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Abstract

A large number of observations reveal deviations from expected gravitational be-
haviour in astrophysical systems. This suggests that something is missing in our
understanding of the Universe. A well established candidate for explaining these
deviations is dark matter, a kind of matter that is not subject to photon interac-
tions and thus can not be detected by absorbed or emitted light - it is dark. Even
though we can not observe it at any detectable wavelength, dark matter is pos-
tulated to interact via gravitation. These interactions would then account for the
shortcoming of gravitational pull from visible mass, explaining the observed irregular
gravitational behaviour. One leading hypothesis is that the proposed dark matter
component of the Universe is actually made out of massive, weakly interacting par-
ticles. As of today, there has not yet been any detection of such a particle, leaving
the fundamental properties of dark matter unknown.

There are currently several ongoing experimental projects searching for dark mat-
ter particles, and more are being planned. Furthermore, their accuracy is higher
than ever, and if the dark matter particle hypothesis is correct, it is reasonable
to expect a detection signal in the foreseeable future. The different searches take
complementary approaches and exploit either annihilation, production or direct de-
tection experiments. The latter, which is the focus of this thesis, aims to detect
dark matter by measuring the recoil of a target nucleus in a detector when a dark
matter particle scatters off of it. In case of positive detection at direct detection
experiments, a model describing the interaction between dark matter particles and
baryonic matter is needed in order to be able to draw conclusions about the dark
matter particle properties.

Under the assumption that dark matter is a spin 1/2 particle that only inter-
acts with baryonic matter via spin dependent interactions, this thesis studies dark
matter-nucleus scattering in order to see if it is feasible to discriminate between
Majorana and Dirac dark matter. I find that, if dark matter particles are detected
at three different experiments, the Majorana dark matter hypothesis can be rejected
in favour of an alternative hypothesis in which dark matter is a Dirac particle. Re-
strictions on target elements that are of interest for this test are presented, and the
test procedure is studied for setups containing some of them, namely: 131Xe, 127I,
73Ge, 23Na and 19F.

Keywords: dark matter, direct detection, nucleus scattering, Dirac, Majorana.
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1
Introduction

Reaching several decades back in time, there are large amounts of observations that
show unexpected gravitational effects in astrophysical and cosmological systems [1].
These observations study phenomena at sizes starting from the width of galaxy
clusters, reaching all the way up to cosmological scales. They all have one thing
in common; they end up implying the need for gravitational forces that can not be
accounted for by the observable mass in the systems. In order to make sense out of
this, it is today widely accepted that there should be some kind of invisible mass
in the Universe that does not interact with photons, i.e. that can not be seen by
observing its absorption or emission of light. This hypothetical invisible mass is
what is called dark matter.

Even though so many different observations hints at the existence of dark matter,
there has still been no direct verification of its existence. Characterising dark matter
is crucial, and is one of the most urgent problems in modern physics, being placed
high on the lists of future research goals in astroparticle physics (see e.g. [2]). One
of the reasons for this is the possible implications a detection of dark matter par-
ticles would have for the Standard Model, as a dark matter particle would require
an extension of it. Assuming that such a particle exists, in order to obtain any
theoretical predictions, specific models of dark matter are studied to try to predict
what a dark matter discovery might look like in terms of physical observables. Typ-
ical physical observables include rates of dark matter-nucleus scattering events in
low-background experiments located deep underground, and fluxes of dark matter
annihilation products produced in dark matter dominated astrophysical systems. If
one of these signals is detected, one could then compare the theoretical models with
actual measurements and from there begin to establish the particle nature of dark
matter.

In this thesis, dark matter is assumed to be a spin 1/2 particle, meaning that
it will be a fermion. As the dark matter particle is massive, this choice implies
that dark matter can be either a Dirac or a Majorana fermion, where the latter
would mean that dark matter would constitute its own antiparticle. The aim is
to study the physical observables of scattering experiments, where a dark matter
particle scatters off a target nucleus, and see how these observables can be used to
discriminate between Majorana and Dirac dark matter. The discrimination proce-
dure that is presented here is based on a study published by Kavanagh et al. [3],
in which they focus on so called spin independent dark matter-nucleon interactions
as underlying dark matter interaction theory. They found that in certain cases, it
should in principle be possible to use scattering experiments to conclude that the
dark matter particle is a Dirac particle, given that experimental measurements of
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1. Introduction

dark matter scattering have occurred. In this thesis, we instead consider an alter-
native theoretical framework, so called spin dependent interaction theory, in order
to investigate if a corresponding conclusion can be made.

Due to the velocity of incoming dark matter particles arriving at the Earth being
low, the scattering takes place in a non-relativistic setting. My starting point for
calculating the relevant cross sections is however a relativistic Lagrangian, describing
the interactions of dark matter and nucleons. I start by expanding the relativistic
nucleon interactions in their low velocity limit in order to find the non-relativistic
theory. These non-relativistic nucleon interactions are then used to construct a
corresponding nucleus description. The mapping from nucleons to nucleus is done
via form factor calculations. The central quantity when studying the scattering is
the cross section for dark matter-nucleus scattering, which then can be converted
into an event rate for a given detector. Given that a certain amount of measurements
take place, it should then be possible to use the collected data to analyse the particle
nature of dark matter particles. I conclude my calculations by describing how the
choice of experimental targets suitable for discrimination is made, based on the
underlying interaction theory.

In chapter 2, background information on the dark matter problem is presented.
This includes a brief historical review, astrophysical phenomena that can be ex-
plained by introducing dark matter, different candidates and the outline for exper-
imental searches for verification of its existence. Chapter 3 covers the fundamental
theory needed to study dark matter-nucleus scattering, such as spinor conventions,
field theory, scattering theory and cross sections. The test procedure for discrim-
inating between Dirac and Majorana dark matter is outlined in chapter 4. This
includes limitations on under what circumstances the test works, as well as what
target elements that can be used for discrimination. Numerical tools and a sugges-
tion for a statistical procedure suitable for finding the discrimination significance
of the test results are also covered in this chapter. A measure of how suitable the
targets found in chapter 3 are for discrimination is presented in chapter 5. These
results and the choice of targets are discussed in chapter 6. A concluding summary
of the results and their implications, as well as a few suggestions on extensions of
the study, is presented in chapter 7.
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2
Dark matter

This section contains a summary of astrophysical observations that supports the
dark matter hypothesis. The scales where these observations are made range from
galactic all the way up to cosmological sizes. Some of the top candidates for dark
matter are mentioned and discussed in short. We also outline the main three ex-
perimental approaches to confirming the existence of a dark matter particle, with
focus on direct detection, as this is the main observational method of relevance to
this thesis.

2.1 Evidence for dark matter

The historical background of dark matter is tightly bound together with the history
of our exploration of the Universe. Even though the pioneers of astrophysics, such
as Galileo Galilei, helped us reach the amount of knowledge that we have today, it
was possibly Friederich Bessel who was the first to infer the existence of an object
based solely on its gravitational effects [1, 4]. The first insight about the presence of
invisible mass in the Universe arose from the graviational pull of stars that, by then,
were out of observational reach. Even though this was in no way connected to dark
matter per se, his way of thinking about the source of gravitational effects would
later lead the pioneers of dark matter to their findings. This created the theoretical
framework of dark matter theory, which is still used today when trying to verify
its existence. From this starting point, a large set of different observed indicators
of dark matter have been found, and now we will have a look at some of the most
important ones.

2.1.1 Galaxy clusters

The first example of observations that supports the existence of dark matter appears
on the galactic scale. In 1933, Fritz Zwicky noticed large deviations in apparent
velocities of several galaxies in the Coma Cluster, which lead him to examine the
expected mass content and velocity dispersion of the cluster [1, 5, 6]. Using the
viral theorem to infer expected mass and corresponding velocity dispersion, he found
that there was a much larger velocity dispersion than what was expected from the
observed luminous mass in the cluster.

The viral theorem for a stable, non-accelerating galaxy cluster can be written in
terms of the average kinetic energy Ekin and total gravitational energy Etot of the
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2. Dark matter

system as
2Ekin + Etot = 0. (2.1)

Substituting the specific galactic quantities in Ekin and Etot, we get

2M〈v
2〉

2 − 1
2
GM2

R
= 0, (2.2)

where the quantities used are the galaxy mass M , the average velocity squared 〈v2〉,
the gravitational constant G and R, the typical separation between galaxies in the
cluster (which gives a measure of the size of the cluster). Solving for the velocity
dispersion of a single galaxy, we arrive at

〈v2〉 = MG

2R . (2.3)

Assuming 800 observed galaxies in the Coma cluster,M = 109 solar masses and that
the cluster was contained within a sphere of radius 106 light years, Zwicky concluded
that the velocity dispersion should be about 80 km/s for the Coma cluster. However,
the observed value was of the order of 1000 km/s [1]. This implies that there is more
mass present in the Coma cluster than what is observed, leading to the first of many
hints of the presence of dark matter in the Universe. Worth noting is that there are
today several more accurate ways to determine the mass of a galaxy cluster, e.g.
by gravitational lensing (see [7] for an example), but the problem with the missing
luminous mass remains.

2.1.2 Galactic rotation curves
Further measurements on galactic scales were carried out during the twentieth cen-
tury. During this period, rotation curves, the tangential velocity of galaxy content
as a function of distance from the galactic centre, were made for a wide range of
galaxies [8, 9, 10]. Conclusions based on these rotation curves started to emerge
within the scientific community sometime around 1970 [1]. The idea is based on
that, under the assumption of a spherically symmetric galaxy, the centrifugal force
Fcent and gravitational force Fgrav in a stable rotating galaxy cancel each other out.
This gives the relation

Fgrav − Fcent = 0. (2.4)
An enclosed volume of mass m, rotating around the galactic centre at a distance r
with velocity v, will be subjected to a centrifugal force

Fcent = mv2

r
. (2.5)

The gravitational force acting on the same volume of mass m is

Fgrav = GmM

r2 , (2.6)

where M is the mass enclosed in the whole sphere of radius r around the galactic
centre. As per equation (2.4), we then get that the velocity scales as

v(r) =
√
GM

r
∝ r−1/2. (2.7)
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2. Dark matter

This scaling is valid for constant M only, meaning that it should hold for large val-
ues of r, when we are far away from the massive galactic centre. The interpretation
of this result is that the velocity of chunks of mass should fall of at large distances
from the galactic centre, where most observable mass is located. However, rotation
curves has been made for many different galaxies, and they do not follow the ex-
pected behaviour at all. An example of a rotation curve is presented in Figure 2.1,
for the spiral galaxy Messier 33. It is there apparent that the circular velocity is
approximately constant (or slightly increases) for large galactocentric distances, and
that it does not scale as r−1/2. Observations of this kind suggests that something is
missing in the current knowledge about gravitational phenomena within our galaxy.
Even though these effects are widely assumed to be due to some kind of dark mat-
ter, it is worth noting that other hypothetical explanations exists, such as different
modified theories of gravity (see e.g. [11]).

Figure 2.1: A rotation curve of the spiral galaxy Messier 33, published under public
domain [12]. The flat behaviour of the circular velocity Vcir over large distances is
seen clearly. It is here apparent how the measured velocity based on starlight and the
hydrogen spectrum gives a much larger total gravitational pull than what is expected
from the visible mass in the galaxy, hinting at the existence of dark matter.

2.1.3 Galaxy cluster merging
One of the strongest proofs for dark matter on the scale of galaxy clusters is sup-
plied by the so called Bullet cluster, a system resulting from the merging of two
clusters of galaxies [13, 14]. Both X-ray and weak lensing observations of the Bullet
cluster have been performed. While X-ray observations provide the baryonic mass
distribution in the cluster, the weak leansing technique has been used to obtain the
total mass distribution in the system. The offset between the two peaks of the total
mass distribution is much larger than the corresponding offset in the baryonic mass
distribution, hinting at the presence of dark matter in the cluster [14]. This effect
arises from the slow-down of baryonic matter inside the clusters during the collision,
as ordinary matter is slowed down by scattering. The dark matter scatters weakly
or not at all, meaning that the dark matter will be less subject to the collision. The
difference between total gravitational mass and visible mass content then implies
the existence of weakly or non-self interacting dark matter in the cluster. A picture
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2. Dark matter

of the Bullet cluster, created from X-ray measurements and gravitational lensing
observations, is provided in Figure 2.2.

Figure 2.2: A photo of the Bullet Cluster (1E0657-56), captured by Chandra
X-ray Observatory [15] and provided by NASA under public domain. The visible
light-spectrum is shown, as well as the X-ray emissions (pink areas) and the mass
distribution calculated via gravitaional lensing (blue areas). A size scale is given in
arcmin at the bottom.

2.1.4 Cosmological scale
As measurements of galaxy properties grew in number, their implication on cos-
mological scales started to emerge in the minds of physicists. As a matter of fact,
this was a natural next step. This is due to the fact that however good evidence
the galactic scale observations make for the existence of dark matter, they give no
information about what amount there is. This information can instead be accessed
by looking at the cosmic microwave background, often denoted CMB [16]. In a sce-
nario with baryonic matter only, large scale cosmological structures can form only
after recombination, due to matter radiation interactions contrasting the gravita-
tional collapse. On the other hand, in a scenario with dark matter, density fluctions
can grow even before recombination since dark matter and radiation are essentially
decoupled in this context. These effects can be seen in the CMB background, which
will be discussed in the following section.

2.1.4.1 Cosmic Microwave Background

CMB photons are remnants from the decoupling between photons and matter in
the early universe [17]. At this point, the Universe was sufficiently cool for atoms
to start forming, leaving the CMB photons to travel freely ever since. Due to the
expansion of the Universe, these photons have been redshifted by a certain amount,
that can be concluded from the study of other astrophysical phenomena [18]. It
is established that CMB is effectively described in terms of a black body radia-
tion with temperature T ≈ 2.73 K, mildly dependent on the observation direction.

6



2. Dark matter

These deviations are called anisotropies of the spectrum [19]. The anisotropies arose
when the competition between attractive gravitational forces of matter and repulsive
forces from photon pressure caused the baryonic matter to oscillate. Later, when
the CMB photons decoupled from matter in the early Universe, information of these
oscillations remained in the CMB photon density that we can observe today. How-
ever, if there exists dark matter in the Universe, the extra gravitational potential
would then change these oscillations over time, resulting in observable changes in
the CMB photon spectrum that can be used to justify the existence of dark matter
[20]. A multipole expansion of the CMB photon spectrum is shown in Figure 2.3,
where the anisotropies can be seen. It shows the angular scale dependency of the
temperature anisotropies mentioned above.

Figure 2.3: A multipole expansion of the CMB power spectrum shown as a func-
tion of its angular dependence, copyright: ESA and the Planck Collaboration [21].
The data points are CMB temperature measurements, and we can observe that
they closely follow their predicted values based on different cosmological models
containing dark matter, see e.g. [18, 19].

2.2 Dark matter candidates

Due to the current absence of detection of dark matter particles, the microscopic
properties of dark matter remain as yet unknown. However, several dark matter
candidates have been proposed in the literature. In this section some of the most
extensively investigated dark matter candidates are reviewed briefly. Additional
information on dark matter candidates is widely available in the literature, see for
example [16, 22].

7



2. Dark matter

2.2.1 WIMP
Weakly Interacting Massive Particles, or WIMPs, are exactly what the name sug-
gest, particles that have mass and interacts with baryonic matter with strength
comparable to or smaller than the weak scale. Their remaining particle proper-
ties are model dependent, so the span of possible WIMP candidates is rather large.
The most popular candidates for dark matter are different kinds of WIMPs. Two
kinds that get a lot of attention are SUSY (supersymmetry) neutralinos and Kaluza-
Klein states from extra dimensional theories. SUSY is an extension of the Standard
Model, stating that all particles have supersymmetric partners with the same mass
and gauge quantum numbers (as long as SUSY is an exact symmetry of Nature), but
have spin differing by 1/2 (see e.g. [23]). Kaluza-Klein states arise within a unified
field theory built around a fifth dimension [24]. Both photon and neutrino states
that are WIMP candidates arise within the Kaluza-Klein theory. The dark matter
particle studied in this thesis is assumed to be a WIMP, but we do not go more
into the details of its various quantum properties apart from its particle-antiparticle
nature.

Experimental searches for WIMP dark matter candidates have so far not been
able to pin down any explicit WIMPs, but there are results that indirectly hints at
their existence. By continuously making measurements of how the background signal
in detectors on Earth is modulated over the years, the DAMA/LIBRA collaboration
has published results that seem to agree with the predicted annual modulation of
hypothetical dark matter signals [25]. The expected modulation of dark matter
signals is due to Earth’s rotation in the Milky Way, meaning that a fixed detector
will have different exposure to dark matter particles depending on what time of
year it is. Unfortunately, there has still been no confirmation of these results, as the
experimental measurements as of today have not been successfully reproduced.

2.2.2 Sterile neutrinos
Another candidate for dark matter is a modified version of Standard Model neutri-
nos. They differ in the sense that they do not interact via the weak nuclear force.
However, they obviously are still assumed to interact via gravitational force in order
to be a viable candidate for dark matter. Dark matter cannot be made of Standard
Model neutrinos, since they are relativistic during the formation of the large scale
cosmological structures, in disagreement with observations [26]. A natural extension
from the left-handed neutrinos of the Standard Model is then right-handed neutri-
nos, that would only couple to the Standard Model ones via oscillation between left-
and right chirality [26]. The sterile neutrino hypothesis implies that their mass is of
the order of a few keV [27].

2.2.3 Axions
Axions are hypothetical pseudoscalar particles, and have been introduced in order
to resolve the strong charge-parity problem of quantum chromodynamics. If they
exists, and turn out to both satisfy a fundamental set of constraints and be within
a certain mass region, they are also a candidate for a dark matter particle of mass
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2. Dark matter

lower than about 0.01 eV [28]. They are also thought to interact weakly with all
Standard Model particle, one of the main reasons to why they are considered to be
good dark matter candidates. However, experimental searches for axions have so far
failed to verify their existence [29].

2.3 Experimental techniques
Experimental searches for dark matter WIMP candidates are carried out with three
different approaches; indirect detection, collider experiment and direct detection.
This section briefly covers each of these approaches.

2.3.1 Indirect detection
If dark matter is of particle nature, and furthermore also has a antiparticle, it should
in theory be possible to measure signal due to products from the annihilation of dark
matter particles in the Universe. This is what is meant by indirect detection, instead
of measuring scattering events where dark matter particles are involved directly, the
dark matter particles are indirectly studied by looking at the “trace” they leave in
the Universe. Not only annihilation can be the source of potential indirect signals.
If it turns out that the dark matter particle has a limited lifetime, its decay products
are also something that could be seen as signals in detection experiments. In order
for these two kind of annihilation/decay products of dark matter to be detectable
in our ordinary experimental setups, they must be Standard Model members. If the
decay products for instance turns out to be another kind of dark matter particle
or something similar, the problem with detecting them would be the same as with
dark matter. Annihilation traces of dark matter have been studied in detail (see
e.g. [30]).

2.3.2 Production experiments
If dark matter is made of WIMPs, it should in principle be producible in collider
experiments. For instance the ATLAS experiment at LHC at CERN could produce
dark matter particles when protons collide. The LHC proton collisions has a centre
of mass energy of 14 TeV [31], so dark matter particles of the order of a few TeV
could in principle be created there. The effect of producing dark matter particles in
current collider experiments would not be detected in interactions with the detectors
themselves, but rather as missing momenta in other detectable particles. As can be
seen from this brief summary, detecting dark matter this way brings along some
subtleties. For instance, other light particles, such as Standard Model neutrinos,
would also show themselves as missing momenta in the detector signals. As a result
of this, additional experimental constraints might be needed if dark matter particles
are to be discovered in this way. Finally, if a dark matter particle was to be produced
and detected with high accuracy, additional experiments or other reasoning is needed
in order to prove that it is actually the same Milky Way dark matter particle that
we search for, and not just a new particle of another kind. It can thereby be stated
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2. Dark matter

that dark matter experimental searches in collider experiments alone might not be
suitable to explain dark matter phenomena in the Universe.

2.3.3 Direct detection
Under the assumption that dark matter particles interacts with ordinary matter on
the weak scale, they should be detectable in experimental setups, given that they
are sensible enough. Direct detection experiments aim to measure the recoil of a
nucleus in a detector when a dark matter particle scatters off of it. Many detectors
are today searching for signals of dark matter interactions, but as of yet no definite
ones has been found. However, the results so far are still of great importance in
the search for dark matter, as many of them can be used to set constraints on
e.g. the possible cross section of dark matter scattering with nucleus targets [32].
The scattering recoils are expected to be of the order 1 to 102 keV, under the
assumption that dark matter particles are WIMPs with a mass of about 10 to 103

GeV [33]. Due to the low interaction strength that is expected, a low or preferably
zero background is of outermost importance for direct detection experiments to ever
be probable to measure dark matter interaction signals [34]. This is mainly to
avoid background noise from e.g. cosmic muons or other low interaction particles to
reach the detector. The number of recoil events in a target nucleus can be related
to the differential rate of scattering events R per recoil energy ER. With input
from astrophysical and particle physics calculations of a underlying dark matter
theory, these recoil rates can then be interpreted to obtain information about the
dark matter particle. Such a interpretation is made in this thesis, namely; under
the assumption that a certain value for the dark matter-nucleus cross section is
measured, can we conclude anything about the particle/antiparticle nature of the
scattered dark matter particle? A more in-depth relation between measured events,
astrophysical input and particle physics is given in the next section.

2.3.4 Direct detection event rates
The experimental direct detection search for dark matter is based on observing the
recoil of a target nucleus in a detector when a dark matter particle scatters off it.
The experimental observable in these experiments is the differential recoil spectrum
in some energy range. For a single nucleus target A with recoil energy ER, the
expected rate of nuclear recoils per recoil energy is [34, 35]

dR

dER
= ρχ
mχmA

∫ vesc

vmin
v f(v, t)dσχA

dER
dv, (2.8)

where the input parameters on the right hand side can be divided into two sub-
categories; one arising from astrophysical and one from particle physics calculations
respectively. The astrophysical parameters are the local dark matter density in the
Milky way, denoted ρχ, and the dark matter velocity distribution in the detector
frame of reference, denoted f(v, t). The time dependency in f(v, t) is due to the
rotation of the Earth, and is not considered in this study. From here on, the time
dependency is thus dropped and the velocity distribution is written as f(v). The
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2. Dark matter

particle physics inputs are the two masses of the target nucleus and the incoming
dark matter particle, denoted mA and mχ respectively, and the differential cross
section dσχA

dER
of dark matter-nucleus scattering. The latter is the main quantity of

study in this thesis, and depends entirely on the underlying theory that describes
the interaction of dark matter with Standard Model particles.

2.3.5 Astrophysical input parameters

As the rest of the thesis focuses primarily on the differential cross section dσχA
dER

, a
comment on the suitable values for the astrophysical parameter input is made here.
The local dark matter density ρχ is not a fixed quantity, but restrictions based on
observational data puts it in the range 0.2-0.8 GeV cm−3 [36]. Letting ρχ = 0.3
GeV cm−3, as is done in e.g. [3], is thus a valid assumption. An isotropic Maxwell-
Boltzmann distribution is often assumed for f(v) [37], with a speed dispersion of
σv = 156 km s−1 and the velocity of the Earth relative the galactic halo taken to have
the constant value vEarth = 232 km s−1 [38, 39, 40]. The escape velocity vesc = 544
km s−1 is set according to the Milky Way local escape speed [41, 42]. The lowest
possible velocity of a dark matter for it to create a recoil in target A is derived in
section 3.3, and is there shown to be given by

vmin(ER) =
√√√√mAER

2µ2
χA

, (2.9)

where µχA is the reduced mass of the dark matter-target system.
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2. Dark matter
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3
Theoretical framework

This section covers the conventions used in the scattering calculations as well as a
review of scattering physics. Conventions regarding description of spinors, particle
fields etc. are also stated. A review of Majorana and Dirac particles, as well as their
differences, is presented. The interpretation of scattering events in terms of cross
sections is given, as is the effective field theory (EFT) of the underlying dark matter
theory. A few important calculations of relevant differences in the cross section in
the case of Majorana or Dirac dark matter are also made.

3.1 Conventions

3.1.1 Units, metric and contraction
The calculations within this work are always carried out in natural units, i.e. units
where

c = ~ = 1. (3.1)

The four dimensional spacetime metric is defined as

ηµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (3.2)

which means that the contraction of two spacetime four-vectors aµ and bµ is

aµbµ = ηµνaνbµ = a0b0 − aibi. (3.3)

In the spatial term, as well as the rest of the thesis unless otherwise stated,
the occurrence of the same index twice in a term indicates summation (Einstein
summation convention). For example, in the case above we have (i = 1, 2, 3):

aibi = a1b1 + a2b2 + a3b3. (3.4)

3.1.2 Spinor conventions
This section contains a summary of spinor conventions, mostly based on Chapter 3
of “An Introduction to Quantum Field Theory” by Peskin and Schroeder [43], and
the interested reader is thus asked to turn there for a more thorough and detailed

13



3. Theoretical framework

explanation of spinors. As the dark matter particles are assumed to be of spin 1/2,
their spin states can be described in terms of two component spinors in combination
with Pauli matrices. The used conventions for these objects are as follows. The
Pauli matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3.5)

and will continuously be used in terms of the Pauli vector, defined as

~σ ≡ (σ1, σ2, σ3). (3.6)

Two useful relativistic quantities σµ and σ̄µ can be formed from ~σ as

σµ ≡ (1, ~σ) (3.7)

and
σ̄µ ≡ (1, −~σ) (3.8)

respectively. The spins are defined to be aligned along the z-axis, and can be either
up or down. These up and down states are represented by the two component
spinors

ξ0 =
(

1
0

)
, ξ1 =

(
0
1

)
, (3.9)

respectively. They are normalised in such a way that

ξiξ
†
j = ξ†i ξj = δij, (3.10)

and
ξiξ†i = 1. (3.11)

We are studying a scattering process involving two particles, and thereby have four
different spins to keep track of. We will index incoming (outgoing) spin states with
s (s′) for the dark matter particle and r (r′) for the nucleus. The spin operator for
the dark matter (χ) and nucleus (N) can then be written

~Sχ,s,s′ = 1
2ξ
†
s~σξs′ , ~SN,r,r′ = 1

2ξ
†
r~σξr′ . (3.12)

With the Pauli matrices defined in equation (3.5), the spin 1/2 represenation of the
theory can be constructed in terms of the gamma matrices γµ. They satisfy the
anticommutation relations

{γµ, γν} ≡ γµγν + γνγµ = 2gµν × 1. (3.13)

They can be written in terms of the Pauli matrices in the so called Weyl represen-
tation given by

γ0 =
(

0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, (3.14)
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3. Theoretical framework

where the index i = 1, 2, 3 is a spatial index and 1 is the 2 × 2 identity matrix. In
order to simplify notification, a fifth gamma matrix

γ5 ≡ iγ0γ1γ2γ3, (3.15)

is introduced, and in the Weyl basis it then becomes

γ5 =
(
−1 0
0 1

)
. (3.16)

The gamma matrices defined here will be used when studying the Dirac equation
and its solutions in the next section.

3.2 Dirac and Majorana particles
The differences between Dirac and Majorana fields will here be discussed in some
detail as a reminder. This section also follows the theory presented by Peskin and
Schroeder [43], and the reader unfamiliar with these concepts is once again directed
there. The Dirac equation, given by

(iγµ∂µ −m)ψ(x) = 0 (3.17)

is a general theory description for a spin 1/2 particle field with mass m. Plane-wave
solutions to equation (3.17) are given as linear combinations of terms of the form

ψ(x) = u(p)e−ip·x (3.18)

for on-shell particles, i.e. particles with momenta p such that p2 = m2. This gives
equation (3.17) the form

(γµpµ −m)u(p) = 0, (3.19)
where the solutions u(p) can be expressed in terms of spin states ξ (defined in
equation (3.9)) as [43]

u(p) =
(√

pµσµξ,
√
pµσ̄µξ

)
, (3.20)

where σµ and σ̄µ are defined in equations (3.7) and (3.8) respectively. In this defi-
nition, taking the square root of a matrix is meant as taking the (positive) root of
each eigenvalue.

The plane-wave solutions u(p) are what will be used when constructing relevant
scattering quantities in the non-relativistic limit in this thesis. Solutions ψ(x) to
equation (3.17) that also are solutions under conjugation of its quantum numbers,
denoted as ψ(x)→ ψ̄(x), are called Majorana solutions. Solutions which fail to fulfil
this property are Dirac solutions. Extracting the particle nature corespondents to
these two field solutions, we see that they describe two different kind of fermion
particles:

• Majorana particles; particles that constitute their own antiparticle,
• Dirac particles; particles that are different from their antiparticle.

Investigating under what circumstances a dark matter fermion, that interacts with a
target nucleus via only spin dependent interactions, can be concluded to be a Dirac
particle is the aim of this thesis.
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3.3 Non-relativistic scattering theory kinematics
Here we define some kinematic quantities that will prove to be useful. As dark
matter-nucleus scattering is non-relativistic, we work in a framework that does not
take relativistic effects into account. We denote the incoming and outgoing momen-
tum of the dark matter particle as ~p and ~p ′, while the corresponding quantities for
the nucleus are denoted ~k and ~k′. Conservation of momentum gives

~p+ ~k = ~p ′ + ~k′, (3.21)

and the momentum transfer, or recoil momentum, ~q of the process can then be
defined as

~q ≡ ~p ′ − ~p = ~k − ~k′. (3.22)
The transverse velocity ~v⊥ of the system turns out to be very useful when writing
down the effective theory of dark matter-nucleus scattering. It is defined in terms
of the momenta as

~v⊥ ≡ ~p+ ~p ′

2mχ

−
~k + ~k′

2mA

, (3.23)

where mχ and mA denotes dark matter and nucleus mass respectively.
We will be looking at nucleus recoil events as functions of the recoil momentum

q = |~q|, so a relevant question is what the lowest dark matter velocity required to
get a recoil momentum q is. The target nucleus is always assumed to be at rest
before the collision, so the scattering scenario can be described as in Figure 3.1.
The kinetic energy Eχ of the dark matter particle before the collision is then partly
transformed into the recoil energy of the nucleus, given by ER = q2

2mA , and partly
into the outgoing dark matter particle kinetic energy E ′χ. In terms of a energy
conservation equation, we thus have

ER = Eχ − E ′χ ⇐⇒
q2

2mA

= mχv
2

2 − mχv
′2

2 . (3.24)

Momentum conservation in the same system gives us

~p ′ = ~p+ ~q, (3.25)

and in terms of the scattering angle α and the angle of the recoil β, the momentum
conservation can be rewritten as the projection on the axis of α = 0 and α = π

2 .
Writing out the momenta ~p = mχv and ~p ′ = mχv

′, the two projections are

mχv
′ cosα = mχv − q cos β, (3.26)

mχv
′ sinα = q sin β. (3.27)

Taking the square of both these momentum equations and then adding the results
now gives

m2
χv
′2 = m2

χv
2 − 2mχvq cos β + q2, (3.28)

where we note that the scattering angle α no longer appears. Solving for mχv
′2 gives

mχv
′2 =

m2
χv

2 − 2mχvq cos β + q2

mχ

. (3.29)
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~p

~p ′

~q

α

β

Figure 3.1: The relation of the dark matter momentum ~p, ~p ′ and the nuclear recoil
~q. The black circle represents the detailed interaction process of the scattering, and
is not considered in detail here.

Putting this result back into equation (3.24) gives

q2

2mA

= mχv
2

2 −
m2
χv

2 − 2mχvq cos β + q2

2mχ

, (3.30)

or equivalently

q

(
1
mA

+ 1
mχ

)
= 2v cos β. (3.31)

The factor of q in the left hand side of this relation is usually rewritten as the
reduced mass µχA of the system, i.e. by introducing

µχA ≡
mχmA

mχ +mA

, (3.32)

so that equation (3.31) can be recast into

q = 2vµχA cos β. (3.33)

We now have a relation for the induced recoil momentum q in direction β when
an incoming dark matter particle with velocity v scatters off of a target nucleus A.
The minimal velocity vmin for a scattering for a given q is then the value of v that
equation (3.33) gives for minimal recoil angle, β = 0. We get

vmin = q

2µχA
=
√

2mAER
2µχA

=
√√√√mAER

2µ2
χA

. (3.34)

3.4 Cross section
When studying the collision of any two particles, the quantity that describes the
probability of interaction is the cross section σ. As per equation (4.79) in [43], with
the same notation for incoming and outgoing particles as in section 3.3, the cross
section is related to the energy, momenta and velocity of the scattered particles by
the relation

dσ = 1
4EpEk|vχ − vN |

d3p′ d3k′

4(2π)2Ep′Ek′
|M|2δ(4) (p+ k − p′ − k′) . (3.35)
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Here, the amplitude M is a quantity calculated from coupling strength and inter-
action rules of the underlying particle theory, by summing over final spin states and
averaging over initial spin states [43]. The amplitude for the dark matter-nucleus
scatterings relevant for this thesis will be constructed in the sections following this
one, starting from the nucleon level theory.

3.5 Nucleon effective field theory
When treating dark matter interactions with targets in a detector on Earth, we
will work within an effective field theory. An effective field theory is a simplified
reduction of a more complicated theory, but usually work to high accuracy in relevant
applications. In the context of dark matter scattering, the effective field theory
approach is to treat the scattering as a non-relativistic event. The justification of
this comes from the fact that the hypothetical dark matter particle masses treated
here are large in comparison to their assumed velocity [44]. It turns out, that
in order to respect underlying fundamental symmetries, e.g. Galilean invariance,
there exists a set of quantities that are the only ones that can be present in the
Hermitian operators (Oχ and ON) forming the interaction Lagrangian of the theory
(see equation (3.37) below). They are given by [44]

1χ, 1N , i~q, ~v
⊥, ~Sχ, ~SN , (3.36)

and have been defined in sections 3.3 and 3.1.2. Assuming elastic scattering only,
the non-relativistic contact form of the Lagrangian density is given by [45]

Lint =
K∑
i=1

αi ψ̄χOχψχψ̄NONψN , (3.37)

where ψχ/N are the non-relativistic fields corresponding to the dark matter/nucleon
respectively and we have K terms in the Lagrangian, containing the operators Oχ
and ON mentioned above. They include terms up to and including second order in
the momenta ~q, are Hermitian and can be constructed entirely from the Hermitian
quantities listed in equation (3.36). When constructing the Galilean-invariant am-
plitude needed to link the effective field theory to experimental observables, there
exists a number of operators Oi that are formed from Oχ and ON . This amplitude
is given by

M =
N∑
i=1

(
c

(n)
i Oi + c

(p)
i Oi

)
, (3.38)

where the number of operators N depends on the underlying particle physics model,
and the coupling coefficients ci for neutron and proton operators can be different
from each other. The 15 operators Oi that are relevant for leading order (in mo-
menta) scattering are gathered in Table 3.1. By labelling the nucleons by their
isospin τ = 0, 1 instead of the label α = p, n, which often is more convenient when
treating nucleus interactions, the amplitude in equation (3.38) can be recast into
the form [45]

M =
15∑
i

(
c0
i1 + c1

i τ3
)
Oi =

∑
τ=0, 1

15∑
i=1

cτiOitτ , (3.39)
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where the isospin operators t0 ≡ 1 and t1 ≡ τ3 have been introduced. Another
isospin operator

τ3 ≡
(

1 0
0 −1

)
(3.40)

and two new isospin couplings

c0
i ≡

1
2 (cpi + cni ) , c1

i ≡
1
2 (cpi − cni ) (3.41)

have also been introduced. At this point, we then have an effective field theory
that can be used to describe the interaction between free nucleons and dark matter
particles. However, in the end we are interested in describing the recoils in dark
matter-nucleus scattering. We thus have to find a way to construct dark matter-
nucleus interaction theory from the dark matter-nucleon interaction theory.

O1 = 1χ1N

O2 =
(
~v⊥
)2

O3 = i~SN ·
(

~q
mN
× ~v⊥

)
O4 = ~Sχ · ~SN
O5 = i~Sχ ·

(
~q
mN
× ~v⊥

)
O6 =

(
~Sχ · ~q

mN

) (
~SN · ~q

mN

)
O7 = ~SN · ~v⊥
O8 = ~Sχ · ~v⊥

O9 = i~Sχ ·
(
~SN × ~q

mN

)
O10 = i~SN · ~q

mN

O11 = i~Sχ · ~q
mN

O12 = ~Sχ ·
(
~SN × ~v⊥

)
O13 = i

(
~Sχ · ~v⊥

) (
~SN · ~q

mN

)
O14 = i

(
~SN · ~v⊥

) (
~Sχ · ~q

mN

)
O15 = −

(
~Sχ · ~q

mN

) [(
~SN × ~v⊥

)
· ~q
mN

]
Table 3.1: A summary of non-relativistic effective field theory operators that ap-
pear in dark matter-nucleon scattering amplitudes, up to second order in the recoil
momenta ~q.

3.6 Dark matter-nucleus amplitude from nucleon
theory

In this work, nucleus interactions are described as the summed up interactions of the
individual nucleons in the nucleus. Mapping from nucleons to a nucleus means that
the nucleon amplitude in equation (3.38) has to be embedded into the description
of the nucleus. This will in practice boil down to a convolution of the operators
Oi defined in Table 3.1, where the convolution is done using spherical harmonic
expansions of angular and radial plane wave operators of the individual nucleons.
The description of the exact details of this convolution are omitted here for the
sake of readability, and only the main results presently needed are stated. A full
description of the convolution of the operators is found in [45]. Moving from one
nucleon to a nucleus means that the isospin interaction described in equation (3.39)
is converted to a sum over all A nucleons in the nucleus:

∑
τ=0, 1

15∑
i=1

cτiOitτ →
∑
τ=0, 1

15∑
i=1

cτi

A∑
j=1
Oi(j)tτ (j). (3.42)
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The operators Oi(j) are the same ones as the ones listed in Table 3.1, but for the
specific nucleon j and with N now denoting the nucleus. The mass mN remain the
nucleon mass. The building blocks ~Si and ~q are straight forward to replace for the
nucleus, but the transverse velocity operator ~v⊥ now represents a set of A internal
dark matter-nucleon transverse velocities, see [45] for a discussion regarding this
quantity. The new interactions given in equation (3.42) allows us to write the dark
matter-nucleus scattering amplitudeM as

M =
∑
τ=0, 1

15∑
i=1

cτi

A∑
j=1
Oi(j)tτ (j). (3.43)

The effective scattering amplitude for dark matter-nucleus interactions,M, is given
by summing and averaging the nucleus amplitudeM over possible combinations of
the dark matter (nucleus) spins Jχ (JA) as [45]

M = 1
2Jχ + 1

1
2JA + 1

∑
spins
|M|2 =

=
∑
k

∑
τ=0, 1

∑
τ ′=0, 1

Rττ ′

k

(
~v⊥ 2,

~q 2

m2
A

,
{
cτi c

τ ′

j

})
W ττ ′

k (y),
(3.44)

where a few new quantities have been introduced to make the reasoning a little
more transparent. Writing the amplitude in this way factorises out the particle
and nuclear physics into the dark matter response functions Rττ ′

k and the nuclear
response functionsW ττ ′

k respectively. The dimensionless variable y ≡ (qb/2)2, where
b is the nuclear size of the target, has also been introduced. The response functions
Rττ ′
k and form factors W ττ ′

k have been studied in detail for relevant nucleus targets
in many publications (see e.g. [45, 46]). All collisions studied within this thesis are
assumed to take place at zero momentum transfer, i.e. in the limit q → 0. This
means that Rττ ′

k and W ττ ′
k both will be treated without dependence on q, as they in

this case have constant values [45].
As per equation (3.44), knowing the values of Rττ ′

k and W ττ ′
k for a specific dark

matter-nucleus combination is enough to be able to construct the average amplitude,
and thus also the cross section. There are many advantages of using an effective
field theory when studying dark matter particle interactions with target nuclei, and
the biggest one is probably the fact that most high energy-models of dark matter
behave in the same way in the scattering regime, meaning that they can be treated
within the same effective field theory framework. We are now ready to have a look at
the field theory description used in this thesis, and calculate its dark matter-nucleus
cross section.

3.7 Dark matter-nucleon relativistic field theory
Having introduced how differential cross sections for dark matter-nucleus scattering
can be computed in general, let us now formulate the specific theory upon which this
thesis is based. The starting point of my investigation is a relativistic effective theory
for dark matter-nucleon interactions. For fermionic dark matter scattering in the
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zero momentum transfer limit, the most general relativistic interaction Lagrangian
with nucleons is given by [47]

L = λN,eψ̄χψχψ̄NψN + λN,oψ̄χγµψχψ̄Nγ
µψN+

+ ξN,eψ̄χγ5γµψχψ̄Nγ5γ
µψN −

1
2ξN,oψ̄χσµνψχψ̄Nσ

µνψN ,
(3.45)

where the first two terms are spin independent and the last two are spin dependent.
The first two terms constitutes the Lagrangian studied by Kavanagh et al. [3], and
the last two will be studied here. The Lagrangian of consideration is thus

LSD = ξN,eψ̄χγ5γµψχψ̄Nγ5γ
µψN −

1
2ξN,oψ̄χσµνψχψ̄Nσ

µνψN . (3.46)

As in equation (3.37), ψχ/N denotes dark matter and nucleon fields respectively.
However, the theory is here presented in a relativistic setting. The four couplings
λN,e/o and ξN,e/o denotes if the corresponding terms are even or odd under the
conjugation ψχ/N ↔ ψ̄χ/N . Only the terms with couplings λN,e and ξN,e are possibly
non-zero for a Majorana particle, while Dirac particles can have all four kind of
terms.

3.8 Dark matter-nucleus (non-relativistic) effec-
tive field theory and amplitude

As we saw in section 3.5, the relativistic interaction Lagrangian

LSD = ξN,eψ̄χγ5γµψχψ̄Nγ5γ
µψN −

1
2ξN,oψ̄χσµνψχψ̄Nσ

µνψN (3.47)

will have a non-relativistic interaction Lagrangian of the form

Lint =
K∑
i=1

αi ψ̄χOχψχψ̄NONψN . (3.48)

We are interested in the differential cross section of the non-relativistic scattering of
dark matter particles with target nucleus. The cross section depends on the square
of the amplitudeM (see equation (3.35)), which we will now calculate for the spin
dependent theory considered here. This is done by expanding the solutions u(p)
to the Dirac equation, given in equation (3.20), in the non-relativistic limit to first
order in three momenta ~p:

us(p) =
(√

pµσµξ
s

√
pµσ̄µξ

s

)
≈ 1√

4m

(
(2m− ~p · ~σ) ξs
(2m+ ~p · ~σ) ξs

)
+O(~p 2), (3.49)

where we also have introduced the spin s of the particle described by the field
solution. The conjugated field solution is then given by

ūs(p) ≡ (us(p))† γ0 ≈ 1√
4m

(
ξs † (2m+ ~p · ~σ) , ξs † (2m− ~p · ~σ)

)
+O(~p 2). (3.50)
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All fields ψχ/N will be expressed in this non-relativistic limit, meaning that the
non-relativistic amplitude will be constructed in terms of bilinears of the forms

ūs
′(p′)γ5γ

µus(p) (3.51)

and
ūs

′(p′)σµνus(p). (3.52)

These bilinears can be expanded in the non-relativistic limit. For the first one, this
gives

ūs
′(p′)γ5γ

µus(p) ≈

≈ 1
4m

(
ξs

′ † (2m+ ~p ′ · ~σ) , ξs′ † (2m− ~p ′ · ~σ)
)( 0 −σµ

σ̄µ 0

)(
(2m− ~p · ~σ) ξs
(2m+ ~p · ~σ) ξs

)
=

= 1
4m

(
ξs

′ † (2m+ ~p ′ · ~σ) , ξs′ † (2m− ~p ′ · ~σ)
)(−σµ (2m+ ~p · ~σ) ξs

σ̄µ (2m+ ~p · ~σ) ξs
)
.

(3.53)

Keeping only first order terms of ~p, we then have

ūs
′(p′)γ5γ

µus(p) ≈ 1
4m

[(
4mξs′ †(~p ′ + ~p) · ~σξs

)
1 + 8m2ξs

′ †~σξs
]
, (3.54)

which we from now on will write as a matrix with one scalar and one vector element
for convenience:

ūs
′(p′)γ5γ

µus(p) ≈
(

(~p ′ + ~p) · ξs′ †~σξs

2mξs′ †~σξs

)
. (3.55)

Expanding the second bilinear, we get

ūs
′(p′)σµνus(p) = i

2u
s′(p′) [γµ, γν ]us(p) =

= i

2u
s′(p′)

((
0 σµ

σ̄µ 0

)(
0 σν

σ̄ν 0

)
−
(

0 σν

σ̄ν 0

)(
0 σµ

σ̄µ 0

))
us(p) =

= i

2u
s′(p′)

((
σµσ̄ν 0

0 σ̄νσµ

)
−
(
σν σ̄µ 0

0 σ̄µσν

))
us(p) =

= i

2u
s′(p′)

(
σµσ̄ν − σν σ̄µ 0

0 σ̄νσµ − σ̄µσν
)
us(p).

(3.56)

Inserting the non-relativistic reduction of us(p) and ūs′(p′) while once again keeping
only terms up to first order in ~p, we get [48]

ūs
′(p′)σµνus(p) ≈

≈
(

0 i(~p− ~p ′)1− (~p+ ~p ′)× ξs′ †~σξs

−i(~p− ~p ′)1 + (~p+ ~p ′)× ξs′ †~σξs 0

)
.

(3.57)

With the non-relativistic reduction of the bilinears at hand, we can form the two
combinations that arise from scattering of a dark matter particle χ off a nucleus N .
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They are, once again keeping only first order terms in momenta:

ūs
′

χ (p′)γ5γ
µusχ(p)ūr′

N(k′)γ5γµu
r
N(k) ≈

≈
(

(~p ′ + ~p) · ξs′ †~σξs

2mχξ
s′ †~σξs

)
·
(

(~k ′ + ~k) · ξr′ †~σξr

−2mNξ
r′ †~σξr

)
=

= −4mχmNξ
s′ †~σξsξr

′ †~σξr,

(3.58)

which in terms of the spin operators defined in equation (3.12) can be written

ūs
′

χ (p′)γ5γ
µusχ(p)ūr′

N(k′)γ5γµu
r
N(k) ≈ −16mχmN

~Sχ · ~SN . (3.59)

Here we recognise the operator O4 from Table 3.1. In a similar manner, exclud-
ing higher order momenta terms and inserting spin operators, the second relevant
bilinear combination becomes (see e.g. [49])

ūs
′

χ (p′)σµνusχ(p)ūr′

N(k′)σµνurN(k) ≈ 16mχmN
~Sχ · ~SN , (3.60)

where the operator O4 once again appears. This result, obviously only applicable
to the specific framework of a solely spin dependent interaction theory, reveals that
only two of the dark matter response functions Rττ ′

k (defined in equation (3.44)) are
non-zero. Their definitions in terms of nucleons in the target are in general rather
complicated, but are covered in good detail in literature [45]. The two that appear
here are:

Rττ ′

Σ′ = Rττ ′

Σ′′ = JA (JA + 1)
12 cτ4c

τ ′

4 , (3.61)

where JA denotes the nuclear spin of a target nucleus with mass number A. cτ4 and
cτ

′
4 are the coefficients of the operator O4 in the amplitude in equation (3.38). They
are in this case functions of the dark matter-nucleon couplings ξp,e, ξp,o, ξn,e, ξn,o and
the dark matter and target nucleus masses mχ and mA. Given a target nucleus with
known nuclear response functions W τ,τ ′

k , that can be derived from single nucleons
(see e.g. [45]), we can now construct a dark matter-nucleus cross section from
nucleon level theory by combining our findings in this section with equations (3.35)
and (3.38).

3.9 Dark matter-nucleus differential cross sections
The spin dependent differential cross section for dark matter χ and a target nucleus
A scattering at recoil energy ER can be written into the form [47]

dσASD
dER

=

=
16µ2

χA

(2JA + 1)Emax(v)

(√
S00(ξp + ξn) +

√
S11(ξp − ξn)

)2
Θ (Emax(v)− ER) ,

(3.62)

where we, as anticipated from the last section, see that both Lagrangian couplings
and the particle masses are present, as well as the nuclear spin JA of the target.
The step function Θ (Emax(v)− ER) sets an upper limit for the recoil energy ER
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at the maxmimum recoil energy Emax(v), meaning that 0 < ER < Emax(v). For
non-relativistic scattering, Emax(v) is given by

Emax(v) = 2
v2µ2

χA

m2
A

. (3.63)

From here on, the restriction 0 < ER < Emax(v) will be assumed to be implicit, and
Θ (Emax(v)− ER) will thus be dropped from the differential cross section expres-
sions.

Some further remarks on the differential cross section in equation (3.62) are
needed in order to connect it to our earlier discussion. The Lagrangian couplings
have been collected in the quantities ξp and ξn as

ξp = ξp,e + ξp,o
2 (3.64)

and
ξn = ξn,e + ξn,o

2 . (3.65)

The nuclear structure functions S00 and S11 are expressed in terms of the nuclear
form factors W ij

Σ′ , W
ij
Σ′′ as

S00 = W 00
Σ′ +W 00

Σ′′ (3.66)
and

S11 = W 11
Σ′ +W 11

Σ′′ . (3.67)
For a Majorana fermion, i.e. a fermion whose Lagrangian is invariant under the

exchange ψχ ↔ ψ̄χ, the odd couplings are ξp,o = ξn,o = 0. The differential cross
section in equation (3.62) then becomes

dσASD, M

dER
=

=
16µ2

χA

(2JA + 1)Emax(v)

(√
S00(ξMp + ξMn ) +

√
S11(ξMp − ξMn )

)2
=

=
16µ2

χA

(2JA + 1)Emax(v)

(√
S00λ

M
00 +

√
S11λ

M
11

)2
,

(3.68)

where ξMN ≡
ξN,e

2 and thus

λM00 ≡
ξp,e + ξn,e

2 (3.69)

and
λM11 ≡

ξp,e − ξn,e
2 . (3.70)

For a Dirac dark matter particle, the differential cross section would be the same,
but with

ξMN → ξDN ≡
ξN,e + ξN,o

2 . (3.71)

For a Dirac antiparticle, the new coupling would instead be

ξMN → ξD̄N ≡
ξN,e − ξN,o

2 , (3.72)
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where the difference in sign of the odd couplings ξN,o is due to the conjugation of
the Lagrangian when changing between a particle field ψχ and antiparticle field ψ̄χ.
In the standard freeze-out scenario, the contribution from particle and antiparticle
dark matter would be the same [50]. This means that the Dirac differential cross
section should be split in one part for particles and one part for antiparticles, giving

dσASD, D

dER
= 1

2

[
dσASD, particle

dER
+
dσASD, antiparticle

dER

]
=

=
16µ2

χA

(2JA + 1)Emax(v)
1
2

[ (√
S00(ξDp + ξDn ) +

√
S11(ξDp − ξDn )

)2
+

+
(√

S00(ξD̄p + ξD̄n ) +
√
S11(ξD̄p − ξD̄n )

)2 ]
=

=
16µ2

χA

(2JA + 1)Emax(v)
1
2

[
S00

(
(ξDp + ξDn )2 + (ξD̄p + ξD̄n )2

)
+

+ 2
√
S00S11

(
ξD 2
p − ξD 2

n + ξD̄ 2
p − ξD̄ 2

n

)
+

+ S11
(
(ξDp − ξDn )2 + (ξD̄p − ξD̄n )2

) ]
.

(3.73)

By defining coefficients of the nuclear structure form factors, this differential cross
section can be cast into a more perspicuous form. As can be seen in equation (3.73),
they can be conveniently chosen as

λ2
00 = 1

2
[
(ξDp + ξDn )2 + (ξD̄p + ξD̄n )2

]
, (3.74)

λ2
11 = 1

2
[
(ξDp − ξDn )2 + (ξD̄p − ξD̄n )2

]
, (3.75)

f =
ξD 2
p − ξD 2

n + ξD̄ 2
p − ξD̄ 2

n

2λ00λ11
, (3.76)

and the Dirac differential cross section can now be expressed as

dσASD, D

dER
=

=
16µ2

χA

(2JA + 1)Emax(v)
[
S00λ

2
00 + 2

√
S00S11λ00λ11f + S11λ

2
11

]
=

=
16µ2

χA

(2JA + 1)Emax(v)

[ (√
S00λ00 +

√
S11λ11

)2
+ 2

√
S00S11λ00λ11(f − 1)

]
.

(3.77)

Rewriting the differential cross section in this way makes it apparent that the only
particle model dependency comes from the three free parameters f, λ00 and λ11, the
rest of the parameters are properties of the target nucleus. An important observation
can now be made for two values of f , more precisely f = −1 and f = 1.

For these values of f , the Dirac differential cross section in equation (3.77) reduces
to the Majorana differential cross section in equation (3.68) under the identification
λM00 = λ00 and λM11 = ±λ11. This feature of the differential cross section is an
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important attribute to the test procedure for discriminating between Majorana and
Dirac dark matter, and will be discussed in more detail in the next section when we
outline the discrimination test.

3.10 Differences between spin dependent and spin
independent cross sections

Having seen how the differential cross section for spin dependent interactions is
calculated, we make a quick detour to investigate how it compares to the differen-
tial cross section for spin independent interactions. This reveals some interesting
differences in the particle physics input in cross section calculations. This section
aims to demonstrate these differences. The main difference between the two studies
is the choice of Lagrangian to consider. Kavanagh et al. uses the first two (spin
independent) terms in equation (3.45), and in this thesis we use the second two
(spin dependent) terms instead. The differences are presented in order to expose
the fundamental changes that has to be done when moving between spin dependent
and spin independent interaction theory. Even though these differences are not of
particular interest for this study, they are interesting when for instance comparing
measured cross sections to experimental thresholds.

3.10.1 Change in free parameters
In the spin independent interaction theory, the differential cross section scales with
the number of protons Np and neutrons Nn in the target as [3]

dσSI

dER
∝ (λpNp + λnNn)2 + 2λpλn(f − 1)NpNn, (3.78)

where the three free parameters λp, λn and f depend on the underlying particle
physics interaction model. It can be seen that all the particle physics, up to a global
scaling, can be encoded into the two parameters {f, λp/λn} [3]. When considering
the spin dependent part of the theory instead, we have seen that the differential
cross section is given as a function of the nuclear form factor functions S00 and S11.
However, the scaling with these quantities turns out to be similar to the one in
equation (3.78), more specifically

dσSD

dER
∝
(
λ00

√
S00 + λ11

√
S11

)2
+ 2λ00λ11(f − 1)

√
S00S11, (3.79)

and we observe that the free parameters in this case are λ00, λ11 and f , meaning
that the used parameter space for the spin dependent study presented here will be
given by {f, λ11/λ00}. This will be seen more in detail in chapter 4.

3.10.2 Change in nucleus and nucleon cross section
This section gives a brief summary of some differences between the proton cross sec-
tions of spin independent and spin dependent theory, which is used when comparing
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and constructing cross section thresholds for dark matter-nucleus interactions. As
per [47], the cross section in the zero momentum transfer limit for the spin indepen-
dent theory is

σASI =
4µ2

χA

π
(λpNp + λnNn)2 , (3.80)

and for spin dependent theory it is

σASD =
16µ2

χA

π

JA + 1
JA

(ξpSp + ξnSn)2 , (3.81)

where Sp and Sn are functions that can be absorbed into our earlier defined S00 and
S11. In fact, these nucleus cross sections can be decomposed in terms of the proton-
dark matter cross section σpSI/SD, which for isospin-violating dark matter turns out
to be the relevant quantity to compare when studying potential direct detection
signals [51]. In the spin independent theory, the cross section in equation (3.80)
appears as

σASI = σpSI

(
Np + λn

λp
Nn

)2

, (3.82)

where the spin independent proton cross section is defined as [51]

σpSI ≡
4µ2

χp

π
λ2
p. (3.83)

The value of σpSI can then be used to normalise the theory with respect to exper-
imental constraints of the values of the cross section. In the spin dependent case,
the proton-dark matter cross section is instead [51]

σpSD ≡
3µ2

χp

π
ξ2
p , (3.84)

which gives the nucleus-dark matter cross section at rest

σASD =

= 16
3(2JA + 1)

µ2
χA

µ2
χp

σpSD

[(√
S00 +

√
S11

)
+
(√

S00 −
√
S11

)
ξn
ξp

]2

.
(3.85)
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4
Methods

4.1 Description of the test
A test method for rejecting Majorana in favour of Dirac dark matter for spin-
independent interactions was published by Bradley J. Kavanagh et al. in 2017 [3].
This study constitutes the basis for the test presented in this thesis, which instead
will be developed in the spin dependent interaction theory introduced in the last
chapter. As described in equation (3.77), in the case of Dirac dark matter, the spin
dependent differential cross section for dark matter-nucleus scattering includes a
term which is missing for Majorana dark matter. I will show that the extra term in
the cross section for Dirac dark matter allows for rejection of the Majorana hypoth-
esis in favour of the Dirac hypothesis. The most straightforward way to describe
the proposed test is as follows. One assumes Majorana nature, measures the cross
section for a set of different targets and then compares theory with observations to
see if the extra term in the cross section is present or not. This description leaves
out a lot of important subtleties, more details are presented below.

4.1.1 Detailed test procedure
The difference in Majorana and Dirac dark matter differential cross section should,
in theory, make it possible to distinguish between the two, given that measurements
of scattering cross sections are made. Assuming Majorana dark matter, and that
two targets X and Y have given a scattering signal due to dark matter nucleus
interactions, the measured cross sections would be (as per integration of equation
(3.77)):

σXSD, M =
16µ2

χX

2JX + 1

(√
SX00λ

M
00 +

√
SX11λ

M
11

)2
, (4.1)

σYSD, M =
16µ2

χY

2JY + 1

(√
SY00λ

M
00 +

√
SY11λ

M
11

)2
. (4.2)

These two equations can be rewritten as

σXSD, M(2JX + 1)
16µ2

χX

=
(√

SX00λ
M
00 +

√
SX11λ

M
11

)2
, (4.3)

σYSD, M(2JY + 1)
16µ2

χY

=
(√

SY00λ
M
00 +

√
SY11λ

M
11

)2
. (4.4)
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Given an experimental measurement of the cross sections and the relevant target
properties JA and µχA, the left hand side of each of these two equations is known.
Since the target nucleus properties are assumed to be determined, the values of
SX00, S

X
11, S

Y
00 and SY11 are known as well. Effectively, the two equations (4.3) and

(4.4) then describe two parallel lines each in the {λM00 , λ
M
11} parameter space. The

slope of each pair of lines is kX =
√
SX00/S

X
11 and kY =

√
SY00/S

Y
11 respectively.

Thereby, for kX 6= kY , there will always be four different intersection points between
the four lines. In these four intersection points, the values of {λM00 , λ

M
11} will be

consistent with both experiment X an Y . Note that changing the signs, i.e. letting
{λM00 , λ

M
11} → {−λM00 , −λM11}, connects the four solutions with each other in such a

way that actually only two of them are different. This means that there in practice
only will be two intersection points of interest. This is shown in Figure 4.1, where
each experimental measurement of a cross section corresponds to two parallel lines.

X

Y

λ00
M

λ11
M

Figure 4.1: The four lines in {λM00 , λ
M
11} parameter space due to the two measured

cross sections for experiment X and Y . The two cross sections are consistent with
each other at the intersection points of the lines, where the values of {λM00 , λ

M
11}

agree.

In conclusion, two measurements of signals from dark matter scattering off dif-
ferent targets can always be described by a rescaled Majorana model. However, if
one were to add a third experiment Z and measure the cross section σZSD, M, a new
set of parallel lines would be introduced, allowing for two different outcomes:

1. One or both of the new lines passes through one of the two intersection points
that are compatible with experiment X and Y . This means that up to a sign
difference, the values of {λM00 , λ

M
11} would have been determined. In this case

all three experiments would then be consistent with the Majorana particle
nature, and we would thus not be able to tell it apart from Dirac. One such
outcome is depicted to the left in Figure 4.2.

2. None of the new lines passes through the earlier intersection points. This
would imply that the three measurement are inconsistent. The assumption of
Majorana dark matter would then be wrong, meaning that it must be of Dirac
nature. One such outcome is depicted to the right in Figure 4.2.
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X

Y

Z

λ00
M

λ11
M

X

Y

Z

λ00
M

λ11
M

Figure 4.2: Two examples of possible outcomes after adding a third experiment
Z to the test procedure. To the left all three experiments agree on a set of values
{λM00 , λ

M
11}, making discrimination impossible. To the right, there is no point at

which all three experiments agree on a set of values, and discrimination is thereby
possible.

An important attribute of the test has now been revealed; within the given frame-
work for fermionic dark matter, it can only confirm the nature of Dirac dark matter.
It will never be able to verify the Majorana nature, as all measurements will always
be consistent with each other in this case. A more direct explanation of this phenom-
ena can be seen by comparing equations (3.68) and (3.73). The Dirac differential
cross section can always be reduced to a Majorana-like form, but not the other way
around. This asymmetry of the test can also be seen in a third way, by looking at
the Lagrangian of the theory in equation (3.46). The even terms, corresponding to
axial vector interactions, are present for both particle nature descriptions, but only
Dirac nature has odd terms that correspond to tensor interactions. The Majorana
Lagrangian is thus a special case of the Dirac Lagrangian, leading us to the same
conclusion regarding the test as before.

4.1.2 Properties of the test
As concluded in the last section, in order to discriminate between Dirac or Majorana
dark matter, the detected scattering events must be from a Dirac particle. We have
seen that the nucleon Lagrangian couplings can be rewritten into {λM00 , λ

M
11} for

Majorana dark matter and {λ00, λ11, f} for Dirac dark matter. If the measurements
are due to a Dirac dark matter particle, the test will boil down to comparing the
three measured cross sections under the two different particle nature assumptions.
For the three different experiments, this is described by the following system of
equations:

σASD, M = σASD, D, (4.5)

where the targets A runs over A = X, Y, Z. If we can find values of λM00 , λ
M
11 that

makes this system inconsistent, we would successfully have excluded Majorana dark
matter and thereby confirmed the particle nature to be described by Dirac theory.
At this point, we can observe that several parameters that have influence on the
cross section, such as the nucleus spin JA and reduced mass µχA, does not affect
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if the system is consistent or not. This is because of the common factors of the
differential cross sections, as can be seen in equations (3.68) and (3.73). Another,
perhaps more astonishing, observation is that the comparison of the cross section
works equally good under a global rescaling of the couplings, so the actual value
of the cross sections are not of relevance. Only eventual differences in the actual
values of the cross sections matters in this case, but the accuracy with which the cross
section can be measured depend on the coupling constant values. For applications of
the test, a more interesting question is the opposite: what parameters are the ones
that does matter for the comparison? As described earlier in this test description
(see e.g. equation (4.3) and the following discussion), the relevant parameters are
actually the square root of the nuclear structure functions

kA =

√√√√SA00
SA11

, (4.6)

for the different targets. The test is highly sensitive to changes in this quantity, and
as discussed above, it relies on the targets having different values for kA.

4.1.3 Choice of targets
In the spin independent test [3], the target property of importance is the num-
ber of protons divided by the number of neutrons Np/Nn rather than the quantity√
S00/S11. This means that the choice of targets in the spin independent case is

made with respect to proton-to-neutron ratios, while in the spin dependent case the
choice will be based on values of

√
S00/S11 instead. These values for some standard

dark matter direct detection targets [45], have been gathered in Table 4.1.
It would be convenient if the targets with maximal differences in the two quantities

would overlap, so that the same experiments could be used to carry out both the
spin dependent and spin independent test. Unfortunately, this does not seem to
be the case for the standard dark matter direct detection targets studied here.
For instance, silicon and argon make great targets when studying potential spin
independent signals due to their big difference in proton-to-neutron ratio, as can
be seen in Table 4.1. It is also apparent from there that both silicon and argon
are useless for studying spin dependent theory, as their nuclear spin is zero. The
optimal choice of targets to study is thus different in the two cases. In the spin
dependent case considered here, the target setup constructed from Table 4.1 that
gives the best spread in

√
S00/S11 is {127I, 23Na, 19F}. The discrimination procedure

was thus based on this set of targets, and the results are presented in chapter 5.
However, in the case that one wants to study both spin independent and spin

dependent interactions at once, it can also be seen from Table 4.1 that choosing
targets that have quantities suitable for both should be possible, but some compro-
mises would have to be made. For instance, considering experimental data from the
three experiments 131Xe, 127I and 73Ge, one should in theory have values of Np/Nn

and
√
S00/S11 that are different enough between the targets to be able to use them

simultaneously for both purposes, but since xenon and germanium have similar val-
ues for

√
S00/S11, the area in parameter space where discrimination is possible might
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turn out to be small. A test based on this setup is presented in chapter 5 as well.

Nucleus Np/Nn

√
S00/S11

Silicon (28Si) 1.0 0
Argon (40Ar) 0.82 0

Germanium (73Ge) 0.78 1.03
Xenon (131Xe) 0.70 1.05
Iodine (127I) 0.72 1.66

Sodium (23Na) 0.92 1.17
Fluorine (19F) 0.9 0.96

Table 4.1: A summary of potential dark matter experiment targets and their values
of the quantities Np/Nn and

√
S00/S11. The values for S00 and S11 were obtained

using dmformfactor, see section 4.2.

As this thesis only looks at one particular isotope of all the target elements in
Table 4.1, the atomic number is from here on dropped for simplicity. For instance;
28Si will from now on be written as Si, 40Ar as Ar etc.

4.1.4 Restriction on parameters for which the tests works

As observed, the quantity that decides what target candidates to use is
√
S00/S11. A

crucial condition for being able to discriminate between Dirac and Majorana is then
that all targets have different values for this quantity. However, it turns out that
standard stable nuclear targets have very similar values, as seen in Table 4.1. As a
result of this, the values of σASD, M and σASD, D will be so close that their difference will
fall within experimental and statistical uncertainties [3]. This seems to make the test
impossible to carry out in practice, but there are certain combinations of parameters
where the difference between σASD, M and σASD, D is bigger. This phenomena appears
when the parameters λM00 , λ

M
11 and f are such that there is a cancellation in the

first term of the Dirac cross section in one of the targets. As can be seen from e.g.
equation (3.77), such cancellations takes place when λM11/λ

M
00 = −

√
S00/S11, where

λM00 and λM11 are decided from measurements. When this happens for a target A,
it gets no contribution from the first term in the cross section. As we know, the
Majorana cross section only has the first term, so effectively we get

σASD, M = 0 (4.7)

and

σASD, D ∝ 2λM00λ
M
11(f − 1)

√
S00S11 = −2λM 2

00 (f − 1)S00, (4.8)

where we have used that λM11 = −λM00

√
S00/S11.The problem to make the difference

between σASD, M and σASD, D as large as possible has thus been reduced to making the
value of σASD, D as large as possible. From equation (4.8), we see that this happens
when f is close to −1. In conclusion, the test is possible to carry out if:
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• λ11/λ00 ≈
√

S00
S11

,
• f ≈ −1,

where we have used that −λM11/λ
M
00 = λ11/λ00 for f ≈ −1, as seen from equation

(3.77). Note that this constraint only needs to be fulfilled for one of the targets. In
fact, if this cancellation happens for two targets, the test will fail, as only one cross
section would then be measured. This is also a problem that arises if two of the
targets have too similar values of

√
S00/S11, meaning that the cancellation in one of

them will bring a partial cancellation in the other one as well. This effect is shown
in a comparison in the results, see Figure 5.3.

4.1.5 Other limitations of the test
In the discussion of the last section we have four fundamental even/odd dark matter-
nucleon couplings (ξDp , ξDn , ξD̄p , ξD̄n ), where only ξDp and ξDn appear for Majorana dark
matter. We have also seen that these couplings can actually be written in terms of
three free parameters for each particle nature description, {λM00 , λ

M
11 , f} for Majorana

and {λ00, λ11, f} for Dirac. This means that in the end the differential cross section
only depends on these three parameters, and it follows that there is no way to, by
considering direct detection experiments only, break the degeneracy between the
four fundamental dark matter-nucleon couplings by using the presented test.

The overlap between the two differential cross sections in equations (3.68) and
(3.77) constitutes the foundation of the discrimination test, but for coupling values
that gives exactly f = ±1, the test would end up failing to work, as both Dirac and
Majorana dark matter then would give the same differential cross section. Regions
in parameter space where this is the case will then be inconclusive already from a
theoretical perspective. All cases where the Majorana and Dirac direct detection
cross section has the same signal will make the text inconclusive. In practice, this
happens when:

• The Dirac fermion only interacts either via axial vector or tensor interactions,
but only one of them. This corresponds to the spin dependent Lagrangian
only having one of the two terms considered here.

• The dark matter couples only to protons or neutrons, but not both. This
would imply that λM00 = λM11 and λ00 = λ11 in the two models, taking away the
possibility of the right combinations of couplings for discrimination.

• The particle or antiparticle cross section of the Dirac signal is zero for all
nucleus or the density of dark matter particles/antiparticles is very different
from each other (note that these densities here are assumed to be equal).

• The value of the couplings to protons over the coupling to neutrons is the same
for particle and antiparticle dark matter, i.e. ξDp

ξDn
= ξD̄p

ξD̄n
.

4.1.6 Application of the test to measurements
In practice, the test would need the experimental measurement of two cross sections
σXSD, M and σYSD, M to start with. From our earlier discussion, we know that this would
give two sets of values for {λM00 , λ

M
11}. As the test assumes Majorana dark matter,

these values of {λM00 , λ
M
11} can be used to calculate the cross section σZSD, M that would
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be expected from the third measurement, based on the cross section values of the
first two. Also following the earlier discussion, the signal is assumed to be due to
a Dirac dark matter particle which gives a cross section σZSD, D, as a Majorana dark
matter particle would not be identified by the test. The expected cross section σZSD, D
can then be compared to the measured one with a measure δ defined as [3]

δ =

(
σZSD, D − σZSD, M

)2

(
σZSD, D

)2 . (4.9)

Small values of this quantity means that the Majorana and Dirac description of the
cross section have a big overlap, implying that the experimental setup considered
is badly suited for the test. On the other hand, large values of δ suggests that the
discrimination between Dirac and Majorana should be possible for the considered
experimental setup. At this point, it becomes apparent that having similar

√
S00/S11

for two of the targets will make the test less conclusive. If the cancellation of the
first term in the cross takes place for one of these two targets, it will approximately
do so for the other one as well, giving a low cross section signal to study. In practice,
it is thus of interest to choose targets such that:

• Target Z has a cancellation in the first term of the cross section, i.e.
λ11/λ00 ≈

√
S00/S11.

• The three targets have values of
√
S00/S11 that are well separated from each

other.
The original test for the spin independent case came published together with Math-
ematica code for the plotting of δ as function of the spin independent couplings λp
and λn [3]. This code was modified in order for it to be usable in the spin dependent
case, i.e. to plot δ as a function of λ00 and λ11. To illustrate the effect on the value
of δ that comes from having different value of

√
S00/S11 for all targets, an experi-

mental setup of {I, Na, F}, with
√
S00/S11 = {1.66, 1.17, 0.96} (as seen in Table

4.1), was studied and compared to another setup. This second setup was {I, Fake,
F}, with

√
S00/S11 = {1.66, 1/3, 0.96}, where Fake is a mock-target with the same

properties as Na apart from the value of
√
S00/S11. A comparison of the δI-values

for these setups is presented in Figure 5.1.
The value of δI for an experiment containing {I, Xe, Ge} was calculated, where Xe

was included due to it being an important experimental target already implemented
in direct detection searches [52], as well as having a suitable value of

√
S00/S11 =

1.05. The resulting contour plot of δI is shown in Figure 5.2, together with the
δI-value for {I, Na, F} for comparison. The experimental target setup {I, Xe, Ge} is
also interesting because all of the targets have a non-zero value of both Np/Nn and√
S00/S11, making it a potential candidate setup to study both spin independent

and spin dependent interactions.
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4.2 Numerical tool for form factor calculations
As we have seen through this thesis, the spin dependent interaction between spin
1/2 dark matter particles and target nuclei depend on the form factor functions S00
and S11, related to W ττ ′

k as described in equations (3.66) and (3.67). They describes
the transition from nucleons to the target nucleus. These form factors can be found
from experimental data input, in a way to form closed analytic expressions for the
nucleus theory, given a nucleon theory input. These calculations were done in a
open source Mathematica code called dmformfactor [45]. This code gives, with
nucleus data as input, the nucleus form factors W ττ ′

k . This is done by assuming
a standard shell-model for the nucleons in the nucleus and expanding the nucleon
wave functions in a harmonic oscillator basis, which leads to Slater-determinant
expressions for W ττ ′

k in terms of nucleon spins. These calculations are explained in
detail in [45]. One of the subroutines in dmformfactor directly returns the value
of S00 and S11. Using this function, expressions for S00 and S11 were obtained for
Xe and Ge, two of the five targets proposed for the spin independent test in [3].
They are the only ones with nuclear spin out of the suggested targets for the spin
independent study, and are thus included due to the overlap between their usability
in both tests. In addition, the targets I, Na and F were added to this study, and
their values of S00 and S11 where also calculated with dmformfactor. A list of all
values for

√
S00/S11 studied here was given in Table 4.1.

4.3 Statistical procedure and discrimination
This section gives the foundation for the statistical procedure employed in [3], but
other approaches, such as Bayesian statistics, could in principle also be used. This
thesis does not include any statistical treatment of the test, but this section is
included for completeness and as a starting point for eventual future use of the
results presented here.

In the treatment of the particle physics in the test, we have seen that the set of
parameter points in the spin dependent theory can actually be described entirely
by the three free parameters λ00, λ11 and f for a given dark matter mass mχ. We
have also seen that the relevant parameter space is actually given by the parameter
point {λ11/λ00, f}. At each such parameter point, a set of mock direct detection
signals, i.e. a number of made up detector events, can be generated in the studied
experimental ensemble. The maximum likelihood of obtaining the data can then
be calculated under the two different hypothesis of Majorana and Dirac particle
nature. As per the discussion above, this gives us the following structure of the two
hypotheses, denoted HM and HD respectively:

• HM : Majorana dark matter, parameters Θ = {mχ, λ00, λ11, f = ±1},
• HD : Dirac dark matter, parameters Θ = {mχ, λ00, λ11, f ∈ [−1, 1]}.

The likelihood used by Kavanagh et. al is a background-free extended likelihood.
For experiment k, the likelihood considered is

Lk(Θ) = e−Ne(Θ)

No!
(Ne(Θ))No ΠNo

i=1P (E(i)
R |Θ), (4.10)
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where No is the number of observed events in experiment k, observed at recoil
energies E(1)

R , . . . , E
(No)
R . For a underlying set of parameters, given by Θ, Ne denotes

the number of expected events in experiment k. Finally, P (E(i)
R |Θ) is the probability

of an event at energy ER to be measured. From this experiment-likelihood, the full
likelihood for all included experiments is given by

L(Θ) = ΠNexper.
k Lk(Θ), (4.11)

with Nexper. denoting the number of experiments considered. Under each of the two
hypotheses HM and HD, the maximum likelihood, i.e. the largest possible value of
L(Θ), can be obtained by sampling the parameters {λ11/λ00, f} on a grid around
the point where the cancellation in the first term in the cross section takes place.
We denote these maxima as L̂M and L̂D respectively. The likelihood described in
equation (4.11) turns out to be possibly multimodal, making obtaining L̂M and L̂D
complicated. A detailed explanation of how this problem is solved is discussed in
Appendix A of the spin independent test [3]. When one has found L̂M and L̂D, a
test statistic q, defined as

q = −2(logL̂M − logL̂D), (4.12)

can be formed to compare the two maximum likelihoods. This test statistic is,
under the Majorana hypothesis, asymptotically half chi-squared distributed with
one degree of freedom [3, 53]. The one degree of freedom is due to the extra non-
restrained parameter f that appears in HD and not in HM [3]. From the q-value, one
can obtain a corresponding p-value, i.e. the separation of the probability distribution
for the Majorana and Dirac hypotheses, and from there obtain the significance at
which the Majorana hypothesis HM can be rejected in favour of the Dirac hypothesis
HD.

In order to carry out the statistical analysis in practice, one would have to simulate
mock data for the observed number of events No under the two different hypotheses
(or use future experimental data, if dark matter signals are found). The number
of events is related to the different cross sections of the two theories by integration
of equation (2.8). For a given number of observed events, one would then be able
conclude a significance at which theoretical discrimination is possible, as done by
Kavanagh et al. [3].
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Results

The main result found in this study is the effect that the quantity
√
S00/S11 has on

the discrimination probability. We have seen that larger difference in this quantity
between the targets makes identifying Dirac particles easier, and we will now see how
this quantity would effect discrimination for experiments consisting of three standard
dark matter direct detection targets. As discussed in chapter 4, and therein defined
as a function of the Dirac/Majorana cross sections σD and σM , we have calculated

δ =

(
σD − σM

)2

(σD)2 , (5.1)

for one of the three targets in each experimental setup. The region in {f, λ11/λ00}
parameter space where discrimination between Dirac and Majorana particles is most
likely then reveals itself as the regions where δ takes large values. As earlier noted,
the test compares ratios of the cross sections, meaning that their magnitude does
not affect the tests outcome in theory. However, if the cross sections are too small,
there will not be enough events to calculate their value in the first place, meaning
that there will be no data to apply the test to.
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In order to demonstrate the importance of having different values of
√
S00/S11 for

the targets, a comparison between the setups {I, Na, F} and {I, Fake, F} is made for
δI . Fake is a non-existing target nucleus with the same properties as sodium (Na),
apart from having

√
S00/S11 = 1/3. As per Table 4.1, iodine (I) has

√
S00/S11 = 1.66

and sodium has
√
S00/S11 = 1.17. This implies that the target setup {I, Fake, F}

will have a larger difference of
√
S00/S11 between the targets than {I, Na, F}. This

comparison of δI for the two setups can be seen in Figure 5.1.
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Figure 5.1: The discrimination quantity δI for iodine in the experimental ensemble
{I, Na, F} is shown to the left. To the right δI for the mock setup {I, Fake, F} is
shown, where the value of

√
S00/S11 for the mock target Fake has been chosen to be

1/3. The difference in δI is seen in the difference in size of the coloured regions.
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A comparison between δI was also made between {I, Na, F} and the targets {I,
Xe, Ge}, where xenon (Xe) and germanium (Ge) has values

√
S00/S11 = 0.70 and

0.78. The result is shown in Figure 5.2.
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Figure 5.2: The δI value for iodine in the experimental ensembles {I, Na, F} (to the
left) and {I, Xe, Ge} (to the right). The region in parameter space where discrimina-
tion can be made between Dirac and Majorana is shown in colour, where a brighter
colour implies better circumstance for discrimination. A very slight difference in the
size of these regions appears.
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Finally, in order to investigate the effect of having cancellation in one of two
targets with close values of

√
S00/S11, δF and δNa are compared for the setup {I,

Na, F} in Figure 5.3.
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Figure 5.3: The δF -value for fluoride in the experimental ensemble {I, Na, F}
is shown to the left. The δNa-value for sodium in the same experimental setup
is shown to the right. The region in parameter space where discrimination can
be made between Dirac and Majorana is shown in colour, where a brighter colour
implies better circumstance for discrimination. No such region is observed here, due
to the similar value of

√
S00/S11 for the two targets.
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The plots showing parameter space restrictions of discrimination in chapter 5 shows
that, in theory, it should be possible to confirm the particle nature of a Dirac dark
matter particle that interacts only via spin dependent interactions. The values
of δ all agree with the theoretical predictions, both for good and bad setups for
discrimination. An interesting observation can be made by comparing Figures 5.1
and 5.2. Consider the much wider region of δ-values different from 0 in Figure 5.1 due
to the larger split in

√
S00/S11 values in the mock-setup. From this, one is easily lead

to believe that the closer two of the three targets are in terms of
√
S00/S11 values,

the region in parameter space where discrimination is possible would get smaller
and smaller. While this is indeed true, there seems to be a kind of saturation of
this scaling. Looking at Figure 5.2, where the difference in

√
S00/S11 between Xe

and Ge is only 1.05 − 1.03 = 0.02 compared to 1.17 − 0.96 = 0.21 for Na and F,
the discrimination area is roughly the same in both setups. This is a very useful
attribute if the test were to be carried out in practice and this region of parameter
space would turn out to be of interest. One could then use both the experimental
setup {I, Na, F} and {I, Xe, Ge} to investigate the spin dependent discrimination.

The lack of δF - and δNa-regions with non-zero value in Figure 5.3 agrees with
our earlier conclusion that having cancellation close to the

√
S00/S11 value of two

targets might lead to a low discrimination possibility. The same result can actually
be seen in the plots presented by Kavanagh et al. for the spin independent case [3],
but in those cases the area of possible discrimination is just smaller, not zero. This
effect would be an interesting thing to investigate further if one were to combine
the two tests in some way in the future. Here, we settle for just concluding that
cancellation in a third target with

√
S00/S11 very different from the other two is the

best way to possibly confirm spin dependent Dirac dark matter particles within this
particular framework.

It is important to note the various limitations of the test described here. First
and foremost, this test is not designed to verify the existence of dark matter. It is
entirely dependent on already having dark matter signals at hand for the targets
considered. The test can then be used to investigate the particle nature of the verified
dark matter particle. Apart from this, we have also seen some further constraints
on the test. An especially important one is given on which parts of {λ11/λ00, f}
parameter space that the test work. If the fundamental couplings that appear on
Lagrangian level turns out to place the values of λ11/λ00 and f outside the close
vicinity of a region where cancellation of the first term in the cross section of one of
the targets takes place, the test will fail. We have also seen that the discrimination
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procedure itself is not dependent on the scale of the underlying particle theory, i.e.
under a global rescaling of the couplings to nucleons, the discrimination measure
δ can still have a large value. However, the amplitude of the measured signal is
obviously dependent on the values of the couplings, so discrimination might still
be theoretically possible, while the actual measurements ends up falling within the
background noise of the experiments for certain coupling combinations.

When constructing the differential cross section for Dirac dark matter, we based
our assumption on the standard freeze-out scenario, meaning equal contribution
from particles and antiparticles. If this assumption would turn out to be wrong, the
Dirac differential cross section would have to be weighted to account for the correct
abundance of particles and antiparticles.

We have only considered scattering operators at zero momentum transfer, and
have assumed the rest to be heavily suppressed. Of course, it could turn out that
higher order terms have couplings of sufficiently high order to make them important.
In that case, the amplitude derived from the nucleon Lagrangian would have to be
modified to account for these contributions.

No uncertainties or deviations from the astrophysical models for ρχ or the velocity
distribution f(v) have been reviewed in this work. If one were to carry out the test
in practice, uncertainties of these inputs would also have to be included.
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For the spin dependent theory presented within this thesis, it seems to be theoreti-
cally plausible to conclude the correct particle nature of a Dirac dark matter particle
using only direct detection data. A range of target nuclei, all of which are present
in current direct detection searches for dark matter, that would make this possible
have been presented. They are: 131Xe, 127I, 73Ge, 23Na and 19F. Other target ele-
ments, and isotopes of the ones mentioned here, are also possible candidates, as long
as they have a non-zero nuclear spin and large enough differences in their values of√
S00/S11.
A natural continuation of the work presented in this thesis would be to carry

out a statistical analysis of the discrimination significance to see what amount of
underlying observations would actually be needed in order to successfully discrim-
inate between Dirac and Majorana dark matter. The foundation for this has been
presented here, and turning these results into discrimination significance would be
possible following the statistical procedure outlined in section 4.3.

As seen in the discussion of chapter 6, the test described in this thesis does not
account for the several uncertainties that would have to be considered in order to
confirm a Dirac dark matter particle in practice. It is thereby important to note that
this is only a preparation study, and additional modifications are in order for future
use of the results. At this point, the conclusions here presented are thus only of
theoretical interest. However, they could turn out to be important if future projects
take them into account when using potential dark matter discoveries to study the
particle nature of dark matter.
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