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Department of Mechanics and Maritime Sciences
Division of Vehicle Safety

CHALMERS UNIVERSITY OF TECHNOLOGY
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Sweden
Telephone: +46 (0)31-772 1000

Cover:
Collision Warning with Emergency Brake, i.e. the AEBS system in Volvo HGVs, alerts the driver when there
is a risk of collision with a vehicle in front and activates the brakes if necessary. The blue light in the picture
visualises the scope of the camera, while the radar is placed far down on the front of the HGV. The picture is
obtianed from Volvo Trucks Images and Film Gallery (internal source).

Chalmers Reproservice
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Abstract

Advanced Emergency Braking System (AEBS) is an active safety system for Heavy Goods Vehicles (HGVs)
which aims to prevent rear-end collisions, i.e. when a vehicle drives into the rear of the vehicle in front. This
report investigates the performance of AEBS in Volvo HGVs, and describes under what circumstances the
system intervenes correctly and incorrectly respectively. Data from AEBS interventions by Volvo HGVs was
analysed, and patterns of the incorrect interventions were identified. These patterns were translated into code,
resulting in a program that automatically classifies the logged interventions as correct or incorrect. Different
variables were investigated for the correct and incorrect interventions separately, for the purpose of finding
factors that affect the performance of AEBS, i.e. under which circumstances the correct and the incorrect
interventions occur. The majority of the incorrect interventions were found to be due to stationary targets,
and only resulted in a short intervention with minor speed reduction. Therefore, it seems very unlikely that
the incorrect interventions would cause collisions. The majority of the interventions were found to be true,
and many of these interventions yielded a large speed reduction. Thus, AEBS interventions prevents many
collisions.
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1 Introduction

Every year, around 1.4 million lives are lost due to traffic collisions [2]. World Health Organization classifies
road injuries as the eighth leading cause of death in the world. The fatalities, injuries and property damage
result in high societal costs, and measures are taken to reduce the number of collisions. This includes research
about different accident types and their main causes, but also design of safe roads and the development of new
safety systems for vehicles. One example of a relatively new safety system is Advanced Emergency Braking
System (AEBS), which aims to reduce the number of collisions with a truck involved.

AEBS uses sensors to scan the road to detect potential collisions. If a potential collision is detected, the system
automatically warns the driver, and if necessary it also applies the brakes of the vehicle equipped with the
system. Volvo Trucks introduced AEBS in their Heavy Goods Vehicles (HGVs) in 2012, as a step in their
strive towards zero serious collisions on roads, i.e. collisions leading to serious injury or death. Volvo’s HGV
are already equipped with a number of other safety systems such as Anti-Lock Braking System (ABS) and
Electronic Stability Program (ESP), not to mention the seat belt, which all are saving numerous lives every
year. Knowledge about how well a system performs, and in which situations it has effect, is relevant not only
to the manufacturer but also customers and researchers. Since AEBS is a relatively new system, its real-world
impact on collision avoidance is not yet known. Therefore, gaining detailed knowledge about the effects of the
system is of interest.

This study is an investigation of the effects of AEBS on collision avoidance. The study is based on data analysis
from real world AEBS interventions in HGVs with Volvo’s AEBS system. The aim of the study is described in
Section 1.1 and the limitations are described in Section 1.2.

1.1 Aim of the study

The aim of the project was to develop and implement a method to analyse and draw conclusions about under
what circumstances correct interventions (true positives) and incorrect interventions (false positives) of AEBS
occur, and to what extent AEBS decreases the number of rear-end collisions and reduces their severity. The
project also aimed to point out connections between the false brake interventions and radar malfunction.

The project was divided into the following tasks:

• A literature review on the effects of the introduction of various accident avoidance systems on vehicles.
Especially interesting is the question about if and how AEBS has been analysed before.

• Development of a method to perform an analysis of log data from equipped Volvo HGVs to make a
quantitative analysis of the performance of Volvo’s AEBS system. The method should be scalable to big
data environments due to large data sets.

• Find quantitative results describing possible safety benefits from AEBS and find correlations of the true
and false interventions.

• Understanding and describing environment limitations of the radar technology and propose a way to
resolve these or suggest ways to reproduce scenarios for further development of the radar.

The following research questions were to be answered:

1. Has AEBS decreased the number of rear-end collisions?

2. Has AEBS decreased the severity of the rear-end collisions?

3. How many of the brake interventions by AEBS are true and false respectively? Is this affected by external
conditions, e.g. time of day? The answer to the first part of this question cannot be published externally
due to confidentiality.

4. What are the reasons of the false positives? Is there a correlation to external conditions such as time of
day and geographic location?
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5. Under what conditions do true positives occur? Is there a correlation to external conditions such as time
of day and geographic location?

6. Can false radar targets derive from the surrounding objects or other factors, e.g. noise, other interfering
signals or inappropriate system design of the radar?

1.2 Limitations of the study

The analysis that has been carried out is based on automatic braking systems in HGVs, and even more
specifically Volvo HGVs. In the literature review both AEBS for HGVs and AEB for cars have been studied,
but no data from AEB systems in cars has been analysed. The data sets used for the analysis contain many
different variables. This analysis includes several of them, both separately and in combination with each other.
However, there are many possible combinations of variables that can be investigated, but only some of them
have been chosen for this analysis. When implementing the resulting programs, the aim was to make them as
generic as possible and load in all relevant data, to allow for future analyses of other variables than the ones
used in this thesis work.

1.3 Confidentiality

This thesis work was carried out at Volvo Group Trucks Technology and concerns the details about the
performance of one of their products, which is a business secret. Therefore, several aspects of the thesis work
are subjects to confidentiality and cannot be published in an official report. Thus, two versions of the report
have been made – one official thesis report with general descriptions but without the details, and one company
internal report with more details and scripts that have been created during the project. This is the official
version of the report.
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2 Background

In the EU, there were 23 900 fatal traffic collisions in 2016, resulting in 25 600 fatalities, according to the
European Road Safety Observatory (ERSO) [3]. They also state that crashes in which at least one HGV was
involved resulted in more than 4 000 fatalities, which is about 16% of all fatalities in traffic in the EU [4].
ERSO also states that of the fatally injured in the HGV-including collisions, 14% were HGV occupants, while
49% were car occupants, 16% pedestrians and 8% bicyclists. Thus, HGV occupant fatalities make up about 2%
of all traffic collision fatalities. In other words, collisions involving HGVs are often serious or even fatal, but
often other occupants are more seriously injured than those in the HGV. The large mass of the HGV is one of
the main causes for this.

Of these fatal collisions in which an HGV was involved, 24% occurred on urban roads, 19% on the motorway
and 56% on rural roads, while in 1% of the collisions the road type was unknown, according to the same
report. Among the 570 HGV occupant fatalities, 12% were in urban areas while 88% were on rural roads
or motorways [3], showing that HGV fatalities are more likely to occur on higher speed roads than on urban roads.

In 2015 a new commission regulation (No 347/2012) came into force in the EU, requiring HGVs with maximum
mass exceeding 8 tonnes to have a collision warning and emergency brake system (AEBS) installed, with some
exceptions [5]. In 2018, this requirement was extended to also include HGVs with a maximum mass below
8 tonnes. The tests performed on the new HGVs also have higher requirements in the second version. For
example, the minimal speed reduction of the tested vehicle must be larger, and the speed of the target is higher
than in the previous tests. Further information about the AEBS requirements and the regulation in general
can be found in Commission Regulation (EU) No 347/2012 [5]. Similar systems already exist for cars but is
then referred to as Autonomous Emergency Braking (AEB).

The main purpose of AEBS is to prevent and reduce the severity of rear-end collisions, i.e. collisions in
which the front of a vehicle strikes the rear of another vehicle travelling in the same direction. Rear-end
collisions are responsible for between a fourth and a third of all traffic collisions [6][7][8], making it the most
common of all collision types. Rear-end collisions often result in damage to the vehicles involved and personal
injuries, which in turn result in high societal costs. A rear-end collision resulting in fatality is less common, but
still the rear-end collisions are to blame for around 7% of all fatal traffic collisions [6].

At Volvo Trucks, the Accident Research Team (ART) studies collisions to understand the cause and procedure.
In Volvo Trucks Safety Report 2017, ART presents an overview of the distribution of the different types of
serious collisions, i.e. collisions resulting in fatality or severe injury, where HGVs are involved. This is based
on data from collisions in Europe. The authors concluded that 6.5-9.5% of serious collisions where a HGV is
involved, are of the type where an HGV strikes the rear-end of a car or another HGV [9]. The same report also
includes frontal collisions and collisions into the side of a car (either an oncoming car making a left turn across
the HGV path or a car turning out from an intersection), and these add up to 17-29% of all serious collisions
with an HGV involved. Another common collision type is when a car strikes the rear-end of an HGV, reaching
5-8%. Future AEBS/AEB systems might be able to avoid these type of collisions as well.

2.1 Functionality of AEBS

AEBS uses warnings and automatically initiates a braking to mitigate or completely avoid collisions. The
system is designed to let the driver remain in charge of the vehicle as long as possible, and the emergency
braking only intervenes when there is no other option left. Therefore, the system starts by warning the driver
when there still is a chance to take action. The system alerts the driver if a collision is imminent by a visual
and/or an audible warning. If the driver fails to respond to the warning, the system will automatically initiate
the emergency braking. Section 2.1.1 and 2.1.2 describes the functionality of AEBS in Volvo HGVs and the
limitations of the system.
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2.1.1 AEBS in Volvo HGVs

Volvo’s AEBS uses a radar and a camera to keep track of the objects ahead of the HGV [10]. A radar system
can measure the distance and velocity to the tracked objects with high accuracy, but is not as accurate when it
comes to determining angles or object type. A camera on the other hand, can determine angles and object
type, but only give a rather rough estimation of the distance. If both the radar and the camera are tracking an
object, and they agree on the values of the longitudinal and lateral position as well as velocity of the object,
their information can be fused. Through the fusion, the advantages of radar and camera can be combined to
acquire a clearer picture of the surroundings and thereby reduce the risk for misinterpretations. Thus, fusion
makes the collected data more precise and trustworthy. Altogether, the sensor can keep track of several objects
where some are radar only objects, some are camera only objects and some are fused objects. The functionality,
advantages and limitations of the radar is further described in Section 2.3.

Beside keeping track of the surrounding objects, the sensor can also evaluate which object is the most
critical from the AEBS system’s point of view, and selects this object as target. Which object is considered the
most critical depends on the time to collision (TTC), i.e. the estimated time it will take until the host collides
with the target when assuming constant velocities or constant accelerations. The object with the lowest TTC,
which is also in the path of the host vehicle, is selected as target. Only one object can be selected as target at
a time. If a new object would become more critical, it will replace the previous object as the selected target.
Knowing which of the tracked objects is the target is crucial when analysing logs to determine if the object
detection was a true or false positive and if the brake intervention was correct or not.

The collected information from the sensor is evaluated in a so called Electronic Control Unit (ECU), which
also receives information from other ECUs in the HGV, such as the velocity and yaw rate of the HGV. If the
software of the control unit considers that a collision is imminent, a brake intervention is initiated. In Volvo
HGVs, AEBS is a combination of a Forward Collision Warning (FCW) and an automatic emergency braking.
How these are deployed depends on the traffic scenario. In most cases, the different parts of the system are
activated gradually as described below and shown in Figure 2.1.

Figure 2.1: The different steps of the AEBS intervention: pre-warning, warning, pre-brake and
full brake [11].
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The first part of FCW is a visual signal to the driver of the HGV, in the form of a red LED light on the front
windshield (see Figure 2.2). If the HGV keeps approaching the object ahead, a flashing light and an audible
alarm signals the driver to brake. If there still is no sufficient reaction by the driver, the EB is activated. As a
first step, the system initiates a light brake, called pre-brake, which both reduces the speed and triggers the
braking system to be prepared for a potential full brake. Finally, if necessary, a full brake is initiated, which
continues until the HGV has the same speed as the object ahead, or until a complete halt is reached. The EB
is only initiated if a collision is inevitable without an immediate brake.

Figure 2.2: Photo from the first part of an FCW intervention [12].

Depending on how critical the scenario is, the procedure of the AEBS intervention can differ. For example, the
system can immediately activate a full brake if a collision suddenly becomes inevitable, e.g. due to a cut in
manoeuvre.

2.1.2 Limitations of the system

Volvo’s AEBS system brakes for moving targets as well as stationary targets if the camera and radar data
are fused, but not yet for Vulnerable Road Users (VRUs). The system has been introduced in three different
stages, released in 2012, 2015 and 2018 respectively. The system intervenes independent of the host speed, and
can completely avoid stationary targets at host speeds up to 50 km/h, 80 km/h and 90 km/h for the three
versions respectively. The system is activated when the host speed is above 15 km/h for the two first versions,
and 5 km/h for the last version. Moreover, for the system to be activated it is required that the HGV has a
functional ABS in the tractor and also the trailer, if there is one.

There are several ways in which the system can be deactivated. First of all, there is a button that the
driver can simply push to turn it off. If the sensors are misaligned or covered in some way, e.g. by snow, rain or
dirt, and thus have limited functionality, the system is automatically turned off and the driver will be informed
about this. The driver can also perform a so called acceleration pedal kickdown, which is when the driver gives
full gas and then also an extra push to the acceleration pedal. This action deactivates the system for 15 seconds.
However, if there has been a kickdown for more than one minute, the system is reactivated. Moreover, the
system is deactivated if there have been three interventions from AEBS. Reactivation is performed when the
HGV visits a service center. To conclude, there are a number of ways in which the system can be deactivated
and thus it is possible that there are HGVs driving around without AEBS activated.

Though the advantages with AEBS are many, there are also risks with the automatic braking. For example, it
could make the driver lose control of the vehicle, distract the drivers nearby by the sudden brake or possibly
even cause other collisions. Overall, the advantages of AEBS still weigh much higher than these risks. The
system has a few weaknesses which can cause false detections, so called ghost targets, as well as missed targets.
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2.2 Previous studies on AEBS and AEB

There are some studies on the effects of AEBS, and even more about AEB, but as these are performed in
different geographical regions and account for different factors, their conclusions vary and can not trivially be
compared. Moreover, the studies on AEB might not be comparable with the result from this analysis due to
the differences of cars and HGVs, e.g. regarding the physical attributes, the number and types of collisions,
and the functionality of AEB and AEBS. Yet, some of the studies contain interesting findings relevant for the
analysis performed in this thesis, and also ideas for the analysis. Some of these studies are discussed below.

2.2.1 Analyses of the effectiveness of AEBS

In a study from 2016, Grove et al. analysed 150 trucks equipped with AEBS from two external suppliers (i.e.
not developed by the truck makers) [13]. The trucks drove their normal routes between 2013 and 2015, resulting
in 2.5 million miles (ca 4 million kilometers) of logged driving. The two systems had generated 30 and 234 EB
interventions respectively. Out of these, 8 and 1 brake interventions were false, corresponding to 27% and 0.4%
of the total number of interventions respectively. The same study also included an analysis of the duration of
the brake interventions, the maximal deceleration and the total velocity reduction. The analysis was made for
true and false positives individually. The results showed clearly that the false positives on average have a shorter
duration, lower maximal deceleration and a lower total velocity reduction. It is worth mentioning that this might
only be valid for the systems used in the study and not necessarily applicable to other emergency braking systems.

One way to determine the effect of AEBS/AEB is to compare vehicles that have the system installed with
models that do not, e.g. in number of rear-end collisions reported to the police or to insurance companies.
In a study conducted by Isaksson-Hellman and Lindman, insurance claims from rear-end collisions with one
car model only (Volvo V70 model year 2010-2015) in Sweden were studied to investigate the performance of
emergency braking (AEB) in combination with collision warning, brake support and adaptive cruise control
(CW + ACC). With only low-speed AEB (limited to 30 or 50 km/h depending on generation of the system),
the number of rear-end collisions was reduced by 25%, while in combination with CW + ACC the reduction
was 28% [14]. In another study by the same authors, with the same conditions except they studied the Volvo
XC60 with the AEB not limited to low speed, they noted a 37% overall reduction of rear-end collisions [15].
The highest reduction was then among medium and high severity collisions (defined as an impact speed of 5-15
km/h and above 15 km/h respectively).

Fildes et al. summarised the results from several studies of AEB and concluded that it would reduce
the number of rear-end collisions by 38% [16]. In addition they noted that there was no significant difference
between high speed or low speed (above or below 60 km/h), and they recommended a widespread fitment
throughout the vehicle fleet.

2.2.2 Velocity reduction and driver experience of AEBS

Fecher et al. performed a real life study in which they analysed and compared the velocity reduction in critical
situations when having AEBS or AEB installed (i.e. both cars and trucks were used) and also when not having
any of the two systems [8]. The test drivers’ experience of the brake interventions were also analysed. The
brakings were of two intensities, partial or full brake. Since the energy in a collision increases quadratically
with the velocity, it is essential to reduce the velocity as much as possible if a collision is imminent. Thus,
the velocity reduction was measured in the different cases, i.e. car or truck and partial or full brake. These
numbers were compared to the results from test cases where no automatic braking system was activated. The
speed reductions for the cars were 8-51 km/h without any braking system, 42-63 km/h with partial brake and
44-65 km/h with full brake. The corresponding speed reductions for the trucks were 15-32 km/h, 34-36 km/h
and 36-40 km/h respectively. Thus, it was clearly beneficial to have an automatic braking system activated.
However, the difference between partial and full brake was not noticeable for cars. In trucks, the difference was
of greater importance. This motivates the importance of an automatic braking system, especially in trucks.
Also, since the severity of a collision is higher when a truck is involved, it is essential to reduce the velocity as
much as possible.
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After the tests the drivers were questioned about their experience of the system. The majority of the test
drivers considered the system to be very effective, both for cars and trucks, but the truck drivers had an even
higher percentage of satisfied drivers.

The test also included some faulty activations of the systems. The questionnaires showed great annoyance of
these faulty activations among the drivers. It is thus very important that AEBS works correctly. The system
should brake when a collision is imminent to avoid or mitigate the collision, but faulty activations can annoy the
driver and make him or her turn off the system. Thus, it is desired to maximise the number of true positives,
while minimising the false positives, which is not a trivial task.

2.2.3 Combination with other safety systems

In his article ”Autonomous Emergency Braking AEB (city, inter-urban)”, Saadé mentions that vehicles with
both AEB and FCW have a 20% higher risk of getting struck than cars without the two systems [17]. However,
the risk of striking is reduced by 50%, which thus makes it convenient to have both systems installed.

Traffic situations are very complex, and there are a lot of aspects that affect the outcome of a traffic incident.
Similarly, the performance of AEBS is affected by many different circumstances, such as the curvature of the
road, the speed of the host vehicle as well as the target and the surrounding environment [17]. The efficiency of
the system also depends on which other safety systems the car or HGV has installed, e.g. collision warning and
cruise control.

Jammes et al. performed an experiment to investigate if the reaction time is affected by the use of cruise control
(CC) in case of the need of an emergency brake [18]. The experiment included eleven test drivers who were told
to brake at the end of each driving session. In total 20 braking tests were performed on each individual, of
which 10 were driven with CC and 10 driven manually. The results from the tests with CC were compared to
the ones without for each individual. The authors’ concluded that the reaction time was significantly longer
with the use of CC, and the time from that the driver touched the brake pedal until reaching the peak brake
force was also longer. Both these factors contribute to a lengthened braking distance. Thus, the use of CC
implies a need of automatic braking to prevent the increased risk of collisions that otherwise comes with the
activation of CC.

2.3 Automotive radar

As previously mentioned, the AEBS system in Volvo HGVs uses a combination of radar and camera. This
combination has several benefits. The radar system can measure distances with a high precision but with the
disadvantage of a low angular resolution. A camera has much better angular resolution but cannot determine
distances with high precision. By combining the radar and camera, the benefits of both sensor types can be
used for better positioning of surrounding objects. However, some of the disadvantages of the sensors are
difficult to avoid completely and they might fail in detecting objects or detect so called “ghost targets”, i.e.
misinterpret the surrounding and cause a false emergency braking. Even though measures are taken to reduce
erroneous or missed detections, the AEBS system will not perform flawlessly always.

By looking into the principles of an automotive radar, potential weaknesses are derived. These weaknesses are
discussed further and compared with the findings from the data analysis. Finally, a few test cases are proposed
to test how well the radar performs in these scenarios, which hopefully can give ideas for possible improvements
of the radar.

This section discusses the working principles of a radar and the physics behind it. Then radar design is
described, and the radar equation is derived. The main information source for this section (except the derivation
of the radar equation) is Automotive RADAR by H. Winner [19] if not indicated otherwise.

2.3.1 Principles of a radar

The main principle of a radar is to measure distances by transmitting electromagnetic radiation that is reflected
by surrounding objects, and measure the time for the radiation to return. Since the radiation traverses through
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air, its velocity is approximately the same as the speed of light in vacuum. Thus the distance to the object can
easily be derived by dividing the time for the radiation to travel with the light speed and divide by two, since
it travels back and forth.

The radar uses radio waves, for which metal materials act as nearly perfect reflectors, but some other
materials might also cause reflections. The shape of an object also plays a key role as it determines in which
angle the radiation is reflected. Convex shapes have at least one side perpendicular to the propagation, and will
therefore reflect back some of the radiation while flat and concave surfaces will be more dependent on how they
are angled (see Figure 2.3). E.g. corners with right angles will reflect back all radiation towards the source.
Sometimes, the radiation can be reflected several times, so called secondary reflections (see Figure 2.4), which
can result in faulty distance and angular measurements. Primary (normal) reflections and secondary reflections
might interfere with each other and sometimes the phase is shifted enough for them to cancel each other out.

Figure 2.3: How radiations is reflected by different shapes. The blue lines shows transmitted
radiation from the radar and the orange lines show how it is reflected. A flat surface (left) reflects
with an angle equal to the incident angle, making the shape visible for a radar pointing straight at

it. A convex shape (middle) focuses and then disperses the radiation, causing the fraction of
radiation back at the radar to vary greatly. A convex shape only disperses the light making it

visible to the radar from most directions, but not at very long distances.

Figure 2.4: Primary and secondary reflections, and how a radar interprets them. The blue lines
shows transmitted radiation from the radar and the orange lines show how it is reflected. The

solid black line shows surface of reflecting objects. In a primary reflection (upper left), the
radiation traverses the shortest distance between the reflecting object and the radar. Since the

radar is unable to determine if the radiation has been reflected more than once, i.e. a secondary
reflection (lower left and lower right), its interpretation of the environment becomes incorrect,
either in terms of distance or/and angle. The dotted orange and grey lines shows the radar’s

interpretation of radiation and reflecting objects respectively.
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Besides reflection, other physical phenomena such as refraction and attenuation can occur. Attenuation is a
damping of the signal and does not cause faulty detections but can limit the range of the radar. The attenuation
is increased in inclement weather such as rain, snow and hail. Refraction means that the propagation direction
of the radiation changes when the radiation passes through the interface between two materials. Refraction of
the radiation can for example occur when radiation passes through the interface between water and air, and if
the radar is covered by an uneven layer of water it can result in a so called lensing effect, where the radiation is
focused or dispersed. Thus, refraction can lead to reduced angular precision and distorted measurements.

In addition to ranging, a radar can estimate the size of an object by measuring how much radiation is
reflected by an object (and by that also determine the object type). Besides, the Doppler effect can be used to
determine the velocity of the object from the change in frequency.

2.3.2 Design of a radar

In order for a radar to achieve accurate measurements of the position and velocity of numerous objects
simultaneously it must be properly designed. This includes beamforming, which is explained below, but also
signal processing, the casing around the radar and the placement on the vehicle.

Beamforming means that the radiation is directed instead of spreading isotropically (i.e. equal power density
in all directions). This is usually carried out with an antenna array, whose electric fields can interfere
constructively or destructively in different directions depending on distance and phase. In the far-field, i.e. at a
large distance from the antenna compared to the wavelength, the radiation beams form so called lobes. It is
possible to steer a large proportion of the radiation in a certain direction and achieve a so called main lobe,
but there will also be minor side lobes. The power density (energy) achieved in a certain direction is often
divided with power density that would be achieved if the emitted power was isotropically distributed in all
directions, and this is called the antenna gain. The maximal gain is found in the direction of the main lobe, and
this is called directivity. A high directivity and small side lobes is highly desired in an automotive radar antenna.

If the transmitting antenna array also is used as receiver, the same radiation pattern will be valid for
the reflected signals, resulting in high gain for signals received from the direction of the main and side lobes.

2.3.3 The radar equation

To derive the ranging capacity of a radar one can start by considering a spherically radiating antenna. The
transmitted power Pt is then distributed over the surface of a sphere. At a distance r the power per unit area
is then Pt/(4πr

2). When the radiation reaches an object, a proportion of the radiated power is reflected. This
proportion depends on the material, geometry and orientation of the object. Since the radiation is reflected
in different directions in a complex manner, it is common practice to simplify by replacing the object with
a uniformly reflecting metal sphere that would yield the same power reflected back to the radar antenna.
The power is then uniformly distributed, and at the antenna the power density has decreased by a factor of 4πr2.

Using this simplification, the power density reaching such a sphere is dependant on the cross section area of
the sphere, often referred to as the radar cross section (RCS) and denoted as σ, which might differ a lot from
the size of the actual object. For example, a human has a radar cross section of around 1 m2 and typical cars
around 100 m2. A perfectly reflecting flat metal surface of 1 m2 perpendicular to the direction of propagation
can have a radar cross section of nearly 106 m2. However, if the plate is placed 60 m from an automotive radar
and oriented just 1 degree from perpendicular, there will be practically no power density reflected back to the
radar.

When propagating, the radiation is also attenuated exponentially, which is described with an attenuation
constant k that depends on the signal frequency and propagation medium. If the attenuation is expressed
in dB/km, a distance r (measured in meters) will result in a power decrease according to 10−kr/1000. For
signals travelling to an object and back, the attenuation will cause a power decrease by a factor of 10−2kr/1000.
Finally, the dimension A and efficiency KA of the antenna will determine how much power the radar can pick
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up. Altogether, the relation between the received power Pr and the transmitted power can now be written as

Pr =
Ptσ10−2kr/1000AKA

(4π)2r4
, (2.1)

An actual radar often uses beamforming to increase the power gain Gt in a certain direction. The reflected
signals will also experience gain according to [20]

AKA =
Grλ

2

4π
. (2.2)

If the same antenna is used for transmitting and receiving, one can replace GrGt with G2. Finally the radar
equation is derived.

Pr =
Pt10−2kr/1000σλ2G2

(4π)3r4
(2.3)

With a certain output power Pt, the radar equation yields information about the received power depending on
radar cross section and distance. To detect an object, the received signals must be higher than the noise in the
receiver. This is often measured in signal-to-noise ratio (SNR), and a typical automotive radar has an SNR
requirement of 6-10 dB, i.e. around 4-10 times higher.

Modern radars also utilise other techniques to increase the capacity. On example is pulse compression,
which focuses the energy of a signal to a shorter period of time, and thus makes it exceed the required SNR.

2.3.4 Choice of frequency and interference from other sources

Currently there are four frequency bands allowed for automotive radars, one at 24-24.25 GHz, one at 76-77 GHz,
one at 77-81 GHz and an ultrawide band at 21.65-26.65 GHz. At these frequencies the attenuation is around 1
dB/km, which is low compared to for example a frequency of 60 GHz for which the attenuation is up to 15
dB/km. Therefore, the attenuation does not cause any major problems for objects at distances relevant for AEBS.

Since most automotive radars use the same frequency bands, there could potentially be interference from
signals deriving from different vehicles, which could disturb the systems. However, since the radiation travels
with lightspeed, it only takes around 1 µs for light to travel 200 m forth and back. Therefore, most signals
from other sources can be suppressed by only receiving signals in a short interval after the transmission. Since
measurements are taken often, it would not be critical if one measurement is affected by interference. In
addition, the measurements are not made with the exact same time spacing since this would allow for other
sources to repeatedly interfere. Instead, the measurements are made at random intervals.
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3 Method

With data from a large number of brake interventions, conclusions can be drawn about the effects of AEBS.
However, there is a risk that the AEBS system misinterprets the surrounding environment of the HGV and
intervenes when it should not. To draw correct conclusions about in which scenarios the AEBS avoids or
mitigates a collision and what causes false interventions, the data was divided into true and false interventions
before any further analysis was made. To manually analyse logs and classify them as true or false positives is
possible but very time consuming and thus not suitable for large data sets. Therefore, a script was developed to
automatically classify logs as true or false. This procedure is henceforth referred to as the true false classification
(TFC).

To determine if an intervention is true or false is a complicated task, and the data has a limited number of
variables. Therefore it was assumed that the TFC script would require continuous testing and improving and
thus a method was formed that quickly yields feedback on how well the script performs and the information
needed to easily find where improvements are needed. More information about the data sets, the data extraction
and the development of the TFC can be found in Sections 3.1 and 3.2.

The output from the TFC, i.e. the classification information of the data logs, was later used when importing
the log data into MATLAB for a deeper analysis of the true and false interventions respectively. This analysis
consisted of a data preparation, and calculations and graphical visualisations of different variables, and
comparisons of the different data sets. The deeper analysis is described further in Section 3.3. For some of the
logs classified as false, the environments where the interventions occurred were analysed to understand what
causes ghost targets for the radar, which is described in Section 3.4.

3.1 The data

The data used for the analysis was provided by Volvo Trucks, Each log contains data from an AEBS intervention,
either only FCW or both FCW and a brake intervention. The data was of two different logging types, which
resulted in the data sets being structured in different ways, and stored either in Excel or MAT-files. Thus,
different methods were required to extract the data and make it well-shaped for the analysis. In this section,
the provided data sets are introduced and the data extraction is explained.

3.1.1 Data logging

Two types of data logging have been used to create the data sets used in this study. For simplicity, the logging
types are referred to as α and β. Depending on which type of data logging is used, the data is stored in
different ways. If logging type α is used, the log from an AEBS or FCW intervention will contain a number
of variables, including a snapshot of variables in the moment of the intervention, and also a log sequence
covering three seconds before and after the start of the intervention, with a time resolution of 0.2 seconds.
The snapshot contains the GPS position of the host HGV and the status of different systems that affect the
AEBS intervention, e.g. if a trailer is connected and if the ABS is activated in the tractor and trailer. The log
sequence contains the velocity and acceleration of the host HGV, longitudinal and lateral distance and velocity
of the target, the status of FCW and AEBS etc.

The extraction of the stored data can be done when the HGV is at a service center, and the data can
further be transferred to Volvo. It is also possible to perform a wireless transfer of data when the HGV is not
at a service stop. There is however a risk that the data retrieval or transfer fails. This can cause data from
some interventions to be missing, incomplete, corrupt or duplicated, which needs to be considered before the
data is used for analysis.

The logging type β is also known as MLog, which is a logging equipment that logs signals sent over the
CAN network. This means only data that is sent between ECUs can be logged while the internal variables in
each ECU are unavailable. The data is organised in a different way compared to the data logged by α, since
signals are sent at different times and in many cases might need interpolation or extrapolation to organise the
data in an appropriate format. The MLog data contains more information about an intervention than the α

11



data. Only a handful of Volvo HGVs used in field tests are equipped with the MLog system. The driving was
carried out by customers driving their normal routes, i.e. naturalistic driving. In that sense, the field test data
is a good estimate of real world traffic.

3.1.2 Data sets

The provided data consists of four different data sets, denoted by A, B, C and D. The two smallest, A and B,
use a logging type denoted as α and are stored in Excel files. The difference between these two data sets is the
geographic location, and thus also the infrastructure. The infrastructure in the geographic location of data
set A is known to be more difficult for the system, and the data set is thus not representative for how well
the system performs in general. These difficulties were considered to be useful in the analysis of the radar.
Data set B is considered to be more representative for the performance of the system in general, but is small in
size. The logs in data set C are collected with MLog, here referred to as β, and are stored in MAT-files. These
HGVs are equipped with a newer AEBS system and a different log equipment than those in data set A and
B. Data set D is very large, and is logged with the logging type referred to as α. These HGVs are equipped
with either the older or the newer AEBS system from Volvo, referred to as system versions 1 and 2. This data
contains the same variables as data sets A and B, but does not look the same initially, requiring an extra step
in the data extraction (described in Section 3.1.3). Since data set D in general contains more recent logs than
the other data sets, it uses a newer system software version, which probably will yield more up-to-date numbers
of the system performance. See Table 3.1 for an overview of the four data sets.

Table 3.1: Overview of the four data sets used in the analysis.

Data set A Data set B Data set C Data set D

Logging type α α β α

System version 1 1 2 1 & 2

Size Small Small Medium Very large

File format Excel Excel MAT Excel (encoded)

3.1.3 Data extraction

The Excel files contain information about the host and the selected target with a lower fixed sampling rate
than the MAT-files. The different variables in a log are all sampled in the same points in time. All logs contain
the same amount of variables, and thus the same amount of data.

The MAT-files contain information about the host and multiple objects that are being tracked, sampled
with a higher variable sampling rate and covering a longer time span than the Excel files. Thus, the MAT-files
contain a larger amount of data. Each variable is logged with its own timesteps, which can vary in length, i.e.
there is no fixed timestep. Instead there is a corresponding time vector for each variable.

The scripts for the data extractions from the Excel and MAT-files, as well as the TFC, were written in
Python. In Python, a dictionary is an unordered data structure which contains keys and belonging values. A
dictionary template was used to define a structure of the data that was to be extracted. The names of the
logged variables were set as keys, with their belonging values left blank to be filled during the extraction. The
variable values in data sets A and B are initially encoded in a hexadecimal string, and in data set D in a base64
string. To extract the data in data set D, the base64 string is first converted to a hexadecimal string. Then,
the data extraction procedure can follow the same algorithm for data sets A, B and D. The hexadecimal string
is decoded to decimal values of the variables, which is inserted into the dictionary until the dictionary is filled
with values for each variable in each timestep. This dictionary was to be used in the TFC. Pseudo-code for the
data extraction from the Excel files is found in Algorithm 1.
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initialisation of dictionary to store variable values
for each variable defined in dictionary template do

read and convert value of current variable in each timestep
save values of variable in dictionary

end
return dictionary

Algorithm 1: Pseudo-code for data extraction from Excel files.

The overall picture of the data extraction from the MAT-files looks similar to the data extraction from the Excel
files, but is actually more complicated. Since the MAT-files contain more variables and more timesteps, the
data needs to be converted such that it can be used in the same manner as the Excel data. First a dictionary
is initialised, containing almost the same variables as the dictionary used for the Excel files, with the exception
that some variables are not included here since they are not needed in the TFC.

The next step is to extract the variable values from the MAT-files. The variables related to the host vehicle
have a corresponding variable in the MAT-files, and can thus be trivially extracted from the MAT-file. The
remaining variables, i.e. the ones related to the target, are more complicated to extract due to the different
structure of the data and the need to distinguish the target from all other objects before the extraction. There is
a variable defining which of the objects, defined by unique object IDs, is the target in each timestep. Moreover,
the sensor has a certain number of ”tracks”, and in each of these, one object can be tracked. The sensor tracks
are given one number each, i.e. a sensor track ID. For each sensor track, there is a variable defining which
object (defined by the object ID) it is tracking in each timestep. Thus, with these variables, the sensor track
logging the current target can be found. When the sensor track logging the current target has been found,
variable values, such as velocity and distance, can be extracted. Moreover, for some of these variables there
are two alternatives for the same sensor track, depending on if the tracked object is stationary or moving.
Both the target and which sensor track is used to track the target can change during the duration of the
log, making the extraction even more complicated. To conclude, for each variable related to the target, it is
necessary to find which object is the current target, which sensor track is used for the current target, and for
some variables if the target is stationary or moving. One and the same variable in the MAT-files can have
one variable for each sensor track, and sometimes even twice as many due to the stationary/moving classification.

Figure 3.1 shows an example of what the data extraction procedure from a MAT-file can look like. In
the first four timesteps, the object with ID 10 is the target, while in the three following timesteps, object with
ID 7 is the target. We find that object 10 is logged in sensor track 1, while object 7 is logged in sensor track 4
in each corresponding timestep. Once the sensor track is defined, the variable values can be extracted. Here
the speed values of the target in each timestep is extracted. Thus, to find the speed of object 10 in the first
four timesteps, we look in the array defining the speed of sensor track 1, and similarly we look at array ”speed
4” to find the speed of object 7 in the three following timesteps. In this way the ”target speed” can be defined,
regardless if the target is switched or not. Only the variable values of the current target is of interest since the
target is the object that will possibly trigger a brake intervention in the HGV.
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Figure 3.1: Simplified example of extraction of the speed of the target from MAT-files.

The example shown in Figure 3.1 is simplified since the length of the timestep is not fixed in the log. The
inaccuracy of the timesteps of the different variables makes the extraction even more complicated. To solve this
problem, an interpolation is performed on each extracted variable value. A time array with the same timesteps
as the Excel files is used for the interpolation. When the interpolation has been performed on the extracted
variable values, they can be inserted into the dictionary. Finally, the dictionary will have the same format as
the dictionary resulting from the data extraction from the Excel files, and thus the TFC can be used similarly
for all data sets.

initialisation of dictionary to store variable values
definition of time array to use for interpolation
for each variable defined in dictionary do

read value of current variable in every timestep
interpolate values of current variable according to time array
save values of variable in dictionary

end
return dictionary

Algorithm 2: Pseudo-code for data extraction from MAT-files.

3.2 True false classification

When the data has been extracted from the logs, they are to be classified as true or false positives before
the further analysis is done. A program that performs this classification was implemented, and named True
False Classification (TFC). Most of the data logs contain a brake intervention, but some only contain an
intervention from FCW. Since the analysis is only to be performed on the brake interventions, the logs
are first checked if they contain a brake intervention or if they are so called ”FCW only”. Each log that
contains a brake intervention is then classified as true, false or possibly false (i.e. a grey zone containing
interventions that are difficult to classify). This section contains a description of how the TFC was implemented.

To start with, data sets A and B, containing true and false brake interventions as well as FCW interventions,
were provided for an initial data analysis. Some of these logs had manually been classified as true or false
positives by an experienced Volvo employee. This manual work is very time consuming, and thus it would
be unreasonable to perform this kind of analysis on larger data sets. Therefore, a program to perform an
automatic classification was to be implemented, i.e. the TFC.

The manually classified subset of data sets A and B were manually analysed to find patterns of false positives,
and how these could be distinguished from the true positives. To do this, an understanding of the actual
traffic scenario, i.e. how the host and target are moving, was needed. Thus, a MATLAB script that extracts
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data from the log file and visualises the trajectories of both the host and the target was created. Examples of
visualisations of a true and a false intervention are shown in Figure 3.2a and 3.2b respectively. In the true
intervention, the same object is selected as target throughout the whole log. The host approaches the target
and gets too close, resulting in an intervention from AEBS. In the false intervention the target appears right
in front of the host and is only tracked for a short period of time, which one can see by the small number of
logged positions of the target. If it would have been an actual vehicle that was tracked at these positions, it
would most likely not appear and disappear that sudden.

(a) True intervention (b) False intervention

Figure 3.2: Visualisations of the trajectories of the host (blue line) and the target (black dots).
The red and black circles are the positions of the host and the target respectively, when the target

is first detected, whereas the crosses correspond to the start of the brake intervention.

Using the trajectory script and the variable values in the logs, each log that had been manually classified as a
false positive by the Volvo employee was analysed and the findings were noted in a structured manner. While
performing this analysis, all ideas of possible ways to distinguish between false and true positives were noted
in conjunction with the notes about the other findings. A few true positive logs were also analysed to better
understand the differences between true and false positives.

The findings from the manual analysis of the logs were reviewed and reformulated into criteria for false
positives that can be implemented in code. These so called false classification criteria (see detailed explanations
in Section 4.1) were based on assumptions and estimations of the traffic scenario and the driver’s response.
Thresholds for different variables were set based on the observations of the true and false positives. Due to the
complexity of traffic scenarios, there are no threshold values that always yield a perfect classification. However,
after having iteratively tested the results from the implemented false classification criteria, the TFC script was
found to work in a satisfactory way, i.e. the logs were classified similarly to the manual classification performed
by the Volvo employee. The output from the TFC was formatted to be appropriate for both testing and further
analyses (see Table 3.2).

The false classification criteria and the thresholds in the TFC were at this stage based on a part of data
sets A and B, and were not strictly defined. Thus, the script was now run on whole data sets A and B, and
the result was analysed. The thresholds were tuned based on the analysis of the result. However, there is a
trade-off between not detecting a false positive and misclassifying a true positive as a false one. In most cases
it was thus not possible to strictly define thresholds to define the logs as true or false interventions, since the
false classification criteria with certain thresholds could be fulfilled by both true and false positives. To avoid
misclassification of the interventions, a grey zone called ”possibly false” was added to the script, defining an
interval which could contain both true and false positives. With this grey zone, the risk to misclassify the logs
could be decreased. Only the true and false positives were used for the further analysis.
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It is of great importance that the TFC performs well since the true and false interventions are to be analysed
separately in the main analysis and the results are to be compared. Therefore, a lot of testing and manual
analysis was required to validate the performance of the script, that the false classification criteria were valid
and that the thresholds were well-defined.

To facilitate the main analysis, the output was formatted such that it can easily filter logs based on classification,
the different false classification criteria, as well as variable values such as the host velocity, target velocity,
relative velocity, duration of the intervention etc. The output is formatted as an Excel file with the structure
shown in Table 3.2.

Table 3.2: Illustration of the output from the true false classification.

To conclude, in the TFC each log that contains a brake intervention is investigated and categorised. There are
three categories; false, possibly false and true. First the criteria for the log to be considered as a possibly false
intervention are checked. If the log does not fulfil any of the criteria, the logged intervention is considered to be
true. If the log does fulfil one or several of the criteria, the log is checked once more, this time with stricter
values of the thresholds, to find if it can be considered as definitely false.

The file paths of the logs and their corresponding classification (true, false or possibly false) are written
to an Excel document. If the log is false or possibly false, the fulfilled criteria is also defined in the Excel
document. This Excel document can then be used in the further analysis.

3.3 The difference between true and false interventions

The output file from the TFC is used to divide the logs into one group of true interventions and one of false, to
further analyse the circumstances of the interventions in the two groups respectively. The data from the logs
was read and then pre-processed before any further analysis was made. The pre-processing included a check for
duplicates and erroneous logs. Duplicates are found by comparing if different logs have occurred at the same
time and place, using the time and GPS coordinates of the intervention. The check for erroneous logs consisted
of checking that the data is structured in the correct way for the scripts to automatically read in the data. If
the data is structured correctly, it is also checked for faulty values (NaN, erroneous decoding when switching
format etc.).

After the pre-processing, the actual analysis started, where different variables are investigated and compared
between the groups of true and false interventions, and also for the different data sets. To find under what
circumstances the true and false interventions occur, different variables are to be investigated for the two groups
of logs respectively. Also combinations of variables could be of interest. The distribution of the values of the
chosen variables are plotted as histograms or pie charts. This is done for true and false interventions separately
to find if the result differs. If there is a noticeable difference in the investigated variable, further investigations
can be of interest. By inspecting the histograms and pie charts, conclusions about true and false interventions
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can be drawn, and similarities and dissimilarities can be detected and further investigated. The environment
where true interventions have occurred were also analysed using Google’s Street View to better understand
which environments the AEBS system has the biggest impact.

3.4 Radar analysis

To find potential weaknesses of the radar, a literature study was made to understand the technology, which is
summarized in Section 2.3. From the knowledge gathered during this study, objects and environments that
potentially can cause problems are derived, and then compared to environments where false interventions
actually have occurred.

If something in the environment has caused ghost targets, it is possible that it has occurred more than
once. Therefore, all the logs that were classified as false or possibly false were gathered to compare the GPS
coordinates of the false interventions. If the longitudinal and latitudinal distances between two interventions
were less than certain threshold values, the logs were considered to occur at the same location. For the latitude
coordinate, the threshold was set to 0.001 degree, which corresponds to around 110 meters. However, for the
longitude coordinate it is different, since the coordinates correspond to different distances depending on the
distance from the equator. Therefore, the threshold had to be scaled with a factor of 1/ cos (latitude), to make
it equal to the latitude threshold.

These locations were later investigated further using Google’s Street View, to find objects or patterns in
the environment that are likely to cause the ghost targets. For this purpose, the coordinates were written to a
KML-file, which is a file format created by Google to save GPS positions for an easy visualisation in Google
Earth. In addition, several locations where a true intervention had occurred were investigated to compare with
the locations where multiple false interventions had occurred.
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4 Results

This section describes the result of the manual analysis of true and false interventions, in the form of a TFC
program with its false classification criteria and information about its efficiency. Distributions of different
variables related to the intervention scenarios are then presented as histograms, pie charts and explanations of
discoveries about what characterises true and false interventions in Sections 4.2-4.12. Due to the small sizes of
data sets A and B, the histograms tend to be irregular, especially the histograms corresponding to the false
interventions in data set B. In contrast, data set D contains a very large number of interventions and hence its
related histograms are more smooth.

An analysis of false interventions possibly caused by ghost targets is presented, with the aim to describe possible
weaknesses of an automotive radar. Some examples of real road environments that are likely to have caused
false interventions are shown. Finally, a short description of the road environment of true interventions is
presented, to find at what road types the system makes the biggest difference.

4.1 True false classification

In the manual analysis of interventions, four false classification criteria (FCC) were found to catch the false
interventions. These criteria will henceforth be referred to as false classification criteria 1, 2, 3 and 4 respectively,
abbreviated FCC1, FCC2, FCC3 and FCC4. A description of each criterion is found in Table 4.1.
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Table 4.1: Descriptions of the false classification criteria.

False
classification
criteria

Description of criteria

FCC1

Short time as target:
If an object is selected as target for a short period of time, it is likely to be a faulty detection.
The short time as target is a typical behaviour of ghost targets, which is the kind of false
positives this criterion mainly detects in the TFC. Also, inaccurate measuring could result in
the object being target for only a short time. For example, if an object is faulty selected as
target due to erroneous measuring and a brake intervention is initiated, but the measuring is
soon updated and the brake intervention is terminated, it is likely that the object was only
target for a short period of time.

FCC2

Acceleration pedal kickdown:
An acceleration pedal kickdown is an action that the driver is well aware of that he/she is
performing. Thus, if a brake intervention is terminated due to an acceleration pedal kickdown
by the driver, it is most likely that the driver intends to interrupt the brake intervention.
This criterion is thus based on driver behaviour and the concrete cause is not known.

FCC3

Acceleration no brake, excluding cut out scenarios:
The third false classification criterion is partly based on driver behaviour. In true positive
interventions, the driver usually manually brakes, either before the brake intervention is
initiated or when he/she notices the reason for the brake intervention. Thus, if the driver
accelerates and does not brake noticeably during the intervention, it is likely to be a false
positive. However, there are a couple of exceptions. One case is the so called ”cut out
scenario”, i.e. when the target vehicle switches lane out of the lane where the host is driving
or completely turns off the road. If an intervention is initiated in such a scenario, the
intervention is considered to be a true positive despite the acceleration of the host vehicle.
In these scenarios, the host driver can predict that the target vehicle will turn off, and
accelerates to overtake the vehicle. From a system point of view, the intervention is still
correct, as the host comes too close to the target.

FCC4

Target misclassified:
When the radar and camera are not fused, the data is not as accurate and reliable, and
therefore, the system should not brake for stationary targets. If there is no fusion, the
longitudinal speed of the target is low, and the driver does not brake noticeably, it is likely
to be a stationary target that the sensors interpret as a moving target. Logs fulfilling these
criteria are considered to be false positives.

The four false classification criteria were implemented into the TFC. The result from running the TFC on data
sets A, B, C and D is confidential information to Volvo, and can thus not be included in this report. The
fraction of false interventions fulfilling each FCC, with respect to the total number of false interventions in
each data set, is visualised in Figure 4.1. Note that an intervention can fulfil more than one FCC, and thus the
fractions of false interventions fulfilling each FCC will sum up to more than 100% for the different data sets.
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Figure 4.1: Distribution of false interventions fulfilling each false classification criteria

The thresholds in the FCC were set such that the categories true and false only should contain true and false
logs respectively, and the third category, possibly false, is supposed to catch all the remaining logs. With this
classification framework, the categories can be used to draw conclusions about the performance of the system.
The actual fraction of false interventions should reasonably be at least equal to the fraction of logs classified as
false by the TFC, and as most be equal to the fraction of false and possibly false logs together (based on the
classification from the TFC). The actual fraction of true interventions can thus be found analogously. The
lowest fraction of false logs was found in data set D, which to the most part contains recent interventions, and
thus a newer system software than the other data sets in general. The highest fraction is found in data set A.
This is likely due to the infrastructure in the geographic area of data set A, which is believed to differ from the
infrastructure in the other data sets. The actual numbers are left out due to confidentiality.

Short time as target (FCC1) is the most frequent reason for a false positive (see Figure 4.1). FCC1 is
often combined with FCC3, i.e. acceleration no brake. This combination is an indication that the target is
possibly a ghost target. Acceleration pedal kickdown (FCC2) is the least common of the four FCC. However,
since the driver is well aware of if (s)he performs an acceleration pedal kickdown, an intervention which is
interrupted by a kickdown is very likely to be a false intervention. Thus, the criterion is justified. The existence
of misclassified targets (FCC4) is also unusual in data sets B, C and D. Nevertheless, in data set A this criterion
is fulfilled by a notable fraction of the interventions. Once again, the infrastructure is believed to be the cause
for this difference.

Table 4.2: Table showing the average run time of the TFC for each data set, based on 10 runs.

A B C D
Run time (s) 75.8 29.0 245.5 65.9

In Table 4.2, the average run time of the TFC for the four data sets is shown. The data extraction is identical
for data sets A and B, and in both cases one Excel file is read for each log. The file paths of the logs in data set
C are also retrieved from an Excel file, and computations are required to extract the data (see Section 3.1.3),
which lengthens the run time. The extraction from data set D only requires reading from an Excel file twice for
the whole data set. The reading of Excel files is mainly what lengthens the run time of the TFC, and explains
why data set D has a relatively low run time even though it contains many more logs.
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4.2 Time to collision

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

(e) True interventions in data set C (f) False interventions in data set C
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(g) True interventions in data set D (h) False interventions in data set D

Figure 4.2: Histograms showing distribution of time to collision at start of intervention.

In Figure 4.2, the time to collision (TTC) at the start of the intervention is visualised for the true and false
interventions respectively, in the four different data sets. The TTC is a calculation of how long it will take
until the host collides with the target if no braking occurs. How this time is calculated can differ, mainly
depending on if the velocity of the host and target are assumed to remain constant or not. In Volvo’s system,
the calculation is complicated and accounts for multiple different factors. Therefore, a simplified calculation of
the TTC has been used. In case of steady-state, i.e. when the target has no acceleration, the TTC is computed
as

TTC1 =
d

vh − vt
,

where d is the longitudinal distance to the target, vh is the longitudinal speed of the host and vt is the
longitudinal velocity of the target. With the acceleration of the target, denoted at, taken into account, the
TTC is instead computed as

TTC2 =
vh − vt
2 · at

+

√
(vh − vt)2 − 4 · at · d

4 · a2t
.

In Figure 4.2, the minimum of TTC1 and TTC2 is used for each log. This means that if the target decelerates,
the deceleration is accounted for, while if the target has constant speed or accelerates, the speed is assumed to
remain constant.

Since the emergency brake should only be initiated when a collision is becoming inevitable, the TTC should
correspond to exactly the required time of braking to avoid a collision. However, depending on the scenario,
the system might start with a short pre-brake, which results in a slightly higher TTC at the start of the
intervention.
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4.3 Duration of intervention

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

(e) True interventions in data set C (f) False interventions in data set C
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(g) True interventions in data set D (h) False interventions in data set D

Figure 4.3: Histograms showing distribution of the duration of the interventions.

The duration of the interventions are shown in Figure 4.3. The duration was defined as the time when the AEBS
system was in a pre-brake or full-brake state, and was calculated as the number of timesteps multiplied by the
length of a timestep, i.e. 0.2 s. In the four data sets, the false interventions tend to be short, mostly below 1
second, while the duration of the true interventions seem to be above 1 s in around 50% of the interventions.

A peak can be seen at a duration of around 3 seconds, which most likely depends on the fact that most logs are
6 seconds long and have the start of the intervention in the middle of the log, i.e. there data only contains
information about the three first seconds after the start of the intervention. This means that most logs with an
intervention that lasts longer than 3 seconds still will appear in the bar at 3 seconds. However, in some of the
logs, the start of the intervention is not exactly in the middle of the log, which might result in a few logs with
long duration end up in the bars at 2.8 or 3.2 s. However, below 2.5 seconds, the histograms should be reflect
the reality.
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4.4 Speed reduction

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

(e) True interventions in data set C (f) False interventions in data set C
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(g) True interventions in data set D (h) False interventions in data set D

Figure 4.4: Histograms showing distribution of the speed reduction of the host from the start until
the end of the intervention.

The speed reduction shown in Figure 4.4 was measured as the difference in host speed between the start and
the end of the intervention. Among the true interventions, around 30-50% have a speed reduction below 5
km/h, whereas the proportion among the false is 70-90%, i.e. almost twice as high. This applies to all data
sets, and data set D, which is the largest, seems to be somewhere in the middle of both intervals. Thus, for the
true interventions, the fraction of logs with a speed reduction higher than 5 km/h is much larger than for the
false. Besides, among the true interventions, it is not unusual with speed reductions of 30 km/h, in contrast to
the false interventions where this seems extremely rare.
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4.5 Life length of target

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

(e) True interventions in data set C (f) False interventions in data set C
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(g) True interventions in data set D (h) False interventions in data set D

Figure 4.5: Histograms showing distribution of life length of target at start of intervention. In
data sets A, B and D, one frame corresponds to one fifteenth of a second and the maximal value is

250 frames, whereas in data set C, one iteration corresponds to 30 ms.

The life length of the target is defined as the time that it has been tracked by the system at the start of the
intervention, including any time it was tracked before being selected as target. For data sets A, B and D the life
length increases every fifteenth of a second until it reaches a maximum value of 250. For data set C, it increases
every 30 ms until it reaches a maximum value of 7, i.e. 0.21 s. In the majority of the true interventions, the life
length of the target reaches its maximum value in all data sets, i.e. the target has been tracked for a longer
time. Among the the false interventions, there is also a tendency of targets with maximal life length, this is
small in comparison with the fraction of newly detected targets, i.e. tracked for less than 3 s.
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4.6 Fusion of the sensors

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

(e) True interventions in data set C (f) False interventions in data set C
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(g) True interventions in data set D (h) False interventions in data set D

Figure 4.6: Pie charts showing proportion of fused targets at the start of intervention.

Figure 4.7: Pie chart showing proportion of fused targets at start of false interventions in data set
A, excluding interventions classified as false by FCC4.

Figure 4.6 shows the fraction of targets that are fused and not fused at the start of the intervention. In all four
data sets, the majority of true interventions occurred with a fused target. The fraction of fused targets among
the false interventions differs for the different data sets, but is lower than among the true interventions. The
fraction of fused and not fused targets in the false interventions in data set A where FCC4 was excluded is
shown in Figure 4.7. This was found to be similar to the distributions among the false interventions in data
sets B and D.
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4.7 Longitudinal distance to target

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

(e) True interventions in data set C (f) False interventions in data set C
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(g) True interventions in data set D (h) False interventions in data set D

Figure 4.8: Histograms showing distribution of longitudinal distance to target at start of
intervention.

In the true interventions in data sets A and B, the longitudinal distance from the host to the target is below
35 meters, most often below 20 meters. In data set D, there are true interventions with higher longitudinal
distances, but also here the distance tend to be below 20 meters. In the false interventions, the distance is most
often below 10 meters in the four data sets. In the true interventions in data set C, the longitudinal distance
tends to be below 35 meters as well, but also reaches higher values (see Figure 4.8e). In the false interventions,
a peak is obtained at distances below 5 meters, but is otherwise pretty evenly distributed between 5-75 meters.
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4.8 Longitudinal speed of host

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

(e) True interventions in data set C (f) False interventions in data set C
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(g) True interventions in data set D (h) False interventions in data set D

Figure 4.9: Histograms showing distribution of longitudinal speed of host at start of intervention.

The speed of the host in the true interventions is between 10 and 90 km/h in both data set A and B. In data
set A, there is a peak at 45-50 km/h, and in data set B at 35-40 km/h. In data set D, the distribution is similar
and peaks at 35-40 km/h. The false interventions in data set A tend to occur at lower speeds (15-30 km/h)
than the true ones, but there are also false interventions at high speeds. Also for the false interventions, the
distribution is similar for data set D. However, for data set B, the speed om the false interventions tend to vary
more and is evenly distributed between 20-90 km/h.

Data set C differs from data sets A and B. For the true interventions, the most common host speed is
15-35 km/h, but many false interventions occurred at host speeds of 80-95 km/h. In data set D, a smoother
distribution is shown and all velocities between 15 and 90 are clearly represented. for both true and false
interventions. The true interventions show a wide peak around 40 km/h, whereas the false interventions has
sharper peaks around 20, 40 and 85 km/h and fewer interventions around 50-75 km/h.
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4.9 Longitudinal speed of target

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

(e) True interventions in data set C (f) False interventions in data set C
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(g) True interventions in data set D (h) False interventions in data set D

Figure 4.10: Histograms showing distribution of longitudinal speed of target at start of
intervention.

The speed of the target in the true interventions is varying but has somewhat higher density between 10-30
km/h in all data sets. In the false interventions, there is a clear at 0-5 km/h in all data sets, i.e. mainly
stationary targets.
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4.10 Dynamics of target

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

Figure 4.11: Pie charts showing distribution of the dynamics of the target causing
the brake intervention.
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Figure 4.12: Pie chart showing distribution of the dynamics of the target in false interventions in
data set A, excluding interventions classified as false by FCC4.

In data sets A and B, there is a variable defining if the target is considered stationary, movable (i.e. has
previously been seen moving) or moving. In both data sets, the true interventions almost exclusively are due to
moving targets. The distribution in the false interventions differs from the trues ones. Also here, the greatest
proportion is moving targets, but there is also a noticeable proportion of stationary and/or movable targets.
Figure 4.12 shows the distribution of the dynamics in the false interventions in data set A, but without the
interventions considered to be due to misclassified targets, i.e. the ones fulfilling FCC4. Here, the proportion of
moving targets is similar to the proportion of moving targets in the false interventions in data set B.
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4.11 Relative longitudinal speed

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

(e) True interventions in data set C (f) False interventions in data set C
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(g) True interventions in data set D (h) False interventions in data set D

Figure 4.13: Histogram showing distribution of relative longitudinal speed between host and target
at start of intervention.

The relative speed between the host and the target is most often 10-15 km/h in the four data sets, and always
below 50 km/h in data sets A and B. In the false interventions in data set A, the relative speed is most often
at 15-20 km/h which is similar to the true interventions. However, there is also some interventions at high
relative speeds. The distribution among the false interventions in data set D looks similar, but with a lower
peak at 15-20 km/h and somewhat higher proportion of interventions with higher relative speeds. The false
interventions in data set B are evenly distributed. In data set C, the relative speed in the false interventions
peaks at 80-85 km/h, which is considerably higher than in the other data sets. Note that the speed of the host
tends to be high and the speed of the target tends to be low in this selection (see Figures 4.9f and 4.10f), which
motivates this result.
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4.12 Time of day

(a) True interventions in data set A (b) False interventions in data set A

(c) True interventions in data set B (d) False interventions in data set B

(e) True interventions in data set C (f) False interventions in data set C
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(g) True interventions in data set D (h) False interventions in data set D

Figure 4.14: Histograms showing distribution of which hour of the day the intervention occurred.

During what hour of day the interventions occur was investigated to find whether the interventions tend to
occur during day or night. The distributions shown in Figure 4.14, show that the majority of interventions
occurs during the day.
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4.13 Investigation of ghost targets

In the literature review about automotive radar, it was found that certain shapes cause strong reflections which
might be misinterpreted to derive from a vehicle. Even though the radar antenna uses beamforming to suppress
signals not deriving from objects ahead of the HGV, the side lobes and secondary reflections might still be
problematic. This means that in rare occasions, the radar might receive radiation reflected at a surface that is
not an object.

The radar is able to measure the azimuth angle (the angle in the horizontal plane), which is required for the
fusion, but the accuracy is not very good. The ability to measure the elevation angle is however often even
worse, making it difficult to distinguish the relevant vehicles from reflections from the ground or above the host
vehicle.

Another important aspect is how the noise level is affected by the environment. Sometimes, for example when
driving in a tunnel or close to a metal side barrier, there will be lots of small reflections that are weak enough
to distinguish from other vehicles, but still contributing to a higher noise level, and thus reducing the accuracy
of the actual measurements. It is possible to adapt the threshold to the current noise level to reduce the risk
for misinterpretations, but that would also increase the risk that a real target is missed.

One of the most important findings in the literature study is that the road environment contains a large number
of structures that have corners. These corners have extremely large radar cross sections, even when they are
not perfectly aimed towards the radar. This makes them highly visible to the sensor. In addition, since some
sensors use the radar cross section of the object to classify its object type (car, truck, pedestrian etc), the
corner shapes might easily be misclassified as a vehicle relevant for AEBS.

Using the GPS positions of locations where false interventions have occurred, the environments causing
the ghost targets were analysed. In data set A, there were in total 6 locations with multiple interventions, of
which 5 had 2 interventions and 1 location with 6 interventions. Thus, in total there were 16 false interventions
on these 6 locations in data set A. At the majority of these locations, large metal structures can be found, for
example tunnels or bridges for elevated roads or other flat metal object such as side barriers and drain covers.
In data set B and C, there were no locations with multiple interventions. This is believed to be because of the
small number of interventions collected from a large area, making it unlikely that different HGVs have driven
in the same areas. In data set D, there were several locations with multiple false interventions, however most of
them were from test tracks and airfields, which is believed to derive from test runs of the system. Therefore,
these were excluded from this study. The environments at the found locations are shown in Figures 4.15, 4.16
and 4.17. As these images are from Google Street View, they might be taken from a different lane than the
intervention occurred. This might lead to an image taken in a direction against the traffic in the current lane,
to show the environment in the direction the HGV was driving when the intervention occurred. As there
occasionally are roads on different vertical levels, it can be uncertain which of the roads the interventions
occurred on. This is discussed further in Section 5.5.
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Figure 4.15: A category or road environment where multiple false interventions have occurred.
The metal bridge above the road, in combination with the pillar and beam holding it up, seems to

be the common factor. Image: partly censored screenshots of Google Street View[21].

Figure 4.16: Another category or road environment where multiple false interventions have
occurred. The metal walls beside the road, in combination with metal seams or drain covers, seems

to be the common factor. Image: partly censored screenshots of Google Street View[21].

From the environments studied, it is clear that a few characteristic road structures are frequently occurring. As
it seems, there are three main categories that might have caused the ghost targets: below bridges for elevated
roads, on the elevated road with metal walls on the sides and inside tunnels. All these categories are quite
similar, as a large fraction of the field of view is covered in metal structures with many corners. This might
both result in very strong reflections and an increased noise level due to the many corners acting as great
reflectors. Some examples of corner shapes and flat surfaces perpendicular to the direction of travel found at
the investigated locations are shown in Figure 4.18. These types of shapes exist both on the ground, on walls
or barriers beside the road and on the underside of bridges above the road.
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Figure 4.17: A third category or road environment where multiple false interventions have
occurred. The ceiling of the tunnel has a metal grid structure which can cause many unwanted

reflections. Image: partly censored screenshot of Google Street View[21].

Figure 4.18: Zoomed in view of objects that might cause unwanted reflections that resulted in a
false intervention.Image: partly censored screenshots of Google Street View[21].

In these false interventions, the target either appeared close ahead of the host (4-18 m) and slowly drifted
forward (5 m/s), or appeared as an almost stationary object at a large distance (above 45 m). In almost all
cases, the target drifted towards the lateral center of the HGV path and disappears shortly before ”impact”.
Most of the locations were found to be one-way roads. Since the number of lanes seems to vary greatly, it does
probably not have a big impact on the performance.
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5 Discussion

To estimate the benefits from AEBS is not trivial. In this thesis project, data in the form of intervention logs
has been used for analysis. This data is in general believed to reflect how AEBS is used in the real world, but
there might be factors that influence the validity of the data. This is described further in Section 5.1, followed
by a discussion about the limitations in the analysis in Section 5.2, and then also about the TFC program and
how well it performed in Section 5.3.

The analysis of different variables yielded many histograms and pie charts. How these should be interpreted
and their validity, together with the most important sources of error and how they were handled is discussed
in Section 5.4. The analysis of false interventions was linked together with the principles of a radar to find
potential weaknesses, which is described in Section 5.5. Finally, some ideas that were generated during the
project and areas that would be interesting to investigate further are described in Section 5.6.

5.1 The data

The intervention logs used in this study cover a very broad range of near-collision scenarios. The fact that all
interventions in the data used are unique necessitates a manual analysis to understand the scenarios, which
is sensitive to misinterpretations due to the lack of hindsight. However, one of the data sets had video and
sound recordings of the interventions, which could be used together with the TFC program for verification
purposes. Altogether, the verification showed that the TFC program performed very well (above 95% correct
classifications, see more in 5.3), which would not have been possible if the misinterpretations in the manual
analysis were severe, and thus, this data was appropriate for this analysis.

The data used is retrieved from HGVs and then transferred to Volvo. Since there is a risk that errors
occur during the retrieval or transfer of data, the data has been checked for duplicated logs and erroneous
logs (e.g. missing values or corrupt files). To cope with this, a pre-processing was performed, that removed all
duplicated logs and logs with apparent errors. However, there might have been other errors that went through
the error check unnoticed, e.g. if a log for some reason would contain reasonable but incorrect values.

Even data that had been correctly transferred could be unsuitable for analyses. For example, if an HGV has
been used to test the AEBS and a large amount of brake interventions were caused on purpose, it might give a
different picture of how well the system performs in real traffic. If the system is tested several times at the
same location, this location can be found in the comparison of GPS coordinates. In this project, a few of these
locations where the AEBS system has been used in testing purposes were found, but only in data set D. Since
these interventions were very few compared to the entire data set, they were not excluded from the analysis in
this project. If the programs used in this project are reused in other projects, it is recommended to check the
number of interventions from tests and make a decision whether they need to be removed. There is also a risk
that the AEBS has been tested at different locations, which not can be found by only comparing the GPS
coordinates. The risk of this was assumed to be low, and therefore, no action was taken to cope with it.

There is a risk that HGVs involved in a collision are taken to a scrap yard without retrieving its intervention
logs. Therefore, there is a risk that the data set do not cover the interventions where collisions occur. Apart
from that, the data sets are believed to be a good representation of how the AEBS is used in the real world.

The strategy for the data analysis was to use the smaller data sets A and B to develop the TFC program,
use the medium sized data set C to verify the script and finally use it on the large data set D for the
deeper analysis of true and false interventions. Since data set B is small, and in particular the number
of false interventions are very few, normal variations will appear very clearly, and it is thus difficult to
draw conclusions from the histograms and pie charts. On the other side, data set D is very large and the
histograms show smooth shapes. Moreover, this data set contains more recently occurring interventions, and
thus later versions of AEBS. Therefore, data set D is assumed to reflect how AEBS works in the real world. The
conclusions about true and false interventions are mainly based on this data set, whereas the analysis of the radar
is based on observations from all data sets, and in particular data set A due to the infrastructure of this data set.
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In the beginning of the project, only data sets A and B were available. As the structure of data set C
and D was unknown at the time, the data extraction could not be designed to also handle these. When data
set C and D later became available, some changes had to be made to adapt the data extraction to their format
and structure. Luckily, data set D only required a change in encoding, and was thus easily implemented. The
data sets contained different variables depending on whether logging type α or β was used. Some variables did
not exist in data set C (using logging type β), but had to be calculated using other variables. The irregularity
in the measuring frequency in data set C was one of the main issues of the project. To be able to use data set
C without spending too much time on data extraction or re-writing the TFC, a decision was made to convert it
to the same format as the other data sets by interpolating to the same time vector as in data set A, B and
D (i.e. the structure used in logging type α). The interpolation of the logs resulted in a large fraction of the
information in data set C being left out of the analysis. However, the information that remained after the
interpolation was considered to be sufficient to verify the TFC (see Section 5.3) and using the data for further
analysis.

5.2 Limitations of the data analysis

Using simulations or driving on test tracks can give an indication of the extent of the benefits from AEBS, but
the complexity of real world driving makes it impossible to account for every detail, and thus the results from
this kind of tests will not be fully accurate.

Another approach to estimate the benefits from a system is case analysis of the system when it is used
in the real world, i.e. in the form of a field test. This approach is very useful for determining the actual
benefit from a system with high accuracy, but is not as useful for testing of specific scenarios since it is not
possible to decide which factors and variables to consider or exclude. In addition, the analysis cannot be
performed until the system has been implemented and used for a period of time, and the analysis is thus delayed.

From the time when a safety system is launched on the market, there is also a delay until a sufficiently
high number of HGVs equipped with the system are on the roads to achieve a significant difference. For systems
as AEBS, which are not activated very often, it might take some time for the HGVs to gather sufficient data
for a statistical analysis. Altogether, there is a long time delay from the development of the system until its
effects actually can be measured. Since AEBS is a relatively new system, there is not much information about
the actual performance of the system in terms of how often it intervenes and how many collisions that actually
are avoided, mitigated or even caused by the system. In addition, the constant development of the system
makes it difficult to draw conclusions about the performance of the system, since there are different versions of
the system in different HGVs.

The data sets A and B were collected some time ago, and with the older hardware version than data
set C, while data set D is a combination of both hardware versions. The infrastructure in the geographic
location in data set A was known to yield problems for the system at the time of the data collection. The
collection of data set C occurred when the system was in a development state. Software releases have been
updated since the collection of both of these data sets. Therefore, the number of false interventions would most
likely be lower if an analysis was carried out with a later software version. Since the largest part of data set D
was collected later than A, B and C, it is believed to best represent the general performance of the different
AEBS versions combined. Data set D is also much larger than A, B and C, and therefore the performance in
this study is believed to be a good measure of the actual performance.

5.3 True false classification

The task to develop a program that automatically classifies interventions as true or false was complicated.
To identify all false interventions would require many and very specific criteria since traffic scenarios are
very complex. These criteria would most likely not be applicable to different data sets, which is the point of
implementing the TFC. Thus, to make the TFC applicable on different data sets, it cannot classify the logs
100% correct. There are always borderline cases, and also, the sensors have some limitations and inaccuracies.
In the TFC, four false classification criteria were implemented. In each criterion, limits of different variables
were defined and tuned based on manual analysis of the logs. These limits are not trivially defined, and can
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vary from case to case. The decision to implement a grey zone (”possibly false”) made borderline cases easier
to handle. Then, to further validate the performance of the script, it was run on a data set that contained
videos of the interventions. The videos had been manually analysed by a Volvo employee, and the interventions
were then classified as true or false. The TFC classification was in agreement with the manual analysis in 97
out of 100 of these interventions. Thus, the performance of the TFC was satisfactory.

During the manual analysis, some trade-offs between classifying an intervention as true or false had to
be made. There are scenarios in which the driver can see what is going to happen while the system do not,
which means that the intervention is considered true from the system’s point of view, but the driver might not
want to brake. The TFC is mainly based on the system’s functionality, and not on the driver’s perspective.
However, in these borderline cases, the intervention tends to be short and the velocity reduction not that high,
meaning that the false intervention will not cause any serious consequences.

The false classification criteria have a few minor flaws. The first criterion, i.e. if the object causing the
intervention is only selected as target for a short time, is not 100% accurate. This criterion only considers for
how long the object causing the intervention has been selected as target, and not for how long the object has
been tracked by the system in total. Thus, it can still have been a critical object before it was selected as
target, but then another object was considered even more critical. This was found to be the case in one of the
three faulty classified logs among the 100 investigated logs mentioned above.

5.4 Variable analysis

Based on the analysed variables in Sections 4.2 - 4.12, conclusions about the performance of AEBS can be
drawn, both based on the individual variables but also in relation to each other. Below follows a discussion
regarding these variables.

Regarding the TTC visualised in Figure 4.2, it turned out that almost all true interventions are initiated when
the TTC is between 0.5 and just above 2 seconds. In this period of time, it can be hard for a driver to react
and brake the HGV enough to avoid a collision, even if the driver is attentive. Thus, the system seems to be
able to intervene at the latest possible moment, as it should. For the false interventions, there were cases with
TTC close to 0 in data set C and D. This means that the target must have appeared very close to the host, and
the accelerations required for objects to suddenly ”jump” in to the path is not physically possible to achieve.
Therefore, these are mainly ghost targets. There were also a few cases with a TTC above 2.5 seconds, which
indicates that the relative velocity with respect to the target was high.

In Section 4.3, the duration of the interventions is showed. The false interventions tend to have a short
duration. This is no surprise, since one of the false classification criterion was ”Short time as target”, and if the
target is lost, the intervention will in most cases be terminated. An exception from this is if the host speed has
been reduced to below 15 km/h, in which case the intervention will continue until zero speed is achieved. One
possible explanation of the short duration among false intervention is that they might derive from ghost targets.
Since ghost targets not necessarily derive from reflections from large surfaces the same way as reflections from
vehicles, the ghost targets are likely to be more sensitive to angular differences, and thus more unstable. This
means they have a higher tendency of disappearing shortly after their appearance. False interventions might
also be due to a temporarily erroneous measurement or incorrect fusion, which reverts after a short period of time.

The duration of the true interventions in the four data sets varies more than for the false interventions,
and tends to be higher. For some true interventions, there might be sufficient with a short intervention to avoid
an imminent collision, e.g. if the target switches lane and a minor speed reduction can be sufficient for the
target to reach a sufficient lateral distance to come out of the future path of the host.

The speed reduction, shown in Figure 4.4, showed characteristics similar to the duration of the intervention. In
a large fraction of the false interventions, the host had a speed reduction below 5 km/h. This is assumed to be
related to the often short duration of the brake intervention, and also the fact that AEBS often only reaches
the pre-brake state. The combination of low speed reduction and low deceleration due to only initiating a full
brake, is interpreted as the false interventions generally not being severe. This, and the fact that only a low
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fraction of interventions is false, motivates the assumption that the false interventions are very unlikely to cause
accidents. A significant fraction of the true interventions, somewhere around 40%, had a low speed reduction as
well. This indicates that HGV drivers occasionally drive with a short distance to the preceding vehicle, or brake
late enough for the AEBS to initiate an intervention. The intervention might in other words be considered
unnecessary by the driver, but still be correct from a system point of view, due to a risky behaviour of the
driver. There are also interventions with higher speed reduction of the HGV, in which the brake intervention
most likely is crucial to avoid a collision.

From Figure 4.5, it is clear that most true interventions are due to targets with a high life length, while among
the false interventions, most targets had a life length shorter than 3 seconds. This indicates that the targets
causing true interventions have been tracked for a long time and are likely to be tracked with high confidence
(since they otherwise might have been dropped and the life length reset), while false interventions are often
caused by targets that were detected shortly before the start of the intervention.

In data set C, the different way to measure the target life length makes it difficult to draw any conclusions.
Therefore, the analysis was mainly based on the other data sets. For the false interventions in data set A, almost
half of the targets have a life count below 10 frames, corresponding to 0.66 s, at the initiation of the brake
interventions. This distinguishes data set A from the other data sets, and is assumed to derive from a higher
likelihood of ghost targets. Apart from this difference, the data sets A, B and D have similar characteristics. It
seemed like data set B had a slightly lower fraction of true interventions with maximum life length than data
sets A and D, but the reason for this was not found. Since data set B is small, normal variations will appear
more dominant, which could explain the behaviour. There were also some false interventions of targets with
a maximal life length. These interventions might for example derive from a bad measurement of the lateral
distance of a vehicle that is overtaken by the host. This can happen if the vehicle is outside of the field of view
of the camera but still tracked by the radar, which has a low angular accuracy. Such an intervention would
likely be cancelled as soon as the vehicle is outside the field of view of the radar. In data set D, around 13% of
the false interventions showed a maximum target life length.

When an object has been tracked by both the radar and camera for some time, it is likely to become
fused. In general, targets that are fused are measured with a higher confidence in position and velocity. Ghost
targets and inaccurate measurements are less likely to be fused. This is clearly shown in Figure 4.6, where
most true interventions have a fused target while the fraction of fused targets is lower among the false. The
proportion of fused targets varies between the data sets. In data set A, which is assumed to contain more ghost
targets, the proportion of targets that are not fused is significantly higher than in the other data sets. This
result supports the assumption of ghost targets, since ghost targets often are radar only targets. As data set A
also differed in having a higher fraction of logs classified as false by FCC4, which considers the fusion status,
a pie chart was made of the fusion status for all interventions fulfilling any of FCC1, FCC2 and FCC3 (i.e.
excluding false logs that only fulfil FCC4), which is shown in Figure 4.7. The fraction of not fused target is
then 39%, which is closer to the other data sets. From this, it can be concluded that the higher fraction of false
interventions in data set A derives from ghost targets that are not fused.

In Figure 4.8, there is a visible tendency of low distance (5-20 m) to the target at the start of the true
interventions, which seems accurate since a brake intervention should only by initiated when a collision is
considered inevitable, and thus the distance should not be very high. In the false interventions, the distance is
most often below 10 meters in all of the four data sets. The tendency of short distance could be correlated to
the short life length in the false interventions (see Figures 4.5b, 4.5d, 4.5f and 4.5h), which both are typical
behaviours for ghost targets. In other words, the false targets are detected when they are close and the brake
intervention is initiated immediately. There are also many false interventions with high distances (above 40
meters), in contrast to the true interventions. These probably derive from almost stationary ghost targets
detected at a high host speed, i.e. a high relative speed.

The longitudinal speed of the host varies greatly for both true and false interventions. This probably indicates
that collision-critical scenarios occur no matter what speed the HGV is driven in, and thereby most road types
are probably represented. The fact that few interventions occur at higher speeds than 90 km/h is probably
due to that HGVs are not allowed to travel faster than that. Very few interventions occurred below 15 km/h,
which not is so surprising since the first two versions of Volvo’s AEBS are limited to 15 km/h while only the
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most recent version can brakes at host speeds down to 5 km/h.

That the speed of the target in the true interventions is most frequently 10-30 km/h seems reasonable
since the host is approaching the target when an intervention is initiated, and since the system aims to prevent
rear-end collisions. In the false interventions, the speed tends to be at 0-5 km/h, which could for example be
due to inaccurate measurements of stationary objects, i.e. objects that the HGV would pass and that the
system thus should not brake for.

In the true interventions, the relative speed between the host and the target is most often in the interval 10-15
km/h. This seems accurate since the host should be approaching the target at the initiation of the brake
intervention. Among the false interventions, there is higher tendency of high relative speeds. This could be due
to stationary targets that are interpreted to be moving. In general, it seems harder for the system to correctly
interpret imminent collisions with stationary targets.

Most true and false interventions occur at daytime, which most likely is a consequence of a higher number of
HGVs driving during daytime, but also that there is more traffic on the roads. Since the lighting condition at
different times of the day depends on the time of the year, it is difficult to draw conclusions about whether or
not the lighting conditions affects the frequency of interventions.

Since radar ghost targets caused by the road environment possibly are independent of the amount of traffic or
lighting conditions, the likelihood of these might reflect how many HGVs are driving at each time. If they do,
the distribution of false interventions should correspond to which hours HGVs are driving. Then, the relative
difference between the histograms for true and false interventions in Figure 4.14, i.e. the difference in fraction
of true and false interventions at each hour of the day, divided by the fraction of false, should give an indication
of which hours the likelihood for true interventions is higher or lower. For example, the true interventions
have a lower value than the false in the night, early morning, and in the evening but a higher value around
07-08 in the morning, at lunchtime and around 15-16. Thus, the likelihood of being close to colliding might
be lower or higher, respectively, at these hours of the day. One possible explanation to the increased risk is
that drivers are hungry and have driven a long time without break before lunch, and thus are more tired or
inattentive. It could also be a consequence of HGVs driving off the highways to smaller roads in order to
reach a lunch restaurant, and that this kind of road environment possess a higher risk of critical situations. In
the night time, there is probably fewer vehicles on the roads and it is easier to keep the distance to nearby vehicles.

A simple collision detection script was run on all data sets, which compared the TTC and the time required
to decelerate the relative velocity when assuming a maximum deceleration of 8 m/s2. Logs that fulfilled this
criterion in multiple frames were analysed closer, but only a handful seemed to possibly contain an actual
collision, and none of them seemed serious. Therefore, the conclusion can be made that either the system does
avoid collisions rather than mitigate them, or that the true interventions which not fully avoid the collisions
unintentionally were excluded from the data sets.

Overall, with a fused, moving target that has been tracked for at least a few seconds, the system seems
to work as it should, and thus prevent many rear-end collisions. This conclusion seems to hold irrespective of
the longitudinal velocity of the host, but interventions seem to be most common at a host velocity of around 40
km/h. The reason for this could be the circumstances when driving at this speed, e.g. the type of road and
how heavy traffic there is.

In the false positives, the target was often newly detected and had a low speed, and the proportion of
not fused targets was higher than among the true interventions. These attributes indicate the existence of
ghost targets among the false interventions. There is also a higher tendency of low host speed in the false
interventions. In these cases, the target was most often found to be stationary. In general, the system seems to
have a harder time to properly identify stationary targets (see Figure 4.11).

Data set D, i.e. the data set most suitable for the analysis, was found to have a low proportion of false
interventions. However, it is still important to not only consider the proportion of false interventions, but also
focus on the actual number of true interventions since these have potentially prevented or mitigated a rear-end
collision. Also, the false interventions tend to be short and the speed reduction of the host tend to be low, and
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thus, the false intervention will most likely not cause any serious consequences or affect the surrounding traffic
noticeably. It could cause nuisance for the driver, but the benefits from the true interventions will probably be
of more weight than this potential nuisance.

5.5 Radar analysis

From the literature study, some possible weaknesses of the radar were derived. These were then kept in mind
when analysing the locations where false interventions had occurred. During the analysis it turned out that
the logged GPS position might deviate from the actual position, and possibly with a larger deviation in areas
without open sky (in tunnels, underneath bridges etc.). The deviation was assumed to be smaller than 20 meters.

To verify this assumption, the logged GPS coordinates were checked in maps, and in most cases they
corresponded to positions on the roadway. The path travelled by the host was visualised (as described
in Figure 3.2) to compare with the road characteristics shown in the maps. For example, where the intervention
occurred relative to a curve in the path visualisation could be compared with the logged GPS coordinates
appear relative to the same curve in the maps. From this verification, it was clear that the GPS coordinate and
the actual position of the intervention seem to match well. Thus, it is reasonable to assume that the estimation
of a maximal GPS position deviation of 20 meters is correct. Moreover, the infrastructure in the geographic
area of data set A sometimes contained flyover roads, i.e. a road on a bridge passing above another road, which
means both the roads have the same GPS latitude and longitude. In addition, the distance threshold for two
interventions to be considered to take place at the same location was set to above 100 m. Altogether, these
factors result in difficulties to state which roadway the host travelled on at the moment of the intervention (if
there are two or more roads next to each other, which was the case for most of the locations). The possible
position deviation had to be accounted for. Sometimes the heading direction could be used to determine the
correct roadway. In other cases the nearby roadways were also analysed, which is the reason why there were
more images in Figures 4.15, 4.16 and 4.17 in this report than locations with multiple interventions. Besides,
not all false interventions are due to ghost targets, but rather an inaccurate measurement of an actual vehicle.
With that in mind, the analysis of the environment proceeded.

Three different categories of road environments were identified to probably be problematic for the radar,
as described in Section 4.13. Since the environments in each category look similar, it is reasonable to assume
that the road infrastructure is the main reason behind the false interventions. However, since multiple roads
were analysed, it might be that only one of category 1 and 2 caused the interventions. If that is the case, the
first category is assumed to have a higher likelihood of causing problems due to the larger fraction of the field
of view containing metal objects, and the large number of corners found on the underside of the elevated roads.

To strengthen the conclusion that the road environment causes false intervention, the environment of 50
true interventions was also investigated. Most of the analysed true interventions had occurred on a rural road
near an intersection or on a highway, without the elements found in the case of false interventions, i.e. no
elevated roads, tunnels or flat metal walls beside the road. Therefore, these metal structures are assumed to be
the cause of ghost targets.

The large metal structures in the road environment that cause ghost targets are in general stationary, and
the AEBS system used in Volvo HGVs only brakes for stationary objects if they are fused (i.e. detected by
both the camera and radar). A radar-only target (i.e. a target not detected by the camera) will only cause a
brake intervention if it has been seen moving. When analysing the 6 interventions that had occurred at the
same location, none of them were caused by a fused target and they were all interpreted as moving forward.
Therefore, we came up with the idea that there might be a way that ghost targets appear as moving even
though they derive from stationary structures. One way that this could occur was found, as described below.

52



Figure 5.1: A schematic image how ghost targets can be created due to secondary reflections and
side lobes. The blue arrows show how the radiation is reflected at a wall and an object almost

perpendicular to the road, whereas the yellow dotted line and circle show the radar interpretation
of the radiation and reflection object. The interpreted object appears as further away than the

actual reflecting object.

A secondary reflection can occur if there for example is a parallel wall next to the road and a metal beam
close to perpendicular to the road but angled a little towards the wall. A schematic figure of this is shown
in Figure 5.1. This type of environment was found in the two lower images in Figure 4.15 and also in the
tunnel in Figure 4.17, with the perpendicular object placed above the roadway. There is a risk that the
radiation first is reflected at the parallel object at the side of the road and then reflected at the perpendicular
object, and finally returning to the radar again. This is the type of secondary reflection that is shown in the
right part of Figure 2.4. The radar has no way to determine that a secondary reflection has occurred, and
can only determine the angle from which the radiation is received and estimated the distance travelled by
the radiation (based on the assumption of a primary reflection). Since the secondary reflection has travelled
a somewhat longer path than a primary reflection would, the radar interprets it as an object at the same
angle as the perpendicular object (i.e. straight ahead), but at a larger distance, denoted as a position discrepancy.

The position discrepancy, denoted as d̂ derives from the radiation travelling hypotenuses while the object
causing the latest reflection is straight ahead of the HGV. The hypotenuses derive from both lateral and
vertical distances between the HGV and the parallel wall and perpendicular reflection. If the longitudinal
distance between the HGV and the perpendicular object is denoted dlong, the lateral distance between the
center of the HGV and the parallel wall is denoted as dlat, the vertical distance between the radar and the
perpendicular object is denoted as dvert and the longitudinal distance interpreted by the radar is denoted as
dint, their relation can be written

2dint =
√
d2long + 2d2lat + d2vert +

√
d2long + d2vert. (5.1)

Dividing with dlong gives

2
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=
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Taylor expansion can now be used for the square roots, which yields
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)
+ 1 +

1

2

d2vert
d2long

+O(d4), (5.3)

where O(d4) is an error term that in this case can be neglected in as long as dlong is larger than or equal to
dvert and dlat. The remaining terms can be written as

2
dint
dlong

= 2 +
d2lat
d2long

+
d2vert
d2long

= 2 +
d2lat + d2vert

d2long
. (5.4)

The sum d2offset = d2lat + d2vert is the squared hypotenuse created from the lateral and vertical distances, i.e. if
the HGV was positioned at the perpendicular object, doffset would be the distance between the radar and the
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corner where the parallel wall and the perpendicular beam are connected. Using this, the equation can now be
written as

dint = dlong

(
1 +

d2offset
2d2long

)
. (5.5)

The position discrepancy, defined as d̂ = dint − dlong, is the difference between the interpreted distance and the
actual distance, i.e.

d̂ =
d2offset
2dlong

. (5.6)

From equation 5.6, one can directly see that d̂ is proportional to the inverse of the longitudinal distance, and
thus will increase as the host approaches the perpendicular object. Important to note is that this conclusion is
made based on the assumption that the dlong is larger than doffset. When the host is moving forward, dlong
will reduce according to the speed of the host vlong whereas doffset will remain constant. Using the time
derivative, one can find the interpreted velocity v̂ of the target as

v̂ =
∂d̂

∂t
=

∂d̂

∂dlong

∂dlong
∂t

= −
d2offset
2d2long

(−vlong) = vlong
d2offset
2d2long

. (5.7)

Equation 5.7 shows a velocity discrepancy effect that increases when the longitudinal distance to the target
decreases. As Equations 5.1 - 5.7 are based on our own assumptions and calculations, an attempt was made to
assess their reasonability. Using the values vlong = 15 m/s and dlong = 2doffset yields a velocity discrepancy of
1.875 m/s, which could be considered as a moving object. Thus, the host speed might cause ghost targets to
appear as moving away from the host even though they are stationary.

A pilot test was performed where the values of dlong and vlong were taken from logs of false interventions at the
locations where multiple interventions had occurred, and doffset was estimated from the Street View images.
Only a handful of logs were analysed and the velocity discrepancy was mostly in the same magnitude as the
target velocity in the logs, i.e. v̂, but did not match perfectly. Therefore, it is possible that the hypothesis of
secondary reflections causing a speed discrepancy is correct, but not the only factor. The assumptions used
in this simple model might deviate somewhat from real world scenarios. Besides, the details in the velocity
calculations of the radar used were not available, and thus, it is not possible to exclude that more factors are
taken into account when the target velocity is determined. The speed discrepancy phenomenon might possibly
be avoided if the velocity is measured using only the Doppler effect, but whether this is the case or not is unknown.

Normally the radar antenna has a low gain for high elevation angles, which would make it unlikely that
reflections from objects above the roadway cause false interventions. However, there is a risk that side lobes
affect both the transmission and reception of radiation. Since the secondary reflection causes the angle of the
received radiation to be different than the transmitted (in contrast to primary reflections), different side lobes
might coincide.

One possible way to reduce false brake interventions due to ghost targets, is to use a large amount of
naturalistic driving data to determine what causes the ghost targets. With this knowledge, it might be possible
to make the system recognise unwanted reflections and learn to distinguish these from relevant reflections. It
could also be possible to use this data for an improved beamforming that reduces the antenna gain in the
directions where many ghost targets are found.

As described in Section 2.3, the weather might influence the performance of the radar in terms of range
capacity and reduced angular accuracy. The data used in this project did not contain variables that can be
used for analysis of the impact of the weather. No other findings were made regarding temporarily reduced
performance of the radar.

5.6 Future work

A number of variables were chosen to be used in this analysis. However, there are more variables and
combinations of variables that could be interesting to analyse, to be able to draw further conclusions about the
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performance of AEBS, i.e. when the systems intervenes correctly and incorrectly respectively. A couple of
examples of possibly interesting areas are the road type, the speed limit of the road and the infrastructure
where the interventions occur. Another interesting aspect could be to analyse the performance of AEBS in
combination with other safety systems, e.g. ACC or Driver Alert Support (DAS), to find if AEBS intervenes
more or less frequently when the other system is activated.

However, some variables can be difficult to analyse and draw conclusions about. This was for example
the case for the variable time of day. Clearly, there are more interventions during day time since there are
both more HGVs driving during the day and also more traffic on the roads in general, and thereby a higher
probability of an intervention. This was also the result from the analysis (see Figure 4.14). However, there
seems to be a drop at 12 pm among the false interventions, and the cause for this could be of interest to
investigate further. Also, the false interventions tend to have a higher proportion during the late night than
the true interventions, which could be due to darkness. If this is the case is also suggested as future work.

The output of the TFC is useful for further analysis of the system. The logs in the data set used as
input in the TFC can easily be filtered and sorted by classification, what FCC is fulfilled as well as different
variable values included in the output. Since the fraction of false interventions was found to be low, the program
is also useful to detect the false interventions. These logs can then be manually analysed to find what caused
the false intervention, which is very useful information to further develop the AEBS system.

Another interesting analysis would have been to investigate the circumstances of the interventions fulfilling
each false classification criterion, to be able to find differences among the false interventions. Unfortunately, the
data sets A, B and C were too small to use for this purpose, and data set D was obtained too late to perform
this analysis within the scope of this thesis. Since it can give a deeper insight in the scenarios where AEBS
intervenes, it is recommended as future work.

Finally, it would be interesting to experimentally verify if the hypotheses of how secondary reflection can cause
stationary targets to appear as moving is correct or not. This could be done on a test track with a metal wall
beside the road and a flat metal surface above the road, close to perpendicular to the direction of travel.

55



56



6 Conclusions

This thesis project consisted of data analysis of actual interventions with Volvo’s AEBS system. The thesis was
divided into three main parts. The first part was to develop a program that can determine if an intervention
was true or false based on logged information from the intervention. The second part consisted of an analysis
of data from a large number of logs, to better understand the characteristics of true and false interventions,
and in what circumstances the true and false interventions occur respectively. The third part was to study
the principles of a radar and analyse the road environments to investigate if radar ghost targets are a main
contributor to the false interventions and determine what causes the ghost targets.

The classification of logs resulted in a program with four different criteria which are described in Table
4.1. The program performed well, and the proportion of incorrect classifications is assumed to be below 3%.
From the output of the program, fractions of true and false AEBS interventions could be derived, and a grey
zone was used for logs that were difficult to classify. Due to confidentiality, the fractions of true and false
interventions cannot be disclosed, but the false rate was in general found to be low. The false rate depends on
the road infrastructure, and will therefore differ depending on the geographic location.

In the analysis of true interventions, conclusions were made that they vary in duration and thus generate
different speed reductions, but a large fraction generate a significant speed reduction. This gives a strong
indication that AEBS can avoid many collisions. In contrast, most of the false interventions have a short
duration and a vast majority generate a speed reduction less than 5 km/h, and are thus not severe brakings.
Conclusions were drawn that the false interventions are very unlikely to cause a collision. Most true interventions
are due to the host getting too close to a vehicle that has been tracked by the sensors for a long time, whereas
most false interventions were due to objects that had often been tracked for less than 3 seconds. The false
interventions were in most cases caused by stationary or slowly moving targets, which also resulted in very
high relative velocities. The true interventions are more likely to occur with a higher target velocity, and
the relative velocity is most often between 5 and 20 km/h. Both true and false intervention mainly occur at
daytime. Most true interventions are initiated when the time to collision is between 0.5 and 2 seconds, but for
false interventions it varies more.

The radar analysis resulted in three road environment categories that are likely to cause false interventions:
roads below bridges, roads with flat metal walls and roads inside a tunnel. The first and the last category,
i.e. roads below bridges and in tunnels, are believed to be the most likely to cause false interventions since in
those environments there is a higher likelihood that secondary reflections cause stationary objects in the road
environment appear as moving.

57



References

[1] European Commission. Heavy goods vehicles. 2019. url: https://ec.europa.eu/transport/road_
safety/specialist/knowledge/vehicle/safety_design_needs/heavy_goods_vehicles_en (visited
on 02/07/2019).

[2] World Health Organization. The top 10 causes of death. url: https://www.who.int/news-room/fact-
sheets/detail/the-top-10-causes-of-death (visited on 06/13/2019).

[3] European Road Safety Observatory. Annual Accident Report 2018. 2018. url: https://ec.europa.eu/
transport/road_safety/sites/roadsafety/files/pdf/statistics/dacota/asr2018.pdf (visited
on 03/20/2019).

[4] European Road Safety Observatory. Traffic Safety Basic Facts 2018 - Heavy Goods Vehicles and Buses.
2018. url: https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/

statistics/dacota/bfs2018_hgvs.pdf (visited on 03/20/2019).
[5] European Commission. Commission Regulation (EU) No 347/2012 of 16 April 2012 implementing

Regulation (EC) No 661/2009 of the European Parliament and of the Council with respect to type-approval
requirements for certain categories of motor vehicles with regard to advanced emergency braking systems.
2012. url: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32012R0347 (visited
on 02/22/2019).

[6] Insurance Information Institute. Facts + Statistics: Highway safety. 2019. url: https://www.iii.org/
fact-statistic/facts-statistics-highway-safety (visited on 03/26/2019).

[7] National Highway Traffic Safety Administration. Analyses of Rear-End Crashes and Near-Crashes in the
100-Car Naturalistic Driving Study to Support Rear-Signaling Countermeasure Development (Oct. 2007).

[8] N. Fecher et al. Analysis of driver behaviour in autonomous emergency hazard braking situations (2008),
1–10.

[9] S. Kockum et al. Volvo Trucks Safety Report 2017. May 2017.
[10] AB Volvo. Emergency Brake - a system that saves lives. 2017. url: https://www.volvotrucks.com/en-

en/news/volvo- trucks- magazine/2017/jul/tech- focus- emergency- brake.html (visited on
02/15/2019).

[11] L. Decoster. Collision Warning with Emergency Braking. PowerPoint (internal source).
[12] Volvo Trucks. Volvo Trucks - Emergency braking at its best! Video. url: https://www.youtube.com/

watch?v=ridS396W2BY (visited on 05/30/2019).
[13] K. Grove et al. Field study of heavy-vehicle crash avoidance systems. National Highway Traffic Safety

Administration (June 2016).
[14] I. Isaksson-Hellman and M. Lindman. Evaluation of the crash mitigation effect of low-speed automated

emergency braking systems based on insurance claims data. Traffic Injury Prevention (2016). issn:
1538-9588. doi: 10.1080/15389588.2016.1186802. url: https://www-tandfonline-com.proxy.lib.
chalmers.se/doi/pdf/10.1080/15389588.2016.1186802.

[15] I. Isaksson-Hellman and M. Lindman. Using Insurance Claims Data to Evaluate the Collision-Avoidance
and Crash-Mitigating Effects of Collision Warning and Brake Support Combined with Adaptive Cruise
Control. 2016 IEEE Intelligent Vehicles Symposium (IV) (2016). url: https://ieeexplore.ieee.org/
document/7535538.

[16] B. Fildes et al. Effectiveness of low speed autonomous emergency braking in real-world rear-end crashes.
Accident Analysis and Prevention (2015).
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