
t

y1

t

y2

t

y3

!!

Anomaly detection in communication sys-
tem using machine learning
Proposed model for detecting software faults in cloud-based
application

Master’s thesis in Communication Engineering

ERIK EKLUND
BENGT SJÖGREN

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018

Anomaly detection in communication system
using machine learning

Proposed model for detecting software faults in cloud-based
application

Erik Eklund
Bengt Sjögren

Department of Electrical Engineering
Division of Communication and Antenna systems

Communication Systems Group
Chalmers University of Technology

Gothenburg, Sweden 2018

Anomaly detection in communication system using machine learning
Proposed model for detecting software faults in cloud-based application
ERIK EKLUND
BENGT SJÖGREN

© ERIK EKLUND, BENGT SJÖGREN, 2017.

Supervisor: Hannes Marcks Von Würtemberg, Ericsson AB
Supervisor: Jan Skoglund, Ericsson AB
Supervisor: Anver Hisham Unnichiriyath Siddique, Department of Electrical Engi-
neering
Examiner: Henk Wymeersch, Department of Electrical Engineering

Master’s Thesis 2018
Department of Electrical Engineering
Division of Communication and Antenna systems
Communication Systems Group
Chalmers University of Technology
SE-412 96 Gothenburg

Cover: Example scenario of three time series with two having anomalous behavior
clearly highlighted as an detection.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Anomaly detection in communication system using machine learning
Proposed model for detecting software faults in cloud-based application
ERIK EKLUND
BENGT SJÖGREN
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This report presents models to solutions for discovering anomalous behaviour in
communication system software running within a cloud environment, using machine
learning methods. The software is modeled as a group of collaborating subappli-
cations, called microservices. Every microservice could be running in one or more
instances for scaling purposes. The proposed solutions for solving the problem of
anomaly detection is to perform classification on each microservice instance using
certain output performance metrics.

Two prototype systems were built to evaluate the proposed model in two slightly
different variatons of the cloud environment designed for pre-deployment prelimi-
nary testing of committed updates, as well as for live operation. The results from
tests performed on the prototype indicates that the proposed type of system could
be viable, and that better performance could be expected by using deep learning
concepts. Several problems of the approach were also identified. A difficulty of de-
tecting the desired class of anomalies will most likely always persist. The constant
change of the microservice over many updates, as well as deployment to different
customers requires training regularly.

Keywords: Machine learning, anomaly detection, outlier detection, novelty detec-
tion, cloud native, micro services.

v

Acknowledgements
The authors of this report would like to thank Ericsson AB for allowing us to do
this research and providing us with material and supplies to do so. The authors
would also like to thank the provided supervisor and the examiner from Chalmers
for guidance through the process of the thesis project and input to the report.

Erik Eklund and Bengt Sjögren, Gothenburg, 2018

vii

Contents

List of Acronyms xiii

1 Introduction 1
1.1 Background . 1

1.1.1 Cloud native applications . 1
1.1.2 Machine learning . 1
1.1.3 Anomaly detection . 2
1.1.4 Implementation at Ericsson AB 2

1.2 Aim . 3
1.3 Objectives . 3
1.4 Previous work . 4
1.5 Scope . 4
1.6 Disposition of thesis report . 5

2 Background on Machine Learning 7
2.1 Supervised learning . 7

2.1.1 Support Vector Machine(SVM) 7
2.1.2 Support Vector Regression(SVR) 9
2.1.3 Artificial Neural Networks . 9
2.1.4 Deep learning . 10

2.1.4.1 Auto-encoders . 10
2.2 Unsupervised learning for outlier/novelty detection 11

2.2.1 One Class SVM(OCSVM) . 12
2.2.2 Isolation Forest . 12

2.3 Pre-processing . 13
2.3.1 t-distributed Stochastic Neighbor Embedding(t-SNE) 13
2.3.2 Principal Component Analysis(PCA) 14
2.3.3 Scaling . 14

2.4 Training and validation . 14

3 System model 17
3.1 Application environment model . 17

3.1.1 Pre-deployment testing environment 18
3.1.2 Live environment . 19

3.2 Anomaly detection in cloud environments 19
3.2.1 Data gathering and preprocessing 21

ix

Contents

3.2.2 Feature vector design . 21
3.2.3 Training the classifier . 24
3.2.4 Classification and presentation 24

3.3 Metric choices for queries . 25
3.4 Ethical aspects of model . 26
3.5 Generating datasets using prototypes 26

3.5.1 Pre-deployment . 26
3.5.2 Sensitivity analysis in pre-deployment 27
3.5.3 Live environment . 27

3.6 Descriptions for evaluation tests . 28
3.6.1 Visualization of data using decomposition techniques 28
3.6.2 Tests using unsupervised algorithms 28
3.6.3 Tests using supervised algorithms 28
3.6.4 Sensitivity analysis in pre-deployment 29
3.6.5 Testing with unsupervised algorithms 29
3.6.6 Testing with supervised algorithms 29
3.6.7 Sensitivity analysis testing . 30

4 Results from evaluation tests 31
4.1 Visualization using PCA and t-SNE 31

4.1.1 Pre-deployment set . 31
4.1.2 Live environment set . 32

4.2 Unsupervised learning in pre-deployment 32
4.2.1 One Class SVM . 32
4.2.2 Isolation Forest . 33

4.3 Supervised learning in pre-deployment 35
4.3.1 Neural network . 35
4.3.2 Auto-encoder . 36
4.3.3 SVR . 37

4.4 Sensitivity analysis . 37
4.4.1 No noise . 38
4.4.2 Noise with σ = 0.1 . 39
4.4.3 Noise with σ = 0.3 . 40
4.4.4 Noise with σ = 0.5 . 41
4.4.5 Noise with σ = 0.8 . 42

4.5 Unsupervised learning in live environment 43
4.5.1 One Class SVM . 43
4.5.2 Isolation Forest . 44

4.6 Supervised learning in live environment 45
4.6.1 Neural network . 45
4.6.2 Auto-encoder . 46
4.6.3 SVR . 47

5 Analysis 49
5.1 Design and performance of evaluation tests 49

5.1.1 Visualizations . 49
5.1.2 Pre-deployment . 49

x

Contents

5.1.3 Sensitivity analysis . 50
5.1.4 Analysis of added noise in pre-deployment datasets 50
5.1.5 Live environment . 51

5.2 Model design and choice of metrics 52
5.3 Implementation in a real-world scenario 52

5.3.1 Ethical evaluation of proposed solutions 53
5.4 Future work . 53

5.4.1 Improved system load testing 53
5.4.2 More data . 53
5.4.3 Evaluate more algorithms . 54

6 Conclusions 55

Bibliography 57

A Appendix 1 I
A.1 Variance of noisy data-set derivation I

xi

Contents

xii

List of Acronyms

CNCF Cloud Native Computing Foundation
DB Database
GAN Generative Adverserial Network
IDS Intrusion detection system
iForest Isolation Forest
iTree Isolation Tree
ML Machine Learning
MS Moving Statistics
OM Operations and Maintenance
OCSVM One Class Support Vector Machine
PCA Principal Component Analysis
RBF Radial Basis Function
RRCF Robust Random Cut Forest
SVM Support Vector Machine
SVR Support Vector Regression
t-SNE t-distributed Stochastic Neighbor Embedding

xiii

Contents

xiv

1
Introduction

The first chapter introduces cloud application environments and machine learning
(ML), the research areas of this thesis. Included is also a short introduction to
Ericsson AB and a few of their ideas within these fields. The chapter then moves
on to describe the aim of the thesis and the objectives needed to be completed, in
order to reach the aim. Following these sections, previous work within the fields
is presented. A scope is then defined to outline the work done in this project. A
disposition of the thesis report is lastly presented at the end of the chapter.

1.1 Background
This section briefly presents the relevant fields to the thesis work. A short pre-
sentation is then included to introduce Ericsson AB and their needs connected to
mentioned fields.

1.1.1 Cloud native applications
A general observation is that there is an increasing demand for applications based
in "The Cloud". For users this could mean benefits such as ease of access or backup
of valuable data. For the developer, it could give possibilities to avoid using own
servers etc, and instead base applications on cloud servers provided by some vendor.

The Cloud Native Computing Foundation(CNCF) defines cloud native computing
as software which uses an open source software stack in order to achieve container-
ization, dynamic orchestration and microservices oriented. Containerized means
that each part of the environment, e.g. applications or processes are packaged in
its own container. Containerization can facilitate reproducibility, transparency, and
resource isolation. Dynamic orchestration is the concept of scheduling and manage-
ment of containers in a way such that computational resources can be used optimally.
Microservices orientation is the focus on segmenting applications into different mi-
croservices for the purpose of improving agility and maintainability of the system
[1].

1.1.2 Machine learning
In broad terms, machine learning is a field in computer science about using statisti-
cal methods to create functions or applications which can progressively improve at

1

1. Introduction

specific tasks using data, without being explicitly programmed [2]. With the increase
in available computational power, and availability of data in general, ML has gained
attention and is today used across many fields. Some examples to problems where
ML methods can be applied, are within Computer vision (e.g. Facial recognition or
analysis within medical imaging), stock market analysis and also Anomaly/outlier
detection[3].

1.1.3 Anomaly detection
The problem of anomaly detection is that of finding patterns in data that does
not conform to an expected behaviour. These patterns are referred to as different
things depending on application domain, some examples are anomalies, outliers and
contaminations [4]. Figure 1.1 illustrates a 2D example of data, where most points
conform to two regions, but some are defined as outliers, since they deviate from
the the two regions.

6 4 2 0 2 4 6
6

4

2

0

2

4

6

true inliers
true outliers

Figure 1.1: An illustration of 2D data containing anomalies

1.1.4 Implementation at Ericsson AB
Ericsson AB is a provider of information and communications technology to cellular
network service providers worldwide. Ericsson AB divides their portfolio into several
business areas, namely Networks, Digital Services, Managed Services and Emerging
Business. The portfolio offered in these areas, being powered by 5G and Internet of
Things platforms.[5]

Within the solution area, Digital Services, a system functionality that Ericsson
AB incorporates into the cloud environment is their Packet Core. Packet Core has

2

1. Introduction

numerous functions such as handling data, voice or message traffic, checking if a
user has paid their bills or setting up their device to use the network.

Individual performance metrics of applications may be monitored manually both
by viewing graphs or through alarms that has been manually set to trigger if cer-
tain metrics exceed or fall below a threshold. With more and more functionality
moving into the cloud environment, the amount of metrics that needs monitoring
grows larger. This makes it more difficult to monitor the data and there is also room
for missed anomalies that could be very costly if not caught early enough. If the
task of finding anomalies could be improved by a higher degree of automation, it
could improve the overall performance level of the communication network for the
subscribed users but also reduce operation cost for the operator of the network.

Anomalous behaviour in this scenario, is unexpected behaviour caused by the soft-
ware, perhaps due to a bug in a recent update. If not properly detected and handled,
these could cause performance degradation for customers, or even crashes.

1.2 Aim
The aim of this thesis is to present solutions for discovering anomalous behaviour
in software running within a cloud environment, using machine learning methods.
Furthermore, to present these solutions as autonomous systems that can operate
continuously within the cloud environment. Lastly, to design the solutions such that
other parts of the environment can base decisions for actions based on discoveries
of the system.

1.3 Objectives
The thesis aim is categorized into four objectives, which must be addressed consecu-
tively. The first lies in understanding the given cloud environment, and is completed
by designing a descriptive model. By having a rigorously defined model of the envi-
ronment, proposed solutions and how they fit into it can be defined clearly.

Secondly, it is needed to investigate what ML concepts could be applied to the
problem of anomaly detection. The investigation requires a literature study into
machine learning, and for anomaly detection in particular. From what is learned,
proposals of how the concepts could be implemented into the defined model, can be
presented as proposed additions to it. It is also a requirement, that any proposed
solution is analyzed from an ethical perspective.

The third objective is to define test and evaluation methods for the proposed ad-
ditions to the model. This is done using the gathered background theory in ML
concepts along with an understanding of the environment through the defined model.

The final objective is to evaluate the performance of proposed solutions by creating

3

1. Introduction

prototype systems and performing the defined tests and evaluation methods.

1.4 Previous work

Anomaly detection has been studied for a long time. It has been studied and used
in intrusion detection systems(IDS), fraud detection, fault detection, biomedical
monitoring and more[4]. There are several different techniques to anomaly detection
including information theory, statistics, spectral theory and machine learning. In
information theory, concepts such as entropy, Kolomogorov Complexity and relative
entropy are used to analyze the information content in a data set. The assumption
is that anomalies are sufficiently different in its information content in order to
be detected. In statistical anomaly detection, the idea is to create a probabilistic
model for the given data. If new data are in a low probabilistic area of the model, an
anomaly could be discovered. In spectral anomaly detection, the goal is to encode
the data into subspaces in order for anomalies to be more easily identified. For
supervised learning, anomaly detection has been used to clean the data set before
training the model to improve accuracy[6]. In this thesis, only well known anomaly
detection algorithms will be used and evaluated.

1.5 Scope

As the aim and objectives state, the focus of the project will be to work with the
given cloud microservices environment. Furthermore, it is to model it and to pro-
pose additions to it in the form of an ML-classification system, based on existing
algorithms, rather than proposing new ways to perform outlier/anomaly detection.
The thesis project will be limited to proposing solutions around the cloud environ-
ment, as it is modeled, rather than being able to propose any major changes to
it. Proposed changes could simplify the implementation of a solution system, but
would mean having to do more research about cloud native architecture.

The majority of the prototyping work will be done using the programming language
Python [7]. Specifically, software libraries such as Scikit-Learn[8] and Keras[9] using
Tensorflow[10] backend, designed for machine learning specific tasks, will be used.
These libraries contain many of the relevant techniques for the thesis project, im-
plemented into easy-to-use functionality.

Since the cloud environment consists of many different types of microservices, a
limitation set for this thesis will be to implement proposed solutions on one of these
types. The idea is that the same approach of designing a solution system could then
apply to any type of microservice, but that there may be some slight differences for
each type.

4

1. Introduction

1.6 Disposition of thesis report
This report consists of six chapters. In Chapter 1, an introduction is first given to
the fields in which the thesis is mainly located. The first chapter then continues on
to define the aim of the thesis and the objectives which need to be completed in
order to reach the aim. Some presentation of previous work and a presentation of
the scope lastly gives some boundaries on where focus will be put for the report.

Chapter 2 serves to give a theoretical background to the report. Mainly, various
methods used to perform machine learning are discussed, as well as some methods
for preprocessing of data using statistical concepts.

In the third chapter, A model of the cloud environment along with proposed so-
lution systems for performing ML-based anomaly detection are presented. Lastly,
tests are defined to evaluate the performance of the proposed solutions. In Chapter
4, The results of the defined tests run on designed prototype systems are presented.

An analysis of the proposed model, the tests and the results of runs on the pro-
totype are presented in Chapter 5, and finally in Chapter 6, some conclusions are
drawn from the analysis.

5

1. Introduction

6

2
Background on Machine Learning

This Chapter provides background theory to concepts of ML. The subject is often
divided into two classes: Supervised and unsupervised learning. Supervised learn-
ing, where data points have known labels, is briefly introduced, and a few algorithms
are presented. In the case of unsupervised learning, the focus is on outlier as well as
novelty detection techniques to find data points with abnormal behaviour compared
to most points.

The chapter also presents theory relating to how high dimensional data-sets can
be pre-processed, as well as scaled. Lastly, background theory on how to train and
validate an ML-model is presented.

2.1 Supervised learning
In supervised learning, every training point has a corresponding correct label. That
way, the model learns to associate certain inputs with the the correct output. There
are several algorithms for supervised learning and a subset of these, relevant to the
thesis, are explained in more detail.

2.1.1 Support Vector Machine(SVM)
Given l amount of training points with corresponding labels

(x1, y1), . . . , (xl, yl), ∀i = 1, . . . , l (2.1)

where xi ∈ Rn and yi ∈ {1,−1}l, the SVM solves the following primal optimization
problem[11]:

min
w,b,ξ

1
2w

Tw + C
l∑

i=1
ξi (2.2)

Subject to yi(wTφ(xi) + b) ≥ 1− ξi, ∀i = 1, . . . , l (2.3)
ξi ≥ 0, ∀i = 1, . . . , l (2.4)

and its Lagrangian dual problem is

min
α

1
2α

TQα− eTα (2.5)

Subject to yTα = 0 (2.6)
0 ≤ αi ≤ C, ∀i = 1, . . . , l (2.7)

7

2. Background on Machine Learning

Figure 2.1: A plot of a trained decision func-
tion. By Cyc [Public domain], from Wikimedia Com-
mons. Available: https://commons.wikimedia.org/wiki/
File:Svm_max_sep_hyperplane_with_margin.png [accessed
2018-02-15]

where Q ∈ Rl×l is a positive semidefinite matrix, Qij ≡ yiyjK(xi, xj), where
K(xi, xj) = φ(xi)Tφ(xj) is the kernel function. φ(xi) is a function that maps xi
to a higher dimensional space. e is a vector with all ones and C > 0 is the upper
bound. The prediction on a new point z is then

ŷ =sign(w∗φ(z) + b∗) (2.8)

=sign(
l∑

i=1
α∗i yiK(xi, z) + b∗) (2.9)

where w∗, α∗ and b∗ is the solution from the optimization problems in equations
2.2-2.7[11]. Figure 2.1 illustrates an example of a trained decision function.

There are several different kernels for mapping data into different dimensional spaces.
They all have varying success on different types of data and the most common ones
are listed here[12]:

• Linear: K(xi, xj) = xTi xj

• Polynomial: K(xi, xj) = (γxTi xj + r)d, γ > 0
• Radial basis function(RBF): K(xi, xj) = exp(−γ||xi − xj||2), γ > 0
• Sigmoid: K(xi, xj) = tanh(γxTi xj + r)

γ, d and r are kernel parameters.

8

https://commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png
https://commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png

2. Background on Machine Learning

2.1.2 Support Vector Regression(SVR)
Instead of assigning a new datapoint to a class, it can be desirable to predict a value
depending on the input. The prediction function is then[13]:

f(x) = 〈w, x〉+ b x ∈ X , b ∈ R (2.10)

Where 〈·, ·〉 is the dot product. The corresponding minimization problem is thus:

min
w,b

1
2 ||w||

2 (2.11)

Subject to yi − 〈w, xi〉 − b ≤ ε (2.12)
〈w, xi〉+ b− yi ≤ ε (2.13)

2.1.3 Artificial Neural Networks
The inspiration for Artificial Neural Networks comes from how the human brain
works. The brain consists of 86±8 billion[14] neurons and synapses that ”fire” with
different strengths in a huge network. An artificial neural network works very similar
to this. It has weights that is connected to every node(neuron) in the network. These
weights have been trained to produce the correct output for different inputs in the
network. An example of a Neural network is seen in Figure 2.2

Input Layer

4

3

2

1

Weights, W1

First hidden Layer

4

3

2

1

Weights, W2

Second hidden Layer

4

3

2

1

Weights, W3

Output Layer

2

1

Figure 2.2: An example of how an artificial neural network
with four input nodes and two output nodes. Between them is
two hidden layers with four nodes each.

The hidden layers are part of the ”black box” and is completely up to the learning
algorithm to adjust the values of the weights in each layer.

If the loss function(often called error function) of a neural network is denoted J(W),
its first order derivative is then computed in terms of the neural networks weights

9

2. Background on Machine Learning

and then their weights are updated in the following manner[15]:

W (k+1) =W (k) − η δ

δW (k)J(W) (2.14)

Where η is the learning rate.

2.1.4 Deep learning

By adding to the amount of hidden layers, the network increases in complexity
and is referred to as a deep neural network. Deep learning techniques refers to
different types of deep neural networks. Before deep learning, most neural network
implementations would have three to five layers, whereas with deep learning, the
amount of layers can be seven or more with up to millions of neurons. According to
McKinsey Global Institute, deep learning techniques have been found to be of great
use to increase performance where previously traditional ML methods are applied
[16].

2.1.4.1 Auto-encoders

An auto-encoder is a neural network that decreases in dimensions and then increases
in dimensions as it gets closer to the output nodes as seen in figure 2.3. Since the
network decreases in dimensions it forces it to learn what features of the input data
is needed for reconstruction in order to get the correct output. Traditionally, auto-
encoders are considered to be an unsupervised algorithm but since the target output
in known, it is suited to be in this section. In terms of novelty detection an auto-
encoder could be trained to be able to reconstruct the nominal data correctly. If an
anomaly point is entered into the trained auto-encoder, the output would be quite
different from its input. If the difference is over a certain threshold, an anomaly
is probably detected. The network function is trained to reproduce the input as
close as possible[17], hW,b(x) ≈ x. An example of a structure for an auto-encoder is
visualized in Figure 2.3

10

2. Background on Machine Learning

Input Layer

6

5

4

3

2

1

Weights, W1

First hidden Layer

4

3

2

1

Weights, W2

Second hidden Layer

2

1

Weights, W3

Third hidden Layer

4

3

2

1

Weights, W4

Output Layer

6

5

4

3

2

1

Figure 2.3: An example of the structure of an auto-encoder.
This auto-encoder has six input and output nodes but the net-
work decreases in dimension closer to the center where it only
has two nodes. It then tries to decode the input from the in-
formation in the two nodes.

2.2 Unsupervised learning for outlier/novelty de-
tection

Anomaly detection can be split up into two types, outlier and novelty detection, and
their differences will be explained here. Outlier or Novelty detection are the tasks of
deciding whether new observations are distributed equally to existing observations,
and therefore being an inlier. If not, the new observation should be considered as an
outlier. In novelty detection, the given training data does not contain outliers and
the interest lies in finding the outliers in new observations. This method is shown
in figure 2.4. In contrast for outlier detection, the training data could be polluted
and it is needed to fit to the training data while ignoring deviant observations[18].

t
Train on assumed
normal behavior

Use trained algorithm
to evaluate new observations

Figure 2.4: Methodology for novelty detection

11

2. Background on Machine Learning

2.2.1 One Class SVM(OCSVM)
The supervised learning algorithm in section 2.1.1 can be modified to be an unsu-
pervised learning algorithm. The new algorithm is then[19]:
Solve the primal optimization problem:

min
w,ξ,ρ

1
2w

Tw + C
l∑

i=1
ξi − ρ (2.15)

Subject to (wTφ(xi)) ≥ ρ− ξi ∀i = 1, . . . , l (2.16)
ξi ≥ 0 ∀i = 1, . . . , l (2.17)

and its Lagrangian dual problem:

min
α

l∑
i=1

l∑
j=1

αiαjK(xi, xj) (2.18)

Subject to 0 ≤ αi ≤ C ∀i = 1, . . . , l (2.19)
l∑

i=1
αi = 1 ∀i = 1, . . . , l (2.20)

And the decision function on a new point z is then:

f(z) = sign
(

l∑
i=1

α∗iK(xi, z)− ρ∗
)

(2.21)

Where K(xi, z) is the kernel function defined in section 2.1.1. This algorithm will
learn a boundary around the training points which should not contain any outliers
and then be tested on unknown data points. Therefore One Class SVM falls under
the novelty detection category. The boundary is not very strict and some training
points might fall outside of the boundary. Either the algorithm can give a classifi-
cation, f(z) ∈ {−1, 1},−1 = Anomaly, 1 = Not anomaly [20] or by removing the
sign function in equation 2.21 to give an anomaly score f(z) ∈ Rn, f(z) < 0 =
Anomalous, f(z) > 0 = Not anomalous. The greater or smaller f(z) is indicates
how certain it is of what class the point z belongs to.

2.2.2 Isolation Forest
By defining anomalies as observations that are few in numbers compared to the
normal, as well as having different characteristics, [21] shows that anomalies are
susceptible to isolation. Isolation in this context, is performed by using a binary
tree structure (referred to as an isolation tree) where in iterations, the sample space
is divided at a random value between the minimum and maximum value of a di-
mension chosen at random, until only a point remains within the subspace. If this
process is repeated a large number of times, the average number of divisions, anal-
ogous to the depth of a binary tree, for specific observations, is shown to converge
towards an average.

The method named Isolation Forest which is presented in [21] works by building

12

2. Background on Machine Learning

an ensemble of iTrees (called an iForest). Given a set X of data, the method gen-
erates t iTrees by subsampling ψ data points from X and creating an iTree. So ψ
and t are the adjustable tuning parameters of the method, [21] proposes values of
ψ = 128 and t = 100 for most applications. Performance is evaluated by computing
an anomaly score s is computed using the path lengths of the trees for data points.
A score of 1 will correspond to highly anomalous values, whereas values close to zero
corresponds to highly regular.

2.3 Pre-processing
Several methods of pre-processing the data-set will be presented in this section.
Pre-processing is useful for gaining early insights into the dataset being worked on
as well as improving performance. Pre-processing can also be used to prepare raw
data for input into an ML classifier. Two methods for reducing the dimensionality of
data are introduced. One technique is then introduced to perform scaling on data.

2.3.1 t-distributed Stochastic Neighbor Embedding(t-SNE)
t-SNE is a relatively new algorithm for visualizing high dimensional data first intro-
duced in 2008[22]. It maps higher dimensional data points into lower dimensional
data points by minimizing the Kullback-Leibler divergance between the higher di-
mensional data and the lower dimensional data. X = {x1, x2, . . . , xn} is the high
dimensional data that will be mapped into Y(T) = {y1, y2, . . . , yn} with dimension
r. The algorithm is as follows:

1. Sample initial solution Y(0) = {y1, y2, . . . , yn} from N (0, 10−4Ir).
2. Compute pij from (2.23)
3. for t = 1 to T do:

Compute qij from (2.24)
Compute the gradient δC

δY from (2.25)
Compute Y(t) = Y(t−1) + η δC

δY + α(t)(Y(t−1) − Y(t−2))
Where η is the learning rate, T is the number of iterations and α(t) is the momentum.

pj|i = exp(−||xi − xj||2/2σ2
i)∑

k 6=i exp(−||xi − xk||2/2σ2
i)

(2.22)

Where σi is the variance of the Gaussian that is centered on datapoint xi.

pij = pj|i + pi|j
2n (2.23)

qij = (1 + ||yi − yj||2)−1∑
k 6=l(1 + ||yk − yl||2)−1 (2.24)

δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ||yi − yj||)−1 (2.25)

In this thesis, this algorithm will be implemented using Multicore TSNE[23] instead
of scikit-learn[8] for improved performance.

13

2. Background on Machine Learning

2.3.2 Principal Component Analysis(PCA)
PCA reduces the dimensionality of a dataset X ∈ Rw to Y ∈ Rr by computing the
eigenvectors of the XXT matrix and taking the top r vectors in U [24]. The mapping
to Y is then done by Y = UT

r X.

2.3.3 Scaling
Scaling can improve the effectiveness of machine learning algorithms most notably
in the convergence rate of gradient descent methods[25], thus decreasing the training
time. There are several ways to scale a data-set[26] but only max-scaling will be
used in this thesis:

x̂ = x

max(x) , x ≥ 0 (2.26)

This will bring x̂ in the range [0, 1].

2.4 Training and validation
For an ML-model to be implemented, data available needs to be split into three
types of sets. these are sets for training, validation and lastly testing. The training
set consists of sample data points used to train to fit the model. The validation set
is used to get an unbiased evaluation of the model fit whilst continuously tuning
hyperparameters of the ML model. Finally, the test set is used once to provide an
unbiased evaluation of the model. As sets are used several time for validations, bias
increases, thus risking what is refered to as model overfitting[27].

Validation and testing are large parts of the process of building an ML model,
therefore tools are defined for investigating performance. An initial way to evaluate
performance is by measuring the accuracy, defined as

Number of correct predictions
Total number of predictions . (2.27)

A confusion matrix can be used to evaluate the performance of a classifier since it
will show when the algorithm predicts false positives or negatives, something that
the accuracy score alone will not show. Anomalies are considered rare and therefore
an algorithm would have a high accuracy score(>90%) even if it only predicted
normal behavior. The layout of a confusion matrix is illustrated in Table 2.1 [28]:

Table 2.1: Confusion matrix layout

Truth\Prediction Anomaly Normal
Anomaly a b
Normal c d

Here, the notations a, b, c, d mean the following:

14

2. Background on Machine Learning

• a denotes the number of correctly classified anomalies
• b denotes the number of missed anomalies
• c denotes the number of false detections of anomalies
• d denotes the number of correctly classified normal data points

From the confusion matrix, other performance metrics for a classifier is defined. Two
of these are recall and precision. Recall can be defined as

recall = a

b+ a
(2.28)

and denotes the proportions of anomalies correctly identified. Precision can be
defined as

precision = a

c+ a
(2.29)

and denotes the proportion of anomaly cases that were correct[28].

15

2. Background on Machine Learning

16

3
System model

In this section, a model description of the proposed solutions are provided. But
before this can be done, a model of the cloud application environment is given. The
two solution systems which are proposed are then presented. Since the solutions
share the same basic concepts, and mostly differs in where they are applied, the
core concepts of both solutions are described together. Further on, the machine
learning applications to the solutions are presented. Lastly, tests are defined for
built prototype models for both solutions.

3.1 Application environment model
A cloud application in which it is desired to perform anomaly detection, can be
described for the scope of the project as a large system made up by different types
of microservices. Each microservice is designed specifically to perform different tasks
within the system. A microservice can also be scaled up or down such that a variable
number of instances are running simultaneously, sharing work. One microservice
type will be denoted A = {A1, A2, . . . , ANA}, where NA denotes the number of
instances at a given time. Instance i will be denoted Ai. The different microservices
are able to output specific performance metrics, chosen by the developers which can
then be fetched by querying a database server. Each Ai will have the same defined
metrics. The queried metrics can be presented in graphs or other ways using analysis
tools. By monitoring the metrics for anything that could indicate that something
is anomalous, operators of the system could find errors. Possible actions to take in
the case of anomalous behaviour, would then include triggering a downgrade to an
earlier version known to be stable. The flow of data from microservice instances is
illustrated in Figure 3.1.

For the model, two types of cloud environments could be identified. These look
similar in that they consist of the same type of microservices, that perform the
same type of tasks. The difference is their purpose and how activity is running in
them. The two different types of environments are the following:

• A pre-deployment testing environment whose purpose is to perform scheduled
defined tests using proposed updates in a simulation.

• A live environment which is in use by the customer, serving users continuously
and receiving successful updates from the test environment.

Figure 3.2 illustrates how the environments conceptually varies in terms of when
they are active or not.

17

3. System model

Cloud application

Microservice A
Ai Ai+1Ai−1

DB

Other microservice...
.... ..

Other microservice...
..

Analysis
tools

O&M engineers
Figure 3.1: Illustration showing flow of metric data from dif-
ferent types of microservices to a database server, denoted DB.
Analysis tools can then display graphs and gauges to help per-
sonnel in charge of operations and maintenance (O&M) to mon-
itor the system performance. The O&M personnel will also be
able to access the DB directly.

.

Time

Active

Figure 3.2: Timeline depicting how activity in the different
types of environments vary over time. The blue line repre-
sents the live environment which operates continuously, and the
green line represents the pre-deployment environment, which is
only active during test runs.

How these two environments differ, are described in further detail in the following
subsections.

3.1.1 Pre-deployment testing environment
When updates to microservices are initially committed from the development teams,
they first get passed into a test environment where specific simulations are performed

18

3. System model

using the updated microservice in a surrounding which is otherwise known not to
cause anomalies. The updates will need to perform within defined constraints in
order to qualify for deployment into the live environment. The constraints are de-
fined by the developers for the specific microservice in question, with support from
developers in charge of testing.

Since there are many microservices and small updates are being pushed on a regular
basis, the test environment runs simulations following a schedule. This will mean
that the environment is completely inactive when no tests are running, and active
otherwise. After each test run, the testers and developers of the microservices have
access to the test results.

3.1.2 Live environment
The live environment is the system solution which is sold to the customer, and in
theory is running the latest release. The development team can run their own live
environment using simulated traffic. The environment is expected to run contin-
uously, since this is required in communications systems. Different customers will
get their own respective live environments, and may not necessarily run them in
the same way. Other parameters which may vary for different customers is the load
put on the system as well as traffic patterns. Customers may also have their own
maintenance teams.

Since the cloud application consists of various microservices, with teams working
on each one, updates are committed irregularly. In a situation where an update has
passed pre-deployment, and is released to A, this may be done by running multiple
instances Ai, in a way where one or more run the updated version, but most run
the older version.

3.2 Anomaly detection in cloud environments
To solve the task of performing ML-based anomaly detection within a given cloud ap-
plication environment, two similar solution systems are proposed. The first solution
focuses on evaluating anomalous behaviour in a live environment, and the second
solution will focus on evaluating anomalous behaviour during simulation runs in
pre-deployment environments. The two solutions share a common flow of how to
perform ML classification within a cloud environment, and this flow is described in
this section.

One central design choice is that classification is performed on microservice instance
level. The choice was motivated by the fact that observing on this level provides ro-
bustness to a variable number of instances over time. Each instance will be evaluated
using the same classifier and comparison can then be performed between anomaly
scores for instances running different versions. The flowchart in Figure 3.3 describes
the overlaying structure of performing classification on a microservice instance.

19

3. System model

Ai

Data gathering

Preprocessing

Create
feature
vector

Classify
data

Anomaly
score

Present results

Saving
raw data

Figure 3.3: Flowchart describing how anomaly classification
is done for a microservice instance. Ai is continuously queried
for data, which is processed and made into feature vectors to
be classified by a trained classifier. The classifier will yield an
output anomaly score, which can then be presented where other
performance metrics are located.

Each type of microservice has its own set of metrics which can be queried continu-
ously. Let q(t) = {q1(t), q2(t), . . . , qNq(t)} denote the subset of metrics for a specific
A used for a solution system. for each Ai, q is fetched and then preprocessed. The
queries are also saved in order to obtain a larger data set over time. From the
preprocessed queries, feature vectors are generated which can then be input into a
trained classifier. The classifier will output a score of how anomalous the system is
behaving given the input. These results can then be posted to be shown along with
the outputs of interest for current analysis tools used by operators of the environ-
ment.

The following subsections describes the nodes of the flowchart in more detail. First,
the process of how data is gathered from the DB server and preprocessed is covered.
Next, feature vector design and some of the choices and trade-offs are presented.
How a classifier can be trained, and then how it can operate and what the results
could look like are lastly presented. In the latter subsections, some differences be-
tween the two types of environments are described.

20

3. System model

3.2.1 Data gathering and preprocessing
For an operating instance of microservice A, Ai, Nq queries will be sent to the DB-
server to get q(t). Each query corresponds to a parameter qi(t). By design, qi(t)
can be queried from time t and backwards, and samples are received with a period
of ∆t. Let M denote how many historical samples are queried in addition to the
instantaneous sample qi(t). An output matrix Qi(M, t) can be described as shown
in Equation 3.1 to represent the full set of queries for time t : t−M∆t.

Qi(M, t) =

q1(t) q2(t) . . . qNq(t)
q1(t−∆t) q2(t−∆t) . . . qNq(t−∆t)
q1(t− 2∆t) q2(t− 2∆t) . . . qNq(t− 2∆t)

...
q1(t−M∆t) q2(t−M∆t) . . . qNq(t−M∆t)

 (3.1)

After the set of data matrices has been fetched, each Qi has to be normalized in the
same way. This is done by finding a vector z = {z1, z2, . . . , zNq} and calculating the
normalized Qi(t) as

Qi,norm(M, t) = Qi(t) •
1
zi
. (3.2)

To find zi, all matrices Qi(t), i = 1, 2, . . . , NQ available when training, concate-
nated into one tall matrix Q is considered.

Q =
[
Q1 Q2 . . . QNQ

]T
(3.3)

zi will be given as the maximum of the i’th column of Q. Max scaling was used since
from observing the metrics being queried it was concluded that the metrics never
passed below zero and actually was zero very often. Thus, the need for min-max
scaling was discarded. This scaling factor is saved and applied on new data that is
acquired.

3.2.2 Feature vector design
After Qi(M, t) has been gathered and normalized, further processing is done in or-
der to create a feature vector x(t) which can be input into the classifier. Since the
feature vector is varying over time, with dependent behaviour, further information
could be embedded into the classifier, instead of just feeding in the instantaneous
normalized version of q(t) = {q1(t), q2(t), . . . , qNq(t)}. For a communication system,
it would, for example, be expected that more traffic happens during the day, than
during the night. To embed this type of information about behaviour over time,
an option could be to feed in a vectorized version of the normalized output matrix
of raw data, vec(Qi,norm(M, t)). The trade-off of this approach is that the feature
vector length grows proportional to how M is chosen.

The approach chosen for the solution systems was to instead use Qi,norm(M, t) in

21

3. System model

order to calculate statistical information about each metric in q(t), and then to ap-
pend this data in order to create x(t). Another choice was to do calculate statistical
information using multiple number of sample windows, yielding the possibility to
gain multiple time perspectives. This is motivated by the fact that fluctuations are
expected to happen over different time perspectives. For the example of user activ-
ity within a communication system, there might not only occur periodic behaviour
over a full day, but also weekly, or even larger time windows.

The statistical information chosen for the solution systems were the statistical mean,
and standard deviation, and the following notation is used. if one column of the
matrix of raw data, when wk historical samples have been added, is denoted by
qi,t−wk∆t:t, Let

E[qi,t−wk∆t:t] = 1
wk

wk∑
k=0

qi(t− wk∆t) (3.4)

σ(qi,t−wk∆t:t) =
√
E[(qi,t−wk∆t:t − E[qi,t−wk∆t:t])2] (3.5)

denote the statistical mean, as well as the standard deviation for a metric qi, with a
sample windowsize of (wk+1) samples. The feature vector containing the normalized
original metrics, along with its moving statistics (MS) using different windowsizes,
can now be illustrated as a matrix, shown in equation 3.6.

xmat(t) =

q1(t) q2(t) . . . qN(t)
E[q1,t−w1∆t:t] E[q2,t−w1∆t:t] . . . E[qN,t−w1∆t:t]
E[q1,t−w2∆t:t]

.
... ...

E[q1,t−wmax∆t:t] E[qN,t−wmax∆t:t]
σ(q1,t−w1∆t:t) σ(q2,t−w1∆t:t) . . . σ(qN,t−w1∆t:t)
σ(q1,t−w2∆t:t)

.
... ...

σ(q1,t−wmax∆t:t) σ(qN,t−wmax∆t:t)

(3.6)

Since most ML methods implemented into software takes vectors as inputs, this is
how x(t) is defined. x(t) is received by concatenating each column of xmat(t). This
operation is illustrated in Equation 3.7

x(t) = vec(xmat(t)) (3.7)

Using two different statistical measures, and Nw number of different windows, the
length of the feature vector can be formulized according to Equation 3.8.

lx = Nq + 2NqNw (3.8)

22

3. System model

In Figure 3.4, a small examples using Nq = 1 illustrates how many elements are
needed to be in the feature vector, to bring information about n number of historical
samples into it.

Figure 3.4: The plot illustrates the feature vector length func-
tion for the two presented approaches of looking at historical
data, for the case Nq = 1. The solid line illustrates a linear
growth as more historical samples are included into the feature
vector, while the dashed line illustrates how only the number
of windows, Nw affects feature length in the MS approach.

From the figure, it can be seen that using the statistical information approach pre-
sented, the amount of features will only depend on the number of windows which
are desired to be included, for an arbitrary number of historical samples n.

If the age t of a subapplication instance does not fulfill the inequality

t ≥ wmax∆t, (3.9)

an adaptation will have to be done to create the feature vector, since the window
would exceed the amount of available historical data. The strategy that was imple-
mented is to make the windowsize as large as possible for all wk in the vector of
windowsizes for which wk∆t ≥ t.

23

3. System model

3.2.3 Training the classifier
Before classification can be done, a classifier will need to be trained using a saved
set of samples

X = [x(t1), x(t2), . . . , x(tN)]T (3.10)

with N samples drawn, were time instances t1, t2, . . . , tN can be independent. To
create, and add to this set, the raw queried data is continuously saved. Because
microservices can be created and terminated continuously, data has to be gathered
over entire life cycles of several instances.

Depending on which ML technique is desired to create the classifier, labeled or
unlabeled data is required. For a sample set X containing N samples, labels are
defined as a vector

Y = [y1, y2, . . . , yN]T (3.11)

and needs to be added after recording. What the labels might look like will depend
on what ML technique is used, but with the most common and realistic scenario
being a binary label for anomalous or not.

If labels are not available for the dataset, this restricts the options for what types
of ML techniques can be applied. If the assumption can be made that most data is
not anomalous, another approach is then to redefine x(t) such that one feature xi(t)
is instead defined as the label y(t), and removed from the feature vector. The ML
classifier would then be trained to predict y(t) during operation. If this prediction
deviates too much from the true value, anomalous behavior is detected. This method
has the advantage of being ”self labeling” and could fit in between supervised and
unsupervised learning.

Once a set is generated, it could be divided into subsets for training, validation
and testing. A more advanced approach to gain more from the data is to apply
cross validation techniques.

3.2.4 Classification and presentation
Once the classifier is trained, it is used to evaluate all instances of the focused mi-
croservices individually, as new data is available to query. Any solution system will
need to keep track of new instances initiated, so as to always check the whole mi-
croservice for anomalous behaviour.

An important difference between the two defined types of environments is that in
the pre-deployment type of environment, classification will only have to be active
when tests are running. Additional functionality to keep track of the schedule is
therefore needed for the corresponding solution system.

24

3. System model

The output of the classifier will differ depending on what ML technique is im-
plemented. For the techniques used which outputs an anomaly score directly, the
outputs will be the soft anomaly score ∈ [0, 1], as well as a hard decision output
∈ {0, 1}. For the techniques used which performs prediction of one variable, the
output will be the prediction, denoted ŷ, the measured value for the variable y,
and lastly a decision function output ∈ {0, 1}. A detected anomaly is described by
defining

ε = aE
[
|Ŷ − Y |

]
, (3.12)

where a > 0 is a tuning parameter. The decision is then made by the following
inequality:

f(ŷt) =

1 |ŷt − yt| > ε

0 otherwise
(3.13)

The classifier output should be seen as part of the analysis tools for an environment.
Therefore the output should be presented as a function of time and made available
to monitoring interfaces where visualizations of current analysis tools are.

3.3 Metric choices for queries
A part of the process of implementing ML in a given problem is that of feature
engineering. By choosing input parameters to include into q(t), anomaly detection
could be more efficient. An initial design question is why not to include all available
metrics that can be queried instead of only a subset. A potential benefit of including
all available metrics is that the methods used are easier to carry over to any type of
microservice, without having to spend resources on feature engineering every time.
Problems that could arise using this approach are in conjunction with when updates
are released. An update might include changes to how some variables work or even
additions/subtractions of variables, which would cause malfunctions or errors if the
classifier is not re-trained. The classifier might also end up detecting the very fact
that there was an update, and interpret this as the anomalous event, rather than
the types of malfunctions which are desirable to find. Since continuous updating of
the microservices is a large part of the cloud native design approach, the choice of
approach to feature engineering was to only select a subset of metrics and that this
would look different for different types of microservices.

The choice of what subset of metrics to include, was based on what type of anoma-
lies were desired to be detected. The classifier should find behaviour indicating
malfunctions, rather than just slightly updated behaviour. A potential way to cre-
ate this boundary, is to focus on the experience of the user, which should be similar
over updates, or in some cases improve. Detected anomalies should then be when
performance degrades, but also when it improves, both of which are viable cases
to trigger a roll-back and further analysis of the outcome. The decision as to what
subset of metrics are valuable for a particular microservice in general, should be up

25

3. System model

to the developers of the microservice together with testers.

Examples of metrics which are related to user experience could be different types
of latency metrics or successful/unsuccessful operations. Other important factors
are also how much resources are used to run the microservice, since it will relate to
costs. In general, focus was put on redesigning any relevant metric that were defined
as counters, and rather use their growth/decline rates.

3.4 Ethical aspects of model
When performing data gathering it is important to consider ethical aspects, infor-
mation that compromises the privacy of users are not to be used. These ethical
aspects will have to be respected, even if it comes at the cost of potentially decreas-
ing performance. Not handling sensitive information within the solution could also
be seen as advantageous since it reduces exposure in case of a security breach.

3.5 Generating datasets using prototypes
Two prototype solutions were constructed to handle each of the two types of cloud
environments. For testing and evaluation purposes, the prototypes were tweaked
compared to the described solution model. This was done so that defined datasets
could be created. Instead of performing classification in a live setting, the defined
datasets are used with different classifiers in a similar fashion, but separately from
the prototype. Having fixed datasets throughout testing simplifies analysis between
different types of classifiers.

One dataset was created for each type of environment, and these are described
further in the following two subsections.

3.5.1 Pre-deployment
The prototype system evaluating the pre-deployment environment was tweaked such
that data during testruns were saved to generate a defined dataset. 50 test runs were
saved and these were divided into training, evaluation and test sets. 40 runs makes
up the training set, 5 makes up the evaluation set and the last 5 were defined as
the test set. In total there are 7294 collected data points in this data set. The
training consists of 6148 normal points, the evaluation set consists of 483 normal
points and 92 anomalous points and the test set consists of 443 normal points and
128 anomalous points. The amount of queries used in this dataset was 8 different
queries. With window sizes 5 and 10 for the moving statistics, the resulting feature
vector is 40 elements long.

The intention was to be able to test on runs that were faulty, but this intention
could not be realized. Instead, the choice was to revert to adding generated noise
to the data set.

26

3. System model

Noise was added at different places in the data set. The noise was only added
to the evaluation set and test set. How noise was added is described in equation
3.14.

Qnoise(t) = (1 +Q(t)) |N (µ, σ)| (3.14)

Here, |N (µ, σ)| describes a folded version of the normal distribution with µ = 0 and
σ = 1. The folded version was used because the noise could make Qnoise(t) < 0
which would not a realistic outcome for the particular environment. The (1 +Q(t))
was used because when Q(t) ≈ 0, noise should still have an effect on the polluted
samples. Multiplicative noise was used because the noise should have similar scale
independent of what the values of the different qi(t)’s are.

3.5.2 Sensitivity analysis in pre-deployment

A group of data sets were also created along side the set described in subsection
3.5.1. The purpose of these sets were to be used in tests with varying degrees of noise
pollution, more specifically: σ ∈ [0.1, 0.3, 0.5, 0.8] as well as absence of noise. The
”no noise case” does not use equation 3.14, but rather generates features directly
from Q(t).

3.5.3 Live environment

A separate live environment was provided for the purpose of testing the correspond-
ing solution prototype. In order to simulate anomalies, intentional software bugs
were inserted into the microservice software. The main objective was to affect the
performance of the system and hence the metrics. Whenever the micro-service was
called, one of three things could happen.

1. 5% chance to pause the microservice for X ∼ Uni[0, 10] milliseconds and then
continue with normal functionality.

2. 20% chance to calculate π with 50 bits of precision and X ∼ Uni[0, 30] itera-
tions and then continue with normal functionality.

3. 75% chance to function as designed.
These injected behaviours affect performance of the system in terms of for example
CPU load and response time/latencies. The motivation was not to insert faulty code
that would break the system but rather to simulate a software update that yielded
worse performance but was otherwise still fully functional.

The data set collected contained in total 2199 data points, with 733 normal points
in the training set, 380 normal points and 353 points being anomalous in the eval-
uation set and 353 normal points and 380 anomalous points in the test set. The
data set is also shuffled for good practice[29]. The window sizes are 5 and 10 for the
moving statistics which with 13 different queries results in a feature vector that is
65 elements long.

27

3. System model

3.6 Descriptions for evaluation tests
This section describes test setups for the datasets gathered from the prototype sys-
tems. Various ML-techniques, described in Chapter 2, were implemented to create
different classifiers for comparison. How the classifiers were compared and what
type of outputs are yielded is also presented.

The first test describes the process of using decomposition techniques to visual-
ize datasets in two dimensions. The tests that follow describes implemented ML-
classifiers using supervised, as well as unsupervised learning approaches on the cre-
ated datasets from both prototype systems. In all classifiers presented, an evaluation
is done using a confusion matrix.

3.6.1 Visualization of data using decomposition techniques
The t-SNE and PCA methods described in 2.3.1 and 2.3.2 were used to visualize
the various datasets in 2-dimensional plots. In one plot, all of the high dimensional
datapoints of the dataset is represented in the decomposed dimensions with the given
technique. Anomalous and normal data points are denoted differently within plots.
For PCA, the original scikit-learn implementation was used, and for t-SNE, the
modified implementation was used for faster evaluation.

3.6.2 Tests using unsupervised algorithms
Two types of unsupervised classifiers are used. Those are

• OCSVM
• Isolation Forest

The OCSVM was implemented using the default values in scikit-learn except for
nu. nu is the upper bound on training errors and a lower bound on the amount of
support vectors(i.e. how strict the boundary function has to be with the training
points). The rest are set to their default values. The parameter was tuned on the
evaluation set and tested on the test set. The outputs of the algorithm are both the
binary predicted anomaly label(equation 2.21) as well as the function value from
equation 2.21 without the sign function.

The Isolation Forest classifier was implemented using default values in scikit-learn
except for the parameter contamination. The parameter was tuned using the eval-
uation set. The results for Isolation forest are presented very similar to how the
results for One Class SVM’s were presented, with binary prediction value and the
continuous decision function.

3.6.3 Tests using supervised algorithms
Three types of classifiers were used. Those are

• Neural network
• Auto encoder

28

3. System model

• SVR
The neural network consits of 10 layers, where 8 are hidden layers with 32 nodes.
The input layer has dimension size equal to the number of features and the output
layer has dimension 1. The model was trained with a fixed number of epochs and
used the ”Adam” optimizer in Keras[30]. The loss function was ”Mean Squared
Error”.

The auto-encoder consists of 9 hidden layers which decreases in dimensions and
then increases in the second half. More precisely, the hidden layers has dimensions
[25, 20, 15, 10, 5, 10, 15, 20, 25]. The input and output layer is equal to the number
features of the data set. The model was trained with the ”Adam” optimizer in Keras
and with a fixed number of epochs. The loss function was ”Mean Squared Error”.

Every parameter for scikit-learn’s implementation of SVR was set to default
values.

The classifier outputs were connected to a threshold function(equation 3.12) and
during training the threshold was tuned.

3.6.4 Sensitivity analysis in pre-deployment
One of the best performing algorithms will be used for further testing and analysis
using the pre-deployment data-set as described in section 3.5.2. The parameters for
the algorithm will be untouched throughout the different test cases. This is to give
a fair comparison between each test case.

3.6.5 Testing with unsupervised algorithms
As mentioned in section 2.2, the model should be pre-trained on not anomalous
data points before giving a prediction on new data points. Therefore in the live
environment case, data has to be considered normal and used to train the model
before deployment at a costumer.

Compared with novelty detection, outlier detection has to be retrained every time a
new set of data points has to be evaluated. Depending on the algorithm, this could
cause unwanted amounts of computational power on the platform it is deployed on.

Retraining the model on regular intervals should be done to keep the model up-
to-date with current system behavior.

3.6.6 Testing with supervised algorithms
Since neural networks requires a large amount of training data, the following re-
sults will not perform optimally because the size of the available data-set is rela-
tively small. However, results will still be presented as a proof of concept for their
methodology.

29

3. System model

3.6.7 Sensitivity analysis testing
The parameters for the algorithm will be untouched throughout the different test
cases. This is to give a fair comparison between each test case. Otherwise everything
will be tested exactly the same way as in section 3.6.5.

30

4
Results from evaluation tests

This chapter presents results of the evaluation tests defined in 3.6. The visualization
tests results are presented first for both the pre-deployment dataset, as well as
the live environment dataset. The two sections to follow posts results from both
unsupervised and supervised tests done on the pre-deployment set. Results of the
defined sensitivity analysis is then shown in the section after. in the last two sections,
unsupervised as well as supervised classifiers are evaluated for the live environment
dataset.

4.1 Visualization using PCA and t-SNE

4.1.1 Pre-deployment set

2 1 0 1 2
X[:,0]

1.0

0.5

0.0

0.5

1.0

X[
:,1

]

PCA decomposition

Normal observations
Anomalies

60 40 20 0 20 40
X[:,0]

60

40

20

0

20

40

X[
:,1

]

TSNE "manifold"

Normal observations
Anomalies

Data visualization

Figure 4.1: PCA and t-SNE visualizations for the pre-
deployment set.

31

4. Results from evaluation tests

As shown in figure 4.1, the PCA decomposition didn’t manage to separate the
anomalous points from the normal points in a meaningful and useful way. The t-
SNE manifold did however manage to cluster the anomalous points together with
little overlap with the normal points.

4.1.2 Live environment set

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X[:,0]

1.0

0.5

0.0

0.5

1.0

X[
:,1

]

PCA decomposition

Normal observations
Anomalies

40 20 0 20 40
X[:,0]

40

30

20

10

0

10

20

30
X[

:,1
]

TSNE "manifold"

Normal observations
Anomalies

Data visualization

Figure 4.2: PCA and t-SNE visualizations for the live envi-
ronment set.

The anomalous points in the PCA decomposition in figure 4.2 lay exactly on the
normal points. The t-SNE manifold actually managed to separate the points from
each other in distinct clusters.

4.2 Unsupervised learning in pre-deployment

4.2.1 One Class SVM

The tuned parameter used for scikit-learn’s One Class SVM is:
• nu = 0.08

32

4. Results from evaluation tests

0 100 200 300 400 500
Dataset index

1.0

0.5

0.0

0.5

1.0
Bi

na
ry

 P
re

di
ct

io
n

va
lu

e

Prediction
Anomaly truth

0 100 200 300 400 500
Dataset index

100

80

60

40

20

0

Pr
ed

ict
io

n
va

lu
e

Prediction

Testing One Class SVM

Figure 4.3: One Class SVM predictions for the pre-
deployment set.

Table 4.1: Confusion matrix for One Class SVM

Truth\Prediction Anomaly Normal
Anomaly 85 43
Normal 84 359

Scores for One Class SVM:
• Accuracy: 77.8%
• Recall: 66.4%
• Precision: 50.3%

As shown in figure 4.3, the predicted value sometimes dips below zero and therefore
causes an anomalous prediction. This can clearly be seen in the beginning of the
dataset between indexes 0 and ≈ 40. While at other places in the dataset the
prediction value is very certain of that there is an anomaly present like at indexes
≈ 190 to 210.

4.2.2 Isolation Forest

The parameters used for scikit-learn’s Isolation Forest are:
• contamination = 0.006

The rest are set to their default values.

33

4. Results from evaluation tests

0 100 200 300 400 500
Dataset index

1.0

0.5

0.0

0.5

1.0
Bi

na
ry

 p
re

di
ct

io
n

va
lu

e

Prediction
Anomaly truth

0 100 200 300 400 500
Dataset index

0.20

0.15

0.10

0.05

0.00

0.05

0.10

Pr
ed

ict
io

n
va

lu
e

Prediction

Testing Isolation Forest

Figure 4.4: Isolation Forest predictions for the pre-
deployment set.

Table 4.2: Confusion matrix for Isolation Forest

Truth\Prediction Anomaly Normal
Anomaly 121 7
Normal 28 415

Scores for Isolation Forest:

• Accuracy: 93.98%

• Recall: 94.5%

• Precision: 81.2%

It almost perfectly predicts where the anomalies were added in the dataset. Only a
few indexes were missed both before and after the anomaly points.

34

4. Results from evaluation tests

4.3 Supervised learning in pre-deployment

4.3.1 Neural network

0 100 200 300 400 500
Dataset index

0.00

0.25

0.50

0.75

1.00

1.25

M
et

ric
 v

al
ue

Prediction
True value
Difference
Threshold

0 100 200 300 400 500
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e

Anomaly
prediction
Anomaly
truth

Testing

Figure 4.5: Neural network predictions for the pre-
deployment set.

Table 4.3: Confusion matrix for Neural Network

Truth\Prediction Anomaly Normal
Anomaly 88 40
Normal 18 425

Scores for Neural Network:
• Accuracy: 89.8%
• Recall: 68.8%
• Precision: 83.0%

The prediction threshold a from equation 3.12, was set to 1.4. In figure 4.5 it
can be seen that it correctly predicts where the anomalies are located. But the
difference between the prediction and the true value goes up and down meaning
that the binary prediction also does the same and therefore causing many spikes in
the binary prediction and also affecting the accuracy score.

35

4. Results from evaluation tests

4.3.2 Auto-encoder

0 100 200 300 400 500
Dataet index

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

m
et

ric
 v

al
ue

Average Prediction
Average truth
Average difference score
Threshold

0 100 200 300 400 500
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e Anomaly

prediction
Anomaly
truth

Testing

Figure 4.6: Auto-encoder predictions for the pre-deployment
set.

Table 4.4: Confusion matrix for Auto-encoder

Truth\Prediction Anomaly Normal
Anomaly 100 28
Normal 13 430

Scores for Auto-encoder:
• Accuracy: 92.8%.
• Recall: 78.13%
• Precision: 88.5%

The size of the hidden layers of the auto-encoder is

[40, 25, 20, 15, 10, 5, 10, 15, 20, 25, 40] (4.1)

The number of epochs is 1000. The threshold parameter a is 2.1. Similarly to the
neural network in section 4.3.1, the auto-encoder performed very well. With the
occasional missed predictions such as at around index 100 in figure 4.6.

36

4. Results from evaluation tests

4.3.3 SVR

0 100 200 300 400 500
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
et

ric
 v

al
ue

Prediction
Truth
Difference
Threshold

0 100 200 300 400 500
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e

Anomaly prediction
Anomaly truth

Testing

Figure 4.7: SVR predictions for the pre-deployment set.

Table 4.5: Confusion matrix for SVR in pre-deployment

Truth\Prediction Anomaly Normal
Anomaly 47 81
Normal 8 435

Scores for SVR:
• Accuracy: 84.4%.
• Recall: 36.7%
• Precision: 85.5%

The threshold scale parameter was set to a = 2.5. There are some missed predictions
in the beginnings of the dataset and at index around 370 because of the threshold
being a bit to large.

4.4 Sensitivity analysis
The algorithm chosen for sensitivity analysis using the pre-deployment implemen-
tation, was the neural network. The neural network had 10 hidden layers with
dimension 32. The input layer had 39 layers and the output layer has 1 layer. The
model was trained with 500 epochs and used the ”Adam” optimizer in Keras. The
loss function was ”Mean Squared Error”. The prediction threshold a from equation

37

4. Results from evaluation tests

3.12, was set to 1.4.

When no noise was added in figure 4.8, the neural network predicted the true value
very precisely. This caused the anomaly prediction threshold in equation 3.12 to
be very small and predict many anomalies in the data set. The resulting accuracy
score is 77.4%. Recall and precision will not say anything useful because there are
no anomalies in the dataset which means they will both be 0%.

When the noise had varying degrees of standard deviation, the resulting accuracy
score went from 76.7% with σ = 0.1 to 89.3% with σ = 0.8.

4.4.1 No noise

0 100 200 300 400 500
Dataset index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
et

ric
 v

al
ue

Prediction
True value
Difference
Threshold

0 100 200 300 400 500
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e

Anomaly
prediction
Anomaly
truth

Testing

Figure 4.8: Neural network predictions on the pre-deployment
set with no noise added.

Table 4.6: Confusion matrix for Neural Network with no noise
added

Truth\Prediction Anomaly Normal
Anomaly 0 0
Normal 129 442

38

4. Results from evaluation tests

4.4.2 Noise with σ = 0.1

0 100 200 300 400 500
Dataset index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
et

ric
 v

al
ue

Prediction
True value
Difference
Threshold

0 100 200 300 400 500
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e

Anomaly
prediction
Anomaly
truth

Testing

Figure 4.9: Neural network with noise with σ = 0.1 added.

Table 4.7: Confusion matrix for Neural Network with noise
with σ = 0.1 added.

Truth\Prediction Anomaly Normal
Anomaly 40 88
Normal 45 398

Scores for neural network with σ = 0.1:

• Accuracy: 76.7%.

• Recall: 31.2%.

• Precision: 47.1%.

39

4. Results from evaluation tests

4.4.3 Noise with σ = 0.3

0 100 200 300 400 500
Dataset index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
et

ric
 v

al
ue

Prediction
True value
Difference
Threshold

0 100 200 300 400 500
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e

Anomaly
prediction
Anomaly
truth

Testing

Figure 4.10: Neural network on the pre-deployment set with
noise with σ = 0.3 added.

Table 4.8: Confusion matrix for Neural Network with noise
with σ = 0.3 added.

Truth\Prediction Anomaly Normal
Anomaly 69 59
Normal 39 404

Scores for neural network with σ = 0.3:

• Accuracy: 82.8%.

• Recall: 53.9%.

• Precision: 63.9%.

40

4. Results from evaluation tests

4.4.4 Noise with σ = 0.5

0 100 200 300 400 500
Dataset index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
et

ric
 v

al
ue

Prediction
True value
Difference
Threshold

0 100 200 300 400 500
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e

Anomaly
prediction
Anomaly
truth

Testing

Figure 4.11: Neural network on the pre-deployment set with
noise with σ = 0.5 added.

Table 4.9: Confusion matrix for Neural Network with noise
with σ = 0.5 added.

Truth\Prediction Anomaly Normal
Anomaly 72 56
Normal 33 410

Scores for neural network with σ = 0.5:

• Accuracy: 84.4%.

• Recall: 56.3%.

• Precision: 68.6%.

41

4. Results from evaluation tests

4.4.5 Noise with σ = 0.8

0 100 200 300 400 500
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 v

al
ue

Prediction
True value
Difference
Threshold

0 100 200 300 400 500
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e Anomaly

prediction
Anomaly
truth

Testing

Figure 4.12: Neural network predictions on the pre-
deployment set with noise with σ = 0.8 added.

Table 4.10: Confusion matrix for Neural Network with noise
with σ = 0.8 added.

Truth\Prediction Anomaly Normal
Anomaly 87 41
Normal 20 423

Scores for neural network with σ = 0.8:

• Accuracy: 89.3%.

• Recall: 68.0%.

• Precision: 81.3%.

42

4. Results from evaluation tests

4.5 Unsupervised learning in live environment

4.5.1 One Class SVM

0 100 200 300 400 500 600 700
Dataset index

1.0

0.5

0.0

0.5

1.0

Bi
na

ry
 P

re
di

ct
io

n
va

lu
e

Prediction
Anomaly truth

0 100 200 300 400 500 600 700
Dataset index

6

4

2

0

2

4

Pr
ed

ict
io

n
va

lu
e

Prediction

Testing One Class SVM

Figure 4.13: One Class SVM predicitons.

Table 4.11: Confusion matrix for OCSVM in live environment

Truth\Prediction Anomaly Normal
Anomaly 194 186
Normal 79 274

Scores for One Class SVM:
• Accuracy: 63.8%.
• Recall: 51.1%
• Precision: 71.1%

The tuned parameter used for scikit-learn’s One Class SVM is:
• nu = 0.18

The rest are set to default values. Half of the dataset is normal behavior and the
other half in anomalous behavior. There is small decrease in the predicted value in
figure 4.13 when the anomaly label changes.

43

4. Results from evaluation tests

4.5.2 Isolation Forest

0 100 200 300 400 500 600 700
Dataset index

1.0

0.5

0.0

0.5

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e

Prediction
Anomaly truth

0 100 200 300 400 500 600 700
Dataset index

0.15

0.10

0.05

0.00

0.05

0.10

Pr
ed

ict
io

n
va

lu
e

Prediction

Testing Isolation Forest

Figure 4.14: Isolation Forest predictions.

Table 4.12: Confusion matrix for Isolation Forest in live en-
vironment

Truth\Prediction Anomaly Normal
Anomaly 292 88
Normal 129 224

Scores for Isolation Forest:
• Accuracy: 70.4%.
• Recall: 69.4%
• Precision: 76.8%

The parameters used for scikit-learn’s Isolation Forest are:
• contamination = 0.3

The rest are set to their default values. In figure 4.14 it can be seen that similar to
One Class SVM in figure 4.13, it does have a small decrease in anomaly prediction
in latter half of the dataset when the true anomaly label changes.

44

4. Results from evaluation tests

4.6 Supervised learning in live environment

4.6.1 Neural network

0 100 200 300 400 500 600 700
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 v

al
ue

Prediction
True value
Difference
Threshold

0 100 200 300 400 500 600 700
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e

Anomaly
prediction
Anomaly
truth

Testing

Figure 4.15: Neural network predictions in the live environ-
ment data set.

Table 4.13: Confusion matrix for Neural Network in live en-
vironment

Truth\Prediction Anomaly Normal
Anomaly 15 365
Normal 0 353

Scores for neural network:
• Accuracy: 50.2%.
• Recall: 3.9%
• Precision: 100%

The model was trained with 250 epochs and the prediction threshold a from equation
3.12, was set to 4. In figure 4.15, the model were able to predict 5 peaks where the
data set was anomalous and none where the data set was normal.

45

4. Results from evaluation tests

4.6.2 Auto-encoder

0 100 200 300 400 500 600 700
Dataet index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

m
et

ric
 v

al
ue

Average Prediction
Average truth
Average difference score
Threshold

0 100 200 300 400 500 600 700
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e

Anomaly
prediction
Anomaly
truth

Testing

Figure 4.16: Auto-encoder predictions in live environment.

Table 4.14: Confusion matrix for Auto-encoder in live envi-
ronment

Truth\Prediction Anomaly Normal
Anomaly 65 315
Normal 18 335

Scores for auto-encoder:
• Accuracy: 54.6%.
• Recall: 17.1%
• Precision: 78.3%

The size of the hidden layers of the auto-encoder is

[65, 25, 20, 15, 10, 5, 10, 15, 20, 25, 65] (4.2)

The number of epochs is 1000. The threshold parameter a is 1.5. In figure 4.16 it
can be seen that the amount of anomalous predictions in the beginning of the data
set are far fewer than the anomalous predictions in the latter half of the dataset.
This can also be seen in the average difference between the prediction and the true
value.

46

4. Results from evaluation tests

4.6.3 SVR

0 100 200 300 400 500 600 700
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 v

al
ue

Prediction
Truth
Difference
Threshold

0 100 200 300 400 500 600 700
Dataset index

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 p

re
di

ct
io

n
va

lu
e

Anomaly prediction
Anomaly truth

Testing

Figure 4.17: SVR predictions in the live environment.

Table 4.15: Confusion matrix for SVR in live environment

Truth\Prediction Anomaly Normal
Anomaly 7 373
Normal 4 349

Scores for SVR:
• Accuracy: 48%.
• Recall: 1.8%
• Precision: 63.6%

The threshold parameter a is 3.5. This algorithm predicted 7 correct anomalous
points and 4 false anomalous points as shown in table 4.15 and figure 4.17.

47

4. Results from evaluation tests

48

5
Analysis

In this chapter, analysis of the previously presented results will be discussed. Each
individual data set is discussed in detail with the respective methods and approaches.
Some analysis is also presented about the proposed solutions as a whole, choice of
metrics and issues with implementation into a real world system. Lastly, several
recommended areas of future work is presented.

5.1 Design and performance of evaluation tests

5.1.1 Visualizations
On the pre-deployment set in figure 4.1, the PCA decomposition didn’t manage to
separate the normal observations from the anomalous observations. The anomalous
observations do however spread out more than the normal observations but that is
not a very robust assumption since many of them cross over the normal observations
and is therefore indistinguishable from them. The t-SNE manifold were able to clus-
ter the anomalous data points together into four distinct small clusters. But these
are so close to other clusters and sometimes grouped together with other clusters
that it is not good way to differentiate them.

On the live environment set in figure 4.2, the PCA decomposition was not able
to distinguish the anomalous points from the normal observations. They lay both
on the same path that form an odd shape in figure 4.2. The t-SNE manifold was how-
ever more successful to cluster the different data points together that should make
them distinguishable. But, the clusters in figure 4.2 are very similar to other clusters
of normal observations. Given the selected metrics, there is therefor no obvious way
to pick out anomalous point from normal clusters if the setup is unlabeled.

5.1.2 Pre-deployment
Each algorithm tested showed promising results. They were able to predict the lo-
cation of all the anomalies with confidence. The fact that they didn’t have close
to ≈ 100% accuracy is less important when considering the setup presented in this
thesis. It is still of value that the algorithm predicts anomalies at all close to the
actual anomalous behaviour and that it doesn’t make false anomaly predictions. In
the case with One Class SVM and Isolation Forest, the lower graph in figure 4.3 and
4.4 might be more relevant for predictions. One Class SVM actually did some false

49

5. Analysis

predictions in the beginning and close to the middle of the test set. But in the lower
graph of figure 4.3 it can be seen that the value is very close to zero and not as small
as the other anomaly predictions later in the data set. Since the decision function
for One Class SVM is just the sign of the prediction value, the confidence of which
the algorithm has at each data point is lost. The prediction value is therefore a
more robust indicator for anomaly prediction in this case. Isolation Forest in figure
4.4 did very well and only did false prediction very close to true anomalies.

The neural network, auto-encoder and SVR also performed well. Even though they
had worse accuracy score than both One Class SVM and Isolation Forest, the neural
network and the auto-encoder still could predict at the correct place in the dataset
where the anomalies occurred. As pointed out above, the difference between the
prediction and the true value is more relevant for detecting anomalies since it shows
how anomalous the datapoint is. SVR was however worse than the neural network
and auto-encoder. It didn’t manage to predict two places in the beginning in figure
4.7 of the test set where there were noise added and looking at the difference doesn’t
show any confidence that it was just barely under the threshold like it was in case
of data points at index ≈ 370 to 380.

The reason these algorithms perform well given the low amount of samples in the
pre-deployment dataset can be attributed to the lack of diverse training samples.
The system was loaded with a very simple test case that wasn’t very diverse in its
operation.

5.1.3 Sensitivity analysis

In figure 4.8, the threshold is very close to zero and thus there are a lot of anomaly
predictions. This is because of how the threshold is calculated in equation 3.12. The
value prediction is actually very close to the true value and therefore the average
difference is close to zero. This way of calculating the threshold is not ideal since
it has this flaw if the is no anomaly present. Something more suitable would be to
have a threshold that is the same every time(e.g ε ≈ 0.1) or a large a as the scaling
factor the prediction function in equation 3.12.

When σ = 0.1 in figure 4.9, there are three missed predictions in the data set.
But at other places it did predict pretty well. For σ = 0.3, 0.5 and 0.8 there is a
very similar story but progressively better. These results can be explained by the
way noise was added to the data set. This will be explained more in section 5.1.4.

5.1.4 Analysis of added noise in pre-deployment datasets

The way noise was added to the pre-deployment data set in equation 3.14 has some
flaws. Since the noise is multiplicative, it will suppress whatever signal it is multi-
plied with if the folded version of normal distribution has a mean less than 1. The
mean of the folded normal distribution in terms of the regular normal distribution

50

5. Analysis

is

µFN = σN

√
2
π
e(−µN/2σ2

N) + µN

(
1− 2Φ

(−µN
σN

))
(5.1)

Where Φ(x) is cumulative distribution function for the normal distribution. Equiva-
lently the variance for the folded normal distribution in terms of the regular normal
distribution is

σ2
FN = µ2

N + σ2
N − µ2

FN (5.2)

Since µN = 0 for every case, a table can be constructed to show the different
statistical properties of the folded normal distribution.

Table 5.1: A table showing the different folded normal proper-
ties in terms of standard deviation for the normal distribution.

σN σFN µFN
0.1 0.06 0.08
0.3 0.18 0.24
0.5 0.30 0.40
0.8 0.48 0.64
1 0.60 0.80

As can be seen in table 5.1, the noise added will on average dampen the signal it is
multiplied with and with a large precision. Z ∼ FN (µFN , σFN).

E[(1 +Q(t))Z] =E[(1 +Q(t))]E[Z] (5.3)
=µFN(1 + µQ) (5.4)
=µQnoise

(5.5)

V ar[(1 +Q(t))Z] =E
[
((1 +Q(t))Z − E[(1 +Q(t))Z])2

]
(5.6)

=(1 + 2µQ + E[Q(t)2])(σ2
FN + µ2

FN)− µ2
FN(1 + µQ)2 (5.7)

=σ2
Qnoise

(5.8)

The complete derivation can be found in appendix A.1. Since both µFN and σFN
are less than one, equation 5.4 and 5.7 will have an dampening effect on the noisy
signal for all the values shown in table 5.1. But when σN = 1 the noisy signal should
be unaffected by the dampening and instead make the signal noisy as intended.

5.1.5 Live environment
In this use case, it was much harder to differentiate the defined normal behavior
versus the anomalous behavior. In figure 4.13, the class prediction from One Class

51

5. Analysis

SVM is noisy. However, the prediction value below show a small decrease in the
latter half of the dataset where the anomalous code were running. Isolation Forest
in figure 4.14 follow a similar pattern where the prediction decreases slightly in the
latter half of the testing set. This observation is easily missed and not at all robust
for detection anomalies.

The neural network however, showed some promise in figure 4.15. Even though it
predicted very few anomalous points, it didn’t predict them in the wrong part of
the data set. This is still not very good but at least it showed some confidence of
where the anomaly was present in the data set. The auto-encoder and SVR didn’t
do nearly as good. The auto-encoder in figure 4.16 predicted a lot of false alarms
while the SVR in figure 4.17 didn’t predict much at all. If the true label on this
data set was not known, the prediction in both cases wouldn’t be enough to tell if
there was an anomaly present or not.

The overall poor performance can be attributed to the few data points for training
and not enough differentiation in the data. The injected ”bugs” only affect few of
the metrics used and was therefore not enough for these algorithm to make a clear
differentiation between them. This could certainly be solved with more data.

5.2 Model design and choice of metrics
The test results indicate that performing anomaly detection like the model sys-
tems proposes, on individual microservice instances seems viable to solve the task
of detecting anomalous behaviour in general. The tests do not directly show that
anomalies related to software bugs can be found, while other classes of anomalies
are ignored. The specific class of anomalies will instead become recognizable in
situations where several instances of a microservice is analyzed, where a subset is
running a later version. Most likely, other choices of metrics would not change these
facts. Staying with the choice of a subset of key performance metrics is therefore
viable to maintain a lower complexity.

A specific class of what could be classed as anomalies are performance improvements
as well as large changes in general to the microservice. In the case for improvement,
it is advantageous that they are detected short term and can be analyzed. In the
long term, the system would need to be retrained on a regular basis as the microser-
vice changes in how it operates over many updates. The viability of the suggested
solution models should increase as a function of how patches change behaviour in
terms of the selected performance metrics, over time.

5.3 Implementation in a real-world scenario
The threshold function(equation 3.12) for supervised algorithms is not ideal in an
implemented system. In an implemented system, predictions should be done contin-
uously and thus the averaging of the predicted error is not an ideal solution. A con-

52

5. Analysis

stant threshold would instead be more suitable. The threshold scaling parameter(a)
also has to be larger since in an implemented system the anomalies would be rarer
than in the dataset tested in this thesis.

A fundamental challenge for a live solution system is that it may need to be trained
locally in order to be deployed to different customers. One way to avoid the prob-
lem might be to get information about the traffic model from the customer and
run training using simulations before deployment to customer. Capturing long-term
cyclical behaviour and training the network for these may not be possible either
cause of the regular need for retraining, and this also fortifies the need to perform
simulations before customer deployment, where all types of cyclical behaviours may
be simulated.

5.3.1 Ethical evaluation of proposed solutions
The solutions proposed, calls for the use of performance metrics for a microservice
instance. This type of data does not connect to users, but rather how the soft-
ware operates. Furthermore, if an implemented system is only available to the same
personnel, which is already handling other metrics from the DB-server, then our
solution is in line with what is implemented.

The suggested solutions would impact workforce as well as developers who work
in areas related to investigating anomalies, if implemented in a real-world scenario.
It is uncertain if it could lead to a need for less employees, but the way the solution
simplifies looking for anomalies will have positive impact since less focus will have
to be put on a lot of raw metrics. The workforce or developers could instead be
reactive as to when the system reacts.

5.4 Future work

5.4.1 Improved system load testing
As previously mentioned in section 5.1.2 and 5.1.5, the load testing of the system
was not very sophisticated. It basically called the micro-service a specified rate per
second and then undid those operations a few moments later. It would be more
desired to have the rate follow a traffic model that would cover more load cases and
be more realistic.

5.4.2 More data
As mentioned in section 5.1.2 and 5.1.5, more training data is desired to improve
the performance of the proposed model. Especially in the case of the neural network
based algorithms. It also follows naturally from an improved load test from section
5.4.1, that the amount of data is required to be much larger to cover the whole
distribution of loads for training.

53

5. Analysis

5.4.3 Evaluate more algorithms
As mentioned in theory, there is a high chance of achieving better performance
by implemented different types of Deep Learning techniques. There are numerous
different algorithms for detecting anomalies that are not covered in this thesis but
could be valuable for further testing and evaluation. two methods that were only
briefly researched, but fell outside the scope were the following:

• Bayesian Ridge Regression:
This algorithm, presented in [31] and [32], uses the posterior distribution of
known data points to make new predictions. This algorithm would be applied
in the same way as the supervised algorithms used in this thesis, namely to
predict one known metric and if the prediction deviates to much from the
truth, a probable anomaly is detected.

• AnoGAN:
A version of a Generative Adversarial Network(GAN) presented in [33], where
an unsupervised algorithm is trained to create a manifold of normal images
of optical coherence tomography. Not only does it correctly detect anomalous
images but it is also able to highlight where in the image the anomaly is.
Another adaptation of GAN for anomaly detection, presented in [34], also
show promise for this task. Further research has to be done in order to make
this type of algorithm fit with the problem presented in this thesis.

• Robust Random Cut Forest(RRCF):
An extension to Random Cut Forest algorithms such as Isolation Forest[21],
presented in [35], show good results and robustness when it comes to imple-
menting anomaly detection in an continuous training setting. The difference
between RRCF and other random cut forest algorithms is how it does the di-
mensional cuts and how it updates the "forest" for new incoming data. RRCF
is more computationally efficient than Isolation Forest and would be applied
in the same way.

54

6
Conclusions

By identifying and modeling the cloud application infrastructure, a conclusion can
be made that a system built for anomaly detection for a microservice should be
performed on microservice instance level. The group of ML systems watching each
microservice within the application should be designed as its own microservice. The
choice of metrics should be limited to key performance indicators in order to better
isolate what type of faults are desired to be detected.

The results from tests run using prototype systems with injected anomalies show
that the proposed type of solution system could be viable, given that anomalies in a
real-world scenario behaves ’differently enough’ from normal behaviour. By further
investigating modern techniques for deep learning, more advanced classifiers can be
designed to outperform the tested classifiers.

In terms of problems, a few conclusions can also be drawn. One is that the problem
of isolating one class of anomalies related to software updates, and not detecting
other types as well, may be difficult. Another class of problems lies in retraining the
classifier. The microservice will change behaviour over time as a lot of updates are
done, and will regularly need retraining. The microservice may also run differently
at different customers, leading to the need for customized training for each one.

55

6. Conclusions

56

Bibliography

[1] “FAQ - Cloud Native Computing Foundation,” 2017. [Online]. Available:
https://www.cncf.io/about/faq/

[2] A. L. Samuel, “Some studies in machine learning using the game of checkers,”
IBM Journal of research and development, vol. 3, no. 3, pp. 210–229, 1959.

[3] Scikit-learn, “Examples - Scikit-learn documentation,” 2017. [Online].
Available: http://scikit-learn.org/stable/auto_examples/index.html

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection,” ACM
Computing Surveys, vol. 41, no. 3, pp. 1–58, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1541880.1541882

[5] Ericsson, “About us - Ericsson Corporate Information,” 2018. [Online].
Available: https://www.ericsson.com/en/about-us

[6] M. R. Smith and T. Martinez, “Improving Classification Accuracy by
Identifying and Removing Instances that Should Be Misclassified.” [Online].
Available: http://axon.cs.byu.edu/papers/smith.ijcnn2011.pdf

[7] “Welcome to Python.org.” [Online]. Available: https://www.python.org/
[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[9] F. Chollet et al., “Keras,” https://keras.io, 2015.
[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[11] “1.4. Support Vector Machines — scikit-learn 0.19.1 documentation.” [Online].
Available: http:
//scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation

[12] Chih-Wei Hsu, Chih-Chung Chang and C.-J. Lin, “A Practical Guide to
Support Vector Classification,” BJU international, vol. 101, no. 1, pp.
1396–400, 2008. [Online]. Available:
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

57

https://www.cncf.io/about/faq/
http://scikit-learn.org/stable/auto_examples/index.html
http://portal.acm.org/citation.cfm?doid=1541880.1541882
https://www.ericsson.com/en/about-us
http://axon.cs.byu.edu/papers/smith.ijcnn2011.pdf
https://www.python.org/
https://keras.io
https://www.tensorflow.org/
http://scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation
http://scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Bibliography

[13] a. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, pp. 199–222, 2004. [Online]. Available:
http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-4043137356&
partnerID=40&rel=R8.0.0

[14] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti,
R. E. Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel, “Equal numbers
of neuronal and nonneuronal cells make the human brain an isometrically
scaled-up primate brain,” The Journal of Comparative Neurology, vol. 513,
no. 5, pp. 532–541, 2009. [Online]. Available:
http://dx.doi.org/10.1002/cne.21974

[15] “Loss Functions and Optimization Algorithms. Demystified.” [Online].
Available: https://medium.com/data-science-group-iitr/
loss-functions-and-optimization-algorithms-demystified-bb92daff331c

[16] M. Chui, J. Manyika, M. Miremadi, N. Henke, R. Chung, P. Nel, and
S. Malhotra, “Notes from the AI frontier. Insights from hundreds of use cases,”
Tech. Rep., 2018. [Online]. Available: https://www.mckinsey.com/mgi/

[17] A. Ng, “CS294A Lecture Notes Sparse Autoencoder,” Cs294a, pp. 1–19, 2011.
[Online]. Available:
https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdfhttp:
//www.stanford.edu/class/cs294a/

[18] Scikit-learn, “Novely and Outlier Detection.” [Online]. Available: http:
//scikit-learn.org/stable/modules/outlier_detection.html#outlier-detection

[19] B. Schölkopf and R. Williamson, “Support Vector Method for Novelty
Detection.” Nips, pp. 582–588, 1999. [Online]. Available:
http://www.cms.livjm.ac.uk/library/archive/GridComputing/
NoveltyDetection/sch00support.pdf

[20] “2.7. Novelty and Outlier Detection — scikit-learn 0.19.1 documentation.”
[Online]. Available: http:
//scikit-learn.org/stable/modules/outlier_detection.html#outlier-detection

[21] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-Based Anomaly Detection,”
ACM Transactions on Knowledge Discovery from Data, vol. 6, no. 1, pp. 1–39,
2012. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2133360.2133363

[22] L. Van Der Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008. [Online].
Available: https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

[23] D. Ulyanov, “Multicore-tsne,”
https://github.com/DmitryUlyanov/Multicore-TSNE, 2016.

[24] A. Ghodsi, “Dimensionality Reduction A Short Tutorial,” 2006. [Online].
Available: https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/
readings/tutorial_stat890.pdf

[25] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” 2015. [Online]. Available:
https://arxiv.org/pdf/1502.03167.pdfhttp://arxiv.org/abs/1502.03167

[26] S. Aksoy and R. M. Haralick, “Feature Normalization and Likelihood-based
Similarity Measures for Image Retrieval,” no. October 2000. [Online].

58

http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-4043137356&partnerID=40&rel=R8.0.0
http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-4043137356&partnerID=40&rel=R8.0.0
http://dx.doi.org/10.1002/cne.21974
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://www.mckinsey.com/mgi/
https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf http://www.stanford.edu/class/cs294a/
https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf http://www.stanford.edu/class/cs294a/
http://scikit-learn.org/stable/modules/outlier_detection.html#outlier-detection
http://scikit-learn.org/stable/modules/outlier_detection.html#outlier-detection
http://www.cms.livjm.ac.uk/library/archive/Grid Computing/NoveltyDetection/sch00support.pdf
http://www.cms.livjm.ac.uk/library/archive/Grid Computing/NoveltyDetection/sch00support.pdf
http://scikit-learn.org/stable/modules/outlier_detection.html#outlier-detection
http://scikit-learn.org/stable/modules/outlier_detection.html#outlier-detection
http://dl.acm.org/citation.cfm?doid=2133360.2133363
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
https://github.com/DmitryUlyanov/Multicore-TSNE
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://arxiv.org/pdf/1502.03167.pdf http://arxiv.org/abs/1502.03167

Bibliography

Available:
http://www.cs.bilkent.edu.tr/~saksoy/papers/prletters01_likelihood.pdf

[27] J. Brownlee, “What is the Difference Between Test and Validation Datasets?”
[Online]. Available:
https://machinelearningmastery.com/difference-test-validation-datasets/

[28] H. Hamilton, “Confusion Matrix - CS 831, University of Regina,” 2012.
[Online]. Available: http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_
matrix/confusion_matrix.html

[29] Y. Bengio, “Practical recommendations for gradient-based training of deep
architectures,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 7700 LECTURE NO, pp. 437–478, 2012.

[30] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” pp.
1–15, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[31] R. Salakhutdinov, “STA 4273H: Statistical Machine Learning Lecture 1.”
[Online]. Available:
http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture1.pdf

[32] ——, “STA 4273H: Statistical Machine Learning Lecture 2.” [Online].
Available:
http://www.utstat.utoronto.ca/~rsalakhu/sta4273/notes/Lecture2.pdf

[33] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs,
“Unsupervised anomaly detection with generative adversarial networks to
guide marker discovery,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 10265 LNCS, pp. 146–147, 2017.

[34] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar,
“Efficient GAN-Based Anomaly Detection,” pp. 1–7, 2018. [Online]. Available:
http://arxiv.org/abs/1802.06222

[35] S. Guha, N. Mishra, G. Roy, and O. Schrijvers, “Robust Random Cut Forest
Based Anomaly Detection On Streams,” Proceedings of The 33rd
International Conference on Machine Learning, vol. 48, 2016. [Online].
Available: http://jmlr.org/proceedings/papers/v48/guha16.pdf

59

http://www.cs.bilkent.edu.tr/~saksoy/papers/prletters01_likelihood.pdf
https://machinelearningmastery.com/difference-test-validation-datasets/
http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html
http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html
http://arxiv.org/abs/1412.6980
http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture1.pdf
http://www.utstat.utoronto.ca/~rsalakhu/sta4273/notes/Lecture2.pdf
http://arxiv.org/abs/1802.06222
http://jmlr.org/proceedings/papers/v48/guha16.pdf

Bibliography

60

A
Appendix 1

A.1 Variance of noisy data-set derivation

V ar[(1 +Q(t))Z] =E
[
((1 +Q(t))Z − E[(1 +Q(t))Z])2

]
(A.1)

=E
[
(1 +Q(t))2

]
E[Z2]− (A.2)

2E [µFN(1 + E[Q(t)])(1 +Q(t))Z] + (A.3)
(µFN(1 + E[Q(t)]))2 (A.4)

=(1 + 2E[Q(t)] + E[Q(t)2])(σ2
FN + µ2

FN)− (A.5)
2µFNE[Z]E[1 +Q(t)](1 + E[Q(t)])+ (A.6)
(µFN(1 + E[Q(t)]))2 (A.7)

=(1 + 2µQ + E[Q(t)2])(σ2
FN + µ2

FN)− 2µ2
FN(1 + µQ)2 (A.8)

+ µ2
FN(1 + µQ)2 (A.9)

=(1 + 2µQ + E[Q(t)2])(σ2
FN + µ2

FN)− µ2
FN(1 + µQ)2 (A.10)

=σ2
Qnoise

(A.11)

The 2nd order moment of the folded normal distribution in equation A.2 and A.5 is
equal to the 2nd order moment of the regular normal distribution. If Y ∼ N (µ, σ),
then

E[|Y |2] = E
[
(
√
Y 2)2

]
= E[Y 2]

I

	List of Acronyms
	Introduction
	Background
	Cloud native applications
	Machine learning
	Anomaly detection
	Implementation at Ericsson AB

	Aim
	Objectives
	Previous work
	Scope
	Disposition of thesis report

	Background on Machine Learning
	Supervised learning
	Support Vector Machine(SVM)
	Support Vector Regression(SVR)
	Artificial Neural Networks
	Deep learning
	Auto-encoders

	Unsupervised learning for outlier/novelty detection
	One Class SVM(OCSVM)
	Isolation Forest

	Pre-processing
	t-distributed Stochastic Neighbor Embedding(t-SNE)
	Principal Component Analysis(PCA)
	Scaling

	Training and validation

	System model
	Application environment model
	Pre-deployment testing environment
	Live environment

	Anomaly detection in cloud environments
	Data gathering and preprocessing
	Feature vector design
	Training the classifier
	Classification and presentation

	Metric choices for queries
	Ethical aspects of model
	Generating datasets using prototypes
	Pre-deployment
	Sensitivity analysis in pre-deployment
	Live environment

	Descriptions for evaluation tests
	Visualization of data using decomposition techniques
	Tests using unsupervised algorithms
	Tests using supervised algorithms
	Sensitivity analysis in pre-deployment
	Testing with unsupervised algorithms
	Testing with supervised algorithms
	Sensitivity analysis testing

	Results from evaluation tests
	Visualization using PCA and t-SNE
	Pre-deployment set
	Live environment set

	Unsupervised learning in pre-deployment
	One Class SVM
	Isolation Forest

	Supervised learning in pre-deployment
	Neural network
	Auto-encoder
	SVR

	Sensitivity analysis
	No noise
	Noise with = 0.1
	Noise with = 0.3
	Noise with = 0.5
	Noise with = 0.8

	Unsupervised learning in live environment
	One Class SVM
	Isolation Forest

	Supervised learning in live environment
	Neural network
	Auto-encoder
	SVR

	Analysis
	Design and performance of evaluation tests
	Visualizations
	Pre-deployment
	Sensitivity analysis
	Analysis of added noise in pre-deployment datasets
	Live environment

	Model design and choice of metrics
	Implementation in a real-world scenario
	Ethical evaluation of proposed solutions

	Future work
	Improved system load testing
	More data
	Evaluate more algorithms

	Conclusions
	Bibliography
	Appendix 1
	Variance of noisy data-set derivation

