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Abstract

Due to the reduced dielectric screening in two-dimensional materials, transition
metal dichalcogenides (TMDs) exhibit a strong Coulomb interaction that leads
to the formation of excitons (bound electron-hole pairs) with binding energies in
the order of hundreds of meV. Therefore, excitonic effects dominate the physical
properties of these materials even at room temperature. Due to their impressive
properties, TMDs are suitable candidates for novel optoelectronic devices. For
a better understanding of these materials it is necessary to investigate the mi-
croscopic mechanisms behind basic phenomena such as optical excitation, energy
relaxation, and transport. To this end, a fully quantum-mechanical theoretical
framework based on density matrix theory is presented in this thesis in order to
address two fundamental questions: (1) the effect of excitation density on the ex-
citonic and optical properties of TMDs, and (2) exciton spatial diffusion and the
appearance of excitonic halos under strong excitation.

To find the effect of carrier density on the coherent excitonic states and the
optical properties of the material, semiconductor Bloch equations are combined
with the Wannier equation. Using this approach, it is found that exciton proper-
ties are significantly altered and even suppressed at high carrier densities due to
dielectric many-particle screening and Pauli blocking. In the first part of this the-
sis, pump-probe experiments are modeled to provide a microscopic understanding
of experimental observations of these phenomena.

Moreover, the Wigner representation is introduced to study the spatio-temporal
dynamics of incoherent exciton populations and, specifically, the effect of excita-
tion density on exciton diffusion. While under a weak excitation exciton diffusion
follows the conventional Fick law, the results presented in this thesis show that
under strong excitation a significant temperature gradient is created in the exci-
tonic system, leading to the formation of spatial excitonic halos. This work unveils
the microscopic mechanisms responsible for this unconventional phenomenon that
was experimentally observed very recently.

Keywords: excitons, electrons, phonons, diffusion, propagation, optical ab-
sorption, density matrix formalism, Bloch equations.
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Chapter 1

Introduction

In the last decades there has been a clear trend into miniaturization of technolog-
ical devices. However, classical materials used over the last century fail to operate
at the narrow nanoscales that technology is reaching nowadays. In this sense,
the experimental isolation and characterization of graphene in 2004 [1], which re-
sulted in extense studies of this exceptional material over the following years, was
very promising for future technological applications at the nanoscale [2]. Besides
graphene, a vast amount of other atomically-thin two-dimensional materials have
been experimentally realized and studied in the recent years [3–6]. Among them,
semiconductor transition metal dichalcogenides have excelled as promising candi-
dates for optoelectronic applications [7, 8].

Transition metal dichalcogenides (TMDs) are atomically-thin two-dimensional
semiconductors. They are formed by a layer of transition metal atoms sandwiched
between two layers of chalcogen atoms (c.f. figure 1.1a), with their chemical
nomenclature being MX2, with M = Mo,W and X = S, Se. Their crystalline
structure is hexagonal – as in graphene. However, while graphene is a semimetal
with zero bandgap, the inversion symmetry in TMDs is broken and hence these
materials have a bandgap. Even more interestingly, the indirect bandgap of bulk
TMDs evolves into a direct bandgap in monolayer TMDs which is in the visi-
ble/infrared optical range (c.f. figure 1.1c). Furthermore, the optical emission of
these materials is enhanced in monolayers with respect to bulk (c.f. figure 1.1d).
The enhancement of the optical response is produced by excitonic effects that be-
come very significant due to the reduced dielectric screening in two-dimensional
structures. The reduced dielectric screening results in a strong Coulomb interac-
tion through which electrons and holes are tightly bound, forming quasiparticles
known as excitons (correlated electron-hole pairs). Accordingly, the peak observed
in the optical response corresponds to the resonance energy of the lowest excitonic
state. Flexibility, direct bandgap, and strong optical response – among others –
make TMDs very promising for optoelectronic applications. In order to advance
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2 CHAPTER 1. INTRODUCTION

in the implementation of these materials in real devices it is necessary to investi-
gate fundamental phenomena that is expected to be very important for the correct
understanding and control of these devices.

In this thesis, two fundamental questions regarding the optoelectronic opera-
tion of TMDs are addressed. The first one concerns the effect that a finite charge-
carrier density has on the excitonic properties and, consequently, on the optical
response of TMDs. Due to many-particle dielectric screening and Pauli-blocking,
carrier density is expected to significantly alter the excitonic properties [10–13]. In
this thesis it is shown how these properties are altered and a microscopic theoretical
framework is provided in order to model experimental pump-probe measurements.

The second question addressed here corresponds to a phenomenon that is fun-
damental for understanding exciton transport: diffusion. Despite its importance,
exciton diffusion has been little explored in experiments, with most studies focus-
ing on low excitation densities [14–19] and only one recent study focusing on the
density-dependence of exciton diffusion, showing intriguing halos in the photolu-
minescence at high densities [20]. There has only been one attempt to provide a
theoretical explanation of this interesting phenomenon, which focuses on phonon
wind and drag of excitons and is expected to work only at low temperatures [21],
while the work by Kulig et al. has been performed at room temperature. In this
thesis, a quantum-mechanical model is presented that can explain and predict the
formation of spatial halos in the photoluminescence at high excitation and room
temperature. In collaboration with the group of Alexey Chernikov (Regensburg,
Germany), the theoretical predictions are compared with experimental observa-
tions to confirm the correctness of this theory.

The outline of this thesis is as follows. First, the theoretical framework will be
presented, with exemplary figures showing a solution for the Bloch equations (to
illustrate optical excitation and thermalization through scattering with phonons)
and the excitonic wavefunctions, binding energies and optical absorption spectra.
Afterwards, the results for both fundamental questions addressed here (density-
dependence of optical absorption and exciton diffusion) will be presented and dis-
cussed. Finally, the conclusions of this work will be presented, with a summary of
this project and suggestions for future work following this research.
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Figure 1.1: Transition metal dichalcogenides. (a) Illustration of a TMD mono-
layer. (b) Symmetry points of the reciprocal lattice (momentum space). (c) Band
structure of bluk and monolayer WS2. While the bulk material has an indirect
bandgap, the monolayer has a direct bandgap at the K point. Figure taken from
[7]. (d) Spectrally-resolved photoluminescence as a function of number of layers.
The photoluminescence of monolayers is stronger than in bulk materials and is
centered at the exciton resonance energy. Figure taken from [9].
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Chapter 2

Theoretical basis

2.1 Density matrix formalism in second quanti-

zation

2.1.1 Second quantization

In order to efficiently treat a many-particle system, it is useful to describe it in
second quantization. To this end, the creation and annihilation operators a†i and
ai acting on the state i are introduced, which fulfill the following commutation
relations: [

ai , aj

]
±

=
[
a†i , a

†
j

]
±

= 0 (2.1)[
a†i , aj

]
±

= δij (2.2)

Fermions fulfill the anticommutation relations (+), while bosons fulfill the commu-
tation relations (−). Any one- or two-particle operator can be expressed in terms
of these operators:

Ô(1) =
∑
ij

Oija
†
iaj (2.3)

Ô(2) =
∑
ijlm

Oij
lma
†
ia
†
jalam (2.4)

with the matrix elements of the operator Ô being:

Oij =
〈
i
∣∣Ô(1)

∣∣j〉 =

∫
R3

d3r φ∗i (r) Ô(1)(r) φj(r) (2.5)

Oij
lm =

〈
i, j
∣∣Ô(2)

∣∣l,m〉 =

∫
R3

d3rd3r′φ∗i (r) φ∗j(r
′) Ô(2)(r, r′) φl(r

′) φm(r) (2.6)

5



6 CHAPTER 2. THEORETICAL BASIS

This relation can be applied to the Hamiltonian of the system for a simple and
interpretable picture. At the same time, the creation and annihilation operators
can be used to define microscopic quantities such as carrier occupation and phonon
number. These quantities will be presented in section 2.2.1.

2.1.2 Heisenberg equation of motion

The time evolution of the mentioned microscopic quantities is described by Heisen-
berg’s equation of motion. As the Schrödinger equation describes the time evo-
lution of wavefunctions (Schrödinger’s picture), this analogous equation describes
the time evolution of quantum-mechanical operators (Heisenberg’s picture). In
our case, it is useful to find expressions for the dynamics of some density matrix
ρij =

〈
a†iaj

〉
:

i~
dρij
dt

=

〈[
a†iaj, Ĥ

]
−

〉
(2.7)

where ~ is the reduced Planck constant and Ĥ is the Hamiltonian of the system.
From now on, any time derivative will be expressed with a dot, i.e. ρ̇ij.

2.1.3 Correlation expansion

A direct consequence of applying Heisenberg’s equation in a system with many-
particle interaction is the hierarchy problem. When calculating the commuta-
tor (2.7), another unknown microscopic quantity of higher order will appear, which
will need its own equation of motion. The same problem will appear for this new
quantity, thus yielding a system of equations which is not closed. In order to solve
this problem a correlation expansion can be used up to some order at which the
expansion is truncated. An illustrative example of the correlation expansion is the
Hartree-Fock approximation:〈

a†ia
†
jakal

〉
=
〈
a†ial

〉〈
a†jak

〉
−
〈
a†iak

〉〈
a†jal

〉
+
〈
a†ia
†
jakal

〉c
(2.8)

where
〈
a†ia
†
jakal

〉c
= 0 gives the truncation to two-operator quantities. This equa-

tion will be used to calculate the contribution of carrier-carrier interaction to the
equations of motion.

2.1.4 Markov approximation

During the derivation of the scattering contributions to the equations of motion,
intermediate equations of the following form will be encountered:

ẋ(t) = (iω − γ)x(t) + iQ(t) (2.9)



2.2. EQUATIONS OF MOTION 7

Assuming x(t0) = 0, a solution to this equation is

x(t) = i

∫ ∞
0

dt′e(iω−γ)t′Q(t− t′) (2.10)

As in other contexts, here the Markov approximation consists in neglecting mem-
ory effects. This can be justified when the quantity Q(t − t′) varies slowly with
respect to the oscillation eiωQt

′
. This approximation leads to a simple and intuitive

solution:
x(t) = iπQ(t)δ(ω − ωQ) (2.11)

where γ → 0 has been assumed. The limit of a vanishing damping (γ) yields
to a strict energy conservation (fulfilled inside the delta function). This situa-
tion corresponds to suppressing fluctuations arising from Heisenberg’s uncertainty
principle.

2.2 Equations of motion

2.2.1 Microscopic quantities

As previously mentioned, the creation and annihilation operators can be used to
build density matrices that describe microscopic quantities which, for instance, can
correspond to particle or quasi-particle densities. In a semiconductor, and more
concretely in the kind of systems that are studied in this thesis, the quantities of
interest are the electron occupation ρlk, phonon number njq, photon number npt

q ,
and microscopic polarization pk. The first three correspond to quantum particles
or quasi-particles, with the electron being a fermion with negative elementary
charge, a phonon being a quantum of lattice vibration, and a photon being a
quantum of the electromagnetic field. The microscopic polarization describes the
coherence between states in the valence and the conduction band generated by an
optical excitation. The relations between these quantities and the creation and
annihilation operators are:

ρlk =
〈
al†ka

l
k

〉
(2.12)

njq =
〈
bj†q b

j
q

〉
(2.13)

npt
q =

〈
cpt†
q cpt

q

〉
(2.14)

pk =
〈
ac†k a

v
k

〉
(2.15)

where l = c, v is the electronic band, j is the phonon mode, and k and q are
two-dimensinoal momentum vectors.

It is also useful to introduce hole occupation in the valence band. In this way,
we will deal with quasi-particles that are analogous to electrons in the conduction
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band. Electrons in the conduction band and holes in the valence band are com-
monly called charge-carriers, because they transport charge along the material and
are able to generate electrical currents. From now one ρlk will be replaced by fλk ,
with f ek = ρck and fhk = 1− ρvk.

2.2.2 Hamiltonian of the system

In order to derive equations of motion for the microscopic quantities introduced
above, we need to find the system’s Hamiltonian. The phenomena that are studied
in this thesis usually consist of (1) optical excitation, (2) carrier relaxation, and
(3) carrier-carrier interaction. According to the Bohr-Oppenheimer approxima-
tion, electrons can be decoupled from the lattice (phonons), so that carrier-carrier,
carrier-phonon and phonon-phonon interactions can be described intependently.
The different contributions to the Hamiltonian are introduced below.

Free particle

Carriers in a semiconductor have a given band structure that arises from their
zero-order interaction with the lattice. Analogously, phonons also have a given
energy-dispersion. This can be introduced in the Hamiltonian as a one-particle
operator:

H0 =
∑
i

εia
†
iai +

∑
j

~Ωjb
†
jbj (2.16)

where i = λ,k and j = j,q correspond to the carrier and phonon states, re-
spectively. Note that spin is neglected in this thesis as no magnetic fields are
considered.

In real semiconductors, the electronic and phononic band structures have sev-
eral branches with complicated momentum-dependences. While these can be cal-
culated using density functional theory, their implementation in our equations
would be numerically demanding. However, the dynamics of our interest take
place at the minima of the energy bands. In the electronic band-structure, the
energy dispersion can be approximated around these so-called symmetry points
(see figure 1.1b) as the one of free electrons with an effective mass, i.e. ελk =
1
2
εg + ~2k2(2mλ)

−1. Analogously, the phonon energy-dispersions can be approxi-
mated for small momenta using the Debye and Einstein approaches for acoustic
and optical phonons, respectively. In these approaches, acoustic phonons have
a linear energy dispersion with constant velocity, while optical phonons have a
constant energy dispersion.
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Carrier-light interaction

In order to describe the optical excitation of carriers, it is sufficient to consider
light as a classical electromagnetic field rather than in a quantum-mechanical de-
scription. Under this semiclassical approach, this contribution to the Hamiltonian
can be written in terms of the vector potential A(t) and the optical matrix element
Mij =

〈
i
∣∣∇∣∣j〉:

Hc−l = i~
e0

m0

∑
ij

Mij ·A(t)a†iaj (2.17)

where e0 and m0 are the elementary charge and the free electron mass, respectively.
In general, only interband direct transitions are allowed under optical irradiation.
In this case, the carrier-light Hamiltonian illustrates the excitation of an electron
from the valence to the conduction band by an external optical source.

Carrier-phonon interaction

The carrier-phonon Hamiltonian illustrates all possible electronic transitions as-
sisted by the absorption or emission of a phonon.:

Hc−p =
∑
ijl

(
glija

†
iajbl + gl∗ija

†
jaib

†
l

)
(2.18)

where the electron-phonon coupling element

glij =

√
~

2MΩl

〈
i
∣∣∆Vl∣∣j〉 (2.19)

has been introduced. Here M is the mass of the unit cell and ∆Vl is the scattering
potential and can be approximated in zero and first order by the deformation
potential approximation [14].

Carrier-carrier interaction

The carrier-carrier Hamiltonian describes a two-particle interaction between two
electrons through Coulomb interaction:

Hc−c =
1

2

∑
ijlm

V ij
lma
†
ia
†
jalam (2.20)

where V ij
lm =

〈
i, j
∣∣V (r′ − r)

∣∣l,m〉 is the Coulomb matrix element, with V (r′ − r)
being the Coulomb potential. At small momenta and considering only intraband
transitions the Coulomb matrix element corresponds to the Coulomb potential in



10 CHAPTER 2. THEORETICAL BASIS

momentum space, Vq. In order to better describe TMDs, which are not completely
two-dimensional (the height of the layer is about 0.6 nm), the Rytova-Keldysh
potential is used [22–24].

The Hamiltonian of this system is thus the sum of the previous contributions:

H = H0 +Hc−l +Hc−p +Hc−c (2.21)

2.2.3 Momentum-resolved equations of motion

Inserting the Hamiltonian of the system into Heisenberg’s equation of motion al-
lows us to find expressions for the time evolution of the quantities of our interest,
i.e. polarization, carrier occupation, and phonon number:

ṗk = i (∆ω̃k + iγk) pk −
(
1− f ek − fhk

)
Ω̃k (2.22)

ḟλk = 2=
{

Ω̃∗kpk

}
+ Γλ,ink

(
1− fλk

)
− Γλ,out

k fλk (2.23)

ṅjq = Γj,em
q

(
1 + njq

)
− Γj,abs

q njq − κjnjq (2.24)

where carrier-carrier scattering and carrier-recombination have been neglected.
There are different terms in these equations that account for different phenomena.

The oscillation frequency ~∆ωk = εek +εhk is renormalized due to many-particle
Coulomb interaction:

~∆ω̃k = ε̃k = ~∆ωk +
∑
k′

W|k−k′|
(
1− f ek − fhk

)
(2.25)

where W|k−k′| is the screened potential, with the screening being computed accord-
ing to the static Lindhard formula:

W|k−k′| =
V|k−k′|

ε|k−k′|
, εq = 1− Vq

∑
λk

fλk−q − fλk
ελk−q − ελk

(2.26)

The screening contribution to the equations of motion can be derived by taking
into account higher order terms in the correlation expansion [25]. Since the energy
bandgap at zero carrier density is provided already taking into account many-
particle unscreened Coulomb interaction, it is more correct to write equation 2.25
as:

~∆ω̃k = εek + εhk +
∑
k′

(
W|k−k′| − V|k−k′|

)
−
∑
k′

W|k−k′|
(
f ek + fhk

)
(2.27)

where the second and third terms correspond to the Coulomb-hole and screened
exchange interactions, respectively [11].
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Analogously, the Rabi frequency Ω0 is also renormalized due to many-particle
Coulomb interaction:

Ω̃k = Ω0 −
∑
k′

W|k−k′|pk′ (2.28)

The Rabi frequency, Ω0 = i e0
m0

Mvc · A(t), is the driving term and accounts for
the optical excitation. The Coulomb-induced renormalization (second term in
the equation above) accounts for excitonic effects in the Hartree-Fock level. It is
important to note the phase-space filling factor, 1− f ek− fhk , that appears in front
of the Rabi frequency and is a direct manifestation of fermionic Pauli-blocking.
When there is the same number of electrons at the same momentum-state in the
conduction and valence band (f ek = 1 − fhk ), optical transitions are blocked and
hence this term is zero. Thus, this term modulates the strength and sign of the
generation of microscopic polarization. At very high carrier densities, this term
changes sign, describing optical gain caused by population inversion.

The carrier-phonon scattering rates Γ arise from the second order Born-Markov
approximation and resemble Fermi’s golden rule for the scattering transitions:

Γλ,ink =
2π

~
∑
jq±

∣∣gλjq ∣∣2 fλk+q

(
1

2
± 1

2
+ nj±q

)
δ
(
ελk − ελk+q ± ~Ωj

q

)
(2.29)

Γλ,out
k =

2π

~
∑
jq±

∣∣gλjq ∣∣2 (1− fλk−q)(1

2
± 1

2
+ nj±q

)
δ
(
ελk−q − ελk ± ~Ωj

q

)
(2.30)

Γj,em
k =

2π

~
∑
λk

∣∣gλjq ∣∣2 fλk (1− fλk−q) δ (ελk − ελk−q − ~Ωj
q

)
(2.31)

Γj,abs
k =

2π

~
∑
λk

∣∣gλjq ∣∣2 fλk (1− fλk+q

)
δ
(
ελk − ελk+q + ~Ωj

q

)
(2.32)

These terms lead the excited distributions to an equilibrium (Fermi-Dirac distribu-
tion for carriers and Bose-Einstein distribution for phonons). The dephasing of the
microscopic polarization corresponds to the loss of coherence caused by scattering
with phonons:

γk =
1

2

∑
λ

(
Γλ,ink + Γλ,out

k

)
(2.33)

Scattering with phonons would also introduce an off-diagonal dephasing which is
negligible.

Finally, a phenomenological phonon decay κj is introduced. In a more complete
model, this term could be derived from phonon-phonon scattering, which is not
considered here due to its complexity.

For illustrative purposes, the system of equations presended here is numeri-
cally solved in the simple case of a weak excitation, where many-particle dielectric
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Figure 2.1: Carrier excitation and relaxation. Energy-resolved time evolution
of carrier occupation (colormap and bottom left figure) and microscopic polariza-
tion (bottom right). The arrows in the bottom left plot illustrate scattering of
carriers with optical phonons. The dashed lines in the bottom right plot show the
excitation energy and the microscopic polarization calculated without the effect of
Coulomb interaction.

screening, energy renormalization, bleaching effects and hot-phonon effects are
negligible. As shown in Figure 2.1, microscopic polarization with finite energy is
generated by an optical excitation with an energy higher than the bandgap of the
material. This microscopic polarization (also called coherence) is the responsible
for exciting carriers with the energy given by the pulse. Due to phonon-induced
dephasing, the coherence quickly decays a few tens of femtoseconds (1 fs is 1015

s) after the optical excitation. The excited carriers first undergo scattering with
optical phonons in a timescale of hundreds of femtoseconds. Due to the constant
energy dispersion of optical phonons, the result of scattering with optical phonons
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is the replication of the excited carrier peak with an energy difference given by the
optical phonon energy, as illustrated by the arrows in the figure. When most carri-
ers have scattered to energies lower than the optical phonon energy, relaxation by
scattering with optical phonons is no longer possible. Then, the main relaxation
channel is scattering with accoustic phonons, which slowly leads the carriers into
an equilibrium Fermi distribution in a timescale of tens of picoseconds.

The effect of Coulomb interaction in the microscopic polarization is also illus-
trated in the figure, showing that it shifts the resonance energy of the microscopic
polarization and alters its shape in energy. Nevertheless, the elongated tail of the
microscopic polarization into higher energies might in fact be an artifact that arises
from neglecting Coulomb effects when deriving the phonon-induced dephasing.

2.2.4 Space- and momentum-resolved equations of motion

The equations presented above only describe the time evolution of the system in
momentum space. It is interesting, however, to extend these equations to real
space in order to study spatio-temporal phenomena such as diffusion or electric
transport. To this end it is convenient to introduce Wigner functions [26]:

fk(r, t) =
∑
q

eiq·rfk− 1
2
q,k+ 1

2
q (2.34)

where fk1,k2 =
〈
a†k1

ak2

〉
is a one-particle off-diagonal density matrix. While diag-

onal one-particle density matrices can be interpreted as probability distributions,
this interpretation is not appropiate for Wigner functions since they can be neg-
ative. This non-intuitive property of Wigner functions arises naturally from the
uncertainty principle in quantum mechanics. In this sense, Wigner functions are
defined as quasi-probability distributions. When integrating over momentum or
real space, the probability distribution in each respective space is obtained:

n(r) =
∑
k

fk(r), n(k) =
∑
r

fk(r) (2.35)

Having introduced the Wigner formalism, it is straightforward to find general
expressions for the space- and momentum-resolved equations of motion. The pro-
cedure consists in first deriving equations of motion for the off-diagonal density
matrices fk1,k2 and then multipliying the equations by eiq·r and integrating over
q. In order to simplify the complicated integro-differential equations that are ob-
tained, a Taylor expansion can be performed up to first order, which is sufficient
to describe the main spatial phenomena [27, 28]. Moreover, any transport terms of
the polarization can be neglected since they will happen in a timescale longer than
its decay. In addition, the phonon diffusion can in general be neglected because it
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is much slower than electron diffusion, and electron-phonon scattering is consid-
ered to be local in space because scattering involving particles spatially separated
is weak. Thus, the only quantity that has significant terms arising from spatial
inhomogeneities is the carrier density. In addition to the local terms (eq. 2.23),
two new contributions appear in the equation of motion:

ḟλk (r, t)
∣∣∣
space

= −vλk · ∇rf
λ
k (r, t) +

e0

~
∇rΦ̃

λ
k(r, t)∇kf

λ
k (r, t) (2.36)

The first term describes the movement of carriers with velocity vλk = ±∇kω̃
λ
k(r, t),

where ± corresponds to electrons and holes respectively. Note that the velocity
of the carriers can be space- and time-dependent due to density-dependent band
renormalization. The spatial gradient of the carrier occupation accounts for the
difference between the out-going and in-coming particles.

The second term describes the acceleration of carriers in momentum space
caused by a potential gradient, which can be an electric field or the spatial en-
ergy gradient caused by inhomogeneous energy renormalization. The generalized
potential gradient has the form ∇rΦ̃

λ
k = −Eext − Eint ± ~

e0
∇rω̃

λ
k, with externally

applied and internally induced electric fields Eext and Eint, and the renormalized
band structure ~ω̃λk. The internal electric field is induced by the local net charge
that is created due to the difference in electron and hole occupation. This inho-
mogeneous difference can be obtained by doping (e.g. in a pn junction) or under
optical excitation by the simple fact that electrons propagate faster than holes.
The internal electric field can be obtained from the following expression:

Eint = −∇r

∫
R2

d2r′ W (r− r′)
[
nh(r′)− ne(r′)

]
(2.37)

A more thorough derivation and discussion of these expressions can be found
in [27, 28].
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2.3 Excitons

2.3.1 Excitonic basis and Wannier equation

The equation of motion for the microscopic polarization (2.22) can be solved by
expanding pk in an orthonormal basis of wavefunctions [13]:

pk =
∑
ν

pνφνRk (2.38)

pν =
∑
k

φνL∗k pk (2.39)∑
k

φνL∗k φµRk = δνµ (2.40)

where pν is the polarization of the excitonic state ν, and φ
νR(L)
k is the right (left)

wavefunction that fulfills the Wannier equation:

ε̃kφ
νR
k −

(
1− f ek − fhk

)∑
k′

W|k−k′|φ
νR
k′ = ενφνRk (2.41)

φνL∗k ε̃k −
∑
k′

φνL∗k′

(
1− f ek′ − fhk′

)
W|k−k′| = φνL∗k εν (2.42)

The use of left and right eigenfunctions is necessary when the matrix of the eigen-
problem is not Hermitian. This can be the case when the carrier occupations f

e(h)
k

are non-zero. In addition to the excitonic wavefunctions, the Wannier equation
provides access to the excitonic resonance energies εν . From the symmetry of
the Wannier equation, a relation between the left and right wavefunctions can be
found:

φνRk =
(
1− f ek − fhk

)
φνLk (2.43)

This relation holds as long as 1− f ek − fhk 6= 0.
It is noteworthy to mention the phase-space filling factor in the Wannier equa-

tion, which modulates the strength and sign of the Coulomb potential. While at
low carrier densities the Coulomb potential is attractive, at population inversion
it is repulsive and there are no bound excitonic states. The transition from the
bound-exciton regime at low densities to the electron-hole plasma regime at high
densities is called excitonic Mott transition.

The Wannier equation is easily solvable in the simple case when the carrier
densities are zero. Figure 2.2 shows the wavefunctions of the first three excitonic
states of s-type, which are isotropic. Excitonic states with higher symmetry (p,
d, f, etc.) do not contribute significantly to the optical response of TMDs in
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Figure 2.2: Excitons properties. Left: excitonic wavefunctions at zero carrier
density as a function of momentum. Right: exciton resonance energies (bottom)
and optical absorption (top). The black line in the bottom plot marks the position
of the bandgap.

the studied regimes and are therefore not shown here. The calculated exciton
wavefunctions have a number of nodes corresponding to their quantum number (0
nodes for the 1s, 1 node for the 2s, 2 nodes for the 3s, and so on). By solving the
Wannier equation one also obtain the exciton energies. As shown in the figure, the
three exciton states shown are clearly below the bandgap (which is chosen to be
2.25 eV), with the 1s binding energy being over 200 meV. This implies that even
at room temperature – thermal fluctiation of 25 meV – these are bound states
and dominate the characteristics of the system. Optical absorption, which is also
shown, will be discussed in the next section.

2.3.2 Optical absorption spectra – Elliot formula

A direct use of the excitonic wavefunctions and binding energies is to find the
optical absorption spectra of a given material. The optical absorption in the weak
excitation regime holds:

α(ω) ∝ ={χ(ω)} =
P (ω)

ε0E(ω)
=

j(ω)

ε0ω2A(ω)
(2.44)

where χ is the electric susceptibility, P the macroscopic polarization, E the electric
field, j the current density, and A the vector potential of the optical excitation.
The current density holds:

j ∝
∑
k

<{Mvc∗
k pk} (2.45)
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Thus, by combining equations 2.22, 2.38, 2.39, 2.41, 2.42, 2.44 and 2.45 an expres-
sion for the optical absorption spectra can be found:

α(ω) ∝ |M
vc
σ |

2

ω

∑
ν

=

{∑
k

(
1− f ek − fhk

)
φνL∗k

∑
k φ

νR
k

~ω − εν + iγ

}
(2.46)

where M vc
σ is the dot product between the light polarization and the optical matrix

element, and a constant dephasing γ has been assumed for the sake of simplicity.
As long as there is no population inversion (f ek + fhk 6= 0), the expression above
can be simplified to:

α(ω) ∝ |M
vc
σ |

2

ω

∑
ν

∣∣φνR(r = 0)
∣∣2 Lγ(~ω − εν) (2.47)

where φνR(r) =
∑

k e
ik·rφνRk has been used. This expression can be understood

as the sum over all excitonic states ν, each one having an optical absorption with
an oscillator strength given by the probability of an electron and a hole being
at the same position and a shape described by a Lorentzian L centered at the
excitonic resonance energy εν with a broadening γ. More information regard-
ing exciton wavefunctions and optical absorption at finite carrier densities can be
found in [11–13].

In Figure 2.2, the optical absorption is shown in the case of zero carrier density.
As previously discussed, the bound excitonic states dominate the characteristics
of the system. Thus, the highest absorption peak is determined by the resonance
energy of the 1s excitonic state and the corresponding oscillator strength. Higher
excitonic states (2s and 3s) also contribute significantly to the optical absorption
spectrum, although with a much weaker intensity. As shown in the figure, optical
absorption in the excitonic states is enhanced with respect to absorption over the
bandgap. Surprisingly, due to the strong Coulomb interaction in these materials
carriers can be excited (and in fact their excitation is enhanced) at certain energies
lower than the bandgap.

2.3.3 Exciton equations of motion

In order to follow the dynamics of excitons, it is useful to define exciton creation
and annihilation operators acting on an excitonic state ν with momentum Q, Xν†

Q

and Xν
Q respectively, and build an excitonic Hamiltonian [29]. The quantities of

interest in this case are the coherent excitonic polarization P ν
Q and the incoherent
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exciton occupation N ν
Q. These quantities are defined as follows:

P ν
Q =

〈
Xν†

Q

〉
(2.48)

N ν
Q =

〈
Xν†

QX
ν
Q

〉
−
∣∣〈Xν†

Q

〉∣∣2 (2.49)

Considering exciton-light and exciton-phonon interactions, the excitonic Hamilto-
nian can be plugged into Heisenberg’s equation to obtain equations of motion for
the quantities defined above. As in the case of carriers, when the Wigner represen-
tation is considered an additional term appears accounting for spatial propagation.
The equations of motion can then be expressed as follows [30]:

Ṗ ν(r, t) =
i

~

(
εν + iΓν,rad + i~

1

2

∑
µQ

Γνµ0Q

)
P ν(r, t) + iΩν(r, t) (2.50)

Ṅ ν
Q(r, t) = −vνQ · ∇rN

ν
Q(r, t) +

∑
µ

Γµν0Q |P
ν(r, t)|2 − 2

~
δQ0N

ν
Q(r, t)

+
∑
µQ′

(
ΓµνQ′QN

µ
Q′(r, t)− ΓνµQQ′N

ν
Q(r, t)

)
(2.51)

Here, P ν has been defined as the coherent excitonic polarization at zero-momentum,
which is the only significant momentum-point since it is the only accessible state
by light excitation. We have also introduced the radiative decay rate Γν,rad, the
scattering matrix ΓνµQQ′ , the exciton velocity vνQ and the Rabi frequency projected
into the excitonic state ν [30–32]:

Γν,rad =
~e2

0

2m2
0ε0nc0εν

∑
σ

|M vc
σ |

2
∣∣∑

k

φνk
∣∣2 (2.52)

ΓνµQQ′ =
2π

~
∑
j±

∣∣Gj,νµ
Q−Q′

∣∣2(1

2
± 1

2
+ njQ−Q′

)
δ
(
εµQ′ − ενQ′ ± ~Ωj

Q−Q′

)
(2.53)

where Gj,νµ
Q−Q′ is the exciton-phonon coupling element and is computed according

to the work done by Brem et al. [30].
The equations of motion 2.50 and 2.51 have clear physical meaning. In the

equation for the coherent excitonic polarization P ν , the first term corresponds
to the polarization oscillation with the frequency given by the exciton energy,
the second and third terms represent polarization decay caused by radiative re-
combination and phonon-induced dephasing, and the fourth term illustrates the
creation of coherence by the optical excitation. In the equation for the incoher-
ent exciton occupation, the first term illustrates exciton propagation, the second
term accounts for the conversion of coherence into occupation through scattering
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with phonons, and the third term corresponds to radiative decay (only possible in
the light cone, i.e. at zero-momentum). The last term describes exciton-phonon
scattering and results in the thermalization of the excitonic distribution into an
equilibrium Boltzmann distribution in momentum-space.
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Chapter 3

Pump-probe spectroscopy

As presented in the theory of this thesis, it is known that high carrier densities
can induce a significant alteration of the exciton properties [10–13]. Consequently,
since excitonic effects are dominant in the optical spectra of TMDs, this will result
in a significant variation of the optical properties of the material. These effects
can be experimentally accessed in ultra-fast pump-probe measurements, where a
sample is optically excited by a pump pulse and the induced change in absorp-
tion, reflectance or transmittance is measured with the assistance of a probe pulse.
Although many pump-probe experiments have been performed for TMDs in the
last years [33–38], the conection between the experimental results and the corre-
sponding theoretical explanation is not always clear. In this section, the previously
introduced Wannier and semiconductor Bloch equations are combined to calculate
the effect of the excited carriers on the exciton properties, as well as their impact
on the optical response. Radiative recombination of carriers is introduced here as
a phenomenological decay. These studies aim to serve as a tool for understand-
ing the microscopic mechanisms behind experimental observations in pump-probe
spectroscopy.

3.1 Exciton properties

Solving the semiconductor Bloch equations yields the time evolution of the carriers
in energy space (as in Fig. 2.1). Introducing the calculated carrier occupations in
the Wannier equation provides the exciton wavefunctions and binding energies at
a given time. Thus, the combination of these two equations gives access to the
dynamics of exciton properties. At very high excitation conditions, many carriers
will be excited, which will translate into high occupation of the electronic states
in the minima of the bands. This will have two effects: (1) the phase-space filling
factor (1− f ek − fhk ) will be close to zero, thus bleaching the Coulomb interaction

21
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Figure 3.1: Dynamic change of exciton properties. Left: bleached excitonic
wavefunctions at some times under a 200 fs optical excitation. Right: time evolu-
tion of the exciton resonance energies (1s, 2s and 3s) and the bandgap. The purple
shaded zone illustrates the pump pulse between -100 and 100 fs.

between electron-hole pairs due to Pauli blocking; and (2) many-particle dielectric
screening will significantly reduce the strength of Coulomb interaction.

The dynamics of exciton properties in monolayer WS2 calculated at high ex-
citation with an excitation energy corresponding to the 1s exciton resonance are
shown in Figure 3.1. When the pulse starts exciting carriers (t = −0.1 ps), the
bleaching of the wavefunctions due to Pauli blocking is already noticeable, with the
effect being stronger at low momenta because those are the most populated states.
At the center of the pulse (t = 0 ps) the excitonic wavefunction resembles the one
of free states and is negative at very small momentum. While the sign-inversion of
the wavefunction at low momenta is directly caused by population inversion, the
narrowing in momentum is induced by a combination of many-particle dielectric
screening and Pauli blocking. After the pulse excitation, carriers recombine and
the population is reduced, resulting in a recovery of the excitonic properties in a
timescale given by recombination. This is illustrated by the exciton wavefunction
at t = 10 ps, which resembles the one before the pulse. Besides the wavefunc-
tions, a high carrier occupation also affects the exciton binding energies and the
bandgap. In the figure, it can be seen that the exciton energies and the bandgap
remain constant before the optical excitation takes place. Under the strong pulse
exciation, the bandgap undergoes a huge red-shift of over 300 meV and the exciton
binding energies become smaller – approaching the bandgap and evolving with it
– to the point where there are no bound states anymore. After the optical excita-
tion, the bandgap and the exciton resonance energies slowly recover their original
values. Note that at sufficiently high carrier densities there are no excitonic bound
states and the system is no longer dominated by bound electron-hole pairs but
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by an electron-hole plasma. The transition from the insulating excitonic state at
low-densities to the metallic electronn-hole plasma at high-density is called Mott
transition.

3.2 Optical absorption

As introduced in the theory section, the optical absorption of the material can
be obtained from the exciton wavefunctions and resonance energies. Hence, the
results shown in Figure 3.1 can be used to calculate the temporal evolution of
the optical absorption of monolayer WS2 at high excitation. In Figure 3.2, one
can see that the excitonic features of the optical absorption are quickly bleached
under the strong optical excitation. The excitonic peak undergoes first red-shift
and afterwards – apparently – blue-shift. While the first is directly related to the
red-shift of the exciton resonance energy, the second is actually not a real shift of
the excitonic peak but a bleaching of the optical transition at the lower energetic
states caused by the high carrier population. At the same time, the absorption
intensity is reduced due to phase-space filling – blocking of the optical transitions
– and bleached Coulomb interaction – reduced excitonic enhancement. If the
optical excitation is strong enough, it can generate a carrier population inversion –
negative phase-space filling factor – which translates into optical gain, i.e. negative
absorption. After the optical excitation, the intrinsic optical properties of the
material are restored as the carriers recombine and the exciton properties recover
their previous values.

In order to experimentally find changes in the absorption spectra, differential
absorption – or reflectance, or transmission – spectroscopy is normally used. This
technique allows to focus on the changes of the spectra in order to be able to de-
termine even small variations. In practice, it consists in calculating the variation
of an optical spectrum at a given time with respect to the spectrum before the
excitation of the system. The differential absorption spectra as a function of time
calculated from the absorption specta discussed above is also shown in Figure 3.2.
In these data, the shift of the absorption peaks can be traced by the zero-cross of
the differential absorption, and the bleaching can be identified by a strong neg-
ative differential absorption. The huge bandgap renormalization corresponds to
the increased absorption between the 1s and 2s exciton energies (2.0 − 2.2 eV),
and strong carrier occupation and population inversion is responsible for the de-
creased absorption at energies below the 1s resonance energy (< 2.0 eV). These
calculations are consistent with experimental observations in similar systems [33,
34, 38].
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Figure 3.2: Temporal evolution of the optical absorption. Top: colormap
(left) and timesnaps (right) of the optical absorption as a function of energy.
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function of energy.



Chapter 4

Exciton diffusion

In the previous section the time- and energy-resolved dynamics of coherent exci-
ton properties caused by the optical excitation of a large carrier population has
been studied. However, the dynamics of long-lived incoherent excitons dominate
important processes such as radiative recombination and diffusion. While the
incoherent-exciton dynamics in momentum space – formation, thermalization and
recombination – has been intensively studied in the last years [8, 30, 33, 39–42], fun-
damental spatial phenomena such as diffusion has remained in the dark. Besides
initial reports [15–18], recent experimental studies show efficient exciton propa-
gation at room temperature [19] and strong density dependence of the diffusion
coefficient and the formation of spatial halos in the photoluminescence profile at
elevated excitation densities [20]. While the latter is expected to arise from strong
non-equilibrium effects, the underlying elementary processes are not clear. In order
to unveil the mechanisms behind non-linear exciton diffusion and halo formation,
the spatially-resolved microscopic theory presented in the theory section is used.

In the system considered here, strong non-equilibrium is expected to appear
at strong excitation conditions due to Auger recombination. Through Auger scat-
tering, one exciton can decay and transfer its energy and momentum to another
exciton. Due to the large bandgap of TMDs (about 2 eV), a large amount of optical
phonons will be emitted during the relaxation of these high-energy Auger-scattered
excitons. The substantial number of non-equilibrium phonons will induce a heating
of the excitonic system through phonon reabsorption. In order to take these pro-
cesses into account Auger recombination is introduced on a semi-phenomenological
level with the recombination rate rAN , where N is the exciton density and rA the
Auger recombination coefficient – which can be measured in experiments [16, 17,
20]. Moreover, the phonon emission occuring during the relaxation of high-energy
excitons is described by the rate α = 2πεXrA(εopq

2
c )
−1, which includes the ratio

between the energy of excitons εX and optical phonons εop, and the cut-off mo-
mentum qc up to which phonons are emitted. The equations of motion for excitons

25
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NQ and optical phonons nq in this system can thus be written as:

ṄQ(r, t) = −vQ · ∇rNQ(r, t)− rANQ(r, t)N(r, t) (4.1)

+ Γin
Q(r, t)− Γout

Q (r, t)NQ(r, t)

ṅq(r, t) = Γem
q (r, t) (1 + nq(r, t))− Γabs

q (r, t)nq(r, t)

+ αN2(r, t)− κ
(
nq(r)− n0

q

)
(4.2)

with vQ = ~QM−1
X as the exciton velocity, κ as the phonon decay rate, n0

q as the
equilibrium phonon number (described by a Bose distribution), and the exciton-
phonon scattering rates ΓiQ being computed consistently according to the second-
order Born-Markov approximation [30, 41]. Solving this system of equations pro-
vides access to the exciton spatio-temporal dynamics at different excitation densi-
ties. The optical excitation enters here as the initial spatial width and peak density
of excitons described by a Gaussian in real space and a Boltzmann distribution in
reciprocal space. Although this microscopic model applies to any two-dimensional
material, parameters for WS2 are used here [14, 20, 43].

Figure 4.1: Exciton diffusion and halo formation. Excitons are locally gen-
erated by an optical Gaussian excitation and start diffusing to homogenize the
spatial distribution (t0 → t1). Through Auger recombination and relaxation by
hot-phonon emission, a long-lived temperature gradient is formed in the excitonic
system (color gradient). This gradient causes excitons to leave the excited region
through a thermal drift resulting in the formation of spatial rings (halos).
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4.1 Conventional diffusion

Figure 4.2 shows the exciton spatio-temporal dynamics calculated in the low-
excitation regime (n0 = 109 cm−2). Subfigure (a) shows the exciton Wigner func-
tion in real- and momentum-space along the x-coordinate for four fixed times. As
one can see, the distribution broadens in space as a result of excitons propagating
with velocity vQ and quickly thermalizing by scattering with phonons. This spa-
tial broadening can be better visualized in the spatial profiles of the (momentum-
integrated) exciton density (subfigure (b)). Furthermore, the spatial variance w2

of the exciton density has a linear time dependence.
These observations are in agreement with Fick’s law of diffusion for the ex-

citon current j(r, t) = −D∇N(r, t) with the diffusion coefficient D [44]. Using
the continuity equation Ṅ(r, t) = −∇ · j(r, t) = D∇2N(r, t) – if recombination is

neglected –, one can find the solution N(r, t) = N0(4πDt)−1 exp
(
− r2

w2(t)

)
, with

w2(t) = w2
0+4Dt corresponding to the spatial variance. At low excitation densities,

the linear time-dependence of the variance is fulfilled and the diffusion coefficient
is extracted to be 2 cm2s−1. However, note in subfigure (c) that the variance is no
longer linear in time and hence does not fulfill the standard Fick law of diffusion.
Nevertheless, the slope of the variance increases with the excitation density, and
an effective diffusion coefficient can be extracted, e.g. 20 cm2s−1 at n0 = 1012 cm−2

The fact that the slope becomes smaller at longer times suggests that excitons
move faster in the excited region and then slow once they leave this region. It
will be shown in the next section that this behaviour is a result of a strong spatial
gradient in the exciton temperature.
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Figure 4.2: Exciton diffusion in low-excitation regime. (a) Phase-space
representation of the normalized exciton Wigner function at different times for
an initial exciton density of 109 cm−2. (b) Spatial distribution of the momentum-
integrated exciton density at different times. (c) Spatial variance of the exciton
density for different initial densities (109, 1010, 3× 1010, and 1011 cm−2).
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4.2 Thermal effects and halo formation

In order to investigate the origin of the density-dependent increase of the diffusion
coefficient and the non-linear behaviour of the exciton spatial variance, the system
is studied now in the high-excitation regime (n0 = 1012 cm−2). Although this
density is high enough for Auger scattering to become significant, it still is one
order of magnitude away from the Mott transition, where carriers dominate the
dynamics of the system [33, 45]. In Figure 4.3 (a) the Wigner representation of
the exciton occupation is shown at four different times. In contrast to the low-
density case, one can observe here an apparent accumulation of excitons at low
momenta outside the central region a few picoseconds after the excitation. This is
a result of a broader distribution in momentum space in the central excited region,
which corresponds to a higher effective temperature. This temperature gradient
induces an efficient thermal drift that leads to the evolution of the initial Gaussian
profile into a super-Gaussian distribution followed by the formation of spatial rings
(subfigure (b)). The heating of excitons in the central region (blue-shaded curve
in subfigure (b)) is a direct consequence of the large phonon density in this region
(subfigure (c)). When excitons undergo Auger recombination, the high-energy
scattered excitons relax by emitting a vast amount of optical phonons, which are
then reabsorbed, resulting in an effective heating of the exciton distribution. As
the excitation density is increased these effects become more pronounced, and
diffusion can not be described by the standard Fick law anymore.

Nevertheless, the expression for the current (4.1) can be generalized to account
for gradients in the density N and in the temperature TX of excitons. Within a
relaxation time approximation with τ−1

Q = Γin
Q + Γout

Q , the equation of motion for
the exction spatio-temporal dynamics – neglecting recombination – can be written
as Ṅ0

Q(r, t) = −vQ · ∇N0
Q(r, t)− τ−1

Q N1
Q(r, t), where N1 is a small deviation from

the equilibrium exciton distribution N1. Here it has been assumed that N1 is
stationary in the timescale of diffusion and that its spatial gradients are weak.
From this expression, N1 can be described in function of N0 in order to find an
expression for the current:

j(r, t) =
∑
Q

vQN
1
Q(r, t) = −

∑
Q

τQvQvQ · ∇N0
Q(r, t) (4.3)

Assuming that excitons can be described in equilibrium by a Boltzmann dis-

tribution N0
Q(r, t) = 2π~N(r, t)[mkBTX(r, t)]−1 exp

(
− εQ
kBTX(r,t)

)
, the gradient

∇N0
Q(r, t) can be expressed in terms of the density and the temperature, resulting

in an expression for the current

j(r, t) = −D∇N(r, t)− σs∇TX(r, t) (4.4)
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that accounts for gradients in the density and the temperature, with the conduc-
tivity σ and the Seebeck coefficient s fulfilling

σs = (2kBT
2
X)−1

∑
Q

τQv
2
Q (εQ − kBTX)N0

Q ≈ τkBNM
−1
X (4.5)

and the diffusion coefficient

D = (2N)−1
∑
Q

τQv
2
QN

0
Q ≈ τkBTXM

−1
X (4.6)

Note that an additional term is obtained that accounts for thermal drift (or
Seebeck effect). According to this expression, excitons propagate in space to reduce
any spatial non-uniformity in the density or temperature. When a temperature
gradient is created excitons move out of the central hot region towards colder
regions. A moderate gradient will result in a flattening of the Gaussian spatial
profile of the exciton distribution. A sufficiently strong temperature gradient will
be more effective in inducing the depletion of the hot region than diffusion in
refilling it, thus leading to the formation of a spatial ring (see Fig. 4.1).
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Figure 4.3: Non-linear exciton diffusion and halo formation in the high-
excitation regime. (a) Phase-space representation of the normalized exciton
Wigner function at different times for the initial exciton density of n0 = 1012 cm−2.
(b) Spatial distribution of the momentum-integrated exciton density at different
times along the exciton temperature at 100 ps after the excitation (blue shaded
curve). (c) Spatial profile of the excess optical phonon density at 100 ps for different
initial densities (1010, 1011, 3× 1011, and 1012 cm−2).
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4.3 Photoluminescence and experimental com-

parison

Although in the previous sections exciton diffusion has been studied, the directly
experimentally accessible quantity is photoluminescence intensity. Photolumines-
cence is given by radiative recombination of excitons in the light cone (i.e. with
zero momentum). However, the excitons considered correspond to the most popu-
lated state in WS2, which has a finite momentum because it consists of a hole in the
K-valley bound to an electron in the Λ-valley [31, 41, 46–49]. Nevertheless, inter-
valley thermal equilibrium can be assumed in the exciton distribution to determine
the exciton occupation in the light cone and extract the photoluminescence.

The theoretical calculations are shown in Figure 4.4 together with experimen-
tal measurements performed by the group of Alexey Chernikov (Regensburg, Ger-
many) [50]. The figure shows an excellent qualitative agreement between the the-
oretical prediction and the experimental observation. There is a clear transition
from a Gaussian to a super-Gaussian profile followed by the formation of halos in
the photoluminescence. An equally good agreement is observed in the formation
and evolution of the halos, with the formation time ranging from tens to hundreds
of picoseconds and the halo diameter following a sub-linear time evolution. Note
that the halo formation time is shorter at higher excitations due to more excitons
leading to a stronger heating. In the experimental measurements a slower diffusion
coefficient is observed in comparison with the theoretical prediction (note that the
spatial distribution is narrower). This can be caused by scattering with defects
[16]. This smaller diffusion coefficient implies that a weaker temperature gradient
is strong enough to overcome the diffusion force and induce the formation of halos
at densities lower than the predicted here.

Subfigure (e) shows the predicted effective exciton diffusion coefficient Deff as
a function of initial exciton density. At low densities Deff remains constant. At
higher densities Auger scattering becomes significant and the diffusion coefficient
increases strongly – in agreement with previous experimental observations [20].
There are three contributions to the increase of the diffusion coefficient: (1) ther-
mal drift of excitons out of the central region, (2) higher averaged squared exciton
velocity (higher temperature) with a constant lattice temperature (scattering with
acoustic phonons does not become stronger), and (3) density-dependent Auger
recombination that is stronger in the more-populated center and makes the distri-
bution effectively broader.

The increased optical phonon density has an experimentally-accessible effect
in the linewidth of the photoluminescence peak due to increased exciton-phonon
scattering rates [31, 51]. Subfigure (e) also shows the predicted linewidth change
at the excited spot. This quantity is negligible at densities up to 1011 cm−2 and
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it increases exponentially at higher densities. Nevertheless, a linewidth increase
caused by exciton-exciton scattering is also expected to contribute [13], but it is
not included in this work. The experimental measurement of the linewidth increase
in space and time would give access to the dynamics of hot phonons.
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Figure 4.4: Direct theory-experiment comparison. (a)-(b) Theoretically pre-
dicted and experimentally measured temporal and spatial evolution of photolu-
minescence for an initially excited exciton density of 1012 cm−2 and an excitation
energy density of 270 nJcm−2, respectively. (c)-(d) Theory-experiment comparison
of the halo formation for two different initial exciton densities. (e) Theoretical pre-
diction of density dependence of the effective diffusion coefficient (blue line) and
the linewidth change at the excitation spot evaluated 100 ps after the excitation
(red line).
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Conclusions

A quantum-mechanical theoretical framework based on the density matrix formal-
ism has been introduced to microscopically describe dynamics in atomically thin
TMDs. On the one hand, semiconductor Bloch equations and the Wannier equa-
tion have been presented and combined in order to obtain access to energy- and
time-resolved dynamics of charge-carriers, exciton properties and optical absorp-
tion. It has been found that under strong excitation a large carrier density bleaches
the excitonic properties and thus the optical absorption of TMDs due to Pauli-
blocking and many-particle dielectric screening. Particularly, the time-resolved
theory presented here provides a framework for understanding fundamental phe-
nomena in pump-probe experiments.

On the other hand, the Wigner representation has been introduced to extend
the equations of motion and be able to trace the way of particles in energy, space
and time. Applying this to excitons allowed to understand and unveil the mech-
anisms behind very recent experimental observations reporting the appearance of
halos in the photoluminescence at high excitation densities. It has been shown here
that at high excitation densities Auger recombination becomes significant. When
excitons undergo Auger recombinations, ones recombine while others gain energy
and momentum. The high-energy excitons then relax through scattering with op-
tical phonons. Due to the large exciton resonance energy, the emission of optical
phonons can be enormous, resulting in hot-phonon effects. The reabsorption of
these hot phonons originates a strong gradient in the exciton temperature, which
causes thermal drift (Seebeck effect) of excitons out of the excited region to be very
significant. In the end, this results in the evolution of the initial Gaussian into a
ring-shaped profile of the exciton density. Since the photolumienscence is mainly
given by the exciton population and at room temperature and the timescales of
diffusion there is inter-valley thermal equilibrium, this corresponds to a halo shape
of the photoluminescence. This work [50] has provided a microscopic description of
this intruiging phenomenon and theoretical predictions on the density-dependence

35
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of exciton diffusion. In conclusion, both parts of this thesis contributed to a better
understanding of TMDs and provided a theoretical framework to further study
related phenomena.

There are clear natural steps that could be followed to extend the work done
here. First, combining the two sections would allow to study spatio-temporal
pump-probe experiments, which could allow to trace the way of electrons and
holes in space, energy and time. Additional work could also be more focused
into device application. In this sense, the effect of an internal electric field (pn
junction) or of an external electric field would be very important points to study for
the application of TMDs in optoelectronic devices such as photodetectors, LEDs
or solar cells. Moreover, the knowledge acquired here could be extended to the
novel fields of van der Waals heterostructures and Moiré physics. Van der Waals
heterostructures consist of at least two layers of two dimensional materials. When
one of the layers is twisted with respect to the other, a super-lattice with a Moiré
pattern appears, giving rise to fascinating phenomena which strongly depend on
the twisting angle [52]. This new tunnability degree of freedom gives name to a
field that is expected to become exceptional and outstanding in the near future:
twisttronics.
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