
Efficient neuroevolution through
accumulation of experience
Growing networks using function preserving mutations
Master’s thesis in Complex Adaptive Systems

AXEL LÖF

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2019

MASTER’S THESIS IN COMPLEX ADAPTIVE SYSTEMS

Efficient neuroevolution through accumulation of experience

Growing networks using function preserving mutations

AXEL LÖF

Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2019

Efficient neuroevolution through accumulation of experience
Growing networks using function preserving mutations
AXEL LÖF

c© AXEL LÖF, 2019

Master’s thesis 2019:13
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Chalmers Reproservice
Göteborg, Sweden 2019

Efficient neuroevolution through accumulation of experience
Growing networks using function preserving mutations
Master’s thesis in Complex Adaptive Systems
AXEL LÖF
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology

Abstract

In deep supervised learning the structure of the artificial neural network determines how well and how fast it
can be trained. This thesis uses evolutionary algorithms to optimize the structure of artificial neural networks.
Specifically, the focus of this thesis is to develop strategies for efficient neuroevolution.

The neuroevolutionary method presented in this report builds structures through architechtural morphisms
that, approximately, preserve the functionality of the networks. The intended outcome of basing the mutations
on the idea of function preservation was that new architechtures would start out in a high performance parameter
space region. By skipping regions of low performance, the training of previous generations can be accumulated.

The proposed method was evaluated relative to version in which the preservating property of the mutations
was removed. In the ablated version the parameters associated with the new structural change were randomly
initialized. The two versions were benchmarked on five different regression problems. On the three most difficult
problems the ablated version demonstrated better performance than the preservering version, while similar
performance was observed for the two other problems. The performance difference between the two versions
was inferred to a more frequent tendency for the function preserving version to get entrapped in stationary
regions, compared to the ablated version. The parameter initializations associated with the ablated version
allow the backpropagation to more easily escape these stationary regions.

The main contribution of this work is the conclusion that in order to efficiently utilize function preserving
transformations to build structures in neuroevolution there need to be some mechanism that allows the
backpropagation to esacpe stationary regions. The method is expected to improve by perturbating the
parameters of the networks in a way that increase the gradient.

Keywords: Neuroevolution, ANN, Artificial Neural Networks, Function Preserving Transformations, Mutations,
Competing Conventions

i

Acknowledgements

I would like to thank my thesis advisors Anna Samuelsson and Gustaf Johansson for all their support. Thank
you for patiently listening to my ideas, encouraging me and proof reading my report countless number of times.
I would also like to thank my thesis examiner Peter Forsberg for his thoughtful insights and feedback on my
work. Finally, I would like to thank CPAC Systems AB, at which this thesis was carried out, for allowing me
to use your resources and facilities.

Thesis advisors: Anna Samuelsson, and Gustaf Johansson, CPAC Systems AB
Thesis examiner: Peter Forsberg, Applied Artificial Intelligence

ii

Abbreviations

ANN

CNN

CoDeepNEAT

DNN

EXACT

FPT

MLPNN

NAS

NEAT

ReLU

Artificial Neural Network

Convolutional Neural Network

Coevolution Deep NEAT

Deep Neural Network

Evolutionary Exploration of Augmenting Convolutional Topologies

Function Preserving Transformation

Multi Layered Perceptron Neural Network

Neural Architechture Search

Neuroevolution of Augmenting Topologies

Rectified Linear Units

iii

iv

Contents

Abstract i

Acknowledgements i

Abbreviations iii

Contents v

1 Introduction 1
1.1 Background . 1
1.2 Project description, scope and delimitations . 2
1.3 Thesis outline . 2

2 Theory and related work 3
2.1 Crossover and the problem of competing conventions . 3
2.2 NeuroEvolution of Augmenting Topologies - NEAT . 4
2.2.1 Genetic encoding and structural growth . 4
2.2.2 Speciation . 5
2.3 Neural Architecture Search using Evolutionary Algorithms . 7
2.3.1 Extending NEAT for deep learning NAS - CoDeepNEAT . 7
2.3.2 Large Scale Evolution of Image Classifiers - LSEIC . 8
2.3.3 Evolutionary Exploration of Augmenting Convolutional Topologies – EXACT 9
2.3.4 The effects of parameter inheritance - Lamarckian evolution . 10
2.4 Accelerated learning using function preserving transformations . 10

3 Method 11
3.1 Network encoding using acyclic directed graphs . 11
3.2 Crossover . 11
3.3 Speciation . 12
3.4 Selection and reproduction . 13
3.5 Structural mutation operators . 15
3.5.1 Network layer expansion through neuron functionality multiplication 15
3.5.2 Network layer insertion through identity matrix weight initialization 15
3.5.3 Add skip connection . 16
3.5.4 Network layer contraction through pruning . 17
3.5.5 Remove edge . 17
3.5.6 Network layer deletion . 17

4 Evaluation 19
4.1 Experimental setup . 19
4.1.1 Benchmark problems and experiment details . 20
4.2 Results . 20

5 Discussion 25
5.1 Analysis of result . 25
5.2 Crossover revisited . 26
5.3 Dynamic adaptation of the number of backpropagation iterations 26
5.4 Increasing efficiency by tracking novel topologies . 27
5.5 Function preserving mutations for minimal solutions . 28

6 Conclusion 29

References 30

v

vi

1 Introduction

This chapter defines the scope of this thesis and provides a brief introduction to the interdisciplinary field
called neuroevolution that uses evolutionary algorithms to configure Artificial Neural Networks (ANN).

1.1 Background

In deep learning the structure of the ANN determines its susceptibility to training and how well it is able to
approximate the sought function or behavior. Difficult problems require custom made network architectures
that has traditionally been tailored by researchers. The network design process includes an iterative trial and
error procedure where the experimenter, guided by heuristics and experience, makes successive changes to
the structure. Today, the current state of the art within deep learning was achieved through years of focused
research and experiments. Naturally, automated ways for finding topologies have emerged and been successfully
demonstrated on image recognition and captioning tasks [Rea+17].

Although experience, heuristics and transfer learning methods can be effective tools for certain problem
domains they rarely generalize well to new areas. Manually designed network structures may also be unnecessarily
large which is undesirable when running systems on embedded platforms where there are strict performance
constraints. Automatized structure search mitigates both of these problems as, ideally, no previous experience
is required and new effective architectures can be discovered. Ultimately, new knowledge can be gained from
the structures found by the automated search.

A wide variety of approaches for automated topology search have been tried, ranging from grid search to
statistical inference based methods. A proven and more intuitive approach is to base the structural search
on evolution. Traditionally, evolutionary approaches have operated on both the structure and the parameters
of the network. The idea to evolve neural networks were originally developed to solve reinforcement learning
problems. These problems are often complex control tasks where the performance is determined by behaviors
or strategies [Sta04]. In contrast to conventional reinforcement learning methods, evolutionary approaches need
little or no information of what behaviors are required to solve the task. In principle, only a measure of the
quality of the behavior is required to apply neuroevolution [Hau+13]. Thus, the relation between these types of
problems and neuroevolution is natural since the outcome of an experiment can often easily be used as fitness
measure of the network performance.

The last decades increased access to computational power allowed neuroevolution to be used for deep Neural
Architechture Search (NAS). That meaning, for the supervised learning problem domain it became possible
hybridize traditional neuroevolution with backpropagation. Optimizing the parameters of neural networks in
supervised learning using evolution is not appropriate since gradient information is available in contrast to
reinforcement learning.

Different approaches where neuroevolution based topology optimization has been combined with back-
propagation have successfully provided state of the art architectures [Des17][Rea+17][Mii+17]. Typically, a
population of neural network structures are trained through backpropagation and evaluated on the task. The
fitness is assigned to the structure template. The best ranked architecthures are selected as templates to form
the next generation and offsprings are produced by genetic crossing and random mutations.

The research has, so far, focused the attention on demonstrating neuroevolution as a competitive alternative
to manually designed architectures. However, less attention has been given to developing methods for efficient
neuroevolution which is the focus of this report.

In previous work, the structure and parameters are often treated separately. Although some approaches use
parameter inheritance with the intentions that it could increase efficiency or accuracy, the results have not
been unanimous [Des17][Rea+17][Mii+17]. Parameter inheritance refers to the concept that the parameters
of the parents is transferred to the offspring instead of retraining the networks from a randomly initialized
state. Inheritance can be viewed as a form of pretraining or transfer learning. Still, the evolutionary operators -
how the structure is built - employed in these approaches have not treated structure and parameters in unison.
Efficiency gains are expected if the evolutionary operators would consider the learnt experience of the networks.

1

1.2 Project description, scope and delimitations

The goal of the project is to develop efficient neuroevolutionary strategies. Specifically, this thesis exam-
ines if building structure through function preserving transformations is an opportune strategy for efficient
neuroevolution.

The neuroevolutionary method put forward in this report does not include recombination or speciation.
Crossing and speciation of ANN in a sensible way can only be achieved if certain structural growth restrictions
are enforced. The neuroevolutionary algorithm put forward in this report does not constrain to these rules,
crossover and speciations are therefore excluded. Sections 3.2 and 3.3 elaborates on these issues.

While most modern neuroevolutionary research has focused attention on building Convolutional Neural
Networks (CNN) for image processing applications, the networks evolved in this thesis consist of fully connected
perceptron layers. This delimitation was made since the computational resources required to evolve CNN were
not available. Using evolution for neural architecture search of CNN requires enormous amount of computational
power.

The application of the developed method is only intended for supervised learning problems without time
dependence. Mainly because the method uses backpropagation to train each of the network structures.

1.3 Thesis outline

The thesis is divided into five chapters and follows a convential report outline consisting of: (1) Introduction,
(2) Theory, (3) Method, (4) Evaluation and (5) Discussion. In the theory chapter the key concepts and previous
work within the field of neuroevolution is described. The theory especially intends to emphasize the main
problems in neuroevolution along with results and conclusions of previous research. The theory chapter lays a
foundation that is required to understand the evolutionary algorithm and the design decisions presented in the
method chapter. In the evaluation chapter, the neuroevolutionary algorithm is assessed through ablation in
which the inherent function preserving mechanism of the mutations are disabled. The discussion interprets the
results and puts forward ideas that could improve the algorithm.

2

2 Theory and related work

This chapter is devoted to explain the theoretical cornerstones that the algorithm in this report is based on.
First, a description of the issue regarding crossover in neuroevolution is provided. Generally, crossing two
ANNs is troublesome as the functionality of networks depend on an intracte relation between the parameters of
the networks in a non-linear way. Next, a description of the neuroevolutionary method NEAT is introduced,
as its structural growth principle provides a way to cross ANN. The ideas developed in NEAT also serve as
a theoretical foundation in which neuroevolution can be discussed. The following section describe different
approaches that combine evolutionary algorithms with backpropagation to serach for CNN architechtures. The
methods utilize mutations and crossover that operate on the structure of the CNN while the parameters are
update using backpropagation. This chapter ends with an introduction to a set of network morphisms that
allows a network to be transformed to a larger network structure while preserving the functionality.

2.1 Crossover and the problem of competing conventions

Genetic, or evolutionary, algorithms are optimization schemes guided by the observed principles governing
evolution in nature. In a sense, natural evolution is a form of optimization but without predefined goals [Wah08].
The mechanisms causing evolution are natural selection and random genetic variations. The most fit individuals
of a population are more likely to survive and spread their genes. Through genetic recombination and random
mutations new phenotypes appear. Genetic variations that are beneficial will improve an individual’s chances to
survive and reproduce. Mutations to the DNA allow new traits to emerge while recombination allows different
traits in individuals to be combined in new ways [WT98].

Evolutionary algorithms conceptualize these mechanisms - selection, recombination and mutation - to solve
optimization problems. In an evolutionary algorithm, a population of genetic encodings are held, where each
individual correspond to an approximate solution to the optimization problem. Each individual, or solution, is
evaluated on the problem and assigned a fitness determined by how well it solves the optimization problem. A
selection is made, where fit individuals are selected for reproduction and through recombination and mutation
the next generation is formed [Wah08].

in1

in2

A

B

C

out

in1

in2

C

B

A

out

Figure 2.1: An illustratation of the problem with competing conventions in neuroevolution. Both networks are
identical in their functionality but are expressed in different ways. Recombining the networks can result in a
network with a hidden layer with neurons (A, B, A) or (C, B, C). The possible offsprings are not likely to
express a solution to the parameter optimization problem as both of them miss a third of the information of
their parents.

A problem in neuroevolution is how to recombine parameters of two networks due to the problem of
competing convetions. The same solution, in terms of network functionality, to a parameter optimization
problem can be expressed in a multitude of ways. Recombining the parameters of two solutions is not likely to
produce an offspring with equal or better performance. [MD89][DR92]. To concretize, consider the two neural
networks illustrated in Figure 2.1. The networks are identical in their functionality and are only permutations of
each other. If both networks are solutions to a parameter optimization problem, recombining their parameters
will most likely not produce a functional offspring. Crossing the networks visualized in Figure 2.1 will produce
the damaged offsprings with hidden units (A, B, A) or (C, B, C). Both possible offsprings miss a third of the

3

information of their parents. In fact, for a single hidden layer with n neurons, there are n! different encodings
representing the same solution. In addition to the problem of competing conventions there may even be several
characteristically different solutions to the same problem. Crossing such solutions will not produce a functional
offspring [Sta04].

An even more difficult problem with crossover arise when the structure of the networks is subject to evolution.
Two structurally different networks cannot generally be crossed in a way that represent a functional offspring.
As an example consider the two networks illustrated in Figure 2.2. The two networks have different number
of hidden layers and fusing the structures in a way that will capture the functionality of both parents is not
plausible.

Figure 2.2: The figure illustrates two different network topologies. Structural recombination of illustrated
architechtures cannot be made in a principled way that is going to express a functional solution.

2.2 NeuroEvolution of Augmenting Topologies - NEAT

NeuroEvolution of Augmenting Topologies (NEAT) is a neuroevolutionary algorithm for reinforcement learning.
NEAT evolves both the topology and the parameters of ANN [Sta04]. In supervised learning, neuroevolution
has been combined with backpropagation to search for network architechtures. The principles put forward in
NEAT has been adopted and used in modern applications for neural architechture search, including the metod
proposed in this work [Mii+17][Des17]. This section provide a brief overview of the principles in NEAT.

2.2.1 Genetic encoding and structural growth

The genetic encoding and the way structure is built in NEAT allow different network structures to be crossed
in a principled way. The idea that allow NEAT to cross disparate topologies are historical markings encoded
in the network representations. Whenever new structure is added it is also assigned a unique number. The
numbers serve as indicators of historical origin of the different genes and is used to align the genome and in
turn allow principled crossover [Sta04].

NEAT use a direct encoding scheme designed for genes to be easily lined up during crossover. The genome in
NEAT contain two lists, one wich specifies what neurons that are present and the other is a list of connections.
A connection gene specify an input-output node pair, a disable bit that determines whether the connection
should be expressed, the weight of the connection and also an innovation number [Sta04].

As NEAT evolves both the structure of the network and the parameters the mutations include both structural
changes and parameter perturbations. A parameter is perturbed probabilistically in each generation. The
structural mutations come in two forms, add connection and add node. The mutations are illustrated in Figure
2.3. Any structural mutation is expressed by adding genes to the genome. When a new connection is created
two previously unconnected nodes are chosen and a new gene is added to the connection genome along with a
random weight. A new node is added by splitting a connection in two. A connection is selected at random, the
connection is split by connecting the new node to the succeding and preceding nodes of the selected connection.
The previous connection is then disabled. The weight associated with the incoming connection is given a value
of 1 and the outgoing is given the same value as the previous connection. In this way, the new split edge will
approximate the functionality of the previous connection [Sta04].

Whenever a structural mutation occur in NEAT new genes are created. Each new structural change is
assigned an unique innovation number. The innovation number marks a chronology of when a gene was first

4

1

3

42 5

1

3

42 5

Add
connection

Add node

1

3

42 5

6

1
14

2
24
DIS

3
34

4
25

5
54

6
15

1
14

2
24
DIS

3
34

4
25

5
54

6
15

7
35

1

3

42 5

1
14

2
24
DIS

3
34

4
25

5
54

6
15

1
14

2
24
DIS

3
34
DIS

4
25

5
54

6
15

8
36

9
64

Figure 2.3: An illustration of the two structural mutations used in NEAT. The lists above each network is
the connection genome. The top number in each gene describe the innovation number. In this illustration the
weights of the connections are not present. The top figure shows adding a connection. A new connection is
created between node 3 and 5. It is created by adding a single gene to the connection genome. The bottom panel
illustrates the add node mutation. A new node is added to the connection between node 3 and 4. The original
connection is disabled and node 3 is connected to the new node with index 6. Node 6 in turn is connected to
node 4. The two new connections are added to the connection genome along with corresponding innovation
numbers.

expressed and is used to align genomes during crossover. Genes in different networks but with the same
innovation number express the same network structure. The innovation numbers in NEAT makes it easy to
align and cross completely different structures. In NEAT during crossover, the genomes of two structures are
lined up using the innovation numbers, see Figure 2.4. Genes that are present in both networks are called
matching genes and are selected at random from either parent. Genes that are only present in either of the
parents are always selected from the more fit parent. If both parents are equally fit, the non matching genes
are selected at random[Sta04].

2.2.2 Speciation

In NEAT new topologies are built through mutation and recombination. Initially, new structures perform
poorly before the parameters have had a chance to optimize. The initial decrease in performance will most
likely cause the new individuals to die. To protect new individuals speciation is used in NEAT. A subdivision of
the population allows each individual to only compete with similar individuals instead of the entire population.
To organize the population in different species NEAT utilize a distance metric that determines how similar two

5

1

3

42 5

1

3

42 6

5

1

3

42 65

1
14

2
24
DIS

3
34

4
25

5
54

8
15

1
14

2
24
DIS

3
34

4
25

5
54
DIS

6
15

7
64

9
35

10
16

1
14

2
24
DIS

3
34

4
25

5
54

8
15

1
14

2
24
DIS

3
34

4
25

5
54
DIS

6
15

7
64

9
35

10
16

Parent 2Parent 1

8
15

1
14

2
24
DIS

3
34

4
25

5
54
DIS

6
15

7
64

9
35

10
16

Parent 1

Parent 2

Offspring

Figure 2.4: An illustration of how crossover is performed in NEAT. First the connection genomes are lined up.
The innovation numbers are used to match structure present in both networks. In this illustration both networks
were equally fit and therefore the non-matching genes were selected at random from either parent.

individuals are. The distance, or the compatibility metric, utilize the innovation numbers and is defined as

δ = c1
E

N
+ c2

D

N
+ c3W̄ (2.1)

where E is the number of excess genes, D the number of disjoint genes and W̄ the average difference in
weights of matching connections, and N is the total number of genes. The hyperparameters c1, c2 and c3 are
used to weight the significance of E, D and W̄ on the similarity [Sta04].

The distance metric determine the similarity between two networks, and is used in NEAT to speciate the
population. Conceptually, if the distance between two networks are smaller then a userdefined threshold the two

6

networks are separated in different species. In the first generation all networks are placed in the same species.
In succeding generations, the networks are placed sequentially into different species by comparing the distance
between networks to the threshold. From each species in the previous generation, a random network is selected
as a representative for the species in the current generation. The distance is calculated to the represantatives
and the networks are assigned to species. If a network is not compatible with any of the existing species, a new
one is created with the network as representative of that species [Sta04].

To prevent one species from taking over the entire population, fitness sharing within a species is used. The
average fitness, Fk, of each species is calculated. A species is allowed to reproduce proportionally to its net
contribution to the fitness of the entire population according to

nk =
Fk∑
Fk
P, (2.2)

where nk is the number of individuals assigned to the k : th species and P is the population size [Sta04].
During reproduction, the fraction of the lowest performing individuals of each species is removed. Two
individuals are selected at random for reproduction. The selected parents are crossed and the offsprings are
mutated. This is repeated until the species has filled its quota. The best performing individuals of each species
are also carried over unaltered to the next generation [Sta04].

2.3 Neural Architecture Search using Evolutionary Algorithms

This section describe different evolutionary approaches for automated Neural Architecture Search (NAS).

2.3.1 Extending NEAT for deep learning NAS - CoDeepNEAT

CoDeepNEAT is a coevolutionary version of a method called DeepNEAT which in turn is an extension of
NEAT for NAS [Mii+17]. Coevolution means that the constituents of the solution are evolved independently
but the performance of the individuals are measured in relation to how it performs in the full solution when
assembled with other individuals [DS01][PD94].

DeepNEAT follows the same principles as NEAT but with the difference that each node in the graph
now defines a layer in a Deep Neural Network (DNN) instead of single neuron. The node contains a set of
hyperparameters that define the type of layer, for example convolutional or a fully connected layer along with
mutable hyperparameters such as the number of filters, kernel size or number of neurons. The edges of a
DeepNEAT genome do not encode weights contrary to NEAT but only the connectivity of the neural network.
The algorithm starts out with a structurally uniform population that fulfills the input and output constraints.
Historical markings are used to perform crossover by aligning similar structures. In the same way as in NEAT,
the historical markings are used to speciate the population to protect structural innovations [Mii+17].

During evaluation, the graph is traversed and a CNN is assembled according to the node specification. The
algorithm then proceeds to train the network and evaluates how well the encoded phenotype performs. The
performance measure is then converted to a fitness and assigned to the corresponding genotype [Mii+17].

The structures evolved by DeepNEAT are unprincipled and complex and do not resemble those of human
design. Heuristically, good architectures are often composed by repeating modules. To force the evolved
structures to be more similar to human design, a coevolutionary extension of DeepNEAT were made, called
CoDeepNEAT [Mii+17].

In CoDeepNEAT, two populations are evoloved using the same methodology as in DeepNEAT. One
population contains high level architectures - blueprints - similar to DeepNEAT. The second population contains
modules, small DNNs. The nodes in the blueprint graph contain references to species within the module
population. During fitness evaluation an architecture is assembled by traversing the blueprint graph and
replacing the nodes with randomly chosen modules from the referenced species in module population. The
assembled network is trained as before and evaluated but the fitness of each component, blueprint or module,
is the averaged fitness of all assembled networks it occurs in[Mii+17].

CoDeepNEAT was evaluated on the CIFAR-10 challange, with 25 blueprints and 45 submodules. In each
generation, 100 full CNN were assembled and evaluated. Each assembled network was trained for eight epochs.
After 72 generations the best networks were returned. These in turn, were trained for another 300 epochs and
the accuracy was measured. CoDeepNEAT was able to find structures with an accuracy of 92.7% [Mii+17].

7

in 1 2 2 out

in out

1

2

2

Sub population 1 Sub population 2

Blueprint

Assembled
network

Figure 2.5: The figure illustrates how modules and blueprints are assembled in CoDeepNEAT. The blueprint is
a specification of what sub population to select the modules from.

2.3.2 Large Scale Evolution of Image Classifiers - LSEIC

Another automated neuroevolutionary method for NAS was developed by Real et al. [Rea+17]. The method
was not given a formal name but will in the context of this report be referred to as LSEIC, an abbreviation
for Large Scale Evolution of Image Classifiers. While LSEIC combines evolution with backpropagation as in
CoDeepNEAT, the way structure is evolved is subject to different mechanisms. CoDeepNEAT directly employs
NEAT at large scales to develop deep networks [Mii+17]. LSEIC, on the other hand, builds structure solely
through mutations, some reminiscent of the ones used in NEAT. In LSEIC, the learning rate is an individual
specific mutable parameter[Rea+17].

The neural networks are represented as computational graphs. The edges of the graph represent transforma-
tions of how the tensors are mapped and propagated through the network. At the vertices, activation functions
are applied. Two different activation functions are used, either batch normalization with Rectified Linear Unit
(ReLU) or identity activation. The edges of the graph can either be a convolution or an identity mapping.
By allowing identity edges, several activation functions can be sequentially applied without any intermediary
convolutions. Similarly, several convolutions can process the data without activation. Results from experiments
demonstrate that this allows novel and simple structures to emerge [Rea+17].

LSEIC starts out with a population of uniform structures with the input layer connected to a global pooling
layer that maps the result to the output layer. Their implementation use workers that operates in parallel. In
each step in the evolution a worker selects two random networks and removes the worst performing one from the
population. The other one is selected to be the parent. A copy of the parent is made and a structural mutation
operator is applied to generate an offspring. The mutation is randomly selected from a fix predetermined set.
In total 11 different operators were used: (1) Mutating the learning rate. (2) No mutation, i.e the network
is an identical copy of the parent. (3) The parameters of the network are reset to a random state. (4-5) A
2D-convolution is randomly inserted or removed. When a convolution is inserted, a vertex with an identity or

8

ReLU activation is also inserted with equal probability. (6) The stride of a convolutional kernel is altered. (7)
The number of channels of a filter is mutated. (8) The kernel size of a convolution is randomly perturbated. (9)
An identity connection is inserted between two vertices. (10-11) Add or remove a skip connection [Rea+17].

In a reproduction event the offspring is first created through any of the mutations specified above and then
trained using backpropagation for a fixed number of iterations. In the work by Real et al. the number of
training iterations was set to 25600 which are too few to fully train the architectures. Therefore, LSEIC employs
parameter inheritance whenever possible. Some mutations can preserve all, for example a new identity mapping.
Other transformation can preserve some parameters but not all, such as insertion of a new convolutional layer
or changing the number of filters. Some mutations cannot preserve any parameters such as the weight resetting
mutation [Rea+17].

Real et al. evaluated LSEIC on the CIFAR-10 and CIFAR-100 data sets. The best network, across five
experiments, had an average accuracy of 94.1% on the CIFAR-10 data set. With the parameter inheritance
mechanism disabled, the algorithm found networks with an accuracy of 92.2%. On the CIFAR-100 challange,
the best network had an average accuracy of 77% [Rea+17].

The effect of the population size and number of training iterations in LESIC was examined by Real et
al. The results show that increasing the population size increases the final accuracy of the best network in
LSEIC. It was concluded that a larger population makes the population less likely to get temporary trapped
in sub optimal solutions. Increasing the number of training iterations also increases the final accuracy of the
best network. It was explained that fewer identity mutations were required to reach a higher level of training
[Rea+17].

The motivation for employing the idea of parameter inheritance in LSEIC was to increase the efficiency
of the evolutionary algorithm. In order for the algorithm to work it was required that the networks achieved
a high level of training. To train a model from a randomly initialized parameter state in each reproduction
event was believed to be too computationally expensive. Instead, parameter inheritance was used [Rea+17].
But, there is a drawback of parameter inheritance. Some individuals become more fit only because they had
undergone more identity mutations and reached a higher level of training. In the long run, this can cause
entrapment [Rea+17].

To escape entrapment a scheme was evaluated by Real et al. in which the mutation rate was dynamically
changed whenever the population stagnated in order to encourage exploration. Instead of performing a single
mutation during a reproduction event, five mutations were performed. The population was evolved with five
mutations per reproduction event for a while and then switched back. Another scheme evaluated by Real et al.
for escaping local entrapment was to randomize the parameters of all individuals. In that way, individuals that
have become super fit beacuse they have undergone more identity mutation will loose its unfair advantage.
The evaluations showed that both strategies were too inefficient to be practically used [Rea+17].

Further experiments by Real et al. evaluating crossover were carried out. In one version of LSEIC two
network architechtures were fused in a reproduction event with the hope that the networks had learnt different
features. In another experiment, a child was created by placing the parent structures parallell side by side.
None of the recombination schemes improved the algorithm [Rea+17].

2.3.3 Evolutionary Exploration of Augmenting Convolutional Topologies – EX-
ACT

Another neuroevolutionary method similar to both CoDeepNEAT and LSEIC is Evolutionary Exploration
of Augmenting Convolutional Topologies (EXACT) developed by Desell. The method is based on the ideas
of NEAT. As a result, EXACT is very similar to DeepNEAT with the difference that EXACT does not use
speciation. The genome of the networks, similarly to LSEIC and CoDeepNEAT is represented with graphs that
determine how different convolutional filters are connected [Des17].

EXACT uses a distributed setting where asynchronous workers train and evaluate network structures
[Des17]. In a reproduction event, an offspring is either created through mutation or crossover. The genome is
sent to a worker that train and evaluate the structure. If the new individual perform better then the least fit
individual of the population, the master process replaces it with the offspring [Des17].

When a child is generated through mutation, it applies a user defined number of mutation operators to the
structure. The operators are selected at random from a predetermined set with a user specified frequency. In
total seven different mutations were used, four that operate on the high level connectivity, inspired by NEAT
and three that operates on a low level and directly modify the convolutional filters. These are (1-4) Disable
edge, enable edge, split edge and add edge. (5-7) Change both spatial dimensions of a convolutional filter,

9

change the filter size in the spatial x direction, and change spatial dimension of the y-direction [Des17].
Crossover is performed in a similar manner as in NEAT. Edges and nodes that exist in both parents are

represented in the offspring. Two hyperparameters, more fit crossover rate and less fit crossover rate, determine
the fate of disjoint structure only represented in one of the networks. The more fit parent’s excess structure is
represented in the offspring probabilistically determined by the more fit crossover rate. Similarly, the less fit
parent excess structure is represented probabilistically by less fit parent crossover rate. Edges that are not
copied from a parent to a child are still represented but set as disabled [Des17].

In the basic implementation of EXACT, parameter inheritance was not used. However, experiments
with parameter inheritance were performed by Desell. The version using parameter inheritance had similar
progression as the baseline, both in regards to finding CNN with high accuracy and the number of training
epochs for a CNN to reach its minimal training error [Des17].

Desell evaluated EXACT on the MNIST data set and was able to attain structures with an accuracy of
97.89% with random parameter inheritance and 98.32% when parameter inheritance was used. The evolved
networks diverged from typical stacked convolutional topologies [Des17].

2.3.4 The effects of parameter inheritance - Lamarckian evolution

The effects of parameter inheritance in NAS using neuroevolution were examined by Prellberg and Kramer.
In these experiments the networks were restricted to stacked modules of convolutional filters with batch
normalization and ReLU activation. For the output, a global average pool and a fully connected layer with
softmax activation were used[PK18].

The evolutionary algorithm operates on the number of stacked modules along with the following defining
parameters: kernel size, number of filters and stride. The algorithm furthermore use a population size of 1. In
each generation an offspring is created by applying a structural mutation. The mutation operator are chosen
with weighted probability from a predefined set consisting of the following mutation operators: add or remove
a convolutional block at random, increase or decrease the number of filters in a convolution, change the kernel
size or the stride of a filter. The offspring is trained for a fixed number epochs and then evaluated. If the
offspring has a higher fitness, it will replace the parent network. To avoid premature convergence the offspring
was probablistically explored even if they performed worse than the parent [PK18].

The algorithm tries to preserve as many parameters from the parent to the child network as possible. As
an example, inserting a new convolutional block introduce new parameters that cannot be inherited. These
parameters are randomly initialzied while the rest of the parameters of the ANN is reused [PK18].

The results from Prellberg and Kramer shows that parameter inheritance increase the data efficiency for
challenging image data sets while no observed difference was found for the easier data sets. It is argued that
the observed difference is because more challenging data sets require larger networks that in turn requires more
training iterations to optimize [PK18].

2.4 Accelerated learning using function preserving transformations

The design process of a neural network often includes an iterative trial and error procedure where successively
larger network topologies are tried, often based on how well previous models were able to perform. In an effort
to reduce the training time required for each model a new set of transformation techniques was developed by
Goodfellow et al. The strategies allow the knowledge learnt by a smaller network to be transferred to a larger
one[PK18].

Conceptually, the method is based on structural transformations that preserve the functionality of the
network. The method allows for a trained CNN to become both wider and deeper through so called Function
Preserving Transformations (FPT). Two different function preserving transformations were presented: increasing
the size of a CNN layer and increasing the depth of the network by inserting a specially configured convolutional
filter [PK18].

A layer in a neural network can be expanded by replication of a neuron. By setting the incoming weights
and bias of the new neuron to the same values as the template neuron the output of the two neurons will always
be the same. If the weights associated with outoging connections are divided by two, the functionality of the
network will not have changed. The other network transformation inserts a new layer between two already
fully connected layers. If the incoming weight matrix is set to identity and the bias to zero, the output of the
new layer will be similar as the previous layer [PK18].

10

3 Method

The approach for developing an efficient neuroevolutionary strategy is based on the idea that backpropagation
in combination with NEAT is an efficient strategy. That meaning, instead of using an evolutionary scheme for
both structure and parameters, the method presented in this report utilizes mutations to configure the structure
while weights and biases are updated using backpropagation.In this chapter, this approach is presented, with
focus on motivation of the different decisions made.

With increasing problem complexity, the minimal size of the network required to solve the problem increase.
Therefore, high efficiency can be expected if the network structures are allowed to grow fast. In NEAT this can
be achieved by increasing the mutation rate in each reproduction event. However, NEAT builds structure in an
unorganized way not suited for fast backpropagation. To allow fast structural growth while enabling efficient
backpropagation the method presented in this report builds structure by adding or altering fully connected
perceptron layers. This way of building structure is analogue to CoDeepNEAT, LSEIC and EXACT but for
Multi Layered Perceptron Neural Networks (MLPNN).

An intriguing idea for efficient neuroevolution would be to base the structural mutations on function
preserving transformations, similar to the ones described in Section 2.4. If the functionality of a network can
be preserved as the network undergoes a structural modification, the population would be able to accumulate
experience across generations. If an offspring approximates its parent’s functionality, a trained network, it is
reasonable to believe that the offspring can reach a higher level of training fast as it starts out in region in
parameter space of high performance. Function preserving mutations can be viewed as an extension to the idea
of parameter inheritance.

To evaluate the ideas put forward a modular network representation is required. This is accomplished by
representing the networks with acyclic directed computational graphs and is described in the next section.

3.1 Network encoding using acyclic directed graphs

A neural network is in this thesis represented with a graph that defines the computational flow. The edges of
the graph represent affine transformations between two vertices. The affine mappings between the vertices
include both a weight matrix multiplication and subtraction of bias. The vertices apply a non-linear activation
to the incoming affine transformations. In a forward pass, the input tensor is loaded into the input vertex,
which is without activation, and then propagated through the graph. The input to each node is the sum of the
mappings from all directly connected preceding vertices. In Figure 3.1 a computational graph representing an
ANN is visualized. In a forward pass the output of each layer is

xin

x(1) = σ (Txin)

x(2) = σ
(
Zx(1)

)
x(3) = σ

(
Rx(1) +Qx(2)

)
xout = s

(
Wx(3)

)

Network input

Output node 1

Output node 2

Output node 3

Network output

where T,Z,R,Q and W are affine transformations that represent the edges of the graph. The non-linear
activation function is denoted by σ. Based on the character of the problem a different activation function can
be used for the output layer. Thus the activation for the output layer is denoted s.

The graph representation described above is a high level abstraction of the common low level synaptic
layered neuron to neuron view. A vertex in the graph representation is equal to a layer of neurons. The
affine transformations corresponds to the weights and biases used in the neuron to neuron view.Figure 3.2
illustrates the corresponding low-level view of the computational graph example presented in Figure 3.1. The
computational graph representation was used as it enables dynamic modification of the network structure
without advanced topological analysis.

3.2 Crossover

In evolutionary algorithms crossover is used to combine favourable features in different individuals in new ways.
But, due to the problem of competing conventions it is difficult to recombine solutions in neuroevolution. In

11

in 1 3 out

2

T

Q

R

Z

W

Figure 3.1: The figure illustrates a computational graph used to represent a neural network. The nodes marked
with in and out are the input respectively the output layer of the neural network. The edges represent affine
transformations that map the values stored in one node to another. In a forward pass, the input is mapped from
the input layer to node 1 using the affine transformation T followed by non-linear activation. Next, node 2 is
activated by mapping the values at node 1 using transformation Z followed by non-linear activation. Node 3 is
activated by adding the values obtained by mapping the values at vertex 1 and 2 with transformations R and Q
and then followed by activation. The output is obtained by mapping the values of node 3 to the output vertex.

in
1

2

3

out

Figure 3.2: The figure illustrates the neural network representation of the computational graph in Figure 3.1.
In this figure the individual connections between the neurons in the layers are shown.

NEAT, the problem of competing conventions is avoided by enforcing structural growth constraints.
The network encoding and how structure is built in this thesis is not compatible with crossover in a way

that allows the offsprings to combine the functionality of their parents due to the problems with crossover
in neuroevolution, see Section 2.1. If the offsprings cannot represent the functionality of their parents, it
would defeat the purpose of using parameter inheritance and function preserving mutations. This perception is
supported by the fact that epigenetic parameter initialization in EXACT, that used crossover, did not improve
the performance of the algorithm. On the contrary, LSEIC that only built structure through mutations did
benefit from parameter inheritance. In addition, versions of LSEIC using recombination were evaluated and
the results showed that it did not improve the performance.

Another argument to not use crossover is that crossover appear to increase the complexity of the ANN. In
both DeepNEAT and EXACT the evolved networks were unprincipled and complex. On the contrary, LSEIC
that only built structure through mutations found simple solutions that were similar to human design.

In summary, the genetic encoding and the way structure is built is not compatible with organized crossover.
In previous work crossover appear to increase the complexity of networks and reduce the efficiency of the
evolutionary algorithm. Beacuse of the reasons stated, crossover is not included as a part of the algorithm
presented in this report.

3.3 Speciation

In NEAT, speciation serves the function to protect structural innovation as it is unlikely that new structure
will immedeatiley express useful function. Speciation is therefore necessary in NEAT to allow the structural
innovations to become self-sustainable. In this work where the mutations preserve the functionality of the
parent networks there is no need for speciation as the structural configurations of the offsprings already express

12

useful functionality. Through backpropagation, new structure is phased in.

More generally, speciation is used to prevent premature convergence by maintaining a genetically diverse
population that explores different peaks of the solution space. Ideally, a speciation scheme could improve the
efficiency of the evolutionary algorithm but the encoding and structural growth scheme does not allow an
appropriate structure based similarity metric to be defined. To illustrate this issue, consider the three networks
illustrated in Figure 3.3. The dark gray marked neurons are structure that is present in all three networks.
Although they have common structure it is difficult to distinguish which of the three networks that are more
structurally similar.

in

in

in

1

1

1

3

3

3

2

2

out

out

out

Figure 3.3: The figure illustrates three different network topologies with some common structure. The gray
marked neurons indicate structure that can be viewed as common in all three networks. Despite their common
structure they are completely different.

3.4 Selection and reproduction

This section aims to provide an overview of the evolutionary algorithm with special emphasis on the selection
mechanism. In Figure 3.4 a flow chart of the evolutionary procedure is illustrated. A structurally uniform
population is initialized. The structures are trained using back propagation and their performance evaluated.
If the best ranked network performs better than the desired threshold the algorithm is terminated. If none of
the networks have an accuracy that is good enough, the next generation is formed by selection and mutation of
high ranking individuals.

The parent networks are selected through both elitism and tournament selection. First, the n best individuals
are selected for reproduction and removed from the population, where n is determined by a hyperparameter.The
remaining parents are selected using tournament selection. The tournament selection is performed by selecting
two candidates from the population. The better candidate are chosen with probability determined by a user

13

Initialize network
structures

Train networks with
back propagation

Evaluate networks
on test data and rank
their performance

Is desired accuracy
obtained?

Select parent networks
through tournament

selection

No

Terminate and report
results

Yes

Create next generation
by mutating parent

networks

Figure 3.4: The figure illustrate a flow chart of the evolutionary algorithm. The algorithm starts with a
population initialization of neural networks. In each generation the network structures are trained with back
propagation, evaluated and ranked. If the best individual performance exceeds a user defined threshold the
algorithm is terminated. If not, the algorithm proceeds to create the next generation by first selecting the
parent networks through tournament selection. The offsprings are created by altering the structure of the parent
networks through a random selection of a mutation operator.

defined value referred to as tournament parameter. The winner is removed from the population to prevent it
from being selected multiple times. The tournament selection is repeated until the total number of parents
equal a user defined threshold.The remaining individuals of the population are discarded.

The offsprings are generated by applying function preserving structural mutations to copies of the parents.
In a single reproduction event, a parent and a mutation operator is chosen at random. The operator is applied
to the network to create the offspring. In Section 3.5 the mutation operators are presented in detail. The
parents are transferred to the next generation unaltered and the reproduction procedure is repeated until the
number of parents and offsprings equals the population size.

The selection and reproduction scheme was chosen to attain high exploration. In other selection schemes,
each individual usually produce offsprings proportionally to its fitness relative to all the other individuals.
In fitness proportional selection, the risk for premature convergence is palpable if one individual becomes
considerably more fit. Tournament selection explores super-fit individuals to the same extent as any other
parent. Furthermore, by using a small tournament size of only two individuals, weak candidates are more likely
to survive selection. By using elite survivors the population will never decrease in performance with only a
small cost to the level of exploration.

14

3.5 Structural mutation operators

The mutation operators were designed to allow any network structure to be morphed to any other network
structure through a series of a repeated mutations. The mutations are inspired by how an experimenter
would change the structure iteratively during a manual search: expand or shrink a neuron layer, increase or
decrease the depth of the network by insertion or removal of a layer and add or remove skip connections. Skip
connections were introduced to allow arbitrary structures to emerge.

The method used in this report includes mutations to remove structure. Structural reduction can have
several benefits. It reduces the number of parameters to update during back propagation. It allows the
evolutionary process to search among smaller topologies. Smaller topologies train faster than a larger ones and
may even be less prone to get stuck in stationary regions. Small structures are also desirable for integration in
embedded systems as they can execute a forward pass faster.

Another consideration during the design of the mutation operators was that they should allow rapid
structural change. By increasing or decrasing the size of a layer proportional to its original size it allows the
layer to reach an optimal size more rapidly compared to constant rate of change. When a layer is inserted it is
given the same size as the preceding layer to obtain a faster growth rate compared to inserting layers of fixed
size.

A mutation operator is selected at random, in some cases the chosen operator may not be compatible with
the structure. For example, if the parent is a network without any hidden layers, then adding a skip connection
is not possible nor meaningful. In such scenarios, a new mutation is selected at random until a compatible
mutation operator is found. In the succeeding sections the principles of the mutation operators are described.

3.5.1 Network layer expansion through neuron functionality multiplication

The layer expanding mutation is based on the work by Goodfellow et al. described in Section 2.4. In the
context of this report the layer expanding mutation will be referred to as neuron multiplication.

Expanding a layer can be accomplished by changing the transformations that map to and from the
computational vertex. Increasing the size of a layer layer can be accomplished by adding rows respectively
columns to the weight matrices associated with the incoming and outgoing edges. The bias vector of the
transformation that precedes the vertex must also be extended to the same extent as the number of neurons
that are added. If there are several preceding and succeeding vertices, the explained procedure needs to be
repeated for each edge.

The functionality of a single neuron is recreated in new neurons added to the layer. To concretize, consider
the procedure of increasing the size of a layer with one new neuron. Figure 3.5 illustrates the functionality of
neuron beeing duplicated. The weights of the incoming connections are directly copied from the template neuron
to the new neuron. The bias is also copied to the new neuron as it is. For any input that is passed through
the network, the values in these two neurons will always be the same. To compensate for this duplication,
the weights of the outgoing connection are divided by two to compensate for both the template and the new
neuron.

If the incoming and outgoing weights of two neurons are identical, they will change exactly in the same
way during back propagation. To allow the parameters associated with the new neurons to diverge during
backpropagation the weights associated with the new neurons are perturbated according to

wnew = wold(1− Σ) where Σ ∼ N(ε, ε2) (3.1)

where ε is a hyperparameter that determines the size of the perturbations. The size of the perturbations
scale proportionally to the size of the weights. In that way large variations between the different weigths are
accounted for. For ε = 0 the functionality of the new neurons are identical to the originals and will never
diverge. For ε = 1.0, the new weights are randomly sampled from a normal distribution and scaled in proportion
to the original weights.

When the layer expanding mutation operator is chosen, a hidden layer is selected at random. Half of the
neurons in the layer is chosen at random for duplication.

3.5.2 Network layer insertion through identity matrix weight initialization

In the split edge mutation in NEAT the weight of the outgoing connection is set equal to the weight of the
original connection. The incoming weight of the new connection is set to 1. In that way the new structure

15

Figure 3.5: An illustratation of the layer expansion transformation. The left and right panels show the network
before and respectively after the transformation. The dark grey colored neuron is selected and duplicated. The
incoming weights and bias, associated with the template neuron are directly copied to the new neuron, marked
with dashed lines. The weights associated with the outgoing connections are set to half of the original values
and are illustrated with the dotted lines in the right panel.

approximates the function of the original connection, disregarding the non-linear activation. Conceptually, the
idea can be adopted to insertion of an entire perceptron layer. This procedure is illustrated in Figure 3.6. The
weight matrix of the incoming connection is set to identity. In that way the new layer will output values close
to the original layer. By setting the weight matrix of the outgoing edge identical to the original connection, the
effect of the new layer is small with regards to the functionality of the network.

Figure 3.6: The figure illustrates network made deeper by layer insertion. The weights and bias associated with
the outoging transformation is directly copied and marked with dotted lines. The incoming connection to the
new layer is the identity matrix with a zero valued bias vector.

In reality, inserting a layer between two connected nodes in the manner described above will most likely cause
a significant decrease in performance due to the non-linear activation function. To mitigate the non-linearity of
the newly inserted vertex the sub network consisting of the preceding, succeeding and the new inserted vertex is
trained to behave as the original transformation. During a single training iteration a mini batch is propagated
through the unaltered network. The input and output of the layers preceding and succeeding the edge that
was selected for layer insertion are stored and used as trainig data for the sub network. The details regarding
this conceptual procedure is described further in Section 3.5.6, but where the only difference is that a layer is
removed instead of inserted.

3.5.3 Add skip connection

The structural transformations described so far allow networks to become both wider and deeper, but confines
them to a stacked layers topology. Each layer of neurons has one preceding and one succeding layer, except the
input and output layer. To allow more general solutions to be found, new connections between layers that

16

originally were not connected must have the option to emerge. However, new connections will not preserve
the functionality of the network unless the combination of weigths and biases cancel out and create a net
contribution of zero as output – input to the next layer. For arbitrary inputs, the only parameter combination
that meet such requirements is when all parameters are zero. However, experimentation showed that new edges
can be adapted faster and configured as useful structure if the weights were not set to zero. Therefore, when a
new edge is created the initialization of weights are sampled according to

w ∼ U(−ζ
√
k, ζ
√
k) with k = 1/n, (3.2)

where n is the preceding layer size and ζ a hyperparameter that is used to control how much the functionality
of the networks are allowed to change.

3.5.4 Network layer contraction through pruning

It is generally impossible to preserve the functionality while shrinking a layer, but the impact can be reduced
by a smart selection of neurons to remove. When a network is evolved and trained, some neurons become less
important or even obsolete to the overall functionality. This concept is utilized to decrease the size of a layer.
This procedure can be viewed as form of pruning, and will for simplicity be referred to as layer pruning.

A hidden layer is selected at random for reduction. The pruning is performed by passing through a subsample
of the training data set while storing the activation tensor associated with the selected layer. Each row in the
matrix contains the activation values for i:th neuron in the layer. The matrix is used to rank the neurons by
their relative activation level. Below, a numerical example is presented. The layer consists of three neurons
and a subsample of 4 was used. As 3 is not divisible by 2, only the neuron with the lowest activation will be
removed.

 0.92 0.87 −0.21 0.34
0.07 −0.03 0.04 0.02
−0.65 −0.95 0.04 0.63

 abs−→

0.92 0.87 0.21 0.34
0.07 0.03 0.04 0.02
0.65 0.95 0.54 0.63

mean−→

0.585
0.040
0.693

 ranking−→

2
1
3

The absolute value of each element in the matrix is calculated and the mean of the rows is computed.
The matrix from these computations contain information on the average activation level of each neuron. The
neurons are ranked and the 50% lowest scoring ones are deleted, in the numerical example above the second
neuron. In practice this means that incoming and outgoing edges to the chosen vertex are modified. Incoming
transformations are modified by removing rows from the weight matrix and elements from the bias vector. For
the outgoing edges columns of the weight matrices are removed.

3.5.5 Remove edge

All connections in the network cannot be removed. Removing the wrong edge can cause some layers to not
be connected to a preceding nor a succeding layer. Such structures are not meaningful and therefore special
care was made to prevent this. An edge is allowed to be removed if both the succeding and preceding vertices
of the edge are connected to other vertices. To reduce the distortion of the network functionality the edge
associated with the smallest loss is removed. First, all edges that can be removed are listed. One edge at the
time is disabled and a forward pass of a subsample of the training data is made and the loss is stored. All
losses are compared, and the connection corresponding to the smallest loss is removed in the mutatation.

3.5.6 Network layer deletion

To delete a layer without reducing the performance is not possible but the damage can be mitigated by replacing
two layers in sequence with a wider layer that approximates the function of the two layers. The scheme is
illustrated in Figure 3.7. A training batch is propagated through the network. The input and output tensors

17

from the sub network consisting of the two layers, C and D in the figure, are stored and used to train the wider
layer. The inputs are fed to the smaller network with and the output is used to backpropagate.

The size of the wider layer is set so that the number of parameters of the new structure equals the number
of parameters of the orignal two layers. The layer size can be calculated with

Nnew =
(NB + 1)NC + (NC + 1)ND +NDNE

NB +NE + 1
, (3.3)

where NB, NC , ND and NE is the size of the layers, see Figure 3.7. The weights of the incoming and
outgoing connections are uniformly sampled according to

win ∼ U(−
√

1/NB ,
√

1/NB), (3.4)

wout ∼ U(−
√

1/Nnew,
√

1/Nnew). (3.5)

B EA

B X E

Forward propagation
to generate training data

Forward propagation of
data generated by parent

network

Backpropagation
to minimize

loss

B EA

Replace edges BC, CD and
DE with BX and XE

C D

X

AB BC CD DE

BX XE

AB BX XE

Figure 3.7: The figure illustrates the procedure used to decrease the depth of a network with minimal distortion
to its functionality. The procedure replaces two consecutive hidden layers with a single, wider, layer. The boxed
part of the network on the top is the part that will be replaced by a smaller network. The procedure is carried
out by training the smaller network, seen in the middle, to approximate the function of the boxed sub network.
In one training iteration, a mini batch is propagated through the top network. The output tensor of layer B is
used as input to the smaller network and the input tensor to layer E is used as target tensor to define the loss.
Once the middle network has trained it replaces the boxed sub network of the orignal network.

18

4 Evaluation

In this chapter the strategy to build structure through function preserving transformations is evaluated with
regards to efficiency. The chapter is divided in two parts. The first part describe experimental setup, that is
how this strategy was evaluated along with the details governing the experiments. The second part present the
results of the experiments.

4.1 Experimental setup

To evaluate the hypothesis that function preserving mutations constitutes an efficent strategy for neuroevolution,
the function preserving algorithm is compared to an ablated version in which the preservating properties of the
mutations are disabled. The ablated version is created by adjusting the hyperparameters so that the parameters
associated with the mutation become random. For some mutations, an additional level of noise is added to
randomize new structure. Below the difference between the baseline, i.e the function preserving algorithm, and
the ablated version is explained for each of the mutation operators.

• The function preserving property of the layer expanding mutation can be removed by increasing the size
of perturbations determined by ε, see Equation (3.1). By increasing ε, the weights associated with the
new neurons diverge from their duplicates. For small values of ε ≈ 0, new neurons are simply copies
of other neurons present in the layer before the expansion. For ε = 1.0, the neuron multiplication is
reduced to random padding. For all the experiments, the baseline use ε = 0.1 while the ablated version is
represented with ε = 1.0.

• In the baseline a new layer is inserted so that weights of the incoming connection are set to identity, and
outgoing weights are equal to those of the original connection. To account for non-linear activation, the
sub network consisting of the in- and outgoing edges of the new layer is trained through backpropagation
to represent the functionality of the orignal connection. The function preserving property can be disabled
by adding a level of noise to weights associated with the incoming connections instead of retraining the
sub structure. In the experiments, the noise is uniformly sampled on the interval (−1, 1). In the baseline,
no noise is added and 500 retraining iterations are used.

• The function preserving property of the new edge mutations is based on the idea that a new edge can be
added without distorting the functionality too much if the parameters associated with the edge are small.
Different values of ζ, see Equation (3.2), are used represent the baseline respectively the ablated version.
In the baseline ζ = 0.1 and in the ablated version ζ = 1.0.

• The layer reducing mutation is based on pruning. The neurons with the average lowest level of activation
are removed in the baseline. In the ablated version the neurons are selected at random instead.

• In the baseline the depth of the neural network is reduced by replacing two consecutive layers with a
single wider one. The sub network consisting of the wider layer is retrained using backpropagation to
represent the function of the two original layers. In the ablated version the number of retraining iterations
are set to zero, in that way the new structure will be randomly initialized. In the baseline representation
500 retraining iterations are used.

• The remove edge mutation removes the edge that is associated with the smallest loss in the baseline
version. In the ablated version, an edge is selected at random instead.

19

4.1.1 Benchmark problems and experiment details

The relative performance of the two versions is tested on a set of 5 regression problems, defined by

p1 (x1, ..., x3) = sin(2π(x1 + x2 + x3)) (4.1)

p2 (x1, ..., x6) = sin(2π(x1 + x2 + x3 + x4 + x5 + x6)) (4.2)

p3 (x1, ..., x9) = sin(2π(x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9)) (4.3)

p4 (x1, ..., x9) =
sin(2π(x1 + x2 + x3)) + sin(2π(x4 + x5 + x6)) + sin(2π(x7 + x8 + x9))

3
(4.4)

p5 (x1, ..., x9) =
sin(3π(x1 + x2 + x3)) + sin(3π(x4 + x5 + x6)) + sin(3π(x7 + x8 + x9))

3
. (4.5)

For each of the five functions p1 to p5 the goal is for the algorithms to approximate them as good as possible.
The benchmark functions were chosen to represent different levels of complexity with highly alternating function
surfaces. The data used constitutes of 11000 data points uniformly sampled from functions (4.1) - (4.5) where
xi ∈ (0, 1) ∀i. The data is divided in a training and a validation set of 10000 respectively 1000 data points.
The loss on the validation set is used for selection. Before training, the data is scaled to unit variance and zero
mean.

For the hidden layers tanh was used as activation while identity activation was used for the output layer. In
the following experiments, a solution is found if a network has a Mean Squared Error loss (MSE-loss) lower
then 0.01 on the validation data. In all experiments a population size of 30 individuals was used, with a total
of five parents whereof one elite survivor. For the tournament selection, the tournament parameter was set to
0.8. The individuals of the population is intialized with a hidden layer of size two. During reproduction all
mutations are selected with equal probability.

For the training the gradient descent method ADAM was used with a learning rate of 6× 10−3, and
β = (0.9, 0.999), ε = 1× 10−8 and with weight decay of 0. A mini-batch size of 100 was used.

4.2 Results

The purpose of this experiment was to determine whether function preserving mutations is an efficient strategy
for neuroevolution. In Table 4.1 the average number of generations required to find a solution is presented for
the baseline and ablated versions. Different variations of the number of training iterations per individual is
shown. For problems 2, 3, and 5 the performance is significantly higher for the ablated version. For problem 1
and 4, the two algorithms show similar performance, possibly in favour of the baseline.

It can be concluded that the efficiency is related to the parameter initializaion associated with the structural
mutation. For problem 2 and 3 the average number of generations required to find a solution is 2.4 times fewer
for the ablated version than the baseline.

The average number of generations required to find a solution does not reveal qualitative information about
the shape of the distribution. Potential skewness in the distribution or thick tails may cause the mean to be
misguiding. The distribution of solutions for problem 2 and 3, was chosen for further examination as the results
differ between them. Problem 5 was not examined as the function preserving version did not find any solutions.
In Figures 4.1 and 4.2 the solution distributions for problem 2 respectively 3 is presented. A curve represent
the number of solutions found as a function of the generations passed. Each curve can be interpreted as an
estimate of the cumulative distribution function (CDF) that a solution has been found after n generations.
The black colored curves correspond to the baseline and the gray colored curves with the ablated method. The
different line types mark different number of training iterations per individual and generation.

The distributions show both that the minimum number of generations to find a solution is higher for the
baseline and also that on average the rate at which solutions are found is lower. The effect of increasing training
iterations seem to be a more rapidly increasing CDF. This is expected as fewer generations are required to
attain the same level of training compared to if the number of training iterations per individual and generation
would have been lower.

The results provide evidence against the hypothesis that function preserving mutations is an efficient
strategy for scalable neuroevolution as the baseline require more generations to find a solution in comparison
to the ablated version. To conclude why the baseline demonstrates poor performance, the progression of the

20

Table 4.1: The table show the average number of generations required to find a solution on the five problems
for different number of backpropagation iterations.

Nr of backpropagation
iterations

Avg nr of generations:
Baseline

Avg nr of generations:
Ablation

Problem 1
50 20.0 18.4
150 9.95 9.55
300 10.0 6.6
Problem 2
250 27.9 13.2
500 23.6 (90% successrate) 10.0
1000 17.6 6.8
Problem 3
2000 28.5 11.2
5000 16.3 6.85
Problem 4
300 15.0 15.7
600 9.9 10.7
1200 7.3 7.5
Problem 5
5000 N/A, no solution found 17.6 (90 % successerate)

F
ra

ct
io

n
of

so
lu

ti
on

s

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Generations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nu
m

be
r o

f s
ol

ut
io

ns

Problem 2

Ablated-1000
Ablated-500
Ablated-250
Baseline-1000
Baseline-500
Baseline-250

Figure 4.1: Each curve represent an estimate of the cumulative distribution function that a solution has been
found at a given time for problem 2. The gray lines are associtaed with the ablated version and the black ones
with the function preserving version. The ablated versions grow more rapidly than the corresponding function
preserving versions.

evolutionary algorithm for problem 3 and 5 was chosen for further inspection. The loss of each individual in

21

F
ra

ct
io

n
o
f

so
lu

ti
on

s

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Generations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Nu
m

be
r o

f s
ol

ut
io

ns
Problem 3

Ablated-5000
Ablated-2000
Baseline-2000
Baseline-5000

Figure 4.2: The figure shows the CDFs associated with problem 3. The gray lines represent the distribution of
the ablated versions and the black ones with the function preserving versions. The curves show that the ablated
version converge faster than the function preserving version as they grow more rapidly.

the population throughout history is plotted, see Figures 4.3 and 4.4.
Figure 4.3 shows the progression of the baseline and the ablated version for problem 3 with 2000 training

iterations, this corresponds to the solid lines in Figure 4.2. The black dots correspond to individuals associated
with the baseline and the gray with the ablated version. In the figure, there is a line of dots around a loss of 0.5.
It means that the networks have learnt to output values close to zero, the mean of the data. The stagnation
in non-optimal function representations of the data occur for both algorithms. However, the ablated version
appear to be able to more rapidly diverge from such non-optimal representations.

Similar stagnations can be observed for problem 5. In Figure 4.4 the distribution of individuals for problem
5 is visualized. The individuals seem to be distributed in three groups around 0.17, 0.12 and 0.07.s The first
group corresponds to that the networks have learnt the average of the function and only output zeros. The
second optima means that the network has learnt to approximate one of the three sinus terms. The third
stagnation point means that the network has learnt to approximate two out of three sinus terms of problem
5. As concluded before, the ablated version can more easily diverge from sub-optimal representations of the
sought function.

22

Figure 4.3: The figure shows the distribution of individuals through time for the two evaluated methods on
problem 3 with 2000 training iterations per individual and generation. The gray dots corresponds to the
individuals of the ablated version and the black dots with the baseline. Notice the line of dots distributed around
a loss of 0.5.

23

Figure 4.4: The figure show the distribution of individuals for problem 5 with 5000 backpropagation iterations.
The black dots represent the baseline and the gray dots mark the individuals of the ablated version. Notice the
three groupings of individuals at loss 0.17, 0.12 and 0.07.

24

5 Discussion

This section analyze the results from the evaluation and put forward ideas that can increase the efficiency in
neuroevolution.

5.1 Analysis of result

The performance of the proposed method was evaluated relatively to an ablated version in which the function
preservating property of the mutations was disabled. The two methods were evaluated on a set of five different
regression problems. On the three most difficult problems, 3-5, the ablated version outperformed the baseline.
The performance difference appear to be related to a tendency for the baseline to halt at sub-optimal function
approximations and must be related to how new structural configurations are initialized.

During training the loss is minimized by updating the parameters in the gradient descent direction. The
networks in each generation will eventually reach a minima or stationary point - region of low gradient. Once
the training is completed it is likely that the networks are in a stationary region. While the mutations change
the networks structurally the functionality is preserved. This gives reason to believe that the loss landscape is
preserved as well. In other words, the networks of each generation starts out in the vicinity of a stationary point
in a region of low gradients. In Figure 5.1 the described procedure is illustrated. The left panel illustrates the
loss surface of a network. The network starts out with parameter configuration A and through backpropagation
it ends up in B, a stationary region. The network with parameter configuration B is structurally transformed
to point C in the right panel. The mutated network starts out with a parameter configuration that is in the
vicinity of a stationary point.

A

B C
D

Loss

θ Θ

S1

S2

Figure 5.1: The figure illustrates why the baseline stagnate in sub-optimal function approximations. The left
panel shows a parameterized loss surface, S1(θ), of the parent network structure. The right panel shows the
parameterized loss surface, S2(Θ), of the offspring network. The parent starts with parameter configuration A
and through gradient descent ends up with configuration B. The trained network, B, is mutated with a function
preserving mutation, indicated with the dashed arrow, to a new network structure with parameter configuration
C. The new network is close to the vicinity of a local optima and through backpropagation it will be end up in
D, that represent the same sub-optimal representation of the data as the parent network with configuration B.

The ablated version converge faster because the parameter initialization allows the networks to escape
the stationary region. The structural mutations are the same as in the baseline but with the difference that
the parameters are randomly initialized. This gives reason to believe that the idea of function preserving
transformations can still constitute as a feasible strategy for efficient neuroevolution. If the magnitude of
the perturbations can be adjusted in such a way that it allows the networks to escape the stationary region

25

but simultaneously keeps the network in the vicinity of high performance. In other words, for the function
preserving transformations to work some control mechanism is needed that allows networks to escape stationary
regions. In the paper Escaping Flat Areas Via Function-Preserving Structural Network Modifications 1, recently
submitted for blind review, a method is presented that allows networks to escape saddle points. The method
add hidden units with parameter initializations that maximizes the gradient. A fusion of neuroevolution based
on function preserving mutations with gradient maximization to escape flat regions in parameter space requires
further examination.

5.2 Crossover revisited

Crossover was not attempted as fusion of different networks was not expected to improve the efficiency. However,
there are other ways to combine networks than through structural fusion. Large efficiency gains can be achieved
if the learnt knowledge of two networks can be combined. For example, consider problem 5 in which the
networks seem to learn the sinus terms one at a time. If two different networks have learnt to approximate two
different terms their offspring can immedeatiley approximate both of the terms. Or in a classification problem
two different networks might each have learnt to classify different data. By combining the learnt knowledge of
two networks the offspring can immedeatiley improve even without further training.

A possible way for learnt knowledge to be combined without fusing the actual structures would be to create
a hierarchical and modular network. A single network can be viewed as a module or a constituent that is
constrained by some high level controller. The purpose of the controller is to associate the input data, xin,
with the network that is most suited to process the data. Alternatively combine the outputs, o1 and o2, in a
way that minimizes the loss of the total system.

The problem can be formulated by introducing the function f(o1, o2,xin) that represents an optimal
combination scheme of o1 and o2 that minimizes the loss of the total system. The recombination is now stated
as a regression problem where the objective is to find the function f . If f is approximated with a neural
network, the controller becomes a natural part of the offspring and its parameters can be updated during
training. In Figure 5.2 the recombination scheme is conceptually illustrated where o1, o2 and xin are fed as
inputs to the controller network. During crossover the parameters of the parent networks are kept fix while the
parameters of the controller network are configured with backpropagation.

5.3 Dynamic adaptation of the number of backpropagation itera-
tions

The performance of the algorithm is reliant on the number of training iterations used per individual and
generation. It is difficult to select the optimal number of training iterations prior to starting the evolutionary
algorithm. Increasing the number of training iterations will improve the efficiency with regards to the number
of generations required to find a solution as a network needs to be chosen for reproduction fewer times to
undergo the same number of backpropagation iterations.

Efficiency measured by the number of generations required to find a solution is not, alone, a justified
efficiency metric. Instead, the execution time until a solution is found should also be considered. Increasing the
number of training iterations is not certain to decrease the execeution time. If the number of training iterations
are high, much time is spent on training bad network structures. If fewer iterations are used, suitable structures
that optimize fast could be attained more quickly. On the contrary, if the number of training iterations are
too few the simulated evolution is not able to distinguish between the good and the bad networks. Training
the networks for only a few iterat¡ions can be sufficient for the selection to guide the algorithm in the right
direction.

Effciency gains can be obtained if the number of training iterations are dynamically adjusted. Baker et al.
demonstrated that standard frequentist regression models can predict the performance of not fully trained
CNN by utilizing certain architechtural features along with time-series of the performance on the validation
data[Bak+17]. Such methodologies can possible be incorporated in the algorithm. By doing so, the potential
performance of each structure could be predicted and the number of training iterations can be adjusted so that
promising networks are trained more and less computational resources are spent on unfit structures.

1The paper can be found at: https://openreview.net/pdf?id=H1eadi0cFQ

26

https://openreview.net/pdf?id=H1eadi0cFQ

x1

x2
out1

x1

x2
out2

Parent 1 Parent 2

x1

x2
out1

x1

x2
out2

x1

x2

out

Keep parameters fix Train

Figure 5.2: The figure illustrates conceptually how two different networks can be recombined by introducing a
neural network that is trained to approximate the function f(o1, o2,xin). The function f defines the optimal way
to combine the output of the parent networks. Once the regulator network has been configured all parameters
are released to be updated during regular training.

5.4 Increasing efficiency by tracking novel topologies

The mutation operators both add and remove structure. Therefore, it is likely that new topologies have
been represented before. By keeping a record of all structural configurations through time, new performance
increasing opportunities arise. This information can be used to guide the evolution towards novel and previously
unrepresented topologies. By guiding the search in the direction of previously unrepresented structures, the
optimal structure could be found quicker. Another application can be to estimate the potential of individuals
that have been structurally represented before. Instead of re-evaluating such structures the computational
resources can be directed towards novel and unexplored structures. A third application can be to replace the
networks in the population with the corresponding historic version. This can increase the efficicency as the
historic version has been trained for more iterations and is more likely to be closer to the solution in parameter
space.

The intention with uniqueness search is to prevent the algorithm from redoing calculations already made and
instead divide the computational resources in a way that is more likely to yield a solution. But, as the networks
are not trained to completion, continuing training historic structures may be harmful as new versions with
different parameter configurations could yield better results more quickly if the network structure is trained
again. In other words, uniqueness search could be a useful tool for efficient neuroevolution but it needs to be
balanced in order to not miss simple solutions.

27

5.5 Function preserving mutations for minimal solutions

A possible application for function preserving mutations is for structural reduction. Minimal structure is
desirable in most real applications as they generally reduce the execution time. An example of this is if a
network structure that can be trained to a satisfactory degree has been found but it does not fulfill the time
constraints of the application. Reducing the structure of the network can possibly solve this issue. To manually
decide how the structure can be altered while maintaining its performance is difficult.

The function preserving mutations, with low noise level, prevent networks from escaping stationary regions.
This behavior may be utilized as a way to reduce the size of networks that already solves the problem. To guide
the evolution to search for smaller topologies the selection frequency of the mutation operators that reduce
structure can be increased. In that way the algorithm more frequently selects mutations that reduce structure.
Instead of basing the selection solely on fitness it can also be based on the number of parameters. This
reductional scheme was briefly evaluated and was in some instances able to reduce the number of parameters
up to a magnitude of 10.

28

6 Conclusion

The objective of this thesis was to develop efficient strategies for neuroevolution. An algorithm that builds
structure through function preserving mutations were implemented and evaluated. By building structure
through these transformations the intention was that the offspring of the next generation would start out in a
region in parameter space corresponding to high performance. However, the results of the evaluation show
that with the function preserving property of the mutations disabled the efficiency increased. The results
was presumed to be caused by the gradient beeing invariant under a function preserving mutation thereby
preventing the networks from escaping stationary regions. This insight is important as it provide a direction of
future research. In order to efficiently employ the strategy of function preserving mutations there need to be a
way to allow mutated offsprings to escape regions of low gradient.

Neuroevolution appear to be a promising strategy for NAS, but it need to become more efficient to be
practically employed. A major challange is to find a way to efficiently recombine the functionality of different
networks. Previous work has focused attention on crossing networks with the intention that their functionality
will be combined as a secondary consequence. Instead the research should focus attention on how functionality
of different networks could be combined. A proposed example is that two two networks can be combined by
creeating a controller ANN that determine how their outputs should be combined in a way that minimize the
loss.

The strategies developed in this work for efficient neuroevolution did not work as intended, but instead the
research of this thesis contribute to a better understanding of neuroevolution for NAS.

29

References

[Bak+17] B. Baker et al. Practical Neural Network Performance Prediction for Early Stopping. CoRR
abs/1705.10823 (2017). arXiv: 1705.10823. url: http://arxiv.org/abs/1705.10823.

[CGS16] T. Chen, I. Goodfellow, and J. Shlens. “Net2Net: Accelerating Learning via Knowledge Transfer”.
International Conference on Learning Representations. 2016. url: http://arxiv.org/abs/1511.
05641.

[Des17] T. Desell. Large Scale Evolution of Convolutional Neural Networks Using Volunteer Computing.
CoRR abs/1703.05422 (2017). arXiv: 1703.05422. url: http://arxiv.org/abs/1703.05422.

[DR92] D. Dasgupta and D. R. McGregor. “Designing application-specific neural networks using the
structured genetic algorithm”. July 1992, pp. 87–96. isbn: 0-8186-2787-5. doi: 10.1109/COGANN.
1992.273946.

[DS01] P. Darwen and W. Spencer Churchill. Co-Evolutionary Learning by Automatic Modularisation
with Speciation (Feb. 2001).

[Hau+13] M. Hausknecht et al. A Neuroevolution Approach to General Atari Game Playing. IEEE Transactions
on Computational Intelligence and AI in Games (2013). url: http://nn.cs.utexas.edu/

?hausknecht:tciaig14.
[Li+17] H. Li et al. Visualizing the Loss Landscape of Neural Nets. ArXiv e-prints (Dec. 2017). arXiv:

1712.09913.
[MD89] D. J. Montana and L. Davis. “Training Feedforward Neural Networks Using Genetic Algorithms”.

Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume 1. IJCAI’89.
Detroit, Michigan: Morgan Kaufmann Publishers Inc., 1989, pp. 762–767. url: http://dl.acm.
org/citation.cfm?id=1623755.1623876.

[Mii+17] R. Miikkulainen et al. Evolving Deep Neural Networks. CoRR abs/1703.00548 (2017). arXiv:
1703.00548. url: http://arxiv.org/abs/1703.00548.

[PD94] M. A. Potter and K. A. De Jong. “A cooperative coevolutionary approach to function optimization”.
Parallel Problem Solving from Nature — PPSN III. Ed. by Y. Davidor, H.-P. Schwefel, and R.
Manner. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 249–257. isbn: 978-3-540-49001-2.

[PK18] J. Prellberg and O. Kramer. Lamarckian Evolution of Convolutional Neural Networks. CoRR
abs/1806.08099 (2018). arXiv: 1806.08099. url: http://arxiv.org/abs/1806.08099.

[Rea+17] E. Real et al. “Large-Scale Evolution of Image Classifiers”. 2017. url: https://arxiv.org/abs/
1703.01041.

[SM02] K. O. Stanley and R. Miikkulainen. Evolving Neural Networks Through Augmenting Topologies.
Evolutionary Computation 10.2 (2002), 99–127. url: http://nn.cs.utexas.edu/?stanley:ec02.

[Sta04] K. O. Stanley. “Efficient Evolution of Neural Networks Through Complexification”. PhD thesis.
Department of Computer Sciences, The University of Texas at Austin, 2004. url: http://nn.cs.
utexas.edu/?stanley:phd2004.

[Wah08] M. Wahde. Biologically inspired optimization methods : an introduction. WIT Press, 2008. isbn:
9781845641481. url: http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.
com/login.aspx?direct=true&db=cat06296a&AN=clc.b1378449&site=eds-live&scope=site.

[WT98] R. C. Woodruff and J. N. Thompson. Mutation and Evolution. [electronic resource]. Contemporary
Issues in Genetics and Evolution: 7. Springer Netherlands, 1998. isbn: 9789401152105. url: http:
//proxy.lib.chalmers.se/login?url=http://search.ebscohost.com/login.aspx?direct=

true&db=cat06296a&AN=clc.b1969685&site=eds-live&scope=site.

30

http://arxiv.org/abs/1705.10823
http://arxiv.org/abs/1705.10823
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1703.05422
http://arxiv.org/abs/1703.05422
https://doi.org/10.1109/COGANN.1992.273946
https://doi.org/10.1109/COGANN.1992.273946
http://nn.cs.utexas.edu/?hausknecht:tciaig14
http://nn.cs.utexas.edu/?hausknecht:tciaig14
http://arxiv.org/abs/1712.09913
http://dl.acm.org/citation.cfm?id=1623755.1623876
http://dl.acm.org/citation.cfm?id=1623755.1623876
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1806.08099
http://arxiv.org/abs/1806.08099
https://arxiv.org/abs/1703.01041
https://arxiv.org/abs/1703.01041
http://nn.cs.utexas.edu/?stanley:ec02
http://nn.cs.utexas.edu/?stanley:phd2004
http://nn.cs.utexas.edu/?stanley:phd2004
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat06296a&AN=clc.b1378449&site=eds-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat06296a&AN=clc.b1378449&site=eds-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat06296a&AN=clc.b1969685&site=eds-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat06296a&AN=clc.b1969685&site=eds-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat06296a&AN=clc.b1969685&site=eds-live&scope=site

	Abstract
	Acknowledgements
	Abbreviations
	Contents
	Introduction
	Background
	Project description, scope and delimitations
	Thesis outline

	Theory and related work
	Crossover and the problem of competing conventions
	NeuroEvolution of Augmenting Topologies - NEAT
	Genetic encoding and structural growth
	Speciation

	Neural Architecture Search using Evolutionary Algorithms
	Extending NEAT for deep learning NAS - CoDeepNEAT
	Large Scale Evolution of Image Classifiers - LSEIC
	Evolutionary Exploration of Augmenting Convolutional Topologies – EXACT
	The effects of parameter inheritance - Lamarckian evolution

	Accelerated learning using function preserving transformations

	Method
	Network encoding using acyclic directed graphs
	Crossover
	Speciation
	Selection and reproduction
	Structural mutation operators
	Network layer expansion through neuron functionality multiplication
	Network layer insertion through identity matrix weight initialization
	Add skip connection
	Network layer contraction through pruning
	Remove edge
	Network layer deletion

	Evaluation
	Experimental setup
	Benchmark problems and experiment details

	Results

	Discussion
	Analysis of result
	Crossover revisited
	Dynamic adaptation of the number of backpropagation iterations
	Increasing efficiency by tracking novel topologies
	Function preserving mutations for minimal solutions

	Conclusion
	References

