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Göteborg, Sweden 2019





MASTER’S THESIS IN COMPUTER SCIENCE AND COMPLEX ADAPTIVE SYSTEMS

Lane-Level Map Matching using Hidden Markov Models

ELLEN KORSBERG
ELIZA NORDÉN
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A B S T R A C T

Map matching is the procedure of matching vehicle location and sensor
data to a digital map. New high-definition maps, designed for autonomous
vehicles, open up for the possibility of matching to lanes rather than roads.
Inferring the lane-level positions of vehicles will be useful for updating
and building probe-sourced maps, and thereby arguably essential for au-
tonomous driving.

This thesis seeks to solve the lane-level map matching problem using a
Hidden Markov Model. The Viterbi algorithm is used to decode it. The
model is tested on a data set yielded through the Volvo Drive Me project
and collected by commercial vehicle sensors, including a GPS receiver, an
inertial navigation system and a forward-looking camera. For the sake of
simplicity, the RADAR and LiDAR sensors are excluded. Among the sensor
data used, lane changes and the type of road lane markings as detected by
the vehicle proves to be particularly important.

Two metrics for evaluating model performance are proposed. The first
metric is the recall, i.e. the fraction of correct matches. However, the lanes
to which the observations are matched vary widely in length. Therefore, we
introduce the path length error (PLE) as a complementary metric. As the
name indicates, it considers the length of the incorrect routes.

A naive matcher, that simply matches GPS coordinates to the closest lane,
is used for benchmarking. Attaining 95% median recall and 3% median
PLE, we conclude that our model is high-performing and robust to errors.
For comparison, the naive matcher scores 77% median recall and 26% me-
dian PLE. Our model is however shown to struggle without reliable vision
detections. It would therefore be meaningful to investigate the inclusion of
additional vehicle sensors.

Keywords: Autonomous Driving, Hidden Markov Model, High-Definition
Map, Lane-Level, Map Matching, Viterbi Algorithm



D E F I N I T I O N S

glossary

Bounded Variable Sliding Window Modification of Variable Sliding Win-
dow that sets an upper bound on the time before a solution is re-
turned.

Centerline Polyline in the center of a lane, with unique ID and metainfor-
mation such as speed, direction, lane border marking types.

Connectivity-based Methods based on exploiting the graph structure of the
map.

Extrapolation-based Methods based on sampling and extrapolating coordi-
nates without regards to connectivity.

Fixed Sliding Window Online algorithm that returns solutions within fixed
time lags without optimality guarantees.

Ground truth The actual location.
HD map High-definition map built for autonomous vehicles.
Hidden Markov Model Statistical model of a system that can be modeled

as a Markov process.
Emission probability The probability of a certain observation given a

certain state.
Hidden state Underlying location not directly visible to the observer, i.e.

hidden.
Initial state probability The state probability distribution at the first

time step.
Observation Measurement data of the ground truth.
Transition probability The likelihood of moving from a certain state to

a certain other state.
Lane Part of a road, intended for use by a single line of vehicles.
Lane change Maneuvering the vehicle into a different lane.
Lane group Group of lane segments that share borders with each other and

have the same start and end.
Lane marker Synonym to Lane marking.
Lane marking Painted markings used to divide lanes.
Lane segment Segment of a lane, represented as a 2D-polygon and contain-

ing metainformation given by the centerlines.
Lane stitching The procedure of cropping and stitching together matched

lane segments into a continuous path.
Map matching The procedure of assigning geographical objects to locations

on a digital map.
Lane level Matching to lane segments.
Road level Matching to road segments.

Markov process Stochastic process where the current state depends only on
the previous state.

Overpass Road that crosses over another road.



Acronyms

Path length error Algorithm performance metric, based on the fraction of
incorrect route.

Penalty Function that decreases the matching probability of a candidate lane
according to some parameter constraint.

Real-time kinematics Technique used to improve the GPS coordinates.
Recall Algorithm performance metric, based on the fraction of correctly

matched centerline IDs.
Underpass Road that crosses under another road.
Variable Sliding Window Online algorithm that returns solutions given vari-

able input increments and guarantees optimality.
Viterbi Algorithm HMM decoder of choice, that solves the map matching

problem by finding the most probable state sequence.
Offline Implementation of the algorithm that is fed the complete drive

log and returns the full path.
Online Implementation of the algorithm that is fed driving data in small

batches and returns the path in increments.
Volvo Scalable Product Architecture Vehicle platform developed and man-

ufactured by Volvo Cars.

acronyms

AD Autonomous driving.
ADAS Advanced driver assistance system.
AV Autonomous vehicle.
BVSW Bounded Variable Sliding Window.
FSW Fixed Sliding Window.
GPS Global Positioning System.
HD High Definition.
HMM Hidden Markov Model.
IMU Inertial Measurement Units.
INS Inertial Navigation System.
PLE Path length error.
RTK Real-time kinematics.
SPA Scalable Product Architecture.
VA Viterbi algorithm.
VSW Variable Sliding Window.
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1 I N T R O D U C T I O N

Today’s maps are designed for human use. More specifically, they are
intended to be used for turn-by-turn navigation purposes [1, 2]. Other en-
vironmental information, such as the type and location of lane markings,
any debris lying on the road and road maintenance obstructions, is visually
observed by the map user as she travels along the roads. Autonomous vehi-
cles (AVs), however, require very different maps. These need to be in high-
definition (HD), providing the robots with very precise localization and the
possibility to perceive their environment [2, 3, 4]. HD maps for AVs also
need to be updated continuously, to track events such as road accidents or
traffic congestion [1].

Goldman Sachs has predicted that the market for advanced driver assis-
tance systems (ADAS) and autonomous driving (AD) will grow from US$3

billion in 2015 to US$96 billion by 2025 [4]. With HD maps arguably be-
ing essential for the industry, the competition for being first at mapping the
world has many contestants [5, 6].

Just as the AV needs minute information about its environment, it needs to
know its position on the road. This problem is called map matching, and can
more formally be described as the procedure of matching geographical ob-
jects to digital map locations [7]. Today, existing map matching algorithms,
built on e.g. probability theory, fuzzy logic theory and belief theory [8], can
successfully map GPS coordinates to a certain road segment in order to give
information about the surroundings of a vehicle. However, specific features
of the road such as the current lane of the car are difficult to obtain via map
matching, mostly due to the noisy nature of GPS signals.

Adding sensor data such as speed, yaw rate and detected lane markings
and lane changes to the GPS data, the objective of this thesis is to develop
a lane-level map matcher based on robust Hidden Markov Models (HMMs),
which has yet only been used for road-level map matching [9]. The HD map
is provided by TomTom [10]. The data used has been recorded by Volvo test
vehicles via the Drive Me project [11].

1.1 background

This thesis is carried out at the ADAS and AD software company Zenuity
[12], in close collaboration with team Magellan. Magellan, and related teams
at Zenuity, work with building maps from data collected by sensors, i.e.
probe-sourced data.

For the team and the company as a whole, information about the current
lane is valuable for a multitude of applications. In a short term perspective,
the result of this thesis will help to infer the position of a vehicle in the road
network. The solution can then be used to align noisy data and validate the

1



1.2 previous works 2

HD map. It can also be used to assist localization algorithms, that need the
current lane information to find the exact position of the vehicle. Addition-
ally, the solution is an integral part for AVs to navigate an HD map, and
long term, could be incorporated in some ADAS or AD software.

1.2 previous works

Hidden Markov Models are probabilistic models useful for modeling time
series [13]. HMMs have mostly been used in speech recognition applications,
first implemented by IBM as early as the 1980’s [14]. In 2009, Microsoft’s
Newson and Krumm [9] were the first to propose HMMs to solve the map
matching problem. With great success, they managed to map sparse and
noisy GPS to a road network. Goh, et al. implemented an online version
of Newson and Krumm’s HMM in 2012 [15], tackling the trade-off between
accuracy and output delay. They outperformed traditional online methods
with a fixed sliding window through the use of a variable sliding window
and support vector machines to learn the HMM parameters. Unlike the
fixed sliding windows used for benchmarking, the variable sliding window
guaranteed the global optimum solution.

In 2017, Luo et al. [16] evaluated an implementation of the HMM-based
map matching on both GPS data and cellular network data. Their finding
indicated that HMM-based algorithms have both higher efficiency and ac-
curacy than other map matching algorithms. In 2018, Murphy and Pao at
Lyft, Inc. [17] combined HMMs and standard free-space tracking methods in
such a way that their approach was robust to incorrect or incomplete maps,
allowing tracking of vehicles outside the known road networks.

While this research in HMM-based map matching methods has shown
great promise for the field, no known HMM approach for lane-level map
matching exists today. Since HD maps are a novelty, not much research in
the general area of lane-level map matching has been conducted. In fact,
thus far only the following two research papers about the topic have been
published. Rabe et al. [18] proposed a method for ego-lane estimation based
on least square optimization and hypothesis testing in 2016, using sensor
data such as GPS, odometry, visual lane marking detectors and radar. Eval-
uating their model in an urban setting, Rabe et al. got very low error rates.
The second article on lane-level map matching by Li et al. [19] focuses on
the so called integrity problem. Acknowledging that an algorithm in an
autonomous navigation system should not make a decision if there is an
ambiguity in the matching of lanes, they presented a formalization of this
integrity problem and offered a solution through particle filtering.

1.3 purpose and research questions

The vehicle industry is putting a lot of effort into developing ADAS, equip-
ping new car models with a multitude of sensors that log a vast amount of
data. This thesis project takes advantage of this new data when implement-
ing a map matching algorithm that is capable of matching noisy consumer
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GPS and probe data to a high definition road map at the lane-level. The
output of the algorithm is a lane matched to each GPS measurement.

As previously mentioned, the main objective of the project is to develop
a functioning map matching algorithm based on HMMs. From this, the
following research questions are defined:

• How, and based on which parameters, should the Hidden Markov
Model be implemented?

• How can the performance of the map matching algorithm be mea-
sured?

1.4 thesis scope

This thesis project corresponds to a magnitude of 30 academic credits for
each person. In order to fit the scope of thesis to the time available, the
following limitations were defined:

• RADAR and LiDAR sensor data is not used, since these need a signif-
icant amount of pre-processing in order to be deemed useful. In con-
trary, the vision data, containing clearly labeled objects such as lane
markings and land marks, is already processed and does not need
much further extraction. Together with GPS and odometry data, i.e.
data from motion sensors, the vision data is decidedly in scope.

• Model fitting is performed offline, i.e. with a static data set. Although
actual probe-sourced solutions will require continuous online parame-
ter estimation, this thesis can be said to be a proof of concept, rather
than a complete product.

• The map matching algorithm is primarily implemented as an offline
solution, in the sense that all the required information is given before
the algorithm proceeds to find a solution. In contrast, an online algo-
rithm handles its input piece-by-piece in a serial fashion, meaning that
the whole input is not given beforehand but rather processed continu-
ously. The latter is necessary for real-time applications, and has higher
demand on the time efficiency, primarily. A simple online solution is
also offered, to illustrate how it can be achieved. However, focus lies
on the offline map matching .

• The GPS coordinates and probe data will be mapped to road lane seg-
ments which have median length 23 meters, meaning that the vehicle
can be anywhere within that segment. Depending on time, the seg-
ments might be split into smaller sub-segments in order to refine the
accuracy of the vehicle’s location on the road lane.

1.5 report layout

The report is structured as follows. First, necessary theory is introduced
in Chapter 2. The used map and sensor data are thoroughly explained in
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Chapters 3 and 4. Some variable analyzes are also performed. Based on
those findings, a model is proposed in Chapter 5. The implementation and
adaptation of the Viterbi algorithm is described in Section 5.6. Suggestions
for performance metrics are given in Chapter 6. Finally, the algorithm is
evaluated in Chapter 7, and the thesis work is concluded in Chapter 8.



2 T H E O R Y

This chapter states the necessary theory. First, the problem of map match-
ing is described, in the context of standard, or road-level, as well as lane-level
applications. As stated before, the sensor and map data are incorporated
into a Hidden Markov Model, which is given a mathematical formulation
below. This model is then decoded by the Viterbi algorithm to solve the map
matching problem, and as such, the chapter is concluded with a description
of the algorithm.

2.1 map matching

As previously mentioned, map matching is the technique of matching
location data to a digital map in order to identify where a vehicle is in a
road network [7, 20], as visualized in Figure 1a. It is a vital component of
navigation and route guidance systems [21].

Typically, the location of a vehicle is provided through a global positioning
system, GPS, either by itself or in combination with an inertial navigation
system or dead reckoning. These sensors are not perfect, however, and using
them introduces an error in the location data [20].

A digital map contains geographical information, providing the location
of a user with a spatial reference. Similarly to the location systems, maps
are not always perfect. It may have positional errors, caused by e.g. mea-
surement errors when creating the map. It may also be incomplete, or not
up-to-date with the true road network [21].

If both data and map were perfect, the process of locating a user on a road
network would be trivial — it would simply be possible to take the physical
location data and output the corresponding road from the map. Now, since
this is not the case, map matching is necessary to reconcile these inaccurate
location and map data and yield an accurate digital area wherein the vehicle
is located [20, 21]. A formal definition of the map matching problem is given
in Definition 1.

Definition 1. A vehicle is moving along a finite set of roads, N. These are
estimated as Nest on a digital map. A location system provides estimates
Pkest of the true vehicle position Pk at discrete times {t0, ..., tk, ..., tK}. Map
matching aims at matching Pkest to a road E ∈ Nest, and then determine the
true road in N.

The process of creating a map matching algorithm includes three steps:

1. Extract interesting features to be used for map matching. These include
position and shape features from the available data, as well as the map.

2. Calculate the matching similarity, defined by the matching algorithm,
between the location data and all road sequence candidates.

5



2.2 hidden markov models 6

(a) Road-level. (b) Lane-level.

Figure 1: GPS location measurements (black dots) on road network. The red dashed
line shows the traversed path obtained by solving the map matching prob-
lem.

3. Select the path with the highest similarity.

These key concepts of map matching can also be applied to lane-level
inference. That is, lane-level map matchers match location data to lanes,
rather than roads. See Figure 1b for a visualization of the difference. The
lane-level matching can be used to aid localization algorithms in advanced,
future navigation systems. These would, for example, identify whether the
vehicle is in the recommended lane. If not, the system could aid the driver
by proposing a lane change [20]. Extrapolating to the AD case, the vehicle
would need to make these decisions on its own.

Given that road-level map matching is non-trivial, the task of a higher
resolution map matching becomes complex. Merely location data and road
networks are no longer sufficient. Instead, the problem puts higher demands
on the accessible information.

Location data needs to be complemented with other sensor data. Odom-
etry data, such as vehicle speed and heading are examples of such. The
digital map needs to contain lane-level information, at the very least. Meta-
data, such as speed limits and lane headings may also be useful.

2.2 hidden markov models

A Hidden Markov Model (HMM) is a statistical model in which the sys-
tem being modeled is assumed to be a stochastic process with unobserved,
i.e. hidden, states. The states are contained in a set S, while X ⊆ S describes
states in a sequence. More explicitly, the set of states might be S = {s1, s2}
and a state sequence x could look like x = [x1, x2, x3] = [s2, s2, s1], where
x1, x2, x3 ∈ X and s1, s2 ∈ S.

The states of an HMM are not directly visible to the observer, which is
why they are called hidden. Rather, there exist observations Y that stem
from these hidden states. The sequence of observations are generated by
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Figure 2: A graphical representation of a discrete HMM with three states s1, s2, s3
and four observations y1,y2,y3,y4. The corresponding transition prob-
abilities are Ti,j, i, j ∈ {1, 2, 3}, and the emission probabilities are Ek,i,
k ∈ {1, 2, 3, 4}, i ∈ {1, 2, 3}.

a second stochastic process. In that sense, an HMM is a doubly stochastic
process [22].

The HMM is constituted of the three main parameters: transition probabil-
ities, emission probabilities and initial state distribution. As a sub-category
of Markov Models, the HMM also satisfies the Markov property. This prop-
erty and the main components are described in the following subsections.
The architecture of the HMM is illustrated in Figure 2. For HMM decoding
purposes, however, it is more useful to have another representation. As such,
the trellis diagram in Figure 3 is presented and described.

2.2.1 Markov property

A stochastic process X = {Xk}
K
k=0 is a Markov process if it fulfills

P(XK = xk|Xk−1 = xk−1,Xk−2 = xk−2, ...,X0 = x0) = P(Xk = xk|Xk−1 = xk−1)

for all times k = {1, ...,K}. That is, the current state xk only depends proba-
bilistically on the previous state. This is known as the Markov property.

2.2.2 Emission probabilities

The emission probability is associated with the second stochastic process,
which models the distribution of observations. Each observation has an
emission probability

Ek = p(yk|xk) xk ∈ X, (1)

which is a probability distribution function (pdf) that reflects the probability
of observing yk at time tk when being in state xk [16, 23]. When considering
explicit states, the emission probability is more appropriately given as

Ek,i = p(yk|si) si ∈ S. (2)
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Figure 3: Trellis diagram representation of the HMM depicted in Figure 2 for four
time steps. Edge weights correspond to the product of transition and
emission probabilities. In this instance, some of the products are zero.
Corresponding edges have effectively been removed.

2.2.3 Transition probabilities

The transition probability is the likelihood of moving from a state xk to a
state xk+1 at time tk. It can be written as

Tk = p(xk+1|xk) xk, xk+1 ∈ X. (3)

When considering explicit states, the transition probability is more appropri-
ately given as

Ti,j = p(xk+1 = sj|xk = si) si, sj ∈ S. (4)

2.2.4 Initial state distribution

The distribution of initial state probabilities describes the likelihood of
starting in each state,

Πi = p(x0 = si) si ∈ S. (5)

2.2.5 Trellis diagram

A discrete HMM can be represented as a trellis diagram, where time steps
are incorporated. Each node in the diagram corresponds to a distinct state at
a given time, and the edges represent possible transitions to states at the next
time step. The discrete HMM given in Figure 2 has a trellis representation
as shown in Figure 3 for three time steps.

A useful property of this particular representation is that every possible
state sequence in the model corresponds to a unique path through the trellis,
and the other way around. Because of this, it is a useful representation
when applying dynamic programming algorithms to an HMM, for example
when finding the most probable path through the model by using the Viterbi
algorithm [24].
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2.3 viterbi algorithm

Inferring which sequence of states caused a specific sequence of observa-
tions is called decoding [25]. The Viterbi algorithm, first proposed in 1967
by Andrew Viterbi, is one such decoder [26, 24, 27, 28]. It is, in fact, the most
commonly used algorithm for decoding HMMs [25]. It solves the problem
of estimating the maximum likelihood of state sequences, i.e. finds the most
probable state sequence.

The set of transition sequences can be defined as ξ = {ξ1, ..., ξK−1}, with
the transitions ξk = (xk+1, xk) at the given time k. These map one-to-one
to the state sequence x = (x1, ..., xK). Using this notation, the observations
mentioned in Section 2.2, y = [y1, . . . ,yK], yk ∈ Y, can be described as the
output of a channel, whose input is the transition sequences. The channel is
memory-less in the sense that p(y|ξ) =

∏K
k=0 p(yk|ξk), i.e. each observation

yk only depends probabilistically on the transition ξk [24].
With all necessary notations introduced, it is now possible to formally

define the maximum likelihood estimation problem.

2.3.1 Derivation and algorithm

The Viterbi algorithm seeks to find

x∗ = arg max
x
p(x|y) ⇐⇒ arg max

x
p(y|x)p(x) ⇐⇒ arg max

x
p(x, y) ∀ y ∈ Y,

where Y is the set of possible observation sequences. The first equivalence is
derived from Bayes’ rule, p(x|y) = p(y|x)p(x)/p(y), where the denominator
has been omitted. This is allowed since p(y) is independent of x and as such,
can be treated as a constant. The second equivalence follows from the chain
rule. The joint probability can be rewritten as a recursion according to

p(x1, ..., xk,y1, ...,yk) =

{chain rule} =

p(xk,yk|x1, ..., xk−1,y1, ...,yk−1)p(x1, ..., xk−1,y1, ...,yk−1) =

{Markov property} =

p(xk,yk|xk−1)P(x1, ..., xk−1,y1, ...,yk−1) =

{Bayes’ rule} =

p(yk|xk, xk−1)p(xk|xk−1)p(x1, ..., xk−1,y1, ...,yk−1) =

{memoryless observation noise} =

p(yk|xk)p(xk|xk−1)p(x1, ..., xk−1,y1, ...,yk−1),

for all k = 2, ...,K. p(yk|xk) is recognized as an emission probability,
and p(xk|xk−1) a transition probability. Using the shorthand notation,
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x = (x1, ..., xK) ≡ x1:K and y = (y1, ...,yK) ≡ y1:K, the maximization problem
becomes

x∗1:K =

arg max
x1:K

p(x1, ..., xK,y1, ...,yK) =

arg max
xK

p(yK|xK)p(xK|x
∗
K−1) arg max

x1:K−1
p(x1, ..., xK−1,y1, ...,yK−1) =

arg max
xK

p(yK|xK)p(xK|x
∗
K−1)x

∗
1:K−1,

where x∗K−1 is the last element of x∗1:K−1, and x∗1:K−1 is defined analogously
to x∗1:K. The maximum likelihood estimation problem is thus recursive, with
the last recursion x∗1 = (x∗1) = p(y1|x1)p(x1|x0). x0 is a global initial state,
with p(x1|x0) describing the probability of starting in some state x1. p(x1|x0)
is therefore the initial distribution Π. Using these results, the Viterbi algo-
rithm is defined in Algorithm 1.

Algorithm 1 The Viterbi algorithm. y : K× 1 is the sequence of observations,
S : N× 1 is the state space, T : N×N the transition matrix, E : K×N the
emission matrix and the Π : N× 1 the initial distribution.

1: function Viterbi(y, S, T ,E,Π)
2: for n = 1, . . . ,N do
3: probtable[n, 1] = Πn
4: pointer[n, 1] = 0
5: end for
6: for k = 2, . . . ,K do
7: for n = 1, . . . ,N do
8: probtable[n,k] = maxi

[
probtable[i,k− 1]× Ti,n × Ek,n

]
9: pointer[n,k] = arg maxi

[
probtable[i,k− 1]× Ti,n × Ek,n

]
10: end for
11: end for
12: return Backtrace(probtable,pointer)
13: end function
14:
15: function Backtrace(probtable,pointer)
16: beststateindex[K] = arg maxi probtable[i,K]
17: bestpath[K] = sbeststateindex[K]
18: for k = K, . . . , 2 do
19: beststateindex[k− 1] = pointer[beststateindex[k],k]
20: bestpath[k− 1] = sbeststateindex[k−1]
21: end for
22: return bestpath
23: end function

The VA does not have to exhaustively examine all paths in the trellis in
order to find the optimal one. Instead, when encountering a situation where
it is possible to reach a certain state through several paths, only the most
likely path is retained. The inferior paths are redundant and thus pruned,
implying that the search space is truncated. By this, it is reasonable to let
the aggregated non-eliminated edges be referred to as surviving paths.

When the VA has processed the whole sequence, the effect of the path
pruning is that every node in the trellis only has one incoming edge. More
specifically, this means that every state has a unique former state at every
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time step. The VA proceeds to obtain the optimal, unique path originating
from the most likely last state by back-tracing the singular incoming edges.

An explicit instance where VA is used to find the most probable path
through the trellis in Figure 3 is visualized in Figure 4.

Rows 2− 5 in Algorithm 1 have time complexity O(N) since it loops over
N states and performs a simple multiplication, taking constant time. Rows
6 − 11 iterate over K − 1 observations and loop over all N states in each
iteration. For every state, two maximum operations are done which involves
comparison against all other N − 1 states. Thus, the time complexity for
this part becomes O((K − 1)×N× (N − 1)) = O(KN2). Rows 18 − 21 are
evaluated in O(KN) time since it loops over K− 1 observations and involves
a look-up in an array, taking linear time in the size of the array. Hence, the
total time complexity of Algorithm 1 is O(N+KN2 +KN) = O(KN2).

2.3.2 Online Viterbi algorithm

As described in Section 2.3, the Viterbi algorithm finds the optimal state
sequence given a finite number of observations. Having considered all ob-
servations, it identifies the most probable last state and traces back-pointers
until the start of the sequence, and thereby gathers the ultimate path. An
apparent deficiency of this approach is its inability to handle infinite observa-
tion sequences. Additionally, it is not able to yield incremental results in the
form of a sequence of sub-paths, even with a finite number of observations
[29].

There are certainly cases where an incremental output is desired. For ex-
ample, an application delivering real-time information about a vehicle’s tra-
versed route relies on such output. In turn, observations would be fed to the
algorithm in small patches. One approach to yield optimal sub-paths given
gradually inputted observations is to consider so called convergence points,
explained further down. This method is often referred to as Variable Slid-
ing Window (VSW) and is further described in the following section. While
VSW guarantees optimality, the sequence does not necessarily contain any
convergence point. If there is no convergence point in an infinite sequence
of observations, the VSW algorithm will never return any path. A modified
approach solving this particular issue is also presented later in this section.

An alternative online method, Fixed Sliding Window (FSW), uses fixed
time lags within which the algorithm is required to return a solution. Al-
though it is certain to yield sub-solutions at predefined time steps, it comes
with the drawback of no optimality guarantees. Such a fixed-lag method is
described further below.

Variable Sliding Window

An online Viterbi algorithm can be achieved by using VSW. The key con-
cept of VSW is to delay the output until a convergence point is found. A
convergence point has been found whenever all back-pointers point to the
same state. This means that the sub-path derived before the convergence
point is sure to be part of the final optimal path. The observation window
size expands forward for every new observation and shrinks from behind
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(b) At time t3, accumulated scores are cal-
culated as the product of the scores
stored in t2 and the edge weights. The
highest scores are stored in each node.
The edges corresponding to a lower
score do not survive, as indicated by
the dashed lines.
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(c) In t4, each node has only one incom-
ing edge. Therefore, all edges survive.
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(d) Lastly, back-tracing is performed from
the most probable last state. The final
path is found to be [s1, s3, s2, s1].

Figure 4: Process of decoding the trellis in Figure 3 with the offline VA. The algo-
rithm takes the full sequence and dynamically updates the scores of the
surviving subpaths, storing the accumulated scores in the nodes. After
the last time step, back tracing is performed and the found path, marked
in red, is returned.



2.3 viterbi algorithm 13

when a convergence point is found in the sequence covered by the window.
The name Variable Sliding Window refers to the fact that the window sizes
vary according to the topology of the graph representation [15]. So, by re-
garding variable window sizes of observations based on the occurrence of
convergence points, a VSW algorithm is capable of yielding optimal sub-
paths without requiring the entire sequence of observations [30].

However, since the existence of convergence points is not guaranteed, the
VSW algorithm risks to never return any solution. One way to prevent this
is to set an upper bound on the window size. That way, when the bound
is reached, the most likely solution up until the current stage is returned.
This modified VSW algorithm can be referred to as Bounded Variable Slid-
ing Window (BVSW) [15], and can also be used to achieve an online Viterbi
algorithm. The VSW algorithm is given in provided in pseudocode Algo-
rithm 2. Rows 11− 13 provide the modification of the original Viterbi algo-
rithm which achieves the desired behaviour of VSW.

Algorithm 2 Online Viterbi algorithm using VSW. y : K× 1 is the sequence
of observations, S : N× 1 is the state space, T : N×N the transition matrix,
E : K×N the emission matrix and the Π : N× 1 the initial distribution.

1: function Viterbi(y, S, T ,E,Π)
2: for n = 1, . . . ,N do
3: probtable[n, 1] = Πn
4: pointer[n, 1] = 0
5: end for
6: for k = 2, . . . ,K do
7: for n = 1, . . . ,N do
8: probtable[n,k] = maxi

[
probtable[i,k− 1]× Ti,n × Ek,n

]
9: pointer[n,k] = arg maxi

[
probtable[i,k− 1]× Ti,n × Ek,n

]
10: end for
11: if pointer[1,k] = . . . = pointer[N,k] then
12: return Backtrace(probtable,pointer)
13: end if
14: end for
15: return Backtrace(probtable,pointer)
16: end function
17:
18: function Backtrace(probtable,pointer)
19: beststateindex[K] = arg maxi probtable[i,K]
20: bestpath[K] = sbeststateindex[K]
21: for k = K, . . . , 2 do
22: beststateindex[k− 1] = pointer[beststateindex[k],k]
23: bestpath[k− 1] = sbeststateindex[k−1]
24: end for
25: return bestpath
26: end function

An explicit example of how the VSW algorithm processes an observation
sequence and yields the optimal solution in increments can be seen in Fig-
ure 5. Since the last observation were registered at time t4, no new observa-
tions are processed by the algorithm. Having all sub-sequences returned by
the algorithm, [s1, s3] and [s2, s1], their concatenation form the optimal path
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of the considered problem instance, [s1, s3, s2, s1], which is seen in the last
stage in Figure 5.

Fixed sliding window

The FSW algorithm divides the observation sequence into smaller chunks
of a predefined fixed length. The fixed length can also be referred to as
a fixed time lag. Given that the fixed time lag is set to ω, the algorithm
waits for ω number of observations until it starts to decode the sequence
and returns a solution. Then it waits until ω more observations are given
as input and processes that sequence. In this way, the sequence chunks are
handled independently at every stage in the decoding process [15].

An illustration describing the process of the FSW algorithm, when the
time lag is set to 2, is given in Figure 6. Concatenating all the solutions
returned for the sequence chunks gives the final solution, which can be seen
in the last stage in Figure 6. Even though the final path is the same as the
one returned when applying the VSW algorithm, as seen in Figure 5, it is
not generally the case. This is because the FSW approach does not guarantee
optimality, which VSW does.

Longer time lag, or equivalently bigger window size, yields more accurate
results at the cost of longer output delays, and vice versa. As such, it is evi-
dent that there is a trade-off between accuracy and time delay. The desired
performance of the FSW algorithm is dependent on the application, which
is why no general guideline of viable window sizes can be stated [30].
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(a) At time t2, all incoming edges come
from s1, which is identified as a con-
vergence point. The subpath [s1] is re-
turned.
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(b) There are no convergence points
found at time t3, implying that noth-
ing is outputted. Just as for offline VA,
lower-scoring edges are eliminated.
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(c) In t4, the convergence point s2 is estab-
lished, and the algorithm outputs the
locally optimal subpath [s3, s2].
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(d) Lastly, backtracing is performed from
t4 to the previous convergence point.
The subpath [s1] is yielded.

Figure 5: VSW decoding of the trellis in Figure 3. Edge weights and node scores
have been omitted for the sake of simplicity. The VSW algorithm han-
dles observations from times t1, t2, t3, t4 successively. Whenever a con-
vergence point is encountered, the Viterbi solution up until that point is
returned. The convergence points are recognized as green nodes, which
together with the red nodes and edges form the optimal solution. The
surrounding black dashed line indicates the window size.



2.3 viterbi algorithm 16

t2t1

s1

s2

s3

(a) At time t2, backtracing is performed
to t1 and the most probable path thus
far is yielded. According to the edge
weights in Figure 3, this path is [s1].
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(b) At time t3, sub-optimal edges are elim-
inated. The locally optimal subpath
[s3] is outputted.
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(c) In t4, the algorithm outputs the se-
quence [s2].
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(d) The last backtracing step yields the
subpath [s1].

Figure 6: FSW decoding of the trellis in Figure 3. Edge weights and node scores
have been omitted for the sake of simplicity. The FSW algorithm han-
dles observations from times t1, . . . t4 in chunks [t1, t2], [t2, t3], [t3, t4]
and [t4], when the time lag is set to 2. Once FSW receives two obser-
vations, it decodes the sequence and returns the most likely solution for
that particular instance. Then it waits for another observation, slides the
window forward and solve that sequence independently of the last one.
The red nodes and edges form the obtained solution. The surrounding
black dashed line indicates the window size.



3 M A P R E P R E S E N TAT I O N

The HD map is provided by the map company TomTom [10] and is ac-
cessed through an API built in-house. The mapped area is restricted to
larger roads and their immediate surroundings in Gothenburg. These roads
are Lundbyleden, Västerleden, Oscarsleden, Söderleden, Kungsbackaleden,
Dag Hammarsköldsleden and parts of Hisingsleden, as seen in Figure 7.

Roads consist of one or multiple parallel lanes, each of which has a center-
line, which in turn is represented as a polyline. A polyline is specified by a
sequence of points which are connected by smaller line segments. Each line
segment is defined by the longitude and latitude of its start and end point.
Thus, the polylines are two-dimensional. The altitudes of the polylines are
not known, implying that it is not possible to separate an overpass from an
underpass merely by using the map API.

Also the left and right lane markers, signifying the lane border, are poly-
lines. They are also associated with their marker type. These can be solid or
dashed, for instance. The map also captures road delimiters such as guard
rails and shaded area markings, as is seen in Figure 8. The different types
of data available from the map are given in Table 1.

3.1 centerline assignment

The lane centerlines contain meta data such as speed limits, lane widths
and lane markings, and range from 1 to 1000 meters in length. A centerline
is given a unique ID and is defined as the stretch of lane for which the
metadata remains constant. The longitudinal position of e.g. a traffic sign,
or the change in lane marker type, is thus the delimiter between two different
centerlines. An example of this is shown in Figure 9.

Lanes that share borders with each other and have the same start and
end points are grouped together into so called lane groups. These share the

Table 1: Different type of data available from the map.

Type Variable Description Unit

Orientation
latitude Latitude [degree]
longitude Longitude [degree]

Lane specifics

id Lane ID
speed limit Speed limit [m/s]
width Width of lane [m]
heading Heading [degree]
left marker type Type of left marker
right marker type Type of right marker

17
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Figure 7: Google map image of Gothenburg, courtesy of Google, Inc., layered with
the TomTom map. Blue lines represent roads and lanes. Red, black and
yellow markers indicate traffic signs, stop lights, junctions and other road-
related objects.
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Figure 8: Zoomed in image of the map in Figure 7, better showing the various
information provided by TomTom. Red and green lines are right and left
road borders, blue lines are lane markers. Guard rails are represented by
the black short-dashed polylines, and red and green dots enclose shaded
areas, color-coded analogously to the road borders. Cyan-colored lines
are lane centers.
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Figure 9: Example of how lane centerlines are assigned IDs. An eastbound road
with two parallel lanes is shown. The cyan-colored lines are centerlines,
located in the middle of each lane. The red and green lines are the left and
right road markings, respectively, and the blue solid and dashed line is the
lane marking separating the two lanes. The encircled numbers represent
centerline IDs. The two lanes are split into separate centerlines where
the lane marker changes from dashed to solid, and where the speed sign
appears, yielding a total of six different centerlines, with IDs 1 to 6.

same metadata, such as speed limit, width and heading. In Figure 9, lane
centerlines {1, 2}, {3, 4} and {5, 6} compose three lane groups.

3.2 graph representation

Additional meta data that is contained within a centerline is its immedi-
ate topology. Specifically, a centerline knows its lateral neighbors. It also
knows its predecessor and successor. In Figure 9, centerline 4 is a lateral
neighbor to centerline 3. Centerline 1 is the predecessor to centerline 3, and
5 its successor. This connectivity information allows the road network to be
constructed as a graph, with centerlines as edges and connections as nodes.

Unfortunately, the TomTom map is not complete. Certain lane centerlines
are missing, leaving holes in the map. For map matching purposes, this is
problematic since an observation on that lane cannot be properly matched
against the map. A bigger misfortune is, however, that the topology is lost.
Put differently, nodes and edges are missing. Using the example in Figure 9

again, imagine that centerline 3 is missing. This means that centerline 1 only
has an edge to 2. The only possible graph path from centerline 1 to centerline
5 is thus [1, 2, 4, 6, 5]. If also centerline 4 is missing in the map, there is no
valid path from centerlines 1 and 2 to 5 and 6.

3.3 lane types

There are three types, or categories, of lanes, dependent of the graph struc-
ture. Typically, one centerline has one predecessor and one successor, as in
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(a) Two lanes of type continuation merging into one, with the
triangular-shaped lane being of type merge.

(b) A lane of type continuation splitting into two lane of type split.

Figure 10: Visualization of Figure 10a lane merges and Figure 10b lane splits.

Figure 9. It is simply a continuation of the previous lane. However, there
are occurrences where it instead has two predecessors or two successors, as
in the cases of two lanes merging or splitting. Hence, these lanes can be
categorized as merges and splits.

Merges and splits have different geometries than continuations. Where
continuations have near-parallel left and right lane markings, merges and
splits have more irregular shapes. A lane merge tends to have a pointy
end, as shown in Figure 10a. Splits come in tuples, as shown in Figure 10b.
One of these typically has a pointy start, while the other is more regularly
shaped.

3.4 lane width analysis

As seen in Table 1, the map contains information about the widths of the
lanes. In order to establish whether information about lane widths could
potentially provide useful information for the task of map matching, an in-
vestigation of the variable is carried out.

The first property studied is the variation in lane widths. For example,
if they all are very similar to each other, the feature is useless for the pur-
pose of map matching. If, however, the widths do vary in such a way that
they aid map matching, they might be interesting to incorporate. The more
unique properties a lane has, the more refined the distinction between lanes
are. By this, it is favorable to have lanes with neighboring lanes having dis-
tinct widths. The lane width frequencies are visualized in a histogram in
Figure 11. From the histogram, it can be established that 50% of the lanes
maintain a width between 3.49 and 3.90 meters.

When studying the correlation between the width of a lane and the me-
dian lane width of its neighbors, it is evident that it has a linear tendency,
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Figure 11: Histogram of lane widths in the map.

Table 2: Lane width errors for different lane types.

Type Mean [m] Standard error [m]
Continuation 0.0188 0.0057

Merge 0.1382 0.0175

Split 0.1762 0.0185

see Figure 12. This implies that lanes located close to each other tend to be of
similar widths. By the horizontal string of points in Figure 12, it is apparent
that lanes of various widths seem to be surrounded by lanes having a width
around 3.7 meters. The cluster in the middle indicates that lanes which are
around 3.5− 4.5 meters wide tend to have neighbors maintaining a similar
width.

Secondly, a study of widths is performed based on lane types. This is
motivated by the fact that the widths are given as scalar values, while the
actual widths vary across the lanes. Since merges and splits have irregular
geometries, it can be hypothesized that the reported widths may be mislead-
ing for these types. If the hypothesis holds, it may indicate that the lane
width variable is unfit to use for map matching.

To get estimates of the true widths, points are sampled from the lanes.
Local lane widths are then calculated at these points. A schematic view of
the sampled widths of a lane is seen in Figure 13. The width error is then
taken as the mean width difference between the reported lane width and
the sampled widths. The errors for different lane types are seen in Table 2.
Based on the results summarized in the table, it can be concluded that the
lane width is very accurate for lane continuations, but more erroneous for
lane merges and splits.
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Figure 12: Scatter plot of lane widths and median of their neighbors lane widths.

widthxk

Figure 13: A lane merge with sampled points (black dots) and local lane widths,
given by the lengths of the two-headed arrows. The reported lane width,
widthxk is also shown.
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The data available at each time step is yielded by the sensors described
in Section 4.1. This data can be divided into three categories based on the
sensors from which the data originates. Positional data is retrieved by GPS,
described in Section 4.1.1, data reflecting the movement of the vehicle is
given by the Inertial Navigation System (INS), as described in Section 4.1.2,
and information considering lane markers is gathered by a vision system,
described in Section 4.1.3.

The Drive Me data contains a number of variables listed and described
in Section 4.2. This data is split into a training and test set with the ratio
30− 70, corresponding to data set sizes of 475 and 1107 drives, respectively.
The drives last from 1 to 12 minutes, and cover distances between 10 and
10, 000 meters.

Data analysis of the training set is performed in Section 4.3, and the model
is then adapted accordingly to the findings. These analyses rely on the
ground truth, i.e. having knowledge of the hidden states. The process of
determining these is detailed in Section 6.1. The test set is later used to
evaluate the model performance.

4.1 sensors

Sensors are devices that detect and measure changes in the surrounding
environment. Events registered by the sensor can then be sent to some
electronic component that can process the information. This project will
consider data retrieved from sensors collecting and identifying information
such as GPS positions, speed, acceleration, angular velocity and lane mark-
ings. In the following subsections, the sensors used to collect these data are
described.

4.1.1 GPS

The Global Positioning System (GPS) is a satellite-based navigation system
that provides continuous positioning and timing information worldwide un-
der any weather conditions [31]. GPS consists of 24 evenly spaced satellites
placed in circular 12-hour orbits inclined 55° to the equatorial plane. This
constellation scheme provides the desired coverage all over the world in ad-
dition to being cost-effective. In order to determine the position of a GPS
receiver, it must have clear sight (i.e. no blocking mountains or buildings)
to at least four satellites. With the mentioned setup, it is guaranteed that
a minimum of four satellites are in a good geometric position 24 hours of
the day anywhere on the earth, which thus constitutes the foundation for
determining a position [32].

24
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The position of a GPS receiver is determined by the resection process, a
method for determining an unknown location given known positions, using
the measured distances to the satellites. There are no public restrictions re-
garding receiving the signals emitted from the GPS satellites. Hence, anyone
can connect a GPS receiver to an antenna, which can receive signals from the
satellites, and thus determine positions in the world [31].

Consumer-grade GPS

Consumer-grade GPS offers inexpensive and manageable technology for
collecting positions. Its accuracy depends highly on the manufacturer, but it
is generally stated that the measurement accuracy is within 15− 20 meters
of the actual position [33]. Most modern cars have some consumer-grade
GPS incorporated. Positions obtained from that system can be used as a
signal when inferring the path of a vehicle on lane-level. However, as these
signals correspond to noisy estimated locations, it is not sufficient for the
task of identifying traversed lanes. The actual path traversed by the vehicle
is preferably derived by positions generated from a real-time kinematic GPS,
described below, as they correspond to more accurate measurements of the
actual locations.

Real-time kinematic GPS

Real-time kinematics (RTK) is a technique used to enhance the GPS accu-
racy. It involves a method of carrier-phase differential GPS positioning with
centimeter-level position accuracy in real time. Conceptually, it utilizes one
or more fixed base stations that send corrections to a moving receiver which
in turn are used to improve the position accuracy [34]. Receivers adapted
for RTK GPS are costly, which is why it is used only for a limited area of
applications. For that reason, it is not readily incorporated into products
intended for the general mass [35].

4.1.2 Inertial navigation system

Inertial measurement units (IMUs) are electronic devices that measure the
inertial movement of a vehicle [36]. An IMU usually has six degrees of free-
dom, yielded by three axis accelerometers and three axis gyroscopes. An
inertial navigation system (INS) inputs the IMU measurements into navi-
gation equations. The outputted odometric data is then smoothed by an
estimation filter before being transmitted to the vehicle [37]. An illustration
of the INS is shown in Figure 14.

4.1.3 Forward looking camera

A forward looking camera, placed on a traversing vehicle, is able to detect
lane-markings on the road. Cameras applicable for standard vehicles are
capable of detecting markers lying inside a 25meter disc [38]. The detections
give information about distances to the closest markings on the left and right
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Figure 14: Illustration of the INS.

side of the vehicle and their corresponding type. The marker types that can
be recognized by the camera include e.g. solid and dashed.

4.2 variables

A summary of the available data given by an observation yk at time tk
can be seen in Table 3. Explanations of these variables follow below.

Table 3: Different type of data from the vehicle sensors categorized by its sources.

Sensor Variable Description Unit

GPS

latitude Latitude [degree]
longitude Longitude [degree]
altitude Altitude [m]
satellites Number of satellites

INS
heading Heading [degree]
speed Speed [m/s]
yaw rate Yaw rate [degree/s]

Vision

left marker type Type of left marker
right marker type Type of right marker
left confidence Confidence left marker
right confidence Confidence right marker
lane change Lane change indicator
width Distance between left and

right marker
[m]

4.2.1 Latitude and longitude

As the vehicles are equipped with both a SPA and an RTK receiver, two
separate versions of the latitude and longitude are collected. SPA, or Volvo
Scalable Product Architecture, GPS is the specific consumer grade GPS re-
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dleft and dright, as captured by the
vision system.

Figure 15: Schematic representation of the variables heading, distance to left lane
marker and distance to right lane marker.

ceiver used by the Volvo vehicles in the Drive Me project. The SPA receiver
returns the coordinates with a rate of 1 Hz, while the much more accurate
RTK GPS has a sampling rate of 40 Hz.

4.2.2 Altitude

As with the latitude and longitude, the altitude, measured as meters above
the sea, is returned both by the SPA and RTK receivers, at 1 Hz and 40 Hz
respectively.

4.2.3 Number of satellites

The SPA receiver also outputs the number of satellites to which it is con-
nected with. This number depends on the environment. Inside a tunnel, for
instance, there is no satellite in-view. If there are few obstacles between the
receiver and sky, however, the receiver can connect to virtually all satellites
located on the current hemisphere.

4.2.4 Heading

The vehicle heading is measured as the clockwise angle from the latitudi-
nal axis, as shown in Figure 15a. The heading is calculated by the inertial
navigation system (INS). The INS uses the GPS data, and therefore, the ve-
hicle heading is reported for both GPS systems.

4.2.5 Speed

The vehicular speed is given in the unit meters per second and is calcu-
lated by the INS.
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4.2.6 Yaw rate

The yaw rate, corresponding to the angular velocity, i.e. steering angle
over time, is given in the unit degrees per second and is calculated by the
INS.

4.2.7 Distance to lane markers

The lateral distances from the vehicle to the closest left and right marker,
dleft and dright, measured by the camera according to Figure 15b, are given
in two variables. The distances are stated in meters.

4.2.8 Lane marker types

The vision sensor identifies the types of the left and right lane marker, e.g.
solid or dashed, which are stored in two variables. There are four explicit
marker types: solid, dashed, botts dots and double lane, and three additional
types: invalid, undecided and no marking, describing uncertain detections
or non existing markings.

4.2.9 Confidence of vision system

There are two variables holding information about how confident obser-
vations of the left and right marker types are, respectively. The confidences
take values in {0, 1, 2} where 0 corresponds to the lowest confidence and 2
the highest.

4.2.10 Lane change indicator

This variable is assigned values in {0, 1, 2}. When the vehicle switches to
a left lane, the indicator shows 1, and when changing to a right lane it is 2.
When no lane changes occur, the lane change indicator is 0.

4.3 data analysis

This section describes the data analysis performed on vehicle sensor vari-
ables of special interest. This analysis is based on the training data. The
ability of the vision system to identify lane marker types is investigated in
Section 4.3.1. The performance of the lane change indicator is analyzed in
Section 4.3.2. Further, yaw rates potential to identify lane changes is investi-
gated in Section 4.3.3. Lastly, the correspondence between lane widths seen
by the vision system compared to the map is looked into in Section 4.3.4.
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Figure 16: Two-lane northbound road. The vehicle traverses in the right lane, as
indicated by the RTK GPS coordinates given as teal-colored circle. The
orchid-colored cross is the noisy SPA GPS coordinate.

4.3.1 Lane marker type identifications

The vision system that the vehicle is equipped with constitutes the pri-
mary qualification to derive in which lane segment the vehicle is when the
GPS is erroneous. For example, consider a vehicle traversing a two-lane
northbounded road, see Figure 16. As can be seen, the vehicle is traversing
the right lane while the noisy GPS places the vehicle in the left lane. Assum-
ing that the vision system performs as expected, it will report that the left
lane marker is dashed and the right one solid. This can be used to empha-
size that the right lane is the most probable location of the vehicle. When
there are more than three adjacent lanes with the same direction, there will
be ambiguities between the enclosed lanes since they might have the same
left and right marker type.

However, if the vision system repeatedly reports incorrect left and right
marker types it is problematic to rely heavily on the vision data. Thus, it
is legitimate to investigate the ability of the vision sensors to identify lane
marker types correctly. Knowing the path a vehicle has followed while col-
lecting data from the sensors, it is possible to check if the vision system
might have identified lane marker types which do not correspond to the
types presented at corresponding locations in the TomTom map.

The vision system is capable of registering solid and dashed markers, as
well as the absence of any markers. According to the map, the lanes are
typically bordered by such solid and dashed markers. Also no markings
and shaded areas are prevalent. Other marker types also occur in the map.
However, since these markers are not represented in the classes of the vision
system, and since the markers are relatively few, they have been omitted
from the forthcoming analysis.

Since each marker type classification is assigned a confidence value, it
is natural to perform one vision classification error analysis per confidence
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(a) Confidence level 1, corresponding to medium confidence.

(b) Confidence level 2, corresponding to the highest confidence.

Figure 17: Frequency of marker type classifications by the vision system, sorted by
true lane marker types and correctness of said classifications.

level. The vision system does not report any marker type back if the confi-
dence is 0. Therefore, only confidences 1 and 2 are examined.

The accuracy of the classifications is 75% for confidence 1 and 89% for con-
fidence 2. The fraction of correct and incorrect marker types per true marker
type is seen in Figure 17. Studying the figure, it is clear that the vision sen-
sor is better at correctly classifying dashed markers than solid ones, for both
confidence levels. Solid lane markers are more often mistaken as dashed
markers, than the other way around. Shaded areas, which lack represen-
tation by the vision system, are reported as either solid or dashed markers.
The proportions between these vary over confidence levels. Absences of lane
markers are seemingly labeled as dashed. This analysis shows that the vision
sensor does not perform ideally, and also that it exhibits over-confidence.

4.3.2 Lane change indicator

The lane change indicator is a variable with big potential for map match-
ing purposes — especially for finding the correct match among parallel lane
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(a) A lane change occurs
but the indicator fails
to report it.

(b) The lane change indi-
cator reports a lane
change even though
the vehicle is not
changing lane.

 

tk

 
 

tn

(c) The vehicle changes
lane at time tk, but
the indicator reports
the lane change at a
different time tn.

Figure 18: Three cases for which the lane change indicator is incorrect.

segments. A further analysis of the accuracy and robustness of the sensor
is therefore of interest. A ground truth lane change parameter is used for
evaluation, based on the RTK coordinates and the connectivity of the map,
i.e. how lanes in the map are connected to each other. In a similar fashion to
the lane marker type analysis, it is then possible to yield information about
the accuracy of the lane change classifications.

The lane change indicator can be incorrect in several ways. These are
visualized in Figure 18. The cases in Figures 18a and 18b are straightforward.
The third case, Figure 18c, where the indicator reports the lane change at a
different time step, is more complicated. If |tn− tk| is small, the lane change
indicator could be considered correct. If the difference is large, it should be
considered incorrect.

To take this time difference into consideration, a tolerance is introduced.
For Figure 18c, a left or right lane change signal is considered to be correct
if the same lane change has occurred within the tolerated time window, i.e.
if |tn − tk| < ε for some tolerance level ε. The fraction of correct lane change
classifications is seen in Figure 19. A lane change signal output of 0, corre-
sponding to no lane change, is nearly always correct irregardless of the time
tolerance. This lane change state is also the most frequent one. Depending
on the time tolerance, the accuracy of the left and right output signals vary.
Only a small fraction of the lane changes are correctly detected by the vehi-
cle system in the same time step, corresponding to a time tolerance of 0 s.
As the tolerance increases, so does the correctness of the indicator signals.
After 2 s, the accuracies remain constant.

This analysis shows that very few lane changes are reported immediately
as they occur. Instead, it takes the lane change indicator up to 2 seconds to
report the change of lanes. A total of 86% of left and right lane changes are
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Figure 19: Correctly matched lane change signal frequencies per indicator type and
for a range of tolerated time differences between the lane change detec-
tion and the true lane change.

reported within this 2 second time window. The remaining 14% are false
positives or false negatives as described by Figures 18a and 18b.

4.3.3 Yaw rate during lane change

According to Rabe et al. the steering angle approximately resembles a sine
wave over time during a lane change. This wave can be modeled by fitting a
parameterized sine function s(ω) of the yaw rate ω,

s(ω) = a · sin (fω+ p) + c (6)

using data where lane changes are known to occur [18]. a, f, p and c are
parameters meant to be estimated based on data.

Using the lane change indicator, described in Section 4.2.10, it is possible
to gather yaw rates maintained during left and right lane changes. Yaw
rates corresponding to left lane changes have to switch sign in order to be
studied alongside yaw rates originating from right lane changes. It might
seem redundant to incorporate an additional metric to identify lane changes,
as the lane change indicator is part of the sensor data in every time step.
However, if the lane change indicator is solely based on visual data, it might
give faulty information when the conditions are not optimal, e.g. when the
sight is impaired due to fog. By also studying the yaw rates, it might be
possible to identify lane changes which have not been picked up by the
visual data sensors.

In order to estimate the parameters in Equation (6), it is necessary to ob-
tain data by extracting yaw rates were lane changes occur. This is not a trivial
task, since various driving conditions affect the lane change maneuver. For
example, it takes longer time to perform a lane change on wider lanes than
on more narrow ones when maintaining the same speed. Furthermore, the
yaw rates during a lane change performed in a curve exhibit a rather noisy
pattern, implying that it is unlikely to resemble a sine wave. Having men-
tioned this, the technique to extract yaw rate data was naive in the sense
that only time intervals around 9 seconds were considered. It also included
manual verification to assure that the lane changes were not performed in a
curve.
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Figure 20: Mean yaw rate from 32 lane changes, shown in blue, has been used to
fit a parameterized sine curve, presented in green.

In the training data set, 32 manually verified lane changes were found to
have yaw rates resembling a one-period sine wave. The mean of these yaw
rates can be seen in blue in Figure 20. Using least-squares optimization to
fit this data to Equation (6) yields a sine wave which can be seen in green in
Figure 20.

Once Equation (6) has been estimated, it can be used to define a classifier
that detects eventual lane changes by solely considering the yaw rates. By
checking the mean squared error between s(ω) and s(Ω), whereΩ is a range
of yaw rates originating from a drive which might involve lane changes, one
can deduce whether the error is lower than a predefined threshold. If that
is the case, the yaw rates Ω are said to follow a sine curve indicating that a
lane change likely has occurred.

When using the classifier described above to identify lane changes solely
based on yaw rates, it was found to perform worse than when simply look-
ing at the lane change indicator. For the test data set, where the lane change
signal reported 404 lane changes, only 65 of them were found by the clas-
sifier. The classifier also identified 47 lane changes which the lane change
signal did not find. However, upon manual verification it was discovered
that the tentative lane changes detected by the classifier were exclusively
false detections. That is, the vehicle did not change lane where the classifier
predicted it did.

It should be noted that the data considered when testing the classifier
might correspond to drive sessions in nice weather and with clear sight,
making the lane change indicator highly reliable. Hence, with the available
data, it can not be confidently determined if the classifier would identify lane
changes not picked up by the vision sensors when weather conditions limit
their performance. The classifier thus has to be tested on more varying data
in order to establish if it is a good complement to the lane change indicator
for the task of identifying lane changes.
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4.3.4 Lane width

As shown in Figure 11 in Section 3.4, the lane segments vary in width. It
might therefore be interesting for lane-level map matching purposes. The
variables are investigated further in order to explore this possibility. In the
TomTom map, each lane xk is associated with a lane width, widthxk . The
vehicular data of an observation yk also contains a measurement, widthyk ,
comparable to widthxk .

The two variables are plotted against each other in Figure 21. The mean
and standard deviation are calculated as µ = mean(widthxk −widthyk) = 0.21
and σ = std(widthxk − widthyk) = 0.18 for the reported confidence level 2.
For a normal distribution, 99.7% of the values are contained in the range
µ± 3σ. Hence, the 99.7th percentile can be derived for the estimated width
as reported by the camera,

widthest
yk
≈ widthxk − 0.21± 0.54,

where the term 0.54 is calculated as 3σ ≡ CI99.7, where CI stands for confi-
dence interval, and can be defined as the camera error.

Based on the standard deviation of the camera error, σ, the camera ought
to be capable of accurately differentiating between two lane segments of
different widths, if this difference is larger than 2CI99.7 meters. The stan-
dard deviation of the lane widths in Figure 11 is 1.83 meters, which is large
compared to the camera error. If this was not the case, it would not be mean-
ingful to penalize lanes with widths differing from the lane widths captured
by the vehicle camera. By the results in this investigation, however, it is still
of interest to implement such a penalty.

However, it is necessary to take into consideration that the lane width
reported by the map is inaccurate for lane merges and splits, as concluded
in Section 3.4. A lane width-based penalty should thus depend also on
the lane types of the candidates. Such measures can be taken, but it is also
legitimate to question the expected benefit of a lane width penalty altogether,
given the complexity of deriving it.
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Figure 21: Scatter plot of lane widths, filtered on confidence level 2. Also shown is
the 99.7% confidence interval of a linear fit.



5 I M P L E M E N TAT I O N

The map matching problem is represented using an HMM. The model
is constituted by some essential parameters; states, observations, emission
probabilities, transition probabilities and initial probabilities. Proposals for
these components are given in Sections 5.1 to 5.5. Lastly, the implementation
of the Viterbi algorithm is described in Section 5.6.

5.1 hidden states in hmm

The state space of the HMM is taken as the set of lane segments provided
by TomTom, seen as centerlines with IDs in Figure 9. Formal description of
a lane segment is given in Definition 2. It is based on the definition of a lane
border, which is thus provided in Definition 3.

Definition 2. A lane segment is an Ml +Mr-point polygon whose Ml,Mr

points are given by the left and right lane borders (Definition 3). It is also
defined by its lane specifics (Table 1), derived from the corresponding cen-
terline.

Definition 3. A lane border, r = {pm|m = 1, . . . ,M}, is a polyline spanned by
M longitudinal and lateral coordinates pm, defining the left or right border
of a lane segment.

Matching observations to the hidden states implies that the position of the
vehicle is contained within the area of the lane section, given by its matched
centerline. The lanes can be 1− 1050 meters long and there are 7, 714 lane
segments. For a typical lane of width 3.7 meters, this area ranges from
around 4 m2 to 3885 m2. In terms of localization, the actual vehicle location
can be either strongly narrowed down, or very vague.

To get more comparable states, the centerlines could be split into multiple
parts so that the area of each state polygon is similar in size. According to
the time complexity analysis performed in Section 2.3.1, the solution time
of the VA increases as N2. Therefore, this state implementation would take
significantly longer time and as such, is not used. However, it is worth not-
ing that the precision of the actual vehicle location would improve, implying
there is a trade-off between time efficiency and position accuracy.

5.2 observations in hmm

Not all vehicle sensor data variables have been found useful for the pur-
pose of map matching, which is why the set of observation variables can be
compressed. For a single vehicle drive, a so called trajectory is created. It is
defined in Definition 4. As can be seen, some of the variables in Table 3 have

36
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been omitted. This is because they were found to be unfit for the problem
of lane-level map matching, as described in Section 4.3.

Definition 4. A trajectory is a sequence of data points, Y = (yk|k = 1, ...,K),
collected by a vehicle during a drive session. The point yk is defined
by the current latitudeyk , longitudeyk , headingyk , speedyk , left marker typeyk ,
right marker typeyk , left confidenceyk , right confidenceyk and lane changeyk from
Table 3.

The trajectory points are sampled at 1 Hz frequency, which is the frequen-
cies of the SPA latitudes and longitudes. This means that a data point is
generated every 25 meter for a vehicle driving at 90 km/h.

5.3 emission probability

The emission probability Ek = p(yk|xk) reflects how likely it is to observe
yk given that the vehicle was driving in candidate lane xk ∈ X ⊆ S at time
tk. It is intuitive to let the likelihood of making an observation in a lane de-
crease with increasing distance between the GPS location of the observation
and the lane. This is explicitly defined in Section 5.3.1. In addition to this,
the probability is more refined by incurring penalty factors based on speed,
heading and lane marker type. These are introduced in Section 5.3.2.

5.3.1 GPS observation probability

The probability of observing yk when being in lane xk can be modeled
according to a normal distribution as

P(yk) =
1

widthxk

0.5widthxk∫
−0.5widthxk

1√
2πσ2GPS

e
−(l−d)2

2σ2GPS dl, (7)

where widthxk is width of the lane, d the perpendicular distance between the
GPS coordinate of the observation and the centerline of the lane and σGPS the
estimated standard deviation of the GPS error. The lane width is accounted
in the hope of contributing to finer distinction between closely located lanes
having different widths [15].

5.3.2 Penalties

By the noisy nature of the location measurements, it is not sufficient to
solely consider the GPS location in order to infer which lanes a vehicle has
traversed. Additional vehicle sensor and map data, such as speed, heading
and lane marker types, can be used to deduce penalty factors. These factors
range between 0 and 1, with the later defined lane marker type penalty being
the exception. It attains values between 0 and 1 if lane markers do not match,
and values between 1 and 2 if they do. As such, it is not a true penalty.

These factors can be incorporated in the emission probabilities, so that
the latter have a higher dependency on the unique characteristics of each
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lane. If a penalty is lower than 1, the matching probability of a specific
lane is decreased. For the special case of lane marker type penalty, a value
greater than 1 enhances the lane likelihood. This should make it easier for
the algorithm to distinguish between the candidate lanes. Descriptions of
the different penalties implemented are given below. They can also be seen
in Figure 22.

Speed

Hypothetically, drivers tend to not exceed speed limits. Although maybe
not a universal truth, the data used in this work reinforces this assumption.
Thus, a factor penalizing speeding can be introduced. Parallel roads that are
located close to each other and have different speed limits can then be dif-
ferentiated on the basis of speed differences. The implication of the penalty
is thus to reduce the number of possible lanes, as well as to adjust their
matching fitness.

The speed penalty is defined as

S(xk,yk) =
speed limitxk

max
(
0, speedyk − speed limitxk

)
+ speed limitxk

. (8)

Here, speedyk is the vehicle speed and speed limitxk the speed limit on the
lane [15]. A plot showing the speed penalty for different road speed limits
can be seen in Figure 22a.

Heading

A vehicle will generally maintain about the same heading as the road it
traverses. Thus, in cases where there are clusters of closely located roads,
e.g. urban areas or overpasses, candidate road lanes could be filtered by con-
sidering the vehicle heading compared to the road headings. The heading
differs slightly when changing lanes, but generally not above 20°. Thus, no
penalty is applied when the heading difference is smaller than 20°. When
the headings differ more than 90°, the corresponding lane is assigned a zero
probability.

The heading penalty is thus defined as follows

H(xk,yk) =


0 if 90° 6 ∆heading(xk,yk)

headingxk
headingxk+∆heading(xk,yk)

if 20° 6 ∆heading(xk,yk) < 90°

1 otherwise

(9)

where headingyk is the vehicle heading, headingxk the heading of the lane
and ∆heading(xk,yk) the difference between the headings. A plot showing the
heading penalty for different lane headings can be seen in Figure 22b.

Lane marker type

The forward looking camera in the vehicle, described in Section 4.1.3, de-
tects lane-markings on the road. For the task of lane-level map matching,
this is one of the sensors that are capable of describing which lane the ve-
hicle traverses. For example, marker types for parallel lanes on two-lane



5.3 emission probability 39

(a) Speed penalty inclined for a vehicle maintaining a speed between 0− 170 km/h
on roads with speed limits 30, 50, 70, 90 and 110 km/h.

(b) Heading penalty for a vehicle traversing with heading ranging between 0° and
360° on lanes with headings 0°, 90°, 180° and 270°.

(c) Marker type penalty, with scale parameter c = 1, for a vehicle whose vision sys-
tem detects 0 to 2 lane marker types correctly (with confidences 0, 1, 2) according
to the map.

Figure 22: Plot of penalties incorporated in the emission probability.
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(a) The vehicle, traversing in the right
lane, will see a dashed left marker and
solid right marker. This excludes the
possibility for the vehicle to be in the
left lane.

(b) When there are four lanes heading in
the same direction, there is an ambi-
guity for the middle lanes which have
the same left and right marker type.
Therefore, only the leftmost and right-
most lanes can be matched unambigu-
ously.

Figure 23: The lane marker types identified by the forward looking camera can
be used to narrow down the candidate lanes that the vehicle might be
traversing.

roads are not the same. This information combined with information from
the camera can be used to deduce the most likely lane. In Figure 23a the
vehicle’s forward looking camera will report a dashed marker to the left and
solid to the right. As this correspond to the marker types of the right lane,
one can conclude that the vehicle probably traverses that lane.

Still, ambiguities arise on roads containing more than three parallel lanes.
As can be seen in Figure 23b, the vehicle is in the second to last left lane and
the camera reports dashed markers on both sides. This only limits the two
outer lanes which have either left or right solid markers respectively. Thus,
according to the vision data, the vehicle could be in either of the two middle
lanes.

A mathematical expression has to be derived in order to incorporate a
penalty considering the marker types registered by the camera on the ve-
hicle compared against types given by the map. As there are two identi-
fied marker types at each observation, the left and right one, two variables
are sufficient for maintaining the probabilities of detecting the same marker
types as given by the candidate lane marker types. They are defined as

pleft equal(xk,yk) =

= P
(

left marker typexk = left marker typeyk

∣∣∣ left marker typeyk
)

(10)

and

pright equal(xk,yk) =

= P
(

right marker typexk = right marker typeyk

∣∣∣ right marker typeyk
)

, (11)

where left marker typexk and right marker typexk are the left and right marker
types on the lane and left marker typeyk and right marker typeyk the left and
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right types registered by the vehicle. The probabilities in Equations (10)
and (11) are estimated for the different marker types using the training data
set.

Using Equations (10) and (11) and incorporating the confidences described
in Section 4.2.9 yields

left penalty(xk,yk, c) =

= (1− pleft equal(xk,yk))×
(
1− c×

left confidenceyk
max confidence

)
+

pleft equal(xk,yk)×
(
1+ c×

left confidenceyk
max confidence

)
(12)

and

right penalty(xk,yk, c) =

= (1− pright equal(xk,yk))×
(
1− c×

right confidenceyk
max confidence

)
+

pright equal(xk,yk)×
(
1+ c×

right confidenceyk
max confidence

)
, (13)

where c is a scale parameter. left confidenceyk and right confidenceyk are the
confidence levels reported by the vehicle and max confidence the maximum
confidence that can be registered by the vision system. These penalties take
values in the interval (1− c, 1+ c), but are truncated at 0. When the cam-
era confidently reports that the left or right lane marker type is not the
same as the types for some lane segment, the penalties will maintain a low
value. Correspondingly, when it confidently reports that the marker types
are equal, the penalty values are higher. Remember that a low penalty means
that a lane is less likely, while high penalty means more likely.

The total lane marker type penalty is then obtained as the average of Equa-
tions (12) and (13),

M(xk,yk, c) =
left penalty(xk,yk, c) + right penalty(xk,yk, c)

2
. (14)

After some tuning, the scale parameter is set to c = 1. A plot showing the
marker type penalty for different confidence levels can be seen in Figure 22c.

5.3.3 Final emission probability

Having the GPS observation probability defined according to Equation (7)
and the penalties given in Equations (8), (9) and (14), the emission proba-
bility is given by the product of all these factors. Thus, the probability of
observing yk on lane xk is calculated as

Ek = P(yk)× S(xk,yk)×H(xk,yk)×M(xk,yk, c). (15)

5.4 initial probability

The initial probability Π reflects which lane the vehicle is likely to have
started on. For the sake of simplicity, it is common to let the initial probabil-
ity distribution be uniform. However, since all observations from the drive
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Figure 24: The figure depicts a road with two lanes in both east- and west-bound
direction. For a vehicle traversing the lower lane segment to the left (dark
red), it can transition to lanes which it is directly or indirectly connected
to (bright red). The thin black lines indicate different lane segments.

are known initially, it is justified to let the initial distribution consider this
information. This allows for a more sophisticated guess of which lane the
vehicle likely started the drive at. Re-using the emission probability intro-
duced in Section 5.3, the initial probability is defined as

Πi = E0,i, i = 1, . . . ,N. (16)

5.5 transition probability

The transition probability Ti,j = P(sj|si) describes the likelihood of mov-
ing to lane sj ∈ S when being in lane si ∈ S. Two ways to derive transition
probabilities will be introduced. One which uses the connectivity of the
road network provided by the TomTom map, see Section 5.5.1, and one data-
driven approach which does not require knowledge about lane connections,
see Section 5.5.2. These are later evaluated on a small bounding box of the
map, and the best-performing transition probability model is used for final
evaluation.

5.5.1 Connectivity-based probabilities

The transition probabilities can be modeled by considering the connectiv-
ity governed by the TomTom map. That way it will be possible to move from
a lane to lanes in its local neighborhood, as visualized in Figure 24.

In order to get a reasonable distribution of the probabilities, the
connectivity-level should be considered. The connectivity-level concerns
how closely connected the lanes are. For a specific lane, all lanes located
laterally next to it are denoted S0, which are represented in purple in Fig-
ure 25. Lanes located next to the lanes following directly after lanes in S0

are denoted S1, colored green in Figure 25. Continuing in the same manner,
lanes located at depth d from a lane are denoted Sd, yellow in Figure 25,
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Figure 25: The lanes that lane si ∈ S are directly or indirectly connected to can be
grouped into sets S0, S1, . . . , Sd, where 0, 1, . . . ,d reflect on which depth
the lanes are connected.

Figure 26: According to the transitioning rules in Equation (17), the vehicle is most
likely to remain within the two first lane groups until the next time step,
and least likely to transition to the lanes furthest away.

where depth indicates the number of intermediate lanes between the lane
and lanes in Sd.

Constant probabilities

To accomplish simple and viable connectivity-based transitions, it is pos-
sible to assign probabilities that are constant for each neighborhood depth.
That is, there is a constant probability p0 of moving from a lane in S0 to
other lanes in S0, and another constant probability p1 of moving from the
lane in S0 to each of the lanes in S1, and so on. Thus, a lane can transi-
tion to lanes in S0, . . . , Sd with probabilities p0 . . . ,pd, respectively. By the
assumption that it is decreasingly likely to transition to lanes at increasing
depth, the probabilities are assigned such that p0 > p1 > . . . > pd. By this
reasoning, the probabilities of transitioning from si ∈ S to a lane sj ∈ Sd can
be modeled as

Ti,j =
D− d

D
, (17)

where D is the maximum depth considered.
Consider the case shown in Figure 26, where the vehicle is traversing the

lane in the lower left corner. The transition probabilities are calculated ac-
cording to Equation (17) using maximum depth 5. The colors of the lanes in
Figure 26 reflect the likelihood of transitioning to them. Red indicates high
transition probabilities while yellow reflects lower probabilities.
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90 20 m

30 m

30 m

(a) Given that the vehicle traverses the
lower 20 meter lane maintaining a
speed around 90 km/h, it is most
likely to transition into the 30 meter
lane until the next time step.

90

60 m

10 m

10 m

(b) When the vehicle is in a lane stretching
above 50 meters having speed limit 90
km/h, it is most likely that it will re-
main in the same lane at the next time
step.

Figure 27: Transition probabilities calculated according to Equations (18) and (19)
for two different cases, where red reflects higher probabilities and yellow
lower.

Refined probabilities

The probabilities proposed in Section 5.5.1 are not very refined. For exam-
ple, it is possible to incorporate information concerning the speed limit and
lane length to deduce more accurate probabilities.

Consider a vehicle transmitting observations every second. It traverses
lane si ∈ S at time tk, which has speed limit 90 km/h and is 10 meters long.
Given that the vehicle maintains about the same speed as indicated by the
speed limit on the lane, it has moved around 25 meters until the next time
step k+ 1. Since the length of the lane is 10 meters, the vehicle has likely
passed the lane it traversed at time step k.

By this reasoning, the probabilities of transitioning from si to a lane sj ∈
S0 can be modeled as

Ti,j =
1

|S0|
× 1

|lengthsi/2−∆l|+ 1
(18)

where lengthsi is the length of lane si and ∆l = speed limitsi × (tk+1− tk) the
distance travelled between times tk and tk+1 given the speed limit at lane
si. Using Equation (18), transitions from si to sj ∈ Sd can be derived as

Ti,j =
1

|Sd|
× 1

|dsi,sj −∆l|+ 1
(19)
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where dsi,sj is the distance between the longitudinal middle of lanes si and
sj. Consider the case shown in Figure 27a where the vehicle is traversing
a lane which is 20 meters long having speed limit 90 km/h. Calculating
transitions according to Equations (18) and (19) reveal that the vehicle is
most likely to be in a lane following directly after the former one at the next
time step.

When the vehicle is in a lane which is 60 meters long where the speed
limit is 90 km/h, it is more likely that it will remain within the same lane
until the next time step, as visualized in Figure 27b.

It should be stressed that the vehicle’s location within a lane is not taken
into consideration when deriving these transition probabilities. By obvious
means, a vehicle traversing practically at the end of a very long-stretched
lane is certain to have left that lane at the next time step. For the opposite
case, when the vehicle is at the beginning of a long lane, it is more likely
that it is still in the same lane at the next time step. However, since the
consumer-grade GPS produces noisy location measurements, it is not pos-
sible to accurately deduce where in the lane the vehicle is. By this, there
is no sophisticated way to incorporate such information when calculating
transition probabilities. Therefore, the vehicle is always assumed to be in
the middle of the lane (length-wise), which is reflected in Equation (18) by
the term lengthsi/2 in the denominator.

5.5.2 Extrapolation-based probabilities

Another method for estimating the transition probabilities of the model
is the so-called extrapolation based transition method. For a given position
in a state xk at time step k, it is possible to predict the state at time step
k+ 1 by means of extrapolation, as shown in Figure 28. The estimated dis-
tance traveled between the two time steps, ∆l, is estimated as the product
of the sampling frequency, ∆t = tk+1 − tk, and the vehicle speed s. The
direction traveled is given by the vehicular heading. The extrapolated point
is calculated as

xext = x+∆t× v× cosh, (20)

yext = y+∆t× v× sinh, (21)

with (x,y) being the vehicular position at time tk.
The transition probability Ti,j = P(xk+1 = sj|xk = si) is calculated as

the likelihood of extrapolating any point in si to sj. For fixed speed v and
heading h, the probability is described by∫∫

(x,y)∈poly(si)

1(xext,yext)∈poly(sj)dxdy,

where 1(xext,yext)∈poly(sj) is the indicator function

1(xext,yext)∈poly(sj) =

{
1 if (xext,yext) ∈ poly(sj),

0 otherwise.
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Figure 28: Extrapolation of vehicle position at time tk to time tk+1.

Figure 29: Visualization of the extrapolation-based probabilities. Arrows represent
the extrapolations from one lane into surrounding lanes.

v and h could be modeled as the current speed limit and road lane heading.
However, this approach does not capture e.g. a vehicle driving slower than
the limit, or a vehicle in the process of changing lanes, whose heading would
differ from the one of the road. Instead, the parameters are random variables
generated by some underlying probability distributions, fv(v) and fh(h):

Ti,j =

∫∫
poly(si)

∫
h

∫
v

1(x+v∆t cosh,y+v∆t sinh)∈poly(sj)fv(v)fh(h)dvdhdxdy. (22)

Calculating transition probabilities according to Equation (22) for a specific
lane could yield transitions as visualized in Figure 29.

Probability distributions

Different probability distributions fv(v) and fh(h) are tried. A simple
pdf of the speed is a normal distribution with estimated parameters µs =

speed limitsi − 0.93 and σs = 2.20. Alternatively, the speed can be modeled
as a skew-normal distribution [39, 40],

fv(v) =
2

ω
φ

(
v− ξ

ω

)
Φ

(
α
v− ξ

ω

)
, (23)

with φ and Φ being the probability density function (pdf) and cumulative
distribution function (cdf) of the standard normal distribution. α is a skew-
ness parameter. ξ and ω are location and scale parameters. These parame-
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Figure 30: The normal and skew-normal speed distribution with the speed limit set
to 19.44 m/s.
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Figure 31: Calculation of the heading deviation, σh.

ters are decided by evaluating the VA performance for different values, on a
small data set. Based on this analysis, they are set to

α = −3,

ξ = speed limitsi ,

ω = 4.

The shapes of the normal and skew-normal distributions can be seen in
Figure 30.

The distribution of the heading is assumed to be normal. µh is set to the
heading of the closest sub-centerline of si. From a primitive data analysis
of lane changes, it is approximated that it takes 10 seconds to complete a
lane change maneuver. The standard deviation σh is chosen such that the
probability that the vehicle moves at most one tenth lane-widths sideways
is 0.8660, corresponding to 1.5σ. In Figure 31, ∆l = 10× v∆t. The lateral
translation ∆w = lane width. 1.5σh is the heading deviation, calculated as

σh =
2

3
arcsin

lane width
10v∆t

.

Thus, the heading is distributed according to

fh(h) = φ

(
h− sub-centerline heading

2
3 arcsin lane width

10v∆t

)
,

where, once again, φ is the density of the standard normal distribution.
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(a) Candidate space before adding traffic law constraints.

(b) Candidate space after adding traffic law constraints.

Figure 32: Three lane groups, for which the first and second lane segments are
being separated by a shaded area marking, a solid line and a dashed
line, respectively. The vehicle is driving in the second lane segment of
the first lane group, and the red areas represent possible transitions for
that segment.

5.5.3 Filtering illegal transitions

Transitioning from one lane to another may in some cases be forbidden by
law. Assuming that the drivers of the vehicles follow the traffic laws, adding
these as constraints to the transitions ought to lead to a more accurate Viterbi
solution. It also has the benefit of truncating the candidate space, which
decreases the computation time.

The two known cases represented in the data set are when two lane seg-
ments in the same lane group are separated by a solid line or a shaded area
marking. These types of lane borders are forbidden to cross, and thus, there
is no possible way of reaching a lane on the opposite side of such a border.

An example road is shown in Figure 32. Without the constraint, the can-
didate space (i.e. lanes with transition probability > 0) may look like Fig-
ure 32a. After adding the constraint, it instead looks like Figure 32b.

5.5.4 Accounting for lane changes

The forward looking camera is able to detect when the vehicle switches
lane. Among the sensor data, this is reflected by the variable lane changeyk
taking values 0, 1 or 2, describing no lane change, left and right lane change,
respectively. This provides useful information which can be incorporated
into the transitions probabilities to favour certain lane transitions. For ex-
ample, if the vehicle sensor data reports a left lane change when being in
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Figure 33: If the sensor data from the vehicle report a left lane change, the vehicle
is likely to transition to a lane left of the current one. Red reflects higher
transition probabilities and yellow lower.

lane si, transitions to lanes left of si should be enhanced as visualized in
Figure 33.

By obvious means, it is not desired to update transitions probabilities to all
lanes straight forward, left or right of si since that would involve considering
all lanes in the road network. Using the connectivity-level d introduced
in Section 5.5.1, it is possible to describe how many succeeding lanes the
transition probabilities should be updated for. In Figure 33, six transitions
are updated which indicates that the considered depth is 5.

Having transition probabilities Ti,j = P(xk+1 = sj|xk = si), these are
updated according to the lane change information as follows.

Ti,j = 0.5+ Ti,j ∀sj ∈ {sj : Ti,j > 0}, (24)

and sj is to the left, right or straight in front of si when a left, right or no
lane change is detected by the sensor. They are then normalized according
to
∑
sj∈S

Ti,j = 1.

5.6 implementation of the viterbi algorithm

The Hidden Markov Model is decoded using the Viterbi algorithm. The
algorithm has had some alterations made to the offline Viterbi algorithm, so
that it can handle data points lying outside the known road network. An in-
detail description of the implementation is found in Section 5.6.1. An online
version of the algorithm is also implemented, as described in Section 5.6.2

5.6.1 Modification of the Viterbi algorithm

The TomTom map is not complete in the sense that it contains holes. More
specifically, there are roads in the network that appear to be dead ends when
they are actually not. An example can be seen in Figure 34a, where half of
the coordinates are positioned outside the road network. Having this visual
overview, it is apparent that the vehicle has likely followed a road similar to
the one outlined in Figure 34b.

The map does not provide any information about these missing roads,
which is why an observation might not have any candidate lanes since there
are no lanes present in the disc around the observed location. If an observa-
tion sequence contains observations which do not have any candidate states,
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(a) The vehicle appears to be following a
road which is not represented in the
road network.

(b) The transparent road represent the
imagined road traversed by the vehi-
cle.

Figure 34: RTK (teal-colored) and SPA (orchid-colored) coordinates positioned out-
side road network.

there are no valid state transitions at the corresponding time steps. This im-
plies that the algorithm is unable to find an optimal path, and as such, no
path is outputted.

It is certainly desirable to have a stable algorithm which is capable of
handling known cases such as the one mentioned previously, where it is at
risk of terminating unexpectedly. In order to achieve this, it is convenient to
let the Viterbi algorithm match observations not only to lane IDs, but also
to an indecisive, or placeholder, variable NaN. For the case visualized in
Figure 34a, it would be desirable to match the four middle observations to
NaN. The basic idea is that, whenever there are no valid transitions at time
tk, observation yk is matched to NaN and added to the path back-traced up
to time tk−1. The heretofore derived path is concatenated with the result of
applying Viterbi recursively to the observation sequence [yk+1, ...,yK], where
tK is the last time step. If further dead ends would be encountered when
processing the sequence [yk+1,ykK ], NaN is again appended to the back-
traced path and a recursive call is made to the remainder of the sequence,
and so forth. A pseudocode for this modified Viterbi Algorithm is provided
in Algorithm 3. Rows 11− 13 contain the added piece of code which make
up the modification.

5.6.2 Online Viterbi algorithm

The choice of online algorithm approach depends on the intended appli-
cation and its purpose, which is why no approach can be considered to
be generally preferred. By its implementation simplicity, the VSW approach
(described in Section 2.3.2), relying on convergence points, is used to achieve
an online Viterbi algorithm. Since these online solutions are guaranteed to
be optimal and the same as the offline solutions, the online VA performance
is not commented on further.
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Algorithm 3 Modified Viterbi algorithm. y : K× 1 is the sequence of ob-
servations, S : N× 1 the state space, T : N×N the transition matrix and
E : K×N the emission matrix.

1: function Viterbi(y, S, T ,E)
2: for n = 1, . . . ,N do
3: probtable[n, 1] = E1,n
4: pointer[n, 1] = 0
5: end for
6: for k = 2, . . . ,K do
7: for n = 1, . . . ,N do
8: probtable[n,k] = maxi

[
probtable[i,k− 1]× Ti,n × Ek,n

]
9: pointer[n,k] = arg maxi

[
probtable[i,k− 1]× Ti,n × Ek,n

]
10: end for
11: if maxprobtable[ : ,k] = 0 then
12: return Backtrace(probtable,pointer)+NaN+Viterbi(y[k : ], S, T ,E)
13: end if
14: end for
15: return Backtrace(probtable,pointer)
16: end function
17:
18: function Backtrace(probtable,pointer)
19: beststateindex[K] = arg maxi probtable[i,K]
20: bestpath[K] = sbeststateindex[K]
21: for k = K, . . . , 2 do
22: beststateindex[k− 1] = pointer[beststateindex[k],k]
23: bestpath[k− 1] = sbeststateindex[k−1]
24: end for
25: return bestpath
26: end function
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The performance of the algorithm is evaluated by metrics which are fitted
to describe the fitness of a lane-level map matcher. It is a prerequisite to
have the ground truth when defining performance metrics. The process of
retrieving ground truth is described in Section 6.1. Before applying evalu-
ation metrics to the result, it is necessary to retrieve information regarding
the classifications of the algorithm. Matches are classified according to the
methodology presented in Section 6.2. Using this information, the perfor-
mance metrics are finally introduced in Section 6.3,

6.1 ground truth

In terms of map matching, ground truth refers to the true path traversed
by the vehicle. For this work, the ground truth is not actually known, but
estimated from the RTK. The resulting performance of the algorithm is thus
limited by the quality of these RTK coordinates. This is because various
parameters in the implementation are tuned in light of results from perfor-
mance metrics, which are dependent of the ground truth. By this, it is crucial
to use ground truth data that is likely to exhibit the actual path the vehicle
has followed.

The sensor data retrieved by vehicles contains position measurements ob-
tained from an RTK GPS, described in Section 4.1.1. Since these position
measurements provide centimeter-level accuracy, they are suited to compose
the data which derives the ground truth. It is noteworthy that the algorithm
does not use information from the RTK GPS since vehicles usually are not
equipped with them. Instead, it uses location measurements from a SPA GPS
which most vehicles are equipped with. Considering the accuracy of the RTK
coordinates, the distance between a coordinate and the middle line of a lane
is key. However, the distance is not conclusive when gathering ground truth
since the map is two-dimensional, meaning that e.g. overpasses are simply
laid upon possible underlying lanes. Looking at Figure 35, it is obvious
by visual inspection that the vehicle followed the rightmost lane traversing
north. But if the coordinates were simply matched to the closest lane mid-
dle line, coordinates at times t3 and t4 would potentially be matched to the
lower and upper horizontal lanes (situated on an overpass), respectively.

To prevent such faulty matches when gathering ground truth, the lane
headings are also considered. By comparing the heading registered by the
vehicle against the lane heading, it is possible to deduce that the two middle
coordinates in Figure 35 probably should not be matched to the horizontal

52
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t4

t1

t2

t3

t5

t6

Figure 35: Two-lane roads where the horizontal road is an overpass. The teal-
colored rings are RTK GPS coordinates observed at times t1, . . . , t6. By
only looking at individual observations, it is unclear whether the vehicle
has been on the overpass or the underlying road at times t3 and t4.

lanes since the heading differences are around 90°. The estimated true lane
traversed at time tk, GT(yk), is thus defined as

GT(yk) = si, where

{
∆distanceyk,si 6 ∆distanceyk,sj ∀sj 6= si,
∆headingyk,si 6 ∆headingyk,sj ∀sj 6= si.

(25)

yk is the observation at time tk and si is the ground truth lane.
∆distanceyk,s(·) is the distance between the RTK coordinate in yk and mid-
dle line in lane s(·) and ∆headingyk,s(·)

is the heading difference between
the observation and lane heading. Having Equation (25), the estimated true
lanes traversed by a vehicle at times t1, . . . , tK are collected as

GT(y1), . . . ,GT(yK).

This is referred to as the ground truth path.

6.2 classification of result

When having both the true and estimated path, given by ground truth
and the Viterbi algorithm, respectively, it is possible to compare them and
conclude where the algorithm matched lanes correctly and incorrectly. The
correctness and incorrectness can be expressed in terms of different classes.
Lanes which the algorithm matched correctly, according to the ground truth,
are classified as true positives. Lanes part of the path returned by the Viterbi
algorithm which are not present in ground truth are referred to as false posi-
tives, while lanes in ground truth which are not in the estimated path are false
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Figure 36: Comparing the ground truth against the path returned by the Viterbi
algorithm. Green lane segments are true positives, red is for false pos-
itives and blue represents false negatives. The orchid-colored crossed
and teal-colored rings represent SPA and RTK coordinates, respectively.

negatives. Given an estimated path [x1, . . . , xK] and the true path [x̂1, . . . , x̂K],
the classifications can be defined as follows.

TP := {xi : xi = x̂i} (26)

FP := {xi : xi 6= x̂i} (27)

FN := {x̂i : xi 6= x̂i} (28)

In Figure 36, the vehicle has traversed the lower lane. However, the noisy
SPA coordinates, visualized as orchid-colored crosses, resulted in the algo-
rithm returning a faulty path. Given that the vehicle traversed in an east-
bound direction, the estimated path is correct for the two first and the last
time step, as indicated by the green color (true positives). The third, forth
and fifth time steps are matched to the upper lane, colored red (false posi-
tives), while the true lane is the lower one, colored blue (false negatives).

6.3 metrics

A metric showing the relative amount of correctly matched lanes, i.e. re-
call, is introduced in Section 6.3.1. The recall only considers correct and
incorrect matches for every observation, which does not reveal the level of
incorrectness. More specifically, it does not consider for how long distances
the algorithm is correct or incorrect. Therefore, an additional metric is de-
rived. The metric needs the lengths of the correctly and incorrectly traversed
paths. As such, a principled approach to stitch lane segments together is de-
rived and presented in Section 6.3.2. When matches and mismatches have
been stitched together into continuous paths, the so called path length error
metric can finally be calculated according to Section 6.3.3.

6.3.1 Recall

Having classification sets according to Equations (26) to (28), the recall of
an estimated path is given by

recall :=
|TP|

|TP|+ |FN|
(29)

where |TP| and |FN| are the number of true positive and false negative clas-
sifications, respectively.
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(a) When incorrectly matching to a lane
which is not directly connected to
the previous and succeeding matched
lanes, lines connecting the lanes have
to be incorporated.

(b) When an incorrectly matched lane is
located right next to the previous and
succeeding matched lanes, it is con-
sidered less erroneous than incorrectly
matching to a lane lying further away,
as in Figure 37a. This is implied by
the shorter length of the red colored
dotted line.

(c) The result of stitching lanes in between an estimated path and its correspond-
ing ground truth path, with stitches added also between non-consecutive lane
segments.

Figure 37: Three cases of lane stitching. Dotted lines represent the imagined driv-
ing path of the vehicle. Colors follow the scheme presented in Figure 36.

6.3.2 Stitching lanes

Incorrectly matching an observation to a lane which is far away should
be considered a bigger mistake than matching to a closely located one. For
example, incorrectly matching an observation to a lane on a diverging road
as shown in Figure 37a, is considered to be worse than incorrectly matching
to a neighboring lane as shown in Figure 37b. If only the lengths of the incor-
rect lane segments were considered in an error metric, i.e. not the imagined
driving path between the lanes, the reported errors would be equal for the
cases in Figures 37a and 37b. As this is not desired, lines connecting lanes
to previous and succeeding lanes is needed in order to estimate the length
of the incorrect path. The result of stitching the lanes is clearly visible in Fig-
ure 37a, where the red dotted lines stitch the lanes together. In comparison,
the stitching in Figure 37b shows that the length of the faulty path is shorter
when the incorrectly matched lane is closer to the previous and succeeding
lane.
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While this section has only considered stitching lanes where the estimated
path has an incorrectly matched lane which is located laterally apart from the
surrounding matched lanes, the stitching is performed similarly for every
lane in the path. Regardless of the classification of a lane, it is stitched to
the next lane. This permits the creation of a continuous path also when both
the ground truth and the map matched path skip a lane segment (caused
by the low sampling frequency). Adding stitches between the ground truth
and estimated path of a drive could yield a result similar to Figure 37c.

6.3.3 Path length error

Inspired by the loss function proposed by Krumm and Newson in [9], the
so called path length error (PLE) is derived. Similarly to their metric, the PLE
is based on the fraction of the length of the incorrect route, but at lane-level
resolution. Its formal expression is given by

PLE :=

∑
xi∈FP

lengthxi +
∑

xi∈FN

lengthxi∑
xi∈TP

lengthxi +
∑

xi∈FN

lengthxi
, (30)

where lengthxi is the length of lane xi.
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With all necessary components defined, it is finally possible to evaluate
the map matcher. First, a preliminary test is performed on a subset of the
data, as described in Section 7.1. This preliminary test shows which transi-
tion model performs best. Parameter tuning in the best model is described
in Section 7.2. It is followed by an extensive evaluation on the test data
in Section 7.3, covering the whole mapped road network. An analysis of
the importance of the various emission penalties is covered in Section 7.4.
Strengths and weaknesses of the algorithm are also identified and discussed
in Section 7.5. Lastly, some privacy aspects of the user is discussed in Sec-
tion 7.6.

7.1 first evaluation

A first evaluation of the model is performed on a subset of the whole data
set, whose coordinates are restricted to the small bounding box seen in Fig-
ure 38. The size of this bounding box data is 420 drive logs. Both the constant
and refined connectivity-based (using default depth 7) and extrapolation-
based transition probabilities are evaluated. The results are summarized in
Tables 4 to 6.

It can be concluded that among the transition models described in Sec-
tion 5.5, the model with the constant connectivity-based transition probabil-
ities performs better than the models with refined connectivity-based tran-
sitions and extrapolation-based probabilities. It also has the advantage of
being simplistic in design and relatively computationally cheap. Therefore,
this will be the choice of transition model for the more extensive evaluation
following in this chapter.

Although the extrapolation-based transition model has been shown to be
defeated in terms of performance, it has a hypothetical use case which the
connectivity-based transition model lacks, namely for trajectories that for
some reason lie outside the known road network. This can happen if the
map is incomplete or out of date, leading to missing or incorrect lane seg-
ment connections. As described in a Section 3.2, the incompleteness of the
TomTom map is known. It would therefore be possible to combine the two

Table 4: Results when using model with constant connectivity-based transitions
and data contained in the bounding box.

Metric Recall Path length error
Mean 0.9103 0.1035
Median 0.9504 0.0368
SD 0.1346 0.2200
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Table 5: Results when using model with refined connectivity-based transitions and
data contained in the bounding box.

Metric Recall Path length error
Mean 0.9023 0.0917
Median 0.9344 0.0454
SD 0.1217 0.1932

Table 6: Results when using model with extrapolation-based transitions and data
contained in the bounding box.

Metric Recall Path length error
Mean 0.9068 0.1066
Median 0.9344 0.0446
SD 0.1459 0.2664

transition models in order to increase the model performance. To facilitate
the analysis of the results, however, only the connectivity-based transitions
will be used. Instead, the combined-transitions model is left as a proposed
investigation for future work.

7.2 tuning of neighborhood depth

As described in Section 5.5.1, the connectivity-based transition proba-
bilities vary depending on the maximum depth considered. Generally, a
smaller depth means that fewer transitions are considered, while bigger
depth means more transitions. It is not intuitively obvious which depth
yields optimal result in terms of the performance metrics presented in Chap-
ter 6. A small depth truncates the candidate space and may lead to cases
where a transition is entirely missed. On the other hand, a large depth may
amplify the errors in the underlying assumptions, leading to highly unlikely
transitions.

The performance is reported in terms of recall and PLE of the training data.
Its neighborhood depth-dependence can be seen in Figure 39. The mean
recall reaches 0.9119 at best. This corresponds to the peak of the blue curve
in Figure 39a at depth 11. The median improves with increasing depth from
1 to 3, whereon it remains at 0.95 for all succeeding depths. The standard
deviation remains within a tight interval for all depths and only has local
fluctuations.

A neighborhood depth of 11 is optimal also when considering the PLE
derived in Figure 39b. For that depth, the mean PLE attains the value 0.0909.
Similar to the median recall, the median PLE decreases for the initial depths
and then remains quite stable around 0.035. The standard deviation clearly
has an increasing trend with bigger depth.

From these results, it can be argued that the algorithm yields the best pos-
sible result when using constant connectivity-based transition probabilities
with depth 11.
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 Figure 38: Enhancement of the north-east bounding box, covering a stretch of Lund-

byleden, seen together with Google map. Just as in Figure 7, the blue
lines represent roads and lanes and red markers traffic signs. Stop lights
and junctions are marked by yellow and black objects.
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(a) Recall.

(b) Path length error.

Figure 39: Performance of the model using constant connectivity-based transition
probabilities with different depths.
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Table 7: Results when using the final model on the test data.

Metric Recall Path length error
Mean 0.9140 0.0983
Median 0.9508 0.0331
SD 0.1337 0.2196

Table 8: Results from using a naive matcher on the test data.

Metric Recall Path length error
Mean 0.7207 0.3827
Median 0.7667 0.2576
SD 0.2225 0.3857

7.3 performance on test data

After fixating the depth, the final model can be defined and run on the test
data. The results are summarized in Table 7 and are the final results of the
map matching algorithm. As seen, the reported numbers are very similar to
the ones in the above section. A naive matcher, which matches GPS locations
to the nearest lane, is used as benchmark. Its performance is summarized in
Table 8.

7.4 importance of probabilistic components

Based on the performed analyses on the digital map and the observa-
tion data, it was concluded that some variables were important to the map
matching problem. These were consequently incorporated into the model in
various ways. The proposed transition probabilities not only use the current
and next lanes as inputs, but also the value of the lane change variable. As
such, the transitions are dynamic. Other variables, i.e. speed, heading and
left or right lane marker types, affect the map matching through penalties,
based on assumptions about the driving characteristics.

To measure the individual importance of these variable inclusions, they
will be omitted from the complete model, one at a time. The performance
differences will then be analyzed and, hopefully, yield new insights. The re-
sults are not only of interest from a thesis perspective, but also for the future
applications of the implemented map matching algorithm. Sometimes, all
variables may not be available, or deemed untrustworthy. In these instances,
the algorithm can run without the corresponding probabilities and/or penal-
ties. If the missing variable is of low significance, the algorithm will be ex-
pected to still be successful. If a crucial variable is excluded, however, the
outcome of the map matching algorithm becomes unreliable.

As can be seen in Figure 40, the model without the penalties introduced
in Section 5.3 and without accounting for lane changes, as presented in Sec-
tion 5.5.4, yields a median recall below 0.8. The complete model, which
incorporates all penalties and accounts for lane changes, reaches a median
recall around 0.95. From the drop in median recall when omitting the marker
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type penalty and not accounting for lane changes, it is apparent that those
are crucial components of the algorithm.

Discarding the lane change consideration from the complete model yields
the biggest drop in recall among all components. When omitting this compo-
nent, the transition probabilities are independent of the lane change signal
provided by the vehicle. Thus, even though the vehicle signals e.g. a left
lane change, it is equally likely to drive left, straight and right according to
the transition probabilities. By the noisy nature of the GPS measurements,
they are not capable of detecting lateral vehicle movements. Among all data
available from the sensors given in Chapter 4, the lane change indicator
is one of the primary sensors fitted to accurately detect lateral movements.
Since a map matching lane-level algorithm is sought, it is crucial to have
data that captures movements between parallel lanes. By this, it is evident
that the lane change indicator provides a good foundation for lane-level map
matching and accounting for lane changes enhance the performance of the
algorithm.

The lane marker types help the algorithm to distinguish between two or
more parallel lanes, if these have different lane markings. At the exclusion
of the marker type penalty, Figure 40a shows how the median recall drops
with a few points. However, the drop is not as significant as when omitting
the lane change consideration. A possible explanation for this is that, al-
though they might help narrow down the set of candidate lanes, the marker
types are not always unique for parallel lanes. Hence, it is not always useful.
As Figure 17 showed, the reported lane markings cannot always be trusted,
even when the sensor is very confident. This probably also factors into the
importance of the marker type penalty. It can still be concluded that, besides
the lane change signal, the marker type detections are key to achieve the re-
quired resolution for lane-level map matching. Hence, it is certainly desired
to incorporate information about lane marker types when performing map
matching on lane-level.

As can be seen in the box plot in Figure 40a, omitting the heading and
speed penalties do not have any notable effect on the performance of the
algorithm. Considering the detail of lane-level map matching, it is not too
surprising to find that the speed and heading do not provide sufficient infor-
mation to separate lanes. In all likelihood, the speed limits and lane head-
ings are almost exclusively the same for parallel lanes. This implies that
the speed and heading registered by a vehicle cannot be unambiguously
matched to a certain lane.

It is, however, noteworthy that a different transition model may make
use of the speed and heading information. For instance, the extrapolation-
based transition model proposed in Section 5.5.2 and other spatial transition
models, may allow overpasses as candidate lanes. The heading and speed
penalty will then filter those out in a manner analogous to the ground truth
setup. Albeit not of importance for the final model, speed and heading
penalties should not be underestimated.
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(a) Recall.

(b) Path length error.

Figure 40: Box plots of the performance on the test data for different models. From
left to right, these are; the complete model, a model without added lane
change transitions, without added lane marker type penalty, without
heading penalty, without speed penalty, and a model without any added
penalties or lane change transitions. The dashed line shows the median
score of the complete model.
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Figure 41: A typical, high-scoring drive. The small but nevertheless prevalent er-
rors are caused by the reported GPS locations being either behind or in
front of the actual vehicle location. The lane segments have been colored
according to the scheme in Figure 36.

7.5 result analysis

The map matcher proposed by Rabe et al. in [18], based on least square
optimization, achieves error rate 0.2%. Comparison of results is however not
possible due to different error metrics and dissimilar map and sensor data.
Especially, they utilize RADAR data, which has been excluded in this work.
Furthermore, they evaluate their model in urban areas containing complex
road structures such as intersections. The evaluation in this work is rather
performed almost exclusively on highways and the data does not contain
any drives in intersections.

Instead, the achieved result of 95.1% median recall and 3.3% median path
length error are compared to the benchmark map matcher reported in Sec-
tion 7.3, for which all data and map conditions remain the same. From the
performance gain, it can be concluded that our map matcher is multiple
levels of sophistication above the benchmark.

For most of the evaluated drive logs, the algorithm performs very well. A
typical drive may look like Figure 41, where the errors are caused by a lag
in the GPS data. Such situations have small effect on the path length error,
which is overall low.

The variation in performance is, however, quite large. This holds the impli-
cation that there are situations where the map matching results are non-ideal.
Through an investigation of some good and error-prone drives, the overall
strengths and weaknesses of the algorithm can be identified.

The Viterbi algorithm is successful at finding the correct path even for
high-complexity cases. Examples of such cases are seen in Figures 42 to 44.
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Figure 42: Good case 1: with help from the lane marker type penalty, the correct
path is found even though the location measurements fed to the algo-
rithm (orchid-colored) are located in a different lane.

There also exist some cases for which the VA performs sub-optimally. These
are shown and explained in Figures 45 to 49. From these case studies, it is
possible to conclude some general strengths and weaknesses of the model.
The strengths can be summarized as:

• robust for noisy GPS data when the vision system is reliable

• enforces lane change detections

• handles holes in the map.

The weaknesses are summarized as:

• inaccurate for noisy GPS data together with unreliable vision system

• cannot separate between parallel lanes with the same marker types

• inflexible transition model when having unreliable vision system

• insufficient handling of holes in the map at complex road network
geometries.

The following sections describe these properties more thoroughly.

GPS error

The GPS observation probability presented in Section 5.3.1 gives the prob-
abilistic distribution of the distance between a candidate lane and the per-
ceived vehicle (i.e. GPS) location. The larger the GPS error, the smaller obser-
vation probability of the true lane. For data where the vision system reports
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Figure 43: Good case 2: the VA competently deals with missing lanes.

Figure 44: Good case 3: the VA correctly follows the vehicle through a lane change.
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Figure 45: Bad case 1: when lane marker type confidences are always 0, only the
GPS location (orchid-colored) is used to distinguish between parallel
lanes.

Figure 46: Bad case 2: left and right lane marker types are correctly reported as
(dashed, solid), as for the true states, but the GPS error is too big. This
leads to the middle lane being identified as the most probable one, even
though it has incorrect lane markers.
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Figure 47: Bad case 3: the GPS data is straightened up over time, but the VA fails at
changing the path into the correct one. This is caused by the added lane
change transitions being too influential - since there is no lane change,
a straight path is enforced. There are also no lane markers to get help
from, as the detector again reports 0 confidence.

Figure 48: Bad case 4: the leftmost and middle lanes both have dashed left and
right marker types, making it impossible to differentiate between the
two.
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Figure 49: Bad case 5: the algorithm successfully handles holes in the map when no
mapped lanes are nearby, as in the upper loop. When other lanes inter-
fere, however, the points get matched to them instead of the placeholder
lane, NaN. This can be seen at the (missing) overpass.

left and right confidence 2, i.e. where we can assume that the reported lane
marker types are largely correct, the model has recall above 80% when the
GPS position is less than 8 meters off. With larger GPS errors, the perfor-
mance quickly drops.

As such, when the GPS noise is within a few meters while all other vehicle
sensors perform ideally, the algorithm generally has no difficulties to accu-
rately identify the traversed lanes. However, when the GPS error is large,
the true lane becomes a highly unlikely candidate, even if the lane mark-
ers are correctly identified. In other words, the observation probability is
more influential than the lane marker type penalty. The result is an incor-
rectly matched path. A representative case of this can be seen in Figure 46,
where the GPS error is approximately 5 meters. Although this error is lower
than the tolerance specified above, the Viterbi algorithm still fails to find the
correct path. The probable cause of this is that the GPS error here is per-
pendicular to the road heading. On the other hand, when the lateral GPS
error is only moderately wrong (6 4 meters), as in Figure 42, the algorithm
succeeds at mapping to the correct lane.

As a test, the influence of the GPS observation probability was changed by
trying different values of σGPS in Equation (7). The mean recall on the test set
was still highest when using σGPS = 3, as can be seen in Figure 50. Although
a less strict GPS observation probability resolved some problematic cases,
the overall performance on the test data was decreased.
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Figure 50: Recall on test set for different values of the parameterized GPS standard
deviation, σGPS. The dashed line indicates which value of σGPS yields
the highest mean recall.

Uncertain vision detection

No lane marker type penalty is applied for drives with uncertain vision
detection. When a vehicle produces unreliable vision detection, only the GPS
measurements are used to identify the traversed lanes. In combination with
erroneous GPS locations measurements, the path returned by the Viterbi
algorithm is likely incorrect. A drive affected by this is shown in Figure 45.

Rabe et al. achieved very low error rates utilizing RADAR data in their al-
gorithm. Adding redundant RADAR data also to our model would arguably
make it less dependent on the vision system and make the algorithm more
competent at handling failing lane marker type detections.

Lane change transitions

When actual lane changes are detected, the algorithm is helped by the
enhanced lane change transition probabilities. This is what happens in Fig-
ure 44. Normally, it is also helped when no lane changes are detected, since
this helps it to follow a straight path rather than change lanes according
to noisy GPS locations. Nonetheless, the same lane change transitions can
in some situations cause undesired output. This may happen in situations
where the GPS measurements are faulty, in combination with missing or
incorrectly reported lane marker types.

In Figure 47, the GPS measurements are initially noisy but converge to-
wards the actual locations over time. The inaccurate location measurements,
together with unreliable marker detections, contribute to faulty lane match-
ing in the beginning. When the location measurements become more accu-
rate, the algorithm still matches to lanes following a straight path from the
previous incorrectly matched lanes. This behavior originates from the added
lane change transition probabilities, which disfavors lateral movements un-
less the lane change detector signals one. Combined with the lack of lane
marker detections, as in Figure 47, this transition model becomes too in-
flexible. Knowing this, it seems justified to let the transition probabilities
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be non-dynamic when having observations reporting low confidences. That
way, no direction is favored for a vehicle with unreliable vision detections.
In turn, an initially incorrect path has an improved chance of getting back to
the correct lanes. When evaluating the algorithm with this supplement, the
overall performance was however not enhanced compared to the complete
model.

Ambiguous lane marker types

When there are more than one lane on a road where at least two lanes
have the same marker types, information picked up by the vision system
are not sufficient to uniquely determine which lane the vehicle is in. For ex-
ample, Figure 48 shows a case where the vehicle correctly identifies dashed
lane markers on both sides. However, the road contains three lanes, whereof
two of them have dashed markers on both sides. According to the vision
system, the vehicle could be in any of the two lanes with the same markers.
If the GPS measurements would have low error and place the vehicle in the
actual lane, ambiguous lane marker types would not provide any problems.
Now, the whole problem of map matching is motivated by the inability to
derive paths solely from inaccurate GPS measurements. Thus, it is primar-
ily interesting to consider cases where the location measurements are not
perfect.

In Figure 48, the GPS places the vehicle in the leftmost lane while it actu-
ally traverses the middle one. Combined with the ambiguous marker types,
this leads to the algorithm incorrectly identifying the leftmost lane as the
most probable one. In lack of additional sensors capable of distinguishing
between lanes with the same marker types, there is no obvious way to re-
solve this.

Li et al. address ambiguity issues by letting the map matching output
contain multiple lane hypotheses. While they use Particle Filtering, the
proposed map matcher could certainly be modified to output more than
a unique path. More specifically, the VA could return not only the most
likely path, but also the second to most probable and so on. Amongst these
hypotheses, the correct path would need to be verified externally.

Holes in the map

Through the Viterbi modification in Section 5.6.1, the map matching algo-
rithm is still capable of yielding a path, using a NaN-lane as placeholder for
the missing lane segment(s). Figure 43 shows the resulting path from one
such case in which the VA was successful. A less ideal solution is found
in Figure 49. As opposed to this second case, no candidate lanes are found
for the GPS locations in the first case. Hence, those points are immediately
matched to NaN. In the second case, however, there are other lanes in close
proximity to the data points. These are subsequently added to the candidate
spaces. The lane heading penalty, Equation (9), then removes candidates
for which the heading difference is greater than 90°. In this case, the lanes
below the underpass appear to have a heading difference contained within
this tolerance. In conclusion, the VA is competent at dealing with holes in
the map if no nearby lanes have too similar heading to the observation.
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The simple off road inclusion in this report builds the route through in-
terpolation of GPS points. Murphy and Pao propose a more sophisticated
approach to handle insufficient map data in their HMM map matcher in
[17]. Adding a Kalman smoother to enhance GPS-estimated off-road posi-
tions yields a less noisy path than using the GPS positions directly, and is
therefore more suitable e.g. for updating unmapped areas.

7.6 privacy aspects

Questions about privacy naturally arise when developing systems capable
of tracking people’s location and behavior. In practice, there is no guarantee
against map matching being used with malicious intent. In that case, lane-
level map matching could for instance be used to profile risk-prone drivers.



8 C O N C L U S I O N

As ADAS and AD features are becoming increasingly prevalent in vehi-
cle technology, so grows the importance of map matching. The purpose
of this thesis was to propose and implement a novel lane-level map match-
ing algorithm based on HMMs. The research questions can be reiterated
as; finding suitable parameters for the model, and suitable metrics to mea-
sure the algorithm performance. The states were taken directly as the lane
segments given by the TomTom map. Transition and emission probabilities
where chosen such as to capture important variables. The recall and PLE
provide metrics well-adapted for measuring the performance of a lane-level
map matching algorithm.

In contrast to the HMM map matcher proposed by Newson and Krumm
[9], the algorithm proposed in this work is capable of matching to lanes
rather than roads. Beyond GPS measurements, additional vehicle sensor
data is incorporated into the model. An HD map is used instead of a low res-
olution map, providing information about e.g. lane markings on centimeter-
level.

An online decoding functionality is also implemented, based on the work
presented by Goh et al. [15]. Using convergence points, the algorithm is
optimal in map matching performance but sub-optimal in output delay.

The proposed algorithm, in both offline and online states, has shown to
perform significantly better than a naive matcher. In addition, it is capable
of handling holes in the road network in a principled way. Through study-
ing some representative cases, it has been established that the algorithm is
robust to noisy GPS measurements with a confident vision system. However,
unreliable vision data risks to reduce the performance of the algorithm.

This simplistic model does not require any RADAR or LiDAR data. Even
so, its performance can be considered to be competitive to other map match-
ing algorithms which are not as light-weight. As vehicles owned by the gen-
eral mass are typically not equipped with expensive sensors such as LiDAR,
an algorithm only using data from ordinary sensors is certainly desired.

Of course, the model is not without flaws and can benefit from further
refinement. We suggest some areas of future work below.

8.1 future work

The proposed algorithm has been evaluated on data and a road network
consisting of highways. As such, it is not known how it performs in other
traffic situations, e.g. at junctions and in urban traffic. It would certainly
be interesting to try this, and also study how the model can be extended
to do so successfully. High-raise buildings, causing the already noisy GPS
signal to deteriorate further, and the close vicinity to other roads typically

73
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pose problems for map matching algorithms. Therefore, an urban-scenario
extension may call for the integration of additional variables.

RADAR data, for instance, may be a useful complement to the vision data
in urban scenarios but also in the evaluated highway cases. Seeing that
the map matcher performance suffers when the GPS is very noisy and the
lane marker type detector unreliable, and when it is reliable but candidate
lane segments have the same lane markers, it is desired to have another
sensor capable of mapping its surroundings. RADAR data can be used to
find objects on and outside the road. The position of these objects are given
relatively to the vehicle of interest. For example, if a vehicle makes detections
of cars traversing beside it, it might give insight into whether the vehicle is in
an outer or inner lane. Additionally, detections of traffic signs would provide
information about distances to the road side. This could help deduce if the
vehicle is in a far left or right lane. A possible extension is thus to investigate
a way to incorporate RADAR data into the model.

In the presented model, the states were chosen as the lane segments
given by the TomTom map. As lane segments are represented by polygons
spanned by the lane borders, observations are matched to an area wherein
the vehicle is assumed to be. Thus, if an observation is matched to a lane
stretching above 1 kilometers, the localization is not very precise after all.
This localization could be refined by splitting the lane segments into even
smaller pieces and letting them represent the states in the model. For the
map used, it was convenient to use the the lane segments given by Tom-
Tom directly. However, having states correspond to a smaller area would
undoubtedly yield more narrow localization.

The connectivity-based transitions were found to perform best for the data
used to evaluate the algorithm. This does not mean that transitions derived
through spatial approaches, e.g. extrapolation-based, are useless. In fact, at
places where there are holes in the road network, the connectivity-based tran-
sitions are unable to detect anything other than a dead end. Spatial-based
approaches would however be capable of inferring a transition between lanes
separated by a hole in the map.

In general, the choice of transition model does not need to be fixed to start
with. Hypothetically, the algorithm would benefit of being able to switch
between different transitions models based on the road network situation.
That would make it possible to apply extrapolation-based transitions when
encountering dead ends in the road network, while transitions relying on
the topology would be used otherwise. An investigation of such flexible
transition models remains to be done.

A Variable Sliding Window approach was chosen to achieve an online ver-
sion of the Viterbi algorithm. The technique was favorable by its optimality
guarantee and ease of implementation. There are a range of other online
approaches that could have been selected if it better fitted the application
purpose. As the end use of an online lane-level map matcher has not been
thoroughly investigated, it remains to figure out a valuable purpose and
choose online extension accordingly.
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