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Eye region segmentation using deep learning for Smart Eye tracking systems.
Preliminary work on pixelwise eye region classification using convolutional neural
networks.

DANIEL HALLBERG
OSCAR NILSAGARD

Department of Electrical Engineering
Chalmers University of Technology

Abstract

To understand and predict human actions and intentions is a complex task. How-
ever, by studying the eye, face and head movements of a person, conclusions can be
drawn regarding their alertness, focus and attention. Smart Eye has been an active
company since 1999 that to date develops artificial intelligence driven eye-tracking
technology. This technology is used to, for example, predict human intentions and
actions as well as assist the human in various scenarios depending on the field of use.

This master thesis comprises a preliminary investigation of the feasibility to perform
pixel-wise classification of an eye frame using convolutional neural networks. The
aim is to design a convolutional neural network for automatic segmentation of the
eye frame to obtain pixel-level details about the spatial distribution of the different
eye regions as well as any glint or glares that might be present. The information
retrieved from such a network may be used to make more intelligent decisions or es-
timations that could increase the robustness of current Smart Eye tracking systems
for automotive applications such as driver attention.

The proposed network consists of an encoder-decoder type architecture based on
the well known network architecture, U-net. The architecture is solely built up by
convolutional layers, pooling layers and activation functions, thus giving the net-
work the property of being able to take an input image of arbitrary dimensions and
output a correspondingly-sized output image. Training of the network consists of
a pre-training phase where synthesised data is used in order to generate weights
that, via transfer learning, supports the learning of real world image data. The final
network is trained with over eight million real world eye images generated from over
2000 different videos.

The network shows good performance, in terms of accuracy and robustness, which
implies that the proposed approach is feasible for eye region segmentation. Future
improvements such as inference speed are essential for integration into embedded
platforms and should be explored. To conclude, the usage of convolutional neural
networks to do pixel-wise classification of the eye regions is indeed feasible.

Keywords: Semantic segmentation, Convolutional neural networks, Fully convolu-
tional networks, Eye segmentation, Eye tracking
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1

Introduction

The chapter at hand will present a sufficient amount of background information to
understand the topic and content of this thesis. It will also present the project de-
scription, aim, limitations as well as a summary of previous research and discoveries.

1.1 Background

Computational problems that required large amounts of time to solve back in the
days due to limited hardware, can now be solved rather quickly. This is because
of the exponential increase of both speed and efficiency in today’s computers. As
the performance of computers have risen, the computational problems have also
grown more complex and thus requires better hardware to compute. One of these
computational problems are artificial intelligence (AI), where machines demonstrate
intelligence. There are subfields of the research area Al wherein machine learning is
one of them. The expression machine learning originated from Arthur Samuel back
in 1959 and is still being used today [1]. Machine learning is built upon models from
statistics and probability theory to, without being explicitly programmed, learn to
make predictions/decisions based on given sample data [2]. As the amount of digital
data has expanded well beyond what existed back in the 60’s, the field of machine
learning has directly benefited from this as it requires large amounts of data to train
an algorithm that is both accurate and robust.

A subfield of machine learning is deep learning. Deep learning uses various methods
to learn features from data to, for example, detect objects or to classify regions in
an image [3, 4]. Deep learning can be applied to fields such as computer vision,
machine translation, speech recognition et cetera. Depending on the given problem,
different kinds of networks can be applied. One type of deep learning models are
deep neural networks and a special kind of deep neural networks are convolutional
neural networks (CNNs) which is the chosen network type for this project. CNNs
are commonly used to analyse visual imagery to, for example, do semantic image
segmentation where it classifies pixels belonging to a specific class [5].

1.1.1 Smart Eye

Smart Eye has been an active company since 1999 that to date develop artificial
intelligence driven eye-tracking technology. This technology is used to, for example,
predict human intentions and actions as well as assist the human in various scenar-



1. Introduction

ios depending on the field of use. Their main market is the automotive industry,
however they are also active in for example aerospace, aviation, psychology, neuro-
science, medical research. By 2001, the company released their first non-intrusive
eye-tracking system and by 2005 they released a system in which they could monitor
if a person was falling asleep. Today the company have released a wide range of
solutions for their different markets [6].

The hardware in a Smart Eye system generally consists of up to eight cameras and
multiple infrared flashes, allowing 360 degree head and eye tracking. The infrared
flashes are used since these utilise frequencies in the near infrared light spectrum,
which are outside of the visible spectrum for the human eye. This removes the
possibility of disturbing the user which could happen if visible light was used. The
cameras have a lens in which visible light is blocked out, only allowing near infrared
light to pass through [6].

The software that is used in most of their systems is named ’Smart Eye Pro’. This
system provides state-of-the-art visual head tracking, where it can automatically
detect and track the head and physical components of it. The output from this
software can therefore be for example the 3D positions of the regions around the
eyes, ears, mouth and nose, the gaze or an identification of the user. This sort of
information can be used to for example adjust personalised settings such as seat
position and mirrors, adjust safety features such as the airbag, track alertness and
sleepiness or be used for Human-Machine Interface (HMI) interaction [6].

1.1.2 Safety applications in motor vehicles

Computer vision and other sensing systems are being more commonly used in motor
vehicles as they can assist the driver in the driving process. Advanced Driver Assis-
tance Systems (ADAS) have increased the comfort and safety for vehicle occupants
and vulnerable road users by minimising the human error [7]. Examples of ADAS
are systems designed to avoid accidents and collisions such as collision avoidance
systems, blind spot control and pedestrian crash avoidance mitigation. Smart Eye’s
tracking systems are today being integrated in motor vehicles to promote better
safety through studying a person’s eye, face and head movements. Algorithms can
distinguish and draw conclusions regarding the drivers alertness, attention and focus
among others.

In 2018, the Council of the European Union submitted a proposal regarding strength-
ening and revising requirements for safety features and rules in road vehicles. This
proposal requested deployment of new and advanced safety features in relevant ve-
hicle categories since these have a potential of saving lives on EU roads. According
to the proposal driver drowsiness, attention monitoring and advanced distraction
recognition are some safety features that have a high potential of reducing the num-
ber of accidents. Advanced distraction recognition is a system which is capable of
visually recognise the attention level of the driver in a specific traffic situation and
give the driver a warning if needed [8]. To visually distinguish the attention level of
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1. Introduction

the driver, some sort of a tracking system is needed and that could be Smart Eye’s
tracking system.

1.2 Project description

This thesis aims to study and develop methods to automatically segment the eye
regions (seen in Figure 1.3), including skin, sclera, iris, pupil and any glints or glares
that may be present, using CNNs. The information retrieved from such a network
may be used to increase the robustness of current Smart Eye tracking systems for
automotive applications such as driver attention. The questions that will be an-
swered throughout the thesis are:

Is it feasible to use CNNs for eye region segmentation?
Since there are no literature regarding segmenting the whole eye region using CNNs
available, it is in prior hard to grasp if it will be successful. As a lot of data can
be generated, the main problem will be to find a suitable CNN architecture which
can learn to find the important features needed to segment the eye region. If such
a network exists - will the performance metrics be good?

Will occlusions such as glasses and glares have an affect on the performance?
Since a large amount of the population uses some kind of visual aid, such as glasses,
this could pose a problem for the CNN if it has not been trained properly for this
particular scenario. Information regarding the eye regions might be lost due to oc-
clusion from glasses. However, even if there is partial occlusion in the eye region,
will the CNN still be able to predict reasonably well in these types of scenarios?

Is it possible to create a network with low enough computational cost to be

implemented in Smart Eye’s existing systems?
Since this network might be implemented in Smart Eye’s embedded systems environ-
ment in the future depending on the results, it is desirable to keep the computational
needs low. This is due to the fact that the network has to perform predictions faster
then the refresh rate of Smart Eye’s current system to be able to make their system
more robust. However, this is a proof of concept study so it is not a demand from
Smart Eye.

1.2.1 Aim

The aim of this thesis is to design a CNN for automatic segmentation of the eye
region to obtain pixel-level detail about the spatial distribution of the different
regions prioritising the dark pupil, iris, sclera and skin. The network should take a
frame of an eye as input and outputs one or several probability maps in which each
pixel has a probability of belonging to a specific class. For example, the network
could output one probability map per class (pupil, iris, sclera et cetera) in which
each pixel indicates the probability of that pixel belonging to the specific class. If
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time allows, light/grey pupils, glints as well as glares will be included as classes in
the network.

1.2.2 Limitations

The eye frame of the eye region that is used mainly consists of pupil, iris, sclera
and skin as can be seen in Figure 1.3. However, there is a possibility of for example
glints or glares to interfere with the previous mentioned classes. Therefore the thesis
will be divided into different phases where parts of the classes will be excluded in
order to simplify the problem. The first phase, as previously stated, will limit the
classes to the dark pupil, iris, sclera and skin. If the network successfully manages
to classify these, the second phase is to include glints, glares, as well as light /grey
pupils. As time is of the essence, the network will not be integrated into Smart
Eye’s current tracking system.

1.2.3 Semantic Segmentation

Semantic image segmentation also referred to as pixel-level classification is the task
of labelling each pixel with a label indicating the class [9]. This means that algo-
rithms that performs semantic segmentation provide pixel-wise labelling of an image.
With the maturity in the domain of deep learning, semantic image segmentation has
had tremendous progress recently [10]. This progress comes from the use of CNNs to
perform semantic image segmentation and is used today in various different areas.
The automotive industry is an area where CNNs are being utilised for autonomous
driving where one of the components are image segmentation in order to generate an
environment that the computer understands [11][12]. In the medical sector, CNNs
are also widely used for medical image segmentation. This could, for example, be
to segment the lungs, heart [13], brain tumour [14] or iris for pre and post cataract
surgery [15].

A basic schematic of semantic segmentation with means of CNNs can be seen in
Figure 1.1.

o : > Airplane
(4
Person
> Network —>
Bear
Background
Input image Probability Prediction

maps

Figure 1.1: A flowchart visualizing a standard CNN segmentation procedure. The
image is fed to a network that outputs probability maps that can be used for pre-
dicting pixelwise labels.

Basically, an image is forward passed through the CNN which uses a set of building
blocks, explained in Section 2.2.1, to be able to extract features from the input
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image. These features are then used to create probability maps for each class.
Each probability map specifies the probability for each pixel in the input image of
belonging to a specific class. By choosing the class that has the highest probability
for each pixel over the probability maps, a segmentation map can thus be created.

1.2.4 Data for training of network

To allow for training and evaluation of CNNs, ground truth data needs to be col-
lected. In this thesis, the main sets of data that are used are synthesised eye region
images as well as real world eye region images where the ground truth data has
to be created. The synthesised images are retrieved from an open-source software
called UnityEyes [16] while the real world images are extracted using existing tools
provided by Smart Eye based on existing tracker solutions. A figure of a synthesised
image can be seen in Figure 1.2(a) as well as a real world image can be seen in
Figure 1.2(b).

(a) An example of an image re- (b) An example of an real world im-
trieved from the UnityEyes soft- age retrieved from Smart Eye’s track-
ware [16]. ing systems.

Figure 1.2: Example of a synthesised image (left) and a real world image (right).

These images then need to be processed to retrieve ground truth data by an auto-
matic procedure. This automatic procedure uses information given from UnityEyes
as well as Smart Eye’s tracking systems to distinguish boundaries between the var-
ious features of the eye. In other words the procedure will be able to classify each
pixel to the corresponding class of the eye. The automatically processed ground
truth data will be manually verified, where incorrect labels are thrown away and
correct labels are kept. The procedure of generating the datasets will be further
explained in Section 3.1.

As mentioned in Section 1.2, the parts of the eye that are of interest for this thesis is
the pupil, iris, sclera, skin glints and glares. These parts can be seen in Figure 1.3.
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Sclera  Light/grey pupil Iris Skin Glares Glint Dark pupil

Figure 1.3: The interesting parts from an real world image for this thesis.

The glints and glares are reflections from the infrared flashes, where the glints are
reflections from mainly the cornea (the most outer part of the eye covering the pupil
and iris) and glares are reflections from the glasses. The light/grey pupils occurs
when the infrared flash is positioned close to the camera and can be compared to
the red-eye effect for colour photographs [17].

1.3 Related work on semantic segmentation

In 2015, Fully convolutional networks (FCNs)[18] by Long et al. played a major
role for image segmentation and is still today being used. Their work was the first
to introduce FCNs for image segmentation, and this new type of end to end convo-
lutional network started to become a popular CNN architecture [9]. What is special
with FCNs is that they do not have any fully connected layers. FCNs are solely
built up by convolutional layers, pooling layers and activation functions. This gives
the property of being able to take an input image of arbitrary dimensions and out-
put an image of the same size [18]. Today, there are plenty of state-of-the-art CNN
architectures for semantic image segmentation which will be discussed in Section 2.5.

Related work that has used CNNs for performing semantic segmentation of an eye
frame including skin, sclera, iris and pupil has not been found during the literature
studies. However, there are published articles regarding iris segmentation using
CNNs [15], [19], [20], [21], [22], an area that is closely related to this thesis. As
stated in Section 1.1, there are also various other fields where CNNs have been
applied to segment images into different regions. In this section, different approaches
for iris segmentation will be discussed as well as other fields where segmentation is
performed using CNNs.

1.3.1 Segmentation of the iris

Iris segmentation is highly related to this thesis and has been studied extensively.
One of the applicable fields where iris segmentation can be used is to reliably iden-

tify a person given an image of their eye, due to the uniqueness of a person’s iris
[15], [19], [20], [21], [22], [23], [24], [25].
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There are plenty of methods that has been used throughout the years for segmenting
the iris. Tan and Kumar [23] proposes in their paper a framework for iris segmen-
tation in both near infrared and visible imaging conditions. Their framework uses
support vector machines in order to classify an image into iris and non-iris regions.
Zhao and Kumar [24] also proposes, in their paper, a method for performing seg-
mentation of the iris, working in both near infrared and visible imaging conditions.
However, their method uses a [ energy regularizer in order to suppress present noise
and thus help localising the iris ellipse by using a variation of a circular Hough trans-
form. Based on the found iris ellipse post processing operations are performed to
fine tune the boundary of the iris mask. Proenca [25] proposes in his paper a colour
based iris segmentation method. What makes this work stand out from previous
mentioned is that it first focuses on finding the sclera since this is the easiest distin-
guishable region in non-ideal images according to Proenca. The sclera is afterwards
used to find a noise-free iris region exploiting the fact that they are adjacent to each
other. The framework is based on feature extraction and neural networks.

In recent days, there have been plenty of published papers utilizing FCNs for iris
segmentation. Lakra et al. [15] proposes in their paper a deep learning architecture
based on the idea behind FCN. Their work mainly focuses on the fact that the state-
of-the-art algorithms that were available failed to segment irises that had undergone
cataract surgery. Their deep learning based architecture is named SegDenseNet and
is built upon DenseNet-121 [26] which consists of 121 convolutional layers over four
convolutional blocks. The outputs from these four blocks are fused together by a
weighted sum in order to receive the prediction of the iris region. Arsalan et al.
[19] presents another CNN based method for iris segmentation. Their framework
is divided into two parts, where the first stage consists of bottom-hat filtering,
canny edge detector, noise removal, contrast enhancement and a modified Hough
transform. After applying the modified Hough transform a mask including the
region of interest of the iris can be extracted and passed into a deep CNN where the
output will be either iris or not iris for the pixels. Bezerra et al. [20] proposes two
deep learning approaches for iris segmentation - FCN and Generative Adversarial
Networks (GANs). Their results shows that both models show promising results in
both near infrared and visual lightning conditions.

1.3.2 Use of segmentation in other fields

Semantic image segmentation is also used in various other fields such as the automo-
tive industry and the medical sector. Semi autonomous driving is becoming more
and more integrated in newly produced cars such as Tesla Autopilot [27], Mercedes-
Benz Drive Pilot [28] and Volvo Pilot Assist [29]. In order for the autonomous
driving to properly work, a challenging task is to understand the driving perception
that we as humans use in order to make safe driving decisions. To understand the
driving scene, semantic image segmentation is needed in order to distinguish for
example object shapes and location information at pixel level [30]. These objects
could for example be road signs, traffic lane markings, persons, buildings, cars et
cetera [31].
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It is obvious for us humans that different objects in the driving scene have different
importance for decision making. By nature, we understand that it is more impor-
tant to keep track of the road, cars and pedestrians in comparison to the sky and
buildings on the side of the road. However, this is not always clear for a machine
and therefore it is important to have higher priority for such objects in order to use
more computational power for these to receive higher accuracy [30]. According to
Zhang et al. [12], one of the leading causes of collisions on roads is unintended lane
departure. Therefore, lane detection is of great importance for semi autonomous
systems in order to for example maintain in the correct lane. It would be desirable
to be able to segment the whole driving scene as well as possible, however the chal-
lenge that arises is the trade off between accuracy and computational cost [30].

In the medical sector, semantic segmentation is of importance since manual image
segmentation requires both knowledge and time. According to Chen et al. [13], image
segmentation has been a major challenge for medical imaging since the segmentation
results are usually needed in order to derive various results. However, in recent
years progress has been made in the medical sector due to deep learning based
segmentation methods such as CNNs used for automatic segmentation. Areas where
CNNs are utilised for semantic segmentation are for example be to segment the
lungs, heart [13], brain tumour [14] or coronary artery in computed tomography
angiography images [32].

1.4 Outline of thesis

Apart from the introduction given in Chapter 1, the report will be divided into
five additional chapters. Chapter 2 contains theoretical knowledge necessary to
understand the project. It will mainly consist of key concepts of deep learning as well
as some state-of-the-art networks available for semantic segmentation. Chapter 3
presents a description of the methodology used throughout the thesis. In Chapter 4,
the gathered results will be presented in various forms such as graphs, images as well
as tables. Lastly, in Chapter 5 and Chapter 6, a discussion regarding the results,
future work and a final conclusion is given.
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Theory

This chapter aims to introduce the theoretical knowledge needed for this thesis. It
presents an introduction to artificial neural networks as well as a detailed explanation
about convolutional neural networks and fully convolutional networks. This chapter
also presents some of the state-of-the-art networks used today for semantic image
segmentation.

2.1 Basics of Artificial Neural Networks

Artificial neural networks (ANN), commonly referred to as neural networks, are
models inspired by the biological neural system. Although ANN’s are inspired by
the humankind’s nervous system, they are far from a true replica. The network
most often consists of an input layer, a single or multiple hidden layers and an out-
put layer. The hidden layer(s) is built up by a finite collection of artificial neurons
positioned in layers which can be compared to the neurons in a biological brain [33].

Each single neuron in a hidden layer or output layer takes an input from either a
single or multiple neurons in a previous connected layer. Depending on the input
from the neuron(s), the current neuron(s) can make various decisions. An algorithm
called forward propagation is used to, given an input, produce an output. The
algorithm propagates the input through hidden layers up until the output layer
which produces an output [34]. The more hidden layers used, resulting in a deeper
neural network, the more complex decisions the network can make [33]. A figure of
a typical network can be seen in Figure 2.1.

Hidden Output
layer layer

Figure 2.1: Simple model of how the artificial neurons are connected in-between
the different layers for a feed forward neural network.
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2.2 Convolutional neural network

In this section, the theory behind CNNs will be explained. It includes the mathe-
matical properties of the building blocks which are convolutional layers, activation
functions, pooling layers and fully connected layers. Convolutional neural networks
are a sub-class of deep neural networks (DNN), where deep neural networks are neu-
ral networks with multiple hidden layers to extract features from an input. CNNs
are most commonly used when the data has a grid-like structure. An example of a
grid-like structure is an image wherein the image itself consists of pixels mapped to
a two dimensional grid or array. CNNs have been proven to be effective on tasks
related to image analysis analysis/classification/segmentation [34].

2.2.1 Building Blocks

The architecture of CNNs varies depending on for example the desired output or
the complexity of the task. Building blocks are used to shape different architectures
where the blocks used are convolutional layers, pooling layers, activation functions
or fully connected layers. To get a better understanding on how these blocks work
and what they do, a summary is given in this section.

2.2.1.1 Convolutional layer

The convolutional layer in a CNN is where a convolution between an input and a
kernel (filter containing weights) takes place in order to produce an output. This
output is often referred to as a feature map. The convolutional layer is used to
extract features from an input and create a feature map out of these [35]. Given
an image, the convolution layer may extract features about, for example, each of
the different eye regions. It is common in machine learning to use multi-dimensional
arrays, typically referred to as tensors, instead of single-dimensional ones [34]. As an
example, given an image as input which consists of a two-dimensional array where
the kernel also should be a two-dimensional array, the convolution therefore consists
of two sums rather than one. The formula to calculate the feature maps is given as:

S(i,7) = (K« I)(t,5) =>_> I(i+m,j+n)K(m,n)+b, (2.1)

where S is the feature map, I is the input, K is the kernel and b is the bias [34].
When an input is processed through a convolution layer, the output will consist of
many feature maps stacked on top of each other, where each feature map is based
on Equation 2.1. This is due to the fact that the convolutional layer may consist of
multiple different filters and as such results in an equal number of features maps.
The output will consists of a 3-D array (width, height, depth). The output is later
sent through an activation function which will be covered in the activation function
section.

Differentiating itself from a fully-connected neural network, the convolutional layer

in a CNN can help a machine learning system due to its sparse interactions and
parameter sharing [34]. Typically in fully-connected neural networks, all outputs
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are connected to all inputs in the corresponding layers producing non-sparse inter-
actions. However, in CNNs, this is not the case as not all outputs are connected
to all inputs. This is achieved by choosing a kernel that has a smaller size than
the input [34]. As the kernel is iteratively convolved over the input axes, each pixel
is used multiple times in the same convolution. The factor determining how many
times a pixel may be used in a convolution is dependent on the kernel size as well
as the stride factor. The stride factor determines how many pixels the kernel will
move each time it slides. For example, if stride is set to one, the kernel will move
one step (pixel). With the same reasoning as before, if the stride is set to two it will
move two steps (pixels) each time. Because of the decreased amount of parameters,
compared to fully-connected layers, convolutional layers leads to less operations and
lowers the amount of memory needed to store the model.

2.2.1.2 Activation function

An activation function is a nonlinear function that given inputs from other neurons
or from the input image, can determine an output of that neuron [34]. The range
of the output can vary depending on what activation function is used.

The activation function is nonlinear to enable non-linear mappings from input to
output. If a linear activation function is used, the model would be limited to lin-
ear transformations, thus the model cannot represent every possible transformation
[34]. The activation function plays a significantly important role when training the
network as, depending on which activation function is used, the network may yield
varying end results. To calculate the activation of each neuron, the feature maps is
passed through an activation function according to Equation 2.2.

hi, = g(Sk), (2.2)

where S refers to multiple feature maps at each convolution layer, k£ is an index
specifying the depth and g is the activation function. Each feature map Sy consists
of an input, weight matrix and bias term as specified in Equation 2.1 [34].

There exists multiple activation functions, where each of them can perform better or
worse depending on the task. Two activation functions that are commonly used in
today’s machine learning problems are the Hyperbolic Tangent (tanh) as well as the
sigmoid function. Although neither of these activation functions are recommended in
neural networks nowadays. Instead, the Rectified Linear Unit (ReLU) is currently
the state-of-the-art activation function recommended [34]. The ReLU function is
defined as

1, ifz>0,

i (2.3)
0, otherwise,

f(x) = max(0,2) = f'(x) = {
where x is the input to a specific neuron. One of the reasons why ReLLU is popular is
that it is easy to optimise due to easy computations which will be further explored in
Section 2.3. Since the output is either zero or x (input), it is thus less computation-
ally expensive if compared to the tanh or sigmoid function. Another advantage is
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that the ReLLU function achieves sparsity [36]. Sparsity means that only some neu-
rons are activated for a given input, meaning less computational power is needed.
This is due to the fact that ReLLU can have an activation energy of zero, thus essen-
tially skipping that neuron which in turns generates a true sparse representation [36].

Although ReLU has many advantages, it also has some disadvantages. One of these
is the dying ReLU problem, where essentially neurons ’'die’ due to gradient not
flowing through the neuron [37]. As the gradient becomes close enough or equal
to zero, the weight of affected neurons will stop changing, resulting in an inactive
neuron or in other words the death of a neuron [37]. One way to tackle this is to
use leaky ReLU instead. Leaky ReLU is defined as:

fla) = {x, if z >0, (2.4)

0.01z, otherwise.

This allows for non-zero gradients, thus preventing the gradient from disappearing.
However, by using leaky ReLU the same sparsity will not be achieved as in the
original ReLLU case due to the domain only containing non-zero gradients [38].

Another key activation function that is common to use in semantic segmentation is
the softmax function. With neural network classifiers, softmax is used to acquire a
probability distribution over a set of different classes. As such, it may be used to
choose a single pixels class out of several inside the network [34]. The final layer
inside a neural network classifier usually use softmax as the activation function to
perform the previously mentioned selection. It is defined as:

softmax(z); = ;Xp(xi)

2j=1 exp(z;)’ (25)

where x is the input into the activation function, 7 is the index for the class and K
is the total number of classes.

2.2.1.3 Pooling layer

Pooling layers are used to reduce the size of the input. This is achieved by reducing
the resolution of the feature maps after the convolutional layers. Pooling layers are
therefore commonly referred to as down-sampling layers [39]. The operation has
mainly two important outcomes - preventing high computational complexity as well
as acting as a regularization technique to avoid overfitting [40]. The most common
pooling techniques are an average, or a max [41]. In Figure 2.2, an example of the
resulting kernels after the pooling operations on a random feature map can be seen.
These kernels are then forwarded to the next layer.
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Figure 2.2: The resulting maps after max and average pooling on a feature map.

As can be seen in Figure 2.2, the max pooling operation takes the maximum value
of each pool-kernel (red boxes in Figure 2.2). The averaging operation takes the
average value of each pool-kernel. The width and height of the pool-kernel depends
on how much reduction in width and height of the feature map that is desired. If a
kernel of size 2 x 2 is used, it will result in a size reduction by 2. If a larger reduction
is desired then a larger pool-kernel or a larger stride length is needed. The stride
length, in other words how many steps the kernel is moved between each operation,
most often has the same length as the dimension of the kernel.

2.2.1.4 Fully connected layers (or Dense layers)

Dense layers, or fully connected layers, are commonly placed last in a CNN and is
used in, for example, image classification tasks. The amount of dense layers can
vary, meaning it can be one or more depending on the task. However, since a dense
layer expects a fixed size as an input, it can not handle arbitrary image dimensions
with the same network [42].

2.3 Training a neural network

Training is done to find the optimal network weights for the task at hand. By having
the "best fit’ of weights, the network should be able to produce good result for a
given problem. In this section, important steps before, during and after training
will be discussed as well as problems that might occur.

2.3.1 Pre training

Before training a neural network, there are a few things to take into consideration,
some of which are crucial to the training. The most important one is the data and
how it is handled.

2.3.1.1 Data collection and division of data

It is vital to validate that the data collected through either automated processes or
manual annotation is correctly labeled. If not, the network will not learn what it
should. Another essential part is the partitioning of data. Generally three datasets
are used: a training, a validation and a test set. As the network should not be
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biased, it is important to not share images between either of the three sets. If the
network has already been exposed to some images while training, an evaluation
of the network performance may not be accurate due to the previously mentioned
bias, if it contains the same images. Depending on how much data exists, the ratio
between the datasets may differ. However, as suggested by various literature, a rule
of thumb is to keep the ratio for training around 70-80% and the rest for validation
and testing. Lastly, performing data augmentation is a way to increase the dataset
and to make the network more robust to noise [43]. More about data augmentation
in Section 3.1.4.

2.3.1.2 Transfer learning

Transfer learning is a concept within machine learning where you transfer already
learned knowledge of a similar task, where similar features has already been learned,
and incorporate this knowledge into a new task. This means that the already trained
filters can be reused in the new network. The more similar the tasks are to each
other, the better [44].

The way to apply transfer learning for CNNs is to use layers and their weights of
an already trained model and change or add additional layers if needed. The earlier
layers are used to extract more general non abstract features such as lines or blobs
et cetera, while the later layers extract more abstract features that are specific to
the task [45]. Therefore, using an already trained model, such as the one proposed
in [46] which has been trained on an image database named ImageNet [47], and then
fine-tune it to adapt to a new task, should speed up the training as well as result in
a high accuracy. As the network does not have to start from scratch when training,
it can therefore possibly learn the task specific features faster [44]. An additional
reason to use transfer learning is if you have insufficient amounts of data to fully
train a network on a new task [48].

2.3.2 Main training

During training, the trainable parameters (weights) are trying to adapt to the data
in order to make better predictions. To optimise the training of a network, there
are multiple factors that needs to be taken into account and decided on before the
actual training starts.

The training of a CNN is an optimisation problem and thus requires an optimisation
method. Common optimisation methods are usually either stochastic gradient de-
scent or mini-batch gradient descent. Mini-batch gradient descent is a combination
of classical gradient descent and stochastic gradient descent, where it converges with
more stability compared to the stochastic one. This is due to not updating with a
single example, but rather a batch of them resulting in less oscillations around the
local minima. It is also faster than the classical one, as it does not require the whole
dataset to be loaded into the memory [49].
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The learning rate is a scaling factor for gradient descent which determines how
much the weights should change each iteration with respect to a loss gradient. By
increasing the learning rate, the algorithm may have a faster convergence. How-
ever, the algorithm may not find the optimal minima or may not converge at all.
A smaller learning rate results in slower convergence, although with a more accu-
rate minima. Thus it is preferable to have an adaptive learning rate, where it might
start with a larger value and then decrease each step until a fixed minimal value [50].

Another common optimisation method that is widely used is Adam. Adam uses
adaptive moment estimation of the gradients to compute adaptive learning rates for
each individual parameter [51]. It uses momentum to hopefully converge faster as
compared to classical stochastic gradient descent, although there are variations of
stochastic gradient descent that includes momentum [49].

A CNN is trained through epochs, meaning when the complete dataset has been
exposed to and utilised by the network. The actual training process starts with
forward propagation of an input through the network to produce an output/pre-
diction. The output is then compared to the ground truth labels and an error can
be calculated between the two. The error is determined by a loss function and
for image segmentation a common one is cross entropy. Other loss functions are
Sorensen—Dice coefficient and Jaccard index as defined, but not proposed, in [52].
Even though CNNs can consist of huge amounts of trainable parameters, the back-
propagation algorithm makes the calculations of the gradients, which are necessary
for the optimiser, efficiently [53]. The trainable parameters are then updated ac-
cordingly and a new epoch may begin.

Overfitting is an issue in machine learning, where the network learns to predict the
training dataset, but when exposed to new, not previously seen data, i.e. validation
data, it fails to predict correctly. In order to prevent overfitting, methods such as
dropout and data augmentation (resulting in an increased amount of training data)
[54] as well as early stopping [55] can be used.

The validation dataset is used during the training phase to test whether the network
is learning the correct features or not and to minimise overfitting. If, while you are
training, the training accuracy keeps improving while the validation accuracy has
either stopped increasing or is decreasing, the network is doing something wrong
and overfits. It is also used to perform unbiased evaluations while training to e.g.
choose the set of weights that results in the best performance.

2.3.3 Post training

After a training session has been completed, a test session starts which aims to
evaluate the network’s performance. The session has a separate dataset which is
not a part of the training nor the validation data to avoid being biased. Within
this session, multiple test cases of varying degree of difficulty will be evaluated to
establish statistics regarding the network’s performance. An overall performance
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measurement, where the whole test dataset is evaluated, is one type of a test sce-
nario. Another one might be to test a subset of the test data in which you only
include images that matches a specific scenario, e.g. only include images with glasses
in them. Through these performance measurements, a general consensus of where
the network is lacking, thus knowing what to improve on, can be established. Com-
mon metrics in semantic segmentation is presented in Section 2.3.3.1.

2.3.3.1 Metrics for evaluation of network performance

In order to get an understanding of the performance of the network, various perfor-
mance metrics can be used. Commonly used metrics for semantic segmentation are
for example accuracy, precision, recall, F'1-score (also known as Dice coefficient) and
mean intersection over union (mloU) (also known as Jaccard index). These metrics
are based on correctly and falsely classified pixels, where expressions can be set up
as in the confusion matrix in Table 2.1.

Predicted Class
Positive Negative
True | Positive | True Positive (TP) | False negative (FN)
Class | Negative | False Positive (FP) | True Negative (TN)

Table 2.1: Table presenting a confusion matrix, used as a visual representation of
the performance of for example an algorithm.

This type of confusion matrix can be set up for each class where "positive’ correspond
to the class of interest and 'negative’ correspond to everything else. True positives
correspond to the pixels being predicted as the class of interest while they actually
are the class of interest. False negative correspond to the pixels being labeled as
some other class while they actually were the class of interest. False positive corre-
spond to the pixels being predicted as the class of interest while it actually is some
other class. Lastly, true negatives correspond to the pixels being predicted as some
other class while they actually are some other class. The 'c’ in Equations 2.6, 2.7,
2.8 and 2.9 refers to the class that is evaluated.

The accuracy for a specific class, ¢ can be calculated as in Equation 2.6,

TP.+ TN,
TP, + FN.+ TN, + FP,.’

The accuracy is a measure of the fraction of correctly classified pixels. The precision
for a specific class, ¢ can be calculated as in Equation 2.7,

TP,
PreCiSiOn = m (27)

Precision is a measure of how precise the prediction of the class of interest is. The
recall for a specific class, ¢ can be calculated as in Equation 2.8,

TP.
l= ——=—. 2.
Reca TP, 1 FN, (2.8)

Accuracy = (2.6)
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F1-score is a metric used to combine precision and recall. This is done since recall
and precision by themselves can be unbalanced. This unbalance can be seen if for
example the network would predict all the pixels to the same class. This would
result in a very low precision but a perfect recall for that class. How the F1l-score
metric is calculated can be seen in Equation 2.9,

2 * Precision * Recall
F1- = ) 2.9
seore Precision + Recall (2.9)

Mean Intersection-Over-Union is a measure of the averaged percent of intersection
between the groundtruth masks and the predicted masks. In other words, the num-
ber of pixels that are correctly classified over the total number of pixels. How the
metric is calculated can be seen in Equation 2.10,

1 TP
IoU= —— =
o |classes| Z TP.+ FP. + FN.’

cEclasses

(2.10)

where classes is the set of classes and |classes| correspond to the total number of
classes in the set.

2.4 Fully Convolutional Networks

In 2015, Long et al. [18] introduced a new type of approach for image segmentation
- Fully convolutional networks (FCNs). This new approach played a major role for
image segmentation and this type of end to end convolutional network started to
become popular and is still today [9]. What is special with FCNs is that it does not
have any fully connected layers. FCNs are solely built up by convolutional layers,
pooling layers and activation functions. This gives the property of being able to take
an input image of arbitrary dimensions and output a correspondingly-sized output
image [18].

2.4.1 Deconvolution and Unpooling layers

A deconvolution layer, also referred to as transposed convolutional layer, is an op-
eration in a neural network which simply tries to perform upsampling by learning
weights on how the upsampling should be performed. This operation is able to ob-
tain a pixel-dense output from a coarse down-sampled input [18].

The unpooling operation is used to do the reverse of what the pooling operation
does. This is illustrated in the schematic in Figure 2.3 below.
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Figure 2.3: Illustration of how the pooling and unpooling operation works. In this
case max-pooling is used.

When performing the pooling operation, the maximum activation is stored in what
is called switch variables. These switch variables are later on used to place each
activation back to its original pooled location. The output from the unpooling layer
is a reconstructed activation map of the original size, however it is sparse since it
is an enlarged version of the input map [56]. The output from the unpooling layer
is then processed by the deconvolution layer. Here, the deconvolution layer densify
the input through associating the input activation with multiple outputs. Therefore,
the output from the deconvolution layer is an enlarged and dense activation-map
[56].

2.4.2 Available Fully Convolutional Networks

Since the original FCN by Lake et al. [18] suffer from generating output predictions
which have low resolution, the concept has been adopted into new architectures
which tackle this problem. These new FCN-type architectures have shown great
success and outperform old state-of-the-art segmentation methods. Four of the
main approaches for tackling the problem of low resolution are:

» Encoder-decoder

o Image pyramid

e Spatial pyramid pooling

» Atrous convolutions / dilated convolution

The four main approaches increase their segmentation performance through global
features, in other words features that describes the image as a whole, and contextual
features, meaning checking the relationship of nearby pixels to find features since
these are beneficial for pixel classification [57]. The approach that will be of the
greatest interest for this thesis is the encoder-decoder one.

Encoder-decoder

The network of an Encoder-decoder is simply divided into two parts - one encoder
and one decoder, as seen in Figure 2.4.
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Figure 2.4: Typical encoder-decoder network consisting of convolutional layers
(grey), downsampling layers (red) and upsampling layers (blue). The encoder is the
part where downsampling is performed and the decoder is the part where upsampling
is performed.

For the first part, the encoder gradually reduce the spatial dimensions of feature
maps. This is performed to simplify the extraction of global information. In the sec-
ond part, the decoder, the spatial dimensions as well as object details are gradually
recovered [57]. Some of the encoder-decoder networks also uses ’'skip-connections’
which basically mean that information from the encoder is transferred over to the

decoder to be used in various ways. Some examples of encoder-decoder convolutional
networks are U-net [43], Segnet [58], RefineNet [59] and ENet [60].

2.5 State-of-the-art networks

There are plenty of state-of-the-art networks used today in which different ap-
proaches are used for the architecture. For this project, the main focus will be
on encoder-decoder networks.

2.5.1 U-net

In 2015, Ronneberger et al. presented U-net, a convolutional neural network model
used for biomedical image segmentation [43]. The network is based on Long et al.
[18] so called FCNs where changes were made in order for the network to work with
a small amount of data and yield high segmentation accuracy. Their work showed
promising results and outperformed the other methods used in the International
Symposium on Biomedical Imaging (ISBI) challenge for neuronal structure segmen-
tation in electron microscopic images. Furthermore, they also won the cell tracking
challenge in 2015, also hosted by ISBI [43].

The architecture used for U-net is a typical encoder-decoder described in Sec-
tion 2.4.2 and is portrayed in Figure 2.5.

19



2. Theory

64 64

128 64 64 2

input

: output
Image .
g > el bl bt segmentation
tile ol of oo oo
Al & F 8 map
X s Pt ]
ol of ool oof
ol o ooff oo
ol ol ol ol

572 x 572
570 x 570
568 x 568

' 128 128
256 128

o Wl o
ol ©|
OE O)
— o

002

~

284
2822
280

MESIEE 512 256 '

= conv 3x3, ReLU
copy and crop

¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1

Figure 2.5: Image portraying the architecture of U-net taken from Ronnerberg et
al. [43]. As can be seen, the network has an U like shape, which is where the name
originate from.

Since the network is based on FCNs, it is solely built up on convolutional layers, ac-
tivation functions and pooling layers. The encoder part (left hand side in Figure 2.5)
is used to gradually reduce the spatial dimensions of feature maps for simplifying
the extraction of features. This is done by repetitively performing two convolutions,
each followed with a rectified linear unit (ReLU) and afterwards a max pooling oper-
ation. After the encoder part comes the decoder part (right hand side in Figure 2.5).
This part is used for moving up in spatial dimension again while trying to recover
details. This is done by combining what Ronneberger et al. call up-convolutions,
explained in Section 2.4.1, together with concatenations with feature maps from the
encoder through interconnections (grey arrows between the different levels in Fig-
ure 2.5). The up-convolutions results in more advanced features, however the loss
of localisation information increases. In order to combat this the concatenations
of feature maps are used after each up-convolution. This help to give localisation
information from the encoder to the decoder.

2.5.2 Segnet

In 2016, Badrinarayanan et al. presented Segnet, a deep convolutional encoder-
decoder architecture for image segmentation [58]. The network was primarily devel-
oped for scene understanding applications such as indoor scenes or road scenes.

The architecture used for Segnet is a typical encoder-decoder described in Sec-
tion 2.4.2 and is portrayed in Figure 2.6.
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Figure 2.6: Image portraying the architecture of Segnet taken from Badri-
narayanan et al. [58].

Since the network is based on FCNs, it is solely built up on convolutional layers,
activation functions and pooling layers. The encoder part (the left descending part
in Figure 2.6) consist of 13 convolutional layers which originate from the first 13
layers of the VGG16 object classification network [58], [61]. These layers are used to
gradually reduce the spatial dimensions of feature maps for simplifying the extrac-
tion of features. This is done by performing two convolutions in the two first layers
and three convolutions in the three last layers with each convolutional followed by
a batch normalisation and rectified linear unit (ReLU). In the end of each layer, a
max-pooling operation is performed where the corresponding max pooling indices
are stored. After the encoder part comes the decoder part (the right ascending part
in Figure 2.6). The decoder consists of 13 convolutional layers since each encoder
layer has a corresponding ’inverted’ layer in the decoder. This part is used for mov-
ing up in spatial dimension again while trying to recover details. This is done by
repetitively performing upsampling of the input feature map with the max pooling
indices from the corresponding encoder layer followed by convolutional operations,
batch normalisation and ReLLU. The final layer of the decoder is a softmax classifier,
which classifies each pixel independently to K number of classes. In other words,
the output from the network is a K channel image with one probability map per
class [58].

2.5.2.1 Differences from U-net

The largest difference between Segnet and U-net is the fact that U-net transfers
entire feature maps between the encoder and decoder and concatenates them with
the upsampled decoder feature maps, while Segnet only transfers the pooling indices.
Another difference is the architecture, where they are quite similar but there are
fewer convolutions operations in U-net compared to Segnet. This gives Segnet the
possibility of using pre-trained weights from VGG net for the encoder in contrast to
U-net [58].
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Methodology

This chapter aims to present the methodology of the project. The chapter will in-
clude the main steps - collection and annotation of data used for training, validation
and testing of the chosen network, implementation of the chosen network as well as
the evaluation process.

3.1 Data collection

As previously presented in Section 1.1, the amount of annotated data as well as the
quality of the annotations are crucial for the training of a deep learning network.
If the quality of the annotations are low, it could result in the network adapting
to these annotations and result in a worse performing network. Data augmentation
is also an important procedure for collection of data. Not only for increasing the
dataset but also for introducing for example noise, distortions and rotations which
can make the resulting network more robust. With this in mind, collection of data
will be an essential part of this project.

The main datasets created for pre-training of the network are two datasets based
on synthesised images:

o DS-1 (4 classes): dark pupil, iris, sclera and skin

o DS-2 (5 classes): dark pupil, iris, sclera, skin and glint(s)/glare(s)
Furthermore, there are also two datasets created for training the network based on
real world images according to:

o DS-3 (4 classes): dark pupil, iris, sclera and skin

« DS-4 (5 classes): dark/light/grey pupil, iris, sclera, skin and glint(s)/glare(s)
In this section, the methods used for creating these datasets will be explained in
detail.

3.1.1 Collection of synthesised data

Instead of using real world data at the start, one could generate synthesised data
instead. The purpose of synthesising data is to have access to 'perfect’ data, meaning
that the relevant labels and points are always ideally configured for each image.
Since the data is synthesised, you can decide to not include any noisy/distorted
data in the dataset. The performance on the synthesised data can be used as a first
indicator on whether the current architecture of the network can be kept or should
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be changed. Furthermore, this synthesised data can also be used for generating pre-
trained weights that can be used for transfer learning when training on real world
data. Since the synthesised data is perfect, the network should after some training,
be able to perform semantic segmentation with close to no errors on any of the test
samples due to ideal labels and that the training and testing data is similar.

3.1.1.1 UnityEyes framework for generating synthesised data

The synthesised data is generated by a software called UnityEyes developed at Uni-
versity of Cambridge by Wood et al. [16]. This framework allows the user to change
mainly two parameters, the distribution of the gaze and the rotation of the camera
around the head. The gaze is controlled through the values (6,,6,,06,,6,), where
8, and 6, are the pitch p and yaw y of the eyeball and 66, and 460, defines how much
the eyeball pitch and yaw can deviate from ¢, and 6,. The camera is controlled in
a similar fashion through the values (¢, ¢y, d¢,, ¢, ), where ¢, and ¢, correspond
to the pitch and yaw of the camera, while d¢, and d¢, defines how much the actual
camera pitch and yaw can deviate from ¢, and ¢,.

When the software runs, it continuously create eye frame images until the software
is stopped - giving the possibility of creating large amounts of data. An example
batch of what the synthesised data may look like is shown in Figure 3.1.

Figure 3.1: A batch of images generated by UnityEyes.

The data acquired by the software is split up into two parts, where one of the parts
is the actual image (in .jpg format), while the second one contains e.g. the positions
for relevant facial landmarks (in .json format). The retrieved data from the JSON
file that are of interest for this thesis is facial landmarks for the iris contour and
the outer contour of the sclera. These landmarks are represented using a list of
2D-points and can be observed on top of the actual image in Figure 3.2.
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Figure 3.2: Image portraying the points used from the JSON file. The green points
correspond to the iris contour and the red points correspond to the outer contour
points of the sclera.

Apart from the contours, the JSON file containing the data also includes a dimen-
sionless scaling factor between the iris and pupil size. The scaling factor was used
to calculate a ratio between them, seen in Equation 3.1 in order to estimate a pupil
contour, since that data was not given

) pupil size
ratio = ———

iris size (3.1)
The estimation of the pupil contour is achieved by first calculating a centre point
from the iris contour points. This is done by taking the mean value of all the iris
points, seen in Equation 3.2

n

1 1 &
center point = (= Y _x;, — > _ i), (3.2)
i M=
where n is the given number of iris points and ¢ is the i:th point.

By knowing the center point, the ratio between the iris and pupil sizes as well as the
contour points for the iris, the points for the pupil contour can then be calculated
as in Equation 3.3

pupil point, = center point + (iris point; — center point) * ratio, (3.3)

where ¢ corresponds to the the i:th point. An example of the resulting pupil contour
points can be seen in Figure 3.3.
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Figure 3.3: Image portraying the pupil points (blue points in image) achieved from
Equation 3.3.

3.1.1.2 Labeling of synthesised data

By using the collected data from Section 3.1.1 for each image, binary masks for each
class can be created. These masks are generated by first fitting a spline to a number
of the given data points. If the chosen amount of points generated by the spline are
too few, e.g. 6 or 12 points as in Figure 3.4, it results in an octagonal like shape
instead of a smooth curve. This is not desirable as the masks will therefore miss
pixels belonging to a specific class and set them to another one thus resulting in
bad training data. In order to avoid this and to create more correctly pixel-labeled
binary masks, a spline was created by using a higher number of the given points,
where interpolation is performed if needed. A higher number of points can be seen
for 24 points in Figure 3.4 where a smoother ellipse is acquired.

6 points 12 points 24 points

Figure 3.4: How the number of points affect the form of the polygons. As the
number of points increases, the polygons starts to mimic elliptical forms.

However, since large amounts of data is desired it is also important to keep track of
computational heavy operations to reduce the amount of time needed for creating
training data. Therefore, it is important not choose too many points since this leads
to slower generation of data. With this in mind the chosen number of points for
the pupil, iris and sclera splines were 20 points. This resulted in a sufficiently good
enough of an approximation for each of the polygons for correctly labeling each pixel
to the corresponding class.
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An already existing problem called points in polygon also adheres in this case, as
it is necessary to determine what pixels resides within what class to create the
binary masks. This can be solved using, for example, ray-tracing. Ray-tracing is an
algorithm where you start at a point and walk over a fixed axis until the end while
marking each pixel with a value. When the point intersects with a polygon, mark
each pixel as inside (or one, for binary masks) until it intersects again or reaches
the end of the image. This is done for each separate class except for the skin, as
all pixels outside of the other classes will be classified as skin. The sclera, iris and
pupil masks will, however, share some pixels as the pupil polygon is inside of the
iris polygon thus requiring the pupil pixels to be marked as outside in the iris mask.
The same applies for all classes. Two examples of the resulting binary masks can be
seen in Figure 3.5.

> B 4)
>
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>0 |

Image Skin Sclera Iris Pupil

Figure 3.5: Image portraying the masks extracted from the eye image. A white
colour (binary one) in the masks corresponds to the specific class (named at the
bottom of image) while black (binary zero) corresponds to ’something else’.

Since the real world data will be greyscale infrared images, it is desirable to customise
the synthesised image to mimic these for training purposes. This is achieved by
turning the RGB synthesised images into greyscale. This procedure is done by
extracting different contributions from each channel, seen in 3.4.

Grey-scale = (0.299 * R+ 0.587 « G + 0.114 x B), (3.4)

where R corresponds to the red channel, G to the green channel and B to the blue
channel in the RGB image. The weights for the different channels can vary de-
pending on the amount of contribution that is desired from each channel and the
used values for this thesis originate from a technical paper on colour to greyscale
conversion by Grundland et al. [62].

Furthermore a gamma correction was also used to modify the average brightness of
the image. This is important since the real world data has a wide range of brightness
conditions depending on factors such as number of infrared flashes, camera settings
and obstacles resulting in shadows on the user. Two typical images used for training
can be seen to the left in Figure 3.5.

For dataset 2, masks for glint(s) and glare(s) are also needed in order to have the
same output dimensions during training as dataset 4. Since there are no glint(s)
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or glare(s) present in the synthesised data, these masks were simply created as an
empty mask. In other words, there are no glint(s) nor glare(s) in the image.

3.1.2 Real world data

For the real world data, pre-recorded video files are used for creating the datasets.
For each video file there exists associated log files in which Smart Eye tracking
systems have stored output from their tracking algorithms. In this section, the
procedure of labeling the ground truth for each image based on this stored output
will be explained.

3.1.2.1 Architecture of the labeling procedure

For an easier understanding of the labeling process, a flowchart can be seen in
Figure 3.6.

Look for .log .exports/save .log .export

S
Data- ——— .
base T ¥ If files does
L, 5ma -Smb not exist,run i
5 beeeens call __.--” o ubRLLLIEE LY » logwriter
Ask for data
from file diretory™--4 «
.log
Datagenerator
b .export

Eyeclip image
Pupil mask

Iris mask

Sclera mask
Skin mask
Glint mask
Glare mask

¥ ¥ Y ¥ Y Y yw

Figure 3.6: A flowchart describing the labeling process of real world images.

The "Datagenerator’ is the program that runs and handles the labeling of the data.
Initially the Datagenerator sends a request to the database in which it asks for data
from the stated file directory. The database then returns the requested files if they
exist. Afterwards the generator asks for the associated log files from the database
and if these do not exist they are generated by running a program named logwriter.
The output from the Datagenerator will consist of the cropped images combined
with their corresponding masks. These are then saved in a file format that is named
TFRecord, which is a binary file format developed for Tensorflow.
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3.1.2.2 Extracted data from log files

To be able to label the real world data, the stored data from Smart Eye’s tracking
algorithms has to be extracted from the log files. The tracked features that are of
interest for this project are mainly information regarding:

e Location of the pupil and the size of the pupil
» Location of eye alignment point(s)

o Location of the glint(s)

» Eye status (opened/closed)

» Glasses status (Glasses present or not)

o Headpose

e Quality parameters for all the data

o Camera position in reference coordinate system
o Pupil center in reference coordinate system

o Focal length

Information regarding the pupil is given on the form in Listing 1.

1 "pupil":{

2 "center": [

3 20.313232421875,

4 271.9432373046875

5 1,

6 "radiusX":2.979992151260376,
7 "radiusY":4.36136531829834,
8 "angle":0.14156010746955872
o }

Listing 1: The information extracted about the pupil.

As can be seen, radiusX and radiusY vary from each other. This is due to projecting
from a 3D space, where the pupil and iris have a spherical shape, to a 2D plane,
results in an ellipse. The angle is a measure given between the horizontal axis and
the axis for the major radius, in this case radiusY. This axis and angle can be seen
in Figure 3.7.
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Figure 3.7: How the elliptical form of the pupil can be seen based on radiusX
(minor), radiusY (major) and angle.

The eye alignment points are given as 2D points as they have already been projected
from 3D to 2D coordinates. The tracking algorithms currently track 8 points and
they are saved in the format given by Listing 2

1 "eye_alignment points":[

2 {

3 "id":0,

1 "pos": [

5 429.85806274414062,
6 262.3251953125

7 1,

8 "quality":1

9 1,

10

11 {

12 "id" 17,

13 "pos": [

14 405.421630859375,
15 265.14193725585938
16 1,

17 "quality":1

18 +

01,

Listing 2: The information extracted about the eye alignment points.

The location of glint(s) are given as 2D coordinates as in Listing 3. These can vary
from zero reflections to plenty of reflections.
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1 "glint(s)": [

2 {

3 "flashIdx":O0,

1 "glintPos": [

5 142.64311218261719,
6 260.57064819335938
7 ]

8 3,

o 1,

Listing 3: The information extracted about the glint(s).

Relevant data regarding the headpose is its 3D coordinate system where the origo
is in the centre of the head. This coordinate system can be used in order to track
the rotation and movement of the head in between frames from a video file to skip
frames. This information can be used to skip frames if two frames in sequence are
too similar in terms of rotation, resulting in essentially the same data which is un-
necessary.

The status about glasses vary depending on the type of the glasses or if they are
even present. If there are no glasses, the status is simply set to 0. If there are
glasses it is set to 1 and if the glasses are IR-blocking, it is set to 2. If the tracking
algorithms for some reason could not determine the glasses status, thus making it
unknown, the status is set to 3.

Since there exists no data regarding the iris size, this must be estimated based on
the average diameter of the human iris and the pixel density of the current video.
According to "The Human Eye: Structure and Function’ written by Clyde W. Oyster,
the average horizontal diameter of the human iris is 11.7mm [63]. By calculating
the pixel density this measure can be translated into pixels by the equation seen in
Equation 3.5.

Iris radius in pixels = Iris radius * Pixel density, (3.5)

where the iris radius is 5.85mm and the pixel density is in pixels per millimeter.

The pixel density is calculated by using the focal length in pixels, the coordinates
for the pupil center in the reference coordinate system as well as the coordinates for
the camera origin position in the reference coordinate system. The equation for the
pixel density can be seen in Equation 3.6

Focal length

Pixel density = (3.6)

Distance between camera origo to pupil center’

The distance from the camera origo to the pupil center can be calculated as in
Equation 3.7.

(Camera position; — Pupil center;)? (3.7)
1

Distance = J

3

)
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By combining Equation 3.5, Equation 3.6 and Equation 3.7, the iris radius in pixels
can be calculated as in Equation 3.8.

Focal length (3.8)

Iris radius in pixels = Iris radius * -
Distance

However, this radius is considered as the radius for the major axis. Since the iris will
have an elliptical form, the minor radius for the iris will also have to be calculated.
This radius can be achieved by making use of the assumption that the iris and pupil
approximately have the same shape. Thus, the minor radius for the iris can be
calculated as in Equation 3.9

. . . . Pupil minor
Iris minor = Iris major *

_—. 3.9
Pupil major (39)

The minor and major radius will have the same shape as the pupil seen in Figure 3.7,

where the angle states the angle between the horizontal axis and the axis for the
major radius.

As mentioned in Section 3.1.1.2, the labeling of the data requires two dimensional
points. However, since only a radius in the minor and major direction as well as an
angle is gathered for the pupil and iris, 2D coordinate points are used to create the
contours. The points that are of interest can be seen in Figure 3.8 as red crosses.

’

angle

Pupil/Iris center
Figure 3.8: By knowing the pupil/iris center as well as the major and minor radius,

the points marked by red crosses are possible to create.

To be able to distinguish the coordinates for these crosses, distances in the horizontal
as well as the vertical direction has to be calculated. The distances of interest can
be seen in Figure 3.9 named x1, x2, y1 and y2.
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y-axis
A

distance

distance
y1

distance
y2

distance
X2

Figure 3.9: To be able to calculate the points of interest, the distances x1, y1, x2
and y2 have to be known.

By applying basic trigonometry, the distances x1, 22, y1 and y2 can be calculated
as in Equation 3.10

x1 = cos (angle) * major, yl = sin (angle) * major
(3.10)

X2 = cos (g — angle) * minor, y2 = sin (g — angle) x minor

By knowing x1, z2, y1 and y2 the four points can then be calculated as in Equa-

tion 3.11.
First point = (Center-x + z1, Center-y + y1)

Second point = (Center-x — x1, Center-y — y1)
Third point = (Center-x + 22, Center-y — y2) (3.11)
Forth point = (Center-x — 22, Center-y + y2)

, where 'Center-x’ and "Center-y’ correspond to the position of the center point along
the x-axis and y-axis, given in Listing 1.

The resulting points gathered from the log files can be seen in Figure 3.10.
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Figure 3.10: The points of interest gathered from the log files.

As can be seen, the blue points correspond to the pupil points, the red points
correspond to the iris points, the green points correspond to the eye alignment
points and the purple points are the present glint(s) positions.

3.1.2.3 Labeling of real world data

By using the collected data from Section 3.1.2.2, binary masks for each class can be
created. The procedure is basically the same as for Section 3.1.1.2, where a spline is
used to fit between a given number of the data points. Same as for the synthesised
data, the number of chosen points affect the form of the polygon as can be seen in
Figure 3.11.

6 points 12 points 24 points

Figure 3.11: How the number of points affect the form of the polygons. As the
number of points increases, the polygons starts to mimic elliptical form.

It is obvious that 6 and 12 points are not enough points since this will miss pixels
belonging to a specific class and set them to another one thus resulting in bad train-
ing data. In order to make sure that the pixels are belonging to the correct class a
higher number is chosen. However as discussed in Section 3.1.1.2, a higher number
of points also results in higher computational cost per image, thus slowing down the
generation of data. With this in mind the chosen number of points for the pupil, iris
and sclera splines were 20 points, resulting in a sufficiently good ellipse for correctly
labeling each pixel to the corresponding class.

Two examples of the resulting masks created can be seen in Figure 3.12.
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Figure 3.12: Image portraying the masks extracted from the eye-image. A white
colour (binary one) in the masks corresponds to the specific class (named at the
bottom of image) while black (binary zero) corresponds to 'something else’. Glint(s)
and glare(s) are not included in these images.

To be able to create labeled masks for the glint(s), the position(s) given in Listing
3 is used. By knowing roughly where the glint(s) are present, a region around each
glint can be extracted from the image. This extracted image is then normalised
between 0 to 256 and afterwards a threshold of 200 is applied to distinguish which
pixels that has a high possibility of being a glint. If a value is higher than the
threshold, the corresponding mask is set to 1 while all values below is set to 0 for
each pixel. This threshold can be set in many different ways, however the threshold
value was found by ’trial and error’ and is used since it manages to create reasonable
masks for a wide set of videos. After the threshold has been applied on the extracted
image, an averaging blur is used where all resulting pixel values above 0 is set to
1. This is done to increase the size of the mask in order to obtain a ’safety margin’

around the glint(s). This procedure can be seen in Figure 3.13.
Original image Zoom in Threshold glint ~ Average blur Mask on top of
on glint (output mask) original image

Figure 3.13: How the procedure of generating the mask for the glint(s) looks.

When it comes to glare(s), two different methods are used. The first method applies
a threshold to distinguish pixels that are considered a glare. The glare’s pixel values,
almost exclusively, consists of values of 255 if normalised. This method is only used
when the user has glasses on and there is a possibility of a glare being present. The
second method generates 'fake’ glare(s). The fake glare(s) are needed in order to
increase the number of glare(s) that are present in the dataset.

For the first method, a function is called if 'Glasses status’ is set to one, in other
words, the user has glasses on. This function compares the brightness of the glint to
the rest of the image. This is done since the glint most often is significantly brighter
than the rest of the eye and the glare(s) has at least the same brightness or higher
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as the glint. If the function finds out something else is brighter than the glint, then
there is a high possibility of a glare(s) being present in the image whereupon it
performs thresholding. The threshold value is selected as the brightest glint value
in order to find all of the potential glare(s). All the pixels that are higher than the
threshold is set to one in the labeled mask while all values beneath the threshold
is set to zero. An averaging blur is then applied to the mask in order to create a
'safety margin’, same as for the glint(s). This procedure can be seen in Figure 3.14.

Original image Thresholded image Average blur Mask on top of
(Output mask) original image

Figure 3.14: How the procedure of generating the mask for glare(s) looks.

For the second method, a function is called if 'Glasses status’ is set to zero, in
other words, the user has no glasses on. This function generates fake glare(s) and
applies them to the image. The fake glare(s) are generated through four different
parameters:

o Number of glare(s)

« Radius major

o Radius minor

o Angle
These values are randomly set where the major and minor radius can vary from
3 pixels to 15 pixels, the angle can vary from 0 to 90 degrees and the number of
glare(s) vary from 1 glare to 4 glare(s). For each glare, the major and minor radius
as well as the angle are used in the same way as for the iris and pupil to create their
masks. This mask is afterwards applied to the original image by blurring it with
the background. Furthermore, an averaging blur is applied to the mask in order to
create a ’safety margin’ This procedure can be seen in Figure 3.15.

Original image Original image + Mask for Average blur Mask on top of
fake glare fake glare on mask original image

Figure 3.15: How the procedure of generating the fake glare and the corresponding
mask looks.

3.1.3 Size and pixel density for data

As mentioned in Section 2.4, a FCN has the property of being able to take an in-
put image of arbitrary dimensions and output a correspondingly-sized output image.
However, since a larger input image has an increased prediction time (forward pass),
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it is desirable to keep the image size as small as possible in regards of speed. Fur-
thermore, if the dataset would be overrepresented with, for example, images with a
low resolution it would not perform as well on images with a higher resolution and
vice versa. With this is mind, a fixed sized of 96x48 pixels for all images is used.

To keep the fixed size of 96x48 pixels regardless of the resolution of the video, a box
around the eye region is found. The box is based on the eye alignment points, where
a minimum and a maximum of the x and y points from Listing 2 are found. To not
solely include the eye, a margin which scales the box to become either smaller or
bigger. With this crop box, a perspective transformation matrix can be found since
the size might not be 96x48 when the crop box is found. Then do a perspective
warp of the image with the perspective matrix to acquire the crop area of the image
that is of the correct size. Interpolation might be necessary as the crop box varies in
size. This results in a faster generation of data as the whole image does not need to
be rotated/scaled/translated when performing data augmentation, but only a fixed
size as it maps points to the correct place instead.

3.1.4 Data augmentation

Since machine learning benefits from having large amounts of data available, gener-
ating new data from existing data is one way to make the network even more robust
as well as to improve performance. There is a plethora of ways to do data aug-
mentation ranging from adding Gaussian noise to changing RGB values et cetera.
The augmentations in this project mainly consists of some random affine trans-
formations, random scaling, adding gaussian noise, smoothing as well as gamma
correction. The same affine transformation done on the image, is done on the cor-
responding masks in order to not create faulty training/validation data. However,
the other non-geometric transformation augmentations are only performed on the
image itself. This is due to that the network should still predict the same mask,
even when the image includes some noise.

Since the network should not train to remember common position of the classes, i.e.
usually the pupil will be in the centre of the image, or at least close to it in most
cases, the affine transformations should be relatively large. Some common augmen-
tations are to translate the eye to only show half of it or flip the eye upside down or
left to right et cetera. This makes the network learn the shape of the classes rather
than the positions in order to make better predictions.

Offline and online augmentation are two ways to handle random augmentations. On-
line augmentation means that when reading a sample from the the dataset, which
consists of non-augmented images combined with their corresponding masks, it tem-
porarily creates an augmented image and mask just before exposing it to the net-
work. This does not change/add/remove anything from the dataset. The offline
augmentation case, however, instead augments the images and masks before writing
to the dataset.
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Online augmentation has the advantage that you can create enormous amounts of
data from existing data as the augmentations are random and will thus have a small
chance of exposing the same data (meaning same random augmentations) to the
network twice. Although this might be preferable, it slows down the training of
the network as it continuously needs to augment batches of images, thus creating a
bottleneck. With offline augmentation, it instead decreases the amount of time it
takes to train the network, but with the side effect that dataset does not increase
while training. Therefore you are limited to the dataset that you are training on.
Another disadvantage is that since the dataset will be stored locally, it will increase
the space it occupies.

In this project, online augmentation is used for the synthesised images as the dataset
will not be as large as the real world dataset, thus not requiring the speed that
offline augmentation has. The real world dataset will use offline augmentations as
it features many more examples, thus requiring faster training of the network.

3.1.5 The datasets

In this project there will be mainly four different sets of data for training, as de-
scribed in Section 3.1. These datasets can be split up into two sets for pre-training
with synthesised data and two sets for training with real world data. All the images
have a size of 96x48 pixels and are normalised to have zero mean and unit variance
before they are fed to the network. A summary of the datasets can be seen in
Table 3.1.

Synt. data F#training images #validation images
DS-1 60026 16835

DS-2 60026 16835

Real world data

DS-3 2203638 (412 videos) | 182787 (105 videos)

DS-4 8373101 (2192 videos) | 3073005 (548 videos)

Table 3.1: Table presenting the different datasets and the amount of training and
validation images for each dataset.

As can be seen, the amount of images for training and validation for DS-3 and DS-4
are not necessarily split up into ~ 80% training and ~ 20% validation, which was
mentioned in Section 2.3.1 as a rule of thumb. This is due to the fact that the
datagenerator described in Section 3.1.2.1 splits up the different videos according
to ~ 80% training and ~ 20% validation rather than the number of images. This
is done to avoid using similar images of the same person for both the training and
validation set. The datasets used for testing will be explained in Section 3.3.
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3.2 Network implementation

The chosen network for this thesis is U-net described in Section 2.5.1. During the
literature studies there were not much research where U-net was compared to other
state-of-the-art networks. However, Segnet which is another encoder-decoder with
similarities to U-net, described in Section 2.5.2 is compared to other state-of-the-art
networks. According to Mehta et al. Segnet, has one of the lowest category-wise
mean intersection over union compared to other state of the art segmentation net-
works (DeepLab-v2 [64], ENet [60], ERFNet [65], ESPNet [66] FCN-8s [18], SQNet
[67], PSPNet [68]) on the Cityscape dataset [31]. If U-net would show promising
results in regards of segmenting an eye region image, then the possibility of other
networks performing just as good or better is high, based on results from Megta
et al. Instead of spending time comparing and implementing different networks, as
this project is a proof of concept, a more ’basic’ network has been used where more
time has been invested in other areas such as generating large and well annotated
datasets for training.

In this section, the deep learning framework used for implementation, the implemen-
tation of the U-net architecture as well as the training procedure will be explained.

3.2.1 Deep learning framework for implementation of net-
work

The chosen framework for network implementation was Tensorflow. Tensorflow is
Google’s open source library for machine learning developed by Google Brain. It
offers flexibility to scale as it can be used in large data centers or locally on mobile
devices. Tensorflow is built as a graph, where the data flows through nodes that has
pre-defined operations, e.g. convolution, that updates the data at that specific state
accordingly. The edges in the graph is where the data is transported as tensors from
one node to another [69].

Although Tensorflow is the framework chosen, the actual code is written with the
Keras API. Keras is a high-level API library that uses Tensorflow, Theano or CNTK
as backend. It is built with simplicity in mind to go from an idea to experimenting
with it as fast as possible [70]. However, with the increased simplicity you lose some
of the flexibility that Tensorflow by itself can offer.

3.2.2 Implementation of U-net architecture

The chosen loss function for this architecture is the Sgrensen-Dice coefficient, a com-
monly used metric for segmentation. It was chosen because it is basically an overlap
measurement between what the network predicts and what the ground truth is. An-
other key feature of the Dice-loss is that it robust against class imbalance, where the
network may become biased towards major classes as compared to minority classes
[71]. For example, skin (major class) may have the largest region, as compared to
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e.g. pupil (minor class), in the eye frame image.

Adam is the chosen optimiser for this architecture as it usually results in fast conver-
gence and it is robust to complex optimisation problems [51]. According to Andre;
Karpathy at Stanford University, Adam is the recommended optimiser to use for
computer vision related neural networks [72]. The hyper parameters chosen for the
optimiser is the default ones.

Batch size can be chosen almost arbitrarily, however too large of a batch sizes can
cause problems. One of the problems is directly related to the hardware on which
the training is run on. When having a too large batch size, more data is being read
into the memory at the same time, which may cause an overflow. Another problem
is that the network may not be able to generalise well enough, thus resulting in
poor quality of the model [73]. A too small of a batch size results in noisy gradient
estimations which in turn can lead the model to converge to a non-optimum. Hence

a value in-between is what is sought after. In this project, the batch size is set to
64.

To summarise the hyper parameters, the final ones are:

Sgrensen-Dice coefficient, Batch Size:64.
Adam(learning_rate:0.001, (3,:0.9, $2:0.999).
The U-net architecture was implemented from the ground up, based on the paper
written by Ronneberger et al. [43]. Each layer of the network used for this thesis
can be seen in Figure 3.16.
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Figure 3.16: U-net architecture used for semantic eye segmentation.

One major change in comparison to original U-net model is the number of filters
used for each layer. The original model suggested 64, 128, 256, 512 and 1024 for
the encoder layers and 512, 256, 128 and 64 for the decoder layers. For this imple-
mentation, these numbers have been decreased as can be seen next to each layer in
Figure 3.16. This in order to reduce the amount of trainable parameters to achieve
greater inference speeds. With this architecture, the amount of trainable parameters
became approximately 500 000.

3.3 Evaluation on test set

In order to evaluate the performance of the network and distinguish whether or
not it is feasible to use CNNs for eye region segmentation, several things need to
be investigated. First of, the saved data during training must be inspected by e.g.
visualising the data. From the visualisation of the data, it is possible to determine
if the model converged during training or not. Secondly, test sets also referred to
as 'Key performance indicators’” must be set up in order to expose the network to
images that it has not yet seen. By exposing the network to the test sets, perfor-
mance metrics for not yet seen images can be retrieved. Lastly, the corresponding
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segmentation maps retrieved for each input image can be compared to the ground
truth in order to get a better understanding of the resulting performance metrics
achieved from the test sets.

3.3.1 Key Performance Indicators

Key Performance Indicators (KPI), in this case, is a way to test how the network
performs depending on input. The same metrics as presented in Section 2.3.3.1 are
used to create statistics regarding the network’s performance on different test sce-
narios. If some test scenario has a lower performance as compared to others, these
scenarios should be investigated to find out the reason why.

There are many test scenarios to take into account to acquire KPI's for each of
them. The test scenarios for this thesis will be:

« Dark pupil/Bright pupil: As the pupil can change colour depending on
the placement of the flash in relation to the camera, both the dark as well as
the bright pupil scenario have to be split up into two different scenarios. The
network may have a higher performance on one of them and a lower on the
other.

+ Glasses/No glasses: As one of the questions in Section 1.2 is about occlu-
sions due to glasses, one of the test scenarios will therefore solely consist of
images containing glasses. Furthermore, a test scenario that solely consists
of images containing no glasses will also be needed. These test sets will give
information on whether occlusions affect the performance or not.

« Closed eyes: Since the network also has to be able to handle blinks/closed
eyes a test scenario is needed in which only closed eyes are used.

o« Mixed images: These scenarios tests the network with random images to
test the overall performance of the network as a whole. This set will include
all test sets above.

Since the ground truth is auto generated, it might not be completely correct all the
time. As such, the KPI will be split up into two parts to acquire better performance
measurements. The first part will be a quantitative one where the ground truth
is auto generated which, in turn, allows for larger test sets for each scenario. The
other part will be a qualitative one, in which the ground truth is manually labeled
resulting in it being perfect ground truth. Although this set will be considerably
smaller due to time limitations as manually labeling images takes time. The sizes
of these test sets can be seen in Table 3.2.
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5 Classes Qualitative | Quantitative
Mixed set 350 1478124
Dark pupil 100 774589
Bright pupil 100 192618
Glasses 100 395448
No Glasses 100 892866
Closed eyes 20 3042

4 Classes

Dark pupil 100 151650

Table 3.2: Table representing the amount of images for each test set.

3.3.2 Network prediction demo

In order to be able to see how the network performs in 'real time’ a debug program
has been written in Python. It requires a video and the corresponding log file
containing information on where the eyes are located in order to make predictions
on the eyes. The interface of the program can be seen in Figure 3.17.

/

Input image

/

Pupil mask

/

Iris mask

/

Sclera mask

/

Glint/Glare
mask

Figure 3.17: The interface for the program.

As seen in Figure 3.17, the interface contain different bins. The middle bin con-
tains the whole face with white rectangle shaped boxes around the eyes. This is the
part of the face that is sent into the network for prediction. The coloured masks
inside the white box is the highest probability over all the probability maps that the
network outputs, where the different shades of blue correspond to different classes.
The smaller images to the left and right corresponds to the predicted masks for each
respective eye class. These masks are coloured red on top of the eye region image.
The left side corresponds to the right eye and the right side corresponds to the left
eye.

Another feature that the program has is that it can switch between cameras if the
recording consists of a multi-camera setup. In Figure 3.18, the left side view and

43



3. Methodology

the right side view can be seen while Figure 3.17 contain the center view.

Left side view Riaht side view

Figure 3.18: Showcasing the feature in which different views can be used.

In the program, the user is also able to use gamma correction in order to see how the
network handles different brightness scenarios, pause/un-pause the movie as well as
enable/disable the masks in the center bin.
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Results

This chapter will present the most vital results acquired throughout the progression
of the project. As such, it follows a chronological order starting with presenting
results on synthesised data and it later on presents results using real world data. The
initial section presents results from the training and validation phase wherein metrics
such as accuracy, loss and mloU are presented. The next section present results
during the testing phase where the network is evaluated. It presents important
metrics to acquire an overall performance measurement of the network. It also
visualises predictions of different scenarios.

4.1 Results during training

In this section, results acquired during the training phases are presented. The accu-
racy and mloU metrics as described in Section 2.3.3.1 together with the Dice coeffi-
cient loss are used to display rates of convergences during each training phase. The
same network that has been presented in Figure 3.16 combined with the hyper pa-
rameters from Section 3.2.2 are used for all of the following datasets during training.

The training is split up into two main phases, both of which contains two sub-phases
together with an evaluation of the trained model on the real world images. These
phases can be seen in Figure 4.1.

E Phase one .
Pre-train 4 classes Train 4 classes Evaluate 4 classes
' Synthesised data Real data '

Pre-train 5 classes Train 5 classes Evaluate 5 classes
Synthesised data Real data
! Phase two i

Figure 4.1: Flowchart showing in what order the different phases are executed.
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The main phases are used to separate two different tasks, as described in Sec-
tion 1.2.2. The first task is to learn a network to classify the four classes, dark
pupil, iris, sclera and skin. The second task is to train a network to classify the
five classes, dark/bright pupil, iris, sclera, skin and glint/glares. The sub-phases
consists of two different training session, where the first phase means training on
synthesised data with no pre-trained weights. The second sub-phase uses real world
data combined with pre-trained weights acquired from the first sub-phase.

4.1.1 Training and validation results on DS-1

Training on dataset one is the first sub-phase of main phase one. Since the data
used is synthesised with ground truth data which is perfectly labeled, the network
should perform segmentation with close to no errors. The performance retrieved
during training and validation can be seen in Figure 4.2.
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Figure 4.2: Graphs showing the training accuracy (top
left), Dice coefficient loss (top right) as well as the mIoU

(bottom) during training and validation for each epoch on
DS-1.

As can be seen in Figure 4.2, the accuracy and the loss converges rapidly to an
optimum without using any pre-trained weights. The validation accuracy seen in
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Figure 4.2(a), converges towards a value slightly greater than 98% accuracy while the
loss seen in Figure 4.2(b) converges towards a very low value. The high accuracy and
low loss indicates that the network performs segmentation with close to no errors for
the training and validation images. The high performance can also be strengthened
by the fact that mloU converges towards a high value, seen in Figure 4.2(c). This
indicates that the predicted segmentation mask overlaps with the ground truth mask
with close to no errors.

4.1.2 Training and validation results on DS-3

Training on dataset three is the second sub-phase of the first main phase, where
the network is trained to classify four classes. Instead of being trained on synthe-
sised data, the network is now trained using real world data. The weights acquired
from DS-1 are used for transfer learning in order to not start from scratch. The
performance retrieved during training and validation can be seen in Figure 4.3.
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Figure 4.3: Graphs showing the training accuracy (top

left), Dice coefficient loss (top right) as well as the mloU

(bottom) during training and validation for each epoch on
DS-3.

As can be seen in Figure 4.3, the overall performance is good and the rate of conver-
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gence is fast. After only one epoch the network achieves a training and validation
accuracy above 97%, as seen in Figure 4.3(a). The Dice loss also obtains a low value
after only one epoch both for training and validation as can be seen in Figure 4.3(b).
Furthermore, the mIoU converges towards 97% both for training and validation as
can be seen in Figure 4.3(c). The high accuracy, low loss and high mloU is a clear
indication that the network should perform segmentation with close to no error.
The reason why the network has managed to converge and does not improve after
a single epoch is due to a large dataset as well as the pre-trained weights. As the
pre-trained weights are based on synthesised eyes, the network does not have to
learn completely new features.

4.1.3 Training and validation results on DS-2

Training on dataset two is the first sub-phase of main phase two. The data that
is used is still synthesised data, although now the network should learn five classes
instead of the previous four. The expected performance for this network is also
segmentation with close to no error due to the synthesised data being perfect. The
performance retrieved during training and validation can be seen in Figure 4.4.
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Figure 4.4: Graphs showing the training accuracy (top
left), Dice coefficient loss (top right) as well as the mIoU

(bottom) during training and validation for each epoch on
DS-2.
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As can be seen in Figure 4.4, the rate of convergence, as previously seen in Figure 4.2,
remains high for all of the metrics. Training on DS-2 results in a higher convergence
rate compared to DS-1, although it does not retain the same level of accuracy and
loss as DS-1. The difference, however, is almost negligible. Overall, the performance
is still high with close to no significant errors.

4.1.4 Training and validation results on DS-4

Training on dataset four is the second sub-phase of the second main phase, where
the network is trained to classify five classes. The data that is used is real world data
and in comparison to DS-3, bright pupils, glints and glares are now also introduced
to the network. The weights acquired from DS-2 are used to apply transfer learning
in order to hopefully make the network converge faster. The performance during
training and validation can be seen in Figure 4.5.
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Figure 4.5: Graphs showing the training accuracy (top

left), Dice coefficient loss (top right) as well as the mIoU

(bottom) during training and validation for each epoch on
DS-4.

Figure 4.5 displays that the network still retains a good overall performance and
converges rapidly. The accuracy and loss follow a negative trend where they do not
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perform as well as DS-3. The mIoU metric starts high, but decreases continuously
for a few epochs, however the difference is negligible. This was an expected result
as the task is more complex and involves more classes compared to DS-3. With
the same reason as explained in Section 4.1.2, the network does not improve much
further after a single epoch.

4.2 Segmentation performance based on Key Per-
formance Indicators

As previously stated in Section 3.3.1, the testing phase consists of a quantitative
and a qualitative phase. Testing is only done on real world data. This decision
wad made since it was deemed unnecessary to perform more investigative testing on
synthesised data as it was mainly used to enable transfer learning on the real world
datasets.

4.2.1 Quantitative test set

The quantitative test set, as explained in Section 3.3.1, consists of auto generated
ground truth data and as such contains vastly more data than the qualitative one.
The test set for four classes only includes scenarios with dark pupils while five classes
includes test sets for dark pupils, bright pupils, glasses, no glasses, mixed data as
well as closed eyes.

4.2.1.1 Evaluation on four classes

By evaluating the implemented model together with the trained weights from DS-3
on the quantitative test set for four classes, the resulting performance can be seen
in Table 4.1 as well as Table 4.2.

‘Accuracy Dice-loss Precision Recall Fl-score mloU
Darkpupil‘ 0.9828 0.0171 0.9829  0.9829 0.9829 0.9781

Table 4.1: Table showing the various performance metrics introduced in Sec-
tion 2.3.3.1 achieved on the quantitative test set with four classes.

Table 4.1 displays accuracy, loss and mloU with basically the same results as in the
training and validation phase on DS-3 seen in Figure 4.3. Since the accuracy, loss
and mloU does not vary between training and testing, it means that the network
adapts well to unseen images with low error segmentation results. The intersection
over union (IoU) for each class can be seen in Table 4.2.

‘ Pupil Iris Sclera  Skin
Dark pupil ‘ 0.7533 0.7206 0.6393 0.9869

Table 4.2: Table showing the IoU for each class using the quantitative test set for
four classes.
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As can be seen in Table 4.2, the skin has the highest IoU while the sclera has
the lowest one. These numbers directly correlate with the accuracy and loss in
Table 4.1, as all measurement values are kept at a high level, showcasing a well
performing network. One of the reasons as to why the skin class have the highest
accuracy is due to its larger area in comparison to the other classes. Solitary pixels
that have been classified incorrectly does not affect the accuracy as much for classes
that have larger areas. In addition, the sclera has a more complex shape than all the
other classes since it depends on the position of the pupil/iris and eyelid. In some
cases the shape of the sclera can be coherent while in other cases it can consists of
two separate coherent parts.

4.2.1.2 Evaluation on five classes

By evaluating the implemented model together with the trained weights from DS-4
on the quantitative test set for five classes, the resulting performance can be seen in
Table 4.3 as well as Table 4.4.

Accuracy Dice-loss Precision Recall Fl-score mloU
Dark pupil 0.9612 0.0387 0.9615 0.9611 0.9613 0.9530
Bright pupil | 0.9735 0.0267 0.9735 0.9731 0.9733 0.9627
No Glasses 0.9692 0.0307 0.9695  0.9691 0.9693 0.9624
Glasses 0.9016 0.0984 0.9019  0.9013 0.9016 0.8875
Mixed data 0.9420 0.0579 0.9423  0.9418 0.9421 0.9329
Closed eyes 1.0000 0.0000 1.0000  1.0000  1.0000  1.0000

Table 4.3: Table showing the various performance metrics introduced in Sec-
tion 2.3.3.1 achieved on the quantitative test set with five classes.

As can be seen in Table 4.3, the network performs best on the dataset containing
bright pupils as it has the highest accuracy and lowest loss. Videos containing
persons who wear glasses have the worst performance metrics. In the case of the
closed eyes test scenario, the network managed to make predictions with no errors.
The difference between the dark and bright pupil case might be due to the test set
not consisting of the same data. As such, the bright pupil might have better videos
as compared to the dark pupil case. The lower accuracy for the glasses is most likely
due to the occlusions from the glares. If an area is occluded, there is less information
in the eye region for the network to draw concrete conclusions. Closed eyes is the
easiest case as it only contains skin and thus have the highest accuracy. In Table 4.4
the IoU for each separate class is presented.
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Pupil  Iris Sclera  Skin Glint/Glare
Dark pupil | 0.7354 0.7336 0.6779 0.9701 0.3002
Bright pupil | 0.6942 0.7085 0.6319 0.9816 0.0596
No Glasses | 0.7623 0.7593 0.6997 0.9768 0.3646

Glasses 0.6379 0.7218 0.6350 0.9054 0.2219
Mixed data | 0.6537 0.7148 0.6474 0.9497 0.2578
Closed eyes - - - 1.0000 -

Table 4.4: Table showing the IoU for each class using the quantitative test set for
five classes.

Table 4.4 shows that the class that has the overall highest IoU is skin, while the
worst one is glints/glares. The videos containing glasses still shows the worst overall
performance out of the different test scenarios. Table 4.4 also implies a greater
uncertainty for glints/glares compared to the other classes as the IoU is lower. The
difference in IoU for all classes between the dark and bright pupil datasets probably
originates from the quality of the videos. It does, however, have a harder time to
classify the glints in the bright pupil case compared to dark pupil. This is expected
as the glints may have the same pixel intensity as the bright pupil in some cases.
The glasses dataset has a lower [oU due to occlusions.

4.2.2 Qualitative test set

The qualitative test set, as explained in Section 3.3.1, consists of manually annotated
ground truth data and is of a much smaller size than the quantitative one. The
ground truth, however, is more accurate and thus leads to a better evaluation of the
network.

4.2.2.1 Evaluation on four classes

By evaluating the implemented model together with the trained weights from DS-3
on the qualitative test set for four classes, the resulting performance can be seen in
Table 4.5 as well as Table 4.6.

‘Accuracy Dice-loss Precision Recall Fl-score mloU
Darkpupil‘ 0.9565 0.0425 0.9575  0.9575 0.9575  0.9418

Table 4.5: Table showing the various performance metrics introduced in Sec-
tion 2.3.3.1 achieved from the qualitative test set for four classes.

The resulting performance seen in Table 4.5 compared to the resulting performance
during training and validation of DS-3 seen in Figure 4.3 is fairly similar. The
accuracy and mloU are approximately 3% lower for the test set while the difference
in loss is negligible. Compared to the quantitative test results, as seen in Table 4.1,
the qualitative results are lower. This might be due to the network having learned
how to segment the eye frame based on the ground truth data from the automatic
generation. Thus, the network performs better on the quantitative test set. In
Table 4.6 the IoU for each separate class is presented.

52



4. Results

‘ Pupil Iris Sclera  Skin
Dark pupil‘0.8127 0.7257 0.5800 0.9642

Table 4.6: Table showing the IoU for each class using the qualitative test set for
four classes.

The IoU for each class seen in Table 4.6 exemplifies the high accuracy and mloU
given in Figure 4.3, by having a high IoU for pupil, iris and skin. The sclera has a
slightly lower IoU, based on the same reasons as for the quantitative case.

4.2.2.2 Evaluation on five classes

By evaluating the implemented model together with the trained weights from DS-4
on the qualitative test set for five classes, the resulting performance can be seen in
Table 4.7 as well as Table 4.8.

Accuracy Dice loss Precision Recall Fl-score mloU
Dark pupil 0.9602 0.0390 0.9610 0.9610 0.9610 0.9499
Bright pupil | 0.9581 0.0411 0.9589  0.9589  0.9589  0.9476
No glasses 0.9573 0.0419 0.9581  0.9581 0.9581  0.9466
Glasses 0.9160 0.0870 0.9130 0.9130 0.9130 0.9002
Mixed data 0.9448 0.0543 0.9457  0.9457 0.9457 0.9323
Closed eyes 1.0000 0.0000 1.0000  1.0000  1.0000  1.0000

Table 4.7: Table showing the various performance metrics introduced in Sec-
tion 2.3.3.1 achieved from the qualitative test set for five classes.

By comparing Table 4.7 to Table 4.3, minor differences between all of the metrics
can be seen. The network is less accurate when run on the bright pupil dataset
while it is more certain on the glasses dataset. The test scenario 'Closed eyes’ has
100% mloU, which is the same as for Table 4.3. A perfect mloU means that the
network managed to perform perfect predictions when a person’s eyes were closed
for all manually annotated images. In Table 4.8 the IoU for each separate class is
presented.

Pupil  Iris Sclera  Skin  Glint/Glare
Dark pupil | 0.7937 0.7740 0.6145 0.9672 0.1051
Bright pupil | 0.8323 0.7224 0.5766 0.9653 0.0576
No Glasses | 0.7922 0.7509 0.5887 0.9646 0.0699

Glasses 0.6056 0.6124 0.4277 0.9161 0.4464
Mixed data | 0.7760 0.7076 0.5401 0.9509 0.2905
Closed eyes - - - 1.0000 -

Table 4.8: Table showing the IoU for each class using the qualitative test set for
five classes.

For the qualitative data, the IoU seen in Table 4.4, shows similar results as for the
quantitative data seen in Table 4.4. For the pupil the IoU has increased for all classes
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except glasses in comparison to the quantitative data, where the largest difference is
for bright pupils. IoU for iris and skin has increased for some classes while they also
have decreased for others in comparison to the quantitative data. For the sclera,
the IoU has decreased for all datasets in comparison to the quantitative data, where
the largest difference is for the glasses dataset.

4.3 Segmentation performance based on visual per-
ception

The values presented in Section 4.2 shows a performance measure, however a visual
presentation might give a better understanding of these measures. As such, multiple
image collections of the manually labeled images for each of the KPI scenarios are
presented. For each segmented mask, an IoU with the corresponding ground truth
is plotted in order to label each pixel as true positives, false positives, false negatives
or true negatives.

In the case of evaluation of four classes, seen in Section 4.2.2.1, a few images which

represents the dataset well has been manually extracted and visualised. These can
be seen in Figure 4.6.

Image with segmentation Pupil ground truth and Iris ground truth and Sclera ground truth and Skin ground truth and
mask predicted mask predicted mask predicted mask predicted mask

M- - o oKX
- - o o KX
M - - -
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. True positives . False negative

False positive True negative

Figure 4.6: Image collection of four different real world eye images containing dark
pupils combined with their visualised confusion matrix for each of the four classes.

A comparison between the visualised IoU seen in Figure 4.6 and the measurement
values acquired from Table 4.6, shows similarities. Pupil, iris and skin have relatively
high ToU while the sclera barely reaches 60%. These values can be exemplified by
the visual representation in Figure 4.6 where the pupil, iris and skin mostly consists
of either true positives and true negatives. The sclera, however, has a higher amount
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of false positive and false negatives, thus resulting in a lower IoU.

In the case of evaluation of five classes, seen in Section 4.2.2.2, a few images that
represent the dark pupil, bright pupil and glasses datasets well. These images are
visualised and can be seen in Figure 4.7 for dark pupil, Figure 4.8 for bright pupil
and Figure 4.9 for glasses.

Image with segmentation Pupil ground truth and Iris ground truth and Sclera ground truth and Skin ground truthand ~ Glint/glare ground truth and
mask predicted mask predicted mask predicted mask predicted mask predicted mask
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S~

. False negative

False positive True negative

Figure 4.7: Image collection of four different real world eye frames containing dark
pupils combined with their visualised confusion matrix for each of the five classes.

A comparison between the visualised IoU seen in Figure 4.7 and the measurement
values acquired from Table 4.8, shows similarities. As for four classes, the network
performs well on the dark pupil an iris while it performs worse on the sclera. The
glint(s) /glare(s) class shows poor performance as can be seen in both the figure as
well as in the table.

For the bright pupil scenario, the corresponding image collection can be seen in
Figure 4.8.
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Image with segmentation Pupil ground truth and Iris ground truth and Sclera ground truth and Skin ground truthand ~ Glint/glare ground truth and
mask predicted mask predicted mask predicted mask predicted mask predicted mask
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Figure 4.8: Image collection of four different real world eye frames containing
bright pupils combined with their visualised confusion matrix for each of the five
classes.

As previously results shows, the network has a performance that is similar to that of
the dark pupil scenario. It is clearly demonstrated in Figure 4.8, that the network
can handle not only dark pupils but bright pupils as well with similar performance.
The last image collection presented is the scenario where glasses are present and can
be seen in Figure 4.9.

Image with segmentation Pupil ground truth and Iris ground truth and Sclera ground truth and Skin ground truthand  Glint/glare ground truth and
mask predicted mask predicted mask predicted mask predicted mask predicted mask
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Figure 4.9: Image collection of four different real world eye frames containing
glasses combined with their visualised confusion matrix for each of the five classes.

Both the measurements seen in Table 4.8 and in Figure 4.9, shows an overall
weaker performance in comparison to when no glasses are present. However, the
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glint(s) /glare(s) class shows a boost in performance. This boost for glint(s)/glare(s)
is probably because of the network being better at segmenting glares in comparison
to glints. Figure 4.9 shows that when a glare occludes a certain amount of the eye
region, as in subfigures b-d, the rest of the classes shows a worse performance in
regards to IoU.

4.4 Running times for inference

The running times for inference was measured using a NVIDIA GeForce GTX 1070
with 8 GB of memory. The inference speed for segmenting an image of dimensions
(96x48) took 6 * 1073 seconds. This means that two eyes would take approximately
12 * 1073 seconds which corresponds to an update frequency of approximately 83
Hz.
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Discussion and Future work

In this chapter, the collected results gathered throughout this project are interpreted
and analysed. It features discussions regarding the training and testing phases for
four and five classes. It also covers the chosen network architecture, the data used
as well as what can be expected from future work.

5.1 Collection of real world data

During collection of real world data, the resulting ground truth masks sometimes
fails to encapsulate the correct pixels. This is due to the Smart Eye’s tracking sys-
tem, as it sometimes tracks incorrect facial landmarks. However, since the dataset
is large, the network should hopefully not adapt to these incorrect ground truth
labels. The method for verifying the generated ground truth in this project is to
visually inspect parts of the data and if the ground truth is bad, that video will not
be included into the dataset. As such, only a small percentage of the whole dataset
is inspected, thus not always guaranteeing correct labels. By constructing automatic
sanity checks, that uses e.g. various image processing techniques, to verify that the
annotations are not way off. This can hopefully help to reduce the amount of incor-
rect labels and increase the number of different videos in the dataset. However, no
time has been spent during the project to investigate the potential of an automatic
sanity check. Another way forward is to, instead of solely relying on automatic
generation of data, manually annotate data. This could prove to be effective as it
would represent the truth better.

When creating the ground truth a set of assumptions are made regarding the iris
such as its size and shape. These assumptions lead to sufficiently good data in most
of the cases, however there are cases where these assumptions fails. Furthermore,
since the iris is assumed to have the same shape as the pupil, it could lead to the
network thinking that they should always have the same shape. This, however, has
never been noticed but could be a potential source of error. One way to avoid the
assumption that the pupil and iris have the same shape, one could create a circle for
the iris in 3D space based around the pupil centre and project it onto the 2D plane.

The glint(s) and glare(s) are also created using certain assumptions, where a thresh-
old is applied to create each respective mask. However, this could lead to falsely
classified pixels if the user quickly moves towards the camera and thus not letting
the exposure time of the flashes adjust to the distance. This leads to the user getting
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over exposed, i.e. the whole image has a higher intensity and thereby the thresh-
olding might include incorrect pixels. A rather simple way to avoid this could be
to check the distribution of intensities of the image. If the intensity for the whole
image seems to be too high, then this frame should be skipped. Furthermore, if
Smart Eye’s tracking algorithms fails to track a glint, this glint will not be included
in the ground truth and therefore results in an incorrect labeled mask.

Other datasets that can be discussed are the qualitative ones used for KPIs. At
the moment they consist of around 100 images each which originate from just a
small amount of videos, thus not being diverse enough. Because of the low diversity,
the results retrieved from the KPIs could be misleading. Since the videos used are
manually selected, they could either be too complex or non-complex videos and
as such may result in a higher/lower accuracy than what is representative for the
network. In order to fix this, a larger set of manually annotated images are needed,
where a wider range of videos should be included.

5.2 Analysis of results

Since there exists previous research where CNNs have been used to perform segmen-
tation of the iris with good results, it was anticipated that the CNN based approach
in this thesis would yield good results on other regions of the eye as well. Instead
of just learning to recognise the iris, the network now have the possibility of seeing
the eye as a whole, where the different classes are adjacent to each other. In this
section the resulting performance for all datasets will be discussed.

5.2.1 Training and evaluation using synthesised data

As can be seen in Figure 4.2 and Figure 4.4, the network manages to converge in
just a few epochs for both DS-1 and DS-2. One reason for the fast convergence is
the fact that the dataset lacks diversity as the synthesised eyes are similar. The eyes
always have a clear and descriptive sclera as well as a big and well defined pupil
and iris for each image. As such, the network does not need to learn many different
eyes variations. Another reason why it might have managed to converge fast is due
to the contrast between each adjacent class being large. For example, the contrast
between the sclera and the iris, as can be seen in Figure 3.1, is well defined as the
eyes goes from a white to a dark colour in a single pixel. Due to this, finding and
learning each class should be easier as compared to when the contrast is almost
non-existent, which is often the case for real world data.

The validation accuracy during each of the training phases for the synthesised data
is higher compared to the training accuracy. This might be due to using online
augmentation - random augmentations during training. As the network does not
get exposed to the exact same data during each epoch, the network always needs to
learn new features. However, this is not the case during the validation phase. The
validation data is exposed to online augmentation although with a smaller allowed
amount of augmentation. As such, the network validates on easier cases, which in
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turn leads to a higher validation accuracy.

To sum up the use of synthesised data, the positives outcomes have been plenty.
First of, the generation of data is simple as only a set of parameters, explained in
Section 3.1.1.1, has to be configured before generating as much data as desired. Since
the generation of data also comes with eye region landmarks, perfect ground truth
masks can be generated. Based on the fact that the data is perfect, an initial veri-
fication of the chosen network architecture can be made. Furthermore, the learned
weights during training of the synthesised data can be used for transfer learning
for real world data. This sped up the real world data training, where the network
could converge to a well performing local minimum in only a couple of epochs seen
in Figure 4.3 and Figure 4.5. If transfer learning is not used, the network has a
hard time learning the features needed to segment the whole eye region in the same
amount of epochs as if transfer learning is used. The network often got stuck in a
local minimum if transfer learning was not used, where it predicts skin across the
whole image, having a high accuracy but useless performance.

5.2.2 Training and evaluation using real world data

Since training with real world data is much more complex than with synthesised,
especially for DS-4 where real world glints and glares are introduced, the network
performance was worse on this dataset. For DS-3, the network performed well during
training and validation as seen in Figure 4.4. However, when the qualitative dataset
was evaluated, the network showed worse performance as seen in Table 4.5. In addi-
tion, for DS-4 the same sort of drop in performance between training and evaluation
can be seen. The training accuracy converges towards 96%, however when evaluat-
ing the qualitative mixed dataset an accuracy of 94% is achieved. This decrease in
accuracy between training and evaluation is probably due to the high diversity of
e.g. quality of the videos, eye shapes and ethnicity et cetera in the datasets. The
quality of the videos are most often considered bad, resulting in noisy eye frames, as
compared to the synthesised data. Due to noisy data, the contrast between adjacent
classes are smaller and sometimes non-existent when e.g. two adjacent classes have
the same colour.

The most significant issue for the network that affected the performance is the
glare(s) that reflects from the glasses. The glasses themselves only showed an im-
pact on the performance when the frame of the glasses occlude a certain part of the
eye region. However, since the network is able to detect and segment the glare(s), it
is possible by some post-processing to distinguish if it is worth to even consider the
current frame or not. Something to take into account from Section 4.3, is that the
network has a hard time segmenting the glint(s). The reason for this is probably
due to the glint(s) being of a relatively small size (just a couple of pixels). This is
one reason why the IoU found in Table 4.4 and Table 4.8 for glint(s)/glare(s) are
much lower than all other classes.

In contrast to the synthesised data, offline augmentation was used for the real world
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data, which could be the reason why the training accuracy were higher than the
validation accuracy for this dataset. That is, the same training data is used in
every epoch. Offline augmentation is needed since the dataset for the real world
images is much larger in order to diversify the dataset, meaning many different
videos are being used. During training of synthesised data, online augmentation
was found to be a bottleneck as it slowed down learning. Thus, we chose not use
online augmentation for the real world dataset.

5.3 Improvements regarding network architecture

As this project was focused on showing a proof of concept for segmenting the eye
regions, other network architectures were not taken into consideration. However,
there exists many different ways to improve the current network architecture in re-
gards to e.g. number of parameters, memory and descriptive power.

The results acquired from Section 4.4, suggests an inference speed of around 12ms to
perform predictions on both eye frames with a GTX 1070. This is, however, far too
slow of a network to be implemented into an embedded platform where less powerful
hardware is used in order to be cheap to manufacture. As such, a network with less
parameters and floating point operations such as ENet [60] or ESPnet [66] should
be investigated. These networks are built in such a way that they work in embedded
environments where there are strict constraints on e.g. memory and computational
power. A future task to consider is quantization of the network, as it could increase
the inference speed even further.

Another area that might be of interest is to introduce additional inputs to the net-
work, thus using more information regarding the environment than just the image.
One input that should prove to be useful for the network is the head rotation in
relation to each camera. As the input eye dimensions vary depending on the head
rotation, it may learn, using the rotation information, different shapes of the eye
depending on the rotation.

Lastly, an area that is of interest to investigate is the fact that the predictions tend
to be over/under confident. This has been noticed in the implemented network
where the probability for a pixel is highly concentrated on a single class rather than
spread over the classes. Towards the end of the project this was looked into by using
a Dirichlet output layer, as proposed by Gast et al. [74]. The layer tries to generate
an uncertainty map for each class which may be important information as it can be
used to understand the reliability of a network [74]. By knowing the uncertainty
for each predicted pixel, the generated uncertainty maps can be used by e.g. Smart
Eye to evaluate whether or not the segmented masks are trustworthy. Depending
on the uncertainties, Smart Eye’s algorithms may weigh the predictions differently
as compared to the already existing algorithms. Some experiments regarding this
was done, however it did not lead to anything due to lack of time, therefore we leave
this as future work.
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Conclusion

The aggregated results throughout this thesis clearly shows that the use of CNN
for automatic segmentation of an eye frame image to obtain pixel-level detail about
the spatial distribution of different eye regions is indeed feasible. The main research
questions that were posed and the conclusion for each are:

Is it feasible to use CNNs for eye region segmentation?
It is indeed feasible to use CNNs for eye region segmentation. Based on Chapter 4,
an overall accuracy above 94% are found for both the quantitative and qualitative
mixed data test set for the final network where five classes are used. The high ac-
curacy is a clear indication that a CNN is able to adapt to the high diversity of
scenarios that Smart Eye’s tracking systems encounter.

Will occlusions such as glasses and glares have an affect on the performance?
According to Chapter 4, a drop in performance can be seen when glasses and glares
are present. However, in Figure 4.9 (b)-(d) one can clearly see that a lot of infor-
mation can still be retrieved even though a large glare occlude a part of the eye. In
other words, if occlusions appear in the eye region, it does not completely ruin the
performance, however a drop in performance can be seen.

Is it possible to create a network with low enough computational cost to be
implemented in Smart Eye’s existing systems?
The current network is far from ready to be implemented into an embedded platform
such as Smart Eye’s tracking system. However, there are various ways to improve
the network as discussed in Section 5.3, which could possibly make it implementable.
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