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Modeling of Temperature Dependent Surface Tension Forces
Validation of a Temperature Dependent Surface Tension Framework with
Application to Powder Bed Melt Pool Dynamics
Victor Nilsson
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
One of the challenges with CFD simulations of metal AM is to properly model
the temperature dependent surface tension force driving the melt pool flow. High
density ratio multiphase flows, as between the gas and the liquid metal in melt pool
flow, are considered difficult to model due to the generation of spurious currents
at the interface. At Fraunhofer Chalmers Center (FCC) a state-of-the-art CFD
solver, IBOFlow is developed. In this project the existing surface tension framework
in IBOFlow is improved and extended. A temperature dependent surface tension
model together with a thermo-capillary force is proposed. The new surface tension
framework is assessed and validated so that the melt pool dynamics of metal AM is
accurately modeled.
Different curvature estimation techniques and a technique for calculating the inter-
face normal direction are thoroughly tested and evaluated in order to reduce the
influence of spurious currents on the results. The numerically calculated curvature
and pressure is evaluated and validated against analytical results for a case involving
a static droplet in equilibrium. Further more a temperature dependent surface ten-
sion model is also proposed and validated together with a thermo-capillary surface
tension force. The benchmark case to evaluate the temperature dependent surface
tension and the thermo-capillary surface tension force include a comparison with
thermo-capillary cavity flow.
The result of the static droplet case show a substantial improvement when calculat-
ing the interface curvature and pressure difference across the interface, with results
in line with exact analytical calculations. Furthermore, these improvements also
substantially reduce the spurious currents around the interface. The temperature
dependent surface tension model and the thermo-capillary surface tension force are
validated against an analytical solution and compared to other numerical results of
the thermo-capillary cavity flow. The results show perfect agreement with analytical
values and outperform other numerical studies on the subject. The improved and
extended surface tension framework is then used to demonstrate simulate a single
line melt of a selective laser melting process on a powder bed.

Keywords: Surface Tension, IBOFlow, computational fluid dynamics, CFD, volume
of fluid, VOF, selective laser melting, SLM, multiphase flow.
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1
Introduction

In this chapter a background of the metal additive manufacturing technique is pre-
sented together with the aim of this thesis.

1.1 Background

Additive manufacturing (AM) is believed to be next generation technology. With
a more than 20 year old history it has now become competitive with traditional
manufacturing techniques in terms of cost, speed, reliability and accuracy [1]. Some
research claim that static and fatigue properties of 3D printed steel grades, alu-
minum alloys and titanium alloys typically meet or even exceed properties of cast or
wrought counterparts [2]. Additive manufacturing has been enabled due to develop-
ments in manufacturing and computing techniques such as Computerized Numerical
Control (CNC), Computer Aided Design (CAD) and high-power lasers. The working
principle of additive manufacturing is layer-by-layer build up. Initially a 3D digital
design of a component is drawn using a CAD software. The digital component is
tessellated into triangles which in turn is mathematically cross-sectioned into small
2D layers. The physical build up is made by adding and joining thin fabricated
layers on top of each other until a three-dimensional component is made. The direct
link between digital design and physical component, without the need to employ
traditional manufacturing processes such as drilling, bending, and cutting makes
AM a rapid prototyping and manufacturing technique [3, 4, 5].

In metal AM the intrinsic dynamics of the melt pool is of great concern. High tem-
perature cause the metal to melt and liquefy. The dynamics of the liquid metal is
governed by the Navier-Stokes equations. The low Bond number (Bo) and the high
Laplace number (La) for liquid metals, such as titanium alloys, indicate that surface
tension forces dominate and gravitational and viscous forces are small [6]. Problems
arise when modeling the surface tension force. Due to a discretization imbalance be-
tween the curvature and the associated pressure gradient artificial velocities appear
at the interface. These velocities grow in magnitude and can deform the interface.
The curvature in the current surface tension model has been revised using height
functions and an improved interface normal calculation method. Furthermore the
temperature dependent surface tension material property of liquid metals in con-
junction with sharp temperature gradients lead to strong thermal-capillary forces in
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1. Introduction

the melt pool.

There are different techniques for modeling the melt pool and the heat transfer dur-
ing metal AM. Some of the techniques used include finite element method (FEM) [7],
Lattice Boltzmann methods (LBM) [5], geometry-based simulations [8] and compu-
tational fluid dynamics (CFD) [4]. In the literature several numerical simulations of
a single line melt on a powder bed can be found. A review of FEM simulations are lo-
cated in [9]. These FEM based simulations are generally used for simulating the heat
distribution in the building material and the substrate and calculate residual stress.
These simulations generally do not model the fluid flow of the individual melting
particles. Instead they treat the powder as a homogeneous continuum with effective
thermo-mechanical properties. This formulation miss out the small scale physics
involved in AM such as local consolidation of particles. In [5] a 2D LBM method
is used to model an electron beam line melt. In this study individual randomly
distributed particles are considered. Phenomena including wetting and capillary
forces are included in the model. The electron beam is modeled as a Gaussian heat
source. Wetting condition is numerically tested as well as process parameters. The
impact of particle distribution is discussed. However, the thermal-capillary effect is
neglected. In [6] the LBM simulations are extended to layer upon layer fabrication
and consolidation mechanisms. In [10] a CFD simulation is performed to model
a single line melt on a powder bed, comparing the effect of laser melt with and
without surface tension. It is concluded that surface tension has a big impact on
the melt flow dynamics. Here thermal-capillary effect is not included. The same
author in [11] extends his laser model by the use of a ray tracing as well as adding
thermo-capillary force and recoil pressure force to the model. The packing density
of the particles in the simulation is fairly low.

In this project a state-of-the-art CFD multi-phase flow solver IPS IBOFlow, de-
veloped by Fraunhofer-Chalmers Centre for Industrial Mathematics (FCC), will be
used to simulate the melt pool of the SLM process [12, 13]. IBOFlow has previously
been used to successfully simulate a number of different industrial application, such
as fiber suspension flow [14],[15], rotary bell spray simulation [16], and sealing appli-
cation [17]. Including cases where surface tension play a pivotal role [18]. However,
the surface tension was considered constant i.e. no varying surface tension and no
tangential surface tension force has been simulated. To be able to more accurately
capture the dynamics of the melt pool, the existing surface tension framework has
been extended with a temperature dependent surface tension model and thermo-
capillary surface tension force. The proposed improvements of the existing frame-
work are assessed thoroughly and the new additions to the surface tension framework
are evaluated and validated against analytic results. The improved and extended
surface tension model is used in IBOFlow existing AM framework to simulate a
single line melt of the SLM process.

2



1. Introduction

1.2 Aim

The aim of this thesis is to evaluate and validate the improved and extended tem-
perature dependent surface tension framework in IBOFlow. This is done in order to
demonstrate a single line melt on a metal powder bed simulation where the surface
tension force affect the motion of the liquid metal.

3
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2
Additive Manufacturing

In this chapter a thorough description of the industrial relevant metal additive manu-
facturing technique selective laser melting is presented. This is followed by a section
describing the physical phenomena occurring during selective laser melting.

2.1 Selective Laser Melting

Selective laser melting (SLM) is a metal AM technique based on using a laser to
fully melt a selected part of a metal powder bed to manufacture 3D parts. When
using SLM, new complex parts can be constructed which has previously not been
possible due to the limitations of conventional manufacturing techniques. For exam-
ple cellular structures, parts with internal structure or heat flux canals [19]. SLM
is also considered most suitable for parts requiring unique configuration and which
are produced in a small number of quantities. Example of such part are dental and
medical devices, and low turnover replacement parts. Furthermore, metal AM is
also suitable for parts where strength is a major concern such as machinery and air-
craft. [20]. The advantage of SLM is that near fully dense component for functional
use can be produced directly from a digital computer aided design (CAD) file, thus
lowering the time-to-market substantially compared to conventional manufacturing
techniques [3]. In the following section a SLM system is described. This is follow
by a description of the process cycle and the process parameter of SLM. Lastly,
common material of SLM process are presented.

2.1.1 Selective Laser Melting System

A SLM machine consists of a laser system, scanner system, building chamber and a
powder storage chamber. In Figure 2.1 a typical SLM machine is depicted.

5



2. Additive Manufacturing

Figure 2.1: Depiction of a typical Selective Laser Melting machine

In Figure 2.1 the feeding material, i.e. the metal powder, is stored to the left in
the powder storage chamber. On the right side a part is being fused together from
metal powder inside the building chamber. Both the powder storage chamber and
the building chamber are placed on top of vertically movable pistons. A powder
delivery system, consisting of either a roller or a doctor blade, delivers the powder
from the storage chamber to the building chamber and distributes the particles over
a substrate. Above the building chamber a scanner system directs and guides the
laser onto the powder filled substrate. In SLM, a solid state laser such as Nd:YAG
or Yb:YAG laser is usually used; however, a CO2 laser can be used as well. The
fabrication takes place inside an enclosed chamber. This is because an inert gas is
needed to reduce oxidation of the heated metal powder. The size of the part to be
manufactured is limited by the size of the building chamber. [21]

2.1.2 Process cycle and Process parameters

At the start of a SLM process cycle a layer of metal powder is deposited on a
substrate. Usually the powder particles are between 20− 50µm in diameter. Then
a selected part of the metal powder is irradiated by a high powered laser so that the
powder is heated up and in turn starts to melt. The laser moves rapidly back and
forth in straight lines to scan a 2D selected area corresponding to a cut section of
a 3D part. As the metal particles melt and liquefies they coalesce into a melt pool.
When the heat source has passed, the melt pool cools down and solidifies to form
the product. It is important that the current powder layer fuses together with the
previous layer so that a 3D part can be formed from 2D cross sections. After the
laser has completed the scan of the current layer, a piston lowers the substrate by
one layer height. A new layer of powder is then distributed on top of the previous
one. The process of melting and powder layer distribution is repeated until a three
dimensional part is constructed. The powder loss is very low in SLM, and all unused
powder, i.e. powder that has not been melted, is sieved and can be reused to create
new parts from AM.

6



2. Additive Manufacturing

There are five building parameters which control the SLM process. These are pow-
der layer height denoted H, laser scanning speed denoted VL, laser power denoted
PL, laser spot size denoted DL, and Hatch spacing. Hatch spacing refers to the
space between two line melts. Today the impact of a specific combination of these
process parameters on particular powder material are not fully understood and trial
and error experiments has to be conducted in order to find the optimal process pa-
rameters. The process parameters directly affect the melt flow which in turn affect
the mechanical properties of the constructed part [6]. Usually the scanning speed
varies between 500-3500mm/s and the laser power ranges from 50-400W. The layer
thickness is usually between 20-100µm [4]. All above parameters affect the porosity,
layer connectivity and the surface roughness of the part being produced [6].

2.1.3 AM materials

Only a limited number of metals and alloys has been commercially used as powder
for SLM. Among these are titanium alloys, nickel super alloys, aluminum, tool steel
and stainless steel where the titanium alloy Ti-6Al-4V is being the one far most
investigated [22]. Ti-6Al-4V or Ti64 is a common material in metal AM. Ti64
consist of of around 90 wt% titanium, 6 wt% aluminum and 4 wt% vanadium. Ti64
has a high specific strength which makes it useful for medical implants, turbine
blades and aero engines [23]. Due to the rapid cooling occurring in metal AM dense
fine grain microstructure is formed. This fine microstructure gives the Ti64 excellent
material properties. The inert gas used in the building chamber is usually Argon
(Ar). Helium can be used as well; however, Helium is more expensive.

2.2 Physical phenomena of SLM

During the SLM process several physical phenomena are present which influence
the process stability and the quality of the finished part. As the laser irradiates the
material the photon and electron energy is transformed into thermal energy by ab-
sorption. The laser is reflected at the particle surface allowing deep penetration into
the particle bed and the substrate. During the intensive heating the material melts
and forms a melt pool. Convection of the melt pool is driven by different external
forces such as gravity, surface tension, the thermo-capillary effect and evaporation
pressure. The thermo-capillary force is present due to the temperature dependant
surface tension of liquid metals. The metals surface tension lowers with increasing
temperature causing the thermo-capillary force to induce fluid motion away from
the temperature peak in the center of the melt pool and thus increase the heat
transport. Due to high melt pool temperatures the material evaporates and the
resulting vapour pressure additionally drive the fluid motion. Heat transport such
as thermal radiation, convection and evaporation cause heat loss of the melt pool.
As the temperature of the melt pool decreases the material solidifies and forms the
part. In Figure 2.2 an overview of the occurring physical phenomena are presented.
[24]
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2. Additive Manufacturing

Figure 2.2: Physical phenomena as a laser melts a metal particle bed.

In order to simulate the melt flow these physical phenomena needs to be numerically
modeled.

8



3
Surface Tension force balance

In this chapter the significance of the surface tension force on the melt flow is
analyzed. This is done by considering relevant dimensionless groups. Following is a
thorough derivation of the surface balance equation, including a description of both
the normal and tangential component.

3.1 Dimensionless groups in metal AM

The flow of the melt pool in SLM is characterized using two dimensionless groups:
the Bond number (Bo) and the Laplace number (La). The Bond number is defined
as

Bo = ρgL2

σ
, (3.1)

where ρ is the density, g is the gravitational constant, L is the characteristic length
and σ is the surface tension. The Bo number describes the ratio between the impact
of the gravitational forces and surface tension forces on the flow. A high Bo number
means that gravitational forces are dominant over surface tension forces while a low
Bo number (usually less than unity) indicate the opposite. For metal AM, such as
SLM, the density of the liquid metal is in the order of 103 kg/m3, the gravity is in
the order of 10 m/s2 and the surface tension is in the order of 1 N/m. The diameter
Dp of the particles is chosen as the characteristic length, which is usually in the
order of 10−4 m. This leads to:

Bo ≈ 10−4. (3.2)

This means that surface tension forces are dominant compared to gravitational
forces. The Laplace number is defined as

La = σρL

µ2 , (3.3)

where µ is the dynamic viscosity. The La number describes the relation between
the surface tension and the inertial forces to the viscous forces. A high La number

9



3. Surface Tension force balance

means that surface tension and inertial forces are dominant over viscous force and
a low La number (less than unity) indicate the opposite. In metal AM the dynamic
viscosity of the liquid metal is usually in the order of 10−3 PaS. Together with the
previously mentioned parameters, again the length scale L is set to diameter Dp,
this yields a very high La number for metal particles, usually around:

La ≈ 105. (3.4)

This means that surface tension together and inertial forces are dominant over vis-
cous forces. The La number and the Bo number together thus indicate that surface
tension forces are dominant over gravitational and viscous forces in the melt flow
during the SLM process.

3.2 Surface tension

The origin of the interfacial tension, also know as surface tension, between two
fluids lies in different attractive inter-molecular forces. Consider a water molecule
inside a bulk of water. The water molecule is surrounded by neighbour molecules
which it feels mutual attraction with. A water molecule on the surface on the other
hand is surrounded by a lesser amount of attractive neighbours and thus is in an
energetically unfavorable state. The fluid will act to minimize its surface area since
it is energetically costly to create new surface. The result is a energy area density
that acts in all directions parallel to the surface. Surface tension σ has the unit
energy per area or analogously force per unit length.

3.2.1 Derivation of surface force balance

Considering the fluid-fluid interface around a surface S as shown in Figure 3.1. This
surface is bounded by a closed curve C with a surface unit normal n outward and
n̂ inward, so that n = −n̂. A force per unit length of magnitude σ at every point
along this curve C acts in the S-direction to flatten the surface S. Performing a force
balance on volume V over the interface S∫

V
ρ
Du
Dt

dV =
∫
V
fdV +

∫
S
[t(n) + t̂(n̂)]dS +

∫
C
σsdl. (3.5)

The left hand side (LHS) represents the inertial force over the volume element dV .
The first term on the right hand side (RHS) is the body force. The second term on
the RHS denotes the surface forces where t(n) = n · T is the hydrodynamic force
exerted by the upper fluid on the interface and t̂(n̂) = n̂ · T̂ is the hydrodynamic
force exerted by the opposite side, i.e. under the interface. The hydrodynamic forces
act on a surface element dS. The last term on the RHS is the surface tension force
acting along perimeter C where dl is an increment along the curve C.

10



3. Surface Tension force balance

Figure 3.1: Fluid-fluid interface, ρ, µ belonging to upper surface (+) and ρ̂, µ̂
belonging to lower surface (-).

Let ε be a length scale associated the fluid element V as in Figure 3.2. We see that
the LHS and the first term on the RHS, i.e. the inertial force and the body force,
scale with ε3, the surface force scale with ε2 and the line force scale with ε.

Figure 3.2: Control volume around the surface interface, where ε denote the length
elements

As ε −→ 0 the inertial and the body force terms will disappear, so that

∫
S
[t(n) + t̂(n̂)]dS +

∫
C
σsdl = 0. (3.6)

To further evaluate this expression we consider Stokes theorem for an arbitrary
vector F

∫
C
F ·mdl =

∫
S
n · (∇× F)dS. (3.7)

Let F = f × b, where b is an arbitrary constant vector. Substituting the new
definition for F into the the expression above we get

∫
C

(f× b) ·mdl =
∫
S
n · (∇× (f× b))dS. (3.8)

Using two standard vector identities

(f× b) ·m = −b · (f×m), (3.9)
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3. Surface Tension force balance

and

∇× (f× b) = f(∇ · b)− b(∇ · f) + b · ∇f− f · ∇b = −b(∇ · f) + b · ∇f. (3.10)

Inserting into equation above we get

−
∫
C
b · (f×m)dl =

∫
S
n · (−b(∇ · f) + b · ∇f)dS. (3.11)

Since b is a constant vector we thus get

b ·
∫
C

(f×m)dl = b ·
∫
S
(n(∇ · f)− n · ∇f)dS. (3.12)

Since b is arbitrary it vanishes identically. We thus get

∫
C

(f×m)dl =
∫
S
(n(∇ · f)− n · ∇f)dS. (3.13)

Now we choose f = σn and consider that n×m = −s. One ends up with

−
∫
C
σsdl =

∫
S
[n∇·(σn)−∇(σn)·ndS] =

∫
S
[n∇σ ·n+σn(∇·n)−∇σ−σ(∇n)·n]dS.

(3.14)

We note that:

∇σ · n = 0 since ∇σ must be tangent to the surface S, and also that (∇n) · n = 0.

Considering this the final result becomes

∫
C
σsdl =

∫
S
∇σ − σn(∇ · n)dS. (3.15)

In this expression we remove the part of the surface tension gradient that is normal
to the surface and are thus left with the tangential gradient operator which is defined
by

∇s = [I− nn] · ∇. (3.16)

This tangential gradient operator appears only because σ and n are only defined on
the surface. Inserting equation 3.15 into equation 3.6 and replacing the expressions
for the hydrodynamic forces with the ones above one ends up with the surface force
balance equation

∫
S
[n ·T + n̂ · (T̂)]dS =

∫
S
σn(∇ · n)−∇sσdS. (3.17)

Since this equation is defined for an arbitrary fluid volume element the integrand
must vanish identically. The local expression for the stress balance equation thus
reads
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3. Surface Tension force balance

n ·T− n · (T̂) = σn(∇ · n)−∇sσ, (3.18)

where the terms on the LHS of the local surface force balance represent the difference
in stress between the fluid on the upper part and the fluid on the lower part. The
first term on the RHS, σn(∇·n) represent the normal curvature force per unit area
associated with the local curvature of the interface. The second term on the RHS,
∇σ represent the tangential stress which is associated with the gradient in surface
tension.

3.2.2 Normal force balance

We get the normal surface force balance on the interface by taking the scalar product
of surface normal, n, and equation (3.18). This yields

n ·T · n− n · (T̂) · n = σκ = fnσ , (3.19)

where κ = ∇ · n is the curvature. The LHS describes the jump in normal stress
across the interfaces. The RHS describes the curvature force per unit area. These
forces must balance across the interface. We note that if there is no curvature across
the interface i.e κ = ∇ · n = 0 there is no jump in normal force between the two
fluids.

3.2.3 Tangential force balance

The tangential surface force balance is obtained by taking the scalar product of any
surface tangential vector, t, and equation (3.18). This yields

n ·T · t− n · (T̂) · t = ∇sσ = f tσ, (3.20)

where the terms on the LHS describes the jump in the tangential component of
the hydrodynamic stress across the interface of the two fluids. The RHS describes
the gradient of the surfaces tension across the interface. If the surface tension is
constant across the interface the RHS becomes zero. Since the LHS only include
velocity gradients and no pressure, a constant surface tension will yield no motion
of the boundary. A variation of surface tension across an interface can be caused by
concentration gradient or by a temperature gradient. If the surface tension varies
with temperature the tangential surface tension force may be referred to as the
thermo-capillary force.
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4
Modeling framework

In this chapter the governing transport equations which is solved for in IBOFlow is
presented. This includes the Navier Stokes equation, the energy equation and volume
of fluid (VOF) model which is used to model two phase flow. This is followed by a
section about the solution procedure and discretization technique used in IBOFlow.
Lastly a section about the AM modeling framework in IBOFlow is presented.

4.1 Governing equations

In this section the governing transport equations are described. These include the
conservation of mass, conservation of momentum and conservation of energy. This
section include a brief derivation and description of the governing equations, for
further information see [25].

4.1.1 Conservation of Mass

The conservation of mass equation says that the mass in a system is preserved i.e.
no mass is created or destroyed. It is further assumed that no mass sources or
sinks exists in the system so that the mass in the system as well as of each phase
is considered a conserved quantity. The conservation of mass is governed by the
continuity equation, which can be expressed as

∂ρ

∂t
+∇ · ρu = 0. (4.1)

Where t is time, ∇· is the divergence operator and v is the velocity vector. We
assume that the flow is incompressible i.e the density in a fluid parcel is constant in
time and space. The equation is thus reduced to

∇ · u = 0. (4.2)

Equation 4.2 above says that the divergence of the velocity is zero everywhere.
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4. Modeling framework

4.1.2 Conservation of Momentum

The balance of momentum is governed by the momentum equation which reads

ρ
Du
Dt

= ∇ · σ + f, (4.3)

where σ is the stress tensor and f is the body force. The fluid is considred Newtonian
so that the stress tensor is the sum of the pressure pI, and the viscous stress tensor
τ . Writing out the material time derivative on the LHS, applying the continuity
equation and the product rule results in the conservative form of the momentum
balance

∂ρu
∂t

+∇ · (ρuu) = −∇p+∇ · τ + f. (4.4)

The viscous stress tensor is modelled as a linear relation of the strain rate tensor E.
We get the constitutive relation:

τ = 2µS. (4.5)

Where the rate of strain tensor is defined as

S = 1
2(∇u +∇uT ). (4.6)

We finally end up with:

∂ρu
∂t

+∇ · (ρuu) = −∇p+∇ · (µ(∇u +∇uT )) + f. (4.7)

Equation 4.7, and also sometimes together with equation 4.2, are referred to as
the Navier-Stokes equations, which describe the relation between the fluid velocity,
pressure and the applied forces on a system. The flow is considered laminar so no
turbulence models are necessary.

The body forces consider in this problem are gravity, fg and the surface tension force
fσ so that:

f = fg + fσ. (4.8)

Although the surface tension force acts only on the interface between two fluids it is
usually modeled as a body force. This will be discussed further in the section 4.4.4.
The gravity force is expressed through the Boussinesq approximation

fg = ρ0gβ(T − T0) + g, (4.9)

where T is the temperature, ρ0 is the density at the reference temperature T0, g is
the gravity and β is the volume expansion coefficient.
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4.1.3 Conservation of Energy

The energy equation balances energy inside the system with the energy that enters
or leaves the system. The energy equation, without radiation, reads

ρ
De

Dt
= σT∇u−∇ · q + qext, (4.10)

where e is the internal energy, q denotes the conductive heat transfer and qext
denotes the external heat source. We apply Fouriers law to the heat transfer

q = −k∇T, (4.11)

where k is he heat conductivity, which is constant in our case. Since the flow is
considered incompressible the internal energy can be related to the temperature as

de = cpdT, (4.12)
where cp is the heat capacity. Further, we assume that there is no dissipation. This
assumption is possible since the fluid is a common liquid (i.e. not an lubricant oil)
[25]. This results in

DT

Dt
= a∇2T + qext

ρcp
, (4.13)

where a = k
ρcp

is the thermal diffusivity. Applying the material time derivative on
the LHS we end up with

∂T

∂t
+ v · ∇T = a∇2T + qext

ρcp
. (4.14)

4.1.4 Volume of Fluid

The volume of fluid (VOF) [26] method is used to model two phase flow. In the
VOF method a volume fraction function α is introduced. The volume fraction is
defined as

α = Volume of liquid in control volume
Total volume of the control volume . (4.15)

The control volume during the numerical simulations is a computational cell. This
means that for cells in the lighter fluid phase α is unity and in the heavier phase α
is zero. Cells with a value of α between zero and one must contain the fluid-fluid
interface region between the two phases

α =


0, in heavier fluid
0 < α < 1, in cells containing the interface
1, in lighter fluid.

(4.16)
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In the VOF method only a single momentum equation is being solved for the two
phases. The material properties are updated through a linear interpolation between
the two phases

φ = αφl + (α− 1)φg, (4.17)
where φ is denoted a various material property. The volume fraction α and thus
also the fluid-fluid interface is advected through the material time derivative

Dα

Dt
= ∂α

∂t
+ v · ∇α = 0. (4.18)

The location of the interface can be used to set boundary conditions, such as the
surface tension. When solving this equation it is important to retain a low amount of
numerical diffusion otherwise the boundary will smear out and the interface will lose
its definition. This will be discussed further in the section 4.3. The VOF method is
a cheap method in turns of memory and since it follows regions instead of surfaces
all problem associated with intersecting surface are avoided.

4.2 Numerical solution procedure

IBOFlow is a finite volume based solver for incompressible multiphase flow. Navier
Stokes equations, equation (4.2) and (4.7), the transport equation for temperature
(4.14) together with the equation of the volume fraction advection (4.18) are solved
in IBOFlow. The equations are discretized on a Cartesian octree grid which can
dynamically be refined and coarsened the enhance or reduce the resolution of the
flow if necessary. This is convenient in flows which require a refined mesh at local
areas such as the interface between two fluids.

A sequential solution method is employed in IBOFlow. At the beginning of each
time step the Navier-Stokes equations are solved first. Afterwards the temperature
equation (4.14) and the volume fraction advection equation (4.18) is solved. Equa-
tion (4.17) is then used to update the density and viscosity in each computational
cell.

The Navier Stokes equations are solved numerically using the SIMPLEC method.
SIMPLEC is a pressure projection method. SIMPLEC stands for Semi-Implicit
Method for Pressure Linked Equations-Consistent. The SIMPLEC algorithm is
a segregated solution technique which first approximates the momentum equation
with an estimated pressure field and then corrects the pressure by employing the
continuity equation. Applying the pressure field to the previous velocity field results
in a velocity field which satisfies the continuity equation. The method is an iterative
method which iterate until the pressure correction term is very small. The results are
a velocity and pressure field that satisfy the momentum and continuity equations.

All the variables are stored in a co-located grid arrangement. To prevent pressure
oscillation a pressure-weighted flux interpolation by Rhie and Chow [27] is used. An
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implicit Euler scheme is used for the temporal discretization of the unsteady term
in all transport equations.

4.3 Volume fraction advection model

In order to predict the position of the interface accurately and maintain a sharp
interface the volume fraction advection equation must be discretized and solved
for. However this equation is prone to problems with the advection of a step func-
tion, namely how to advect the interface without diffusing, dispersing or wrinkling
it. IBOFlow uses Compressive Interface Capturing Scheme for Arbitrary Meshes
(CICSAM) [28] to numerically solve the volume fraction equation.

CICSAM uses a finite volume discretization based on integral of equation (4.18). The
Crank-Nicolson scheme is used as temporal discretization, which makes it second
order accurate in time. This is also necessary if operator splitting is to be avoided
and if the solution is to be as free as possible from numerical diffusion in all flow
directions.

Depending on the direction of the flow CICSAM uses a smooth blending of ULTIMATE-
QUICKEST, which perserves interface best, and HYPER-C , which is the most com-
pressive differencing scheme. The CICSAM techniques is based on the concept of
normalized variable diagram (NVD) togheter with the convection boundedness cri-
terion (CBC). Furthermore, an additional courant number restriction is used to limit
the upper bound of the CBC region. The CICSAM technique preserves boundedness
over the scalar field. This means that as the scalar field is convected cell values are
limited to 0 6 α 6 1.

4.4 AM framework

In this section the AM modeling framework is presented. This include a laser model,
material models, phase change model, and the surface tension model used.

4.4.1 Laser model

The laser is modeled using a ray tracing algorithm were circular pattern of rays are
directed from an applicator position to the substrate. The rays deposit energy to
the computational cells based on the phase of the cell, more energy is deposited
onto the heavier phase, and depth of the cell, more energy is deposited closer to the
surface of the VOF. This implementation of energy deposition allows for shadowing,
which occurs when particles block the rays from hitting the substrate, and partial
melting of particles.
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4.4.2 Material models

The following material models are used to model the temperature dependent mate-
rial properties. The viscosity of the heavier fluid decreases with increasing temper-
ature. This is modeled with the Arrhenius equation.

lnµ = lnµ0 + ∆Ea
R

T−1, (4.19)

where ∆Ea is the activion energy, R the universal gas constant and µ0 the nominal
dynamic viscosity.

The specific heat capacity, denoted cp, of heavier fluid is dependent if the local cell
is in phase transformation of not. If the fluid cell is solid or liquid the heat capacity
is constant and if the fluid cell is between the melting temperature and the liquidus
temperature the latent heat is added to the heat capacity according to

c̃p =


cp, T > Tl

cp + L
Tl−Tm

, Tm < T < Tl,

cp, T < Tm.

(4.20)

4.4.3 Phase change model

During the SLM process described in section 2.1 the metal is heated to its melting
temperature so that it melts and liquefies. Later during the SLM process the heat
source is removed and the liquid metal cools down and solidifies. In order for the
solid to become liquid and the liquid to become a solid, a phase change model
is needed. The phase change in IBOFlow is modeled using latent temperature.
Two different temperatures are of importance, the melting temperature Tm and the
liquidus temperature Tl. Initially the metal is in a solid state. In the solid state
the velocity is set to zero. As the solid is heated up it remains a solid until its
temperature reaches Tl. When the temperature reaches Tl the metal becomes a
liquid. The movement of the liquid is governed by the Navier Stokes equations.

When the heat source is removed the temperature lowers locally as the heat is
advected and diffuses. When the temperature of the liquid reaches Tm the metal
solidifies and the velocity is set to zero. During the phase change the heat capacity
of the local melting cell is governed by equation (4.20).

4.4.4 Surface tension model

The current surface tension framework in IBOFlow and the problems associated
with it is presented in this section. In this surface tension framework only normal
component of the surface tension force described in section 3.2 is modeled. The sur-
face tension framework is based on the continuum surface force method by Brackbill
et al [29]. The model equation reads
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fσ = fnσ = σκnδ, (4.21)

where κ is the curvature of the liquid-gas interface and δ is the kronecker delta
indicating that the surface tension is only active on the interface. As mentioned in
section 4.1.2 the surface force is modeled as a body force; however, it should only
act on the interface surface. This is resolved by setting δ = |∇α| which makes the
force only present on the interface surface. Further more, the unit normal is given
by

n = ∇α
|∇α|

. (4.22)

This simplifies the expression for the surface tension force to

fσ = σκ∇α, (4.23)

where the gradient of the volume fraction, ∇α is the normal of the VOF interface.
Currently the curvature is calculated according to

κ = ∇ · n = ∇ · ∇α
|∇α|

. (4.24)

When discretizing and calculating the curvature problems arise. While wanting the
interface to remain sharp and also taking the second derivative of the volume frac-
tion field the result will not be a smooth field. Thus resulting in local variations
in the surface tension force. These local variations cause an imbalance with the
associated pressure gradient which will create artificial velocity fields. These arti-
ficial velocity fields are non existing in the actual flow. The artificial currents can
propagate and grow in magnitude which can cause the interface to deform and in
turn break up. Because of these artificial velocities are often referred to as parasitic
or spurious currents. These spurious currents are a result of using the CSF method
when applying the surface tension force on a co-located grid since there will be a
mismatch between the pressure gradient and the applied force.

Laplacian smoothing of the volume fraction at the interface is applied to reduce the
artificial velocities. The Laplacian smoothing operation on a uniform grid reads

ᾱi = 1
N

N∑
j=1

αi + αj
2 . (4.25)

where ᾱi is the new smoothed volume fraction, αi is the old volume fraction in the
current cell, αj is the old volume fraction in the neighbour cell and N is the number
of neighbour cells. The smoothed volume fraction is only used to calculating the
interface normal, ∇α, and the curvature, κ, of the surface tension equation at the
current time step. The Laplacian smoothed ᾱ is not used to convect the volume
fraction field and will not be stored. The Laplacian smoothing operation smooths
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the volume fraction so that a more even interface is produced and artificial currents
are reduced. However, Laplacian smoothing leads to a wide location for where the
surface tension force is applied.

4.4.5 AM Modeling limitations

In order to reduce computational cost and considering the limitations of the current
computational frame work only physical phenomena of the largest impact on the
melt flow dynamics are considered. No reflections of the laser rays will be modeled
as this requires an extremely fine mesh which in turn increase the computational
cost. Ejected particles during at the laser melt, which has been observed during
experimental studies [30], will not be modeled. The particles in the simulation will
be fixed in space during the simulation since the current computational frame work
does not support CFD and DEM coupling.

22



5
Improvements to the Surface

Tension Framework

In this chapter the steps taken to reduced the magnitude of the artificial velocities
generated at interface as mentioned in section 4.4.4 are presented. This include a
method for interfacial smoothing and height functions. Thereafter, a temperature
dependent surface tension material model is presented together with the tangen-
tial surface tension force. These improvements and additions will be analyzed and
validated in chapter 6 and 7

5.1 Interfacial Smoothing

The normal component of the surface tension force is modeled according as

fnσ = σκ∇α. (5.1)

The interface normal or ∇α directly affect the magnitude, and direction the surface
tension force. If the direction of the interface normal can be better approximated a
more accurate normal surface tension force can be achieved. Furthermore ∇α also
affect location of where the normal surface tension force is applied. If a computa-
tional cell has a ∇α value of zero, then there is no surface tension active in this cell.
Thus can ∇α be seen as a marker for where the interface is located and the normal
surface tension is applied.

Laplacian smoothing of the volume fraction, α, at the interface results in a more
accurate direction of the interface normal, ∇α; however, the interface where the
normal surface tension force is applied gets diffuse and wide. Applying the Laplacian
smoothing operator a second time to an already smoothed α results in further better
approximation of the direction of ∇α; however, also an even more diffuse interface.
IBOFlow has up until now only used the Laplacian smoothing operator once to
smooth the α at the interface. A technique where Laplacian smoothing is applied
ten times to the interface to even further improve the direction of ∇α is proposed.
The direction of the inwards interface normal from a ten times smoothed alpha is
compared to the direction of the interface normal from an unsmoothed alpha on a
sphere in Figure 5.1. For a sphere, the analytical inwards normal points towards the
center of the sphere.
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(a) Unsmoothed ∇α. (b) Laplacian smoothing 10 times ∇ᾱ.

Figure 5.1: Inwards normal of the interface of a circle.

This ∇ᾱ has a more correct direction, normal to the interface; however, the inter-
face will be very diffuse causing the normal surface tension force to be active on a
wide amount of cells at the interface. To sharpen the interface where the normal
surface tension force is active the ten times smoothed ∇ᾱ is normalized with the
unsmoothed gradient of alpha. This is done by ∇ᾱ multiplied with the magnitude of
the unsmoothed gradient of alpha |∇α| over the magnitude of the smoothed gradient
of alpha |∇ᾱ|. This normalization procedure reads

∇α̃ = ∇ᾱ |∇α|
|∇ᾱ|

(5.2)

where the ∇α̃ is the improved normal which has been smoothed ten times and then
normalized with the unsmoothed volume fraction gradient. With this normalization
procedure, a computational cell where the magnitude of the surface tension force
was zero before the Laplacian smoothing will again be zero. A sharp interface
where the surface tension force is active has been achieved. A conservative normal
surface tension force has also been attained with this normalization technique. The
Laplacian smoothed and scaled volume fraction is only used in the calculation of a
smooth volume fraction gradient ∇α̃, all other calculations are from the non-diffuse
volume fraction.

5.2 Height functions

In order to reduce spurious currents around the VOF edge the height function tech-
nique is proposed [31][32][33]. The height function method is a technique for cal-
culating interface normals and curvatures. Heights are calculated by summation
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of fluid volume fraction in the direction most normal to the VOF interface. The
direction most normal to the surface is determined by

nmax = max(nx, ny, nz). (5.3)

The normal is originally determined by the volume fraction gradient

n = (nx, ny, nz) = ∇α. (5.4)

Choosing the right direction to sum the volume fraction is important and not trivial
for highly inclined surfaces, in which the magnitude of all three normal components
can be very similar. Therefore, the improved interface normal proposed in the
previous section is used

n = ∇α̃. (5.5)

In 2D the height function summation is done according to a 7x3 stencil, for example
if the direction most normal to the interface is |ny| > |nx|:

Hi =
j+3∑
t=j−3

αi,t∆, (5.6)

where ∆ is the grid size. A 2D example on how the height functions are calculated
can be seen in Figure 5.2.

Figure 5.2: Height function summation at VOF interface (2D)

In 3D the summation is done according to a 7x3x3 stencil. For example if the
direction most normal to the interface is |nz| > |nx|, |ny|:

Hr,s =
tup∑

t=−tdown

αi+r,j+s,k+t∆, (5.7)
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for r = −1, 0, 1 and s = −1, 0, 1. These heights are then used to calculate the
interface curvature κ.

5.2.1 Curvature calculation in 2D

In 2D if the curvature is calculated in the x-direction according to

κ2D = Hxx

(1 +H2
x)3/2 , (5.8)

where the the partial derivatives Hx and Hxx are discretized using second order-
central differences according to

Hx = Hi+1 −Hi−1

2∆ , (5.9)

and
Hxx = Hi+1 − 2Hi +Hi−1

∆2 . (5.10)

5.2.2 Curvature calculation in 3D

In 3D the curvature is calculated according to

κ3D =
Hxx +Hyy +HxxH

2
y +HyyH

2
x − 2HxyHxHy

(1 +H2
x +H2

y )3/2 . (5.11)

In 3D, a "smoother" parameter γ is introduced to improve the accuracy of the
interface curvature computation [32]. The smoother parameter acts to smooth the
first and second partial derivative of H when the angle formed between the height
function direction and the interface normal vector, θ = arccos [max(|nx|, |ny|, |nz|)]
reaches a critical value. The derivatives are calculated as

Hx = γ(H1,1 −H−1,1) +H1,0 −H−1,0 + γ(H1,−1 −H−1,−1)
2∆(1 + 2γ) , (5.12)

Hxx = γ(H1,1 − 2H0,1 +H−1,1) +H1,0 − 2H0,0 +H−1,0 + γ(H1,−1 − 2H0,−1 +H−1,−1)
∆2(1 + 2γ) ,

(5.13)
and

Hxy = H1,1 −H1,−1 −H−1,1 +H−1,−1

4∆2 . (5.14)

Where the smoother parameter γ is defined as
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γ =

0.2 if θ > θcritical

0, otherwise,
(5.15)

with the critical angle chosen as θcritical = 0.8 rad. The smoothing procedure involves
six nodes for Hx and nine nodes for Hxx in the curvature stencil instead of two and
three nodes used when γ = 0. When γ = 0 the equations above produces a standard
second-order finite difference approximation. The values of the smoother parameter
and the critical angle has been taken from [32]. Furthermore, the smoother param-
eter can only be applied in 3D, for which precisely the curvature errors for highly
inclined interface are larger.

5.3 Temperature dependent surface tension

The surface tension of the liquid metals vary with temperature [23],[34]. This is
modeled according to the Eötvös rule, which states that surface tension is a linear
function of the temperature. The temperature dependent surface tension equation
reads

σ(T ) = σ0 + σT (T − Tl), (5.16)

where the variables σ0, σT and Tl are material specific parameter for the nominal sur-
face tension, the surface tension temperature gradient and the liquids temperature,
respectively. The local cell temperature T is obtained from the energy equation.
The temperature dependent surface tension model is only present at the interface
between the two fluids.

5.4 Tangential surface force

With a varying surface tension across the interface the tangential component of the
surface tension becomes non zero. This force component is derived in section 3.2.
The tangential component of the surface tension force is only active on the interface
between the two fluids. In order to achieve this a Kronecker delta, δ, term needs to
be added. The equation now reads

f tσ = ∇sσδ, (5.17)

where δ = |∇α|. The tangential surface tension force term is evaluated by knowledge
of the local surface tension at each cell and using finite difference to evaluate the
surface gradient, ∇s, of the surface tension. This term is added to the normal
component of the surface tension so that the surface balance equation is complete

fσ = fnσ + f tσ = σκ∇α +∇sσ|∇α|. (5.18)
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6
Simulations

In the following chapter validation cases are presented for the improvements and
additions to the surface tension framework in IBOFlow. The improvements of the
framework, the smoothed interface normal and the height functions, are evaluated
and validated using a static droplet in equilibrium. The temperature dependent
surface tension together with the tangential surface tension is validated against a
thermo-capillary flow in a cavity. The validation of the new surface tension model
has been performed with spatial and temporal convergence studies. Finally a single
line melt simulation using the extended surface tension framework is performed to
model the melt pool dynamics during the SLM process.

6.1 Static droplet in equilibrium

A smoothing and scaling procedure is used to improve the direction of the interface
normal, and height functions has been employed in order to better approximate the
curvature of the interface. In order to evaluated these proposed improvements, 2D
and 3D simulations of a static droplet in equilibrium has been performed [35]. The
static droplet in equilibrium case a droplet is placed at the center of a domain and
the simulation setup can be seen in Figure 6.1.
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Figure 6.1: Static droplet in equilibrium.

No outer forces are active, i.e. the gravity is set to zero. For the equilibrium condi-
tion to be fulfilled the droplet should remain still and the interface should not move.
If there exist any numerical imbalances the balancing forces will cause artificial ve-
locities around the droplet thus breaking the equilibrium condition. Therefore, it is
important to numerically solve the balance forces accurately. For this case the exact
analytical pressure jump across the drop is given by

∆pexact = σκ, (6.1)

and the analytic expression for the curvature is given by

κexact =

1/R in 2D,
2/R in 3D.

(6.2)

The drop is positioned at the center of a computational rectangular (2D) or cubic
(3D) domain with side lengths of 8m. The radius of the drop is set to R = 2 m
and the surface tension is set to a constant value of σ = 73 N/m. This resembles an
up-scaled water droplet placed in air. The density inside the drop is ρ1 = 1 kg/m3

and the density of the outer phase ρ2 is varied from 1 to 10−4 kg/m2. The viscosity
inside the drop is set to, µ1 = 0.01 Pas and outside µ2 = 0.001 Pas. The velocity
boundary conditions are free-slip. The simulations is performed on a uniform mesh
where ∆x = ∆y = h with mesh resolution R/h = 5, 10, 20 and, 40.

In order to evaluate the result the following L error norm calculations were performed
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L1(x) = ΣN
n=1|x|
N

, (6.3)

and

Linf(x) = |x|max = max(x), (6.4)

where x is either the velocity field u or the normalized curvature error κerror which
is defined as

κerror = |κ− κexact|
κexact

. (6.5)

6.1.1 2D curvature evaluation

Four different calculations of the curvature are compared in the 2D simulations of
the static droplet in equilibrium. These methods are presented below.

Regular curvature

In the first method the curvature is calculated using the original or regular formu-
lation presented in section 4.4.4,

κ = ∇ · ∇α
|∇α|

. (6.6)

Regular curvature with improved normal

In the second method the curvature is calculated using the regular formulation but
now the improved normal is now used instead so that

κ = ∇ · ∇α̃
|∇α̃|

, (6.7)

where α̃ is smoothed using Laplacian smoothing and scaled.

Height function

In the third method height functions are used according to equation (5.8) in order
to calculate the curvature. The direction in which the height functions summation
stencil is calculated is determined by the normal direction calculated from the regular
volume fraction, ∇α.
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Height functions with improved normal

In the fourth method height functions are used again according to equation (5.8).
However, this time the direction in which the height function summation stencil is
calculated is determined by the improved normal, ∇α̃. A summary of the curvature
estimation techniques can be seen in 6.1.

Table 6.1: VOF interface curvature estimation 2D

Method (Short name) Normal n Curvature κ Note
∇α - ∇ · ∇α|∇α| Regular normal
∇α̃ - ∇ · ∇α̃|∇α̃| Improved normal
HF ∇α

|∇α| HF Regular normal
HF - ∇α̃ ∇α̃

|∇α̃| HF Improved normal

In order to evaluate the different curvature calculation techniques in 2D several
measures are considered, all of which are performed using the static droplet in
equilibrium case. These measures include a mesh study, density ratio study, and a
pressure evaluation study. The results of these studies are presented in section 7.1.1.

The mesh study is performed in order to investigate how the L1 and Linf error norms
of the curvature are affected by the mesh size. In this mesh study the height function
with smoothed interface normal ∇α̃ is not included.

The 2D curvature evaluation is continued with a density ratio study. In this density
ratio study the L1 and Linf error norms of the velocity field are evaluated for three
different density ratios of ρ2

ρ1
= 1, ρ2

ρ1
= 102, and ρ2

ρ1
= 104. This evaluation is

performed in order to investigate how the spurious currents around the VOF edge
are affected by high density ratios commonly occurring in liquid metal and gas flows
such as in metal AM.

Lastly the pressure is evaluated across a line over the domain. The pressure from the
different numerical curvature procedures are compared to the exact pressure (6.1)
in order to evaluate the performance of the different methods.

6.1.2 3D curvature evaluation

To evaluate the curvature in 3D, interface curvature calculations using five different
curvature estimation techniques are considered.

Regular curvature

In the first method the curvature is calculated using the regular formulation pre-
sented in section 4.4.4

κ = ∇ · ∇α
|∇α|

. (6.8)
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Regular curvature with improved normal

In the second method the curvature is calculated using the regular formulation
but now the improved normal is now used where α̃ is smoothed using Laplacian
smoothing and scaling is applied to sharpen the location. The curvature is calculated
as

κ = ∇ · ∇α̃
|∇α̃|

. (6.9)

Height function

In the third method height functions are used according to equation (5.11) to calcu-
late the curvature. The direction in which the height functions summation stencil is
calculated is determined by the normal direction calculated from the regular volume
fraction, ∇α. In this method the smoother parameter, γ, described in equation
(5.15) is set to zero such that the partial derivatives of the height functions are
calculated using standard second order central difference scheme.

Height function, γ

In the fourth method height functions are used again according to equation (5.11)
to estimate the curvature. The direction in which the height functions summation
stencil is employed is determined by the normal direction calculated from the regular
volume fraction, ∇α. However, this time the smoother parameter, γ, is used when
calculating the partial derivatives of the height functions.

Height functions, γ, with improved normal

In the fifth method height functions are also again used according to equation (5.11).
The smoother parameter, γ, is used when calculating the partial derivatives of the
height functions. However, now the direction in which the height function summa-
tion stencil is calculated is determined by the improved normal, ∇α̃. This technique
for calculating the curvature improves the direction in which the stencil for the
height function is laid out. A summary of the curvature estimation techniques can
be seen in 6.2.

Table 6.2: VOF interface curvature estimation

Method (Short name) Normal n Curvature κ Note
∇α - ∇ · ∇α|∇α| Regular normal
∇α̃ - ∇ · ∇α̃|∇α̃| Improved normal
HF ∇α

|∇α| HF Regular normal, γ = 0
HF - γ ∇α

|∇α| HF Regular normal
HF - γ - ∇α̃ ∇α̃

|∇α̃| HF Improved normal
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Multiple measures are considered in order to evaluate the different curvature es-
timation techniques in 3D, all of which are performed using the static droplet in
equilibrium. As with the 2D evaluation a mesh study, density ratio study, and a
pressure evaluation comparison is performed. On top of this the curvature error and
the velocity vectors are plotted on the surface of the 3D sphere. The results are
presented in section 7.1.2.

The mesh study, density ratio study, and the pressure evaluation in 3D are performed
in the same manner as in the 2D evaluation. The visualization of the curvature error
κerror and velocity vectors are on top of the 3D droplets surface is done in order to
visualize at what location the magnitude of the error occur and how the magnitude of
the error and its location is altered using different curvature calculation techniques.

6.2 Tangential surface tension force validation

In order to validate the temperature dependent surface tension and the tangential
surface tension force a steady 2D thermo-capillary cavity flow is considered. The ge-
ometric setup with thermal boundary conditions can be seen in Figure 6.2. Initially
a fluid fills the cavity up to a height of h = 0.2 m. The velocity boundary condition
at the cavity walls are set to slip and the top is set to open. This case has been
extensively tested in literature in both 2D and 3D, with and without gravity compo-
nent included [36],[37],[38]. An asymptotic analytic solution has been found for the
2D case without gravity by Sen and Davis [39]. Experiments has been performed to
validate the 3D case with gravity [40]. In this report a 2D simulation was performed
without gravity. This simulation has been validated against the asymptotic solution
and also compared against other numerical simulations.

Figure 6.2: Thermo-capillary cavity flow setup with temperature boundary condi-
tion, grey indicate phase 1 and green phase 2.
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In order to compare the results to the asymptotic solution and the literature numer-
ical simulations with similar setup in terms of dimensionless quantities is required.
The dimensionless numbers are:
The thermal-Reynolds number:

Re = ρ|σ|∆Th
µ2 = 1, (6.10)

Prandtl number:
Pr = µ

ρa
= 0.2, (6.11)

Marangoni number:

Ma = |σ|∆Th
µa

= Re ∗ Pr = 0.2, (6.12)

and Capillary number:

Ca = |σ|∆T
σref

= 0.008. (6.13)

Where ∆T = TH−TL and the aspect ratio is A = h/L = 0.2, where L is the length of
the domain in the x direction. The dimensionless groups are used to determine the
material parameters. The density and the viscosity of the fluid under the interface
are set to unity. The material properties of the fluid above the interface are set
to equal material properties of the fluid below the interface; however, the viscosity
is set to zero. A linear varying temperature dependent surface tension is applied
according to

σ(T ) = σ0 + σT (T − Tl), (6.14)

where σ0 and σT are set to satisfy the given dimensionless numbers.

6.2.1 Spatial and Temporal convergence

In order to verify that the mesh size and the simulation time step does not influence
the solution, spatial and temporal convergence studies are performed. The temporal
convergence test was performed by lowering the simulation time step ∆T until the
position of the interface at steady state did not change. The temporal convergence
study was performed on a uniform grid with grid size ∆ = 5e−3 m. The time steps
were ∆T = 50µs, 25µs, and 12.5µs.

The spatial convergence test was performed on a uniform grids. The grid size, ∆x,
was reduced until the position of the interface at steady state was not changed. The
following grid sizes were considered ∆x = 0.02 m, 0.01 m, 5e−3 m, and 2.5e−3 m.
The different mesh sizes can be seen in Figure 6.3.
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(a) 50x50 (b) 100x100

(c) 200x200 (d) 400x400

Figure 6.3: Mesh convergence study, mesh sizes.

6.3 Single line melt simulation

A single line melt simulation of the SLM process is performed with the improved nor-
mal surface tension force, temperature dependent surface tension, and the tangential
component of the surface tension force. This simulation is performed to demonstrate
metal AM melt pool modeling with low Bo number and high La number. In this
section the setup of the single line melt simulation, the process parameters and the
material properties of simulation are presented.
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6.3.1 Simulation setup and process parameters

A single line melt simulation consists of a laser sweeping over a metal particle bed
in a straight line. The particles melts as the laser heats them up and solidifies as
the laser is removed and the heat is convected.

It is well know that a stochastic distribution of particles on the substrate will affect
the characteristics of the melt such as width and depth of line melt. Despite this
only a prearranged uniform particle placement pattern was used in the simulations.
The particles in the simulation were closely packed so the packing density is close
to experimental conditions where the particles will fill the bed. In an experimental
setup the size of the metal particles varies, usually according to a normal distribu-
tion; however, in this simulation only mono-sized particles were considered. Only a
single layer of particles was considered so that the particle diameter was the same as
the layer height. The particle size was set to Dp = 60µm. The particle arrangement
can be seen in Figure 6.4.

Figure 6.4: Particle bed bead arrangement

The laser was set to move with a speed of VL = 1m/s. The laser spot diameter was
set to DL = 150µm and the laser power was set to PL = 225 W. The domain size
was set to Nx = 32, Ny = 6, Nz = 15 with cell size ∆ = 5e− 5. The VOF edge was
refined in three steps in order to more accurately capture the interface. The VOF
edge refinement can be seen in Figure 6.5
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Figure 6.5: Mesh refinement at VOF edge

The initial simulation time step was set to ∆T = 0.1 ns. When the simulation
started the time step was ramped up to ∆T = 7.5 ns with a constant ramping step
of 0.1 ns. This was done in order to simulate sharp temperature jump when the laser
was turned on and also enable a faster simulation later.

Three simulation cases were performed: A gravity driven simulation were no surface
tension forces are present, a constant surface tension simulation with only normal
surface tension present, and a simulation with temperature dependent surface ten-
sion with both normal and tangential surface tension force. These simulation were
performed in order to investigate the impact of different surface tension phenomena
on the melt pool flow.

6.3.2 Material properties

The materials used for the SLM simulation were Ti-6Al-4V (Ti64) for the particles
and the substrate, and Argon (Ar) for the surrounding gas in the building chamber.
In order to properly model liquid Ti64 accurate thermo-physical material property
values are required. The melting temperature of Ti64 is denoted Tm and has a
value of Tm = 1878 K. The temperature above which Ti64 is completely liquid i.e.
the liquidus temperature denoted Tl is 1928K. As the temperature of Ti64 increase
the dynamic viscosity decreases. This relation is modeled with an Arrhenius model
equation (4.19). The active energy for Ti64 is ∆Ea = 11153.7 J and the nominal
dynamic viscosity is to µ0 = 1.665 · 10−3 PaS .

The surface tension of Ti64 decreases with increasing temperature. This relation is
linear and is modeled using equation (5.16). For Ti64 the nominal surface tension
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is σ0 = 1.522 Nm and the surface tension variation with temperature is σT = −5.5 ∗
10−4 Nm/K. The density of Ti64, denoted as ρ, is constant and has a value of
ρ = 4475 kg/m3. The thermal conductivity, denoted k, is also constant and attains
a value of k = 27 W/mK. The specific heat capacity of the Ti64 is modeled according
to equation (4.20) where the heat capacity cp = 730 J/kgK latent heat, L = 360000
J/kg. In table 6.3 the material properties of Ti64 are summarized. The material
properties of Ti64 are from references [41] and [23].

Table 6.3: Material properties of Ti-6Al-4V

Ti-6Al-4V
Material property Symbol Value Unit
Density ρ 4475 kg/m3

Viscosity (Nominal) µ 1.665E-3 Pa s
Surface tension (Nominal) σ 1.522 Nm
Thermal conductivity k 27 W/mK
Heat capacity cp 730 J/kgK
Melting temperature Tm 1878 K
Liquidus temperature Tl 1928 K

In order to model the transport of the Ar and its temperature distribution the mate-
rial properties of Ar is needed. All the material properties of the Ar are considered
constant. The density of Ar attains a value of ρ = 1.619 kg/m3. The dynamic viscos-
ity of Ar is µ = 2.23∗10−5 Pa s. The specific heat is cp = 523 J/kgK and the thermal
conductivity is k = 0.0172W/mK. Below in table 6.4 the material properties of Ar
is summarized.

Table 6.4: Material properties of Argon

Argon
Material property Symbol Value Unit
Density ρ 1.619 kg/m3

Viscosity µ 2.23E-5 Pa s
Thermal conductivity k 0.0172 W/mK
Heat capacity cp 523 J/kgK
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7
Results

In this chapter the results from the simulations described in chapter 6 are presented.
The cases include curvature evaluation of a static drop in 2D and 3D, Thermo-
capillary cavity flow and SLM single line melt simulation.

7.1 Curvature Evaluation

The curvature at the VOF interface is numerically calculated for a static drop in
equilibrium in both 2D and in 3D. The results from the different curvature calcula-
tion techniques mentioned in 6.1.1 and 6.1.2 are presented. First the 2D simulation
results are presented, then follows the results from the 3D simulation.

7.1.1 Static Drop in 2D

In this section the results from the 2D simulation of the static droplet in equilib-
rium are presented. First the result from the mesh study is presented. Then the
density ratio study results follows and lastly the results of the pressure evaluation
is presented.

Mesh study

The L1 and L∞ norms of the curvature error for the five different mesh sizes are
presented in Figure 7.1. In the Figure only the results from the simulations using
the regular ∇α, ∇α̃ and the height function are presented.

As can be seen in Figure 7.1 when using height functions to calculate the curvature
both the L1 and the L∞ error norms of the curvature error is lower compared to
the respective error norms when calculating the curvature using the regular ∇α and
∇α̃. When using height functions both the L1 and the L∞ error norms decreases
as the grid resolution gets finer. The spatial convergence rate when using height
functions is close to second order. When the curvature is calculated using ∇α and
∇α̃ the L1 and the L∞ error norms increase when the gird resolution is finer.
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(a) L1 error norm (b) L∞ error norm.

Figure 7.1: Error norms of the curvature error κerror, L1, (left) and , L∞, (right).

Density ratio study

In table 7.1 the L1 and the L∞ norms of the velocity for the different density ratios
are presented.

Table 7.1: 2D: Error norms for different curvature calculation methods for increas-
ing density ratios

Density ratio ρ2
ρ1

L1(u) L∞(u)
∇α

100 8.1272× 10−3 2.9244× 10−2

102 1.3180× 10−1 8.6831× 10−1

104 5.7831× 100 5.0876× 101

∇α̃
100 1.0043× 10−3 3.9598× 10−3

102 1.3184× 10−2 1.2476× 10−1

104 7.9473× 10−1 7.9891× 100

HF
100 9.9592× 10−4 2.6160× 10−3

102 2.4013× 10−2 1.2714× 10−1

104 1.6194× 100 1.0068× 101

HF - ∇α̃
100 4.1629× 10−4 1.1045× 10−3

102 8.0545× 10−3 5.2262× 10−2

104 5.6824× 10−1 4.1225× 100

As can be seen in table 7.1 both the L1 and L∞ error norms of the velocity increases
as the density ratio increases for all the different curvature estimation methods.
Both the L1 and L∞ error norms are lower when using height functions and further
lowered with improved direction (HF - ∇α̃) as compared to when using the ∇α and
∇α̃ curvature calculation techniques. It can be inferred from table 7.1 that the L1
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and L∞ error norms are lowered more for lower density ratios for both the height
functions techniques compared to using ∇α and ∇α̃. For high density ratios the
L1 and L∞ error norms are not reduced as much when using height functions. This
means that as the density ratio is increased the height functions does not reduce the
spurious current to the same degree as with low density ratios.

Pressure evaluation

In Figure 7.2 the pressure is plotted across the domain for the density ratio ρ2
ρ1

= 1
at two different simulation times, t = ∆t and t = 50∆t. The sharp jump in pressure
occurs due to the interface surface tension between the two phases.

(a) Pressure across the domain at
t = ∆t.

(b) Pressure across the domain at
t = 50∆t.

Figure 7.2: Pressure, numerical and exact across droplet ρ2
ρ1

= 1

As can be seen in both Figure 7.2a (left) and 7.2b (right) when the density ratio
ρ2
ρ1

= 1 the pressure from ∇α̃ simulation is closer to the exact solution compared to
∇α simulation for both simulation times. It can also be inferred that when using
height functions the numerically calculated pressure is further closer to the exact
pressure.

In Figure 7.3 the pressure is plotted across the domain for the density ratio ρ2
ρ1

= 102

again at two different times, t = ∆t and t = 50∆t.
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(a) Pressure across the domain at
t = ∆t.

(b) Pressure across the domain at
t = 50∆t.

Figure 7.3: Pressure, numerical and exact across droplet ρ2
ρ1

= 102

As can be seen in both Figure 7.3a (left) and 7.3b (right) when the density ratio
ρ2
ρ1

= 102, the ∇α̃ simulation is closer to the exact pressure compared to the ∇α
simulation at both t = ∆t and t = 50∆t. Using height functions results in an even
more correctly predicted pressure. It can also be inferred that when the density
ratio increases, from ρ2

ρ1
= 1 to ρ2

ρ1
= 102, the HF-∇α̃ simulation performs better

than HF especially at t = ∆t. When comparing Figure 7.3a to 7.3b we see that the
calculated pressure is closer to the exact pressure when t = 50∆t than t = 1∆t for
all the curvature calculation methods. This is due to a numerical imbalance when
initializing the volume fraction field on a discrete grid. The imbalance corrects itself
as the simulation progresses.

In Figure 7.4 the pressure is plotted across the domain for the density ratio ρ2
ρ1

= 104

again at two different simulation times, t = ∆t and t = 50∆t.

(a) Pressure across the domain at
t = ∆t.

(b) Pressure across the domain at
t = 50∆t.

Figure 7.4: Pressure, numerical and exact across droplet ρ2
ρ1

= 104
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As can be seen in both Figure 7.4a (left) and 7.4b (right) when the density ratio
ρ2
ρ1

= 104, ∇α̃ is closer to the exact solution compared to ∇α for both simulation
times. Using height functions results in further better calculated pressure. When
the density is further increased, from ρ2

ρ1
= 102 to ρ2

ρ1
= 104, the HF - ∇α̃ simulation

result in better predicted pressure compared to HF. Again a numerical imbalance
occurs due to the initialization of the volume fraction field at t = ∆t. This imbalance
is corrected when t = 50∆t.

From Figure 7.2-7.4 it can be inferred that the numerically calculated pressure de-
viates more from the exact pressure as the density ratio increases. It can be also
be inferred that using height function improves the pressure calculation in terms of
accuracy. The best performing curvature calculation technique to best approximate
the pressure in 2D is the HF - ∇α̃ method as it on point with the regular HF method
for low density ratios and slightly better in high density ratios.

7.1.2 Static Drop in 3D

In this section the results from the 3D simulation of the static droplet in equilibrium
are presented. Firstly the results from the mesh study is presented. This is followed
by the visualization of the curvature error and velocity vectors on the droplet. Then
the result of the density ratio study is presented and lastly the pressure evaluation
is presented.

Mesh Study

The L1 and L∞ norms of the curvature error for the five different mesh sizes are
presented in Figure 7.5.

(a) L1 norm of κ. (b) L∞ norm of κ.

Figure 7.5: L1 norm of κ (left) and L∞ norm of κ (right) for different curvature
estimations calculations.

As can be seen in Figure 7.5 when using height functions to calculate the curvature
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the L1 error norm of the curvature error is substantially lower compared to when
calculating the curvature using the regular ∇α and ∇α̃ for all the five different
mesh sizes. When using height functions the L1 error norm decreases as the grid
resolution gets finer. The L∞ error norm behaves more irregularly than the L1 error
norm. However, it can still be seen that the L∞ error norm is reduced when using
height functions. Overall the HF-γ −∇α̃ has the lowest L1 and L∞ curvature error
norms.

Visualization of curvature error and velocity vectors

In Figure 7.6 the curvature error is plotted on top of the 3D sphere for the ∇α, HF,
HF-γ, and HF-γ −∇α̃ curvature calculation techniques.

(a) ∇α (b) HF.

(c) HF - γ. (d) HF - γ - ∇α̃.

Figure 7.6: Curvature error, κerror, using different curvature calculation techniques

In Figure 7.6 we see where the curvature error is reduced when using height functions.
The areas where the curvature error remains large can also be seen and how these
areas are further improved when using HF−γ −∇α̃.
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In Figure 7.7-7.9 the velocity vector at the VOF interface is plotted for a 2D cut
section of the sphere. Three different curvature calculation methods are compared,
the ∇α, ∇α̃, and HF−γ−∇α̃ methods. Further more the velocity vector are plotted
for three different density ratios ρ2

ρ1
= 1, ρ2

ρ1
= 102, and ρ2

ρ1
= 104.

(a) ∇α. (b) ∇α̃. (c) HF - γ - ∇α̃.

Figure 7.7: Velocity around VOF edge, curvature calculated using, ∇α, (left), ∇α̃
(middle), and using Height functions for ρ2/ρ1 = 1.

(a) ∇α. (b) ∇α̃. (c) HF - γ - ∇α̃.

Figure 7.8: Velocity around VOF edge, curvature calculated using, ∇α, (left), ∇α̃
(middle), and using Height functions for ρ2/ρ1 = 102.

(a) ∇α. (b) ∇α̃. (c) HF - γ - ∇α̃.

Figure 7.9: Velocity around VOF edge, curvature calculated using, ∇α, (left), ∇α̃
(middle), and using Height functions for ρ2/ρ1 = 104.

From Figure 7.7-7.9 it can be inferred that the spurious currents around the VOF
edge increase as the density ratio increases. Furthermore it shows that using ∇α̃ to
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calculate the curvature reduces the spurious currents and using HF-γ −∇α̃ further
reduces the spurious currents around the VOF edge.

Density ratio study

In table 7.2 the L1 and the L∞ norms of the velocity for the density ratios ρ2
ρ1

= 1,
ρ2
ρ1

= 102, and ρ2
ρ1

= 104 are presented.

Table 7.2: 3D: Error norms for different curvature calculation methods for increas-
ing density ratios

Density ratio ρ2
ρ1

L1(u) L∞(u)
∇α

100 3.4408× 10−3 1.1465× 10−2

102 4.5483× 10−2 4.4301× 10−1

104 2.0243× 100 3.4093× 101

∇α̃
100 6.3156× 10−4 1.6895× 10−3

102 1.3161× 10−2 6.4854× 10−2

104 9.3642× 10−1 6.0108× 100

HF
100 1.3126× 10−3 2.9471× 10−3

102 3.2100× 10−2 1.5581× 10−1

104 2.2417× 100 1.3531× 101

HF - γ
100 1.3091× 10−3 2.9473× 10−3

102 3.2111× 10−2 1.5582× 10−1

104 2.2438× 100 1.3531× 101

HF - γ - ∇α̃
100 5.0812× 10−4 1.3316× 10−3

102 1.0587× 10−2 5.6445× 10−2

104 7.8292× 10−1 5.2524× 100

As can be seen in table 7.2 both the L1 and L∞ error norms of the velocity increases
as the density ratio increase for all the different curvature estimation methods.
Both the L1 and L∞ error norms are lower when using height functions and further
lowered with HF -∇α̃ and HF - γ−∇α̃ as compared to when using the∇α curvature
calculation techniques.

Pressure ratio evaluation

In Figure 7.10 the pressure is plotted across the domain for the density ratio ρ2
ρ1

= 1
at two different times, t = ∆t and t = 50∆t.
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(a) Pressure across the domain at
t = ∆t.

(b) Pressure across the domain at
t = 50∆t.

Figure 7.10: Pressure, numerical calculations and exact across drop ρ2
ρ1

= 100

As can be seen in both Figure 7.10a (left) and 7.10b (right) when the density ratio
ρ2
ρ1

= 1 the pressure from∇α̃ simulation is closest to the exact pressure. However, the
∇α̃ simulation fails to produce a sharp pressure jump. When using height functions
the numerically calculated pressure jump is sharp and closer to the exact pressure
than the ∇α simulation.

In Figure 7.11 the pressure is plotted across the domain for the density ratio ρ2
ρ1

= 102

again at two different times, t = ∆t and t = 50∆t.

(a) Pressure across the domain at
t = ∆t.

(b) Pressure across the domain at
t = 50∆t.

Figure 7.11: Pressure, numerical calculations and exact across drop ρ2
ρ1

= 102

As can be seen in both Figure 7.11a (left) and 7.11b (right) when the density ratio
ρ2
ρ1

= 102, the height function simulations produce a sharp pressure jump for both
simulation times. At t = 50∆t the height functions pressure calculation are close
to the exact pressure. As the density ratio increases, from ρ2

ρ1
= 1 to ρ2

ρ1
= 102, the
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height function simulation performs better. As in 2D the pressure correct itself at
t = 50∆t compared to t = ∆t due to the initialization of a volume fraction field on
a discrete grid.

In Figure 7.12 the pressure is plotted across the domain for the density ratio ρ2
ρ1

= 104

again at two different simulation times, t = ∆t and t = 50∆t.

(a) Pressure across the domain at
t = ∆t.

(b) Pressure across the domain at
t = 50∆t.

Figure 7.12: Pressure, numerical calculations and exact across drop ρ2
ρ1

= 104

As can be seen in both Figure 7.12a (left) and 7.12b (right) when the density ratio
ρ2
ρ1

= 104, the height function simulations produce a sharp pressure jump and again
the calculated pressure is close exact pressure at t = 50∆t. Again the pressure
correct itself after t = 50∆t due to the initialization of a volume fraction field on a
discrete grid.

From Figure 7.10-7.12 it can be inferred that when using height functions to cal-
culate the curvature a sharp pressure jump is achieved. At t = 50∆t the height
functions simulations produce a pressure close to the exact pressure when the den-
sity is ρ2

ρ1
= 102 and ρ2

ρ1
= 104. The overall best curvature calculation technique to

best approximate the pressure is the HF - γ − ∇α̃ method as it produces a sharp
pressure jump and of the height function techniques is closest to the exact pressure.
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7.2 Thermo-capillary cavity flow

Thermo-capillary cavity flow simulations with three different time steps were per-
formed. The height of the interface along x at steady state for the three different
time steps are shown in Figure 7.13. The boxes in Figure 7.13a are enlarged in
Figure 7.13b and 7.13c.

(a) Temporal convergence study, height of interface along x

(b) Height of interface near x = 0. (c) Height of interface near x = L.

Figure 7.13: Temporal convergence study

In Figure 7.13 we see that the difference between the interface height using three
different time step is small. Thus has the solution converge in terms of time step
size.

A mesh study of the thermo-capillary cavity flow was conducted. The thermo-
capillary cavity flow simulation was performed with four different grid sizes. The
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height of the interface along x at steady state for the four different mesh sizes is
shown in Figure 7.14. The boxes in Figure 7.14a are enlarged in Figure 7.14b and
7.14c.

(a) Height of interface along x

(b) Height of interface near x = 0. (c) Height of interface near x = L.

Figure 7.14: Mesh convergence study

From Figure 7.14 we see that the difference in interface height for the different grid
sizes is small. In table 7.3 the height of the interface at the two end points x = 0
and x = L, for the four different grid sizes are presented.
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Table 7.3: Mesh study thermo-capillary cavity

Mesh Study
Mesh Size\Height h(x=0) h(x=L)
50x50 0.18767 0.21220
100x100 0.18757 0.21229
200x200 0.18754 0.21232
400x400 0.18751 0.21235

The difference in height is small enough indicating that the solution has converged
with respect to mesh size. Thus has a solution which is independent of the mesh size
and time step been obtained. The height at the end points of the cavity is compared
against literature in table 7.4. As can be seen in 7.4 the solution from IBOFlow is
almost identical to the analytic solution by Sen and Davis [39].

Table 7.4: Height at cavity ends comparison

Height at cavity ends comparison
Analytical solution h(x=0) h(x=L)
Sen and Davis (Eq. 5.3c) [39] 0.188 0.213
Numerical solutions h(x=0) h(x=L)
IBOFlow 0.188 0.212
Sasmal and Hochstein [37] 0.174 0.224
Truchas [38] 0.187 0.209
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7.3 Single line melt

In this section the result of the single line melt simulations are presented. The
curvature in the single line melt simulation was calculated using the HF−γ − ∇α̃
method. Three different simulations were performed, a gravity driven simulation
with no surface tension active, a constant surface tension simulation, and a temper-
ature dependent surface tension simulation with thermo-capillary force. The result
of the gravity driven simulation at three different time steps can be seen in Figure
7.15.

(a) Simulation time: t = 20000∆t

(b) Simulation time: t = 40000∆t

(c) Simulation time: t = 60000∆t.

Figure 7.15: Single line melt with no surface tension

In Figure 7.15 the liquid metal flow is calm, and does only flow downwards. This
is because the only present force on the liquid metal is gravity. No other outer
forces are acting on the flow. The gravity force is weak since the metal particles are
small and will thus not cause strong forces on the flow. In Figure 7.16 the result of
constant surface tension simulation is presented for three different time steps.

In Figure 7.16 the liquid metal flow is more chaotic. As the laser traverses across
the substrate the metal particles are heated above their melting temperature and

54



7. Results

(a) Simulation time: t = 20000∆t

(b) Simulation time: t = 40000∆t

(c) Simulation time: t = 60000∆t.

Figure 7.16: Single line melt with constant surface tension

start to melt. The liquid metal is pulled by the surface tension force, which greatly
affect the flow. However, as the surface tension is constant only a normal surface
tension force is present and no tangential movement of the surface can occur. In
Figure 7.17 the result of the temperature dependent surface tension single line melt
simulation is presented.

In Figure 7.17 the liquid metal flow is again chaotic. Temperature dependent surface
tension cause tangential movement of the liquid metal flow. The liquid metal is
warmest at the center of the laser spot causing the surface tension to be lowest
there. With the tangential surface tension force present the surface is pulled towards
the location with the highest surface tension, i.e outwards from the current laser
spot position. This causes a deeper penetration into the metal particles and the
substrate as liquid is pulled away from the laser spot. This in turn causes keyholing
phenomena. Keyholing occurs when a heat source penetrates deep into a substrate
causing a deep hole. The hole is then partially covered by flowing liquid collapsing
if the hole gets too deep. The liquid metal then rapidly solidifies when the heat
source is removed. This causes empty pockets and porosity which in turn cause
poor mechanical performance of the finished part.
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(a) Simulation time: t = 20000∆t

(b) Simulation time: t = 40000∆t.

(c) Simulation time: t = 60000∆t.

Figure 7.17: Single line melt with temperature dependent surface tension

From Figure 7.15-7.17 it is inferred that the surface tension has a strong impact on
the metal flow during metal AM. A temperature dependent surface tension results
in a further detailed description of how the liquid behaves.
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Conclusion

The surface tension framework in IBOFlow is extended and improved. An improved
method for calculating the curvature is assessed and evaluated. The new curvature
calculation method is compared to analytical results of a static drop in equilibrium.
Grid studies of the new curvature calculation method show that the curvature error
is further reduced as the grid gets finer in both 2D and 3D. Studies on the density
ratio between the phases show that the spurious currents are reduced. However, as
the density ratio between the phases increase the improvement is less pronounced
and the magnitude of the spurious currents is still fairly large. Further more the
pressure is evaluated across the droplet and compared to analytical exact result.
With the new curvature calculations the numerically calculated pressure is closer to
the exact value in both 2D and 3D.

A temperature dependent surface tension model together with a thermo-capillary
surface tension force is proposed and validated. The temperature dependent surface
tension model together with the thermo-capillary surface tension are validated using
a thermo-capillary cavity flow benchmark case. Spatial and temporal convergence
test show excellent convergence. The results are compared to analytical solution
and show almost perfect agreement. Thus are the temperature dependent surface
tension model and the thermo-capillary surface tension force correctly modeled.

The new surface tension framework is used to simulate a single line melt of a selective
laser melting process. First is a simulation without any surface tension performed.
Only gravity drives the melt flow in this simulation. Then a constant surface tension
simulation is performed. Lastly a temperature dependent surface tension simulation
is performed. The results of the three simulations were compared and the effect of
the surface tension on the melt pool flow is evaluated. With the extended surface
tension framework the melt pool flow is more dynamic concluding that temperature
dependent surface tension and thermo-capillary surface tension force are important
when modeling metal AM.

Even though melt pool simulations were demonstrated, with a full surface tension
force model, further addition of physical model are required to accurately simulate
the melt flow behaviour. A proposed next step is to implement a vapour pressure
model into the framework to account for the evaporation of the liquid metal.

The density study with the new curvature method indicate that the although the
curvature has been improved something else is causing artificial velocities to appear.
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A possible suggestion is that the discretization technique currently used is causing
the velocities to appear. This needs to be further investigated.
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