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Paper III

Modelling of a city canyon problem in a turbulent
atmosphere using an equivalent sources

approach

Mikael Ögren and Jens Forssén

Résuḿe

The sound propagation into a courtyard shielded from directexposure is pre-
dicted using an equivalent sources approach. The problem issimplified into
that of a two-dimensional city canyon. A set of equivalent sources are used to
couple the free half-space above the canyon to the cavity inside the canyon.
Atmospheric turbulence causes an increase in the expected value of the sound
pressure level compared to a homogeneous case. The level increase is esti-
mated using a von Kármán turbulence model and the mutual coherences of all
equivalent sources’ contributions. For low frequencies the increase is negligi-
ble, but at 1.6 kHz it reaches 2–5 dB for the geometries and turbulence param-
eters used here. A comparison with a ray-based model shows reasonably good
agreement.

1 Introduction

Courtyards are shielded from direct traffic noise exposure by the surrounding
buildings, and thereby they represent relatively quiet areas in urban environments.
On a directly exposed façade, i.e. toward a street, the noise level can be sufficiently
well predicted by standard methods based on ray-tracing (e.g. the Nordic calcula-
tion methods [1, 2]). Shielded areas seem more difficult to model. The sound paths
contain multiple reflections involving diffraction, and the influence of streets further
away is increased. A model for this kind of problem using equivalent sources has
recently been developed for a homogeneous atmosphere [3]. Here, a further devel-
opment is described, which incorporates effects of a turbulent atmosphere. The basis
is a substitute sources method using a mutual coherence function for turbulence [4].
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The situation of a depressed road, or a road surrounded by tall buildings, can be
seen as a two-dimensional (2-D) problem, where the traffic will act as a line source
and the road together with the buildings’ façades will forma “city canyon”, the
sending canyon. A shielded courtyard forms a second, receiving canyon.

The equivalent sources approach to the problem is field-based rather than ray-
based, and thereby more easily captures the resonant behaviour of a city canyon.
The original noise sources inside the sending canyon are exchanged for the equiva-
lent sources at the top of the canyon. This can be seen as changing the position of
a noise source from the canyon bottom to a typical roof heightof the city, which
also changes the strength and directivity of the source. Theeffect of turbulence is
modelled on the equivalent sources on the canyon top, which is expected to be a
more successful approach than using ray-based models including a scattering cross-
section for turbulence. Such a scattering cross-section based method has been in-
vestigated previously and it was concluded that the turbulence influence increases
at higher orders of the reflections inside the canyon [5]. This is because the higher
order reflections correspond to ray directions that are morenearly horizontal, which
makes the turbulence scattering stronger due to the smallerscattering angles. A pre-
cise calculation of the high order reflections together withturbulence scattering is
difficult and the approach used here seems more promising.

2 Theory

2.1 A 2-D canyon solution using equivalent sources

In [6] the method of equivalent sources was used to calculatethe insertion loss
of balconies including absorbing surfaces. The main idea ofthe method is to reduce
the problem to simplified geometries with boundary conditions which are easy to
handle. On boundaries with different conditions, sources are placed. The strength of
these sources are adjusted so that the boundary conditions are fulfilled everywhere.
Applications of this can be found in [6, 7]. The method has been shown to be robust
and computationally efficient and is therefore suitable forthe problem considered
here.

Consider the street canyon shown in Fig. 1. In order to apply the equivalent
sources method, the geometry is divided into two parts, the domain inside the canyon
and the half space abovey= ly. The intersection between the two domains is denoted
C. In this way the problem is reduced to two subproblems, whichcan easily be
handled ; radiation into a half space by a Rayleigh integral,and a sound field in
a rigid cavity by a modal approach. The coupling between the half space and the
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cavity is obtained by the set of equivalent sources which correct the field impedance
along the intersection. Although the mathematical derivation of the method has been
described elsewhere [6], some details are repeated below for clarity.

✲

✻

lx

y

ly

x

C

FIGURE 1 – Sketch of a two-dimensional city canyon.

In the context of boundary element methods (BEM), one can view the modal ap-
proach as finding the Green function from a velocity point source inside the canyon
to the pressure at a point on the intersectionC. Concerning numerical performance,
a BEM implementation with such specialised Green functionswill be equally effi-
cient as the model presented in this paper. The rigid cavity Green functions fulfil
the boundary conditions for a canyon with open top together with the equivalent
sources. (If instead there had been a zero impedance boundary condition at the top,
another set of Green functions is needed. For further discussion see e.g. [6].)

In the following, harmonic time dependence described by exp(jωt) is assumed.
The wave equation for the complex pressurep in a two-dimensional domain, assum-
ing a source of strengthq, is

∇2p(x,y)+k2p(x,y) =−jωρ0q(x,y), (1)

where the strength,q, is a volume velocity, or in the two-dimensional case what
might be called a surface velocity, and whereρ0 is the air density. In this textq
denotes a distributed source, andQ a point source, both in 2-D. Taking into account
the boundaries of the two domains, the Green functions can befound for instance in
[8] and [9], and they are

G1(xs,ys|xr ,yr) = jωρ0
c2

lxly
∑
n

∑
m

Ψn,m(xs,ys)Ψn,m(xr ,yr )

Λn,m(ω2
n,m(1+ jη)−ω2)

, (2)
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and

G2(xs,ys|xr ,yr) = jωρ0
−j
2

H(2)
0 (kr). (3)

The Green functionG1 is a modal summation where the eigen frequenciesωn,m

, modal shapesΨn,m, and modal weightsΛn,m can be determined using

ωn,m = πc
√

(n/lx)
2+(m/ly)

2 (4)

Ψn,m(x,y) = cos(nπx/lx)cos(mπy/ly) (5)

Λn,m =
∫ ly

0

∫ lx

0
Ψ2

n,m dx dy, (6)

wherec is the sound speed,η the loss factor, andlx and ly the dimensions of the
canyon. The modal summation must be truncated somewhere, and here eigen fre-
quencies up to three times as large as the frequency of interest were included in
order to ensure convergence. This is a common truncation limit used in structural
acoustics, and here it has been verified in a few test cases by increasing the number
of modes and checking that the changes are small. Note that the damping expressed
asη applies to the covered canyon only, the effect of power beingtransferred into the
field above the canyon is described by the coupling of the two domains. The damp-
ing modelling assumes that the losses are evenly distributed within the canyon. For
localised areas with high damping, such as absorbers, the damping can be modelled
by equivalent sources placed in these areas, fulfilling the given impedance boundary
condition, as in [6].

The Green functionG2 contains the Hankel function of the second kind, and de-
scribes a line source in front of a rigid surface. The distance between the source and
the receiver isr =

√

(xs−xr)2+(ys−yr)2, andk is the wave number. This Green
function contains no losses, but if necessary the losses dueto atmospheric absorp-
tion in the propagation from the canyon to an external receiver could be included in
the computations.

The loss factorη is important for the noise level inside the canyon if the side
walls of the canyon are high compared to the width. If the lossfactor is deter-
mined assuming air absorption only, it will be too low. In reality the effect of finite
impedances on the walls of the canyon will give higher losses. Here the loss factor is
taken from reverberation time measurements at Chalmers University of Technology,
in the reverberation chamber with volume 240 m3. The results showed a power-law
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behaviour and a logarithmic least squares fit of the damping as a function of fre-
quency gives

η( f ) = 10−0.94 f−0.84, (7)

valid within the frequency range of interest here. In this way the damping is under-
estimated, and can be seen as a kind of minimum damping for a courtyard.

The coupling between the two domains is introduced by assuming an equivalent
sources distribution on the boundary. Using a combination of the primary source of
strengthQ located inside the canyon at(xs,ys), and the boundary source distribution
ql (x) below the boundary andqu(x) above it, the pressure can be calculated as

pl (xr ,yr) = QG1(xs,ys|xr ,yr)+

∫
C

ql (x)G1(x, ly|xr ,yr)dx (8)

inside the canyon and

pu(xr ,yr) =

∫
C

qu(x)G2(x, ly|xr ,yr)dx (9)

above the canyon. The source is assumed to be located inside the canyon for brevity.
At the intersectionC between the two domains, the pressure and the velocity

fields must be continuous. As a consequencepl equalspu andql equals−qu along
C, and we can drop the subscriptsl and u. The resulting equation system can be
discretised by dividing the boundaryC into a number of equally sized elements
C1,C2, . . . ,CN, and approximate the source strength along the boundary by apiece-
wise constant complex source strengthq1,q2, . . . ,qN on each element. The pressure
at the centre points of the elements,x1,x2, . . . ,xN, must be equal, which gives the
equation system

Aq= b, (10)

where

Ai, j =
∫

Cj

G1(x, ly|xi , ly)dx+
∫

Cj

G2(x, ly|xi , ly)dx (11)

and

bi = QG1(xs,ys|xi , ly). (12)

The length of the elements is set to one tenth of the wavelength. The size of the
equation system will beN×N, andA is a symmetric matrix. Solving Eq. (10) one
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obtains the strengths of the boundary sourcesq, and can calculate the pressure any-
where inside or above the canyon using Eqs. (8) or (9), respectively.

The integrations of the free Green functionG2 in Eq. (11) can be evaluated
numerically. Care has to be taken to avoid the singular part wheni = j (see e.g. [3]).
The Green functionG1 can be integrated analytically, and the casei = j does not
require any special consideration.

Assuming a piecewise constant complex source distributionover each element
is a rather crude approach, which can be thought of as a zerothorder polynomial
approximation. Using a linear or higher order polynomial oneach element might
give better numerical properties, i.e. a faster and more accurate method, but this is
not yet studied further.

2.2 Modelling of turbulence effects

In the general case with contributions from two sources to one receiver, the two
paths can have a transversal separation as well as differentlengths. Here, all the
paths follow a single line, along the intersectionC, and only the lengths vary. The
mutual coherences for such cases can be estimated using the extinction coefficient,
γ, for a turbulent atmosphere.

Here, we assume that the turbulence is homogeneous and isotropic, i.e. has sta-
tistical properties independent of translation and rotation. This is a crude approxi-
mation ; in reality we expect the canyons to affect the turbulence, in addition to the
variations with height one gets over any surface. Such refinements should however
be possible to include in the model. Yet another approximation is used, which is that
there is no turbulence inside the canyon. It might be possible to extended the model
to incorporate turbulence inside the canyon. As a result we would expect a larger
effect of turbulence.

The ensemble average of the pressure amplitude,〈p〉, decays exponentially as
the wave propagates through a turbulent medium. This can be formulated as

〈p〉= p̂e−γx, (13)

wherep̂ is the amplitude in absence of turbulence andx is the distance of propagation
[10]. The average pressure,〈p〉, is also called the coherent field.

If the path from one source to the receiver is extended a distance∆ compared
to the path from the other source, the mutual coherence factor of the two contribu-
tions is estimated as e−γ∆, as explained next. The definition used here of the mutual
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coherence factor for two contributions is

Γ12 =
〈p1p∗2〉+ 〈p∗1p2〉

p̂1 p̂∗2+ p̂∗1p̂2
, (14)

where the complex conjugate is denoted by an asterisk (∗), p1 and p2 are the fluc-
tuating pressure amplitudes in the turbulent atmosphere and p̂1 and p̂2 are the am-
plitudes for the same situation except that there is no turbulence (e.g. [11]). The
propagation forp1 and p2 follow the same paths all the way except along the ex-
tension with length∆. Only the propagation along the extension causes decorre-
lation (i.e. reduced coherence) since the rest of the propagation goes through the
same medium for both paths. Using Eq. (13) this results in〈p1p∗2〉 = p̂1 p̂∗2e−γ∆ and
〈p∗1p2〉= p̂∗1 p̂2e−γ∆, which givesΓ12 = e−γ∆. This estimate of the mutual coherence
is equivalent to assuming turbulence only along the intersection above the canyon,
and not further away. In a more accurate solution of the received pressure on the
same line as the two sources, not only the propagation along the extension between
the sources should affect the decorrelation if turbulence is present all the way to the
receiver. In terms of Fresnel zones, the field from the sourcefurther away from the
receiver will cover a larger volume of the atmosphere and thereby be more affected
by turbulence. Hence, the model used here is assumed to underestimate the effect of
turbulence.

Each equivalent source of the sending canyon gives a contribution pi , i = 1, . . . ,N,
to the received pressure. The total contribution includingall mutual coherences can
be written (e.g. [12])

〈|ptot|
2〉= ∑

i
∑

j
〈pi p

∗
j 〉= ∑

i
∑

j
p̂i p̂

∗
j Γi j , (15)

whereΓi j = e−γ∆i j , with ∆i j the distance between the equivalent sourcesi and j. Eq.
(15) gives the expected value of the square of the pressure amplitude in the turbulent
medium, and is used to estimate the equivalent level.

In a situation with two canyons (see Fig. 2), a sending and a receiving one, it
can be shown that the decorrelation due to turbulence can be treated separately for
the two canyons. For this, however, a far field condition needs to be fulfilled, i.e.
that the widths of the canyons are small in comparison to the distance in between
them. This results in an excitation from the sending canyon at the boundary,CII , of
the receiving canyon. The excitation has constant amplitude,Q1, and phase variation
exp(−jkx) alongCII . The amplitude is found fromQ2

1 = ∑i ∑ j qiq∗j Γi j , whereqi and
q j are the contributions via the equivalent sourcesi and j onCI , with coherenceΓi j .
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FIGURE 2 – Sketch of two city canyons.

The contributions via the different equivalent sources atCII give rise to a similar
double sum and the total result can be written

〈|ptot|
2〉= Q2

1∑
i

∑
j

gig
∗
j Γi j , (16)

wheregi andgi are the Green functions, in absence of turbulence, fromQ1 to the
received pressure inside the canyon via the equivalent sources i and j at CII , with
coherenceΓi j . It could be noted that the Green functions in Eq. (16) are numerically
found from the reciprocal problem, where the source position (i.e. whereQ1 was
taken) and the receiver position are interchanged.

For the calculated results shown here, the von Kármán turbulence model is used,
for which the extinction coefficient can be written [10]

γ = γT + γv =
3
10

π2Ak2K−5/3
0

(

C2
T

T2
0

+
4C2

v

c2

)

. (17)

In the above equationγT andγv are the extinction coefficients due to temperature and
velocity fluctuations, respectively ;A≈ 0.0330 ;K0 = 2π/L0, whereL0 approximates
the outer scale of turbulence ;C2

T andC2
v are the structure parameters describing

the strengths of temperature and velocity fluctuations, respectively ;T0 is the mean
temperature ; andc is the mean sound speed.

3 Results

In the calculations, the canyons modelled are 18 m high and 19or 11 m wide.
All surfaces are acoustically hard. The source is on the bottom of the canyon, at
positionxs = 9 or 5 m, for the 19 and 11 m wide canyon, respectively. (These data
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are summarised in Table 1.) For the single-canyon problems,the receiver is placed
at x = 500 m, on the hard surface. The results apply equally well to the reciprocal
problem, with the receiver in the canyon and the source 500 m away. For the double-
canyon problems, the receiving canyon starts atx = 500 m. All results are plotted
relative to free field.

Canyon Widthlx m Heightly m Source/receiver pos.
A 19 18 (9,0)
B 11 18 (5,0)

TABLE 1 – Canyon geometries used for the calculations. The source/receiver posi-
tions are slightly off center in order to get contribution from modes with both odd
and even orders in thex direction.

The double-canyon problem models a sending canyon (road) and a receiving
canyon (closed courtyard). The calculations are then divided into two steps. First
the sending canyon is treated as if the receiving canyon is not present. Then the
strengths of the equivalent sources calculated in the first step are seen as sources
on a rigid plane for the receiving canyon, and the pressure atthe receiving point
is calculated. This approach is valid as long as the waves that are reflected at the
receiving canyon back to the source canyon, and then back again to the receiving
canyon, can be neglected.

For the turbulence modelling we have used velocity fluctuations with C2
v =

10 m4/3s−2 andL0 = 10 m. The value ofC2
v is taken from measurements and cho-

sen to model a strong turbulence condition [13]. The size of the largest scales of
influence,L0, can in general be much larger [14] but here propagation fairly close to
ground is modelled and a smaller value is chosen, which results in a smaller value
of the extinction coefficient and in a weaker turbulence influence. For these values
of the turbulence parameters, examples of the mutual coherence factor,Γ, (see Eqs.
13 and 17) are plotted in Fig. 3 for different sound frequencies. The value ofΓ is 1
at separationx= 0 and decays for larger absolute values ofx.

The main results presented here are third octave band levels, each calculated
using 20 frequencies, starting at 100 Hz and ending at 1.6 kHz. However, in Section
3.1 below the results are calculated for a higher resolutionin frequency, near 500 Hz.

3.1 Comparison with a ray-based model

In Fig. 4 two different methods for estimating the influence of turbulence for
a single 19 m wide canyon is presented. The upper figure is calculated using the
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FIGURE 3 – Calculation of the mutual coherence factorΓ = e−γx versus distance,x,
for different frequencies.

equivalent sources method as described in section 2.1, and the lower is calculated
using a ray-based model, where the diffraction and reflection modelling is described
in [15]. The diffraction theory is combined with the conceptof Fresnel zones to
reduce the strength of reflections from the finite, vertical surfaces. Here, a parameter
value of 1/8 of a wavelength is used for the Fresnel zone approach, as recommended
in the new Nordic sound propagation method for finite reflecting surfaces [2]. A
maximum of 32 reflections are taken into account, and numerical tests showed small
increase when including more reflections.

The turbulence effect is estimated using the simplified scheme described in [13],
which is based on a scattering cross-section for a turbulentatmosphere. Here the
turbulence parameters together with geometry parameters such as the distance to
and the height of the screening object is used to determine the scattered level. This
level is then added incoherently to the diffracted level to produce the expected value
of the total level behind the screen. This combination of reflections, diffractions and
turbulence scattering has previously been used to estimatethe influence of multiple
reflections and distant sources in city environments [5].

For the equivalent sources approach (upper plot in Fig. 4), the turbulence can
be seen to have two effects, working in opposite directions.First, the decorrelation
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FIGURE 4 – Frequency response relative free field for a canyon of width 19 m and
height 18 m (A). The receiver is outside the canyon at (500,18). The upper figure is
calculated using the equivalent sources method, and the lower using the ray-based
model.

weakens the positive interference slightly, as can be seen at the largest resonance
peaks, which leads to a decreased level. Second, the strongest shadowing, in between
the resonance peaks, is limited, which leads to an increasedlevel. This can be seen
as a weakened destructive interference of the equivalent sources’ contributions.

For the ray-based model only the second effect is visible ; since the scattered
level is added incoherently, it can only lead to increased levels. The total effect for
both approaches, averaged over several resonances, is however an increase due to
the turbulence. In the case presented here the increase averaged over the third octave
bands 1, 1.25 and 1.6 kHz is 1.6 dB for the equivalent sources method and 4.9 dB
for the ray-based model.

In narrow bands the results from the two methods show the sametrends at peaks
and dips, but are far from perfectly matched. It should be stressed that the ray-based
model has significant weaknesses. For instance, the Fresnelzone approach can be
implemented with different parameters, and the diffraction theory has limitations
at low frequencies and high diffraction orders. On the otherhand, the equivalent
sources method without the turbulence modelling has been validated against BEM,
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with good agreement [3], and is concluded to be more accuratethan the ray-based
model.

3.2 Results for single and double canyons

In Figs. 5 and 6 third octave band results are shown for the 19 and 11 m wide
canyon, respectively (canyons A and B in Table 1). It can be seen that the increase
in sound level due to turbulence is larger for the wider canyon (Fig. 5), where the
strongest decorrelation takes place.
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FIGURE 5 – Frequency response in third octave bands relative free field for a canyon
of width 19 m and height 18 m (A). The source is located at (9,0)and the receiver at
(500,18).

Figs. 7–9 are for double-canyon problems. The receiver is atthe bottom of a
19 or 11 m wide canyon, at a distance of 9 or 5 m from the wall closest to the
sending canyon, respectively. Fig. 7 is for a sending canyonof 19 m width and a
receiving canyon of 19 or 11 m width. The turbulence decorrelation is only modelled
for the sending canyon and the calculations at each frequency should give the same
increase due to turbulence since the width of the canyon withturbulence is the same.
The effect on the third octave band levels in the receiving canyon is however not
the same ; the receiving canyon can be seen as filtering the input from the sending



Paper III III – 13

−6

−4

−2

0

2

4

6

125 250 500 1000 2000

S
P

L 
re

 fr
ee

 fi
el

d 
[d

B
]

Frequency [Hz]

Homogeneous
Turbulent

FIGURE 6 – Frequency response in third octave bands relative free field for a canyon
of width 11 m and height 18 m (B). The source is located at (5,0)and the receiver at
(500,18).

canyon before the third octave band levels are calculated. For two canyons of equal
width, the turbulence caused level increase in between the resonance peaks of the
sending canyon gets a reduced influence when the receiving canyon has the same
resonance behaviour. We can see in Fig. 7 that the 11 m wide receiver canyon (B)
gives a larger influence of turbulence.

Fig. 8 shows the results for two situations with turbulence at the sending canyon.
The first situation has a 19 m wide sending canyon and an 11 m wide receiving
canyon (A to B), whereas the second situation has the widths interchanged (B to A).
The influence of the turbulence on the field from the sending canyon is filtered by
the receiving canyon. Thereby the trend in the results that awider canyon should be
more sensitive to turbulence is less distinguished.

The results from modelling turbulence in both canyons (A andB) are shown
in Fig. 9. The separate treatment of the turbulence effects here means that the in-
crease would equal the sum of the increases in the two cases shown in Fig. 8 if
single-frequency results were shown. The third octave bandaveraging can change
this slightly, but we expect to get larger influence of turbulence when it is mod-
elled in both canyons than in only one canyon. Here, the effect is more than 5 dB at



III – 14 Paper III: Conclusions

1.6 kHz.

−20

−15

−10

−5

0

5

125 250 500 1000 2000

S
P

L 
re

 fr
ee

 fi
el

d 
[d

B
]

Frequency [Hz]

From A to A 
Including turbulence

From A to B
Including turbulence

FIGURE 7 – Frequency response in third octave bands relative free field for a double-
canyon situation. The effect of turbulence is included for the source canyon only,
which is 19 m wide (B).

4 Conclusions

The increase in the sound pressure level due to turbulence can be predicted for
city canyons. The model is based on the mutual coherence factor for sources or
receivers separated in space in a turbulent atmosphere, andassumes a homogeneous
and isotropic turbulence described by the von Kármán model.

The equivalent sources approach to the problem is expected to more easily cap-
ture the resonant behaviour of a city canyon than a ray-basedmodel. The original
noise sources inside the canyon can be seen as being lifted upto the roof level of
the city when replaced by the equivalent sources. The effectof turbulence is mod-
elled on the equivalent sources using a mutual coherence factor, which is thought to
be a more successful method than a ray-based one using a scattering cross-section
instead.

The level increase due to turbulence is negligible at low frequencies but starts
to become important around 500 Hz with the geometries and parameters used here.
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FIGURE 8 – Frequency response in third octave bands relative free field for a double-
canyon situation. The effect of turbulence is included for the source canyon only,
which is 19 m or 11 m wide (A or B). (Without turbulence the results are identical
for A to B and B to A.)

At the third octave band 1.6 kHz the increase reaches 2–5 dB. Using a traffic noise
spectrum (Ctr in [16]) to estimate the effect in the A-weighted level givesslightly less
than 1 dB increase compared to the homogeneous case. These calculated values do
however depend on the geometry and turbulence parameters. For larger geometries
and stronger turbulence the effect of turbulence is expected to increase.

For future improvements of predictions in canyon-to-canyon cases it is impor-
tant to include refraction, at least for canyons that are farfrom each other. More
realistic damping data are also needed, either from measurements on real courtyards
or indirectly from measurements on typical façade materials. It is also difficult to
know what values to use for the turbulence parameters. Hopefully more input from
research in the field of urban micro climate can help.
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[12] L’Espérence A, Herzog P, Daigle GA, and Nicolas, JR. Heuristic model for
outdoor sound propagation based on an extension of the geometrical ray theory
in the case of a linear sound speed profile.Applied Acoustics1992 ;37 :111-
139.

[13] Forssén J,̈Ogren M. Barrier noise-reduction in the presence of atmospheric
turbulence : Measurements and numerical modelling.Applied Acoustics
2001 ;63 :173-187.

[14] Wilson KD. A turbulence spectral model for sound propagation in the atmo-
sphere that incorporates shear and buoyancy forcings.Journal of the Acoustical
Society of America2000 ;108 :2021-38.

[15] Salomons E. Sound propagation in complex outdoor situations with a non-
refracting atmosphere : Model based on analytical solutions for diffraction and
reflection.Acustica – Acta acustica1997 ;83 :436-454.

[16] Acoustics – rating of sound insulation in buildings andof building elements –
part 1 : Airborne sound insulation. ISO 717-1 :1996, The International Orga-
nization for Standardization, 1996.


