

Chalmers Publication Library

Toughening effect and oxidation behavior of MoSi2-ZrO2 composites

This document has been downloaded from Chalmers Publication Library (CPL). It is the author's version of a work that was accepted for publication in:

Boston,MA 2006,MRS Fall meeting; November27-December 1,Hynes Convention Center & Sheraton Boston Hotel Boston,MA

Citation for the published paper:

Gong, K. ; Yao, Y. ; Ström, E. (2006) "Toughening effect and oxidation behavior of MoSi2-ZrO2 composites". Boston, MA 2006, MRS Fall meeting; November27-December 1, Hynes Convention Center & Sheraton Boston Hotel Boston, MA, vol. 980(0980-II05-35), pp. 339-344.

Downloaded from: http://publications.lib.chalmers.se/publication/25742

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source. Please note that access to the published version might require a subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses, conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted. The CPL service is administrated and maintained by Chalmers Library.

CHALMERS

Toughening Effect and Oxidation Behavior OÍ MoSi2 - ZrO2 Composites

Karin Gong*, Yiming Yao*, M. Sundberg**, Xin-hai Li***, Erik Ström and Changhai Li*

****** Kanthal AB in Sweden ******* Siemens Industrial Turbomachinery AB in Sweden * Dept. of Materials and Manufacturing Technology, Chalmers University of Technology in Sweden

Objective

In this study, the influence of particle size and volume percentage of unstabilized ZrO2-addition on toughening effect in MoSi2matrix composites were investigated. And, the negative effect of ZrO2-addition on oxidation resistance of the composites was also observed. The aim of this study is to understand the both of positive and negative effects of ZrO2-addition on the composites for reaching a comprehensive results.

1. The particles of less than 1 μm usually generated the better results on sintered density, RT-hardness and RT-toughness of the

Materials and Preparation

The commercial Kanthal powder (KT-MoSi2) with average size of $2.2 \,\mu\text{m}$ in diameter was applied for preparing the composites.

- The Five different USZ- ZrO2-particle sizes between 0.74–
- 5.6 μ m and 10- 30 vol.% of <1 μ m particles were used to prepare the testing materials.
- Composites were produced by two different powder
- metallurgical processes, including pressure-less sintering (PLS) at 1650°C in H2 for 1 hour and hot-press sintering (HPS) at

- composites, compared with the bigger particles.
- 2. The composites containing 15–25 vol.% USZ-particles showed a better toughening effect, compared to the composites having less or more particles.
- 3. External pressure of sintering process assisted the composites for a higher hardness, but slightly improved sintered density and toughness only. It means that the PLS process could be a practical and economical method for producing MOSi₂-ZrO₂ composites in industry.
- 4. A deteriorated oxidation resistance of MoSi₂-ZrO₂ composite compared to its monolithic counterpart is due to the formation of the porous oxide layer of ZrSiO₄+SiO₂ mixture and a retarded Si diffusion.
- 5. Therefore, an alloying addition for further forming a protective oxide layer is necessary on developing this type of composites.

1600°C in Ar under 52 MPa for 2 hours.

Testing

1. The hardness and fracture toughness were determined by using Vicker's indentation technique. And the fracture toughness was calculated by Anstis' equation.

2. The specimens were exposed in air under a temperaturer of 1400°C for 100 hours.

3.Backscattering electron images of SEM; EDS and XRD methods

Table2. Marks	s of the MoSi	2 - 20vol.% Zi	rO ₂ composit	es			Average size (µm)	0.74 0.87	0.96	2.13 5.65				
Mark of samp	ole sta	starting powder sintering process					Table 4 Sintered density room temperature hardness and toughness of MoSi ₂ – 20 vol % $7rO_2$							
PLS – 1 PLS – 2 PLS – 3 PLS – 4	K K K	Γ -MoSi ₂ + SF- Γ -MoSi ₂ + DK- Γ -MoSi ₂ + SF- Γ -MoSi ₂ + DK-	Extra -1 premium -2	ressure-less sintered as above as above			composites b	composites by PLS process						
PLS - 5 $PLS - 6$	$\begin{array}{c} \text{KT-MoSi}_2 + \text{DK-2} \\ \text{KT-MoSi}_2 + \text{DK-3} \\ \text{KT-MoSi}_2 \end{array} \qquad \begin{array}{c} \text{as above} \\ \text{as above} \end{array}$						Specimen	Sintered density (g/cm^3)	RT-Hardness (Hv, GPa)	RT-toughness (MPam ^{1/2})				
Table 5. Sintered density, room temperature hardness and toughness of five different ZrO ₂ - content composites prepared by PLS + HIP processes by PLS + HIP processes						s prepared	PI S_1	6 07 (98%)	7 82	5 70				
Specimen	Sintered density (g/cm ³)	RT-Hardness (Hv, GPa)	RT-toughness (MPam ^{1/2})	Mark of sample	Starting powder (vol. %)	Sintering process	PLS-2	6.13 (99%)	7.80	6.89				
HIP-1 HIP-2 HIP-3 HIP-4	6.31 (100%) 6.34 (100%) 6.17 (99.5%) 6.16 (99.5%)	9.76 ± 0.20 9.64 ± 0.22 9.13 ± 0.25 8.96 ± 0.15	4.50 ± 0.35 6.40 ± 0.35 5.65 ± 0.54 6.13 ± 0.41	HIP-1 HIP-2 HIP-3 HIP-4	90 vol. %KT-MoSi ₂ + 10 vol. % C208 85 vol. %KT-MoSi ₂ + 15 vol. % C208 80 vol. %KT-MoSi ₂ + 20 vol. % C208 75 vol. %KT-MoSi ₂ + 25 vol. % C208	Hot Isostatic Press as above as above as above as above	PLS-3 PLS-4 PLS-5	6.08 (98%) 6.02 (97%) 5.89 (95%)	7.48 6.97 6.01	5.63 4.61 4.06				
HIP-4 HIP-5	6.16 (99.5%)	0.90 ± 0.13 9.00 ± 0.20	0.13 ± 0.41 5.79 ± 0.24	HIP-5	70 vol. %KT-MoSi ₂ + 30 vol. % C208	as above	PLS-6	6.07 (97%)	9.19	3.09				

Fig.1 the typical (a) shows microstructures in the oxidized composite and monolithic specimens. oxidized composite is The characterized with a thick oxide layer and an inner oxidation zone with thickness of 110 µm and 200 µm respectively.

monolithic Fig.1 the (b)MoSi₂exhibits an excellent oxidation resistance due to a protective silica scale with an average thickness 25 µm, which is under one fourth of that in the composite counterpart. No inner oxidation occurs in the sub-interface region.

were applied for the analytical analysis.								Table1. The starting powders of ZrO_2 used for preparing MoSi ₂ – 20vol.% ZrO ₂ composites						
	1 1		~	~				Commercial mark	SF-Extra	DK-1	SF-Premium	DK-2	DK-3	
Table2. Marks of the MoSi2 – 20vol.% ZrO ₂ composites								Average size (µm)	0.74	0.87	0.96	2.13	5.65	
Mark of samp	ole stat	rting powder	sin	Itering process						1 1		n' 0 0 1		
PLS - 1 $PLS - 2$ $PLS - 3$ $PLS - 4$	LS - 1KT-MoSi ₂ + SF-ExtraPressure-less sinteredLS - 2KT-MoSi ₂ + DK-1as above'LS - 3KT-MoSi ₂ + SF-premiumas above							rable4. Sintered density, room temperature naroness and toughness of $MOSI_2 - 20VOI.\%ZrO_2$ composites by PLS process						
PLS = 4 PLS = 5	KT	$-MoSi_2 + DK$ $-MoSi_2 + DK$	-2	as above as above				Cnaciman	Cintored	donaitu	DT Handnaga		DT touchnood	
PLS – 6	KT	C-MoSi ₂		as above				Specifien	Sintered (g/c	m^{3})	(Hv, GPa)		$(\text{MPam}^{1/2})$	
Table 5. Sintered density, room temperature hardness and toughness of five different ZrO_2 - content composites prepared by PLS + HIP processes by PLS + HIP processes														
				Mark of commis	Ctarting genular (real 0/)	Cintaria a massa	-	PLS-1	6.07 (98	6.07 (98%)			5.79	
Specimen	Sintered density (g/cm ³)	RT-Hardness (Hv, GPa)	RT-toughness (MPam ^{1/2})	Mark of sample	Starting powder (vol. %)	Sintering process		PLS-2	6.13 (99	%)	7.80		6.89	
	·			HIP-1	90 vol. %KT-MoSi ₂ + 10 vol. % C208	Hot Isostatic Press		PLS-3	6.08 (98	%)	7.48		5.63	
HIP-1	6.31 (100%)	9.76 ± 0.20	4.50 ± 0.35	HIP-2	85 vol. %KT-MoSi ₂ + 15 vol. % C208	as above		PLS-4	6 02 (97	%)	697		4 61	
HIP-2	6.34 (100%)	9.64 ± 0.22	6.40 ± 0.35	HIP-3	80 vol. %KT-MoSi ₂ + 20 vol. % C208	as above			5.02()7	///)	0.77		1.01	
пір-э Нір-7	0.17 (99.5%) 6 16 (99 5%)	9.15 ± 0.25 8 96 + 0 15	5.03 ± 0.34 6 13 + 0 41	HIP-4	75 vol. %KT-MoSi ₂ + 25 vol. % C208	as above		PL2-3	5.89 (95	%)	0.01		4.00	
HIP-5	6.16 (99.5%)	9.00 ± 0.10	5.79 ± 0.24	HIP-5	70 vol. %KT-MoSi ₂ + 30 vol. % C208	as above		PLS-6	6.07 (97	%)	9.19		3.09	

ACKNOWLEDGMENTS

The authors are grateful for the financial support from KME, in Sweden, Chalmers University of Technology, Göteboeg, in Sweden.; Kanthal AB and Siemens Industrial Turbomachinery AB in Sweden.