
Object detection by cluster analysis
on 3D-points from a LiDAR sensor
Master’s thesis in Systems, Control and Mechatronics

DANIEL ERIKSSON
JONAS HARSTRÖM

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Object detection by cluster analysis on
3D-points from a LiDAR sensor

An evaluation of a LiDAR’s suitability for autonomous drive purposes in
a test track environment and the design of an object detection algorithm

by ground plane estimation and cluster analysis

DANIEL ERIKSSON
JONAS HARSTRÖM

Department of Electrical Engineering
Division of Signals Processing and Biomedical Engineering

Signal Processing Group
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2019

Object detection by cluster analysis on 3D-points from a LiDAR sensor
An evaluation of a LiDAR’s suitability for autonomous drive purposes in a test track
environment and the design of an object detection algorithm by ground plane estimation
and cluster analysis
Daniel Eriksson
Jonas Harström

© Daniel Eriksson, Jonas Harström, 2019.

Supervisor: Albert Lawenius, Volvo Car Corporation
Examiner: Karl Granström, Department of Signals and Systems

Department of Electrical Engineering
Division of Signals Processing and Biomedical Engineering
Signal Processing Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 10 00

Cover: A pedestrian detected by the algorithm developed in the thesis.

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Object detection by cluster analysis on 3D-points from a LiDAR sensor
An evaluation of a LiDAR’s suitability for autonomous drive purposes in a test track envi-
ronment and the design of an object detection algorithm by ground plane estimation and
cluster analysis

DANIEL ERIKSSON
JONAS HARSTRÖM
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Autonomous drive is one of the most discussed and researched areas within the auto-
motive industry today, with several companies and universities conducting research and
development to make it a reality. It may not only be beneficial for transportation, but for
industrial purposes as well.

Volvo Car Corporation is interested in introducing autonomous vehicles which can per-
form endurance tests at their proving ground, where they want to explore the possibilities
of using a LiDAR as an external reference input. This thesis aims to take the initial steps
to make this a reality. First, an evaluation of the LiDAR’s suitability at the test track is
made and then an object detection algorithm is designed. The object detection algorithm
is based on two key components, ground plane estimation based on RANSAC and then
cluster analysis. This is a less common approach compared to commercial object detec-
tion algorithms which often utilises machine learning instead.

The resulting object detection algorithm proved to have some interesting characteris-
tics with both advantages and disadvantages when compared to commercial algorithms
and the conclusion of the LiDAR evaluation is that it is an appropriate sensor to use in a
proving ground environment.

Keywords: Autonomous Drive, Object detection, LiDAR distortion analysis, Cluster anal-
ysis, Ground plane estimation, DBSCAN, RANSAC.

v

Acknowledgements
We would like to express sincere appreciation and thanks to all people who helped us
throughout the thesis. Firstly we would like to thank our examiner at Chalmers, Karl
Granström, for giving new perspectives of certain problems, propositions of solving meth-
ods and answers regarding general thesis questions. We would like to convey great grati-
tude to Volvo Car Corporation for the thesis opportunity. Especially our supervisor Albert
Lawenius from the team responsible for the driverless, AD and ADAS proving ground
environment, for support regarding practical questions and his engagement pitching this
thesis to other departments of Volvo Cars, and a huge thanks to Elías Marel at active
safety’s sensor team for his personal interest in our work and guidance when we encoun-
tered technical issues, whether regarding the LiDAR sensor or code implementation.

Daniel Eriksson & Jonas Harström, Gothenburg, June 2019

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Vehicle testing . 1
1.2 Autonomous drive and LiDAR . 2
1.3 Selection of object detection approach 3
1.4 Objectives . 3

1.4.1 Object detection . 3
1.4.2 LiDAR placement and disturbance analysis 4

1.5 Related work . 5
1.6 Contributions . 6

2 Theory 7
2.1 Light detection and ranging, LiDAR sensor 7
2.2 Object detection . 8

2.2.1 Multi-label classification . 8
2.2.2 Binomial classification . 9
2.2.3 Mean Average Precision . 9

2.3 Cluster analysis algorithms . 11
2.3.1 K-means clustering . 11
2.3.2 Expectation maximisation . 12
2.3.3 Density based spatial clustering of applications with noise 14

2.4 Traversable surface estimation . 15
2.4.1 Random sample consensus . 15
2.4.2 Least square solution for plane fitting by singular value decom-

position . 17
2.4.3 Construction of a plane from 3D-points 17

2.5 Bounding geometry algorithm . 18
2.5.1 Minimum-area enclosing rectangle 18
2.5.2 Convex hull . 19

2.6 Theory for analysis of LiDAR mounting point 20
2.6.1 Scan for maximum LiDAR displacement in one frame 21
2.6.2 Homogeneous transformation matrix 21

3 Method 23

ix

Contents

3.1 Tools and software . 23
3.2 LiDAR placement . 23

3.2.1 Disturbance analysis . 24
3.2.2 Analysis of the placement properties 24

3.3 Development process of the OD-algorithm 25
3.3.1 Initial version . 26

3.3.1.1 Estimation of the ground plane 26
3.3.1.2 Selection of cluster algorithm 27

3.3.2 Testing . 27
3.3.3 Evaluation . 29
3.3.4 Research . 30
3.3.5 Implementation . 30
3.3.6 Deployment . 30

4 Results 33
4.1 Cluster algorithm selection . 33

4.1.1 Computational results . 33
4.1.2 Qualitative findings . 34

4.2 LiDAR placement and suitability . 34
4.2.1 Disturbance analysis results . 35
4.2.2 Inspection of the scans . 36

4.3 Final algorithm . 37

5 Final algorithm, Density based detection for LiDAR 43
5.1 Cluster algorithm selection . 43
5.2 The algorithm in detail . 43

5.2.1 Preprocessing filters . 44
5.2.2 Multi regional RANSAC . 46
5.2.3 Pre-clustering filtering . 47
5.2.4 Clustering . 48
5.2.5 Bounding geometry fitting . 50

6 Analysis and evaluation 53
6.1 The final algorithm . 53

6.1.1 Characteristics . 53
6.1.2 Remaining issues . 54

6.2 LiDAR placement and suitability . 55
6.2.1 Analysis of the disturbance influence 55
6.2.2 Placement properties analysis 55

7 Conclusion 57
7.1 LiDAR placement recommendation . 57
7.2 DBDL . 57

8 Future Recommendations and Ideas 59

A Appendix 1 I

x

Contents

B Appendix 2 III

xi

Contents

xii

List of Figures

1.1 An aerial shot of Hällered Proving Ground 1
1.2 An example of what the output could look like after applying object detec-

tion on images with so called convolutional neural networks, a machine
learning approach [18]. 2

2.1 Scanning pattern and LiDAR hardware 7
2.2 One frame from a LiDAR scan. Shows data points in different colours

depending on the distance to the reflective point 8
2.3 Graph showing ideal tradeoff versus example tradeoff for Precision-Recall 10
2.4 A figure picturing the results of various cluster techniques applied on

datasets of varying properties [2] . 11
2.5 An example of three possible outcomes for a RANSAC iteration 16
2.6 Geometry fitting algorithms for an arbitrary dataset 20
2.7 Transformed frame v′ ⊆ R4×1 described from the reference frame v, such

that v′ = Tv. 22

3.1 Three different LiDAR mounting points for evaluation relative the GNSS/INS
in two dimensions. The mounting points are the roof, the hood and the
bumper. 25

3.2 The GNSS/INS’s approximate location together with its coordinate sys-
tem. The GNSS/INS is placed as close to the centre of the car body as
possible, just above the mid console and between front and back seats. . . 25

3.3 A flow chart of the development process. 26

4.1 The distribution of the LiDAR velocities in terms of mean and maximum
for 6 out of 14 scenarios collected at HPG. Lower values are better. For
the complete set of data see Appendix A 35

4.2 Maximum computed displacements for the three locations in 6 out of 14
scenarios collected at HPG. Lower values are better. For the complete set
of data see Appendix B . 36

4.3 A frame from one of the worst scenarios disturbance wise from a hori-
zontal view. 37

4.4 A frame from one of the worst scenarios disturbance wise from a top
down view. 37

4.5 Figure 4.5a shows input data and Figure 4.5b shows DBDL output 38
4.6 Reflective noise, highlighted in red. 39
4.7 Detected traffic cones and classified as obstacles 39

xiii

List of Figures

4.8 An example of when an object, in this case a parting rail, is classified as
more than one object (highlighted in red). 40

4.9 A birds eye view of a clustered frame. Smaller objects, such as those in
the front are bounded by a box, while bigger cluster, such as the bottom
one, is bounded by a convex hull. 40

4.10 False detections arising due to shortcomings of the ground plane estimation 41

5.1 Comprehensive overview of the components in the deployed algorithm. . 44
5.2 Spherical coordinate system visualising how the data point P , can be de-

scribed with the azimuth angle φ, the elevation angle θ and range r. . . . 45
5.3 Visualisation of how the distance li to each subregion is defined from

the LiDAR sensor using trigonometry with elevation angles α and the
mounting height h . 46

5.4 A visualisation of how the point density (points in red) will vary with
distance when an objects is moved further away. As one can see, the
points are much denser on the object to the left than on the right (and
fewer as well). 48

5.5 A figure visualising how geometry of the points p1 and p2 are normalised
with a reference range rref . 49

5.6 An example of the clustering result when using standard euclidean dis-
tance. As one can see, there are lots of smaller clusters when the distance
from the vehicle increases. 50

5.7 An example of the clustering result when utilising the new neighbour
identifier function. This gives a lot more consistent cluster result. 50

5.8 An example of a box fitting result to a cluster originating from vegetation.
As one can see, there are lots of empty space in the box. 51

A.1 The distribution of the LiDAR velocities in terms of mean and maximum
for all 14 recordings . II

B.1 The computed maximum displacement for all 14 recordings III

xiv

List of Tables

2.1 Confusion matrix over the four different conditions, which results in clas-
sification as either True or False . 9

4.1 Computer Vision Set . 33
4.2 Pedestrian scene . 33
4.3 Durability scene . 34

xv

List of Tables

xvi

List of Tables

AD Autonomous Drive
ADAS Advanced Driver-Assistance Systems
CNN Convolutional Neural Network
DBDL Density Based Detection for LiDAR
DBSCAN Density Based Spatial Clustering of Applications with Noise
RANSAC Random Sampling Consensus
EM Expectation-Maximisation
FN False Negative
FoV Field of View
FP False Positive
GNSS Global Navigation Satellite System
GPE Ground Plane Estimation
HPG Hällered Proving Ground
IMU Inertial Measurement Unit
INS Inertial Navigation System
MTT Multi Target Tracking
NN Neural Network
RNN Recurrent Neural Network
TN True Negative
TCP Transmission Control Protocol
TP True Positive
VCC Volvo Car Corporation

xvii

List of Tables

xviii

1
Introduction

The purpose of this chapter is to introduce the reader to the problems treated in the the-
sis, as well as contributing with some background, related work, how the problems are
approached and in the end be able to state objectives and contributions.

1.1 Vehicle testing
In order to be able to guarantee vehicle customers the promised quality, automotive com-
panies need to put their products through rigorous testing before releasing. Volvo Car Cor-
poration (VCC) are currently performing these tests at Hällered Proving Ground (HPG),
an enormous test facility with a total of 15 different test tracks. During the course of
a couple of months, the cars are exposed to the same amount of stress they should ex-
perience in their whole expected lifetime and about 2000 tires are consumed each year
during testing [3]. Every possible aspect are put to the test, high speed testing surpassing
250 km/h, handling under various conditions, off-road testing and gravel tracks as well as
tracks testing endurance and comfort.

Figure 1.1: An aerial shot of Hällered Proving Ground

All this testing requires a workforce of around 75 test drivers, which drives a total of
160 000 kilometres every year [3]. These kilometres are not only putting the cars under
a lot of stress, but also the test drivers. In order to avoid work related injuries, the most

1

1. Introduction

brutal endurance tests have limits for how much each employee can drive each day.
Because of this, Volvo Car Corporation is investigating the possibilities of introducing
driverless [25] tests in order to avoid the above mentioned constraints, spare the test
drivers from physical stress as well as taking part of the economic advantages associated
with automation.

1.2 Autonomous drive and LiDAR

Today, autonomous drive (AD) is one of the most prominent research areas within the au-
tomotive industry [15] with numerous automotive companies actively conducting research
as well as companies exclusively focusing on developing solutions for autonomous drive
[1].
The problem can be divided into four steps: detection, object tracking, motion forecasting
and motion planning [28]. CUrrently, there exist a myriad of different solutions for detec-
tion, utilising a diverse set of sensor setups such as cameras, LiDARs, Radars, ultra-sonic
sensors and various algorithms processing the input to identify crucial information about
the environment [23].

Figure 1.2: An example of what the output could look like after applying object detection
on images with so called convolutional neural networks, a machine learning approach
[18].

Volvo Car Corporation has previous experience with radar scanners and ultra sonic sen-
sors, which is integrated in some of the active safety features of their current production
cars on the market today [4], [5], [11], [14]. In recent years though, they have invested
both interest and resources into LiDAR technology which they expect to bring value to
the development of autonomous vehicles [13]. The LiDAR’s advantage compared to other

2

1. Introduction

sensor setups are its undisputed detail and accuracy representation of a 3D environment,
which hopefully will bring the future of autonomous vehicles a little closer [23].

In case of VCC’s ambition to introduce driverless tests though, the conditions are
somewhat different compared to the usual public environment where most vehicles are
driven. The concerns is that the LiDAR will not be able to cope with the harsh environ-
ment of a proving ground, where biggest worry is that the bumpy test tracks will distort
the LiDAR scans and render the information inaccurate or in worst case, unusable.

1.3 Selection of object detection approach

One of the more common approaches for object detection is the utilisation of machine
learning [33], which is commonly performed on ordinary camera images, but it is possible
to apply on LiDAR scans as well. This approach has been proven successful but it is not
without its flaws. For example, the algorithm described in [38] (a tailored convolutional
neural network for LiDAR data) performs very well at vehicle detection but the score
for animal detection is more than 70 times lower than the vechile detection, which is
probably due to the fact that the dataset the network was trained on contained a small
amount of animal data. This leads us to the next shortcoming; its inability to detect
objects which the neural network has not been trained for. This is an immense problem
since it is near impossible to cover every possible obstacle, which could block a vehicle’s
path on the road, in the training data [37]. Another backside of machine learning is
difficulties to understand and control what is happening inside a neural network. It either
identifies an object correctly or it does not, and it is very hard to identify the reason for a
failed detection. That is why the thesis will explore object detection by cluster analysis,
which will make it possible to analyse and control each function, and will not require data
collecting.

1.4 Objectives

The thesis can be partitioned into two main tasks; the development of an object detection
algorithm and an investigation of the LiDAR and how the placement copes with various
road disturbances.

1.4.1 Object detection

The object detection problem with LiDAR can be defined as follows:

To, with the given 3D-point cloud from a LiDAR frameX = {x1,x2, · · · ,xN}, X ⊆
R3, identify objects O = {o1, o2, · · · , ok, · · · , oK} which may obstruct the
path of the vehicle where the entries of the vector ok are properties of the
detected object k.

3

1. Introduction

Since cluster analysis has been chosen as the main approach for object detection, the
problem formulation can be narrowed down even further.

To, with the given 3D-point cloud from a LiDAR frameX = {x1,x2, · · · ,xN}, X ⊆
R3

1. Determine which points in X belong to traversable surface XT ⊆ X
and which points does not (non-traversable) XNT ⊆ X .

2. Identify objects O = {o1, o2, · · · , ok, · · · , oK} and their properties in
set of points XNT ,

Thus, the first task of the thesis will be to develop an algorithm which solves the problem
defined above.

1.4.2 LiDAR placement and disturbance analysis
VCC is interested in an investigation which aims to bring further understanding of how
the LiDAR mounting position impacts practical aspects as well as how the scans are in-
fluenced by disturbances induced by rough and bumpy terrain (henceforward referred to
as road disturbances) depending on the placement. The term mounting position is here
referring to key areas of the vehicle where the LiDAR may be positioned such as the roof
or hood and does not involve fine adjustments such as angular position or i.e fine tuning
the placement by a few centimetres.

The questions which are to be answered are:

How much will road disturbances distort the LiDAR scans depending on the
LiDAR mounting position?

Disregarding influence of disturbance, what are the general advantages and
disadvantages for each mounting position?

Taking the two questions above into account, which mounting position can
be regarded as optimal or be recommended for use?

Is the LiDAR a suitable sensor to use for autonomous vehicles at HPG, given
the harsh road conditions?

4

1. Introduction

1.5 Related work

The subject of object detection using point clouds from a LiDAR sensor has been a com-
mon area of research for many engineers and scientists. Several published articles about
object detection using LiDAR will be the foundation for this thesis, but with modified
approaches from subjective interests and idea to fit the criteria set by the people involved
in this project.

Asvadi et al. [16] released a relevant article about detecting obstacles from LiDAR
scans, by dividing the scanned region into multiple regions before processing the data for
object detection. With an improved point cloud, generated from comparing GNSS/INS
data with successively scanned data frames, a ground plane estimation is performed. They
are using the random sampling consensus RANSAC algorithm, which is widely used
for finding patterns in noisy data, and is an adequate method when inlier/outlier label
is unknown [20]. After outliers have been separated from the dataset, they are fed as
input to a voxelisation algorithm which converts geometrical objects into voxels for a
three-dimensional representation. The whole function chain can determine which points
belongs to static or dynamic obstacles and also visualise them by plotting the voxels con-
taining the obstacle data points.

Choi et al. [20] also uses the RANSAC algorithm to fit a plane to three-dimensional
data points, but they apply an asymmetric kernel to RANSAC, which they explains as
follows: "Our asymmetric kernel is inspired from log-likelihood of a 3D point with its un-
known label. Since outliers always exist above the ground plane, our kernel has longer tail
in negative domain. Such asymmetry enables RANSAC more robust to outliers, which
was shown in our experiments and application" [20]. Their motivation for a modified
RANSAC is that it gives more robustness to the functionality with less computational
time.

Mufti et al. [32] have a similar approach as Choi et al. [20] where a likelihood function
is integrated with the RANSAC algorithm. The outliers are then defined as either belong-
ing to the ground plane or not, based on if it fulfils a threshold criterion for the distance
to the approximated plane.

In the article "Background Filtering and Vehicle Detection with Roadside Lidar Based
on Point Association" [41] Zhang et al. uses a clustering technique to detect vehicles us-
ing LiDAR point clouds. Associated data points are gathered into clusters by comparison
between positional information and distance parameters.

Another approach, which differs from the aforementioned object detection methods, is
by utilising machine learning, where it also becomes possible to perform target tracking,
motion forecasting and classification. Luo et al [28] uses a 3D convolutional network to
detect objects in a point cloud together with tracking and short time motion forecasting.
The short explanation of their method is that they feed several voxelised 3D frames as a
4D tensor through a convolution network to extract features, determine labels and predict
future states.

5

1. Introduction

A combination between clustering analysis and machine learning is an alternative that
Matti et al. [30] implement in their research. Region of interest is determined by clus-
tering analysis to exclude unnecessary data points before classifying the objects using the
high performing Residual Network, also known as ResNet [22].

1.6 Contributions
With the following tasks defined, this thesis aims to produce:

• A recommendation for cluster analysis technique for object detection with LiDAR.
• An object detection algorithm based on the recommended cluster algorithm which

will act as input for either a future path planning or object tracking algorithm.
• An evaluation of how the object detection developed in the thesis compare to the

commercial approaches and its potential place in the field of autonomous drive.
• Recommendations for future work in order to reach the goal of introducing driver-

less tests at HPG.
• An analysis of the LiDAR placement as well as verdict of the LiDAR’s suitability

in a test track environment.

6

2
Theory

In this chapter, the theory utilised throughout the thesis is presented. It commences with
a brief explanation of how a LiDAR functions, then continues with theory for evaluation
of object detection. This is then followed by three sections dedicated to explaining the
theory behind the algorithm develop in the thesis; cluster analysis, traversable surface
estimation and bounding geometry. Lastly, the theory behind the LiDAR mounting point
investigation is explained.

2.1 Light detection and ranging, LiDAR sensor

The LiDAR sensor is an optical measurement unit which measures the distance to a re-
flective point by transmitting a pulsed laser [34]. It is possible to map the environment in
3D due to moving mirrors inside the LiDAR hardware, which creates a certain scanning
pattern that can be seen in Figure 2.1a. The overlapping section in the middle of Figure
2.1a is due to two side-by-side mounted transmitters (Figure 2.1b), which increases the
horizontal field of view.

(a) Approximate scanning pattern for the
used LiDAR sensor

(b) Appearance of the Luminar LiDAR
with two optical transmitters

Figure 2.1: Scanning pattern and LiDAR hardware

The resolution and refresh rate settings are adjustable parameters for the LiDAR that
can be adapted for certain needs. A refresh rate of 10 Hz delivers approximately 60000
data points, including both snapback-points when the mirrors are resetting in the end
of a scan and transmitted light with no received reflected light. The LiDAR’s output is
these data points structured as a 3D point cloud together with various parameters, such as
intensity of the reflected light. Figure 2.2 shows an example for a scanned LiDAR frame
and it is possible to distinguish several objects, such as people and buildings.

7

2. Theory

Figure 2.2: One frame from a LiDAR scan. Shows data points in different colours de-
pending on the distance to the reflective point

2.2 Object detection

Object detection is a two-part process consisting of classification and localisation. Clas-
sification determines the object label, if it is a car, a pedestrian or an animal and so forth.
Classification is a very important part of autonomous drive in commercial cars because
the car should avoid colliding with aforementioned objects, but should maintain speed if,
for example, a plastic bag blows across the road in front of the car [35]. Classification
can be done in two separate manners. Binomial classification can decide if an object is an
obstacle or not and multi-label classification can specify the label of an obstacle.

Localisation almost resolves itself when using LiDAR data. The data points’ coordi-
nates are relative the LiDAR, which gives the position vector instantaneously. It is also
possible to extract additional information after performing clustering algorithms, such
as cluster centre point. A geometry fitting algorithm can be convenient to form zones
surrounding the obstacles and give information about their locations.

Classification and localisation are merged to construct complete functionalities of an
object detection principle.

2.2.1 Multi-label classification
Machine learning is often applied when the aim is to give an object a specific label. It is
in many cases, within the autonomous drive field, absolutely fundamental to distinguish
between various types of objects and handle them differently. The convolutional neural
network (CNN) returns probabilities for the input to be one of several predetermined
labels [39]. Training the CNN is vital to maximise the classification accuracy for each

8

2. Theory

iteration. The accuracy can alter considerably depending on obstruction and amount of
data the network was trained on. Collect and annotate data from the test track would be
essential to use as training data, because of the specific driving environment, to increase
the accuracy.

2.2.2 Binomial classification
Binomial classification is a task to classify an element into two groups, commonly in
autonomous drive as an obstacle or not an obstacle. The outcome of object detection
using binomial classification can be divided into four different conditions, described in
Table 2.1 as a 2× 2 confusion matrix [8].

Pr
ed

ic
te

d
co

nd
iti

on

True condition

p n

p′ True
Positive

False
Positive

n′ False
Negative

True
Negative

Table 2.1: Confusion matrix over the four different conditions, which results in classifi-
cation as either True or False

• True Positive (TP): The model correctly predicts an existing obstacle.

• True Negative (TN): The model correctly predicts a non-existing obstacle.

• False Positive (FP): The model incorrectly predicts a non-existing obstacle.

• False Negative (FN): The model incorrectly predicts an existing obstacle.

TP and TN are successful outcome from binomial classification and the aim is to max-
imise their probabilities.

2.2.3 Mean Average Precision
The mean Average Precision (mAP) is a popular metric for calculating the accuracy for
object detection. It is a measure of the average precision for each class, based on model
predictions and is a function of the metrics precision and recall [6]. The formulas for
precision and recall are:

Precision = TP

TP + FP
(2.1)

9

2. Theory

Recall = TP

TP + FN
(2.2)

Precision measures the accuracy for model predictions, i.e. the percentage of correct
predictions and recall measures how well the model finds existing objects. In an ideal
world both precision and recall equations would yield the result 1.0, but is not the case in
reality.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

recall

pr
ec
is
io
n

Precision-recall tradeoff

Example model
Ideal model

Figure 2.3: Graph showing ideal tradeoff versus example tradeoff for Precision-Recall

The trade-off graph between precision and recall are displayed in Figure 2.3, where the
precision p is a function of the recall r. For simplicity, the example model is approximated
as,

precision = −recall2 + 1 (2.3)

The general expression for average precision (AP) is the area beneath the model’s trade-
off curve,

AP =
∫ 1

0
p(r)dr (2.4)

If precision and recall have been computed in a discrete set of points, AP can be computed
as,

AP = 1
N

N∑
n=1

max
n≤i≤N

p(ri) (2.5)

where N is the total number of discrete points and ri is the recall value at time-instance i.
The AP values for all possible classes are consolidated and divided to get the mean

value, mAP .

10

2. Theory

2.3 Cluster analysis algorithms

Figure 2.4: A figure picturing the results of various cluster techniques applied on datasets
of varying properties [2]

Cluster analysis is the act of distinguishing, in a given set of data X = {x1,x2, · · · ,xN},
a set of K disjoint groups referred to as clusters C = {c1, c2, · · · , cK}, where xi is an
n-dimensional feature vector. The number of clusters K does not necessarily need to
be known in advance, but can be estimated by some cluster analysis techniques. The
partitioning of the data is based on mutual similarities/dissimilarities of the observed data
in the set, where data within a cluster are more similar than compared to data in other
clusters. The benefits of cluster analysis is not only that of the identification of groups, but
the result also allows us to represent the data in a more compact way [40]. Cluster analysis
may be also be referred to as unsupervised learning typology, Q-analysis, clumping and
taxonomy, depending on the domain where the clustering is applied.

There exists several methods of cluster analysis, all of which have got their appropri-
ate application depending on the situation, but the clusters they produce all share some
common properties .

• A cluster ci, i = 1, · · · , k is not empty.
• The union of every cluster

⋃k
i=1 ci forms the original dataset X .

• An observation xi, i = 1, · · · , N may only belong to one cluster ci, i = 1, · · · , k.

The three cluster analysis algorithms that were chosen for evaluation is described more
in depth below.

2.3.1 K-means clustering
The following text is based on the theory presented in [17]. The objective of the K-means
algorithm is to partition a given set of N observationsS = {x1,x2, · · · ,xn, · · · ,xN} of a

11

2. Theory

D dimensional, euclidean random variable xn intoK clusters (the number K is predefined
by the user). The idea is that the euclidean distance in-between the points of a cluster is
smaller than the distance to points belonging to other clusters. Though, the K-means
algorithm will not consider every possible distance between every possible pair of points,
but will instead compare an observation’s distance to a set of vectors µk, k = 1, ..., K
which is representing the centres of each cluster. The decision variable for assigning each
observation to a cluster will be rnk ∈ {0, 1} where n = 1, ..., N and k = 1, ..., K which
will be 1 if observation n is assigned to cluster k and 0 otherwise [17].

The objective function which is to be minimised is:

J =
N∑
n=1

K∑
k=1

rnk‖xn − µk‖2 (2.6)

The function J will be minimised with respect to the variables rnk and µk through a 2-step
iterative process, where the first step will minimise w.r.t rnk and the second w.r.t µk.

Step 1: update rnk:
Since the minimisation w.r.t rnk is a decision process to minimise ‖xn − µk‖2, this is
simply done by assigning each observation xn to the closest vector µk, k = 1, ..., K. In
other words:

rnk =

1 if k = argminj‖xn − µj‖2

0 otherwise
(2.7)

Step 2: update µk:
The cost function J is a quadratic function of µk, which can be minimised by setting the
derivative w.r.t µk to 0 and then solved for µk,

∇µk
J = 2

N∑
n=1

rnk(xn − µk) = 0 −→
∑N
n=1 rnkxn∑N
n=1 rnk

= µk

Thus, the updated µk is simply the mean of all observation belonging to cluster k.

2.3.2 Expectation maximisation
The following text is based on the theory presented in [17]. Expectation Maximisation
(EM) is an iterative method for finding maximum likelihood solutions to models with so
called latent variables. The number of clusters K is set a priori, a Gaussian distribution is
initialised and then EM iterates over a given dataset to find the Gaussian mixture that best
describe the dataset.

The likelihood function which will be the subject of the maximisation is:

J =
N∑
n=1

ln(
K∑
k=1
πkN (xn;µk,Σk)) (2.8)

where N (xn;µk,Σk) is the Gaussian distribution of xn given the parameters mean
vector µk and covariance matrix Σk. When Equation (2.8) is at a local minimum, the
derivatives of J with respect to µk, Σk and πk all need to be zero.

12

2. Theory

Derivative w.r.t µk:

The derivative of J w.r.t µk is

0 = −
N∑
n=1

πkN (xn;µk,Σk)∑K
j=1 πjN (xn;µj,Σj)

Σk(xn − µk) = −
N∑
n=1

γ(znk)Σk(xn − µk) (2.9)

After some rearranging to solve µk we get:

µk = 1
Nk

N∑
n=1

γ(znk)xn (2.10)

where

Nk =
N∑
n=1

γ(znk) (2.11)

can be interpreted as the number of observations associated with cluster k, and

γ(znk) = πkN (xn;µk,Σk)∑K
j=1 πjN (xn;µj,Σj)

(2.12)

is known as the posterior probability or responsibility.

Derivative w.r.t Σk:
By calculating the derivative of J w.r.t Σk, setting it to zero and solving it for Σk with
similar reasoning as previously, we get,

Σk = 1
Nk

N∑
n=1

γ(znk)(xk − µk)(xk − µk)T (2.13)

Derivative w.r.t πk:
Lastly, the derivative of J with respect to the mixing coefficients πk is computed, set to
zero and solved for πk,

πk = Nk

N
(2.14)

Unfortunately though, there does not exist any closed form solution since the posterior
probabilities γ(znk) depends on the parameters in a rather complex way. What is possible
though is optimisation through an iterative process partitioned into two steps; Expectation
and Maximisation (hence the name Expectation-Maximisation). In the Expectation step,
the posterior probabilities γ(znk), are computed with the parametersµk, Σk and πk. With
the newly computed γ(znk), the previously used parameters are updated in the so called

13

2. Theory

Maximisation Step. The complete procedure is described in Algorithm 1.

Algorithm 1: Expectation-Maximisation [40]
Data: N number of observations of the D dimensional random variable xn and the

number of clusters K
Result: A cluster distribution described as a Gaussian mixture xn
initialization;
Choose the number of clusters K, with associated parameters µk, Σk and πk.
while δJ > tolerance do

Expectation; Compute γ(znk) with eq. (2.7)
Maximisation; Update µk, Σk and πk with eq. (2.5), (2.8) and (2.9)

end

One could also use a set number of iterations for the loop instead of a convergence
condition to get more consistent computing times, which may be desirable when imple-
menting real-time applications.

2.3.3 Density based spatial clustering of applications with noise

The following text is based on the theory presented in [40]. As the name suggests, this
algorithm will recognise a cluster in spaces where the observation density is high enough.
The key metric for the algorithm is the number of points within a neighbourhood of the
point of interest. Due to the fact that DBSCAN is not minimising with respect to a certain
function (i.e. minimising the distance to a centroid like the K-means algorithm or fitting
a mixture of Gaussian like EM), the algorithm is very versatile when it comes to recog-
nising clusters of different shapes and sizes [40].
In order to explain the algorithm more in depth, a number of definitions will be made. In
the text below, the set S is the N number of observations of the D dimensional random
variable xn ∈ RD or in other words, S = {x1,x2, ...,xN}, S ⊆ RD.

1. d(xa,xb) is the Euclidean distance between the two points xa,xb ∈ RD.
2. The ε-neighbourhood of a point xn ∈ S is defined as:
Ne(xn) = { x ∈ RD : d(x,xn) ≤ ε }.

3. An observation are classified as one of the following classes
(a) An observation xn ∈ S is called an internal point if its ε-neighbourhood con-

tains more than nmin number of other points.
(b) An observation xn ∈ S is called a borderpoint if 0 < |Ne| < nmin and at least

one of its neighbouring point is classified as an internal point.
(c) An observation xn ∈ S is regarded as noise/outlier if it is not classified as

either an internal point or borderpoint.
4. Let xa,xb ∈ S be two observations where xb ∈ Ne(xa), xa is classified an an

internal point and xb is classified as a borderpoint.
xb is then said to be directly density-reachable from xa. Note however that the
reverse is not true (xa directly density-reachable from xb). Thus, the relationship is
not necessarily symmetric.

14

2. Theory

5. Let xa,xb ∈ S be two observations and there exists a sequence of observations
x1, ...,xj where xa = x1 and xj = xb and each point xi+1 is directly density-
reachable from xi, i = 1, ..., j − 1. xb is then density-reachable from xa. The
relation is, just like direct density-reachability, not necessarily symmetric.

6. Let xa,xb, z ∈ S and let xa and xb be directly density-reachable from z. xa and
xb are then density-connected.

Observations belonging to the same cluster generated have the property that they are all
mutually density-connected.

Given the clarifications above, DBSCAN is presented in Algorithm 2.

Algorithm 2: DBSCAN
Data: N number of observations of the D dimensional random variable xn,

X = {x1,x2, ... ,xN} and the parameter ε
Result: A partition C = {c1, c2, ... , ck}, where k is the number of clusters
1: Initialisation: Evaluate each point and classify them as one of the three above
defined classes.

2: Remove all the points classified as noise/outliers
Draw a line between points P1 and P2 (Divides the whole set into two subsets, S1
and S2)

3: Connect all the neighbouring internal points with an edge and create a cluster of
these neighbouring points

4: Assign the remaining border points to one of the clusters created in step 3.

2.4 Traversable surface estimation

In the following section, theory used when estimating the traversable area is presented.
Firstly, RANSAC, which is the key component of the ground estimation, is introduced,
followed by least squares fitting on a set of points and computation of a plane based on
three points.

2.4.1 Random sample consensus
RANSAC is an iterative method for finding parameters to a pattern which is assumed
to exist within an observed set of data which contains noise. In each iteration, the al-
gorithm selects a predefined number of points randomly (the number of points depends
on the degrees of freedom of the pattern) and estimates the parameters from the selected
points with the assumption that they are inliers. Then, the algorithm analyses how many
of the remaining data points which can be regarded as inliers to the currently computed
pattern [21]. The biggest advantage of RANSAC is that it is very robust to noise/out-
liers, although, it may require a higher number of iterations for the algorithm to find the
pattern when the data is very noisy. Compared to if one would for example estimate the
parameters through, for example, by computing a least squares solution, it would be very
sensitive to noise. The drawback though is that it is not exactly deterministic. Since the
points are picked at random, the parameters which RANSAC yields may differ slightly
every time one runs the script, especially if the number of data points in the set is high.

15

2. Theory

A simple problem where RANSAC can be utilised is when one has to fit a line to a
set of observed 2-dimensional data X = {x1,x2, ... ,xN}, X ⊆ R2 with noise.

Figure 2.5: An example of three possible outcomes for a RANSAC iteration

To compute a line, one needs to pick two points (if the pattern sought instead was a
plane, it would need three points), thus, the number of points picked at random each iter-
ation, in this case, are two. In each subfigure, the points chosen at random are highlighted
with red circles, the estimated line in red and the upper and lower thresholds are in green.
In the first subplot, the total number of inliers are three (which in this case is a fairly poor
result). In the second, the number of inliers are four, which is better than the previous
picture but still not very good. Finally, in the third subplot, the algorithm seems to have
found a reasonably strong linear pattern.

The general RANSAC algorithm is summarised in Algorithm 3:
Algorithm 3: RANSAC

Data: A data set of observed variables X = {x1,x2, ... ,xN}, X ⊆ Rn, a
tolerance t and the number of iterations niter

Result: The parameters πbest which yield the highest amount of inliers
Initialization; Set the values πbest = ∅ and nbest = 0
for niter do

Pick the number of required points randomly from X and compute the
parameters π. Check how many points in X which lies within the given
tolerance t and assign this value to ninliers.

if ninliers > nbest then
nbest ← ninliers
πbest ← π

end
end

It is common to estimate a new set of final parameters πLS by computing the least
squares solution from the points which are classified as inliers to πbest, to get an even
better estimate of the parameter. This procedure is described in Section 2.4.2.

A question which naturally arises is, how many iterations would one need to perform
in order to get an adequate result from RANSAC? One answer is given by the formula,

k =
⌈
log(1− Psuccess)
log(1− wn)

⌉
(2.15)

16

2. Theory

where k is the number of iterations, Psuccess is desired probability of a successful out-
come, w is the proportion of inliers and n is the degrees of freedom (which is three for a
plane).

2.4.2 Least square solution for plane fitting by singular value decom-
position

When fitting a plane θ = [a b c d]T to a set of points X = {x1,x2, · · · ,xN}, X ⊆ R3

and x = [x y z]T , the optimisation problem to solve is:

minimise
θ

f(θ) =
N∑
i=1

([xTi 1]θ)2 =
N∑
i=1

(axi + byi + czi + d)2

subject to g(θ) = a2 + b2 + c2 − 1 = 0
(2.16)

The cost function is derived from the formula for the distance between the plane and a
point [xTi 1]θ and the constraint g(θ) is needed to exclude the trivial solution θ = 0. After
rearranging the cost function and eliminating the variable d in θ, since it is just a scale
factor, the minimisation problem can be solved by finding the eigenvector θ̃ = [a b c]T
which corresponds to the smallest eigenvalue in the eigenvector problem:

N∑
i=1

x̃2
i x̃iỹi x̃iz̃i

ỹix̃i ỹ2
i ỹiz̃i

z̃ix̃i z̃iỹi z̃2
i

a

b

c

 = λ

a

b

c

 = Mθ̃ = λθ̃ (2.17)

(x̃i, ỹi, z̃i) = (xi − x̄, yi − ȳ, zi − z̄), (x̄, ȳ, z̄) = E(X)

This originates from the general optimality condition∇θf(θ) = λ∇θg(θ) for the min-
imisation problem above. This eigenvalue problem can in turn be solved by computing
the so called singular value decomposition of the M -matrix M = UΣV T and taking the
last column of V which will be the eigenvector θ̃ = [a b c]T that corresponds to the
smallest eigenvalue.
The final plane θ can then be constructed as:

θ = [θ̃T d]T , d = −(ax̄+ bȳ + cz̄)

2.4.3 Construction of a plane from 3D-points

The degrees of freedom (DoF) for a plane is three, thus three points x ∈ R3 are needed if
one desires to construct a plane out of points. The equation of a plane is:

x̃Tπ = 0, x̃ = [xT 1]T , π = [a b c d]T (2.18)

Here, x̃ is the so called homogeneous coordinate. Lets denote the three chosen points
in homogeneous form as x̃1, x̃2 and x̃3. If all of the points belong to the plane, then π
should fulfil the following system of equations,

17

2. Theory

x̃T1

x̃T2

x̃T3

π , Aπ = 0 (2.19)

Thus, to compute the plane π, one simply has to compute the nullspace of matrix A,
which is constructed by the three chosen points.

2.5 Bounding geometry algorithm

A minimum bounding geometry algorithm is a function which creates a minimal area
border region, encircling every data point in a cluster. These functions works for both 3D
spaces, as well as for 2D Cartesian coordinate systems, depending on area of application.
For this thesis a 2D region is of interest with data point vector X = {x1,x2, ...,xn},
where the coordinate vector xi ⊆ R2. If the perimeter surrounding a cluster has the shape
of a rectangle, there is a risk a lot of unnecessary space is within this region and classified
incorrectly. The risk increases with the size of vector X , therefore the number of ele-
ments in vector X determines which fitting method should be utilised. The possibility to
extract extra positional information about obstacles comes from these bounding geometry
algorithms.

2.5.1 Minimum-area enclosing rectangle

When representing small objects, a minimum-area enclosing rectangle algorithm is well-
suited. It is an effective and quick iterating procedure for forming a border region. Firstly,
four corner points is defined from the minimum- and maximum values in both x- and
y directions for the dataset S. The rectangle area is computed and compared with the
smallest area found so far to store the least area for next iteration. The cluster is rotated
with a predefined angle and the process is repeated until the cluster is rotated 90° from
original state and all possibilities have been tried. The box-fitting algorithm is described

18

2. Theory

in Algorithm 4

Algorithm 4: Minimum-Area Enclosing Rectangle
Data: Dataset S containing all points belonging to a cluster
Result: Minimum area rectangle region
i = i-th rotation of the dataset S
n = maximum number of rotations
while i ≤ n do

xmin = minimum x-coordinate in cluster
xmax = maximum x-coordinate in cluster
ymin = minimum y-coordinate in cluster
ymax = maximum y-coordinate in cluster
Area = (xmax − xmin)(ymax − ymin)
if Area < Areabest then

Areabest = Area
end
i++

end

2.5.2 Convex hull

Convex Hull is a method for defining vertices in a polygonal bounding geometry for
a given dataset. The output is the smallest possible convex region containing all input
data points, which means that a line joining two arbitrarily selected data points never
intersects with the region’s border. Hence, the convex region set X is a subset to input
dataset S, X ⊆ S [27]. Quickhull is an algorithm, of algorithmic paradigm sort divide-
and-conquer, for computing a convex region recursively. A divide-and-conquer algorithm
breaks a problem down into two or more sub-problems that are smaller instances of the
same problem, solve these recursively one by one until the results can be merged together
to form a solution for the initial task [31]. The pseudocode for quickhull is shown in
Algorithm 5

19

2. Theory

Algorithm 5: Quickhull
Data: Dataset S containing all points belonging to a cluster
Result: Convex region
Find point P1 with minimal x-coordinate and add to convex hull vector
Find point P2 with maximal x-coordinate and add to convex hull vector
Draw a line between points P1 and P2 (Divides the whole set into two subsets, S1
and S2)

while points outside convex region exists for S1 do
Find the point with maximal euclidean distance to the line and add to convex
hull vector at position between the line endpoints

Draw new lines from recently discovered vertex to its neighbour points in
convex hull vector

end
while points outside convex region exists for S2 do

Find the point with maximal euclidean distance to the line and add to convex
hull vector at position between the line endpoints

Draw new lines from recently discovered vertex to its neighbour points in
convex hull vector

end
Merge together vertex vectors from subsets S1 and S2

A comparison between the two different bounding geometry algorithms are visualised
in Figure 2.6, for an example dataset.

(a) Geometry fitting using rectangle algo-
rithm

(b) Geometry fitting using Convex Hull

Figure 2.6: Geometry fitting algorithms for an arbitrary dataset

2.6 Theory for analysis of LiDAR mounting point
This section is dedicated for explaining how the key metrics used in the LiDAR mounting
point investigation are computed, which consists of the maximum displacement in one
frame and homogeneous transformation matrix which is used to compute the states for
each mounting point.

20

2. Theory

2.6.1 Scan for maximum LiDAR displacement in one frame

The dynamics that govern the distortion of the LiDAR frames are changes in the LIDAR’s
states x (position) and Θ = (θ, φ, ψ) (angles) while the LiDAR is performing a scan.
Thus, inherently, the states ẋ and ω = Θ̇ are of great interest, but they do not convey how
much a frame in the end actually is distorted.
That is why a script was created to scan the collected data, given the time to perform one
LiDAR scan, for the maximum change in the states x and Θ:

The algorithm is presented in Algorithm 6:

Algorithm 6: Max change scan
Data: The measurements of the state of interest X = {x1,x2, ... ,xt, ... ,xtf}

where t is the time index, the index difference δi = tframe

δt
where δt is the

time between the measurements and tframe is the time to perfom one LiDAR
scan.

Result: The maximum possible change in state δxmax which can occur in the
given measurements

Initialization; Set the value and δxmax = 0
for t = 1, ... , tf do

δx← |xt − xt+δi|
if δx > δxmax then
xmax ← δx

end
end

2.6.2 Homogeneous transformation matrix

A homogeneous transformation matrix is a utility for body frame representation in a con-
sistent way and allows easy transformations between two body frames. The homogeneous
transformation matrix T consists of a combination of the rotation matrix R ⊆ R3×3, the
translation vector t⊆ R3×1, the zero vector 01×3 and the homogeneous coordinate 1⊆ R
[19]:

T =

R t

0 1

 (2.20)

where,

R =

cosφi −sinφi 0

sinφi · cosθi−1 cosφi · cosθi−1 −sinθi−1

sinφi · sinθi−1 cosφi · sinθi−1 cosθi−1

 (2.21)

and that,

21

2. Theory

t =

ai−1

−sinθi−1 · di
cosθi−1 · di

 (2.22)

In Figure 2.7 the transformed frame vector v′ ⊆ R4×1 is described with T generated
by the following procedure [26]:

1. Translate di along the z-axis
2. Rotate counterclockwise by φi about the zi-axis
3. Translate by ai−1 along the xi−1-axis
4. Rotate counterclockwise by θi−1 about the xi−1-axis

Figure 2.7: Transformed frame v′ ⊆ R4×1 described from the reference frame v, such
that v′ = Tv.

22

3
Method

In this chapter, the methodology used in the thesis is presented. It initiates with a brief
clarification of the utilised tools and software and then move forth to methodology for
the thesis’s two main tasks, LiDAR placement investigation and the development of the
object detection algorithm.

3.1 Tools and software

Robot Operating System (ROS) is a framework for robotics and is described by the ROS
development team as follows: "ROS is a flexible framework for robotics. It is a collection
of tools, libraries, and conventions that aim to simplify the task of creating complex and
robust robot behaviour across a wide variety of robotic platforms." [9]. With ROS a two-
way communication protocol can be established between the LiDAR sensor and the Linux
based computer used for algorithm computations, in a simple and effective manner. ROS
provides easy to use commands for initiating the data collection and automatically calling
the node that accommodates the OD-algorithms. A computer running on a Linux kernel
is preferable due to compatibility issues for other operating systems.

MATLAB is a useful tool for algorithm development. The number of libraries and
functions are extensive, thus very helpful for implementation and testing of initial func-
tions. The output can easily be evaluated numerically, analytically and visually using both
integrated tools and functions.

Python is a user friendly programming language for integrating components in a real-
time system. It is a open-source software, which means it is very extensive and flexible.
This means that functions can be written in a short period of time. Conversion between
MATLAB code and Python code is fairly effortless thanks to the Python library NumPy.
NumPy allows vectorisation and faster operating code. SciPy is another convenient li-
brary for mathematical calculations and it also contains resolved functions for clustering
algorithms.

3.2 LiDAR placement

In this section, the method for evaluating the LiDAR’s suitability in a test track environ-
ment is presented. It is divided into two parts, one quantitative and one qualitative.

23

3. Method

3.2.1 Disturbance analysis
The placement of the LiDAR is very important because the LiDAR scans may be influ-
enced by the car’s movement when driving on uneven roads. Three different positions are
taken into consideration, the roof, the hood and the bumper (Figure 3.1). For simplicity,
all positions are located without an offset in the lateral direction. The coordinate system
can be seen in Figure 3.2.
Alteration of the position δp and angles δΘ during a scan is what causes distortion of the
frame. δp and δΘ in turn originates from the movement of the LiDAR, vLiDAR, ωLiDAR
which is attached to the body of the car. In order to obtain data about these velocities and
positions, a high performance GNSS/INS will be used to measure the car’s states from
the position of the GNSS/INS; velocities vGNSS/INS , angles Θ and angular velocities ω
(there is no need for the GNSS/INS subscript on the angles and angular velocities since
they will be the same on every point on a rigid body). These measurements will then be
used to calculate the velocity vpos and position ppos for the three positions of interest with
the theory described in Section 2.6.

One modification is made to the measured data, which is setting the forward velocity of
the GNSS/INS to zero (x-direction). This is because the forward velocity has got a high
influence on the final speed of the placements, and the forward velocity will not differ
significantly between the positions of interest.
The velocity vpos will then be used to compute the speed of the position

spos = ‖vpos‖

and a mean and max value will be computed for spos to describe the distribution.
The position ppos will be scanned for maximum displacement δppos according to Section
2.6.1.

The GNSS/INS data will be collected from eight different trails at either the durability
track or comfort track, and in two or three different speeds depending on the maximum
allowed speed on the specific trails. The track trails have assorted kinds of road distur-
bances with unique characteristics that will cause rotations in all three dimensions.

There are also qualitative aspects to take into consideration when it comes to place-
ment, such as visibility, range and disturbances caused by vibrations in the car. These
aspects will be evaluated in a more subjective qualitative manner.

3.2.2 Analysis of the placement properties
It is not possible to evaluate if the LiDAR will be able to handle the disturbances from
analysis of the velocities and displacements alone, it will only convey how the different
placements compare to each other. That is why a subjective analysis of the scans will be
done in order to assess if the LiDAR scans are too distorted to use, as well as feeding it
into the algorithm to investigate if it will cause any new problems.
The outcome of this inspection should of course only be treated as guidance. In order
to truly be able to say something about the amount of distortion the LiDAR experiences
during a rough drive, a ground truth is needed (i.e., a scanned frame with no distortion).

24

3. Method

IM
U

LiDAR

LiDAR

LiDAR

Figure 3.1: Three different LiDAR mounting points for evaluation relative the GNSS/INS
in two dimensions. The mounting points are the roof, the hood and the bumper.

x

y

z

Figure 3.2: The GNSS/INS’s approximate location together with its coordinate system.
The GNSS/INS is placed as close to the centre of the car body as possible, just above the
mid console and between front and back seats.

3.3 Development process of the OD-algorithm

The development of the object detection algorithm is an iterative process, starting with
the construction of an initial version. This version will then go through a cycle of four
phases; Testing, Evaluation, Research and Implementation, in order to produce new and
improved versions. When a version of the algorithm is estimated as good enough, it will
be integrated directly with the LiDAR in the Deployment phase,

25

3. Method

Figure 3.3: A flow chart of the development process.

3.3.1 Initial version
As outlined in Objectives section, the plan is to perform object detection by ground plane
extraction with RANSAC and then clustering. When constructing the initial algorithm
for the object detection, three clustering methods will be evaluated before selecting one
which is deemed suitable.

3.3.1.1 Estimation of the ground plane

The first of the two sub-problems described in Section 1.4.1 is to estimate which points
in a given frame X = {x1,x2, · · · ,xN}, X ⊆ R3 belongs to traversable surface XD.
This process will be referred to as ground plane estimation (GPE). The chosen approach
to solve this problem is by estimation of planar surfaces through RANSAC described in
Section 2.4.1. The reason RANSAC is chosen for the GPE process is because it is a
relatively robust method to find the parameters of a pattern in data which contains a lot of
noise. Noise in this case could be anything that does not follow a planar surface pattern
such as objects on or alongside the road or uneven terrain.
The general process for the GPE will then be:

1. Perform RANSAC on the given set of points X for one frame.
2. Classify all points which lie within the tolerance of the obtained RANSAC-plane

as XD and all the other points as XND.

26

3. Method

3.3.1.2 Selection of cluster algorithm

In the second of the two sub-problems, objects are to be identified in the set of non-
traversable points XND estimated earlier. The chosen approach to solve the problem is by
cluster analysis of the points XND.
Three different cluster algorithms are chosen and will be evaluated to see which is the
most suitable for the task.
The following algorithms will be constructed in MATLAB and evaluted:

• Expectation-Maximisation
• K-means
• DBSCAN

Three point cloud sets will be used in the evaluation, where two of the sets are taken
from individual frames in the scenes listed below with XND extracted and one which is
from the course Computer Vision (course code EEN020. The motivation behind these
scenes is the variance in number of points and setting:

Computer Vision Set: A set containing 797 points which is a 3D reconstruction of a
stereo pair of images picturing the corner of a house.

Durability scene: A set containing 3564 points taken from a frame from the durability
track scenario described below which has gone through GPE.

Pedestrian scene: A set containing 9042 points taken from a frame from the highway
scenario described below which has gone through GPE.

The three cluster algorithms will then be applied on the three above listed sets where
an average run time will be calculated over 10 runs for each algorithm and dataset, as well
as maximum and minimum run time.
As described in Section 2.3.2 and Section 2.3.1, the EM and K-means algorithm needs
a predefined number of clusters K and initial distribution of the clusters. The initial dis-
tribution will be created by distributing the K cluster uniformly over the scene. As for
DBSCAN, the parameters will chosen by experimenting with different values until a rea-
sonable end result was achieved. The parameters in DBSCAN does not affect computa-
tional time noticeably, which makes it possible to tune the parameters to optimise the end
result only.
Apart from quantitative results, general advantages and disadvantages of the algorithm
will be taken into account when choosing an algorithm.

3.3.2 Testing
In the testing phase, the algorithm is applied on a number of different testing scenarios in
order to collect performance data and discover potential problems. The following scenar-
ios will be recorded with the LiDAR in 10Hz and 30Hz, converted in Python and imported

27

3. Method

to MATLAB as sequences of point cloud frames:

• Durability Track: A very rough and bumpy track at HPG with purpose of testing
the car’s durability. Here, there are two scenarios available:

– Human target: A scenario where a human target doll of adult size is placed
laying down in between some rather rough road with bumps. The recording
starts at a distance of approximately 50 meters from the target and approaches
it at a speed of 10 km/h. The purpose of this scene is to investigate if the
algorithm is good enough to for example detect a passed out person in a chal-
lenging environment.

– A clean run: This scenario is a bit longer than the human target and is an
ordinary run of the track. The purpose is the examine two things; if the exci-
tation of the car has any noticeable impact on the algorithm and if any of the
various bumps are classified as objects.

• Big Road Bump: A scene containing one big road bump with the approximate size
of 1.2 meter in height, 14 meters in length and 3.5 meter in width. This scene is
especially challenging for the GPE since the traversable surface is deviating a lot
from the standard road and thus risking to be classified as an obstacle.

• Skidpad: A big open area where it is possible to place targets without obstructing
other cars performing tests. There are two scenarios available.

– Two human targets standing: A scenario where two human targets, one
adult size and the other size of a child, placed at a distance of approximately
one meter from each other and approached by the LiDAR mounted car at a
distance of 200 meters up until about 5 meters at about 40 km/h. The sce-
nario aims to investigate when or if the algorithm will cluster the two targets
together as one target, or when it recognises both of them.

– Traffic cones: Small traffic cones with a height of 30 cm was placed at a
distance of 200 meters and approached by the car at 40 km/h. Purpose was to
examine at what distance the algorithm would recognise small objects.

• Highway A highway environment with one scene which contains a parting rail in
the middle, where a person is walking towards the car with some targets in the
background. This scene was not recorded by the authors, thus, information about
it is limited. Still, it has proved to be a good scene to test the algorithm on various
objects such as the human, the targets and the parting rail.

What will be regarded as an obstacle and what is not, is defined below. The definitions
are based on intuition of what is and what is not regarded as an object and how much of a
hazard the potential obstacles could pose.

• Obstacles: Anything which one intuitively would not consider ground, e.g humans,
vehicles, animals, debris, buildings, vegetation (such as trees or bushes) and etc.

28

3. Method

• Traversable area: Area belonging to the ground which may be traversable by the
vehicle such as the road, and open spaces where it is safe to drive a vehicle. The
algorithm for GPE wwill not be able to distinguish whether the extracted ground is
paved road or for example a meadow if they both are sufficiently planar. One might
think that a meadow is suitable for driving, but if it is not obstructing a path on the
road, it does not pose any threat either. Hence, the rather inclusive definition.

• Non of the above - Grey area: It is not always obvious what should be regarded
as traversable area. One example would be a ditch at the side of the road. The
algorithm may find a planar pattern and classify it as traversable area, but it is not
exactly intended for driving. As with the example with the meadow, it does not
pose a hazard on the road either, which would make an obstacles classification not
entirely correct either. Thus, a classification of a grey area as either traversable or
non-traversable will not be regarded as incorrect.

3.3.3 Evaluation
In the evaluation, the following questions are considered:

• How is the performance and the quality of the output when tested on the sce-
narios above? Some of the following requirements below was developed in parallel
with the work since the properties of the object detection and associated problems
was not known at first. It is worth mentioning that these are not hard requirements
and may change in between iterations.

– A computational time below 1 second: Volvo has got a desired response
time of 100 ms for the whole driverless solution algorithm, from detection
to action (which would leave even less time for detection). This requirement
may be hard to fulfil, considering that the authors of the thesis have little expe-
rience of code optimisation and are not fluent in fast programming languages
such as C++, which is a common language within the field. The hardware
specifications in terms of computational power for a final version of the driver-
less vehicle is not clear either, which unarguably have a significant impact on
computational times. Thus, the desired limit of 100 ms is instead translated
to roughly 1 seconds in MATLAB. This is not a hard limit though and may
change if it assessed as unattainable.

– Keep false and omitted detections at a minimum: Precision and recall is
most commonly used to calculate mAP (described in Section 2.2.3) when
evaluating the performance of various CNN’s trained for object detection.
Since evaluation is usually made with some commercially available dataset
with ground truth (KITTI or NUscenes are examples) which is evaluated by
some algorithm, the mAP is computed relatively fast and on a lot of scenes.
Unfortunately, this is not possible to do in this thesis because the algorithm
developed functions very differently from CNN’s, especially what is and what
is not regarded as an object. CNN’s have very clearly defined labels on what it
can detect and not (and thus what is regarded as objects), while the definition

29

3. Method

of objects/obstacles in Section 3.3.2 is not defined as sharply. Thus, the metric
studied was instead the number of false detections (noise) and omitted detec-
tions according to the thesis’s definition, see Section 3.3.2, with an ambition
to keep these at a minimum.

– Consistent partitioning of the clusters: An important aspect of the clustering
algorithm is how it chooses to partition the objects. It may for example decide
that two objects which are very close together, or even entangled, belong to the
same object, which could be the case when clustering vegetation. Or, it may
instead choose to partition one big object into several smaller. In any case,
it is desired that this partitioning is consistent since inconsistent partitioning
may cause problems later if one would for example decide to feed the output
data from the OD-algorithm to a Multi Target Tracking (MTT) process. This
requirement does not have a defined metric to relate to, but an effort will be
made to minimise this aspect, or at a minimum, keep it at bay.

• Are there any scenes or specific cases which are associated with problems?
– How much impact does these problems have?
– What could these problems originate from and are they possible to solve?

• Is the algorithm good enough to be considered for Deployment? Are the algo-
rithm, considering all the above questions above, mature enough for deployment?

3.3.4 Research
In this phase, detection problems or lack of performance is studied more in depth. First,
an analysis of the cause of the problem is done. For example, if computational times are
the problem, the code is examined more in detail to find parts of the code which require
the most computational time and analyse the reason why.
After the analysis of the cause, an investigation is made in order to examine if others have
encountered similar problems and if and how they managed to solve it.
Lastly, ideas are generated and evaluated with the previous steps taken into account which
hopefully will yield a contribution for the next phase.

3.3.5 Implementation
This phase is simply for implementing the solution or idea decided upon in the Research
step which will be done in MATLAB.

3.3.6 Deployment
When the algorithm is assessed as good enough in the Evaluation phase, the code will be
translated and implemented to work in conjunction with the LiDAR through ROS. The
key functionality used in ROS is the ability to enable communication between hardware
units, in this case the computer and the LiDAR. The object detection algorithm designed

30

3. Method

in MATLAB will be written as a so called node; a script which runs independently and
communicates with other Python scripts.

31

3. Method

32

4
Results

This chapter will present results from testing the clustering algorithms and will be the
basis when evaluating and determining the favourable clustering algorithm. Results for
the Investigation with computations for the LiDAR placement and suitability are also
given, likewise output from the deployed algorithm when feeding it with several frames
from different scenarios.

4.1 Cluster algorithm selection
In this section, the computational times for the clustering algorithms are presented as well
as advantages and disadvantages of the algorithms.

4.1.1 Computational results
In the tables below, results for the computational times for the algorithms and scenes
described in Section 3.3.1.2 are presented.

Table 4.1: Computer Vision Set

DBSCAN K-means EM

Average time(s) 0.1344 0.0169 8.2107

Maximum time(s) 0.19 0.027 8.302

Minimum time (s) 0.109 0.014 8.119

Table 4.2: Pedestrian scene

DBSCAN K-means EM

Average time(s) 3.7613 0.1394 163.6915

Maximum time(s) 4.187 0.158 200.473

Minimum time (s) 3.616 0.124 149.07

33

4. Results

Table 4.3: Durability scene

DBSCAN K-means EM

Average time(s) 0.67892 0.1329 42.8662

Maximum time(s) 0.72 0.152 46.297

Minimum time (s) 0.597 0.125 41.617

4.1.2 Qualitative findings
When performing the tests above, an analysis of the clustering methods end result was
done simultaneously. The findings are presented below. The summary is that DBSCAN
has got some desired properties that the other algorithms do not possess and that K-means
and EM both yield similar clustering results.

DBSCAN is able to filter out noise effectively: One of the biggest advantages of the
DBSCAN algorithm is its ability to filter out potential noise. The noise in this context
could for example be a misreading from the LiDAR, points which belong to the ground
but is not classified as ground and reflections from signs which create "ghost points"
(which was a palpable problem in some of the scenes). The noise often had a big impact
on the properties of the K-means and EM clustering results, where obvious noise was
assigned a cluster would alter the cluster properties significantly.

DBSCAN yielded more consistent partitioning: K-means and EM would often yield
a result where it would partition an object (i.e. a person, target, etc) into two or more
clusters. This was not the case for DBSCAN which, given easy objects such as those
mentioned before, would easily recognise a single cluster. There were instances though
where DBSCAN would partition objects into several clusters, for example the parting rail
in the Highway scenario, but then again, so would K-means and EM.

DBSCAN would yield more consistent clustering: The K-means and EM algorithms
initialisation had a significant impact on the clustering results, which could yield widely
different clusters depending on if they were initialised in a uniform pattern of randomly
chosen points (note though that the computational times was measured with uniform ini-
tial distribution). This was also the case when running K-means and EM through each
frame sequentially in a scenario. The DBSCAN algorithm had similar problems, espe-
cially with objects far away, but not to the same extent.

4.2 LiDAR placement and suitability
In this section, the result from the LiDAR placement analysis is presented. As described
in Section 3.2.1, the collected IMU data was used to compute the LiDAR’s states for a
set of three different positions. These position states were then analysed in terms of mean
and max velocities, and maximum displacement for one frame which assumes a LiDAR
frame rate of 10Hz.

34

4. Results

4.2.1 Disturbance analysis results

The figures below presents some results for the disturbance analysis. Figure 4.1 displays
the distribution of the LiDAR’s speed for the three placements in terms of mean and
maximum value while the Figure 4.1 displays the obtained maximum displacement for
the three placement.

Figure 4.1: The distribution of the LiDAR velocities in terms of mean and maximum for
6 out of 14 scenarios collected at HPG. Lower values are better. For the complete set of
data see Appendix A

Figure 4.2 displays the maximum displacement for the LiDAR sensor for the same six
scenarios as in Figure 4.1.

35

4. Results

Figure 4.2: Maximum computed displacements for the three locations in 6 out of 14
scenarios collected at HPG. Lower values are better. For the complete set of data see
Appendix B

4.2.2 Inspection of the scans

Over 200 frames from trails with rough road was collected, used in the development of
the algorithm and inspected. Unfortunately though, is not very convenient to include all
of these frames in the report and when inspecting the frames from scenarios with a lot
of road disturbances, none of the frames seemed to suffer from distortion. Since every
inspected frame seemed to lack distortion, only one frame is included for demonstration
and is shown from two different perspectives in Figure 4.3 and Figure 4.4.

36

4. Results

Figure 4.3: A frame from one of the worst scenarios disturbance wise from a horizontal
view.

Figure 4.4: A frame from one of the worst scenarios disturbance wise from a top down
view.

No apparent problems, which could be traced to distortion, was encountered when
applying the object detection algorithms on frames from trails with rough road.

4.3 Final algorithm
Hundreds of LiDAR frames was collected and processed by the final algorithm (which
is presented more in depth in the next chapter) and it is not possible to include all of
them in the report. The frames presented below are chosen to demonstrate some of the

37

4. Results

characteristics and functionality of the algorithm.
The computational time for the algorithm varied between 0.5-2 seconds, depending on
the parameters and the frame, but it was possible, with the right set of parameters, to get
consistently below 0.7 seconds in computational time.

Below is an extracted frame (Figure 4.5a) from the pedestrian scene set, is fed as input
to the DBDL-algorithm and Figure 4.5b shows corresponding output.

(a) Raw point cloud data from LiDAR

(b) Output from the final algorithm showing remaining data points representing obstacles

Figure 4.5: Figure 4.5a shows input data and Figure 4.5b shows DBDL output

Highly reflective objects such as road signs produces a lot of incorrect data points [10].
Figure 4.6 shows this issue in the LiDAR point cloud when passing a road sign.

38

4. Results

Figure 4.6: Reflective noise, highlighted in red.

Figure 4.7 displays the result of testing how small objects the DBDL can detect by
performing the test scenario "Skidpad" described in Section 3.3.2. DBDL are able to
classify the cones as obstacles first at a distance of 5 meter (with current parameter tun-
ing). The red points corresponds to the obstacle cluster and the blue data points belongs
to the ground plane according to GPE.

Figure 4.7: Detected traffic cones and classified as obstacles

39

4. Results

The algorithm shows weaknesses when an object extends far into the longitudinal di-
rection (Figure 4.8). In this example, the algorithm classifies the parting rail as several
objects instead of one.

Figure 4.8: An example of when an object, in this case a parting rail, is classified as more
than one object (highlighted in red).

The geometry fitting algorithm produces a bounding area for each obstacle and ex-
tracts information about the location for the vertices in the clusters. Figure 4.9 shows the
characteristics of each fitting method and how the size of the cluster determines fitting
method.

Figure 4.9: A birds eye view of a clustered frame. Smaller objects, such as those in the
front are bounded by a box, while bigger cluster, such as the bottom one, is bounded by a
convex hull.

40

4. Results

Figure 4.10 demonstrates shortcomings of the ground plane estimation. In this case,
the ground on the side of the road is too complex for the multi regional RANSAC, and
some of the points, which clearly belongs to the ground, are classified as non-traversable.

Figure 4.10: False detections arising due to shortcomings of the ground plane estimation

41

4. Results

42

5
Final algorithm, Density based

detection for LiDAR

This chapter is dedicated to the resulting final algorithm which is named Density Based
Detection for LiDAR (DBDL). First, there is a motivation for the chosen cluster algorithm
and then a more detailed explanation of the full algorithm is presented.

5.1 Cluster algorithm selection

With the quantitative and qualitative results, as well as the algorithms known properties
(mentioned in Section 2.3) taken into account, the final choice of cluster algorithm was
DBSCAN. The arguments behind this choice is:

• The number of clusters does not need to be set beforehand.
• It does not need initial clusters.
• It is relatively robust to noise.
• Less and more consistent partitioning of objects.
• More consistent clustering.

The drawback of DBSCAN though would be its slightly higher computational cost
compared to K-means and its computational complexity which is proportional to O(n2)
where n is the number of points, which resulted in a lot of effort spent on creating solu-
tions which aimed to reduce the number of points before the DBSCAN call.

5.2 The algorithm in detail

A short summary of the chosen components in the final algorithm and recap of their
functionality:

• Preprocessing filters: filtering out unnecessary data points to scale down the com-
putational time at the cost of a more narrow field of view (FoV).

• Multiregional RANSAC: Performs RANSAC to find the ground planes in m × n
regions

• Pre-clustering filtering: Decreasing the number of data points in the dataset to
increase the speed of the DBSCAN algorithm.

43

5. Final algorithm, Density based detection for LiDAR

• DBSCAN: Creates clusters by finding neighbour data points within a certain thresh-
old.

• Bounding Geometry Fitting: Finds the vertices for each cluster to specify obsta-
cles.

A quick overview for the final algorithm is displayed in the flow chart in Figure 5.1.

Preprocessing

filters

Multiregional

RANSAC

Preclustering

filtering

DBSCAN

Geometry

Fitting

3D Point Cloud

Object

Information

Figure 5.1: Comprehensive overview of the components in the deployed algorithm.

5.2.1 Preprocessing filters

Not all points in a LiDAR scan will be of interest for the algorithm and some are therefore
removed in preprocessing. The initial filter consists of limits for azimuth angle φ, eleva-
tion angle θ and distance from the sensor r. The azimuth angle (horizontal FoV) could
be limited, since, according to the employees at HPG, a wide FoV is not crucial in the
test track environment since it is not as dynamic as an urban traffic environment and it is
desirable to obtain low computational times.

44

5. Final algorithm, Density based detection for LiDAR

x

y

z

P

r

φ

θ

Figure 5.2: Spherical coordinate system visualising how the data point P , can be de-
scribed with the azimuth angle φ, the elevation angle θ and range r.

In Figure 5.2 the coordinate system is shown with spherical polar coordinates for one
point cloud data point. The sensor’s original FoV is very generous, which gives approxi-
mately 60000 data points when using a LiDAR update frequency of 10Hz and both GPE
and clustering algorithms have difficulties handling this big amount of data points in rea-
sonable time. Thus, a limitation of the azimuth angle removes certain data points and
forces a more narrow FoV with negligible performance losses. Same idea applies to the
maximum elevation constraint. Scanned data points above a certain elevation angle is not
for consideration. All solid obstacles at HPG are at ground level, leading to a restriction
of elevation will not cause any differences in functionality. There is also a regulation for
the LiDAR range. Every data point registered at a distance above 100 meters is removed
from the dataset. The limit of 100m comes from the calculations below.

The stopping distance ds, can be calculated as:

ds = dr + db (5.1)

where the reaction distance is,

dr = smax · r
3.6 (5.2)

and the breaking distance is,

db = s2
max

250 · f (5.3)

The maximum speed smax for durability and comfort tests at HPG is 70km/h, reaction
time r is 0.1s to match Volvo’s safety requirement of 10Hz for real-time systems and the
friction coefficient is set to 0.72 [12].

The total stopping distance with these parameters becomes:

ds = 29.17m (5.4)

45

5. Final algorithm, Density based detection for LiDAR

For safe margin, the distance limit is set to 100 meters in this thesis to include more data
from the surroundings.

The last filter handles transmitted light that did not return to the photodetector. These
are classified as "unsuccessfully received" and are easily removed. Filters for the dataset
reduces the number of elements and therefore lower the complexity for later iteration
processes.

5.2.2 Multi regional RANSAC
Performing a singular RANSAC (Algorithm 3) for the whole dataset was not robust
enough. The algorithm processing a dataset region that is approximately 2000m2 large.
Fitting a single plane would not be accurate enough to match the real world and could
trigger a chain reaction of other problems, such as incorrect classification of data points.
Instead the region is divided into smaller subregions where RANSAC is performed indi-
vidually. The subregions are defined using uniform intervals for the azimuth angle and
a distance limit which increases with increased longitudinal distance from the LiDAR.
The increment is visualised in Figure 5.3 and is a general expression for the division of
the subregion’s distances, where the number of data points should approximately be the
same for all regions if they were at ground level. The ground angle αg is determined by
the LiDAR’s vertical field of view. n is the number of longitudinal regions excluding
the "invisible area" lg outside the FoV range. The distance h is the height of the LiDAR
mounting point. The lengths li are defined with formula li = h · tan(αi), where the angle
αi is formulated as: αi = αg + i ·∆α. The angle ∆α is identical for all regions and can
be described as follows: αi+1 − αi = ∆α = αi+2 − αi+1 for i = 1 · · ·n− 2.

x

z

lg

h

l1

ln

αg
α1

∆α
αn

Figure 5.3: Visualisation of how the distance li to each subregion is defined from the
LiDAR sensor using trigonometry with elevation angles α and the mounting height h

The original RANSAC algorithm is also slightly modified in order to increase perfor-

46

5. Final algorithm, Density based detection for LiDAR

mance and the independence of the parameters, where one new parameter, plane angle
tolerance φRANSAC , is introduced and the ε parameter is split into two separate, εRANSAC
and εfinal.
The purpose of φRANSAC is to restrict the plane angle for each iteration, where a plane
with an angle above φRANSAC will not be considered.
The reason for splitting ε into two, is because there was a need to separate the performance
of the identification of planar surfaces and what ultimately should be regarded as ground.
When increasing the original ε in order to handle situations where the ground was not
exactly planar (i.e., very bumpy) the RANSAC algorithm started to prefer objects such as
trees or other vegetation rather than planar surfaces. Thus, ε was split into εRANSAC and
εfinal, where εRANSAC is only utilised when looking for planar structures in RANSAC,
and εfinal is used to determine what should be regarded as ground, after the plane has
been determined.
The final algorithm for the multiregional RANSAC is described in Algorithm 7.

Algorithm 7: Multi regional RANSAC
Data: The point cloud X = {x1,x2, · · · ,xN}, X ⊆ R3

Result: The least squares planes πiLS for each region, traversable and
non-traversable points XT and XNT .

initialisation;
Partition X into Z number of subsets X i, one subset for each subregion, according
to the gridify algorithm described in REF.

for i = 1:Z do
Perform standard RANSAC which yields inliers.
X i
inliers := RANSAC(X i; εRANSAC)

Compute the least squares plane on the inliers.
πiLS := LS(X i

inliers)

Classify points in X i = {xi1,xi2, · · · , xij, · · · , xiNi
} as ground XT if the

distance d(xij, πiLS) between the plane and the point is less than εfinal, and
XNT otherwise.

end

5.2.3 Pre-clustering filtering

The computational cost for DBSCAN is proportional to the number of points squared [7].
Thus, it is crucial to reduce the number of points which is fed into DBSCAN in order to
reduce the computational time. Apart from the first filter which is applied before the multi
regional RANSAC, another one is applied afterwards. The Pre-clustering filter makes use
of the information which has been gained from the multi regional RANSAC, which are
the estimations of the ground planes.
Since points which is located at a high altitude is not bringing very much value to the
cluster analysis, these points are filtered out. This is done by, for every subregion and
associated least squares plane πLS , filter out those points which is located at a distance
greater than the parameter εpcf .

47

5. Final algorithm, Density based detection for LiDAR

5.2.4 Clustering

The clustering is done by DBSCAN which is very much the same as described in Al-
gorithm 2, save from the function which is identifying neighbours; neighbour identifier.
Previously, this function simply computed which points lied within a radius ε from the
current point of interest. The problem with this approach was that an object in the point
cloud varied in density depending on distance and orientation. Therefore, DBSCAN had
difficulties clustering objects which was located further away, and thus, of lower density.

Figure 5.4: A visualisation of how the point density (points in red) will vary with distance
when an objects is moved further away. As one can see, the points are much denser on
the object to the left than on the right (and fewer as well).

In order to tackle this problem some changes was made to the neighbour identifier
function. Instead of using a circular neighbourhood to identify neighbours, an ellipse was
used, and the geometry of the two points was scaled down to a reference range rref to
yield normalised metrics wn and ∆rn.

48

5. Final algorithm, Density based detection for LiDAR

Figure 5.5: A figure visualising how geometry of the points p1 and p2 are normalised
with a reference range rref

First, the width wn is computed by the law of cosine with the parameter rref ,

wn =
√

2r2
ref (1− cos(α)) (5.5)

A scaling factor,

s = rref
r1

(5.6)

is then computed and is the used to compute,

∆rn = s∆r (5.7)

The two points are then regarded as neighbours if the following condition is fulfilled,

(∆rn)2

ε2
r

+ w2
n

ε2
w

≤ 1 (5.8)

where εr and εw are radii of the ellipse.
This approach is slightly more computationally heavy than the standard euclidean norm,
but it yields much more consistent results.

49

5. Final algorithm, Density based detection for LiDAR

Figure 5.6: An example of the clustering result when using standard euclidean distance.
As one can see, there are lots of smaller clusters when the distance from the vehicle
increases.

Figure 5.7: An example of the clustering result when utilising the new neighbour identi-
fier function. This gives a lot more consistent cluster result.

5.2.5 Bounding geometry fitting

The cluster analysis yields information about which points (that does not belong to the
ground) belong to which object. In other words the output from DBSCAN is C =
{c1, c2, · · · , ci, · · · , cK} where ci contains all the points that belong to object i. This
is not a very simple representation of the object, and would make matters a bit more com-
plex if one were to feed it to a multi target tracker or path planning algorithm.
A common output from neural networks are bounding boxes containing information about
position and dimensions, which is a much more compact representation of an object. Be-
cause it is a convenient and common format, an algorithm for bounding geometry was
created as described in Section 2.5.1.
The box was not always a good representation though. For example, when fitting boxes
to big clusters such as those arising from vegetation, it could result in lots of dead space
inside the box and the corners of the box could sometimes block the vehicle path, even
though it in reality was clear.

50

5. Final algorithm, Density based detection for LiDAR

Figure 5.8: An example of a box fitting result to a cluster originating from vegetation.
As one can see, there are lots of empty space in the box.

To tackle this problem, the area of the box was investigated. If the area of the box was
greater than some tolerance Atol, it computed the convex hull of the cluster as described
in Section 2.5.2 and used that to represent the cluster.
One could argue that clusters with big areas originating from objects such as vegetation is
rarely of interest anyway, since they very seldom block the intended path of the vehicle.
Thus, it is possible to completely ignore clusters which exceed the area tolerance and save
some computational power in later stages.

51

5. Final algorithm, Density based detection for LiDAR

52

6
Analysis and evaluation

This chapter will present the analysis of the the final algorithm, DBDL, with it charac-
teristics and strengths and weaknesses, as well as the analysis of the LiDAR placement
data.

6.1 The final algorithm

The evaluation and analysis has been made with the properties of the commercial CNN-
solutions in mind, since these are commonly deployed today, and a decent benchmark to
aim for.

6.1.1 Characteristics

It may interpret one obstacle as several clusters: Figure 4.8 shows the issue when the
algorithm interprets the longitudinal road rail data points as several clusters (the number
of clusters may vary each callback). If one were to implement multi target tracking on
the output of the algorithm, it would perform better if the number of clusters an object
was partitioned into stayed consistent and did not change too much in between frames.
This issue has been somewhat mitigated by the modified DBSCAN function described in
Section 5.2.4

It can detect arbitrary objects on the road of sufficient size: One of the algorithm’s
greatest strengths is that it is able to detect almost any object of sufficient size. The set
of objects a machine learning solution would be able to detect would be limited to the
training data and the chosen output labels.

The size of the smallest object the algorithm can register depends on several param-
eters. First and foremost, the object needs to be of sufficient density and the number of
points which the object consists of needs to be sufficiently high. These two factors de-
pends mainly on the distance to the object, and the LiDAR update rate (which governs the
number of points in a scan). Then, the parameters of the algorithm needs to be tuned right.
The parameters which have the biggest influence on the smallest possible object one can
detect are εfinal and pmin. As described in Multiregional RANSAC, see Section 5.2.2,
εfinal governs the distance a point may lie from the plane (found by RANSAC) before
its regarded as non-traversable. For example, if this parameters is set to 0.3 meters, the
algorithm will have a hard time detecting objects with a height above the ground smaller
than 0.3 meters. If it is of sufficient size height wise, the number of points which the

53

6. Analysis and evaluation

object consists of needs to be greater than or equal to pmin.

When the parameters was tuned appropriately, a traffic cone of approximately 30cm
could be detected at a distance of 5 meters (showed in Figure 4.7) when using an update
frequency of 10Hz.

The drawback of having a low value for εfinal though is that noise originating from
uneven ground is more easily picked up. If one would like to use the output from DBDL
as input for a path planing algorithm false alarms, such as the noise previously mentioned,
can be devastating since there is no filter in between which removes noisy detections.

It is not able to classify objects: This is one of the greatest strengths of a neural
network. By being able to classify an object, one would gain access to the inherent prop-
erties of an object, such as maximum velocities, general behaviour and such. It would for
example be possible to relieve some of the computational load for an MTT if the objects
sent into the MTT only consisted of non-static objects.

6.1.2 Remaining issues

False detections may arise from bumpy terrain: In the durability track scenario, which
contains very bumpy road, there was a risk for false detections in the area where the vehi-
cle is supposed to drive. It can be mitigated by changing the parameters for the RANSAC
tolerances, but it will still be present. The upside though is that these false detections
often occur at a sufficiently long distance from the vehicle (approximately 20-30 m), and
since the vehicle’s speed is very low anyways because of the terrain (5-15 km/h), it will
probably not pose a problem if instructed to approach the object slowly (since the detec-
tion probably will disappear as the distance to it reduces).
A similar problem occurred in the scenario with the big road hump, where it would recog-
nise the hump as an object at a distance (since the RANSAC zone at that distance was too
big to handle the complex geometry of the hump), but would recognise its traversability
a lot better as it got closer and the RANSAC zones got finer.

Noisy LiDAR data caused by highly reflective objects: A LiDAR sensor is very
sensitive for highly reflective objects, which causes noisy measurements. Figure 4.6 dis-
plays how a road sign influences the LiDAR measurements. Generally the DBSCAN have
the ability to discard noise, but highly reflective surfaces seems to cause misreadings to
enough amount of data points for the DBSCAN to interpret those noisy data points as
obstacles. Heavy rain, fog and snowy weather conditions are previously known for also
affecting LiDAR readings in similar manner. Thus, they were excluded from this thesis,
but is still a large issue to be solved before HPG can be fully autonomous.

It may cluster two or more objects together or partition one object into several:
This is one of the hardest problems to solve. It has been mitigated somewhat by intro-
ducing the novel distance function which is more suited for the distribution of the points
from a LiDAR.

54

6. Analysis and evaluation

6.2 LiDAR placement and suitability

In the text below, the LiDAR’s disturbance results presented in Section 4.2.1 are analysed
and some practical aspects of the placements are presented as well.

6.2.1 Analysis of the disturbance influence

When inspecting Figure 4.1 (distribution of the speed of the LiDAR at different positions)
and Figure 4.2 (max displacement of the LiDAR for the different position) one can see
that the position influenced the least by the road disturbances depends on the track trail
(lower values are better). Track trails which involves a lot of roll movement of the vehi-
cle (Mixed Disturbances, Rolling humps in Figure 4.1 and Figure 4.2) mostly influence
the roof placement. The other track trails, which mostly trigger a pitch movement of the
vehicle, mostly influence the bumper instead. The placement which have the most con-
sistent influence in the measured scenarios is the hood. In every single graph presented
in Section 4.2.1, the hood placement falls in between the roof and the bumper and is thus
never the best placement in a scenario, but not the worst either.
Thus, assuming that the vehicle will be subjected to a fairly balanced amount of pitch
and roll movement, the hood may have a slight advantage if one desires a more consistent
disturbance influence.

The above study of the LiDAR’s velocity and displacement will unfortunately not con-
vey how much the scans actually will be distorted, only how the three positions compare
relative to each other. Thus, a subjective analysis of the distortion from the frames of one
of the worst trails has been done, Mixed Disturbances, where Figure 4.3 and Figure 4.4
shows one of the frames.
When inspecting the full LiDAR recording from Mixed Disturbances, it was found that
none of the frames looked particularly distorted, neither did the algorithm have any prob-
lems to process the frames. This is of course good news, but this subjective analysis can
of course be nothing more than a course guidance.

6.2.2 Placement properties analysis

In addition to their different disturbance influence properties, the three mounting positions
have other advantages and drawbacks.

• Better overview on the roof: The roof position, for example, have in general a
better view of the environment (i.e it will have better perception over hill crests)
and there is a lower risk that the view of the LiDAR is blocked by objects in front
of the vehicle. In a scenario where there is for example another vehicle in front of a
LiDAR mounted at the bumper, the vehicle could completely block the view. This
would not be the case if it was mounted on the roof.

• The roof is the most rigid: The roof is one of the most rigid parts of the car body
and is exposed to smaller amounts of vibrations such as those originating from the
engine. The hood for example, is simply mounted with hinges on the chassi, and

55

6. Analysis and evaluation

is much prone to vibrations from the engine, which could influence the scans (not
examined in this thesis) or in worst case damage the hardware (not investigated in
this thesis either).

• The roof is a more convenient place to mount the LiDAR: When speaking to
the team at VCC responsible for the LiDAR, they thought that the roof was a more
convenient place to mount the LiDAR for two main reasons. Firstly, the roof of
the car is already equipped with mounting brackets, which makes the mounting
significantly simpler compared to the other positions.
The other is that the cable management would be a lot more convenient as well since
equipment such as the power supply and the computer reading the data is currently
situated in the backseat or in the trunk.

56

7
Conclusion

In the sections below are the recommendation for the LiDAR mounting placement and
a conclusion about DBDL’s suitability as an object detection algorithm in the future au-
tonomous test vehicles at HPG.

7.1 LiDAR placement recommendation
Taking all the material brought up in analysis into account, the placement recommended
in the end, is the roof.
The motivation behind the choice is that it has got several practical advantages that the
other placements do not; rigidness, convenient mounting, easier cable management, etc.
Disturbance wise, it may be both the worst and the best placement depending on the trail.
When inspecting the scans though, the LiDAR did not seem to be very affected by the
heavy movement, and thus, the assessment is that the practical advantages outweigh the
disturbance factor.

7.2 DBDL
The final algorithm has got some interesting characteristics which is very different from
the commercial object detection algorithms in use today. It is not necessarily better or
worse, but rather complement each other with their advantages and drawbacks. It would
be interesting to implement a solution which utilises both technologies.

The final question which remains is, if the algorithm would be suitable to use at the
proving ground for driverless cars.
As of now, there does not exist any MTT and was thus disregarded as an alternative, which
leaves the option of using the output from DBDL as input for a decision making algorithm
(thus, treating every object as static and with no filter for detections). This demands that
the presence of false detections/noise in the direct path of the vehicle and missed detec-
tions are close to non-existent, since one false detection in front of the car may trigger
an emergency brake and a missed detection could lead to a collision. It is theoretically
possible to eliminate noise on the road by setting the parameter εfinal at a high value, with
the penalty of increasing the size of the smallest possible object the algorithm can detect.
Thus, the conclusion is that it is possible, but not optimal (depending on the size require-
ment of the smallest possible object the algorithm can detect), to feed the output of DBDL
to a decision making algorithm.

57

7. Conclusion

58

8
Future Recommendations and Ideas

This thesis has presented an alternative approach to object detection, which hopefully can
be used as a foundation for driverless applications within car testing, though, there is still
some work to do before this can be realised. In the text below, suggestions for additional
functionality and solutions to some of the problems encountered are listed.

Optimisation for real-time application: The ultimate goal is to have the object detec-
tion running in real time. The whole process, including decision making and the driving
robot manoeuvre, have to be performed in a fraction of a second to fulfil safety require-
ments. Unfortunately, the equipment and software used in this thesis are not fast enough
to satisfy these constraints. A part of a solution for this optimisation problem, would be
to use a computer with a high performance graphics processing unit (GPU). As of now,
code is implemented using Python, which is not sufficiently fast for complex real-time
application. Translating the code to a more low level programming language, such as
C++, would also reduce computation time. C++ is a dominating language for embedded
systems and are a preferred language for many software engineers. A combination of a
robust GPU and C++ code would hopefully improve the process speed considerably.

GNSS/INS compensation: A LiDAR exposed to shifts in rotation and translation dur-
ing a scan, due to the irregular test track road, may produce distorted frames. If one have
access to data about these rotations and translations though, they could be compensated
while scanning, and the distortion could in theory be mitigated. Thus, it is recommended
that the computer that is connected to the LiDAR have access to a GNSS/INS unit to per-
form this compensation.

Classification of objects after clustering: Classification of an obstacle is very useful
for autonomous drive applications and is an evident functionality for most OD-systems.
The value it could provide, would be knowledge of the inherent properties of the detected
object. For example, objects such as cars, humans and trees all have very different prop-
erties. If the algorithm classified an object as a tree, it would automatically know that it is
a stationary object, and thus, does not need to be fed to a multi target tracking algorithm.
Or if it recognised a human, it would know that the top speed is significantly lower than a
car, and maybe have some other behavioural information.
Since the detected objects in the current algorithm store all the points which belong to
the object, these points could theoretically be fed to a neural network for classification.
The drawback though would be increased computational times, but it is still an interesting
idea to evaluate.

59

8. Future Recommendations and Ideas

Multi Target Tracking: MTT is a natural next step in the autonomous drive chain
and is considered an absolute necessity when working in highly dynamic environments,
for example to predict the intersecting area with crossing objects [36]. It would not only
contribute with an estimation of the trajectories of the objects, but also act as a filter on
the detections, which is highly desirable considering the occurrence of detections from
noise. Thus, it is highly recommended to implement MTT on the results from DBDL.

Fusion of sensor data: The subject sensor fusion in general is contemporary for many
researchers and is already widely used within active safety [29]. Fusing data from several
separate sensors will reduce uncertainties in the information that each sensor provides
when used independently. Many automotive companies have seen the benefits when util-
ising sensor fusion for active safety and could be an improvement for locating and track-
ing moving objects, as well as giving more robust and a higher performing solutions. For
instance, sensor fusion between a LiDAR and a radar could be beneficial. The LiDAR
provides information about location, whilst the radar can support with information about
speed of an object in longitudinal direction [24]. Every type of sensor has its own func-
tionality advantages/disadvantages and fusion with the used LiDAR could improve the
deployed algorithm.

Integration: A communication protocol between the detection algorithm and the de-
cision making algorithm have to be deployed for a fully working system, because the
computations do not occur on the same computer units currently. Transmission control
protocol (TCP) establishes connection between two different units over Ethernet and pro-
vides 2-way communications. Compatibility can cause issues for such communications
and it is important to assure the information format is supported by both sides. With
solved integration, the whole process chain can be deployed and tested in reality. From
fetching information using LiDAR sensor to give driving commands based on the input
data.

60

Bibliography

[1] 46 corporations working on autonomous vehicles. https://www.
cbinsights.com/research/autonomous-driverless-vehicles-
corporations-list.

[2] The 5 clustering algorithms data scientists need to know. https:
//towardsdatascience.com/the-5-clustering-algorithms-
data-scientists-need-to-know-a36d136ef68.

[3] At volvo cars’ test track hällered the car is pushed to its limit.
https://www.media.volvocars.com/global/en-gb/media/
pressreleases/35453.

[4] Autonomous drive technology – long-range radar. https://www.
media.volvocars.com/global/en-gb/media/photos/158307/
autonomous-drive-technology-long-range-radar.

[5] Autonomous drive technology – ultrasonic sensor. https://www.media.
volvocars.com/se/sv-se/media/photos/158310/autonomous-
drive-technology-ultrasonic-sensor.

[6] Breaking down mean average precision (map). https://
towardsdatascience.com/breaking-down-mean-average-
precision-map-ae462f623a52.

[7] Computational complexity and performance of various clustering algorithms.
https://hdbscan.readthedocs.io/en/latest/performance_
and_scalability.html.

[8] Confusion matrix in machine learning. https://www.geeksforgeeks.
org/confusion-matrix-machine-learning/.

[9] Description of ros. https://www.ros.org/about-ros/.
[10] Engineer explains: Lidar. https://blog.cometlabs.io/engineer-

explains-lidar-748f9ba0c404.
[11] Sensors in the volvo v60 now detect cars coming right at you. https:

//www.techradar.com/news/sensors-in-the-volvo-v60-now-
detect-cars-coming-right-at-you.

[12] Table with common coefficients for friction. https://www.
engineeringtoolbox.com/friction-coefficients-d_778.html.

[13] Volvo cars and luminar show groundbreaking autonomous technology devel-
opment at automobility la 2018. https://www.media.volvocars.
com/global/en-gb/media/pressreleases/246168/volvo-cars-
and-luminar-show-groundbreaking-autonomous-technology-
development-at-automobility-la-2018.

61

https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://www.media.volvocars.com/global/en-gb/media/pressreleases/35453
https://www.media.volvocars.com/global/en-gb/media/pressreleases/35453
https://www.media.volvocars.com/global/en-gb/media/photos/158307/autonomous-drive-technology-long-range-radar
https://www.media.volvocars.com/global/en-gb/media/photos/158307/autonomous-drive-technology-long-range-radar
https://www.media.volvocars.com/global/en-gb/media/photos/158307/autonomous-drive-technology-long-range-radar
https://www.media.volvocars.com/se/sv-se/media/photos/158310/autonomous-drive-technology-ultrasonic-sensor
https://www.media.volvocars.com/se/sv-se/media/photos/158310/autonomous-drive-technology-ultrasonic-sensor
https://www.media.volvocars.com/se/sv-se/media/photos/158310/autonomous-drive-technology-ultrasonic-sensor
https://towardsdatascience.com/breaking-down-mean-average-precision-map-ae462f623a52
https://towardsdatascience.com/breaking-down-mean-average-precision-map-ae462f623a52
https://towardsdatascience.com/breaking-down-mean-average-precision-map-ae462f623a52
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://www.geeksforgeeks.org/confusion-matrix-machine-learning/
https://www.geeksforgeeks.org/confusion-matrix-machine-learning/
https://www.ros.org/about-ros/
https://blog.cometlabs.io/engineer-explains-lidar-748f9ba0c404
https://blog.cometlabs.io/engineer-explains-lidar-748f9ba0c404
https://www.techradar.com/news/sensors-in-the-volvo-v60-now-detect-cars-coming-right-at-you
https://www.techradar.com/news/sensors-in-the-volvo-v60-now-detect-cars-coming-right-at-you
https://www.techradar.com/news/sensors-in-the-volvo-v60-now-detect-cars-coming-right-at-you
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
https://www.media.volvocars.com/global/en-gb/media/pressreleases/246168/volvo-cars-and-luminar-show-groundbreaking-autonomous-technology-development-at-automobility-la-2018
https://www.media.volvocars.com/global/en-gb/media/pressreleases/246168/volvo-cars-and-luminar-show-groundbreaking-autonomous-technology-development-at-automobility-la-2018
https://www.media.volvocars.com/global/en-gb/media/pressreleases/246168/volvo-cars-and-luminar-show-groundbreaking-autonomous-technology-development-at-automobility-la-2018
https://www.media.volvocars.com/global/en-gb/media/pressreleases/246168/volvo-cars-and-luminar-show-groundbreaking-autonomous-technology-development-at-automobility-la-2018

Bibliography

[14] Volvo cars conducts research into driver sensors in order to create cars that get to
know their drivers. https://www.media.volvocars.com/global/en-
gb/media/pressreleases/140898/volvo-cars-conducts-
research-into-driver-sensors-in-order-to-create-cars-
that-get-to-know-their-driv.

[15] National Highway Traffic Safety Administration Preliminary Statement of Policy
Concerning Automated Vehicles, 2013.

[16] Alireza Asvadi, Cristiano Premebida, Paulo Peixoto, and Urbano Nunes. 3d lidar-
based static and moving obstacle detection in driving environments: An approach
based on voxels and multi-region ground planes. Robotics and Autonomous Systems,
83:299 – 311, 2016.

[17] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[18] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Li-
ong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Bei-
jbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

[19] J. Cashbaugh and C. Kitts. Automatic calculation of a transformation matrix be-
tween two frames. IEEE Access, 6:9614–9622, 2018.

[20] S. Choi, J. Park, J. Byun, and W. Yu. Robust ground plane detection from 3d point
clouds. In 2014 14th International Conference on Control, Automation and Systems
(ICCAS 2014), pages 1076–1081, Oct 2014.

[21] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24(6):381–395, June 1981.

[22] Vincent Fung. An overview of resnet and its variants. https:
//towardsdatascience.com/an-overview-of-resnet-and-
its-variants-5281e2f56035, July 2017.

[23] J. Giacalone, L. Bourgeois, and A. Ancora. Challenges in aggregation of heteroge-
neous sensors for autonomous driving systems. In 2019 IEEE Sensors Applications
Symposium (SAS), pages 1–5, March 2019.

[24] Daniel Goehring, Miao Wang, Michael Schnurmacher, and Tinosch Ganjineh.
Radar/lidar sensor fusion for car-following on highways. pages 407–412, 12 2011.

[25] Kanwaldeep Kaur and Giselle Rampersad. Trust in driverless cars: Investigating
key factors influencing the adoption of driverless cars. Journal of Engineering and
Technology Management, 48:87 – 96, 2018.

[26] Steven LaValle. The homogeneous transformation matrix. http://planning.
cs.uiuc.edu/node111.html, 2006.

[27] Linna Huang and Guangzhong Liu. Proved quick convex hull algorithm for scattered
points. In 2012 International Conference on Computer Science and Information
Processing (CSIP), pages 1365–1368, Aug 2012.

[28] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furious: Real time end-to-end
3d detection, tracking and motion forecasting with a single convolutional net. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[29] Panagiotis Lytrivis, George Thomaidis, and Angelos Amditis. Sensor Data Fusion
in Automotive Applications. 02 2009.

62

https://www.media.volvocars.com/global/en-gb/media/pressreleases/140898/volvo-cars-conducts-research-into-driver-sensors-in-order-to-create-cars-that-get-to-know-their-driv
https://www.media.volvocars.com/global/en-gb/media/pressreleases/140898/volvo-cars-conducts-research-into-driver-sensors-in-order-to-create-cars-that-get-to-know-their-driv
https://www.media.volvocars.com/global/en-gb/media/pressreleases/140898/volvo-cars-conducts-research-into-driver-sensors-in-order-to-create-cars-that-get-to-know-their-driv
https://www.media.volvocars.com/global/en-gb/media/pressreleases/140898/volvo-cars-conducts-research-into-driver-sensors-in-order-to-create-cars-that-get-to-know-their-driv
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
http://planning.cs.uiuc.edu/node111.html
http://planning.cs.uiuc.edu/node111.html

Bibliography

[30] D. Matti, H. K. Ekenel, and J. Thiran. Combining lidar space clustering and convo-
lutional neural networks for pedestrian detection. In 2017 14th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS), pages 1–6,
Aug 2017.

[31] E. Mucke. Computing prescriptions: Quickhull: Computing convex hulls quickly.
Computing in Science Engineering, 11(5):54–57, Sep. 2009.

[32] Faisal Mufti, Robert Mahony, and Jochen Heinzmann. Robust estimation of pla-
nar surfaces using spatio-temporal ransac for applications in autonomous vehicle
navigation. Robotics and Autonomous Systems, 60(1):16 – 28, 2012.

[33] T. Okuyama, T. Gonsalves, and J. Upadhay. Autonomous driving system based on
deep q learnig. In 2018 International Conference on Intelligent Autonomous Systems
(ICoIAS), pages 201–205, March 2018.

[34] M. Pavelka and V. Jirovský. Lidar based object detection near vehicle. In 2017
Smart City Symposium Prague (SCSP), pages 1–6, May 2017.

[35] G. Prabhakar, B. Kailath, S. Natarajan, and R. Kumar. Obstacle detection and classi-
fication using deep learning for tracking in high-speed autonomous driving. In 2017
IEEE Region 10 Symposium (TENSYMP), pages 1–6, July 2017.

[36] Ba-ngu Vo, Mahendra Mallick, Yaakov Bar-shalom, Stefano Coraluppi, Richard
Osborne III, Ronald Mahler, and Ba-tuong Vo. Multitarget Tracking, pages 1–15.
American Cancer Society, 2015.

[37] Gustav von Zitzewitz. Survey of neural networks in autonomous driving. 07 2017.
[38] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun.

Deep parametric continuous convolutional neural networks. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2018.

[39] Erin Welling. Convolutional neural networks in autonomous vehicle control sys-
tems. 2017.

[40] Slawomir Wierzchon and Mieczyslaw Kłopotek. 01 2018.
[41] Z. Y. Zhang, J. Zheng, X. Wang, and X. Fan. Background filtering and vehicle de-

tection with roadside lidar based on point association. In 2018 37th Chinese Control
Conference (CCC), pages 7938–7943, July 2018.

63

Bibliography

64

I

A. Appendix 1

A
Appendix 1

Figure A.1: The distribution of the LiDAR velocities in terms of mean and maximum for
all 14 recordings

II

B
Appendix 2

Figure B.1: The computed maximum displacement for all 14 recordings

III

	List of Figures
	List of Tables
	Introduction
	Vehicle testing
	Autonomous drive and LiDAR
	Selection of object detection approach
	Objectives
	Object detection
	LiDAR placement and disturbance analysis

	Related work
	Contributions

	Theory
	Light detection and ranging, LiDAR sensor
	Object detection
	Multi-label classification
	Binomial classification
	Mean Average Precision

	Cluster analysis algorithms
	K-means clustering
	Expectation maximisation
	Density based spatial clustering of applications with noise

	Traversable surface estimation
	Random sample consensus
	Least square solution for plane fitting by singular value decomposition
	Construction of a plane from 3D-points

	Bounding geometry algorithm
	Minimum-area enclosing rectangle
	Convex hull

	Theory for analysis of LiDAR mounting point
	Scan for maximum LiDAR displacement in one frame
	Homogeneous transformation matrix

	Method
	Tools and software
	LiDAR placement
	Disturbance analysis
	Analysis of the placement properties

	Development process of the OD-algorithm
	Initial version
	Estimation of the ground plane
	Selection of cluster algorithm

	Testing
	Evaluation
	Research
	Implementation
	Deployment

	Results
	Cluster algorithm selection
	Computational results
	Qualitative findings

	LiDAR placement and suitability
	Disturbance analysis results
	Inspection of the scans

	Final algorithm

	Final algorithm, Density based detection for LiDAR
	Cluster algorithm selection
	The algorithm in detail
	Preprocessing filters
	Multi regional RANSAC
	Pre-clustering filtering
	Clustering
	Bounding geometry fitting

	Analysis and evaluation
	The final algorithm
	Characteristics
	Remaining issues

	LiDAR placement and suitability
	Analysis of the disturbance influence
	Placement properties analysis

	Conclusion
	LiDAR placement recommendation
	DBDL

	Future Recommendations and Ideas
	Appendix 1
	Appendix 2

