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Abstract

Power laws in socioeconomic systems are generally explained as being generated by

multiplicative growth of aggregate objects. In this paper we formulate a model of geographic

activity distribution with spatial correlations on the level of land lots where multiplicative growth

is assumed to be dominant but not exclusive. The purpose is to retain the explanatory power of

earlier models due to Simon, Gibrat and others while attaining some additional properties that are

attractive for both empirical and modelling purposes. In this sense, the model presented here is a

combination of the two factors that have been identified as central to urban evolution but rarely

appear unified in the same model: transportation costs and multiplicative growth. The model is an

elaboration of a previously reported complex network model of geographical land value evolution.

We reproduce statistical properties of an empirical geographical distribution of land values on

multiple hierarchical levels: land value per unit area, cluster areas, aggregated land value per

cluster and cluster area/perimeter ratios. It is found that transportation effects are not strong

enough to disturb the power law distribution of land values per unit area but strong enough to

sort nodes to generate a new set of power laws on a higher level of aggregation. The main

hypothesis is that all these relations can be understood as consequences of an underlying growing

scale-free network of geographic economic interdependencies.
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1. Introduction

Macroscopic regularities are common in complex dynamical systems with
distributed interacting agents. Maybe, the most well-known type of such regularities
is the presence of fat-tailed distributions. It is widely agreed that fat-tailed
distributions arise as a consequence of fundamental properties of the microscopic
mechanisms including stochastic multiplicative growth and optimizing behavior.
Stochastic multiplicative growth is an attractive candidate for modelling various
mechanisms in economic systems and in economic geography, and multiplicative
growth also serves as the foundation of the prevailing models; see e.g. Ref. [1].
Although generally considered to be derivations of Herbert Simon’s model of urban
dynamics [2], it can be argued that the genealogy of such models date back to Yule’s
model of the distribution of species in plant genera [3].
In economic geography, the rank-size rule, as in the generalized form of Zipf’s Law,

says that the size of a city has a power law relation to its rank. The importance of such
observations probably reside primarily in the constraint that they put on the generating
micro mechanisms. Understanding the mapping between micro mechanisms and
phenomena on the macro scale in socioeconomic systems is of great importance; it is, for
example, at the micro level that policies aimed at controlling such systems must be
implemented. We argue for a view analogous to the situation with a series expansion
where lower-order terms must be included before higher-order terms. According to this
logic, broad and general properties of systems such as the presence of fat-tailed
distributions are interesting because we can ask in which way, and why, the behavior of
a system deviates from that predicted by a very simple generative model.
2. Empirical urban power laws

Empirical investigations of scaling laws in urban systems have generally been
carried out observing population rather than, as we do here, observing land value. In
Fig. 1 it can be seen that the relation between cluster population and aggregated
cluster land value is essentially linear which implies that results apply also to the
previous work where population distributions have been investigated. The most
widely known urban scaling law is likely Zipf’s Law for city sizes that in its
generalized form, known as the rank-size rule, states that the size of a city is
proportional to its rank to the power of a constant. The exponent differs between
different parts of the world, as has been reported by e.g. [4]. Furthermore, fractal
properties of internal cluster structures have been studied, among these the
relationship between the perimeter and area of clusters [5]. In this paper we use
this measure to compare some aspects of the internal structure of emergent urban
clusters in the model with empirical observations. A thorough review of empirical
work and models concerning urban scaling laws is provided by Pumain [6].
The empirical data with which we compare model results consists of geographical

maps of land values and population in Sweden from year 2000 aggregated into
400� 400m cells. The underlying database delivered by Sweden Statistics consists of
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Fig. 1. Shown in this figure is a double-logarithmic plot of aggregated cluster land value as a function of

cluster population. The vertical interval of the boxes contains 90% of the observations in the bin, and the

crosses indicate the medians of the prices in the bins. For bins with only one observation, the boxes have

no vertical extension. The reference line has a slope of 1:0; which indicates that there is a near linear

relationship between cluster price and population, for clusters with a population larger than 100.
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estimates of market value for 2.9 million taxing units. We identify clusters using a
simple clustering algorithm that identifies contiguous areas of land value above a
threshold value, chosen to be 1425 kSEK per cell (10 SEK � 1 USD). This method
was preferred over other methods because it can be universally and equally applied
to the entire system and to simulated and empirical data. Simulation results will be
discussed in a later section, so we will now only consider the empirical observations.
Fig. 2 shows that empirical probability density for land value per unit area for
Sweden is well described by a power law. This has been shown to be the case also for
land value data from Japan [7].
For clusters we use two ways of measuring size: area and aggregated land value.

The cluster area distribution is shown in Fig. 3, and the cluster aggregated land value
distribution can be seen in Fig. 4. Both distributions are in good agreement with the
rank-size rule for city sizes, but they show somewhat different exponents. Thus,
power law relations between land value and frequency of occurrence can be found
both on the level of lots (cells) and on the level of urban clusters. Furthermore, to
characterize the geometries of the clusters we have measured the relationship
between cluster areas and perimeters; see Fig. 5.
3. Theoretical and operational models

Models following Simon (henceforth ‘‘Simonoid models’’) have provided a
framework in which to understand power laws in economic geography and their
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Fig. 2. Shown in this figure are double-logarithmic probability density plots of empirical (�) and

simulated (&) land values per unit area. The empirical land values are aggregated into 400m� 400m

sized cells. Only values above the threshold of 1425 kSEK/cell are shown.
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Fig. 3. Shown in this figure are double-logarithmic probability density plots of empirical (�) and

simulated (&) cluster areas. Empirical land values were aggregated to 400m� 400m cells, and a threshold

of 1425 kSEK/cell was applied. All contiguous (8-cell neighborhood) areas above this threshold were

identified as clusters.
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most important benefit is their conceptual simplicity (see e.g. Refs. [1,2,8]). Simonoid
models typically describe the time dynamics of urban systems on the level of cities
and they are not geographical models in the sense that no interactions between cities
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Fig. 4. Shown in this figure are double-logarithmic probability density plots of empirical (�) and

simulated (&) land values per cluster. Empirical land values were aggregated to 400m� 400m cells, and a

threshold of 1425 kSEK/cell was applied. All contiguous (8-cell neighborhood) areas above this threshold

were identified as clusters.
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Fig. 5. This figure shows cluster area plotted against exponentially binned cluster perimeters for empirical

(thin boxes) and simulated (broad boxes) results. The vertical interval of the boxes contains 90% of the

perimeters in the bin. The reference line has a slope of 0:7:
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and no geographical extent of the cities are modelled. Cities are problematic to use as
objects in geographical models for a number of reasons. Firstly, cities grow together
and new sub-centers may emerge over time. Furthermore, cities are not atomic
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objects even during their lifetime since parts of two different cities may interact more
with each other than these parts do with some parts of the cities to which they
belong. Another shortcoming is that interactions are not incorporated in these
models although it is generally agreed that transportation diseconomies are defined
in urban evolution; see e.g. Refs. [9,10]. This means that Simonoid models can
provide little guidance for policies aimed at controlling the behavior of these systems
and that they become very hard to garnish with additional detail for application to
specific scenarios.
Since neoclassical microeconomic models, where transportation plays a central

role, have great difficulties in modeling evolutionary growing systems and Simonoid
models lack the geographic aspect, urban modeling has turned to cellular automata
as a modeling framework [11–13]. While cellular automata models of urban systems
capture the geographical form of the system they do not provide much in terms of
avenues for systematic analysis.
There are also a number of physics-inspired models aimed at explaining urban

power laws. The correlated percolation model [14] is capable of reproducing power
law distributed cluster areas, but it suffers from a need of specifying both an a priori
center and a concentration gradient. Marsili and Zhang suggested that the pair-wise
interaction between individuals might explain the power law distribution on the level
of cities [8]. No explicit spatiality or interaction between cities is introduced, which
means that the explanatory power is similar to that of a Simonoid model. Zanette
and Manrubia used a multiplicative stochastic growth model with spatial diffusion
to produce a power law population distribution both on the cell and cluster level [15].
4. A complex network model of economic geography

4.1. Introduction to the model

It has sometimes been said that power laws are over identified [6], and, indeed,
power laws are generated by a wide range of models. Thus, the presence of power
law distributions does not uniquely identify underlying processes. Because of this it is
reasonable that a model, in addition to producing the desired macroscopic behavior,
should be argued for in terms of the microscopic properties of the target system.
The aim here is to create a model that combines the qualities of previous models

while solving some of their problems along the lines outlined in the previous section.
A complex network model can be embedded in a cellular space; it can incorporate a
model of transportation in the mechanism by which connections are formed, and it
may employ multiplicative growth along with other types of growth. For reviews of
complex network models, see Refs. [16–18].
To employ network models to explain urban power laws, we argue that there is, on

average, a linear relation between node degrees of the underlying economic
interaction (trade) network and urban land values. This relation will be motivated
later on in the text. Furthermore, as identified in Fig. 1, there is a linear relation
between land price and population, so results also apply to earlier empirical work
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where population rather than land price has been observed. In the spirit of Simonoid
models we then start out by specifying a model of network growth without a
geographical component. Quite in line with such models, we show that as far as
multiplicative growth is a possible explanation for the observed power law of land
values, transportation costs need not be a part of this explanation. On the contrary,
when we add geography to the model (a bias against long connections) to explain
statistical properties of urban clusters, we have to verify that the bias is weak enough
not to sufficiently disturb the scale-free properties of the growing network.
Thus, we explain the power law distribution of land values per unit area as a

consequence of multiplicative network growth. On top of this, we introduce a spatial
bias making long connections more rare than short connections to the end of
arranging the nodes into geographical clusters of high node degrees. This spatial bias
is sufficiently weak not to cause major deviations from a true power law distribution
of node degrees but strong enough to result in another set of power laws on the level
of geographical clusters. Clusters are measured entities and are not used as objects in
their own right in the model—they are emergent structures. Transportation costs
arguably being the strongest geographical bias, it appears likely that further biases
can be introduced to fit empirical data even better without destroying the
fundamental properties of the model.

4.2. Ontology

One of the aims with the presented model is to move the formulation of a
Simonoid multiplicative growth model ‘‘one step down’’ to a less aggregated level.
By doing this, as previously stated, we intend to create a geographical model that is
open-ended with regard to additional detail needed for operational modeling and
that is well founded in behavioral propositions on the micro level. A precondition for
this is that the objects and relations in the formulation sufficiently meet criteria for
individuality. As stated previously in the section ‘‘Theoretical and operational
models’’, models formulated in terms of city objects face some operational problems
as geographical models. To avoid this we take nodes in the network to be cells in a
cellular space representing the geographical area to be simulated. We will use the
terms ‘‘cells’’ and ‘‘nodes’’ interchangeably throughout the following text depending
on context.
Connections (network edges) are taken to be streams of trade exchanges between

activities residing in the cells. In this context, we define trade as any profitable
interaction between two economic agents. For instance, the economic interaction
between a household and a workplace is considered to be a trade of labor for
currency and benefits that is perceived as profitable to both end-points. Network
loops (a connection between a node and itself) are allowed as they represent trade
between activities in such close physical proximity as being located in the same
geographical cell. A trade stream, assuming both end-points have agreed to its
establishment, will on average result in an economic benefit (profit) to both parties.
Without identifying activities as sellers or buyers we may also make the simplifying
assumption that both end-points to a connection will benefit equally. Furthermore,



ARTICLE IN PRESS

C. Andersson et al. / Physica A 345 (2005) 227–244234
we define connections to be of equal and unit value to both end-points such that
large trade streams would be represented by a bundle of connections. Following this
logic, long-range connections are identical in size with short-range connections but
they form at a slower rate to reflect that fewer potential trades remain profitable over
long distances. To conclude, the system state is described completely by an
undirected network where multiple edges and loops are allowed.
Using fixed-size non-overlapping cells as nodes carries with it some

important implications. First of all, such nodes will by definition remain the same
throughout the simulation. The only difference between a node at different
points in time will be its connection to other nodes. If we would have used cities
instead of cells as nodes, this would have no longer been true, since nodes
would divide and fuse over time and the problem of even defining and delimiting a
node would be much greater. Ultimately, this problem becomes especially pressing
when attempting to compare model states with empirical states because we would
need to somehow devise a method for node identification that applies both to the
real system and the simulated system. Using cells, this problem becomes much less
restricting.
Secondly, because the area of a cell is by definition constant, any addition of

connections will translate to an increase in profits per unit area in the cell in question.
If we assume market pricing of land to be a process that is fast compared to the
process of urban growth, we can therefore invoke the left-over principle from urban
economics to interpret the degree of a node to be proportional to the rent that the
land owner can charge tenants residing therein [19]. This principle states that, in a
competitive land market, rent equals the amount of money left after all expenses
(except rent) are paid. This amount of money available equals the sum of all trade
benefits at the site.
From the interpretation of node degrees as land rents, a first approximation of

land value in turn being proportional to land rent is reasonable. Capitalizing
indefinite periodic rent income from cell i gives land value vi ¼ ri=r; where ri is the
land rent and r is the interest rate [10].
The connection between node degree and land value thus consists of two

proportionalities. For node i we get

vi / ri / xi ; ð1Þ

where vi is the value of the corresponding land area, ri is the land rent, and xi is the
node degree representing the total number of trade connections as outlined above.
This line of reasoning ties model quantities to empirically measurable quantities and
thereby allows for a comparison to be made between model outcomes and the state
of the real world system.
In the current model we do not specify the type of economic activity that takes

place at a site, only the activity level, i.e., node degree. Thus, activities are considered
to be average activities and they all have equal probabilities for establishing
interactions with each other. Although units of activity (connection end points) are
of no particular type they are not assumed to be all of the same type. Rather, it is



ARTICLE IN PRESS

C. Andersson et al. / Physica A 345 (2005) 227–244 235
assumed that a sufficient mix of activities are present in all areas. In this respect, it
can be said that activities are ‘‘unobserved’’.
The network grows by successive addition of edges and nodes to the system. The

addition of a new end-point to a node corresponds to an increase in the profit
generated in this land area. Addition of new nodes to the network represent
development of previously undeveloped sites, i.e., transition from non-urban to
urban land use. Empirically, we define this to correspond to the land value rising
above a prescribed threshold. Note that, in principle, transactions should be possible
to represent a resolution where interactions will be pair-wise. The connection of new
edges to nodes is modelled through additive and multiplicative growth. The situation
where growth events are either multiplicative or additive should be viewed as a
model simplification. More likely, individual growth events in the real system will
have a more or less strong multiplicative component, as defined in the next
paragraph.
Multiplicative (or preferential) growth can be said to involve processes that act per

unit of development. For example, if an additional unit of economic activity arises in
one location and we seek the geographical location of its trading partner. Assuming
all units of activity to be ‘‘unobserved’’, and after taking transportation costs into
account, the likelihood of a given node to contain this trading partner is
proportional to the amount of development (degree) in that node. Furthermore,
technological improvements will often be applied to production processes that are
scaled to a suitable level. For example, an activity in a location will often consist of a
number of copies of some production process and improvements to this production
process will thus be multiplicative with respect to the present scale of production.
This means that, in absolute terms, had the activity level been half of the present
amount, the benefit of some efficiency improvement would also be half. This line of
reasoning assumes that, on average, the relative size of the improvement is
independent of the current profitability of the process. Additive growth is growth
that does not take place at a rate that is proportional to the present amount of
development. For example, policies intended to stimulate growth in areas of low
development will be non-preferential. Furthermore, roads connect areas of high
development but are likely to also run through areas of low development.
Improvements of the quality of infrastructure because of this will inadvertently
boost areas that happen to lie along the extent of roads regardless of the amount of
development that is currently present. Another important additive effect might be
when the location of new activity is multiplicative on a large scale but not on a small
scale. For example, a new unit of development might be allocated to a small area
with low development inside a larger area with relatively high development. This
effect seems to apply particularly well to areas near the urban perimeter where there
is a good supply of nearby undeveloped land.

4.3. The non-spatial model

Several variations and extensions of the initial Barabási–Albert model [20] have
been proposed; see Refs. [18,21,22] for reviews. A simple, but fairly general version
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can be formulated formally as follows: consider a growing, enumerated set of nodes,
f1; 2; . . . ;Ng connected by undirected edges. There are no restrictions on multiple
edges between two nodes and a node is allowed to have any number of connections
to itself. The degree of node i is denoted by xi:
The network is initialized by connecting n0 nodes so that each has a degree of x0:

At each iteration t the network is updated by the addition of one edge between two
nodes that are chosen independently according to the following rules:
(1)
 With probability q1 the node is chosen uniformly between existing nodes. The
probability of node i to be selected is

Pu
i ¼

1

N
: ð2Þ
(2)
 With probability q2 the node is chosen preferentially, which corresponds to the
uniform selection of an edge end-point in the system and the subsequent location
of its node. The probability of node i to be selected is

Pp
i ¼

xiP
jxj

: ð3Þ
(3)
 With probability q3 a new node is added to the network. This node will get a
degree of 1.
The parameters q1; q2 and q3; fulfill q1 þ q2 þ q3 ¼ 1 and are assumed to be constant
during the evolution of the network.
The time evolution of the expected degree for node i follows:

xiðt þ 1Þ ¼ xiðtÞ þ 2q1
1

NðtÞ
þ 2q2

xiðtÞP
jxjðtÞ

; ð4Þ

where NðtÞ ¼ 2q3t is the expected number of nodes developed after t iterations. By
using the continuous-time method introduced in Ref. [23], we find that after a
sufficiently long time, the degree distribution approaches the form

P½xi ¼ x� � ðx þ BÞ
g ; ð5Þ

with

B ¼
q1

q2q3
ð6Þ

and

g ¼ 1þ
1

q2
: ð7Þ

According to Eq. (5), and if land value is linearly related to node degree, as
motivated in the previous section, this simple stochastic model can reproduce the
power law distribution of land values shown in Fig. 2. In the context of urban power
laws, the next step is to introduce some notion of distance that inversely affects the



ARTICLE IN PRESS

C. Andersson et al. / Physica A 345 (2005) 227–244 237
propensity of the nodes to connect. In this way, the probability for a new node to
connect to an existing node becomes positively dependent on the degree of the
existing node and negatively dependent on the distance between the new node and
the existing node.

4.4. The spatial model

In the non-spatial model, activities will trade at random with other activities
according to some scheme with the only property of a cell visible to the process being
its degree. Of course, this specification has a number of serious drawbacks and needs
to be elaborated on. Most notably, without any geographic incentive to remain in a
cell with high development, intelligently administered activities would of course
spread out to avoid high rents. Thus, the non-spatial case is useful only to
demonstrate that, quite in line with Simonoid models, transportation is not needed
as such for explaining the scale-free distribution of activities over nodes. All that is
needed is some incentive to remain in highly developed nodes.
When introducing geography into the model we need to distinguish between a first

and a second end-point when forming a connection. This requirement is of little
practical importance and also seems innocuous since it appears reasonable that most
exchanges involves one searching and one passive party: one that offers and one that
browses and accepts or rejects. A complementary interpretation is that this represent
the approximation that the random economic perturbations do not happen at both
the supply and demand side at the same time. We call the creation of the first and
second end-points in a new connection, ‘‘primary growth’’ and ‘‘secondary growth’’,
respectively. After the connection has been established, it is considered undirected.
If we assume constant fractions q1 and q2 for uniform and preferential growth

respectively, with q1 þ q2 ¼ 1; the probability of selecting a node i preferentially in
primary growth is

P1;pref
i ¼ q2

xiP
jxj

; ð8Þ

which is similar to the non-spatial case.
In the non-spatial model we treated the case of node addition as a third, separate

case, which turns out to be unnecessary in the spatial model. It can now be handled
as uniform growth in a previously undeveloped cell, if the probability of selecting
this cell is dependent on the availability of basic infrastructure. To keep it simple, we
divide the cells into three categories—developed cells, perimeter cells and external
cells. If we ascribe a weight ai to each cell (dependent on to which category it
belongs) and pose the condition that the sum of all probabilities for uniform primary
growth should be q1; we get

P1;uni
i ¼ q1

aiP
jaj

: ð9Þ

The developed cells are defined to be the base case, and ai ¼ 1 for these. Perimeter
cells are all undeveloped cells adjacent to a developed cell (8-cell neighborhood), and
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all these get ai ¼ b; where b is a parameter. In most realistic cases bo1; because there
is, compared to a developed cell, a less probability for an average perimeter cell to
have adequate infrastructure. Government growth control will also have the effect of
decreasing b.
External cells are cells that are neither developed nor on the urban perimeter. In

this case, usually only cells with direct access to roads can be considered for
development. To avoid the (for the purposes of this model unnecessary) details in
specifying a realistic model for the development of a road network, we simply
assume that all external cells, with some probability have access to relevant roads
and other infrastructure (thus effectively making it a perimeter cell). This probability
must surely grow with the system, and we represent this by, at each iteration t, taking
it proportional to the ratio between the number of perimeter cells, n

ðPÞ
t ; and the

number of external cells, n
ðEÞ
t : We then get, for external cells, ai ¼ b�nðPÞ

t =n
ðEÞ
t ;

where � is a constant parameter describing the relative density of infrastructure.
For this to be reasonable, we must assume that the lattice is not too crowded,
i.e., �nðPÞ

t on
ðEÞ
t :

Now, when all three categories of cells have been considered, Eq. (9) can be
written as

P1;uni
i ¼ q1

dðDÞ

i þ bdðPÞi þ b�ðnðPÞ
t =n

ðEÞ
t ÞdðEÞ

iP
jðd

ðDÞ

j þ bdðPÞj þ b�ðnðPÞ
t =n

ðEÞ
t ÞdðEÞ

j Þ

¼ q1
dðDÞ

i þ bdðPÞi þ b�ðnðPÞ
t =n

ðEÞ
t ÞdðEÞ

i

n
ðDÞ
t þ bð1þ �ÞnðPÞ

t

; ð10Þ

where n
ðDÞ
t is the number of developed cells and dðDÞ

j ¼ 1 if cell j is developed and

dðDÞ

j ¼ 0 otherwise. The meanings of dðPÞj and dðEÞ

j are analogous to dðDÞ

j ; with P

referring to perimeter cells and E referring to external cells. A cell must belong to one
and only one of the categories at a time, which means that for each j one and only

one of dðDÞ

j ; dðPÞj and dðEÞ is equal to 1 while the other two equal 0.

After selecting a primary cell, using one of the two mechanisms described above,
the secondary cell should be selected with a probability decreasing with distance
from the primary one. To accomplish this, we define Dij to be the spatial interaction
strength between cells i and j. We have the restrictions Dijp1 and Dij ¼ Dji:
The probability of secondary preferential growth at cell i as a consequence of

primary growth at cell j is

P2;pref
ij ¼ q2

DijxiP
kDkjxk

ð11Þ

and analogical for secondary uniform growth, it is

P2;uni
ij ¼ q1

DijaiP
kDkjak

ð12Þ
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and with the same site categories as for primary growth, this probability can be
written as

P2;uni
ij ¼ q1

Dijðd
ðDÞ

i þ bdðPÞi þ b�ðnðPÞ
t =n

ðEÞ
t ÞdðEÞ

i ÞP
kDkjðd

ðDÞ

k þ bdðPÞk þ b�ðnðPÞ
t =n

ðEÞ
t ÞdðEÞ

k Þ
: ð13Þ

Several choices for Dij are possible, but it is clear that the interaction strength should
decay with increasing transportation costs. We have for the results reported here,
used

Dij ¼ ð1þ cdði; jÞÞ
a ; ð14Þ

where dði; jÞ is the Euclidean distance between cells i and j. The non-negative
parameters c and a control the impact of spatiality. The choice of functional form
and parameters for Dij is not of critical importance.
This simple model of trade network evolution aims to capture some mechanisms

driving the system: (i) random perturbations of the economy giving rise to new
opportunities for profit, (ii) the seizing of such opportunities, and, (iii) spatial
correlation due to profit resulting from trade and trade incurring transportation
costs.
The model of trade relation end-point formation is implemented, as specified

earlier, as a combination of uniform and preferential growth; see Eqs. (8), (10), (11)
and (13). Costs of transportation and other distance-related diseconomies between a
pair of nodes fi; jg are captured by a connection length bias, Dij ; that makes long
connections form at a slower rate than short connections. This distance bias modifies
secondary uniform and preferential growth rates; see Eqs. (11) and (13).
With this formulation we can keep the useful definition of an edge representing

unit profit and node degree proportional to land rent; see Eq. (1). This can primarily
be viewed in two ways. Firstly, once a connection is formed it is always of unit
benefit to its end-points but the further apart two lots are located the lower will the
rate of connections forming between them be. This is because fewer and fewer
potential trades will remain profitable when transportation costs are deducted.
Secondly, larger than unit profit trade streams will have to be represented as bundles
of unit profit connections. Stretched out over a longer distance, such connection
bundles will grow thinner as profits are reduced by transportation costs.
The model for availability of infrastructure is also simple and in addition also

local. We simply distinguish between three cases: internal, perimeter and external.
Internal availability to infrastructure is maximal and is used as a unit. Perimeter
availability applies to undeveloped lots adjacent to developed lots. External lots are
lots that are undeveloped and whose geographic neighbor lots are also without
development. External infrastructure availability is determined by the parameter �
and reflects the existence of an ambient infrastructure network serving long-range
interactions. Such infrastructure spans undeveloped areas sparsely and may be
‘‘tapped into’’, thus making what will appear as new clusters of developed cells
possible. See Eqs. (10) and (13).
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4.5. Analysis

To simplify the analysis of the model it is useful to assume that development of a
new land (addition of a connection to a previously undeveloped cell) takes place at a
constant rate qA (compared to other types of growth, not as a function of physical
time). To motivate the assumption, let us consider the growth of developed clusters
and their perimeters. It is true in simulations of the model, and it can be empirically
verified (see Figs. 3 and 5), that the cluster area distribution is close to a simple
power law with density function f ðAÞ � A
b; and that the relation between cluster
perimeter P and cluster area A has the form P � Al; with lo1: From this we observe
that for the entire system of clusters we have

n
ðPÞ
t

n
ðDÞ
t

�

R1
1 A
bAldAR1
1 A
bAdA

¼
b
 2

b
 l
 1
; ð15Þ

assuming that b42 and lo1: This means that it can be expected that the ratio
between the total number of perimeter nodes and developed nodes is approximately
constant. We now define q0

1 as the fraction of primary activity increments that occur
on developed nodes under uniform growth, and Eq. (10) gives

q0
1 ¼

X
i

dðDÞ

i P1;uni
i ¼ q1 1þ bð1þ �Þ

n
ðPÞ
t

n
ðDÞ
t

 !
1

; ð16Þ

which, because of Eq. (15), is approximately constant. This means that the rate of
primary node activation, qA ¼ q1 
 q0

1; can also be considered constant.
It can be argued that expected secondary growth behaves very similar to

primary growth, even when the impact of spatiality is strong [24]. This means
that the time evolution of expected activity on a developed site i can be
approximated by

xiðt þ 1Þ ¼ xiðtÞ þ 2q0
1

1

n
ðDÞ
t

þ 2q2
xiðtÞP
j xjðtÞ

; ð17Þ

which is similar to the non-spatial case and the degree distribution can be found in
the same way, and thus, after a long time, can be expected to approximately
approach a generalized power law, P½xi ¼ x� � ðx þ BÞ
g; with

B ¼
q0
1

q2qA

¼
q0
1

q2ð1
 q2 
 q0
1Þ

ð18Þ

and

g ¼ 1þ
1

q2
: ð19Þ



ARTICLE IN PRESS

C. Andersson et al. / Physica A 345 (2005) 227–244 241
4.6. Model parameters

If we want the model to reproduce the statistical properties of a specific economic
geographic system, then most of the parameters in the model can be roughly
estimated from empirical data, saving us from extensive parameter tuning. For
instance, because � controls the ratio of external development to perimeter
development, and external growth for the most part gives a remaining new cluster,
we have the approximate relationship

�

1þ �
’ n

ðCÞ
t =n

ðDÞ
t ; ð20Þ

where n
ðCÞ
t is the number of clusters. The exponent g in the distribution of land prices

gives information about the size of q2 (and q1) via Eq. (19). The perimeter parameter
b controls the ratio of perimeter development and internal uniform growth, and it
can then be determined by

qA ’
n
ðDÞ
tP

i xiðtÞ
ð21Þ

and with the use of Eq. (16) we get

b ’ qA ðq1 
 qAÞð1þ �Þ
n
ðPÞ
t

n
ðDÞ
t

 !
1

: ð22Þ

The fact that the observed current state of the system constrains the value of these
parameters does not mean that they are purely empirical in nature. They are
aggregated measures of fundamental properties of the current economic system (and
region) of interest, and in the general case they may change with time. If the model
should be used for prediction, instead of explanation as is the case here, then more
elaborate ways of estimating current (and future) parameters are needed.
The spatial parameters c and a in Eq. (14) reflect the statistics of transport

characteristics of the economic configuration. Their effect on the statistical
properties of the system are somewhat subtle and thus they are not as easily
estimated from data as the parameters mentioned above. Anyhow, results seem
robust to their exact values and the functional form of Dij :

4.7. Simulation results

Figs. 2–5 reflect data from the same Monte Carlo simulation run of the model.
Together, the figures show that the model reproduces a number of statistical
properties of the target system concurrently on different levels of emergence. The
power law distribution of land prices is predicted already by the non-spatial model
and when spatiality is introduced Eq. (14) the node degrees are spatially sorted into
clusters with the desired properties while retaining the per-cell distribution from the
non-spatial model. To reproduce the power law exponent in the empirical
distribution of land values, q1 ¼ 0:2 was used. The parameters b ¼ 0:34 and � ¼
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0:18 were then estimated from empirical cluster data as described above. The spatial
parameters were c ¼ 0:1 and a ¼ 2: Investigation of sensitivity shows that exponents
and proportions change slowly and smoothly with all parameters. A square grid of
1600� 1600 cells (each cell representing a 16 ha square) was used to match the land
area of Sweden (41,093,400 ha). The number of iterations was 270; 000; to give the
final simulated configuration the same total price as the aggregated empirical price of
developed sites (760,000,000 kSEK). In comparison with empirical land values, the
model land values were taken as 1425xi kSEK (degree 1 then corresponds to the
threshold land value for developed cells).
5. Summary

Operational models of urban growth today are not founded on more general
conceptual models [25–27]. Conceptual models, such as Simon’s model are not
geographical and their insights can thus not easily be extended to models of
geographical distributions. The model presented here aims to provide a synthesis
between operational and conceptual models. In terms of previous models, the
present model is a random multiplicative growth model in the tradition of Simon but
is formulated on a lower level: a level where a better case for individuality of the
included objects can be made, where the microeconomic argument can be made more
transparent, and where geography can be included.
We have chosen to represent the urban system as a collection of land lots with

trade relations between them. Maintaining the importance in principle of preferential
growth as a base-line model of economic change, such a network model essentially
becomes a scale-free network model following Barabási et al. In essence we say that
when a new trade relation appears, sufficiently often the probability of it having an
end-point in a given node is proportional to the amount of activity already present in
that node. In addition, we say that new (previously isolated) nodes are added to the
network with a certain rate. In terms of the target system this corresponds to the
development of land areas that previously had no urban activity.
This model, provided our argument for the mapping between real-world objects

and nodes and connections in the model is convincing, bears a scale-free distribution
of node degrees as a consequence. Thus, the scale-free distribution of land values per
unit area in empirical data can be explained as stemming from a preferential growth
of the underlying trade network. This forms the basic model which is basically a
Barabási–Albert model with interpretations similar to Simonoid models put on its
components and mechanisms.
The most obvious deviation from pure preferential growth in an urban system

stems from costs of transportation. An activity in some location is more likely to
trade with nearby lots because of cost related to transportation. Hence, the
probability of interaction, due to increasing costs of transportation, can be assumed
on an average to taper off gradually as a function of distance.
As argued in Ref. [24], a distance bias would have effects similar to the effects of

node fitness [28,29]. This means that we should expect transportation costs to make



ARTICLE IN PRESS

C. Andersson et al. / Physica A 345 (2005) 227–244 243
the distribution of land values per unit area multi fractal. That is, it should become a
sum of power laws with different exponents. However, although the spatial bias is
strong enough to arrange the nodes into clusters spatially, it is not strong enough to
cause a major deviation from a pure power law. Thus, the model ‘‘survives’’ the
introduction of a transportation cost to perturb the dynamics.
Furthermore, we add some additional constraints governing the recruitment of

new nodes to also capture the arrangement of nodes into urban clusters. We retain
the previous behavior of the model, i.e., that local land values are distributed
similarly to observed empirical land values, and, in addition, some properties on the
emergent level of geographical clusters are also captured. These properties are:
cluster area, cluster-aggregated land value and the ratio between cluster areas and
perimeters. We also verify empirically that there is essentially a linear relation
between the aggregated land value of a cluster and its population which indicates
that results should apply also to observations of population rather than land value.
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