution can be rewritten as one harmonic function. 

( ) ( )θω −== tRutu pp sin   where 

( )
( ) ( )222

02
1

2
2

2
1

21

1

ξββ +−
=+=

k
p

CCR  and 









−

=







−= 2

1

2

1
2arctanarctan
β
ξβθ

C
C  

(3.38)

 

3.3 Resonance and dynamic amplification factor 
Resonance occurs when the load circular frequency ωp coincide with the natural 
circular frequency ω of the system. This results in a noticeable magnifying of the 
amplitude for the oscillation in the system. The effects of resonance for the system are 
described by a dynamic amplification factor abbreviated as DAF, which is dependent 
of the damping coefficient ξ, see Figure 3.10.  
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3.3.1 Undamped system 

A real system is always affected by damping. This leads to that the homogenous 
solution in Equation (3.28) will die out and the particular solution will dominate. 
Assume that the boundary conditions for the undamped system are: 

( ) 00 0 == uu  and ( ) 00 0 == uu &&  (3.39)

Then the constant of integration C1 and C2 are solved from Equation (3.28) and the 
total solution is derived as:  

( ) t
k
p

tut
k
pu

tu pω
β

ωω
β
β

ω
sin

1
1cossin

1 2
0

02
00

−
++








−

−=
&

 (3.40)

Since the boundary conditions in Equation (3.28) describe that the system initially 
was in a stable equilibrium position, i.e. ( ) 00 0 == uu  and ( ) 00 0 == uu && , the response 
can be stated as: 

( ) ( )ttutu pstatic ωβω
β

sinsin
1

1
2 −

−
=  (3.41)

where ustatic=p0/k describes the static displacement of the system. The dynamic 
amplification factor is derived by:   

( )
2

max

1
1
β−

==
static

p

u
tu

DAF  where
ω
ω

β p=  (3.42)

The dynamic amplification factor increases rapidly when the load frequency closes 
the natural frequency of the system and decreases when it has larger frequencies.   

  

3.3.2 Damped system 

In a similar way as for the undamped system the dynamic amplification factor is 
derived from Equation (3.38) and the static response of the loaded system. 

( ) ( )222

max

21

1

ξββ +−
==

staticu
u

DAF  (3.43)

The dynamic amplification factor has the same effects as in the undamped case, but it 
will be smaller when the system is damped, see Figure 3.10. 
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Figure 3.10 Illustrate the effects of DAF, damping coefficient and relationship 
between the load frequency and the natural frequency of the system. 
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4 Beam dynamics  

4.1 Eigenmodes and frequencies for a uniform beam 

For a structure, in this case a beam, the eigenfrequencies are the frequencies for which 
the structure will vibrate of its own accord when exposed to a perturbation. The 
different shapes of the structure for the different eigenfrequencies are called 
eigenmodes, and each eigenmode is related to one specific eigenfrequency. 

To determine the beam response versus time the eigenmodes for a simply supported 
beam can be computed, by verifying the eigenvalue equation with the homogeneous 
boundary conditions. 

02
4

4

=− mu
dx

udEI ω  for 0 < x <l 

              02

2

==
dx

udu  at lx ,0=  

(4.1)

After normalization they can be expressed as: 

l
xn

ml
xu n

πsin2)()( =  where n = 1, 2, 3,…..  (4.2)

with the associated eigenvalues: 

( ) ( ) 4
42

ml
EInn πω =  (4.3)

The above stated expressions are based and derived from energy expressions for a 
continuous beam. An attempt to give a background and derive the expressions above, 
in a simplified way, can be seen in Appendix A. 

In Figure 4.1, the three first eigenmodes for a simply supported beam are shown. The 
first eigenmode corresponds to the lowest eigenfrequency. 

 

Figure 4.1: The three first eigenmodes for a simply supported beam. 

Normally, when a beam is subjected to a dynamic load, the load frequency will not 
coincide with the eigenfrequencies and therefore the resulting shape of deformation 

Second bending mode 

Third bending mode 

First bending mode 
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will not be the same as any of the eigenmodes. However, the dominating shape of 
deformation is usually the first eigenmode but it is influenced by higher modes. SDOF 
systems have only one eigenmode and hence there are no influences from higher 
modes. 

 

4.2 Transformation from deformable body to SDOF system 

To be able to simplify analyses of continuous systems, which have an infinite number 
of degrees of freedom, the system needs to be discretized to a finite number of 
elements and degrees of freedom. In practice, beams and plates have a limited 
possibility to move and this makes it possible to transform the structures into a single 
degree of freedom system, see Figure 4.2. 

 

Figure 4.2: Transformation from continuous system to a SDOF system 

The simplification to a SDOF system implies that the properties of the continuous 
system has to be assigned with equivalent quantities for the mass m, the internal force 
FI, the damping force FD and the load p(t) applied to a certain system point. The 
deflection in the system point is assumed to be described by the same function as for 
the SDOF system. The system point is chosen to coincide with the point that normally 
will achieve the largest displacement, i.e. the midspan in the case of a simply 
supported beam, see Figure 4.3. One condition, for the transformation of the 
properties to be possible, is that a uniform change of the deformation is assumed. This 
means that if the displacement increases in one point the displacements in all other 
points will increase proportional to this displacement. 

 

Figure 4.3: Illustration of the system point chosen to appear in midspan. 
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The transformation of the properties for the real structure to equivalent properties 
used in the SDOF system is made by use of transformation factors. The equivalent 
quantities and the transformation factors are derived from the condition that the 
energy exerted by the equivalent SDOF system must be equal to the energy exerted by 
the beam, when exposed to a certain load. Hence, the transformation factors will 
depend on the applied load and the deflection shape of the beam. 

As discussed earlier in Section 3.2.6, the differential equation for the SDOF system in 
Figure 4.2 can be stated as Equation (3.30). Using the notations from Figure 4.2 the 
differential equation can be stated as: 

( )tpukucum esesese =++ &&&  (4.4)

The equivalent quantities for the mass, internal force and the load can be expressed by 
means of transformation factors. 

( )tpkuucum PsKsesM κκκ =++ &&&  (4.5)

Combining Equation (4.4) and (4.5), we obtain the definition of the transformation 
factors. 

m
me

M =κ  (4.6)

ku
uk se

K =κ  (4.7)

( )
( )tp
tpe

P =κ  (4.8)

If the expression in Equation (4.5) is divided with Equation (4.8), we can state three 
new transformation factors. 

P

M
MP κ

κ
κ =  (4.9)

P

K
KP κ

κ
κ =  (4.10)

Now the expression in Equation (4.5) can be stated as: 

 

( )tpkuucum KPsesMP =++ κκ &&&  (4.11)
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4.3 Transformation factors for beams 

4.3.1 Transformation factor for the mass 

In order to derive the transformation factor for the mass, the condition that the 
equivalent mass me shall generate the same amount of kinetic energy as the real 
system, when following the oscillation of the system point us, can be used. 

The kinetic energy generated by the equivalent mass in the SDOF system is: 

2

2
seSDOF

k
vm

W =  (4.12)

where 
t

u
v s

s ∆
∆

= is the velocity of the system point in the vertical direction. 

The kinetic energy for the beam is: 

∫
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=
Lx

x
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k AdxvW

0

2

2
ρ  (4.13)

where x  coordinate with origin in one end of the beam [m] 

 A  cross-section area [m2] 

 ρ  density [kg/m3] 

 
t
uxvv
∆
∆

== )(  velocity of arbitrary point in the vertical direction [m/s] 

Setting Equation (4.12) to be equal to Equation (4.13) this gives: 

∫∫
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=⇔=
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22

22
ρρ  (4.14)

The change of the displacement in an arbitrary point in the beam can be expressed as: 

),()1(),(),(),(),( 11112 txutxutxutxutxuu −=−=−=∆ αα  (4.15)
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Figure 4.4: Illustration of the uniform change of displacement. 

Where u(x,t1) is the displacement at time t=t1 at the distance x from the end of the 
beam and u(x,t2) is the displacement at the same point in the longitudinal direction of 
the beam at time t=t2. Due to that the change in displacement is uniform, it can 
according to Figure 4.4 be said that: 

( ) ( )12 ,, txtxu α=  (4.16)

The change of displacement in the system point, when time goes from t=t1 to t=t2, can 
be expressed as, see Figure 4.4: 

)()1()()()()( 11112 tututututuu ssssss −=−=−=∆ αα  (4.17)

and since the assumption of uniform displacement in valid for all times t, the general 
form of Equation (4.15) and (4.17) can be written as: 

),()1( txuu −=∆ α  (4.18)

)()1( tuu ss −=∆ α  (4.19)

Using Equation (4.18) and (4.19) together with that the velocity in any arbitrary point 
x in vertical direction can be expressed as v=∆u/∆t, Equation (4.14) can be rewritten 
as: 
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α  (4.20)

Now using Equation (4.6) together with the assumption of uniformly distributed mass 
along the beam length, the transformation factor for the mass can be written as: 
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,1 ρκ  (4.21)

i.e. the transformation factor for the mass is depending on the assumed shape of the 
deformation. 

Shape of deformation at 
time 2tt =  

Shape of deformation 
at time 1tt =  

),( 1txu),(),( 12 txutxu ⋅=α

),()1(),(),( 112 txutxutxu −=− α

System point 

x
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4.3.2 Transformation factor for the internal force 

In order to derive the transformation factor for the internal load, the condition that the 
equivalent internal force shall perform a work that is equivalent to the work of the 
deformation of the beam, when following the oscillation of the system point us, can be 
used. 

The internal force and the work it performs are depending on the behaviour of the 
material. For the SDOF system this is shown in Figure 4.5, where the shaded areas 
represent the total internal work for the material. FI,e,max is the maximum value of the 
equivalent internal force. In the case of linear elastic material the maximum internal 
force is corresponding to FI,e,max=Ke·us,max. 

 

Figure 4.5: Work for a SDOF system for a linear elastic material. 

The internal force for the SDOF system can be expressed by the the spring relation 
shown in Figure 4.5. 

Linear elastic behaviour: 

seeI ukF =,  (4.22)

where ke is the stiffness of the linear spring in the SDOF system. 

Following Samuelsson and Wiberg (1999) the work of deformation for the beam 
made of linear elastic material can be derived by studying a lamella of length ∆x and 
the sectional forces, N , and deformations, n∆ , belonging to it, see Figure 4.6. 

N  N  

V

V  

M  
M  

x∆  

z

 

Figure 4.6: Segment, with length ∆x, of the beam. 
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The constitutive relationship between the sectional forces N  and the deformations 
n∆ are: 

n
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where E  modulus of elasticity [Pa] 

 A  cross-section area [m2] 

 
)1(2 υ+

=
EG  shear modulus [Pa] 

 υ  Poisson’s ratio [-] 

 β  constant, shape factor [-] 

 I  moment of inertia [m4] 

The meanings of the deformations ∆n, ∆t and ∆m are shown in Figure 4.7 . 

 

Figure 4.7: Deformation of beam lamella. 

The constant β can be derived from the statement that the work of deformation due to 
shear force shall be equal to the work of deformation due to shear stress. 

dzzbzz
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VVV
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z
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0

γτβγ ∫
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==  (4.24)

where 
GA
Vβγ =  average value of shear angle [-] 

 τ  shear stress [Pa] 

 b  width of the cross-section [m] 

 h  height of the cross-section  [m] 

 
G
τγ =  shear angle [-] 

m∆

t∆  

n∆  
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For a certain time in the loading the sectional forces will increase from N  to NdN +  
and the deformations will increase from n∆  to ndn ∆+∆ . The change of the work of 
deformation is defined as the change of the work during the change of deformation 

nd∆ . 

mMdtVdnNdd s
i ∆+∆+∆=Π  (4.25)

where index s and i stands for segment and internal respectively. 

When using Hooke’s law Equation (4.25) can be rewritten 

ndNmdm
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+∆∆

∆
+∆∆
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β
 (4.26)

In order to get the total work of deformation of the segment, Equation (4.26) will be 
integrated over the deformation n∆ . 
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Once again using Hooke’s law and integrating the work of deformation for the 
segment over the length, L, of the beam will give the total work of deformation for the 
beam. 
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If the influences from the normal- and shear forces are neglected the total work of 
deformation for the beam can be written as: 

∫
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Figure 4.8: Mass in a) equilibrium and b) moved ξ from equilibrium position. 

Study the undamped SDOF system in Figure 4.8. The displacement ξ causes an 
internal work for the SDOF system which by use of Equation (4.22) can be written as: 
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 (4.30) 

As stated earlier the total internal work of the SDOF system shall be equal to the total 
work of deformation of the beam, meaning that Equation (4.29) shall be equal to 
Equation (4.30). 
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The stiffness k of the beam is depending on shape of the load and is determined by: 
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,  (4.32) 

The definition of stiffness k of the beam according to Equation (4.32) together with 
Equation (4.31) gives the final expression of the transformation factor for the internal 
force when having a linear elastic material. 
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For high beams it might be necessary to include the influences from the shear forces 
to get adequate results, see Section 4.3.5 for further discussion. 
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4.3.3 Transformation factor for the damping force 

In the calculations no transformation factor for the damping force κc has been 
introduced, see Equation (4.11). Instead an equivalent damping ce is used. In an 
attempt to guarantee that this assumption is correct, the two previous derived 
transformation factors are used. As mentioned earlier in Section 3.2.4, the damping c 
is a percentage of the critical damping ccr: 

km
m
kmmcc cr 222 ξξωξξ ====  (4.34) 

As can be seen in Equation (4.34), the damping is determined by the mass m and the 
stiffness k. By inserting the equivalent values derived earlier, and thereby adjusted, 
the expression for the equivalent critical damping can be stated as: 

ee
e

e
eeecre mk

m
kmmcc 222, ξξωξξ ====  (4.35) 

Later in the thesis this assumption is verified by comparing the results between 
different solution methods, see Section 10.2.2. Here the results between a SDOF 
solution using the regular c, and a solution based on the transformed equivalent ce, are 
compared and shows coinciding results.   

 

4.3.4 Transformation factor for the load 

In order to derive the transformation factor for the load, the condition that the 
equivalent load shall generate the same amount of work as the total load does in the 
real system, when following the oscillation of the system point us, can be used. 

The work generated by the equivalent load in the SDOF system during a time 
increment ∆t is: 

( ) ( )tutp se
SDOF =Π  (4.36)

The corresponding work for the beam is: 
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where:    x  is the coordinate with origin at one end of the beam [m] 
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,  is the total load on the beam [N] 
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Due to the statement above, Equation (4.36) shall be equal to Equation (4.37). 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )∫∫

=

=

=

=

=⇔=
Lx

x s
e

Lx

x
se dx

tu
txutxqtpdxtxutxqtutp

00

,,,,  (4.38)

The transformation factor for the load, see Equation (4.8), can now be written as: 
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Also the transformation factor for the external load is depending on the assumed 
shape of deformation. It is further depending on the shape of the load. 

 

4.3.5 Derived transformation factors for a simply supported beam 

The values of the transformation factors for mass, load and internal force for the beam 
in Figure 4.9 are shown in Table 4.1. The system point is placed in the middle of the 
beam, as mentioned earlier in Section 4.2 and when having linear elastic material the 
natural shape of deformation, meaning the shape of deformation according to theory 
of elasticity for a beam subjected to a static load, is assumed.  

 

Figure 4.9: Simply supported beam loaded with a concentrated load in midspan.  

 

Table 4.1:  Transformation factors for a simply supported beam shown in      
Figure 4.9  

Material Pκ  Mκ  Kκ  MPκ  KPκ  

Elastic 1.0 0.486 1.0 0.486 1.0 

 

L
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5 Numerical solution methods 
Due to the dynamic equilibrium conditions for a damped system, from Equation 
(3.29) the force equilibrium can be stated as:  

      ( ) ( ) ( ) ( )tptFtFtF EDI =++  (5.1) 

where FI(t) are the inertia forces, FD(t) are the damping forces and FE(t) are the 
internal forces and p(t) are the external forces. The forces in Equation (5.1) are all 
time-dependent. From the equation of equilibrium governing the linear dynamic 
response this can be stated as: 

      PKUUCUM =++ &&&  (5.2) 

where M, C and K are the mass, damping and stiffness matrices respectively and P is 
the vector of externally applied loads. U ,U& andU&&  are the displacement, velocity and 
acceleration vectors. The Equation (5.2) is a linear DE of the second order with 
constant coefficients.  

 

5.1 Direct integration methods 

The direct integration method solves the Equation (5.2) through integration by using a 
numerical step-by-step procedure. The numerical integration is based upon two ideas. 
The first idea is trying to satisfy the Equation (5.2) in a discrete time interval ∆t 
instead of satisfying it at any time t. The second idea is that the form of the 
assumption on the variation of the displacement, velocity and acceleration within each 
time interval ∆t and the variation within this interval that determines the accuracy, 
stability and cost of the solution procedure. 

 In the direct integration method in Equation (5.2) it is assumed that at time t=0 the 
displacement, velocity and acceleration vectors are known and they are donated as 
U0 , U&0  and U&&0 . The solution is made for the time span 0≤ t ≤T, where the time is 

divided into n time steps ∆t=T/n. The step-by-step procedure calculates the solution to 
the next required time from the solutions at the previous times. Assume that the 
solutions at times tt-∆t and t∆t are known, then the next solution is calculated at time 
tt+∆t. Finally the integration procedure will give an approximate solution to the DE 
within the time interval at times ∆t, 2∆t,…, t, t+∆t,..T. In this report only linear 
analysis will be used with a constant time step ∆t. 

 

5.1.1 The Newmark method 

The Newmark method can be both explicit and implicit time integration, depending 
on the parameter values α and δ. The method solves the Equation (5.2) at time t+∆t by 
using the equilibrium conditions at time t+∆t. According to Bathe (1996), the 
Newmark method is an extension of the linear acceleration method and it is based on 
the following assumptions of the velocity and the displacement: 
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( )[ ] tUUUU tttttt ∆+−+= ∆+∆+ &&&&&& δδ1  

              2

2
1 tUUtUUU ttttttt ∆








+






 −+∆+= ∆+∆+ &&&&& αα  

(5.3) 

The parameters α and δ determines the accuracy and stability of the integration. When 
δ=1/2 and α=1/6, the relations between Equation (5.3) corresponds to the linear 
acceleration method, while δ=1/2 and α=1/4, the relations corresponds to the 
constant-average-acceleration method (also called trapezoidal rule). The trapezoidal 
rule is an unconditionally stable scheme, meaning that there is no demand on the 
incremental time step to reach a stable solution, see Figure 5.1.   

( )UU ttt &&&& ∆++2
1  Utt &&∆+

Ut &&  

tt ∆+t   

Figure 5.1: Newmark’s constant-average-acceleration scheme. 

The solution of the displacements, velocities and accelerations at time t+∆t are 
achieved by combining Equation (5.3) and Equation (5.2). The implicit time 
integration is one of the available methods to solve dynamic problems in the finite 
element program ADINA. The complete solution procedure according to             
Bathe (1996) is shown in Table B.1 in Appendix B.  

 

5.1.2 The central difference method 

The central difference method is an explicit method that solves the DE by using the 
equilibrium conditions at time t instead of at t+∆t as in the Newmark method. In this 
report the solution is valid for elastic and a viscous elastic material. The explicit 
method is a conditionally stable scheme, where the time step for the solution must be 
less than a certain critical time step, which depends on the smallest element size and 
the material properties. 

 

5.1.2.1 Derivation of equation 

The central difference method is derived from the Newmark method by using the 
values of δ=1/2 and α=0 in Equation (5.3). When combining the two equations with 
each other this leads to: 

      2

2
1 tUtUUU ttttttt ∆−∆+= ∆+∆+∆+ &&&  (5.4) 
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Thereafter using the definition of the velocity at time t+∆t, see Figure 5.2. 

 

Figure 5.2: The definition of velocity. 

The velocity can be derived as: 

U
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(5.5) 

The acceleration and the velocity are approximated in terms of displacements, and by 
combining Equation (5.5) into Equation (5.4) and changing the variable t+2∆t to 
t+∆t. The acceleration is derived as:  

( )UUU
t

U tttttt ∆+∆− +−
∆

= 21
2

&&  (5.6) 

The velocity is derived as: 

( )UU
t

U ttttt ∆+∆− +−
∆

=
2
1&  (5.7) 

The displacement is solved for time t+∆t by considering equilibrium conditions in 
Equation (5.2) at time t: 

PUKUCUM tttt =++ &&&  (5.8) 

By inserting Equation (5.6) and Equation (5.7) into Equation (5.8) gives: 
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From Equation (5.9) it can be seen that calculations of Utt ∆+  is dependent of 
Ut and Utt ∆− . By solving the DE by the central difference method at time ∆t, the step-

by-step procedure needs a starting value of Utt ∆− .  The values of U0 , U&0 and U&&0 are 
known boundary conditions, therefore the value of Ut &&∆− can be calculated by combing 
Equation (5.6) with Equation (5.7).  

t∆2  

U∆  

t  

t  

tt ∆+ 2
 

  U  
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That gives: 

UtUtUUt &&& 0
2

00

2
∆

+⋅∆−=∆−  (5.10)

To have a more effective procedure of solving the DE, the mass matrix and damping 
matrix are chosen to be diagonal. This results in that the mass matrix and the load 
vector can be lumped and introduced into Equation (5.9). The lumped mass matrix is 
calculated as: 
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(5.11)

The lumped load vector is calculated as: 
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Using this, Equation (5.10) can be written as: 

PUM ttt ˆˆ =∆+  (5.13)

The displacement at time tt ∆+  is solved by using Equation (5.13): 

PMU ttt ˆˆ 1−∆+ =  (5.14)

 

5.1.2.2 Critical time step 

To have accuracy of the solution based on the central difference method, the time step 
needs to be small enough. The time step should be smaller than the value of a critical 
time step, which can be calculated as:  

max

2
ωπ

==∆≤∆ n
cr

T
tt  (5.15)

A time step that is too large is easily noticed from the solution, by that the responses 
of the displacements, velocities and accelerations grows very fast and finally becomes 
unrealistic. The complete solution procedure according to Bathe (1996) is shown in 
Table B.2 in Appendix B. 
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5.1.3 Rayleigh damping 

The implicit time integration can be used both when the damping matrix is lumped or 
consistent, while the explicit time integration can be used only with lumped damping 
matrix and where the damping is mass proportional according to ADINA (2004).  

If the damping is specified as Rayleigh damping, the contributions of the following 
damping matrix CRayleigh are added to the total damping matrix C, which is described 
in Equation (5.2). The Rayleigh damping is defined as: 

KMCRayleigh βα +=  (5.16)

where M is the mass matrix in Equation (5.2), which can be lumped or consistent, and 
K is the stiffness matrix that corresponds to zero initial displacements. The Rayleigh 
damping constants α and β can be determined from a minimum of one given damping 
ratios ξi that correspond to two unequal circular frequencies of vibration ωi and ωj, see  
Figure 5.3.   

 

Figure 5.3: Damping as a function of frequency. 

By using the two unequal circular frequencies the damping ratio can be stated in two 
different expressions as can be seen in Equation (5.17). The Rayleigh constants α and 
β are then determined by combining the two expressions with each other: 
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βω
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A disadvantage with Rayleigh damping is that the higher modes are considerably 
more damped than the lower modes, for which the Rayleigh constants have been 
selected. Also the damping is incorrect for all other modes except for the two mode 
shapes related to the given circular frequencies. 

 The mass proportional damping in the explicit time integration is defined as: 

MCRayleigh
ˆα=  (5.18)

Where M̂ is the lumped mass matrix and the damping matrix CRayleigh is replacing the 
damping matrix C in Equation (5.2).  

 

iω  
ω

iξ  

ξ  

jω  



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2007:8 37

5.2 Mode superposition 

In mode superposition analysis, the governing DE equations are solved by substituting 
the following transformation into Equation (5.2): 

      ∑
=

=
s

ri
iiuU φ  (5.19)

where φi, i=r,…, s are the mode shapes calculated in a frequency analysis, and the ui 
are the corresponding unknown generalized displacements. The displacements ui are 
calculated by solving the decoupled modal equations:   

      iiiiiii puuu =++ 22 ωωξ &&&  (5.20)

where ξi is the critical damping ratio corresponding to the circular frequency ωi, and  
pi=φiP. This equation can be recognised from Chapter 3. The mode superposition 
method can be solved with many different time integration methods, but the Newmark 
method, following trapezoidal rule, is used in ADINA, see Equation (5.3). Mode 
superposition is effective when the time integration has to be carried out over many 
time steps. The cost of calculating the required frequencies and mode shapes is 
reasonable.  

In the mode superposition method the damping is specified for each mode and the 
values of the modal damping ξi, i=r,...., s can all be different. The modal damping for 
each mode can be determined by using Rayleigh damping or it is also possible to 
define it directly for each mode in ADINA.    
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6 Swedish railway bridge code 

6.1 BV BRO 

The Swedish railway bridge code BV BRO, Banverket (2006), has rules for designing 
bridges for train speeds above 200 km/h, where dynamic calculations and controls 
shall be done for train speeds in the interval of 100 km/h until vmax +20%, where vmax 
is the theoretical design speed for the railway. The code also has limitation for vertical 
deformation and acceleration and they should be controlled for characteristic values of 
loading. The loading is presented in different train load models.  

 

6.1.1 Vertical acceleration 

The rules in the Swedish code say that calculations for vertical accelerations for a 
bridge deck shall be controlled for characteristic load values. Bridges that has a layer 
of ballast on the deck allows a maximum vertical acceleration of 3.5 m/s² within the 
ballast area. For bridges which are laid on sleepers the vertical accelerations are 
allowed for amount of 5.0 m/s². The vertical accelerations shall be controlled for 
frequencies up to 30 Hz.  

 

6.1.2 High speed load models (HSLM) 

There are two different types of train load models in the Swedish codes, HSLM-A and 
HSLM-B, where only the first one is used in this report. The train model HSLM-A 
consist of 10 different loading types, which all are theoretical idealisations of real 
trains, see Figure 6.1 and Table 6.1. This train model should always be used except 
for simple bridges, where HSLM-B should be used. 
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4xP 
 (1) 

 
(1) Power car (leading and trailing cars identical) 
(2) End coach (leading and trailing and coaches identical) 
(3) Intermediate coach 

Figure 6.1: The load distribution for train model HSLM-A. 

 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2007:8 39

Table 6.1: The load distribution for train model HSLM-A. 

Train Number of  Coach length Bogie axle Point 
 model intermediate coaches   spacing force 
  N D [m] d [m] P [kN] 

A1 18 18 2.0 170 
A2 17 19 3.5 200 
A3 16 20 2.0 180 
A4 15 21 3.0 190 
A5 14 22 2.0 170 
A6 13 23 2.0 180 
A7 13 24 2.0 190 
A8 12 25 2.5 190 
A9 11 26 2.0 210 

A10 11 27 2.0 210 

The model HSLM-B shall be used for simple bridges, for bridges with one span and a 
span length less than 7.0 m. By simple bridges means simply supported beam bridges 
and simply supported slab bridges. The model HSLM-B consists of N number of point 
loads with a value of 170 kN and a spacing of d, see Figure 6.2  - Figure 6.3.       

d d d d dd dddd d d dd d

N x 170kN 

 

Figure 6.2: The load distribution for train model HSLM-B. 

 

Figure 6.3: The spacing d between loads and number of loads N dependent on the 
span width. 
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6.1.3 Damping 

During dynamic analysis of a bridge structure a damping factor is used. The damping 
factor is calculated according to Table 6.2, except if there is another value that 
describes the structure in a more accurate way.      

Table 6.2: Damping factor for different spans and type of bridges. 

 

 

 

 

 

 

 

6.1.4 Speed step 

The speed step within the examined interval is allowed to be increased with a step of 
5 km/h between every controlled speed. If resonance effect occurs, the steps at these 
velocities should be limited to 2.5 km/h, to find the most dangerous response of the 
structure. 

 

ξ  Lower limit of damping [%]  Bridge type 

 Span L < 20m  Span L ≥20m 

Steel and composite  =ξ 0,5+0,125(20-L)  =ξ 0,5 

Prestressed concrete   =ξ 1,0+0,07(20-L)  =ξ 1,0 

Reinforced concrete  =ξ 1,5+0,07(20-L)  =ξ 1,5 
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7 SDOF analysis 

7.1 General 

During the first part of modelling, the aim is to get a basic knowledge of the dynamic 
behaviour of a SDOF system which is loaded by a harmonic load. This is done by 
using the analytical solution of the DE, derived in Chapter 3. Later on, the load is 
changed stepwise in an attempt to get more realistic and approach the actual load case 
from a real train. This change in load characteristic makes it complicated to use the 
analytical solution of the DE and therefore, also a numerical solution is used. The 
numerical solution used is in this case the central difference method previously 
described in Section 5.1.2. The result from the analytical solution is used to increase 
the knowledge of the dynamic behaviour of SDOF system and also to verify the 
numerical solution method.  

When using the numerical solution different types of loading are used but the total 
impulse of each load pulse is kept constant in order to determine if some type of load 
is more dangerous than others. Finally a train load based on the train model HSLM-A 
is used as excitation of the SDOF system. The results from the analysis of a SDOF 
system will later be compared with the results from a finite element model. This in 
order to examine to what degree a simplified analysis, such as the SDOF system, can 
be used.  

Based on the assumptions, material properties, load magnitude etc. used in the 
calculations and that will be presented later, none of the calculated values in the thesis 
are intended as real values, but are only intended as mutual comparison with each 
other. The inputs used have been chosen in order to simplify the comparison between 
different load cases. 

All the solutions described in this chapter is programmed and solved with the 
commercial computer software MATLAB 7.0.1. 

 

7.2 Analytical solution 

7.2.1 Undamped system 

To achieve a basic understanding, one of the first steps is to examine the effects of the 
displacements, velocity and acceleration for a SDOF system loaded by a harmonic 
load. The system, see Figure 7.1, is first assumed to be undamped and the analytical 
solution is derived from the Equations (3.22) and (3.23).  
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Figure 7.1: System with undamped forced vibrations. 

If assuming that the system initially is at rest, the displacement can be stated as: 
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The velocity is stated as: 
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and the acceleration as: 

( ) ( )( )tt
k
p

ta pp ωβωωω
β

sinsin
1

1 22
2

0 +−
−

=  (7.3) 

 

7.2.2 Damped system 

By introducing a damper into the system in Figure 7.1, the system can be displayed as 
in Figure 7.2.  

k   

m   

c 

) ( t p    

Figure 7.2: System with damped forced vibrations. 
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In the damped case the analytical solution is also derived from the equations presented 
in Chapter 3, but now with Equations (3.31) and (3.32). If assuming that the system 
initially is at rest the displacement can be stated as: 

( ) [ ] ( )[ ]θωωθωωξ −++⋅= ⋅⋅− tttAeGtu Pdd
t sincossinsin  (7.4) 

where the constants A and G are: 

The velocity is stated as: 

[ ( ) ( )[ ]
( )]θωω

ωξωθωωθξωωξω

−+
+−−= −

t
tAtAeGtu

pp

dddd
t

cos
sinsincossin)(&

 (7.6) 

The acceleration is stated as: 

[ ( )[ ( )
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−−
−++−−
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t
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t

sin
sinsincossin

cossinsinsin)(
2222

22&&

 (7.7) 

The complete derivation and solution, for both the undamped and damped case, can 
be seen in Appendix C. 

 

7.2.3  Assumptions and analysed parameters 

To simplify the analyses the calculations are made by assuming a natural frequency of 
the system to 1 Hz. By setting the load as p0 and the stiffness as k and thereby 
considering the static deflection, ustatic=p0/k, in Equation (7.1) as a constant, the 
formulation can be calculated without any regard to applied load and stiffness of the 
spring. This leads to that the formulation in Equation (7.1) is only depending upon 
two parameters, which are the natural circular frequency ω and the circular frequency 
for the applied load ωp. 

Obviously, the influence of the ratio between the frequency of the applied load and 
the natural frequency of the system is of interest. The ratio is described by the circular 
frequency and stated as β=ωp/ω. The influence on the system is examined for both the 
undamped and damped system, and the value of β  is varied between 0.1-10. The 
main focus in this thesis is consistently on values of β <1, since it in reality is not 
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accepted that the ratio β >1 for a load acting on a bridge. This in an attempt to 
guarantee that resonance is avoided, and therefore the train load should be considered 
as a slow load. β >1 are therefore only examined by the analytical solution in order to 
capture the dynamic behaviour of the system and determine if there are any specific 
frequency ratios, except when ωp is close or equal to ω, that are more dangerous than 
others.  

Mainly during the analyses the damping factor is set to 2.5 %, but to determine the 
influence of the damping, the system is provided with different values of the damping 
factor ξ during excitation by the harmonic load. The reason for the damping factor to 
be chosen to be 2.5 % is based on damping factors normally used for bridges and the 
formulations in Table 6.2. 

 

7.2.4 Excitation  

Two different load cases were examined by using the analytical solution. 

( ) tptp Pωsin0=               Load case 1 (7.8) 

p(t)

t

p0

 

Figure 7.3: Load case 1, the original harmonic loading. 

Load case 1 is the normal sinus function that oscillates around 0, see Figure 7.3. 

( ) tpptp Pωsin00 +=        (7.9) 

p(t)

t

p
0

 

Figure 7.4: The uplifted harmonic loading. 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2007:8 45

Load case 2 is the same harmonic load as in load case 1 but with a change of 
equilibrium point and also a phase shift. The load is lifted so that the load oscillates 
around p0 instead of around 0, see Figure 7.4 and Equation (7.9). This change is done 
to prevent that there are any negative values of the load, and to represent a more 
realistic load case. 

( ) tpptp Pωcos00 −=      Load case 2 (7.10)

 

p(t)

t

2p0

 

Figure 7.5: Load case 2, the uplifted harmonic loading with an angular shift. 

In order to prevent the instantaneous loading p0 that occur in Figure 7.4, an angular 
shift is introduced to retrieve the load in load case 2, see Figure 7.5 and          
Equation (7.10). Now the load do not starts so suddenly and therefore corresponds 
more to a real train load. 

 

7.3 Numerical solution 

7.3.1 Numerical formulation 

The calculations made with the numerical solution are, as mentioned earlier, based 
upon the central difference method. From Section 5.1.2 it can be seen that the 
formulations for the displacement Utt ∆+  can be stated as: 
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with the damping matrix C as: 

ξωMC 2=  (7.12)

and the velocity Ut &  and the acceleration Ut &&  as:
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( )UUU
t

U tttttt ∆+∆− +−
∆

= 21
2

&&  (7.14)

The calculations have been made mainly for the damped case, but for calculations for 
the undamped case the damping matrix C in Equation (7.12) is set to zero.  

 

7.3.2 Assumptions and analysed parameters 

As mentioned in Section 7.2.4, two load cases are analysed by analytical calculations. 
By using a numerical method several more load cases for the SDOF system are to be 
examined. There are three different types of loads used: sinusoidal-, rectangular- and 
triangular-shaped, and after applying different combinations there are a total of five 
different load cases. The sinusoidal load is the same as the harmonic load in the 
analytical solution. The response of the system is calculated in terms of displacement, 
velocity and acceleration. The different types of excitations are tested and compared 
with each other in an attempt to determine if some types are more dangerous than 
others, and then the triangular loads are used to model the train load. 

To be able to keep the calculations as simple as possible also in the numerical 
analyses, the natural frequency is set to be equal to 1 Hz. In this case it is not possible 
to consider the static deflection as an independent constant, and therefore it has to be 
kept in the formulation. As can be seen in Equation (7.11), the numerical expression is 
dependent of the mass M, stiffness K, damping C and applied load P. To keep the 
natural frequency equal to 1 Hz, the mass and stiffness have to be adjusted. By 
assuming that the mass is equal to 1 kg, the stiffness can be set to (2π)2 to receive  
fn=1 Hz. 

As for the analytical solution described in Section 7.2, the same parameters are of 
interest and studied here. When damping is introduced to the system the damping 
factor is set to 2.5 % in all cases.  

Further it is studied what influence a change in the natural frequency fn has on the 
system, when the value of the load frequencies fp1 and fp2 are kept constant. 

  

7.3.3 Excitation 

Load case 1 and 2, i.e. the two harmonic load cases that also are used in the analytical 
analysis, are mainly used as a verification of the numerical solution. By comparing the 
results from the numerical analysis with the analytical result, the numerical analysis 
can be verified. 
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Figure 7.6: Load case 3, the continuous triangular loading. 

The third load consists of a continuous triangular load, see Figure 7.6. The triangle is 
basically a simplification of the sinusoidal load in load case 2, see Figure 7.5, and has 
the same total area. The triangular load is dependent of the two frequencies fp1 and fp2, 
where the width of the load is described by the frequency fp2 and the distance between 
the peaks by frequency fp1, see Figure 7.6. In this case where it is continuity in the 
load, fp1 and fp2 will be equal, and here the continuity is based on a system that is not 
unloaded at any time. The result from this load case is compared with load case 2, 
because they have similar shape, and to elucidate if there are any differences even 
though they have similar load shape and area. 
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Figure 7.7: Load case 4, the rectangular loading. 

The fourth load case consists of a rectangular load, and this load is an attempt to 
describe the bogie axle load generated by the train, described in Section 6.1.2, with 
only one impulse. The width of the load is dependent of the frequency fp2 and the 
distance between the peaks by frequency fp1, see Figure 7.7. The area under the 
continuous triangular load and the rectangular load is chosen to be equal. 
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Figure 7.8: Load case 5, the double triangular loading. 

The fifth load case consists of a double triangular load, which is intended to describe 
the bogie axle load from a train. The width of the double load is dependent of the 
frequency fp2 and the distance between the pairs by the frequency fp1, see Figure 7.8. 
The area under the rectangular load and the double triangular load is chosen to be 
equal in order to achieve values fairly related to each other. To compare the double 
triangular and rectangular load directly in the same way as between the previous load 
cases are impossible. When transforming the continuous triangular load into the 
rectangular load, the frequency fp1=2fp2 in order to keep the same area of the load 
pulse. When transforming the rectangular load into the double triangular load, the area 
is divided into two impulses and will therefore generate a continuous triangular load 
with a frequency increased by a factor 2. To avoid this problem the frequency ratio 
fp1/fp2 needs to be larger than 2. 

 

7.3.4 Train load 
The final train load is based on the same principle as load case 5, seen in Figure 7.8, 
consisting of double triangular loads that represent the bogie axle loads from the train. 
Each load represents one wheel of the train and is simulated as a triangular. The size 
of fp1 and fp2 is determined by the HSLM-A load cases stated by the Swedish railway 
bridge code, see Table 6.1. To simplify the analysis, the natural frequency, as 
mentioned earlier, is set to 1 Hz. In order to adjust the train loads from HSLM-A to 
the simplified system, the load frequencies fp1 and fp2 are built up by assuming that the 
train resonance velocity is D m/s. As can be seen in Section 6.1.2, the HSLM-A 
model is built up in terms of coach length D and bogie axle spacing d. Taking the 
train load A1 as example, see Table 6.1, with D=18 m and d=2 m it means that the 
train loads resonance velocity is 18 m/s. Hence β=0.1 gives a train velocity         
v=1.8 m/s, see Figure 7.9. 
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Figure 7.9: Train load HSLM-A1 with β=0.1, i.e. loading generated by a train 
velocity v=1.8 m/s. The figure displays the power car, end coach and 
the two first intermediate coaches. 

As can be seen in Table 6.1 there are different values on the load for the different 
models. Earlier, to keep the system as simple as possible, the unit load 1 N is used. To 
keep the simplicity and to be able to make comparison between different trainloads, 
the loading needs to keep its mutual relationship. Therefore the tabled load values are 
divided by 105, i.e. the load for A1 is PA1=1.7 N.  
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8 Results of SDOF analysis 
The results presented in this chapter are valid for an undamped and damped system 
based on the solution methods in the previous chapter. As mentioned, none of these 
received values of velocities and accelerations are relevant in real calculations, but 
intended as mutual comparisons. The focus of interest is on the results for β <1 and 
therefore only results from these values are presented in this section. Apart from 
analysis concerning the influence of damping in the system where a varying value of 
the damping factor has been applied, the damping factor is set to 2.5 % as described 
earlier in Section 7.2.3. 

 

8.1 Analytical solution 

In this section the results from the analytical analysis is presented. The system is here 
only loaded by a harmonic load, i.e. load case 1 and 2, see Figure 8.1 and      
Appendix D. 
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Figure 8.1: Different harmonic loads acting on the system in the analytical solution.  

 

8.1.1 Undamped system 

Remembering the undamped system displayed in Figure 7.1, excited by a harmonic 
load as seen in Figure 8.1, the system response in terms of displacement, velocity and 
acceleration is calculated.  

As  can be seen in Figure 8.2 - Figure 8.3, the system response for an undamped 
system that is loaded by a harmonic force, is increasing when β→1. When β=1 
resonance effects appear in the system and the highest responses are achieved. If the 
value of β >1 and increases, i.e. β→∞, the system response have the opposite effect 
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than described previously. The response starts to decrease with increased value of β. 
However, as stated in the beginning of this chapter these solutions for β >1 will not be 
treated any further in this thesis. The maximum and minimum values of displacement 
and acceleration for β <1, are listed in Table 8.1 

0 5 10 15 20 25 30 35 40
-10

-5

0

5

10

Time [s]

D
is

pl
ac

em
en

t [
 m

 ]

β =0.1 β =0.5 β =0.9[ustatic]x

 

Figure 8.2: Displacements for load case 1 with β=0.1, β=0.5 and β=0.9. 
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Figure 8.3: Accelerations for load case 1 with β=0.1, β=0.5 and β=0.9. 
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Table 8.1: Maximum and minimum values of displacement and acceleration for the 
undamped case, load case 1. 

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Umax 1.0998 1.0825 1.4182 1.6249 1.7320 2.5000 3.3191 4.9237 9.9652 

|Umin| 1.0998 1.0825 1.4182 1.6249 1.7320 2.5000 3.3191 4.9237 9.9652 

Amax 4.3816 9.5574 16.871 25.970 36.001 59.218 91.767 155.63 354.09 

|Amin| 4.3816 9.5574 16.871 25.970 36.001 59.218 91.767 155.63 354.09 

As can be seen in Table 8.1 the maximum and minimum values are the same, this 
because of that the load oscillates around its equilibrium at 0. 

In Figure 8.4 - Figure 8.5 the results in form of displacements and accelerations from 
an undamped system loaded by load case 2 are displayed. The difference in loading 
between load case 1 and 2 is that load case 2 has no negative values and contains an 
angular shift, see Figure 8.1. As mentioned earlier, the system response for an 
undamped system that is loaded by a harmonic force, increases when β→1, and 
resonance effects appear when β=1. This is therefore also obtained in this case. The 
maximum and minimum values of displacement and acceleration for β <1, are listed 
in Table 8.2. 
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Figure 8.4: Displacements for load case 2 with β=0.1, β=0.5 and β=0.9. 
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Figure 8.5: Acceleration for load case 2 with β=0.1, β=0.5 and β=0.9. 

Table 8.2: Maximum and minimum values of displacement and acceleration for the 
undamped case, load case 2. 

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Umax 2.0202 2.0000 2.1978 2.2671 2.6667 2.9732 3.9216 5.2840 10.526 

|Umin| 0 0 0.1710 0.3809 0 0.9732 1.8733 3.5556 8.3959 

Amax 0.7782 2.9866 7.6331 15.039 14.804 41.236 74.605 140.37 332.03 

|Amin| 0.7975 2.9866 7.8089 13.787 26.319 41.236 75.860 132.00 336.61 
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Figure 8.6: Variation in maximum and minimum displacements with changing β for 
the undamped load cases 1 and 2. 
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Figure 8.7: Variation in maximum and minimum accelerations with changing β for 
the undamped load cases 1 and 2. 

In the results, when comparing Table 8.1 - Table 8.2, it can be seen that generally by 
assuming that the load do not contain any negative values and that the loading is 
applied with a phase shift, the maximum and minimum values decrease, except for the 
maximum displacements where it has the opposite effect, see Figure 8.6 - Figure 8.7. 
However, the load in load case 2 is only applied in one direction so this is an expected 
effect. 

 

8.1.2 Damped system 

By introducing a damper into the system, see Figure 7.2, and letting the same load act 
as in the undamped system, the system response can be calculated. The difference in 
the solutions for the damped versus the undamped system is described in           
Section 3.2.6. Besides the homogeneous solution uh, an additional particular solution 
up appears. In all real systems there will be some kind of damping introduced into the 
system, and therefore the homogeneous solution will be damped out. This leads to 
that, in time, the particular solution alone will dominate the solution of the system 
response, see Figure 8.8 
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Figure 8.8: Particular solution dominating in load case 2, β=0.9. 

In practice this means that the oscillation frequency and amplitude of the system will 
go towards and finally coincide with the frequency of the applied load. The system 
response for the damped system follows the same pattern as for the undamped system, 
i.e. that the response increases when β→1, and that resonance effects, with large 
system responses, appear when β=1. As can be seen in Figure 3.10 it is when β ≈1 
that the influence of the damping has largest effect. The main difference between the 
damped and undamped systems can be seen by comparing Figure 8.9 with the 
undamped system in Figure 8.2. For the first 5 seconds the response looks very 
similar and it is first after this time the influence of the damping starts to get 
noticeable. During the time while the homogeneous solution damps out, the system 
response goes toward a stabile oscillation with the same frequency as the applied load. 
The system response in terms of displacements and accelerations for a damped system 
applied with load case 1 is displayed in Figure 8.9 - Figure 8.10. 
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Figure 8.9: Displacement for load case 1 with β=0.1, β=0.5 and β=0.9. 
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Figure 8.10: Acceleration for load case 1 with β=0.1, β=0.5 and β=0.9. 

The maximum and minimum values of displacement and acceleration for β<1, are 
listed in Table 8.3. 

Table 8.3: Maximum and minimum values of displacement, and acceleration for 
the damped case, load case 1. 

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Umax 1.0651 1.0606 1.3805 1.5750 1.6741 2.0799 2.9804 4.1261 7.2849 

|Umin| 1.0328 1.0411 1.2436 1.4000 1.6242 2.3296 2.7720 4.2535 7.2891 

Amax 3.7666 7.4085 12.5670 17.943 30.965 52.373 74.839 128.92 249.25 

|Amin| 3.7152 8.6098 15.3740 23.880 33.300 42.614 78.037 123.08 247.84 

Applying the same procedure as for the undamped system, the load is changed and the 
damped system is loaded by load case 2. As for the undamped system when the 
applied load was changed from load case 1 to load case 2, the basic appearance of the 
system response for the damped system is very similar to the previous case, see  
Figure 8.11 - Figure 8.12. 
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Figure 8.11: Displacement for load case 2 with β=0.1, β=0.5 and β=0.9. 
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Figure 8.12: Acceleration for load case 2 with β =0.1, β=0.5 and β =0.9. 

The maximum and minimum values of displacement, and acceleration for β <1, are 
listed in Table 8.4. 

Table 8.4: Maximum and minimum values of displacement and acceleration for the 
damped case, load case 2. 

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Umax 2.0147 2.0415 2.1438 2.2497 2.6168 2.8994 3.4965 4.8165 8.0004 

|Umin| 0.0101 0.0415 0.1360 0.3185 0.3317 0.8721 1.6684 2.9496 6.0658 

Amax 0.7487 2.8720 6.0643 12.590 14.225 36.464 66.778 116.72 241.71 

|Amin| 0.5805 2.5382 6.1131 12.643 24.384 38.352 60.581 114.12 239.42 
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When comparing the results from Table 8.3 - Table 8.4, the same effects can be seen 
on the maximum and minimum values of the system response, see                       
Figure 8.13 - Figure 8.14. The values of maximum displacements increase when the 
load is shifted, but it has the opposite effect on the accelerations for both maximum 
and minimum values. It can also be seen that the response for the system has 
generally lower values of displacement and acceleration than in the undamped case. 
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Figure 8.13: Variation in maximum and minimum displacements with changing β for 
the damped load cases 1 and 2. 
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Figure 8.14: Variation in maximum and minimum displacements with changing β for 
the damped load cases 1 and 2. 

The response of the system has also been studied for different values for the natural 
frequency of the system. When the eigenfrequency increases from fn=1 Hz to fn=5 Hz 
and fn=10 Hz, respectively, the displacement is not affected in any case and that is 
because the relation between the eigenfrequency and load frequency remains the 
same. This relationship between the eigenfrequency and displacement is what makes 
the simplifications regarding mass, stiffness and applied loads justified. The results 
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for the velocity and the acceleration are on the other hand not unaffected. If the 
frequency is increased with a factor n, the value of the velocity also increases with a 
factor n, and the acceleration increases with the same factor as the frequency in 
square, i.e. n2. This is why the results from velocity and acceleration calculations only 
can be used as a mutual comparison, as stated earlier in this chapter, and not as actual 
values. This phenomenon occurs independently of whether the system is damped or 
not.  

 

8.1.3 Dynamic amplification factor for damped system 

When the DAF is plotted as Figure 3.10 in Section 3.3, the damping factors used are 
very large, compared to what would exist in real structures, and are pedagogically 
useful to understand the influence of damping in a system. Therefore the same plot, as 
in Figure 3.10, is created but with a damping factor ξ <0.10, see Figure 8.15. 
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Figure 8.15: Dynamic Amplification Factor for damping factor ξ <0.10. 

By applying that the focus of interest are on results for β <1 and that there seems to be 
no drastic change of DAF until β >0.5, the axis in Figure 8.15 can be scaled down, see 
Figure 8.16. 
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Figure 8.16: Theoretical DAF for the analytical solution, scaled from Figure 8.15. 

Both Figure 8.15 and Figure 8.16 are plotted based on the equation stated in     
Section 3.3.2, i.e. Equation (3.43). According to Figure 8.15, considering a value of 
β=0.9 and ξ=2.5 %, the total displacement would be ~5 times the static displacement 
of the system. According to the results stated in Table 8.3, the largest value of 
displacement is for |Umin|=7.2891ustatic. The difference between these two results can 
be explained by the fact that according to the derivation of the DAF, the homogeneous 
solution is assumed to die out and is therefore not included in the expression. So the 
expression for DAF is in other words only valid when the damping has totally 
excluded the influence of the homogeneous solution, see Figure 8.17 
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Figure 8.17: Only up is considered in calculation of DAF. 

When calculating DAF as stated above, the real maximum displacement is not 
considered, which leads to an underestimation of the displacement. If the 
displacement is plotted in the same way as DAF it can be displayed as in Figure 8.18. 
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Figure 8.18: Amplification factor calculated with the total displacement. 

Remembering the |Umin| value stated above and comparing it in the same way as 
earlier it can be seen in Figure 8.18 that now the result seems more reasonable, and 
therefore this is the value that should be set as a reference value and not the 
theoretical DAF. 

 

8.2 Numerical solution 

In this section the results from the numerical analysis are presented. In the numerical 
analysis, more complicated load types are introduced and applied to the system. The 
result is presented in the same way as in the previous section, only displaying 
displacements and accelerations for selected values of β<1. Remaining calculated 
results are presented in Appendix E. 

To be able to make the comparison between the two solutions some modifications of 
the analytical solution are made. In the analytical solution, the static displacement 
ustatic, can be neglected or set to 1. In the numerical solution this is not possible, and 
variables such as stiffness k, mass m and applied load p0 are needed in the expression, 
see Equation (7.11). To make the expression as simple as possible, this is solved by 
giving both the mass and applied load a value equal to 1, this is also described earlier 
in Section 7.3.2. With these variables set to 1, the stiffness is adjusted so that the 
system has an eigenfrequency of 1 Hz. To modify the results from the analytical 
solution it is then needed to divide the results with the applied stiffness. 
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8.2.1 Verification 

To verify the numerical solution, load case 1 and 2 have been solved both analytically 
and numerically. The results from the numerical solution can then be verified by 
comparing the results of maximum and minimum values of displacement and 
acceleration from the two solution methods. The comparison shows that the numerical 
solution has a good accuracy, with a maximum error less than 0.7 %, see Appendix E. 
With the numerical solution method verified, only load case 2 will be used in the 
analysis and will be referred to as the sinusoidal load. Also only the damped case, 
with damping ξ =2,5 %, will be considered in this section.  

 

8.2.2 Continuous triangular load  

After verifying the numerical solution, more complicated load histories are 
implemented. First there is a continuous triangular load, i.e. load case 3, which is to 
be compared with the sinusoidal load, see Figure 8.19.  
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Figure 8.19: Continuous triangular load compared with the sinusoidal load. 

As can be seen in Figure 8.19 the sinusoidal and continuous triangular load reminds a 
lot of each other, and the total impulse of each load pulse is the same for both cases. 
When the system response for the two loads is compared it appears that the value of β 
determines how well the result of the sinusoidal load and the continuous triangular 
load coincides with each other. 
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Figure 8.20: Displacement for the continuous triangular load compared with the 
sinusoidal load with β=0.9. 
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Figure 8.21: Acceleration for the continuous triangular load compared with the 
sinusoidal load with β=0.9. 

In Figure 8.20 - Figure 8.21, β=0.9 is displayed and it can be seen that the shape of 
the principle response for the system excited by the continuous triangular load is 
identical to the response with the sinusoidal load, apart from the magnitude of the 
amplitude which is smaller for the continuous triangular load, for both displacements 
and accelerations. The difference in amplitude can probably be explained by that the 
sinusoidal load has higher impulse area at the peak. By examining every 1/10 of β, 
this behaviour can be seen down to β≈0.4. At this ratio the acceleration starts to 
become larger for the continuous triangular load than for the sinusoidal load, and 
finally if the β value decreases even more, the total system response is larger for the 
continuous triangular load. 
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Figure 8.22: Displacement for the continuous triangular load compared with the 
sinusoidal load with β=0.1. 

As can be seen in Figure 8.22 the difference in displacements are very small even for 
β=0.1, but when comparing the accelerations there can be seen a large difference, see 
Figure 8.23.  
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Figure 8.23: Acceleration for the continuous triangular load compared with the 
sinusoidal load with β=0.1. 

The analysis were performed for every 1/10 in the interval 0.1≤ β ≤0.9, and, if 
considering only the continuous triangular load, the expected behaviour was that the 
magnitude of the system response would have a constant decrease when β→0, but a 
noticeable increase in magnitude started to appear at β=0.4, see Table 8.5 and    
Figure 8.24 - Figure 8.25. 
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Table 8.5: Maximum and minimum values of displacement and acceleration for 
the damped case, load case 3. 

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Umax 0.0256 0.0325 0.0313 0.0265 0.0255 0.0297 0.0364 0.0499 0.0832 

|Umin| 0.0001 0.0071 0.0055 0.0000 0.0001 0.0043 0.0123 0.0258 0.0585 

Amax 0.0437 0.3758 0.2887 0.2523 0.1651 0.2986 0.5882 1.0804 2.4258 

|Amin| 0.0473 0.3762 0.2757 0.2621 0.1754 0.3230 0.5437 1.1079 2.4182 
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Figure 8.24:  Variation in maximum and minimum displacements with changing β for 
the damped load cases 2 and 3. 
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Figure 8.25:  Variation in maximum and minimum accelerations with changing β for 
the damped load cases 2 and 3. 
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After further analysis for β≤0.4 it appears that a system excited for a continuous 
triangular load is sensitive to a ratio of β=1/(2n+1), where n=1, 2, 3, etc, see Figure 
8.26 - Figure 8.27. 

0 5 10 15 20 25 30 35 40
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

Time [s]

D
is

pl
ac

em
en

t [
m

]

Sinusoidal Continuous triangular

 

Figure 8.26: Displacement response for the continuous triangular and the sinusoidal 
load with β=1/3. 
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Figure 8.27: Acceleration response for the continuous triangular and the sinusoidal 
load with β=1/3. 

The two figures above indicates that the response grows dramatically for β=1/3. If the 
result from the response with β=1/3 is compared with, e.g. β=0.4, the difference is 
almost a factor 2 for the displacement and at least a factor 3 for the acceleration, see 
Figure 8.28 - Figure 8.29. 
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Figure 8.28: Displacement for the continuous triangular load compared with the 
sinusoidal load with β=0.4. 
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Figure 8.29: Acceleration for the continuous triangular load compared with the 
sinusoidal load with β=0.4. 
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To make the phenomenon even clearer the damping is set to zero, see Figure 8.30. 

0 5 10 15 20 25 30 35 40
-0.2

-0.1

0

0.1

0.2

Time [s]

D
is

pl
ac

em
en

t [
m

]
Sinusoidal Continuous triangular

 

Figure 8.30: Resonance behaviour for the continuous triangular load with β=1/3 
and ξ=0. 

The result is that when β=1/(2n+1), the response has a typical resonance behaviour, 
i.e. the system response grows towards infinity, see Figure 8.30. This behaviour can 
not be seen for any other β <1 except for β=1/(2n+1). 

 

8.2.3 Rectangular load 

After the continuous triangular load, a rectangular load, i.e. load case 4, is applied. 
The rectangular load is adjusted so that the total area of each impulse is equal to the 
area for an impulse created by the continuous triangular load, see Figure 8.31. 
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Figure 8.31: Rectangular load compared with the continuous triangular load. 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2007:8 69

From Figure 8.31 it is clear that the two types of loads have very different 
characteristics, even if the total impulse is the same. The continuous triangular load is 
never really unloaded, which is the case for the rectangular load. During this period 
when the system is unloaded, the system is allowed to oscillate with free oscillation 
and this may also be allowed during a real train load. The analysis of the rectangular 
load shows it has similar behaviour as the continuous triangular load, with the 
difference that the magnitude for the system response for the rectangular load is larger 
in all cases, see Figure 8.32 - Figure 8.35. This is explained in the same way as for the 
case in the previous section, i.e. that the impulse area is larger at the peak for the 
rectangular load. 
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Figure 8.32: Displacement for the rectangular load compared with the continuous 
triangular load with β=0.9. 
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Figure 8.33: Acceleration for the rectangular load compared with the continuous 
triangular load with β=0.9. 
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Once again it can be seen that when a load with a β close to 1 is applied on              
the system the system response coincide and remembering the results from                           
Figure 8.20 - Figure 8.21, the sinusoidal load gave a response with a magnitude 
somewhere between the continuous triangular and rectangular load for β=0.9. 
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Figure 8.34: Displacement for the rectangular load compared with the continuous 
triangular load with β=0.1. 
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Figure 8.35: Acceleration for the rectangular load compared with the continuous 
triangular load with β=0.1. 

For β=0.1 the rectangular load generates even more drastic oscillation than the 
continuous triangular load. An explanation for this may be that the change in loading, 
that becomes more dramatic when going from the sinusoidal load to the continuous 
triangular and finally the rectangular, has bigger influence for lower velocities. Also 
for the rectangular load the phenomena with β=1/(2n+1) occurs. The maximum and 
minimum values of displacement and acceleration for β <1, are listed in Table 8.6. 
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Table 8.6:  Maximum and minimum values of displacement and acceleration for 
the damped case, load case 4. 

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Umax 0.0487 0.0972 0.0632 0.0487 0.0296 0.0487 0.0566 0.0776 0.1271 

|Umin| 0.0160 0.0719 0.0359 0.0299 0.0043 0.0224 0.0350 0.0547 0.1036 

Amax 0.1531 0.4700 0.2478 0.1812 0.07509 0.1531 0.2117 0.3422 0.6701 

|Amin| 0.1415 0.4704 0.2353 0.1960 0.0797 0.1469 0.2290 0.3581 0.6775 
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Figure 8.36: Variation in maximum and minimum displacements with changing β for 
the damped load cases 3 and 4. 

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
β

A
cc

el
er

at
io

n 
[m

/s2 ]

max-3 min-3 max-4 min-4

 

Figure 8.37: Variation in maximum and minimum accelerations with changing β for 
the damped load cases 3 and 4. 
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8.2.4 Double triangular load 

This case is a modification of the previous load and also here the same total area of 
the impulse is kept equal between the two loads. The difference here is that the 
triangular load is divided so that two impulses have the same total area as the 
rectangular load. The spacing between the impulses is then increased so that the load 
starts to resemble the real bogie axle loads from the train. 

0 0.5 1 1.5 2 2.5 2.73
0

0.2

0.4

0.6

0.8

1

Time [s]

Lo
ad

 [N
]

Rectangular Double triangular[p0]x

 

Figure 8.38: Comparison between rectangular and double triangular load. 

In this part of the analysis it is of interest to find out what influence the frequency fp2, 
i.e. the local frequency in the double triangular load, has on the total system response. 
This load case represents the intermediate coaches in the train and to be able to make 
any conclusions, the worst possible case is investigated, which is when β2= fp2/ fn=1. 
The number of intermediate coaches used in the HSLM-A varies between 11-18. By 
analysing different relationships between fp1 and fp2 it could be seen during how many 
impulses the system response is still growing. The analysis shows that already at the 
ratio  fp1/fp2 ~6 the system response has stopped to grow within the minimum number 
of intermediate coaches, i.e. 11 coaches. It should be remembered though that this 
result is obtained with no concern taken to the power car or end coach.  
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Figure 8.39: Maximum displacement is reached within minimum number of 
intermediate coaches already when fp1~6fp2, β2=1.0. 

As can be seen in Figure 8.39, the system response stabilizes and reaches maximum 
value of the system response after only a few loading cycles when the ratio between 
fp1 and fp2 is close to 6. Compare this to when the ratio between fp1/fp2 = 3, when the 
maximum displacement is not reached until the number of 22 intermediate coaches 
has passed, see Figure 8.40. 
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Figure 8.40:  When fp1=3fp2, the number of intermediate coaches reaches 22 until the 
maximum displacement is obtained, β2=1.0. 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:8  74 

8.2.5 Train load, HSLM-A1 

The last load case applied on the system is the complete train load based upon the 
train load HSLM-A, see Section 6.1.2. Only results from one train load are presented 
in this section, HSLM-A1, for β=0.2 and β=0.9. Other results are presented in 
Appendix E.4. The values of β are based on that the frequency fp1, i.e. the distance 
between the bogie axle loads, is the main frequency for the applied load. However, the 
total train load can be divided into 5 different β -values, see Figure 8.41. All the 
different spacing between the axle loads generates different β -values. The spacing for 
the axle loads on the power car, and the spacing between the power car and the end 
coach is a fixed distance and will be the same during the analysis. The spacing D and 
d, which represent the distance for which the frequency fp1 and fp2 respectively are 
based on, varies between the different train loads. The aim with the analysis in this 
section is to show that it is possible to describe the system response in a beam loaded 
in midspan, with a SDOF-system. The results from the train loads are compared with 
results calculated with ADINA, and are presented in Chapter 10. 
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Figure 8.41: Different β-values related to different axle loads. 
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Figure 8.42: Displacement for train load HSLM-A1, β=0.2.  
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Figure 8.43: Acceleration for train load HSLM-A1, β=0.2. 
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Figure 8.44: Displacement for train load HSLM-A1, β=0.9. 
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Figure 8.45: Acceleration for train load HSLM-A1, β=0.9. 

The figures above clearly indicate that different parts of the train load are dangerous 
for different values of β. As can be seen in Table 8.7 the frequency ratio varies a lot 
depending on the velocity of the train and location of current β.  

Table 8.7:  Different β-values generated by HSLM-A1. Here β= β1. 

A1 D=18m d=2m   N=18 P=1.7N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 0.9 1.8 2.7 2.97 3.6 4.5 5.4 6.3 7.2 8.1 

βc1= 0.13 0.26 0.39 0.43 0.51 0.64 0.77 0.90 1.03 1.16 

βc2= 0.6 1.2 1.8 2 2.4 3 3.6 4.2 4.8 5.4 

βc3= 0.51 1.02 1.53 1.70 2.04 2.55 3.06 3.57 4.09 4.60 

In Appendix E.3 all the values of the five different β for the different train loads are 
presented. 

These variations in β makes it difficult to predict the structural responses. For 
instance, it would be easy to consider that the most severe response would appear for 
β≈1, but instead it appears already at β=0.2 for HSLM-A1. In Figure 8.42 it can be 
seen that the maximum response takes place very early in the response history, and 
according to Table 8.7 both βc2 and βc3 are close to 1. Even though no results are 
presented, analysis in SDOF is made for all the train loads HSLM-A1-10, and the 
analysis clearly shows that this variation of β has great influence. Generally, except 
for HSLM-A1-2, the most dangerous ratio for each load case is β=0.5 and is 
generated by the intermediate coaches. For HSLM-A1-2 the maximum response 
occurred for β=0.2, where the response for HSLM-A2 was the total maximum of all 
cases and generated by the power car and end coach. It can also be seen that 
displacements and accelerations have the same decisive β-values, i.e. the maximum 
occurs for the same value of β. It should still be remembered that in this case the 
resonance velocity is based upon β=β1. 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2007:8 77

9 Finite element analysis 

9.1 The finite element model 

The finite element model abbreviated as FE-model is created in the finite element 
program ADINA, see ADINA (2004). The FE-model is produced with regard to the 
investigated SDOF system, where the SDOF system is transformed to FE-model by 
the transformation factors in Section 4.3. The FE-model is modelled as a simply 
supported beam.  

 

9.1.1 Geometry 

The beam is chosen to have the length L=10 m and a cross-section with a width     
b=1 m and a height h=1 m, see Figure 9.1.  

 

Figure 9.1: Shows the geometry for the chosen beam.  

 

9.1.2 Material 

The material is modelled as isotropic and linear elastic, where the strains and 
displacements are assumed to be small. The mass and modulus of elasticity is 
calculated so that the first natural frequency f1 of the beam is equal to one. First the 
mass is calculated from Equation (4.6) to m=2.06 kg. Then inserting Equation (4.6) 
into Equation (4.3), the modulus of elasticity can be calculated to E=10013 N/m2, see 
Appendix F.1. Poisson’s ratio is set to υ=0.2, according to Swedish concrete codes.  

 

9.1.3 Boundary conditions 

The FE-model is modelled as a simply supported beam, where translation of the left 
boundary is fixed in the x-, y- and z-direction and translation of the right boundary is 
fixed in y- and z-direction. The FE-model is also fixed in x-, y-rotational degrees of 
freedom, see Figure 9.1.  
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9.1.4 Elements 

The FE-model consists of 2D beam elements, which are a 2-node Hermitian beam, see 
Figure 9.2, with constant cross-section and six degrees of freedom at each node. The 
beam is divided into a mesh of twenty equally sized elements, which with a total 
length of 10 m gives an element size of 0.5 m. The elements are formulated based on 
the Bernoulli-Euler beam theory.  

 

Figure 9.2:  Beam element with constant cross-section. 

 

9.1.5 Analysis methods 

9.1.5.1 Static analysis 

The linear static equilibrium for the finite element model in ADINA is: 

      PKU =  (9.1) 

The static analysis is solved in ADINA by using a direct solution method, where the 
stiffness matrix is assumed to be symmetric and positive definite. The equation solver 
used in ADINA is a sparse matrix solver, which according to ADINA (2004) are one 
or two orders of magnitude faster than other available solution methods based on 
Gauss elimination. The solver is also very reliable and robust.  

 

9.1.5.2 Frequency analysis 

The natural frequencies and the mode shapes of vibration of the FE-model are 
calculated in ADINA by solving the eigenvalue problem: 

      iii MK φωφ 2=  (9.2) 

where K is the stiffness matrix corresponding to the time the solution start, M is the 
mass matrix corresponding to the time of solution start, ωi and φi are the circular 
frequency and mode shape, respectively, for mode i. Note that the frequencies are 
extracted in the eigenvalue solution in numerically ascending sequence. The 
eigenvectors are M-orthonormal, i.e. orthogonal and with a length equal to one: 

      1=i
T
i Mφφ  (9.3) 

There are several solution methods to choose between when deciding how ADINA 
should calculate the frequencies and mode shapes. The used method is the subspace 
iteration method, where the starting subspace is generated by the Lanczos method, see 
Bathe (1996). The subspace iteration method is default in ADINA.  
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9.1.5.3 Linear dynamic analysis 

The following procedures are available in ADINA for solution of the finite element 
equations in a linear dynamic analysis, and they are described in Chapter 5. The 
procedures are the central difference method, Newmark method and mode 
superposition. The Newmark and mode superposition method are solved by the 
trapezoidal rule.  

 

9.1.6  Damping 

The damping is chosen to be 2.5 %, i.e. the same as in the SDOF model. When using 
the central difference method and Newmark method, the damping must be modelled 
as Rayleigh damping, see Section 5.1.3. Using the mode superposition the modal 
damping can be set to the value 2.5 % for each mode, see Section 5.2.  

 

9.2 Load cases 

The FE-model is loaded by different load cases, which becomes more and more 
similar to the train model HSLM-A described in Section 6.1.3. This is done in order to 
compare results from SDOF and ADINA and to find out if there is a possibility to use 
SDOF instead or in conjunction with ADINA or similar finite element programs.  

 

9.2.1  Static analysis  

The FE-model in the static analysis consist of a point load P placed in the middle of 
the beam, the load has a magnitude of 1 N and the self-weight of the beam is not 
included, see Figure 9.3. This analysis is used to verify the model by comparing hand 
calculations and results from ADINA. Compared results are reaction forces, moments 
and displacements.  

 

Figure 9.3: Beam loaded by a point load. 
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9.2.2  Eigenvalue analysis 

The eigenvalue analysis is done to calculate the natural frequency fn,i, the eigenmode 
shapes φi and the participation factors, i.e. the amount of structural mass that is active 
in each eigenmode, for the FE-model. These calculations are done to verify the       
FE-model by comparing the results from hand calculations with the results from 
ADINA.  

 

9.2.3  Varying point load 

To be able to compare results from SDOF with ADINA, the loading in the FE-model 
must be the same as in the SDOF system. Therefore the sinusoidal load shown in 
Figure 7.5 is used in the FE-model to be compared with SDOF. The load is applied 
and oscillated in the middle of the beam and the results are checked for both 
undamped and damped FE-models, see Figure 9.4. The compared results in this and 
the following load cases are the displacements, velocities and accelerations. The 
responses are also compared for different solution methods to dynamic problems, 
where the investigated methods are the explicit time integration, implicit time 
integration and mode superposition. The comparison between the different solution 
methods is made in order to verify for which method that the results are most similar 
to the SDOF results. This is done in order to limit the number of analysis methods 
down to just one. Also a convergence analysis has been made to find how the time 
step affect the solution obtained. 

 

Figure 9.4: Beam loaded by a varying point load applied in the middle of the beam.  

The FE-model is also loaded by the same train load that is modelled in SDOF, see 
Section 7.3.4. The train load is applied in the same way as above, see Figure 9.4, but 
here only the damped FE-models and SDOF systems are compared. 

  

9.2.4  Single travelling point load 

To have a loading that resembles a real train load, the load needs to travel along the 
beam. Therefore the load in the FE-model is modelled as a point load travelling along 
the beam with the velocity v. The first travelling load consists of a one point load, 
which has a magnitude of P=1.7 N, see Figure 9.5. The single travelling load is 
compared to the response of a SDOF system.  
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Figure 9.5: Single travelling point load. 

 

9.2.5  Double travelling point load 

The loading in the FE-model is modified from one travelling point load to two point 
loads travelling along the beam with velocity v, see Figure 9.6. The point loads have 
both the magnitude of P=1.7 N. The spacing between the loads are set to 2 m, which 
is the same spacing as between the bogie axels in the train model HSLM-A1, see 
Section 6.1.3. The double travelling load is also compared to the results from a SDOF 
system.  

 

 

Figure 9.6: Double travelling point load. 

 

9.2.6 Travelling power car load, HSLM-A1 

The loading in the FE-model is further modified and now consists of four travelling 
point loads that are travelling along the beam with the velocity v, see Figure 9.7. The 
point loads all have the magnitude of P=1.7 N.  The loading in this case is describing 
the power car in the train model HSLM-A1, which is shown in Figure 6.1. The 
travelling power car load is also compared to the results from SDOF system. 
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Figure 9.7: Travelling power car load. 

  

9.2.7 Travelling train load, HSLM-A1 

The last examined loading in the FE-model is the whole train load model HSLM-A1, 
where the loads are described by travelling point loads as in the previous load cases. 
The point loads have all the magnitude of P=1.7 N. The train load model HSLM-A1 
is also examined for different velocities and compared with the response of the train 
load used in the SDOF system, see Section 7.3.4.    
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10 Results of finite element analysis 

10.1 Verification of the model 

The verification of the FE-model is done by comparing results of hand calculations, 
see Appendix F.1, where displacement, moment, reaction forces and the natural 
frequencies are compared. The model is also verified by comparing the participation 
factors for different masses and element sizes. 

 

10.1.1 Static analysis 

The results from the static analysis show that the FE-model has similar results as the 
hand calculations. There is no difference between the results of the moment and 
reaction forces, while a negligible small difference appears for the displacements. The 
difference appears since the FE-model approximates the values of the displacement by 
solving Equation (9.1). But also when the number of elements decreases the modelled 
beam becomes stiffer and will therefore obtain a somewhat smaller displacement, see 
Table 10.1. 

Table 10.1: Comparison of displacement, moment and reaction forces. 

Model Displacement [mm] Error [‰] Moment [Nm] Reaction force [N]

Beam Theory 24.97 - 2.50 0.50 

20 Beam Elements 24.97 0.001 2.50 0.50 

800 Beam Elements 24.97 0.003 2.50 0.50 
 

10.1.2 Frequency analysis 

The frequency analysis for the finite element model is analysed with both a consistent 
and lumped mass. The results of the analysis show that the case with a lumped mass 
coincides with the values that are calculated according to the beam theory, described 
in Chapter 4. The result also shows that 20 elements give a good approximation of the 
natural frequency, while 800 elements give the same values on the natural frequency 
as in the beam theory.    
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Table 10.2: Comparison of natural frequencies for a FE-model with 20 and 800 
beam elements. 

Mode 
Number 

 

Beam 
Theory 

[Hz] 

20 or 800 
Elements. 
Consistent 
mass [Hz] 

Error 

[%] 

20 Elements. 
Lumped 

mass [Hz] 

Error 

[%] 

800 
Elements. 
Lumped 

mass [Hz] 

Error 

[%] 

1 1.00 1.00 0.41 1.00 0.00 1.00 0.00

2 4.00 3.94 1.61 4.00 0.00 4.00 0.00

3 9.00 8.68 3.50 9.00 0.00 9.00 0.00

4 16.00 15.04 5.98 16.00 0.01 16.00 0.00

5 25.00 22.77 8.90 24.99 0.03 25.00 0.00

6 36.00 31.64 12.12 35.98 0.07 36.00 0.00

7 49.00 41.41 15.49 48.93 0.13 49.00 0.00

8 64.00 51.89 18.93 63.84 0.25 64.00 0.00

9 81.00 62.91 22.33 80.65 0.43 81.00 0.00

10 100.00 74.36 25.64 99.27 0.73 100.00 0.00

The first 19 vertical natural frequencies for a FE-model with a lumped mass and 
modelled with 20 or 800 elements are shown in Appendix F.2. The results show that 
the frequencies are similar except for the last 9, but those frequencies are less 
important to the responses of the FE-model since the amount of structural mass that is 
active in each eigenmode is higher in the first eigenmodes, see Appendix F.3.    

 

10.2 Comparison of different calculation methods  

The results from the static- and the frequency analysis of the FE-model show that it is 
possible to model the beam with 20 elements. This is also used in the following 
analyses. The mass is chosen to be modelled with lumped mass and this because it 
gives better response on the natural frequencies and will therefore give a better 
response of the examined displacements, velocities and accelerations.         

 

10.2.1 Undamped beam loaded by a harmonic load 

In Figure 10.1 and Figure 10.2 the displacements and accelerations from an undamped 
beam loaded by sinusoidal load shows that the explicit time integration for the        
FE-model gives results that do not coincide with the results from the SDOF system. 
While the results obtained using the implicit time integration and mode superposition 
in the FE-model have perfect accuracy compared to the results obtained in the SDOF 
system. The velocities are also compared and correspond well to each other, see 
Appendix F.4. The results from the implicit integration method and the mode 
superposition method are similar, since both methods use the Newmark trapezoidal 
rule.   
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Figure 10.1: Displacement for an undamped beam loaded by a sinusoidal load with 
β=0.9.    
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Figure 10.2: Acceleration for an undamped beam loaded by a sinusoidal load with 
β=0.9.  

  

10.2.2 Damped beam loaded by a harmonic load 

In Figure 10.3 and Figure 10.4 the displacements and accelerations from a damped 
beam loaded by sinusoidal load shows that the implicit time integration and the mode 
superposition method for the FE-model gives results that coincides with the results 
from the SDOF system. The velocities are also compared and they correspond to each 
other, see Appendix F.5. The results in this section also verifies that the statement 
about the equivalent damping ce made in Section 4.3.3 is correct. 
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Figure 10.3: Displacement for a damped beam loaded by a sinusoidal load with 
β=0.9.  
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Figure 10.4: Acceleration for a damped beam loaded by a sinusoidal load with 
β=0.9.  

The results from the implicit integration method and the mode superposition method 
are similar, since both methods use the Newmark trapezoidal rule.  Further analyses 
are only made with the mode superposition method, because it is easier to model the 
damping with this method, than for the implicit time integration method. As 
mentioned earlier, in the implicit method the damping must be modelled as Rayleigh 
damping, while in the mode superposition method the damping can be introduced 
directly to the eigenfrequency modes. In the problem modelled here, the results from 
using Rayleigh damping are similar to those when using modal damping, but if the 
analysed FE-model was more complex the results would start to differ. The reason is 
that in the Rayleigh damping the damping ratio varies for different eigenmodes, but in 
this case the amount of structural mass that is active in the first eigenmodes are high 
and therefore the higher modes has less importance to the response, see Appendix F.3.
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10.2.3 Convergence analysis 

A convergence analysis for the damped FE-model shows that the time step of 0.01 s 
gives similar results as for the time step 0.001 s. Therefore it is concluded that for the 
problem studied here the mode superposition method needs only to have a time step 
of 0.01 s to have acceptable results. The displacement and the acceleration for the 
convergence analysis are shown in Figure 10.5 - Figure 10.6. The result for the 
velocity is the same as for the displacement and acceleration see Appendix F.7. 
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Figure 10.5: Convergence analysis of the displacement for a damped beam loaded 
by a sinusoidal load with β=0.5.  
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Figure 10.6: Convergence analysis of the acceleration for a damped beam loaded by 
a sinusoidal load with β=0.5.  

For the undamped FE-model, the convergence analysis shows similar results 
regarding the time step as for the damped FE-model, see Appendix F.6. 
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10.2.4 Comparison of a varying point load 

In this section the two systems are excited by HSLM-A1, see Figure 7.9, and the 
results from the SDOF and ADINA analysis shows that the compared displacements 
are very similar, see Figure 10.7, while the accelerations first starts to coincide for low 
β-values. Figure 10.8 shows that the acceleration for β=0.2. Both figures show only 
the first 20 seconds of the analysis time and the results from all comparison of 
displacements, velocities and accelerations are presented in Appendix F.7. The 
velocities are similar for β ≤0.7 but after that the difference starts to grow. The 
differences that appear are due to that ADINA includes more mode shapes in analysis, 
compared with SDOF that only has 1 mode shape, see Section 4.1. 
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Figure 10.7: Displacement from dynamic analysis of a damped beam loaded by 
varying point load HSLM-A1 with β=0.2. 
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Figure 10.8: Acceleration from dynamic analysis of a damped beam loaded by 
varying point load HSLM-A1 with β=0.2. 
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10.3 Comparison of travelling point loads 

The travelling point load describes in a more realistic way the loading from a train. 
When comparing the results from the travelling point load with the SDOF system, 
large differences in the response appeared. Therefore the loading in SDOF is modified 
and the results are again compared with a travelling point load. The result from the 
first SDOF analysis is called SDOF 1 and the result from the modified analysis is 
called SDOF 2. The travelling point load starts first with a single load and becomes 
thereafter more complex. However, due to the limited time for the master’s thesis, the 
whole train model HSLM-A is not modified in this report. Also only velocities of the 
travelling point loads generating values of β=0.2, 0.5 and 0.9 are analysed. 

 

10.3.1 Single travelling point load 

The single travelling point load is compared with two different load cases in the 
SDOF system. The first load, SDOF 1, has the same loading time as the travelling 
load has in the FE-model. Here the time t1 is the required time for the single travelling 
load to move between two adjacent nodes. The second modified load SDOF 2 has the 
loading time t2, which is the time for the single travelling load to move the distance of 
10 m along the beam, see Figure 10.9.   

 

Figure 10.9: The change of loading time for the SDOF system. 

The change of the loading time from t1 to t2 in the SDOF system, results in a response 
for the displacement and acceleration more similar to the response from the analysis 
of the FE-model, see Figure 10.10 - Figure 10.11. 
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Figure 10.10: Comparison of displacements between different load cases of a single 
point load with β=0.9. 
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Figure 10.11:  Comparison of accelerations between different load cases of a single 
point load with β=0.9. 

The responses for β=0.9, shown in the figures above, are not only similar in 
amplitude but also almost in phase, but in the lower β-values the load SDOF 2 has a 
small phase angular difference compared to the results of the FE-model. The 
responses of load SDOF 1 are out of phase by an angle of about 90˚-180˚ and, with 
the exception of β=0.2, it generally has lower amplitudes on the response, see    
Appendix F.8.  
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10.3.2 Double travelling point load 

The double travelling point load is compared with two different load cases for the 
SDOF system. The first load SDOF 1 has the same loading time as the travelling load 
has in the FE-model. The duration of each triangular load pulse is set to t1, i.e. the 
required time for the single travelling load to move between two adjacent nodes. As 
described earlier in Section 9.1.4, the sizes of the beam elements are 0.5 m. The time 
between the two loads corresponds to the spacing within the bogie axle loads in 
HSLM-A1, where the spacing is 2 m, see Figure 10.12. 

 

Figure 10.12:  The modelled load SDOF 1. 

The second modified load SDOF 2 has a loading history of a superposition of two 
triangular loads. The loading time for the triangular loads is t2, which is the time for 
the single travelling load to move the distance of 10 m along the beam. The second 
triangular is delayed with the time t3 that corresponds to the spacing within the bogie 
axles in the train model HSLM-A1, where the spacing is 2 m, see Figure 10.13.  

 

Figure 10.13:  The modelled load SDOF 2. 

The change in loading from SDOF 1 to SDOF 2 for the system shows the same 
phenomena as for the comparison of the single travelling load, see Section 10.3.1. The 
results show that the response of the displacement and acceleration becomes more 
similar to the response from the analysis of the FE-model, see                             
Figure 10.14 - Figure 10.15.  
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Figure 10.14:  Comparison of displacements between different load cases with β=0.9. 
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Figure 10.15:  Comparison of accelerations between different load cases with β=0.9. 

The responses for β=0.9, shown in the figures above, are not only similar in 
amplitude but also almost in phase, but in the lower β-values the load SDOF 2 has a 
small phase angular difference compared to the results of the FE-model. The 
responses of load SDOF 1 are out of phase by an angle of about 90˚-180˚. Further, it 
generally has lower amplitudes on the response, except for the velocity and the 
acceleration, when β=0.2, and for the acceleration when β=0.5, see Appendix F.9.
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10.3.3 Travelling power car load, HSLM-A1 

The travelling power car load is compared to two different load cases in the SDOF 
system. The first load SDOF 1 has the same loading time as the travelling load has in 
the FE-model. Here the time t1 is the required time for the single travelling load to 
move between two adjacent nodes. The time delay between the four loads corresponds 
to the spacing within the bogie axle and between the two following bogie axles in the 
power car load HSLM-A1. The spacing between the axle loads is 3 m and 11 m 
respectively, see Section 9.2.6 and Figure 10.16. 

 

Figure 10.16:  The modelled load SDOF 1. 

The second modified load, SDOF 2, has a load history of a superposition of four 
triangular loads, where the triangular loads are combined in the same way as in  
Figure 10.13. The loading time for the triangular loads is t2, which is the time for the 
single travelling load to move the distance of 10 m along the beam. The second 
triangular is delayed with the time t3 that corresponds to the spacing within the bogie 
axle loads in HSLM-A1. The appearance time for the following combination of two 
triangular loads is delayed by the time that corresponds to a spacing of 1 m, i.e. since 
the length of the beam is 10 m, see Figure 10.17.  

 

Figure 10.17:  The modelled load SDOF 2. 

The change in loading from SDOF 1 to SDOF 2 for the system, has the same 
phenomena as for the comparison of the single travelling load and the double 
travelling load, see Section 10.3.1 - Section 10.3.2. The results show that the response 
of the displacement and acceleration becomes more similar to the responses from the 
analysis of the FE-model by using SDOF 2, see Figure 10.18 - Figure 10.19. 
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Figure 10.18:  Comparison of displacements between different load cases with β=0.9.
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Figure 10.19:  Comparison of accelerations between different load cases with β=0.9. 

The responses for β=0.9, shown in the figures above, are not only similar in 
amplitude but also almost in phase, but in the lower β-values the load SDOF 2 has a 
small phase angular difference compared to the results of the FE-model. The 
responses of load SDOF 1 are out of phase by an angle of about 90˚-180˚. Further, it 
generally has lower amplitudes on the response, except for the velocity and the 
acceleration, when β=0.2, and for the acceleration when β=0.5, see Appendix F.10.  
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10.3.4 Travelling train load, HSLM-A1 

The travelling load HSLM-A1 in ADINA is only compared with the train load that is 
not modified as in the previous load cases. The results from the analysis between 
SDOF and ADINA shows that the FE-model gives a larger response for all cases, 
except for β=0.2. Here the SDOF-model gives larger response in positive 
displacements and accelerations in general, see Figure 10.20 - Figure 10.21. The 
response of the SDOF system are out of phase compared to ADINA, see       
Appendix F.11. 
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Figure 10.20:  Displacement from dynamic analysis of a damped beam loaded by 
travelling train load HSLM-A1 with β=0.2. 
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Figure 10.21:  Acceleration from dynamic analysis of a damped beam loaded by 
travelling train load HSLM-A1 with β=0.2. 
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If ignoring the amplitude and only looking at the response shape, it can be seen that 
the response from the train load generally is well described by the SDOF system. 
When comparing the response, e.g. for β=0.5, the result from SDOF are normalized 
by factor s, it can be seen that the response shapes becomes very similar. The 
difference in phase angular is still unaffected. For this example with β=0.5              
the factor s is ~3 for all responses, see Figure 10.22 -Figure 10.23. 
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Figure 10.22:  Comparison of normalized displacements between SDOF and ADINA 
response for β=0.5. 
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Figure 10.23:  Comparison of normalized accelerations between SDOF and ADINA 
response for β=0.5. 
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11 Conclusions 

11.1 General 

In this thesis an attempt to make simplifications concerning calculations during 
dynamic analysis of railway bridges is made. A major part of the time was spent on 
literature studies and it soon got very clear that the analytical basic theory’s behind 
dynamic behaviour excited by harmonic loading is very well documented. As soon as 
the load starts to get more complicated and not so easily predefined the area is not as 
well documented. 

In this thesis large focus is put on what influence the frequency ratio β=ωp/ωn has on 
a SDOF system for different types of loading The calculations in this thesis are not 
intended as real values, but are only intended to act as mutual comparison with each 
other. The inputs have been chosen in order to simplify the comparison between 
different load cases. 

Different types of excitations have been studied in order to determine if some types 
are more critical or dangerous than others. Three different types of load shapes were 
used: sinusoidal, triangular and rectangular loads. By using different combinations a 
total of 5 load cases are examined. When determining which type of load that is more 
critical or dangerous the total impulse of the load pulse and loading frequency is kept 
constant. The analysis showed that the rectangular load had the most critical response. 
Why this is the most critical load is believed to depend on two reasons. First of all, 
this load has the maximum magnitude during the entire impulse, compared with the 
other examined loads that have maximum magnitude during only one ∆t. The second 
reason is how the load is applied and unloaded. The rectangular load is applied very 
suddenly and reaches maximum magnitude instantly and is also removed in the same 
way, while the continuous triangular and sinusoidal load grows until maximum 
magnitude during half the impulse time. The difference between the different load 
types was velocity dependent, i.e. dependent of the ratio between the frequencies β. 
During faster applied loads the response shapes were very similar, with only 
difference in magnitude, while the slowly applied loads have large differences both in 
shape and magnitude. This means that for fast applied loads, all load cases can be 
reasonably well described by a harmonic excitation, considering the response shape. 

As stated above the type of load has great influence on the response of the system, as 
well as the ratio between circular frequencies. It can also be seen that a combination 
by the two also seems to have great influence. For both the continuous triangular and 
rectangular load it could be seen that when the frequency ratio β=1/(2n+1) the 
response started to grow dramatically and when undamped even show resonance 
behaviour. Exact reason for this phenomenon is not clearly investigated. This 
phenomenon could not be seen during harmonic excitation so the type of loading 
clearly has an influence, and especially how the load is applied and unloaded. 

Double triangular loads were used to resemble the bogie axle loads generated by the 
intermediate coaches. The sensitivity of the relation between the two frequencies fp1 
and fp2, where fp1 and fp2 are the frequencies based upon the distances D and d in the 
train load model HSLM-A, was investigated. It is shown that already when fp1~ 6fp2 
the maximum displacements are obtained for less number of intermediate coaches 
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than the minimum number in the HSLM-A. It is also shown that for most of the train 
load cases the maximum response was generated by the intermediate coaches. By the 
fact, that for most load cases fp1>6 fp2 it is reasonable to think that it is possible the 
limit he number of intermediate coaches that are included in the analysis, and thereby 
limit the analysis time consumed.  

The analyses made in the SDOF system are compared with result from FE-model. The        
FE-model consists of a deformable body, and in this case a simply supported beam, 
that is transformed into a single degree of freedom system by using transformation 
factors. These transformation factors are applied on the mass m, stiffness k, and 
applied load p. The results between the two systems coincide very well. For the 
damping c it is assumed that the transformation into an equivalent ce will be generated 
by the transformed values of the mass and stiffness. This assumption is verified by 
comparison between results calculated with the unmodified c with calculations with 
the equivalent value ce and proved to be very reasonable.  

By the different spacing between the bogie axle loads in the train model HSLM-A, it 
will be generated different frequency ratios β depending on the location of the spacing 
and the train velocity. When the analysis was made by use of SDOF for all the train 
loads HSLM-A1-10, the analysis clearly shows that this variation of β has great 
influence. It is shown that the maximum response occurs for HSLM-A2 with a train 
that has a velocity generating β=0.2. The responses are generated by the power car 
and end coach and it can also be seen that the displacements and accelerations have 
the same decisive β-values, i.e. the maximum occurs for the same value of β. Based 
on this it is clearly important to consider all different β-values and not only those 
generated by the spacing D and d in HSLM-A 

HSLM-A1 was considered as a varying point load, and applied and compared 
between the SDOF system and FE-model. The response for displacements the results 
coincide very well, while for the accelerations the response coincides in terms of 
response shape but there is a large difference in magnitude. No clear explanation can 
be given for why the large difference appears for the acceleration, but one reason may 
be that the transformation factors not entirely capture the behaviour of the beam, 
which causes this difference. When applying the travelling load to the FE-model and 
comparing the results with the same point load as above, they can at first seem to have 
no similarities at all. However, after normalizing the values from the SDOF system it 
seems like the transformation from a deformable body into a SDOF system is a good 
approximation when interested in the system response shape.  

In an attempt to make the SDOF system able to resemble the travelling point loads in 
a better way, the time that the load is applied were modified. It shows that by 
experimenting with load time and shape, it is possible to describe the response from at 
least up to four travelling point loads that is intended to resemble the power car in 
HSLM-A.  

Based on analysis of the analytical solution it has been shown that the, commonly 
used Dynamic Amplification Factor DAF not are satisfying when looking at short 
term dynamic loading, since it neglects the time dependence of the damping and 
therefore will underestimate the maximum response.  
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11.2 Further investigations 

To be able to increase the understanding about the dynamic behaviour, the reason why 
the system response have a growing tendency when the ratio between the circular 
frequencies β=1/(2n+1) needs to be investigated further. 

Previously it could be seen that the results from modifying the SDOF system by 
superposition of triangular loads gave a satisfactory result in terms to resemble the 
moving power car. Therefore the entire HSLM-A needs to be modified to determine if 
this captures the behaviour in a better way. 

To verify this method real material properties and load magnitudes should be 
introduced into the expressions and determine if the conclusion stated above still 
withhold. The method should also be investigated for the behaviour if the geometrical 
properties or boundary conditions change. In order to make the analysis method even 
more complex the response of moments and section forces should be included. 
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Appendix A Continuous systems 
In this appendix an attempt to, in a simplified way, present some background to the 
calculations of continuous systems, or systems with multi degree of freedom. How 
these calculations, which are expressed in terms of energy expression, e.g. Hamilton’s 
principle, can be transferred into one-dimensional continuous systems.  By using the 
expressions for the one-dimensional system calculating the eigenvalue problem the 
eigenfrequency expression seen in Section 4.1 can be stated. The chapter is entirely 
based on Géradin and Rixen (1992). 

The theory presented in Chapter 3 and systems represented by discrete models are 
usually an idealized view. To be able to formulate the governing equations for a 
continuous system, the theory of continuum mechanics have to be applied. Here the 
equation of motion is expressed in terms of a displacement field: 

  u(x,y,z,t)  v(x,y,z,t)  w(x,y,z,t) 

The space variables x, y, z are continuous and therefore the system contains an infinity 
of degree of freedom. Continuous systems may be considered as limiting cases of 
discrete systems and therefore, the specific geometry of the continuous bodies allows 
simplified formulations of the equation of motion, only expressed by one or two 
displacement components, and themselves as functions of one or two space variables 
and time.  

 

A.1 One-dimensional continuous systems 

Beams in bending are a physical system that is included in a category called one-
dimensional systems. The reason for this is that the displacement field is supposed to 
occur in one plane and is denoted: 

u(x,t)  v=0  w(x,t) 

for either longitudinal or transverse motion. The equation of motion for such type of 
system can be obtained by Hamilton’s principle, or it is also possible to generalize the 
formulation of the Lagrange equations to continuous one-dimensional systems. 

The Lagrange equations are deduced from Hamilton’s principle 

∫ =
2

1

0
t

t

dtLδ  (A.1)

Where pk WWL −=  is the Lagrangian of the system. By integration over the one-
dimensional system of length l the kinetic and potential energies can be stated as: 

( )∫=
l

kk dxtxW
0

,W                    ( )∫=
l

pp dxtxW
0

,W (A.2)
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If we suppose that the displacement field is one-dimensional and calling the 
displacement component v, it can generally be said that: 

- The potential energy Wp is a function of the displacement v and its first and 
second derivatives with respect to the space variable.  

( )vvvWW pp ′′′= ,,  (A.3)

- The kinetic energy Wk is always a function of the velocity field v& , but may 
also depend on the instantaneous configuration v, it is first derivative in space 
and the associated velocity v′& . 

( )vvvvWW kk ′′= && ,,,  (A.4)

The general dynamic behaviour in terms of Lagrangian density can be stated as: 

( )vvvvvLWWL kk ′′′′=−= &&,,,,  (A.5)

Expressing the variation δL of Lagrangian density, the expression becomes: 

∫ ∫ =





 ′

′∂
∂

+
∂
∂

+′′
′′∂

∂
+′

′∂
∂

+
∂
∂2

1 0

0
t

t

l

dxdtv
v
Lv

v
Lv

v
Lv

v
Lv

v
L

&
&

&
&

δδδδδ  (A.6)

Using integration by parts, to express all variations in terms of virtual displacements, 
and that the application condition of Hamilton’s principle implies that δv(t1)= 
δv(t2)=0, it can be stated that: 

Equation of motion: 
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Boundary conditions: 

0=∂















′∂
∂

∂
∂

−







′′∂
∂

∂
∂

−
′∂

∂ v
v
L

tv
L

xv
L

&
 at 





=
=

lx
x 0

 (A.8)

and  
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A.2 Beam vibrations 

 

 

Figure A.1: Transverse vibrations of beams. 

Transverse vibrations of beams, see Figure A.1, are simplest described by using a 
model with the kinematic assumptions that: 

1. The beam cross section is not deformable. 

2. The transverse displacement on it is uniform and is limited to the displacement 
in the x-z plane.  

( ) 0, == vxww  (A.10)

3. The axial displacement components results from the rotation of the cross 
section. The rotation is such that the cross section remains orthogonal to the 
neutral axis.  

( )
x
wzzxu
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−=,  (A.11)

With the assumption of geometric linearity, the strain expressions can be written as: 
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Equation (A.12) shows that the assumption in Equation (A.11) is equivalent to 
neglecting the shear deformation of the material. This assumption, called Bernoulli 
assumption is described in Figure A.2. 

 

Figure A.2: Bernoulli’s kinematic assumption. 

The strain energy of the system can be written as: 

( )∫ ∫ 







∂
∂

=







∂
∂

=
l l

p dx
x
wxEIdxdA

x
wEzW

0 0

2

2

22

2

2
2

int, 2
1

2
1  

               where ( ) ∫= A
dAzxI 2  

               EI is the bending stiffness of the cross section. 
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The kinetic energy is given by: 

( )
( )( )

∫∫

∫ ∫ ∫ ∫

+






∂
∂

=

=











+






=+=

ll

l

xA

l

xAk

dxAwdx
x
wI

dAdxw
x
wzdAdxwuW

0

2
2

0

0 0

2
2

222

2
1

2
1

2
1

2
1

ρρ

δ
δρρ

&

&
&

&&

 (A.14)

By introducing  

 m=Aρ the mass per unit of the beam length 

 r2=I/A where r is the gyration radius of the cross section 

We obtain the expression: 
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Here the first term describes the kinetic energy for vertical translation, while the 
second term describes the rotational kinetic energy of the cross section. 

To be able to compute the potential energy of the external forces, imagine, as can be 
seen in Figure A.1, that the beam is subjected to a distributed vertical load p(x,t) and 
distributed moments q(x,t) per unit length. At the beam ends, either the shear loads 
V or the bending moments M are applied or the displacements w or rotationsΦ are 
imposed. 

The potential associated with a bending moment M, shown in Figure A.3, can be 
computed as: 
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Figure A.3: Potential of a bending moment. 

and the potential of external load is written as: 
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(A.17
)

Now applying either Hamilton’s principle or Lagrange equation with w as the only 
independent function, the equation of motion can be stated as: 
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with the boundary conditions at x=0 and at x=l 

- on the transverse displacement 

Vq
x
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wmrVww =−
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- on the rotation 
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M
x
wEIM

x
w

=
∂
∂

=Φ=
∂
∂

2

2

or  (A.20)

Where M and T are, respectively, the bending moments and shear loads. 

The equation for free vibration of the beam is obtained from Equation (A.18) by the 
assumption of a harmonic motion w(x,t) = w(x)sinωt 

0222
2

2

2

2
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
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dx
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dx
wdEI

dx
d ωω  (A.21)

The kinetic assumption of no shear deformation remains valid provided that the ratio 
I/A=r2 remains small. It is thus consistent in this case to neglect the rotary inertia of 
the cross sections, so that the free vibration equation of the beam becomes: 
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2

2

2
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






mw

dx
wdEI

dx
d ω  (A.22)

With the associated boundary conditions at x=0 and x=l 

- on the displacement 









== 2

2

or0
dx

wdEI
dx
dVw  (A.23)

- on the rotation 

0or0 2

2

===
dx

wdEIM
dx
dw  (A.24)

When the bending stiffness EI and the mass per unit length m remain constant over 
the beam length, the eigenvalue problem can be stated as: 

 

02
4

4

=− w
EI
m

dx
wd ω  (A.25)
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A.3 Eigenmodes and frequencies for a uniform beam 

For a structure, in this case a beam, the eigenfrequencies are the frequencies for which 
the structure will vibrate of its own accord when exposed to a perturbation. The 
different shapes of the structure for the different eigenfrequencies are called 
eigenmodes, and each eigenmode is related to one specific eigenfrequency. 

To determine the beam response versus time the eigenmodes for a simply supported 
beam can be computed, by verifying the eigenvalue equation with the homogeneous 
boundary conditions. 

02
4

4

=− mu
dx

udEI ω  for 0 < x <l 

              02

2

==
dx

udu  at lx ,0=  

(A.26)

After normalization they can be expressed as: 

l
xn

ml
xu n

πsin2)()( =  where n = 1, 2, 3,…..  (A.27)

with the associated eigenvalues: 

( ) ( ) 4
42

ml
EInn πω =  (A.28)

In Figure 4.1, the three first eigenmodes for a simply supported beam are shown. The 
first eigenmode corresponds to the lowest eigenfrequency. 

 

Figure A.4: The three first eigenmodes for a simply supported beam. 

Normally, when a beam is subjected to a dynamic load, the load frequency will not 
coincide with the eigenfrequencies and therefore the resulting shape of deformation 
will not be the same as any of the eigenmodes. However, the dominating shape of 
deformation is usually the first eigenmode but it is influenced by higher modes. SDOF 
systems have only one eigenmode and hence there are no influences from higher 
modes. 

 

Second bending mode 

Third bending mode 

First bending mode 
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Appendix B Solution algorithms  

B.1 Newmark method 

Table B.1: Algorithm for Newmark method when having linear elastic behaviour, 
according to Bathe (1996). 

 

 

A: Initial calculations: 

1: Form stiffness matrix K , mass matrix M   and damping matrix C . 

2: Initialize U0 , U&0  and U&&0 . 

3: Select time step ∆t and parameters α and δ to calculate integration constants: 

50.0≥δ  ( )25.025.0 δα +≥  

20
1
t

a
∆

=
α

  
t

a
∆

=
α
δ

1   
t

a
∆

=
α

1
2   1

2
1

3 −=
α

a  

14 −=
α
δa   






 −

∆
= 2

25 α
δta  ( )δ−∆= 16 ta   ta ∆= δ7  

4: Form lumped stiffness matrix K̂ . 

CaMaKK 10
ˆ ++=  

B: For each time step: 

1: Calculate lumped loads at time t . 

( ) ( )UaUaUaCUaUaUaMPP tttttttttt &&&&&&
541320

ˆ ++++++= ∆+∆+  

2: Solve for displacements at time tt ∆+ . 

PUK tttt ˆˆ ∆+∆+ =  

3: Calculate accelerations and velocities at time tt ∆+ . 

( ) UaUaUUaU ttttttt &&&&&
320 −−−= ∆+∆+  

UaUaUU tttttt &&&&&& ∆+∆+ ++= 76  
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B.2 Central difference method 

Table B.2: Step-by-step solution with central difference method, according to 
Bathe (1996).  

 

A: Initial calculations: 

1: Form stiffness matrix K , mass matrix M   and damping matrix C . 

2: Initialize U0 , U&0  and U&&0 . 

3: Select time step t∆  ( crtt ∆≤∆ ). 

Calculate UtUtUUt &&& 0
2

00

2
∆

+∆−=∆−  

4: Form effective mass matrix M̂ . 

C
t

M
t

M
∆

+
∆

=
2
11ˆ

2  

B: For each time step: 

1: Calculate effective loads at time t . 
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M
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


∆
−−= 222 2

112ˆ  

2: Solve for displacements at time tt ∆+ . 

PUM ttt ˆˆ =∆+  

If required evaluate accelerations and velocities at time t . 

( )UUU
t

U tttttt ∆+∆− +−
∆

= 21
2
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( )UU
t

U ttttt ∆+∆− +−
∆

=
2
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Appendix C Derivation analytical solution 

C.1 Free vibration – damped system 

Free vibrations - Damped system 

)10=++ kuucum &&&  
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Insert weak damping ξ<1 

( ) 22 11 ξωξωξξωλ −±−=−±−= i  

Introduce damped angular frequency ωd 

21 ξωω −=d  

Insert λ into ⇒= tCeu λ  

( ) ( ) ( ) hdd
ttitit utBtAeeCeCetu dd =+=+= −−− ωωξωωωξω cossin21  
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C.2 Forced harmonic vibration – Load case 1 

)1sin0 tpkuucum pω=++ &&&  

Assume harmonic response: 
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Using that ( )ϕ+=+ xrxbxa sincossin  gives: 

( )θω −= tRu pp sin  

where 
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Set ( ) ⇒+= ph uutu  
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Set the initial conditions to: 
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C.3 Forced harmonic vibration – Load case 2 
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Using that ( )ϕ+=+ xrxbxa sincossin  gives: 

( )θω −= tRu pp cos  
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where 
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Now we need the solution to the system 
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This gives the solution 
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Set the initial conditions to: 
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Appendix D Examined load cases  
Table D.1: Shows the examined load cases.  

p(t)
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Load Case 1 

Harmonic load 
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Load Case 2 

Harmonic load 
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Load Case 3 

Continuous triangular 
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Load Case 4 

Rectangular 

f
p2

f
p1

p(t)
2p0

t
 

Load Case 5 

Double triangular 
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Appendix E Results of SDOF analysis 

E.1 Verification numerical solution, Load case 1 

β=0.1 umax umin vmax vmin amax amin 

Central D.M. 0.0270 -0.0262 0.0302 -0.0234 0.0957 -0.0944 

Analytical 0.0270 -0.0262 0.0302 -0.0234 0.0954 -0.0941 

error % 0.00 % 0.00 % 0.00 % 0.00 % 0.29 % 0.27 % 

       

 β=0.2 umax umin vmax vmin amax amin 

Central D.M. 0.0269 -0.0264 0.0579 -0.0512 0.1883 -0.2187 

Analytical 0.0269 -0.0264 0.0579 -0.0512 0.1877 -0.2181 

error % 0.00 % 0.04 % 0.00 % 0.00 % 0.35 % 0.28 % 

       

 β=0.4 umax umin vmax vmin amax amin 

Central D.M. 0.0399 -0.0355 0.1269 -0.1274 0.4559 -0.6066 

Analytical 0.0399 -0.0355 0.1269 -0.1274 0.4545 -0.6049 

error % 0.01 % 0.01 % 0.01 % 0.02 % 0.30 % 0.28 % 

       

 β=0.6 umax umin vmax vmin amax amin 

Central D.M. 0.0527 -0.0590 0.2450 -0.2577 1.3308 -1.0840 

Analytical 0.0527 -0.0590 0.2451 -0.2578 1.3266 -1.0794 

error % 0.02 % 0.02 % 0.04 % 0.04 % 0.31 % 0.42 % 

       

 β=0.8 umax umin vmax vmin amax amin 

Central D.M. 0.1044 -0.1077 0.5881 -0.5751 3.2812 -3.1306 

Analytical 0.1045 -0.1077 0.5887 -0.5756 3.2656 -3.1177 

error % 0.07 % 0.09 % 0.10 % 0.10 % 0.48 % 0.42 % 
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 β=1.2 umax umin vmax vmin amax amin 

Central D.M. 0.1041 -0.1008 0.7121 -0.7215 4.9828 -5.0757 

Analytical 0.1039 -0.1006 0.7109 -0.7203 4.9939 -5.0899 

error % 0.19 % 0.20 % 0.17 % 0.16 % 0.22 % 0.28 % 

       

 β=1.4 umax umin vmax vmin amax amin 

Central D.M. 0.0567 -0.0509 0.4130 -0.4043 2.8929 -3.2331 

Analytical 0.0566 -0.0508 0.4125 -0.4038 2.8963 -3.2365 

error % 0.16 % 0.16 % 0.12 % 0.12 % 0.12 % 0.10 % 

       

 β=1.6 umax umin vmax vmin amax amin 

Central D.M. 0.0321 -0.0390 0.2964 -0.2767 2.5246 -2.2302 

Analytical 0.0321 -0.0389 0.2961 -0.2764 2.5265 -2.2316 

error % 0.12 % 0.13 % 0.09 % 0.09 % 0.08 % 0.06 % 

       

 β=1.8 umax umin vmax vmin amax amin 

Central D.M. 0.0239 -0.0288 0.2178 -0.2389 2.1370 -1.9113 

Analytical 0.0239 -0.0287 0.2176 -0.2387 2.1380 -1.9115 

error % 0.13 % 0.13 % 0.08 % 0.07 % 0.05 % 0.01 % 

       

 β=2 umax umin vmax vmin amax amin 

Central D.M. 0.0212 -0.0205 0.1185 -0.2041 1.7935 -1.7744 

Analytical 0.0212 -0.0205 0.1185 -0.2040 1.7936 -1.7748 

error % 0.12 % 0.12 % 0.01 % 0.06 % 0.00 % 0.02 % 
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 β=4 umax umin vmax vmin amax amin 

Central D.M. 0.0078 -0.0073 0.0716 -0.0816 1.2787 -1.3087 

Analytical 0.0078 -0.0073 0.0718 -0.0816 1.2787 -1.3104 

error % 0.04 % 0.08 % 0.18 % 0.01 % 0.00 % 0.13 % 

       

 β=6 umax umin vmax vmin amax amin 

Central D.M. 0.0047 -0.0045 0.0502 -0.0524 1.1759 -1.1831 

Analytical 0.0047 -0.0045 0.0503 -0.0524 1.1758 -1.1844 

error % 0.06 % 0.09 % 0.24 % 0.11 % 0.01 % 0.11 % 

       

 β=8 umax umin vmax vmin amax amin 

Central D.M. 0.0034 -0.0032 0.0383 -0.0387 1.1230 -1.1344 

Analytical 0.0035 -0.0032 0.0385 -0.0388 1.1248 -1.1301 

error % 0.31 % 0.32 % 0.57 % 0.36 % 0.16 % 0.38 % 

       

 β=10 umax umin vmax vmin amax amin 

Central D.M. 0.0027 -0.0025 0.0309 -0.0307 1.0991 -1.1041 

Analytical 0.0027 -0.0025 0.0310 -0.0309 1.0981 -1.1030 

error % 0.60 % 0.56 % 0.58 % 0.66 % 0.09 % 0.10 % 

       

Mean Error       

β <1 0.02 % 0.03 % 0.03 % 0.03 % 0.35 % 0.33 % 

1< β ≤2 0.14 % 0.15 % 0.09 % 0.10 % 0.09 % 0.10 % 

β >2 0.25 % 0.26 % 0.39 % 0.29 % 0.05 % 0.21 % 

0< β ≤10 0.13 % 0.14 % 0.16 % 0.13 % 0.18 % 0.21  % 
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E.2 Verification numerical solution, Load case 2 

β=0.1 umax umin vmax vmin amax amin 

Central D.M. 0.05103 -0.00025 0.01695 -0.01644 0.01896 -0.01471 

Analytical 0.05103 -0.00025 0.01695 -0.01644 0.01896 -0.01470 

error % 0.00 % 0.12 % 0.00 % 0.00 % 0.00 % 0.00 % 

       

 β=0.2 umax umin vmax vmin amax amin 

Central D.M. 0.0517 -0.0011 0.0338 -0.0331 0.0728 -0.0643 

Analytical 0.0517 -0.0010 0.0338 -0.0331 0.0727 -0.0643 

error % 0.00 % 0.16 % 0.00 % 0.00 % 0.00 % 0.00 % 

       

 β=0.4 umax umin vmax vmin amax amin 

Central D.M. 0.0570 -0.0081 0.1003 -0.0891 0.3189 -0.3202 

Analytical 0.0570 -0.0081 0.1003 -0.0891 0.3189 -0.3203 

error % 0.00 % 0.00 % 0.00 % 0.00 % 0.01 % 0.00 % 

       

 β=0.6 umax umin vmax vmin amax amin 

Central D.M. 0.0734 -0.0221 0.1986 -0.2224 0.9237 -0.9715 

Analytical 0.0734 -0.0221 0.1986 -0.2224 0.9236 -0.9715 

error % 0.00 % 0.00 % 0.00 % 0.01 % 0.00 % 0.00 % 

       

 β=0.8 umax umin vmax vmin amax amin 

Central D.M. 0.1220 -0.0747 0.5250 -0.5412 2.9566 -2.8909 

Analytical 0.1220 -0.0747 0.5250 -0.5412 2.9566 -2.8907 

error % 0.01 % 0.00 % 0.01 % 0.00 % 0.00 % 0.01 % 
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 β=1.2 umax umin vmax vmin amax amin 

Central D.M. 0.1380 -0.0872 0.7846 -0.7599 5.3685 -5.4395 

Analytical 0.1380 -0.0872 0.7846 -0.7598 5.3685 -5.4392 

error % 0.00 % 0.00 % 0.00 % 0.01 % 0.00 % 0.01 % 

       

 β=1.4 umax umin vmax vmin amax amin 

Central D.M. 0.0901 -0.0428 0.4982 -0.4475 3.6329 -3.5566 

Analytical 0.0901 -0.0428 0.4982 -0.4474 3.6324 -3.5559 

error % 0.00 % 0.00 % 0.00 % 0.01 % 0.01 % 0.02 % 

       

 β=1.6 umax umin vmax vmin amax amin 

Central D.M. 0.0740 -0.0249 0.3232 -0.3916 2.9800 -2.7819 

Analytical 0.0740 -0.0249 0.3232 -0.3916 2.9796 -2.7815 

error % 0.00 % 0.02 % 0.00 % 0.00 % 0.01 % 0.01 % 

       

 β=1.8 umax umin vmax vmin amax amin 

Central D.M. 0.0694 -0.0118 0.2702 -0.3252 2.4631 -2.7021 

Analytical 0.0694 -0.0118 0.2702 -0.3252 2.4628 -2.7017 

error % 0.00 % 0.03 % 0.01 % 0.01 % 0.01 % 0.01 % 

       

 β=2 umax umin vmax vmin amax amin 

       

Central D.M. 0.0650 0.0000 0.2663 -0.2574 1.4898 -2.5654 

       

Analytical 0.0650 0.0000 0.2663 -0.2574 1.4894 -2.5652 

error % 0.01 % 0.00 % 0.00 % 0.00 % 0.03 % 0.01 % 
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 β=4 umax umin vmax vmin amax amin 

Central D.M. 0.0520 0.0000 0.1969 -0.1829 1.8047 -2.0528 

Analytical 0.0520 0.0000 0.1968 -0.1828 1.8048 -2.0514 

error % 0.01 % 0.00 % 0.01 % 0.03 % 0.00 % 0.07 % 

       

 β=6 umax umin vmax vmin amax amin 

Central D.M. 0.0501 0.0000 0.1793 -0.1693 1.8991 -1.9793 

Analytical 0.0501 0.0000 0.1792 -0.1692 1.8989 -1.9771 

error % 0.01 % 0.00 % 0.02 % 0.04 % 0.01 % 0.11 % 

       

 β=8 umax umin vmax vmin amax amin 

Central D.M. 0.0495 0.0000 0.1737 -0.1609 1.9369 -1.9550 

Analytical 0.0495 0.0000 0.1737 -0.1608 1.9369 -1.9530 

error % 0.01 % 0.00 % 0.00 % 0.04 % 0.00 % 0.10 % 

       

 β=10 umax umin vmax vmin amax amin 

Central D.M. 0.0492 0.0000 0.1684 -0.1579 1.9559 -1.9439 

Analytical 0.0492 0.0000 0.1683 -0.1579 1.9520 -1.9421 

error % 0.00 % 0.00 % 0.05 % 0.01 % 0.20 % 0.09 % 

       

Mean Error       

β <1 0.00 % 0.06 % 0.00 % 0.00 % 0.00 % 0.00 % 

1< β ≤2 0.00 % 0.01 % 0.00 % 0.01 % 0.01 % 0.01 % 

β >2 0.01 % 0.00 % 0.02 % 0.03 % 0.01 % 0.09 % 

0< β ≤10 0.00 % 0.02 % 0.01 % 0.01 % 0.01 % 0.03 % 
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E.3 Frequency relationships 

βC2 βC2 

βC3 

β2 β2 β2 β2 

β1 βC1 

(1) (2) (3) (3) (3) 

A1 D=18m d=2m   N=18 P=1.7N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 0.9 1.8 2.7 2.97 3.6 4.5 5.4 6.3 7.2 8.1 

βc1= 0.13 0.26 0.39 0.43 0.51 0.64 0.77 0.90 1.03 1.16 

βc2= 0.6 1.2 1.8 2 2.4 3 3.6 4.2 4.8 5.4 

βc3= 0.51 1.02 1.53 1.70 2.04 2.55 3.06 3.57 4.09 4.60 

           

A2 D=19m d=3,5m   N=17 P=2.0N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 0.54 1.09 1.63 1.81 2.17 2.71 3.26 3.80 4.34 4.89 

βc1= 0.14 0.27 0.41 0.45 0.54 0.68 0.81 0.95 1.09 1.22 

βc2= 0.63 1.27 1.90 2.11 2.53 3.17 3.80 4.43 5.07 5.70 

βc3= 0.54 1.08 1.62 1.80 2.16 2.70 3.23 3.77 4.31 4.85 

           

A3 D=20m d=2m   N=16 P=1.8N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 1.00 2.00 3.00 3.33 4.00 5.00 6.00 7.00 8.00 9.00 

βc1= 0.14 0.29 0.43 0.48 0.57 0.71 0.86 1.00 1.14 1.29 

βc2= 0.67 1.33 2.00 2.22 2.67 3.33 4.00 4.67 5.33 6.00 

βc3= 0.57 1.13 1.70 1.89 2.27 2.84 3.40 3.97 4.54 5.11 

           

           



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:8  124 

A4 D=21m d=3m   N=15 P=1.9N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 0.70 1.40 2.10 2.33 2.80 3.50 4.20 4.90 5.60 6.30 

βc1= 0.15 0.30 0.45 0.50 0.60 0.75 0.90 1.05 1.20 1.35 

βc2= 0.70 1.40 2.10 2.33 2.80 3.50 4.20 4.90 5.60 6.30 

βc3= 0.60 1.19 1.79 1.99 2.38 2.98 3.57 4.17 4.77 5.36 

           

A5 D=22m d=2m   N=14 P=1.7N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 1.10 2.20 3.30 3.67 4.40 5.50 6.60 7.70 8.80 9.90 

βc1= 0.16 0.31 0.47 0.52 0.63 0.79 0.94 1.10 1.26 1.41 

βc2= 0.73 1.47 2.20 2.44 2.93 3.67 4.40 5.13 5.87 6.60 

βc3= 0.62 1.25 1.87 2.08 2.50 3.12 3.74 4.37 4.99 5.62 

           

A6 D=23m d=2m   N=13 P=1.8N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 1.15 2.30 3.45 3.83 4.60 5.75 6.90 8.05 9.20 10.35 

βc1= 0.16 0.33 0.49 0.55 0.66 0.82 0.99 1.15 1.31 1.48 

βc2= 0.77 1.53 2.30 2.56 3.07 3.83 4.60 5.37 6.13 6.90 

βc3= 0.65 1.30 1.96 2.17 2.61 3.26 3.91 4.57 5.22 5.87 

           

A7 D=24m d=2m   N=13 P=1.9N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 1.20 2.40 3.60 4.00 4.80 6.00 7.20 8.40 9.60 10.80 

βc1= 0.17 0.34 0.51 0.57 0.69 0.86 1.03 1.20 1.37 1.54 

βc2= 0.80 1.60 2.40 2.67 3.20 4.00 4.80 5.60 6.40 7.20 

βc3= 0.68 1.36 2.04 2.27 2.72 3.40 4.09 4.77 5.45 6.13 
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A8 D=25m d=2,5m   N=12 P=1.9N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 1.00 2.00 3.00 3.33 4.00 5.00 6.00 7.00 8.00 9.00 

βc1= 0.18 0.36 0.54 0.60 0.71 0.89 1.07 1.25 1.43 1.61 

βc2= 0.83 1.67 2.50 2.78 3.33 4.17 5.00 5.83 6.67 7.50 

βc3= 0.71 1.42 2.13 2.36 2.84 3.55 4.26 4.96 5.67 6.38 

           

A9 D=26m d=2m   N=11 P=2.1N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 1.30 2.60 3.90 4.33 5.20 6.50 7.80 9.10 10.40 11.70 

βc1= 0.19 0.37 0.56 0.62 0.74 0.93 1.11 1.30 1.49 1.67 

βc2= 0.87 1.73 2.60 2.89 3.47 4.33 5.20 6.07 6.93 7.80 

βc3= 0.74 1.48 2.21 2.46 2.95 3.69 4.43 5.16 5.90 6.64 

           

A10 D=27m d=2m   N=11 P=2.1N         

β1= 0.1 0.2 0.3 0.33 0.4 0.5 0.6 0.7 0.8 0.9 

β2= 1.35 2.70 4.05 4.50 5.40 6.75 8.10 9.45 10.80 12.15 

βc1= 0.19 0.39 0.58 0.64 0.77 0.96 1.16 1.35 1.54 1.74 

βc2= 0.90 1.80 2.70 3.00 3.60 4.50 5.40 6.30 7.20 8.10 

βc3= 0.77 1.53 2.30 2.55 3.06 3.83 4.60 5.36 6.13 6.89 
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E.4 Train load, HSLM-A1 

Table E.1: Displacements for SDOF system loaded by the Train load HSLM-A1. 
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Table E.2: Velocities for SDOF system loaded by the Train load HSLM-A1. 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 20 40 60 80 100 120
Time [s]

V
el

oc
ity

 [m
/s

]
SDOF

 

 

β=0.2 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30 40 50

Time [s]

V
el

oc
ity

 [m
/s

]

SDOF

 

 

β=0.5 

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25

0 5 10 15 20 25 30
Time [s]

V
el

oc
ity

 [m
/s

]

SDOF

 

 

β=0.9 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:8  128 

Table E.3: Accelerations for SDOF system loaded by the Train load HSLM-A1. 
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Appendix F Results of finite element analysis 

F.1 Static – hand calculations 

The FE-model is verified by comparing results of ADINA with hand calculations. The 
beam is simply supported and loaded by a point load P=1 N. The geometry of the 
beam has been chosen to a length L=10 m, width b=1 m and a height h=1 m, see 
Figure F.1.  

 

Figure F.1: Simply supported beam loaded by a point load.  

The mass of the SDOF system is transformed into a mass of the beam by using 
Equation (4.31): 
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The moment of inertia for the beam is calculated as: 

4
3

m083.0
12

==
bhI  (F.2)

The modulus of elasticity E is calculated from the relation between the circular 
eigenfrequencies ωn and the chosen natural frequency fn.  

( ) 4
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EInn πω =    

 πω 2nn f=  where n=1 and f1=1 Hz gives; 
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The reaction forces at the supports are calculated as: 

N50.0
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The moment in the middle of the beam is calculated as: 

Nm50.2
42/ ==

PLM L  (F.5)

The displacement in the middle of the beam is calculated as: 

mm97.24
48

3

==
EI

PLu  (F.6)
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F.2 Eigenmodes for a simply supported beam 

Table F.1: The first 19:th eigenmodes and natural frequencies for a simply 
supported beam with 20 or 800 elements.   

 

f1, 20 =1.00 Hz 

f1,800=1.00 Hz 

 

f2, 20 =4.00 Hz 

f2,800=4.00 Hz 

 

f3, 20 =9.00 Hz 

f3,800=9.00 Hz 

 

f4, 20 =16.00 Hz 

f4,800=16.00 Hz 

 

f5, 20 =24.99 Hz 

f5,800=25.00 Hz  

 

f6, 20 =35.98 Hz 

f6,800=36.00 Hz 

 

f7, 20 =48.93 Hz 

f7,800=49.00 Hz  

 

f8, 20 =63.84 Hz 

f8,800=64.00 Hz 
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f9, 20 =80.65 Hz 

f9,800=81.00 Hz 

 

f10, 20 =99.27 Hz 

f10,800=100.00 Hz 

 

f11, 20 =119.58 Hz 

f11,800=121.00 Hz  

 

f12, 20 =141.33 Hz 

f12,800=144.00 Hz 

 

f13, 20 =164.18 Hz 

f13,800=169.00 Hz  

 

f14, 20 =187.58 Hz 

f14,800=196.00 Hz 

 

f15, 20 =210.78 Hz 

f15,800=225.00 Hz  

 

f16, 20 =232.72 Hz 

f16,800=256.00 Hz 
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f17, 20 =252.10 Hz 

f17,800=289.00 Hz  

 

f18, 20 =267.45 Hz 

f18,800=324.00 Hz 

 

f19, 20 =277.36 Hz 

f19,800=361.00 Hz  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:8  134 

F.3 Modal participation factor 

Table F.2:  Comparison of the natural frequencies and modal participation factor 
for a FE-mode modelled with 20 or 800 elements.     

20 Elements 800Elements 

Mode Freq.  fn [Hz] Mass [%] Acc. mass [%] Freq.  fn [Hz] Mass [%] Acc. mass [%] 

1 1.00 80.72  80.72 1.00 81.06 81.06 

2 4.00 0.00 80.72 4.00 0.00 81.06 

3 9.00 8.68 89.40 9.00 9.00 90.06 

4 16.00 0.00 89.40 16.00 0.00 90.06 

5 24.99 2.91 92.31 25.00 3.24 93.30 

6 35.98 0.00 92.31 36.00 0.00 93.30 

7 48.93 1.33 93.64 49.00 1.65 94.96 

8 63.84 0.00 93.64 64.00 0.00 94.96 

9 80.65 0.69 94.33 81.00 1.00 95.96 

10 99.27 0.00 94.33 100.00 0.00 95.96 

11 119.58 0.36 94.69 121.00 0.67 96.63 

12 141.33 0.00 94.69 144.00 0.00 96.63 

13 164.18 0.19 94.88 169.00 0.48 97.11 

14 187.58 0.00 94.88 196.00 0.00 97.11 

15 210.78 0.09 94.97 225.00 0.36 97.47 

16 232.72 0.00 94.97 256.00 0.00 97.47 

17 252.10 0.03 95.00 289.00 0.28 97.75 

18 267.45 0.00 95.00 324.00 0.00 97.75 

19 277.36 0.00 95.00 361.00 0.22 97.97 
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F.4 Undamped beam loaded by a harmonic load 

Table F.3: Displacements for an undamped beam, loaded by a harmonic load with 
β=0.1, 0.5 and 0.9. 
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Table F.4: Velocities for an undamped beam, loaded by a harmonic load with        
β =0.1, 0.5 and 0.9. 
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Table F.5: Accelerations for an undamped beam, loaded by a harmonic load with 
β=0.1, 0.5 and 0.9.  
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F.5 Damped beam loaded by a harmonic load 

Table F.6: Displacements for a damped beam, loaded by a harmonic load with      
β=0.1, 0.5 and 0.9.  
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Table F.7: Velocities for a damped beam, loaded by a harmonic load with      
β=0.1, 0.5 and 0.9. 
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Table F.8: Accelerations for a damped beam, loaded by a harmonic load with 
β=0.1, 0.5 and 0.9.  
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F.6 Convergence analysis – harmonic load 

Table F.9: Convergence analysis for an undamped beam, loaded by a harmonic 
load with β=0.5. 
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Table F.10: Convergence analysis for a damped beam, loaded by a harmonic load 
with β=0.5. 
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F.7 Train load, HSLM-A1 – Varying point load 

Table F.11: Displacement, velocity and Acceleration for Train load HSLM-A1. 

-0,12
-0,1

-0,08
-0,06
-0,04
-0,02

0
0,02
0,04
0,06
0,08

0,1

0 20 40 60 80 100 120
Time [s]

D
is

pl
ac

em
en

t [
m

]

SDOF ADINA

 

 

β=0.2 

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 20 40 60 80 100 120
Time [s]

V
el

oc
ity

 [m
/s

]

SDOF ADINA

 

 

β=0.2 

-5
-4
-3
-2
-1
0
1
2
3
4
5

0 20 40 60 80 100 120
Time [s]

A
cc

el
er

at
io

n 
[m

/s2 ]

SDOF ADINA

 

 

β=0.2 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2007:8  144 

Table F.12: Displacement, velocity and Acceleration for Train load HSLM-A1. 
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Table F.13: Displacement, velocity and Acceleration for Train load HSLM-A1. 
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Table F.14: Displacement, velocity and Acceleration for Train load HSLM-A1. 
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Table F.15: Displacement, velocity and Acceleration for Train load HSLM-A1. 
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F.8 Single travelling point load 

Table F.16: Displacement, velocity and acceleration for different load cases.   
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Table F.17: Displacement, velocity and acceleration for different load cases.   
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Table F.18:  Displacement, velocity and acceleration for different load cases.  
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F.9 Double travelling point load   

Table F.19: Displacement, velocity and acceleration for different load cases.   
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Table F.20:  Displacement, velocity and acceleration for different load cases.  
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Table F.21: Displacement, velocity and acceleration for different load cases.   
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F.10 Travelling power car load, HSLM-A1   

Table F.22: Displacement, velocity and acceleration for different load cases.   
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Table F.23: Displacement, velocity and acceleration for different load cases.   
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Table F.24: Displacement, velocity and acceleration for different load cases.   
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F.11 Train load, HSLM-A1 – Travelling load    

Table F.25:  Displacement, velocity and Acceleration for Train load HSLM-A1. 
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Table F.26:  Displacement, velocity and Acceleration for Train load HSLM-A1. 
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Table F.27:  Displacement, velocity and acceleration for Train load HSLM-A1. 
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