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Abstract

Low Grade Glioma is a slow growing brain tumour, whose size is estimated using
Magnetic Resonance Imaging and is treated with a combination of surgery, radia-
tion and chemotherapy. However, cancer cells often remain after surgery leading
to recurrence of the tumour and eventually death. To address this problem the
Fisher equation has been considered, a partial differential equation describing how
the cancer cell density changes over space and time. The Fisher equation can thus
be fitted to patient data by comparing the tumour growth rate and the slope of the
tumour interface, properties that is hypothesized to affect the survival time of the
patients. The aim of this project is to simulate tumour growth to give additional
information about Low Grade Glioma that can not be estimated directly from Mag-
netic Resonance images, but requires mathematical modelling. To do this, tumour
properties have been estimated from data and statistically tested to investigate their
potential effect on survival. Also, we have compared different methods of solving
the Fisher equation and fitted the equation to data through parameter estimation
techniques. The results show that two out of three investigated tumour properties
have a significant effect on survival. The parameter estimation was successful and
the different numerical methods for solving the Fisher equation yielded similar re-
sults for most cases. Additional information about the tumour was estimated from
the Fisher equation, but the reliability of these results could be questioned. The
main caveat is the simplicity of the Fisher equation and the small size of the patient
data set. One solution could be to include the effect of surrounding tissue in the
Fisher equation, but this requires accurate data containing many measurements for
all patients. A second approach could therefore be to create a model using Non
Linear Mixed Effect modelling, with the Fisher equation as the framework, in order
to make the model more accurately capture the variation among patients.

Keywords: Low Grade Glioma, Fisher equation, survival analysis, particle swarm
optimization.
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1
Introduction

1.1 Background

Low Grade Gliomas are slow growing brain tumours that primarily affect adults
with mean age at diagnosis of approximately 41 years [2, 3]. Glioma in general are
classified according to a grade ranging from I to IV, where Low Grade Glioma cor-
responds to a Grade II glioma. Although patients suffering from Low Grade Glioma
have relatively better chances of survival than patients with the more aggressive
cancer type High Grade Glioma (Grade III/IV glioma) Low Grade Glioma eventu-
ally progress to High Grade Glioma, giving rise to a survival time of approximately
seven years [3]. It is thus of great importance to detect the cancer in time, which
can be done using Magnetic Resonance Imaging.
Magnetic Resonance Imaging (MRI) is the most commonly used tool for locating
and estimating the size of the tumour [4], using either the acquisition sequence
T1 or T2-FLAIR, where FLAIR stands for Fluid-Attenuated Inversion Recovery.
These sequences enhances or suppress the imaging of different matter in the brain
and thus give rise to images with different resolution [5, p. 95], where Low Grade
Glioma typically has low signal intensity on T1 images and higher intensity on T2-
FLAIR images [4]. An example of a Magnetic Resonance image (MR image) using
T2-FLAIR can be seen in figure 1.1, where the tumour corresponds to the white
region in the upper left part of the brain. After detecting the tumour, the doctors
choose a treatment such that as many cancer cells are removed as possible while
avoiding damaging surrounding healthy tissue.
The most common initial treatment of Low Grade Glioma is resection, removal of
tumour by surgery, and is done on the basis of the MR image of the patient [6, 3, 4].
The problem however is that MR images can only detect cancer cells up to a certain
density, meaning that the tumour is larger than the image shows [7]. Additional
radiotherapy and chemotherapy are used to try to remove potential cancer leftovers
from resection [6], but even after these safety measures cancer cells often remain,
leading to recurrence and progression of the tumour.
The solution to this problem could be to use mathematical models that could sim-
ulate tumour growth, including the regions of the tumour that are invisible for the
MR image. A popular model of choice is the Fisher equation [8, 9, 10, 1, 11], a
Partial Differential Equation (PDE) that can be used to describe how the density
of cancer cells changes in space and time according to how the cells migrate and
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1. Introduction

proliferate. The Fisher equation can be written as

∂u(x, t)
∂t

= ∇ · (D∇u(x, t)) + ρu(x, t) (1− u(x, t))

where u(x, t) is the proportional cancer cell density over space x and time t, D
is the diffusion coefficient governing the migration term and ρ is the growth rate,
governing the proliferation term. The values of D and ρ can be estimated from
certain tumour properties calculated from the MR images, properties that also are
hypothesized to have an effect on survival. With the parameter values estimated
from these tumour properties one could simulate tumour growth, as in figure 1.2, in
order to learn more about the behaviour of Low Grade Glioma.
Estimating the parameters D and ρ can be done in different ways, either using pa-
rameter estimation techniques [9], or using an analytic expression of the parameters
that is a result from an approximation of the Fisher equation [1, 12, 13]. The ap-
proximation however, as will be discussed further in chapter 2, requires assumptions
that are rather unreasonable [14, pp. 439–447]. Although the analytic expression is
commonly used because of its simplicity, one should question if the approximation
really is sufficient to get a realistic representation of Low Grade Glioma.

Figure 1.1: Magnetic Resonance Image using acquisition sequence T2-FLAIR. The
Low Grade Glioma corresponds to the white tract in the upper left of the brain.

2



1. Introduction

1.2 Aim

The aim of this project is to mathematically simulate tumour growth to give ad-
ditional information about Low Grade Glioma, that can not be estimated directly
from Magnetic Resonance images, in order to improve the treatment of Low Grade
Glioma. To do this, the tumour properties of interest are extracted from patient
data and statistically tested using survival analysis to investigate their potential
effect on survival. Also, the different methods of solving the Fisher equation are
compared and, using patient data, the values of diffusion coefficient D and growth
rate ρ for each patient are determined using parameter estimation techniques.
The work behind this thesis was carried out in collaboration with the Neuroscience
department at Sahlgrenska and combines two completely different research areas,
mathematical modelling and medicine, in order to get the whole picture of how Low
Grade Gliomas behave. The contribution of this thesis to the community of cancer
modelling is to verify that the approximations of the Fisher equation are valid and
to estimate the parameter values D and ρ using an optimisation algorithm, instead
of using the analytic equations for the parameters.
Also, this thesis contributes to the doctors at Sahlgrenska by investigating the be-
haviour of Low Grade Glioma in depth, using the Fisher equation, and by giving an
estimate of the volume of remaining cells after surgery. According to the neurosur-
geon Asgeir Jakola, this estimate can be used to tune the additional radiotherapy
more accurately, in order to remove as many cancer cells possible while minimising
the damages done to surrounding healthy brain tissue. In addition, the size of the
estimated remaining volume can be helpful when deciding which marginal should
be used at surgery. If the estimate is large, it would be worth the risk to choose a
marginal larger than the MR image would suggest to remove the remaining cells.

Figure 1.2: Left: The solution to the Fisher equation in two dimensions. Right:
The cancer cell distribution it would correspond to in three dimensions, assuming
isotropy and spherical symmetry.
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2
Theory

In this chapter, the theoretical background of the Fisher equation and the properties
of investigation, velocity, steepness and mismatch, is described. In addition, the
theory behind the statistical tests will be introduced. Mainly studies and conclusions
from previous work within the field of cancer modelling are presented here, while
the application of the theory, amongst others, are presented in chapter 3.

2.1 The Fisher equation

In this section, the Fisher equation and the different simplifications, and expansions,
of the equation is described. As shown in section 1.1, the Fisher equation in three
spatial dimensions is defined as

∂u(x, t)
∂t

= ∇ · (D∇u(x, t)) + ρu(x, t) (1− u(x, t)) (2.1)

where u(x, t) is the proportional cancer cell density over space x [mm] and time t
[years], D is the diffusion coefficient governing the migration term [mm2/years] and
ρ is the growth rate, governing the proliferation term [years−1]. The reason why
u(x, t) is a proportional cell density is because u(x, t) is relative to a carrying capacity
K which is the limiting amount of cancer cells [#cancer cells/mm3] [1]. u(x, t) is
therefore a ratio, ranging from 0 to 1, describing the cancer cell density relative to
the carrying capacity K. Since equation (2.1) is difficult and computationally heavy
to solve, some simplifications will be considered.
One assumption is to consider a constant value of the diffusion coefficient in space,
D(x) = D. In reality, D is space dependent since it has been shown that gliomas
tend to spread more rapidly through white matter than in grey matter tracts in
the brain [15, p. 544]. Models have been created taking into account the non-
constant value of D [10], but is neglected in this thesis for simplicity. Using this
approximation, the Fisher equation can be written as

∂u(x, t)
∂t

= D
(
∇2u(x, t)

)
+ ρu(x, t) (1− u(x, t)) (2.2)

where the nabla operator correspond to either Cartesian coordinates (∇ =
(
∂
∂x
, ∂
∂y
, ∂
∂z

)
)
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2. Theory

or Spherical coordinates ∇ =
(
∂
∂r
, ∂
∂θ
, ∂
∂ϕ

)
. If using Spherical coordinates, the spa-

tial dimensions can be reduced from three to only one, if assuming isotropy and
spherical symmetry. These assumptions means that the spread of cancer cells in
space is uniform, which once again contradicts the biology behind the model but
will be used for simplicity. In practice, isotropy and spherical symmetry leads to
the proportional cancer cell density u being independent of the angles θ, ϕ, meaning
that ∂u

∂θ
= ∂u

∂ϕ
= 0. The Fisher equation, in Spherical coordinates, thus becomes

∂u(r, t)
∂t

= D

(
∂2u(r, t)
∂r2 + 2

r

∂u(r, t)
∂r

)
+ ρu(r, t) (1− u(r, t)) (2.3)

where x has been changed to r, to clarify which spatial coordinates that are being
used. Otherwise x and r share the exact same properties, thus if something is
explained in terms of x, it is interchangeable with r. The reduction of dimensions in
Spherical coordinates simplifies the computation of the Fisher equation, but another
way to do it is to simply reduce the nabla operator in Cartesian coordinates, from
three to one dimension. If once again assuming isotropy, the Fisher equation becomes

∂u(x, t)
∂t

= D

(
∂2u(x, t)
∂x2

)
+ ρu(x, t) (1− u(x, t)) (2.4)

but does not take into account the curvature of the surface of the tumour, that is
assumed to be approximately spherical, which equation (2.3) does. With the Partial
Differential Equations defined, the next step is to define the initial and boundary
conditions.
The conditions used when solving the equations in (2.3) and (2.4) is an initial expo-
nential spread in space and no flux boundary at the origin and at the outer boundary.
In equations, these conditions would correspond to


u(x, 0) = a0e

−10x

∂u(x,t)
∂x

= 0, x = 0 or x = xmax

(2.5)

where a0 ranges between 0 and 1. The initial condition is chosen in concordance with
Philip Gerlees article from 2012 [8], while the boundary at the origin hinders the
center of the tumour from moving from its initial position and the outer boundary
prevents the tumour to spread indefinitely [11]. With these simplifications of the
PDE and definitions of the initial condition and the boundary conditions, the Fisher
equation can be solved numerically.
The numerical solution to equation (2.3) is a matrix containing values of u(r, t) for
each combination of r and t, where t varies over the columns and r over the rows in
the matrix. The result is visualised in figure 2.1 in both two and three dimensions.
In the rightmost plot u(r, t) is plotted against both r and t, visualising how the
values of u(r, t) varies in the matrix of the numerical solution. In the leftmost plot,
u(r, t) is plotted against r at different time points. As can be seen, the proportional
cancer cell density is initially small and grows larger over time. When maximum
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2. Theory

Figure 2.1: Left: Solution to the Fisher equation in two dimensions, where each
curve corresponds to the solution at a certain time point. Right: The solution to the
Fisher equation plotted against both space and time.

proportional cell density is reached, u(r, t) = 1, the distribution in space continues
as a constant wave, whose shape is independent of t. To describe this constant
travelling wave, if neglecting the initial phase, an analytic expression derived from
the Fisher equation can be used.
Following the derivation done in the book Mathematical Biology I: An Introduction,
written by J.D. Murray in 2002, the Fisher equation can be approximated as [14,
p.446]

u(z) = 1
1 + e

ρz
c

+ eρz/c

c2(1 + eρz/c)2 ln
(

4eρz/c
(1 + eρz/c)2

)
, z = x− ct (2.6)

where the z-coordinate travels with the solution and is dependent of both x and t,
but also the travelling wave velocity c [mm/year], expressed as c = 2

√
Dρ which

will be discussed further in section 2.2 below. This solution to the Fisher equation
is done by using perturbation technique and power series, where each term in the
series gives additional refinements of the approximation. However, as Murray also
comments, the first term alone in equation (2.6) captures the behaviour of the Fisher
equation quite accurately when comparing it to the numerically computed Fisher
equation [14, p. 442]. Thus for simplicity, the second term in equation (2.6) will be
neglected and the analytic equation of the Fisher equation becomes:

u(z) = 1
1 + e

ρz
c

, z = x− ct (2.7)

Although the analytic equation is claimed to capture the travelling wave it still
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2. Theory

has drawbacks. Firstly, as already mentioned, it is only an approximation of the
PDE. Secondly, it is derived from the Fisher equation in Cartesian coordinates,
equation (2.4), and not equation (2.3) in Spherical coordinates, since no travelling
wave solution exist for equation (2.3) due to the 1/r term in the migration term.
Lastly, it is required for the analytic equation that the travelling wave has already
been established, which theoretically requires that t→∞ and that no initial phase
exists [14, pp. 439–447]. It is thus of interest to investigate if the approximation
really can capture tumour behaviour and estimate its properties.
Variations of the Fisher equation and its boundaries exists, for example exponen-
tial growth (ρu) instead of logistic growth (ρu(1 − u)) [13], as well as a normally
distributed initial cancer cell density rather than exponential [10]. In addition, ex-
pansions of the Fisher equation exists giving more complexity to the model. To give
some examples, Amanda Swan added spatial dependency to the model to include
the effect of cancer cells spreading more rapidly in white matter tracts [10], while
Philip Gerlee incorporated the ’Go or grow’ hypothesis, stating that cancer cells
either migrate or proliferate [8]. These models are however implemented for mod-
elling glioma of higher grade, but Magdalena Bogdańska in contrast focused on the
model for Low Grade Glioma, modelling the phase where the Low Grade Glioma
progress into High Grade Glioma [11].
As these examples show, there are many ways to vary or expand the Fisher equation,
but in this thesis only the one dimensional Fisher equation in Spherical coordinates
(2.3), along with the initial and boundary conditions in equation (2.5), and the
analytic equation of the Fisher equation (2.7) are considered, called the PDE solution
and Analytic Equation henceforward.

2.2 Properties of the Low Grade Glioma:
Velocity, steepness and mismatch

Important tumour properties are velocity, steepness and mismatch, where the ve-
locity illustrates how rapid the tumour grows while steepness and mismatch are two
measures describing the spatial distribution of the cancer cells. From volume esti-
mates of the tumours visualised on MR images, these properties can be calculated
and used to help the doctors make more appropriate decisions regarding treatment,
such as performing surgery earlier for a patient with high tumour velocity or use
larger marginals at surgery for patients with more diffuse tumours.
The tumour velocity is the increase of volume over time and is used as an indicator
of tumour grade and overall survival [16]. If assuming that the tumour is approxi-
mately elliptic or spherical, it has been shown that the diameter or radius of Low
Grade Gliomas increase linearly over time with a constant diametric velocity of ap-
proximately 4mm/year [17, 13, 18, 19]. In addition, it has been shown that patients
with a diametric velocity larger than 8mm/year have a higher risk of dying from
their cancer [20].
The steepness is a measure of the spatial cell density distribution and is measured
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as the slope of the density profile between radii estimated from two MR images,
using acquisition sequence T1 and T2-FLAIR respectively, at the same time point
[1, 12]. A small value of steepness would correspond to a diffuse tumour while a large
value would correspond to a dense tumour and, in contrast to the velocity, steepness
has been shown to not have an impact on survival for patients with glioblastoma
multiforme, a more aggressive type of brain tumour. It could thus be hypothesized
that it should not have an impact on Low Grade Glioma as well [21].
Lastly, the mismatch is used to measure how large the volume estimated from an MR
image using T1 is, relative to the volume estimated from an image using T2-FLAIR
[21]. Mismatch is a less commonly used measure than velocity and steepness and
consequently, less is known about this measure. The doctor Asgeir Jakola at the
Neuroscience department at Sahlgrenska University Hospital however believes that
mismatch could be an interesting measure with potential and is thus considered in
this thesis.
As a simplified explanation of how these properties are measured from MR images,
see figure 2.2. The figure illustrates three MR images from one patient, two images
taken with T2-FLAIR at two different time points, t1 and t2, and one image taken
with T1 at one time point t1. The velocity thus describes the increase of tumour radii
on MR images taken with T2-FLAIR over time, the steepness how diffuse the tumour
is on MR images using T1 in comparison with T2-FLAIR and the mismatch the
difference in volume between the images taken with T1 and T2-FLAIR respectively.

Figure 2.2: MR images using either T1 or T2-FLAIR. The velocity is calculated
using images taken with T2-FLAIR and steepness and mismatch are calculated using
images taken with T1 and T2-FLAIR at the same time point.
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2.3 Velocity and steepness derived from the Fisher
equation

Another central role for the properties velocity and steepness is that they are the key
to estimate the values of the parameters D and ρ in the Fisher equation. Since the
time span between the initial appearance of the tumour and diagnosis is unknown,
it is impossible to fit the Fisher equation directly to the volume estimates. One
must thus instead do this using the velocity and steepness, since they can both be
estimated from data and the Fisher equation.
What velocity and steepness would correspond to in the Fisher equation is shown in
figure 2.3, where c is the radial velocity [mm/year] and s is the steepness [mm−1].
The velocity is a measure of how fast the solution to the Fisher equation travels
in time and the steepness corresponds to the value of the negative slope of the
constant travelling wave. The properties c and s, as well as mismatch MM , can be
estimated numerically which will be shown in section 3.3, but c and s can also be
solved analytically through approximations of the Fisher equation [14, p. 442, 446].
The equations are

c = 2
√
ρD

s = ρ
4c = 1

8

√
ρ
D

(2.8)

and have a time independent relation with D and ρ, where D is the diffusion coeffi-
cient [mm2/year] and ρ is the growth rate [year−1]. Using the systems of equations
in (2.8) one can thus easily calculate D and ρ and fit the Fisher equation to patient
data [1]. The expression for the steepness s in (2.8) however is calculated from
u = 0.5, where u is the proportional cancer cell density, when it is hypothesized
that MR images using T1 and T2-FLAIR can detect cell densities of 0.8 and 0.16 of
higher respectively [1], although these thresholds have been criticised [9]. In order to
get a better correspondence to data, x is extracted from equation (2.7) and written
as:

z = x− ct = c

ρ
ln
(1
u
− 1

)
⇒ x = ct+ c

ρ
ln
(1
u
− 1

)
(2.9)

Using equation (2.9), the steepness of the secant can be calculated as

c = 2
√
ρD

s = −(0.16−0.80)
x0.16−x0.80

= −(0.16−0.80)
c
ρ(ln ( 1

0.16 −1)−ln ( 1
0.80 −1))

(2.10)

where, once again, the expressions are time independent since the term ct cancels
out when taking the difference between x0.80 and x0.16, the radii at u = 0.80 and
u = 0.16 respectively [21].
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Figure 2.3: Visualisation of how velocity c [mm/year] and steepness s [mm−1] are
estimated from the Fisher equation, as well as the two thresholds for the different
MR images. The two curves are the same solution to the Fisher equation at two
time points, where c is how fast the curve travels and s the steepness of the secant
between u = 0.80 and u = 0.16 [1]. Images using T2-FLAIR can thus detect cell
densities of 0.16 or higher and T1 can detect densities of 0.80 or higher.

2.4 Survival analysis

In order to investigate if tumour properties have a significant effect on survival,
statistical tests from survival analysis will be used where three central concepts for
these tests are survival time, event and censoring.
The survival time is the time span after treatment [22, p. 58] and an event corre-
sponds to the property of investigation in the survival analysis, which is often death
of a patient. All other patients that leave the study for other reasons or have not
experienced an event are called censored [23]. These definitions are used in the log-
rank test, visualised using Kaplan-Meier plots, which is the model of choice for this
purpose.
The log rank test is a statistical test that checks if there is a significant difference
in survival time between two or more patient groups, based on a certain property
of the patients [22, p. 67–71]. For example, Johan Pallud et.al. divided a patient
data set in two groups where the first group had a tumour diametric velocity below
8mm/year and the second group above 8mm/year and showed that the patient
group with higher velocity had worse survival compared with the other group [20].
In general, the hypotheses for the log rank test is
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H0 : There is no difference in survival between the groups
H1 : There is a difference in survival between the groups

(2.11)

and the log–rank test is a large-sample chi-square test with statistic

Log-rank statistic = (Oi − Ei)2

Var(Oi − Ei)
, i = 1, 2 (2.12)

where Oi is the observed number of events for group i, Ei is the calculated expected
number of events for group i and Var(Oi − Ei) is the variance of the difference
between Oi and Ei. The log-rank test statistic under the null hypothesis H0 is
approximately chi-square with one degree of freedom and the p-value is thus calcu-
lated using the chi-square distribution [22, p. 67–71]. The reason why log-rank test
is commonly used in survival analysis is because the test can use information from
both patients having an event and censored patients, since it is assumed that the
censored patients have the same likelihood of survival as for those patients where
an event have occurred [23]. The log rank test can be expanded to be applied to a
data set with more groups than two, but is neglected in this thesis.
To illustrate the survival time in the different groups, a Kaplan-Meier plot is com-
monly used. The plot illustrates the surviving fraction of patients in the two groups
over time. When an event occurs, the curve takes a step down illustrating that the
frequency of surviving patients has decreased. When a patient leaves because of
censoring, it is marked with a + sign [23].
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3
Methods

In this chapter the application of the theory will be presented, as well as the methods
used in this specific project. The sections below describes the idea of how to answer
each question of the aim: Extract tumour properties from data, investigating tumour
properties using statistics, compare different methods of solving the Fisher equation
and estimate D and ρ using parameter estimation techniques. For each method,
arguments are presented answering the question of why the method of choice is
sufficient for this purpose.
To clarify what has been done by the thesis author and not, the PhD student Alba
Corell from the Neuroscience department at Sahlgrenska University Hospital is main
responsible for the tumour volume estimates from MR images and the clinical data.
The rest of the work is done by the author, with inspiration from the Bachelor
thesis from 2017 with Philip Gerlee as supervisor [24]. Lastly, the survival analysis
was done using the program language R (version 3.5.2) together with the packages
readxl, survival and survminer [25, 26, 27], while the rest was made using
MATLAB (R2017b).

3.1 Patient data and properties measured from
data

In this section, the extraction of tumour volumes from MR images and the methods
for estimating velocity, steepness and mismatch are presented. Here, as well as sec-
tion 3.3 below, volumes and radii estimated using MR images with either acquisition
sequence T1 or T2-FLAIR will be frequently mentioned. Since MR images using
T1 and T2-FLAIR are assumed to detect cell densities of 0.80 and 0.16 respectively,
the subscripts for the volumes and radii will be 0.80 and 0.16, rather than T1 and
T2-FLAIR.
The data consists of 28 patients and was produced mainly by the PhD student Alba
Corell, with help of the neurosurgeon Asgeir Jakola. In addition, this thesis is a part
of a larger study with granted ethical permission and inclusion of patients is based
on informed consent. The data set consists of patient age at diagnosis, information
regarding if the patient is alive or not at check-up at 2019-01-01 and tumour volumes
estimated from Magnetic Resonance images using acquisition sequence T1 and T2-
FLAIR respectively.
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When doing an MRI scan, the images received are 3D images segmented into 2D
images using a constant segmentation depth d between the images. From these
images, a tumour area is estimated by a doctor for each segment and the volume is
calculated as the sum of the volumes of each segment, calculated as the estimated
area multiplied with the constant depth d. For an illustration, see figure 3.1. Each
patient have two or more volume estimates from MR images using T2-FLAIR at
different time points and only one volume estimate from an MR image using T1,
taken at the same time point as one of the images using T2-FLAIR. Using these
estimated volumes, velocity, steepness and mismatch can estimated.

Figure 3.1: Illustration of how the volume is estimated from MR images. From
an MRI scan, segmented images are retrieved with constant segmentation depth d
between the images. From every image, an area is estimated by a doctor and the
volume is calculated as the sum of the volumes estimated from each segmented disc.

The tumour velocity is estimated by measuring the tumour radii from MR images
using T2-FLAIR and calculated using linear regression

ri = ri0 + cit i = 1, 2, ... (3.1)

where the radius r increases linearly with the constant velocity c over time t for
all patients i [16]. The velocity c is then estimated from equation (3.1) using least
squares.
The steepness is measured as the negative slope of the density profile between the
radii at the visibility thresholds for MR images using T1 and T2-FLAIR respectively,
and is calculated as

s = −(0.16− 0.80)
r0.16 − r0.80

(3.2)

where s is the steepness [mm−1], r0.16 is the radius estimated from an MR image
taken with T2-FLAIR and r0.80 the radius estimated from an MR image taken with
T1 [mm]. Lastly, the mismatch is a measure of how large volume that is measured
from an MR image using T1, relative the volume estimated from an MR image using
T2-FLAIR. The mismatch MM is calculated as
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MM = V0.16 − V0.80

V0.16
= 1− V0.80

V0.16
∈ [0, 1] (3.3)

where V0.80 and V0.16 are the volumes measured from MR images using T1 and
T2-FLAIR respectively [cm3]. Other equations for the mismatch exist where they
instead use the ratio V0.80/V0.16 [21]. However since V0.16 > V0.80 [4], the values of
the mismatch becomes bounded between 0 and 1 if using equation (3.3), which is
easier to interpret. If mismatch is zero, the difference in estimated volume is zero
and shows a perfect match between the images, while a mismatch of 1 means that
V0.80 = 0 and shows total mismatch.

3.2 Survival analysis

In this section, the implementation of the theory described in section 2.4 is presented.
The survival time is defined as the time span after surgery that the patient has been
alive, used in concordance with Alba Corells article from 2018 [2], which is either
until a patient dies or until check-up 2019-01-01. If a patient dies from her tumour,
it is called an event and all other patients that have either died of other reasons or
are alive at check-up are called censored. With these concepts defined the log-rank
test can be applied to the data set, using a p-value of significance of 0.05.
Three properties are investigated using the log-rank test: Mismatch, invasiveness
and velocity. In each case, the patients are divided into two groups based on their
values of the properties of investigation. The division in groups for the velocity is
done in concordance with an article from 2006, written by Johan Pallud et.al. [20],
and the mismatch and invasiveness based on their median value.
For the mismatch, the patients were divided in small mismatch (MM < 0.5) and
large mismatch (MM > 0.5), while for the velocity the patients were divided into
groups based on their radial velocity, c < 4mm/year and c > 4mm/year respec-
tively. The invasiveness differs slightly from the steepness, but is also a measure of
the cancer cell density profile and is used in concordance with previous studies [21].
The invasiveness is defined as ρ/D and is calculated according to the equation for
the secant, also presented in section 2.2 in equation (2.10):

s = −(0.16− 0.80)
2
(
ln
(

1
0.16 − 1

)
− ln

(
1

0.80 − 1
))√ ρ

D
= A

√
ρ

D
(3.4)

The invasiveness is thus calculated as ρ/D = (s/A)2 and the patients were once
again divided into two groups, ρ/D < 10 and ρ/D > 10 mm−2 respectively.
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3.3 Velocity, steepness and mismatch estimated
numerically from the Fisher equation

From Magnetic Resonance images the tumour velocity, steepness and mismatch can
be estimated and, if using the velocity and steepness, the parameters D and ρ in
the Fisher equation can be estimated. As mentioned in section 2.2, if using the
analytic estimates of the velocity c and steepness s one can get a direct correlation
between the properties and the parameters D and ρ. However, for the PDE solution
of the Fisher equation, no such direct correlation between properties and parameters
exists. In addition, c and s are time dependent for the PDE solution of the Fisher
equation and it is thus of interest to investigate how c and s changes over time and
how they depend on parameters D and ρ.
What velocity and steepness would correspond to in the Fisher equation was shown
in figure 2.3, where c is the velocity of the constant travelling wave and s the negative
slope of the secant. To numerically calculate the velocity and steepness from the
PDE solution of the Fisher equation the following system of equation is used:

c(tk) = uhalf (r,tk+1)−uhalf (r,tk)
tk+1−tk

s(tk) = −(0.16−0.80)
r0.16(tk)−r0.80(tk)

(3.5)

Here uhalf is the maximum proportional cell density divided in half, uhalf = 0.5 if
the constant travelling wave has been reached and uhalf < 0.5 else. In addition, tk
and tk+1 is the time at time point k and k+1 respectively and r0.16 and r0.80 are the
radii measured at u = 0.16 and u = 0.80 respectively, the hypothesized thresholds
for T2-FLAIR and T1. These methods of calculating the velocity and steepness
numerically are inspired by the method used in the Bachelor thesis from 2017, with
Philip Gerlee as supervisor [24], and gives estimates of the properties that can be
plotted over time.
The velocity and steepness profiles over time, using the equations in (3.5), are shown
in figure 3.2. As can be seen, the velocity can be measured from t = 0 while the
steepness of the secant can only be calculated from the time when u = 0.8 has
been reached and forward. During the initial phase the values of c and s varies but
becomes approximately constant after the travelling wave has been reached.
As mentioned, c and s are time dependent in equation (3.5) while c and s esti-
mated from data have a constant value. In order to avoid the time dependency
it is assumed that the constant travelling wave has already been reached, where c
and s are approximately constant, when the measurements from the patients have
been taken. This assumption is strengthened by the reported observations that Low
Grade Gliomas grows linearly with a radial velocity of approximately 2mm/year
[17].
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Figure 3.2: Velocity and steepness profile for the Fisher equation over time, cal-
culated according to the equation (3.5). To get the velocity and steepness of the
constant wave, the median of the last 20% of the two properties are calculated.

To calculate the constant velocity and steepness from the numerical estimates of c
and s, the median of the last 20% of the measured velocities and steepnesses at each
time point is calculated. In this way, only the velocities and steepnesses measured
during the constant travelling wave are used and the median of the properties are
taken to reduce the effect of noise. So far only how the velocity and steepness are
calculated from the Fisher equation have been described, but a numerical method
for calculating the mismatch has been developed as well.
To calculate the mismatch numerically, a method very different to the estimation
of c and s is used. As mentioned in section 3.1, the equation for the mismatch is
defined as

MM = V0.16 − V0.80

V0.16
= 4π

3

(
r3

0.16 − r3
0.80

r3
0.16

)
(3.6)

if assuming the tumour to be spherical. One must thus find the radii where the
proportional cancer cell density u(r, t) equals 0.16 and 0.80 in the matrix containing
the numerical solution. This is done by, for a fix t, searching in the matrix for the
column index where u(r, t) = 0.16 and u(r, t) = 0.80 are fulfilled respectively, since
u(r, t) varies with respect to r over the columns. After finding the column indices,
they are inserted in the vector of radii that was used to get the numerical solution
to u(r, t) and gives back the radii r0.80 and r0.16. These radii are lastly inserted in
equation (3.6) and the mismatch is calculated.
An contour plot, illustrating the values contained in the matrix, is visualised in
figure 3.3 in order to illustrate the process. For each radius and time point, there
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exists a proportional cancer cell density and to extract one property, for example
the radius, the remaining two needs to be known and fix.

Figure 3.3: Illustration of the matrix of the numerical solution and how the cor-
responding values of r and t for a certain cell density can be determined from the
matrix.

3.4 Comparison of solvers of the Fisher equation

Since the Analytic Equation is commonly used while PDE solution of the Fisher
equation theoretically better corresponds to reality, it would be of interest to com-
pare the different ways of solving the Fisher equation, both concerning estimating
different properties and the solution to the Fisher equation itself. For this compar-
ison, the parameter values used are D ∈ [0.3285, 0.973] mm2/year for the diffusion
coefficient and ρ ∈ [0.73, 2.92] year−1 for the growth rate. The choice is based on
parameter values from literature that give a velocity around 2 mm/year and all give
reasonable results within the intervals t ∈ [0, 30] years, r ∈ [0, 100] mm with an
initial density of 0.1 [11, 18].
The properties of interest are the velocity c and steepness s, either solved accord-
ing to the analytic equations in (2.10) or numerically using the equations in (3.5)
mentioned above. The properties c and s are calculated for each combination of
parameters D and ρ and the difference in estimated value for c and s between the
solvers is calculated as

dc = (cPDE − cAnalytic)/cAnalytic
ds = (sPDE − sAnalytic)/sAnalytic

(3.7)
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where dc and ds is the difference in velocity c and steepness s respectively, and the
subscripts Analytic and PDE tells if the velocity and steepness have been estimated
using the analytic or numerical approach respectively.
If instead considering the comparison between solvers of the Fisher equation, the
PDE and the Analytic Equation respectively, the sum of squares is used as an error
measure. The sum of squares is calculated as

SS(t) = 1
N

N∑
j=1

(u(rj, t)− u(zj))2 (3.8)

where SS(t) is the sum of squares over time, N is the total number of spatial steps,
u(rj, t) is the PDE solution to the Fisher equation, and u(zj) is the solution to the
Fisher equation using the Analytic Equation. A problem however is that since the
Analytic Equation does not have an initial phase it reaches the constant wave phase
more rapidly. To compensate for this, the Analytic Equation is time adjusted such
that it grows on the same time scale as the PDE solution. As a result, SS(t) is only
calculated when the PDE has reached the constant travelling wave. To investigate
if the sum of squares differs for different combinations of parameter values, SS(t) is
averaged over the time interval were the travelling wave has been reached and then
plotted against D and ρ.

3.5 Parameter estimation

The goal with the parameter estimation is to determine the values of the parameters
D and ρ in the Fisher equation from the velocity and steepness measured from
data, in order to simulate tumour growth for specific patients. This can be done
by either calculating the parameters analytically or estimating them from the PDE
using parameter estimation techniques. If considering the analytic calculations no
estimation is needed, since D and ρ can be solved using the systems of equations:

c = 2
√
ρD

s = 1
8

√
ρ
D

⇔

D = 0.0625 c
s

ρ = 4cs
(3.9)

However, as mentioned in section 2.2, to get the steepness of the secant which would
correspond better to data one should instead use

c = 2
√
ρD

s = −(0.16−0.80)
c
ρ(ln( 1

0.16 −1)−ln( 1
0.80 −1))

⇔

D ≈ 0.053 c
s

ρ ≈ 4.757cs
(3.10)

where one can see that they differ slightly in value. To estimate the parameters
from the PDE solution of the Fisher equation however, an optimization algorithm
is required.
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Estimating the parameters D and ρ from the PDE is a more difficult task, since
there is no direct connection between velocity c and steepness s and the parame-
ters. This means that there exists no equation that couples the properties and the
parameters together, which excludes all optimization algorithms that is based on
derivatives, such as gradient descent and Newton [28]. The solution is therefore to
use a derivative free optimization algorithm.
The optimization algorithm of choice is the Particle Swarm Optimization algorithm
(PSO), a stochastic optimization algorithm inspired by swarming animals such as
birds and fish [29, p. 117]. This algorithm does not require that the objective
function is dependent of D and ρ and can thus be defined as

f (cnumeric, snumeric) = (cnumeric − cdata)2

cdata
+ (snumeric − sdata)2

sdata
(3.11)

inspired by the objective function used in the Bachelor thesis from 2017 [24]. Here,
f is the objective function that should be minimized, cnumeric and snumeric are the
velocity and steepness calculated numerically, using equation (3.5), and cdata and
sdata are the velocity and steepness calculated from data. The goal is thus to find
the combination of parameter values D and ρ that gives a value of cnumeric and
snumeric as close as possible to the values measured from data, yielding an objective
function that tends to zero. Although mismatch also can be included in the objective
function, the numerical value of the mismatch is heavily dependent of the step size
of time t and radius r respectively. To avoid this dependency, mismatch is excluded
from the objective function but will be calculated numerically using the result from
the PSO, whose value MMnumeric will be compared with MMdata.
The algorithm is based on the PSO described in Mattias Wahdes book Biologically
inspired optimization methods: an introduction with slight alterations, especially
regarding the evaluation of the solutions [29, p. 123]. A flowchart illustrating the
algorithm is shown in figure 3.4 and a more thorough description of the algorithm
can be found in Appendix A. With the parameters D and ρ estimated using the
PSO algorithm, it would be of interest to investigate how and if the results from
the parameter estimation differs from the parameter values calculated analytically,
using the system of equations in (3.10).
Three plots created for each patient are meant to answer this question. Firstly,
a figure showing the PDE solution of the Fisher equation is presented, where the
parameters are either calculated analytically or estimated by the PSO algorithm.
Secondly, a plot illustrating the PDE solution of the Fisher equation, using param-
eter values from the PSO, and the Analytic Equation, using analytically calculated
parameter values, is shown. For this case the time is adjusted for the Analytic Equa-
tion such that the solutions grow on the same time scale, just as when calculating
the sum of squares in section 3.4.
Lastly, a plot visualizing the radii measured from the MR images using T2-FLAIR,
together with the simulated radii using different solvers, is shown. The solvers in
question are, once again, the PDE solution of the Fisher equation together with the
parameter values from the PSO, the Analytic Equation with analytically calculated
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parameters, but also a simple linear regression. For the linear regression, the linear
radial growth is calculated using equation (3.1) and the time is adjusted according
to the equation

0 = ri0 + cit0 ⇒ t0 = −r
i
0

ci
(3.12)

to simulate growth from r = 0 rather than r = r0 for each patient i. The simulated
radii thus becomes cit and are measured at the time points t+ t0.
For the two first cases however, the simulated radii are found by searching in the
numerical solution of u(r, t) in a manner similar to the numerical calculation of
the mismatch described in section 3.3. What is different is that only the radius r
needs to be estimated for the mismatch, while in this case both r and t need to
be extracted from the matrix at separate occasions. Firstly, the numerical radius
closest to the radius of the first measurement from data, r1, is found from the vector
of radii and its index in the vector is extracted. Since the number of columns in the
matrix is the same as the number of elements in the vector of radii, inserting the
index in the matrix gives all values of u(r1, t) for varying t. From here, the time for
the first measurement t1 is extracted by finding the row index where u(r1, t) = 0.16
and inserting the index in the vector of time points to get t1. Since t1 is known and
the time difference between the measurements is known from data, the time for all
measurements can be calculated. With the time known, the corresponding radius
at each measurement is extracted as above where the roles are exchanged, that is
find rm such that u(r, tm) = 0.16 for all measurements m = 2, 3, ....
For each of the three cases mentioned above, the simulated radii are compared with
the radii measured from data and the sum of squares is calculated as a measure of
the error, according to the equation

SS = 1
n

n∑
k=1

(rdata(tk)− rsimulated(tk))2 (3.13)

where n is the number of data points, rdata(tk) is the radius calculated from patient
data at time tk and rsimulated(tk) is the radius estimated from simulated data, using
one of the solvers described above.
This method of extracting radii and time points from the solution of the Fisher
equation will also be used to give an estimate of the age of the tumour and the
size of the invisible radius and volume respectively. The age of the tumour will
basically be calculated as the time at diagnosis, t1, estimated using the different
solvers. In addition, the invisible radius will be calculated as (r0.01 − r0.16), i.e. the
radii at u = 0.16 and u = 0.01 respectively, at the time for the measurement before
operation. Similarly the invisible volume will be calculated using the same radii but
as (4π

3 (r3
0.01 − r3

0.16), where the choice of u = 0.01 is arbitrary in both cases.
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Figure 3.4: Flowchart illustrating in general how the Particle Swarm Optimisation
algorithm works. The colors represents different phases of the code: Initialisation
phase in dark green, the iteration process in yellow/orange and the termination step
in light green.
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4
Results

In this chapter, the results for each question at issue are presented. In section
4.1 the extraction of properties from patient data and the result from the log-rank
tests are presented, while in 4.2 and 4.3 the comparison of solvers and the parameter
estimation is introduced. Mainly tables and figures will be illustrated in the sections
below, while the interpretation of the results is presented in chapter 5.

4.1 Statistics

4.1.1 Summary of patient data

The patient data set consists of 28 patients in total, all diagnosed with Low Grade
Glioma during 2005-2015. Of the 28 patients, 9 have died from cancer, 3 have died
of other causes and 16 are still alive after follow-up 2019-01-01. A summary of
patient properties is shown in table 4.1 and a plot illustrating the radial growth
for all patients is shown in figure 4.1. The problem however with the whole data
set is that it shows unreasonable properties, such as an initial radius of zero and a
velocity, steepness and mismatch below zero. Fortunately, there exists a reasonable
explanation for all cases, which will be discussed in chapter 5.
Due to the unreasonable values, subsets of the data must be defined to only use
reasonable data, while keeping as many patients as possible from the already small

Table 4.1: Summary of tumour properties for all 28 patients. As can be seen, the
values for certain properties are rather unreasonable, indicating that not all patients
can be used in further studies of the data set.

Property Min Max Mean Median
Age at diagnosis [years] 21 69 49.32 49.50
Time to operation [years] 0.15 8.05 1.52 0.48
Tumour volume at diagnosis [cm3] 0.00 138.97 36.60 19.34
Tumour radius at diagnosis [mm] 0.00 32.13 17.79 16.65
Radial velocity [mm/year] -5.51 83.34 5.48 0.77
Steepness [mm−1] -2.21 2.37 0.13 0.13
Mismatch -0.71 0.87 0.17 0.17
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Figure 4.1: Radial growth over time for all patients. The data points in red high-
lights the patients that seem to have negative tumour growth.

data set. The subsets of the data in consideration are

1. All patients (28 patients)

2. Filtered data, positive steepness (S-data, 20 patients)

3. Filtered data, positive velocity (C-data, 17 patients)

4. Filtered data, positive velocity and steepness (SC-data, 14 patients)

where the first subset is presented above, S-data and C-data are used in the survival
analysis and the last subset, SC-data, is the data used in the parameter estimation.
In addition, the patient with zero initial radius is removed from all subsets. A
summary of the patient properties for the SC-data is presented in table 4.2 and
two plots illustrating linear growth and time adjusted growth according to equation
(3.1) and (3.12) respectively are shown in figure 4.2a and 4.2b. For additional plots,
see Appendix B and for the complete list of tumour properties for all patients, see
Appendix C.

Table 4.2: Summary of tumour properties for the patients in subset SC-data, show-
ing more reasonable values than for the full patient data set.

Property Min Max Mean Median
Age at diagnosis [years] 21 69 52.43 56
Time to operation [years] 0.19 8.05 2.54 1.47
Tumour volume at diagnosis [cm3] 1.78 138.97 37.13 17.71
Tumour radius at diagnosis [mm] 7.52 32.13 20.70 16.17
Radial velocity [mm/year] 0.34 83.34 10.16 1.36
Steepness [mm] 0.047 2.37 0.63 0.28
Mismatch 0.037 0.87 0.38 0.34
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Figure 4.2a illustrates the radial growth for the patients included in the SC-data and
how the growth would be estimated assuming linear growth. For most patients the
linear regression fits very well and the median R2 gets a value of 0.91, after excluding
the patients with only two measurements since they automatically will get a perfect
R2 of 1. As can be noted, the range of the velocities is very large, which is even more
visible in figure 4.2b, where the time is adjusted according equation (3.12). Most of
the measurements from the patients are located to the left in the figure except for
one patient, Patient 16, that will be described in more detail in section 4.3.1.3.

(a) Data points and the corresponding linear growth with constant tumour growth
velocity c [mm/year].

(b) Time adjusted radial growth, adjusted according to equation (3.12) and used to
get an estimate of the age of the tumour.

Figure 4.2: Radial growth for the patients included in the subset SC-data, modified
to show certain features of the data.
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4.1.2 Survival analysis

The results of the survival analysis of mismatch, invasiveness and velocity are shown
in figure 4.3, 4.4 and 4.5 respectively. The plus signs correspond to censored patients
and the discrete steps corresponds to events occurring in each group. The p-value
is presented in the lower left corner and calculated using the log-rank test. For the
analysis of the mismatch and steepness, S-data containing patients with positive
steepness was used while C-data with positive velocities was used for the analysis
of velocity. The p-value for mismatch, invasiveness and velocity are 0.13, 0.024 and
0.0022 respectively, implying that the effect of mismatch is not significant, while the
effect of invasiveness and velocity are significant.

Figure 4.3: Kaplan-Meier plot visualising the survival of patients with different
values of mismatch. The subset of use is the S-data and the p-value indicates that
mismatch has no significant effect on survival.
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Figure 4.4: Kaplan-Meier plot visualising the survival of patients with different
values of invasiveness. The subset of use is the S-data and the p-value indicates that
the invasiveness has a significant effect on survival.

Figure 4.5: Kaplan-Meier plot visualising the survival of patients with different
values of velocity. The subset of use is C-data and the p-value indicates that it has
a significant effect on survival.
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4.2 Comparison of methods for solving velocity,
steepness and the Fisher equation and their
dependence on parameter values

In this section, the results from the different comparisons are presented and visu-
alised as surface and contour plots, using the settings described in section 3.4. For
the velocity c and steepness s, their dependence on parameter values are presented
as well as the differences dc and ds, calculated according to the equations in (3.7),
between the analytic and numerical estimates of c and s. For the comparison be-
tween solvers of the Fisher equation, the solution to the equation using either (2.3) or
(2.7) are compared for one pair of parameter values D and ρ, and the sum of squares
calculated according to equation (3.8) is plotted for all combinations of parameter
values.
The results from the velocity and steepness comparisons are shown in figure 4.6
and 4.7, which illustrates that the velocity increases for large values of D and ρ
and steepness increases for small values of D and large values of ρ. The contour
plots visualising dc and ds implies that the difference is very small between the
two different methods of calculating velocity and steepness, with the exception for
small values of ρ. The inverted colours in figure 4.7 relative figure 4.6 is because the
velocity calculated numerically is slightly larger than the one calculated analytically,
while the numerical steepness is slightly smaller than the analytic steepness, yielding
a positive and negative scale respectively.

Figure 4.6: Left: Velocity, calculated numerically, plotted against D and ρ. Right:
The difference, relative the analytic solution, between the solvers. The largest dif-
ference is shown for small values of ρ and large values of D.
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Figure 4.7: Left: Steepness, calculated numerically, plotted against D and ρ. Right:
The difference, relative the analytic solution, between the solvers. The largest dif-
ference is shown for small values of ρ and large values of D, although the colors are
inverted in comparison with figure 4.6.

The results from the comparison between solvers of the Fisher equation are shown in
figure 4.8 and 4.9 respectively, where figure 4.8 illustrates that the largest difference
is in the curvature of the travelling wave. The edges are sharper for the Analytic
Equation in comparison with the PDE solution, giving rise to two similar curves,
except for this feature. If looking at figure 4.9 it shows that the sum of squares is
small but varies with D and ρ, indicating that the parameters have a different effect
on the two solutions of the Fisher equation.

Figure 4.8: The solution to the Fisher equation using either the PDE solution and
Analytic Equation. The largest different is in the curvature of the constant travelling
wave.
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Figure 4.9: Averaged sum of squares plotted against D and ρ. The largest difference
is found for small values of ρ.

4.3 Parameter estimation

In this section, the results from the parameter estimation using Particle Swarm
Optimization (PSO) will be presented, together with a comparison between the
numerical and analytic methods of solving the Fisher equation and calculating the
parameter values. If the results are similar it would indicate that the analytic
equations are good approximations, simplifying both the parameter estimation and
computation of the Fisher equation. The result from three patients will be presented
in particular and the results for all patients will be presented in general. For the
details of the results for the remaining 11 patients, see Appendix D.
Three different combinations of how the Fisher equation is solved and how the
parameter values D and ρ have been estimated will be consequently investigated
and compared in the sections below. The two first variants are the Fisher equation
solved using Spherical coordinates, but with parameters either estimated from the
PSO algorithm or calculated according to the analytic equations in (3.10). The third
variant is the Fisher equation solved using the Analytic Equation, equation (2.7),
together with parameter values calculated according to the analytic equations. To
clarify which variant that is currently described in the text below, they will be called
PDEpso, PDEacp and AEacp respectively, where AE stands for Analytic Equation
of the Fisher equation, while the subscript acp stands for analytically calculated
parameters. The subscripts will in addition be used to emphasize which method the
parameters were calculated with, for example Dpso or Dacp.
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4.3.1 Three examples from the PSO result

The patients of choice are Patient 1, 15 and 16, and are selected to show the different
results can that be retrieved from the parameter estimation. All patients yield great
estimations of the velocity and steepness respectively, but behaves differently relative
AEacp. Three plots will be presented for each patient. The first one compares
PDEpso with PDEacp, while the second plot compares PDEpso with AEacp. The
last figure shows how different solvers would simulate patient data, as described in
section 3.5, and suggests at which time the measurements were taken relative the
initial formation of the tumour. The solvers in question for the last comparison are
PDEpso, AEacp, but also a simple linear regression, the same as when calculating the
velocity and shifted in time according to equation (3.12), and will be abbreviated LR
henceforward. The sum of squares for each case is calculated according to equation
(3.13) and is presented above each plot.

4.3.1.1 Patient 1

The summary of the results from Patient 1 can be found in table 4.3, showing
great accuracy regarding velocity and steepness, less accurate estimation of the
mismatch and slightly different parameter values using the different methods. Since
the analytically calculated parameters Dacp and ρacp are estimated using the values
of c and s from data, the analytical estimates of c and s would simply be the velocity
and steepness from data. Of that reason, c and s for the analytic case are not printed
in table 4.3 or in future similar tables.

Table 4.3: Summary of the velocity c, steepness s, mismatch MM and the param-
eter values D and ρ for Patient 1 (67 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 2.95 0.071 0.636 - -
Analytic - - - 2.171 1.002
PSO 2.95 0.071 0.683 1.705 1.019

The plots for Patient 1 are shown in figure 4.10 and 4.11. For this patient PDEpso,
PDEa and AEacp differs relatively much from each other, which can be seen in figure
4.10, where the parameters Dacp and ρacp gives a different shape of the curves.
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Figure 4.10: Comparison of solutions of the Fisher equation. Left: PDEpso and
PDEacp. Right: PDEpso and AEacp.

For the comparison between patient and simulated data, all solvers perform similarly
but PDEpso gives the highest value of the sum of squares. If comparing the time
axes, both AEacp and LR suggests that the tumour is not older than maximum 10
years, while PDEpso suggests that the tumour in reality is approximately 20 years
old at surgery.

Figure 4.11: How different solvers would simulate patient data. Left: PDEpso.
Middle: AEacp. Right: LR. The sum of squares is noted in the upper right corner
for each case and the main difference is the time axis.
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4.3.1.2 Patient 15

The summary of the results from Patient 15 can be found in table 4.4, showing great
accuracy regarding velocity, steepness and mismatch and larger similarities between
the different methods of estimating D and ρ.

Table 4.4: Summary of the velocity c, steepness s and the parameter values D and
ρ for Patient 15 (25 years), calculated either from Data, using Analytic calculations
or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 4.156 0.552 0.161 - -
Analytic - - - 0.395 10.923
PSO 4.156 0.552 0.160 0.388 11.063

The plots for Patient 15 are shown in figure 4.12 and 4.13 and show much more
similarities with AEacp than Patient 1. In the leftmost plot in figure 4.12 both curves
are plotted, but the plots representing PDEpso and PDEacp respectively lies on top
of each other. A very reasonable result if comparing the values of the parameters
in table 4.4, calculated analytically or using the PSO. For the comparison between
PDEpso and AEacp, the difference between the curves is smaller, if comparing with
figure 4.10.

Figure 4.12: Comparison of solutions of the Fisher equation. Left: PDEpso and
PDEacp. Right: PDEpso and AEacp.

Lastly for figure 4.13, the PDEpso performs better than AEacp, but once again LR
yields the smallest value of the sum of squares. Here the time scale is similar for all
solvers, in contrast to Patient 1.
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Figure 4.13: How different solvers would simulate patient data. Left: PDEpso.
Middle: AEacp. Right: LR. The sum of squares is noted in the upper right corner
for each case.

4.3.1.3 Patient 16

The summary of the results from Patient 16 can be found in table 4.5, showing great
accuracy regarding velocity, steepness and mismatch but large difference between
the different methods of estimating D.

Table 4.5: Summary of the velocity c, steepness s, mismatch MM and the param-
eter values D and ρ for Patient 16 (69 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 0.341 1.70 0.037 - -
Analytic - - - 0.0105 2.754
PSO 0.341 1.70 0.037 0.0044 2.77

The plots for Patient 16 are shown in figure 4.14 and 4.15. If looking at the leftmost
plot in figure 4.14, the solutions are very different due to the large difference in D.
However, the curve visualising the PDEpso in the rightmost plot is barely visible,
meaning the curves PDEpso and AEacp are very similar despite the difference in
value of the diffusion coefficient.
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Figure 4.14: Comparison of solutions of the Fisher equation. Left: PDEpso and
PDEacp. Right: PDEpso and AEacp.

In figure 4.15, the way of estimating the time for the PDEpso and AEacp is a little
different. For this case, and also Patient 28 in Appendix D, the first measurement is
an outlier, leading to an overestimation of the radius if only the first measurement,
r(t1), was used when estimating the time. To correct for this, the mean value of the
two first measurements, (r(t1) + r(t2))/2, was used instead.

Figure 4.15: How different solvers would simulate patient data. Left: PDEpso.
Middle: AEacp. Right: LR. The sum of squares is noted in the upper right corner
for each case and the main difference is the time axis.

35



4. Results

All solvers give similar sum of squares, where once again the LR is the best. However,
if checking the time axis, the estimated time since the creation of the tumour is
highly unreasonable. These results will be further discussed in chapter 5, but the
reader is reminded that this patient is 69 years old at diagnosis whereas the tumour
is estimated to have grown for approximately 85 years before diagnosis.

4.3.2 Summary of result from the parameter estimation for
all patients

For this section, values of parameters and properties are summarised and differences
between solvers and data are visualised. Starting off with the summary, table 4.6
shows the minimum, maximum, mean and median value of different properties and
parameter values. They are divided into sections where the first section is values
taken from data, the second section shows the values of D and ρ calculated either
analytically or using the PSO algorithm and the third section shows properties
calculated from the results from the PSO, hence the sometimes unreasonable values.
The invisible radius and volume here are calculated according to section 3.5, thus
as (r0.01− r0.16) and (4π

3 (r3
0.01− r3

0.16)) respectively. For the complete table of results
from the PSO, see Appendix C.

Table 4.6: Summary of properties measured from the patient data used in the
parameter estimation, estimates of the parameters D and ρ and properties measured
using the result from the PSO algorithm.

Property Min Max Mean Median
Age at diagnosis [years] 21 69 52.429 56
Velocity [mm/year] 0.341 83.341 10.157 1.361
Steepness [mm] 0.047 2.369 0.629 0.279
DAnalytic [mm2/year] 0.0105 86.256 8.903 0.352
DPSO [mm2/year] 2.337 · 10−7 67.320 7.167 0.347
ρAnalytic [year−1] 0.341 20.131 6.070 4.380
ρPSO [year−1] 0.350 20.148 6.053 4.422
Objective function 4.395 · 10−10 0.0321 0.0023 5.111 · 10−9

Time before diagnosis [years] 1 87 21.429 18
Invisible radius [mm] 0.294 13.258 3.717 1.726
Invisible volume [cm3] 0.381 421.824 58.259 8.276

The parameter combinations for all patients, using the parameters estimated from
the PSO, are shown in figure 4.16, where the raw values are visualised in the left-
most plot and the logarithmic values to the right. The lines visible in figure 4.16
corresponds to how D depends on ρ for constant values of c and s. If considering
the analytic calculation of c and s, the logarithmic form of the equations becomes

c = 2
√
Dρ⇒ lnc = ln2 + 1

2 lnD + 1
2 lnρ

s = A
√

ρ
D
⇒ lns = lnA+ 1

2 lnρ− 1
2 lnD

(4.1)
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where A = −(0.16−0.80)
2(ln( 1

0.16 −1)−ln( 1
0.80 −1)) . Solving for lnD, the equations becomes

lnD = 2lnc− 2ln2− lnρ
lnD = −2lns+ 2lnA+ lnρ

(4.2)

which is done in figure 4.16 for c equal to 5 and 0.5 mm/year and steepness equal to
0.5 and 0.05 mm−1 respectively. In this way it is easier to interpret which parameter
combinations correspond to which values of c and s.

Figure 4.16: Left: Parameter values for each patient plotted against D and ρ.
Right: The logarithm of the parameter values. The lines visualises how lnD varies
with respect to lnρ for c equal to 5 and 0.5 mm/year and steepness equal to 0.5 and
0.05 mm−1 respectively.

Figure 4.17 shows the difference in parameter values between results from PSO and
analytically calculated parameters relative the analytically calculated parameters,
i.e. (Dpso − Dacp)/Dacp and (ρpso − ρacp)/ρacp respectively. As can be seen, the
difference in parameter values is larger for the diffusion coefficient D and in addi-
tion, Dpso is always underestimated in relation to Dacp while ρpso is almost always
overestimated in relation to ρacp.
If instead considering the difference in properties values, that is the velocity, steep-
ness and mismatch, the result is visualised in figure 4.18. Here, the values of the
properties estimated from data are compared with the values estimated from the
PSO using the same equation for the difference as in figure 4.17.
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Figure 4.17: Difference between the PSO result and the analytically calculated
parameter values, in relation to the analytic parameter values. They are relatively
similar in most cases, with some exceptions.

In figure 4.18, the spread in values for the mismatch is larger than for the velocity and
steepness, while the velocity and steepness are in general quite accurately estimated.
Especially the velocity, if comparing the axes.

Figure 4.18: Difference of the tumour properties measured from data and the prop-
erties estimated from the PSO algorithm, relative the values calculated from data.
The difference is smallest for the velocity and largest for the mismatch.
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Lastly, the invisible tumour radius and volume are plotted against the velocity and
steepness respectively and are visualised in figure 4.19. No trend can be seen for
the velocity, but it seems that both the invisible radius and volume decreases for
increasing steepness.

Figure 4.19: How the invisible volume and radius depend on velocity c and steep-
ness s.
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5
Discussion

In this chapter, the main results of the project will be summarised and discussed.
The aim was to simulate tumour growth to give additional information about Low
Grade Glioma that can not be estimated directly from Magnetic Resonance images,
but requires mathematical modelling. To fulfill the aim, the tumour properties were
extracted from patient data and statistically tested to investigate their potential
effect on survival. Also, the different methods of solving the Fisher equation were
compared and, using patient data, the values of diffusion coefficient D and growth
rate ρ for each patient were determined using parameter estimation techniques.
The result for each goal is evaluated in the sections below together with a discussion
concerning if the aim has been reached.

5.1 Statistics

In this section, the results from section 4.1 are discussed. The questions to answer
here are What are the values of the tumour properties for the data set and Does the
different properties have an effect on survival?
If considering table 4.1 and figure 4.1, some values were rather unreasonable. For
one patient the initial tumour radius was zero and for some patients the velocity,
steepness and mismatch were negative. These observations should not be possible,
since the patients were untreated during the measurements and MR images taken
with T2-FLAIR should detect cancer cell densities at higher rate in comparison
with T1. Fortunately these observations are reasonable, since they are due to an
inconsistency and error when estimating tumour volumes from images with T2-
FLAIR and T1 respectively.
Firstly, the patient with zero initial volume continuously took MR images before
she was diagnosed with Low Grade Glioma for another disease she had, explaining
that observation. Secondly, the negative velocities are due to the combination of
few measurements and a change in segmentation depth when estimating the tumour
volume. As mentioned in section 3.1, the tumour volumes are estimated from MR
images by segmenting 3D images to 2D images with a constant segmentation depth
d and the total volume is calculated as the sum of the segment volumes. According
to neurosurgeon Asgeir Jakola, the segmentation depth used when estimating the
volume is most often 5mm, but for some patients the MR image taken before surgery
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Figure 5.1: MR image of a Low Grade Glioma using acquisition sequence T1 and
T2-FLAIR respectively. The tumour is located at the exact same place in both images
but in the T1 image it is difficult to determine what is tumour and not, even for a
doctor.

was made using a depth of 1mm, to get a more accurate estimate of the tumour
volume. Thus, if a patient only has two measurements where the first tumour volume
was estimated using d = 5mm and the second d = 1mm, it looks like the volumes
decreases in size and consequently yields a negative velocity.
Lastly, the negative steepness and mismatch is due to the difficulty of defining what
is tumour and what is surrounding tissue in MR images taken with acquisition
sequence T1. One only needs to look at figure 5.1 to understand that estimating
the volume is not an easy task, even for a doctor. Due to this difficulty, healthy
surrounding tissue has been included in the volume estimate, yielding a volume
estimated from MR images using T1 that is larger than the estimated volume from
T2-FLAIR, giving rise to negative steepness and mismatch.
To make the data set consistent, all measurements with d = 1mm and all patients
with larger T1 volume than T2-FLAIR volume were removed, as well as the patient
with zero initial radius, leading to the subsets of data mentioned in section 4.1.1.
After filtering, the data was more reasonable but showed large variety for all mea-
sured properties, see table 4.2. For this reason, the median is a better measure of
the overall values for the data set, since it is more robust to outliers than the mean
value. The median age is higher than the previously reported mean age of 41 [3]
and the median radial velocity is slightly smaller than the reported mean velocity
of 2mm/year, but could be due to the small data set of 14 patients.
The small data set has in turn affected the results from the survival analysis as
well, summarised in section 4.1.2. As can be seen in figure 4.3, the mismatch is
insignificant while the invasiveness and velocity are significant, which is illustrated in
figure 4.4 and 4.5 respectively. In this context however, significance is a strong word.
Due to the small data set the statistical power of the test is very low, which means
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that the probability that the significant effects truly are significant is very low. In
addition to the log-rank test, the original idea was to also use the Cox Proportional
Hazards model to verify the findings in the log-rank test and investigate potential
combination effects of the properties [23]. The problem however was that the data
set was so small that the test yielded contradictory p-values and the test was thus
ignored.
Although the statistical power is small, the log-rank test can still give an indication
of which factors that seem to have an effect on survival and not. The test for the
velocity indicates that the velocity has an effect on survival, which is in concor-
dance with the conclusion made by Johan Pallud et.al. [20]. The invasiveness is
indicated to also have an effect on survival and that patients with diffuse tumours
(ρ/D < 10mm−2) has a higher risk of dying from their cancer. This is a reason-
able result since diffuse tumours tend to infiltrate surrounding healthy brain tissue
and becomes harder to detect on an MR image. However, these findings are not in
concordance with the paper written by Aymeric Amelot et.al. in 2017, where the
conclusion instead is that the invasiveness does not have an effect on survival [21].
It should be noted however that in his study, glioblastoma multiforme was of inves-
tigation and not Low Grade Glioma. The invasiveness could thus have an effect on
survival for patients with Low Grade Glioma, which is especially interesting since
the steepness can be calculated after only one measurement. Then the doctors can
take faster decisions regarding treatment in contrast to the velocity, since a time
series of volumes is needed to accurately measure the velocity. It would thus be of
interest to investigate the effect of steepness, as well as mismatch although it was
not significant, using a larger data set.
In conclusion, the difficulties in retrieving a large data set with non contradictory
data has affected the result. The summary of the data shows large variety between
the patients and median values that are close but not in correspondence with pre-
viously measured values. Although the power of the log-rank tests is small, the
velocity should be truly significant based on previous results, while it would be
interesting to test the significance of invasiveness and mismatch on a larger data
set.

5.2 Comparison of methods for solving velocity,
steepness and the Fisher equation and their
dependence on parameter values

Let us now focus on the deterministic modelling, where the results from section 4.2
are discussed. The question of investigation is does the different methods of solving
the Fisher equation, as well as the velocity and steepness, differs?
For the comparison of the different methods of calculating velocity c and s, il-
lustrated in figure 4.6 and 4.7, the result shows that the different methods give
reasonable and very similar results. The dependence of the parameters D and ρ is
as excepted for both c and s, where the highest velocity c is found for large D and
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ρ while the largest steepness s is found for large D and small ρ. Considering the
biology behind the model, it is very reasonable that a tumour with rapidly dividing
and moving cancer cells grows faster in size. It is also reasonable that the cancer
cell distribution in space is small if the cancer cells does not migrate, thus giving a
high steepness.
In addition, the contour plots in figure 4.6 and 4.7 show that the difference between
the two ways of solving c and s is small. The largest difference is found for small ρ
in both cases with a maximum difference of 0.06 for the velocity and -0.11 for the
steepness. This indicates that the dependency of the parameters D and ρ differs
between the methods for small ρ but is in all other cases quite similar.
Two things to take into consideration regarding the conclusions above however
are the ranges of choice and the method of numerically calculating the properties.
Firstly, as mentioned in section 3.4, the choice of the ranges for D and ρ were based
on previously reported parameter values, but also because all combinations reached
the constant travelling wave within the intervals t ∈ [0, 30] years and r ∈ [0, 100]
mm. As shown in section 4.3 where the results from the parameter estimation are
presented, the variation in parameter values is larger than the range used in this
test. Therefore, it is a possibility that the methods of calculating c and s differ for
parameter values that are not included in the chosen range. Also, the solutions to
the Fisher equation for small ρ takes longer time to reach the constant travelling
wave. If the phase where the solution has reached the constant travelling wave is
shorter, there is a risk that the velocity and steepness for the constant phase is not
as accurately calculated as for those solutions where the phase is long. A restriction
to only include the constant wave phase has been implemented in the functions, but
may not have been as strict as it should have been.
A similar error could have occurred for the comparison between the solutions of the
Fisher equation, either using the PDE solution or the Analytic Equation. As can be
seen in figure 4.9, the sum of squares for all combinations of D and ρ is the largest
once again for small values of ρ. It could be due to the same reasons mentioned
above, or basically because there exists a larger difference for these combinations
of parameter values. Although the difference is at largest for small ρ, overall the
difference between the solvers is very small implying that the curves are similar. The
difference is in the curvature of the solutions to the Fisher equation, as can be seen
in figure 4.8. For the PDE solution of the Fisher equation, the edges of the travelling
wave is smoother than for the Analytic Equation. Although the curves for only one
set of parameter values are illustrated in figure 4.8, other parameter combinations
have been tested as well yielding the same behaviour, i.e. the edges of the PDE
solution are always behind the Analytic Equation. If looking very closely at 4.8, one
can see that the difference in curvature goes within the interval u ∈ [0.16, 0.80] and
could be the reason of why the difference when estimating the steepness is larger
than when estimating the velocity.
To conclude this section, the different methods of calculating the velocity, steepness
and solving the Fisher equation are similar. There exists a small difference between
them that seems to be largest for small values of the growth rate ρ and varying values
of diffusion coefficient D, but could potentially be due to numerical errors. From a
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mathematical point of view these small differences could be interesting, but if the
goal is to use the Fisher equation as a tool in medicine these small differences would
be negligible. For that reason, these findings indicate that the Analytic Equation of
the Fisher equation, together with the analytical estimates of velocity and steepness,
suffices if it would be used in medicine.

5.3 Parameter estimation

Lastly, the result from the parameter estimation from section 4.3 is discussed, where
the question in consideration is can the parameters D and ρ be determined from
patient data using parameter estimation?
As all three examples shows, see table 4.3, 4.4 and 4.5 respectively as well as fig-
ure 4.18, the numerically calculated velocities and steepnesses are very accurately
estimated for the optimal values of D and ρ. In figure 4.18 where the values of the
properties estimated from data are compared with the values estimated from the
PSO, it can be seen that for only some exceptions the values differ for the velocity
and steepness. The exceptions are Patient 8, 9 and 28 respectively which are ex-
plained by their abnormally large values of velocity and steepness. For patient 8 and
9 the tumour velocities are approximately 26 and 83 mm/year, where the median
velocity is 1.36 mm/year, and Patient 28 has the largest recorded value of steepness
of 2.4, see Appendix C for additional information. These findings indicate that the
parameter estimation performs worse for extreme values of velocity and steepness.
For the mismatch illustrated in figure 4.18 the spread is much larger, which is rea-
sonable since the algorithm has no information regarding the mismatch. Although
it was not used in the optimization process, the difference relative data is not that
large. The largest differences in mismatch is found for patient 1, 2, 8 and 28, where
the reason for the first three could be that the steepness for these patients is very
small. For Patient 28, the steepness is too large for the PDE to estimate, giving rise
to a result that does not capture the data as well as for the other patients.
These results indicate that the Particle Swarm Optimization algorithm was a good
choice of algorithm, although it has its drawbacks. Firstly, the algorithm terminates
after a finite set of iterations even if the termination criteria has not been reached.
In this case however, the total number of iterations were only reached for 3 of 14
patients, since the remaining 11 patients reached a value of the objective function
below 10−8, which was used as a termination criterion. For the 3 patients where
10−8 was not reached, Patient 1, 9 and 28 respectively, one had major numerical
issues and another had a steepness so large it could not be estimated from the
Fisher equation, see Appendix C and D for additional information. Why Patient 1
gets a relatively large value of 1.19 · 10−6 is because the total number of iterations
were smaller when the parameters for this patient were estimated. The number of
iterations was changed for the rest of the patients and the optimisation process was
not repeated for Patient 1 using the new criteria. This inconsistency yielded a larger
objective function value for Patient 1, but when this error was noted it was too late
to do anything about it.
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5. Discussion

A further drawback of the PSO algorithm is that one gets no information regarding
the robustness or sensitivity of the solution found. Also, since it is a stochastic
algorithm, there is no guarantee that it exactly finds the same optimum every time.
A test was made were the PSO solves the same minimization problem ten times
using the same settings to investigate if the same solution is found every time,
which it does up to at least 3 decimals accuracy. For a more detailed description,
see Appendix A. The result of this test indicates that the parameter estimation is
not affected by this stochastic feature of the algorithm, and since the PSO is shown
to be an accurate algorithm [29, p. 145], it is a good choice of algorithm at least
among the stochastic optimization algorithms. But, if there exists an algorithm that
can perform as well as the PSO and give more additional information regarding the
performance, it would be of interest to use that algorithm for this purpose.
One thing that could have been done differently for the PSO is the inclusion of the
constraints. As mentioned in Appendix A, where the Particle Swarm Optimization
algorithm is described in more detail, the particles that minimises the objective
function steers the swarm while the particles violating the constraints automatically
gets an unreasonably high value of the objective function. An option, described
in Mattias Wahdes book, could be to instead use penalty methods to restrict the
particles [29, p. 143], yielding a similar result as the one implemented here but using
a technique with a more thorough mathematical background.
Since the PSO algorithm seems to have accurately and reliably estimated the pa-
rameters D and ρ, even though improvements could be made, it is to note that the
results differ from the analytically calculated parameter values. If considering figure
4.17 the difference in parameter values can differ considerably for some patients.
Why figure 4.17 contradicts the conclusions made in section 5.2 could be due to the
range of parameter values, since the range here is much larger than the one used
during the comparisons. In addition, the same methods of calculating the velocity
and steepness are used in the parameter estimation as in the comparisons, meaning
that the potential error for small values of ρ can have affected these results as well.
In summary, it seems that the parameter values of diffusion coefficient D and growth
rate ρ can be estimated from patient data. The Particle Swarm Optimization al-
gorithm gives reliable results with large accuracy, despite the improvements of the
algorithm that could be done, and a set of parameters has been estimated for all 14
patients. PDEpso and AEacp can either be different for different parameter values,
similar for similar parameter values, or similar for different parameter values, as
described in section 4.3.1 for the three patients of choice. For most patients the
second case is the most common, thus PDEpso and AEacp are similar for similar pa-
rameter values. These findings implies once again that the analytic equations, both
regarding the solution to the Fisher equation and the estimation of the parameter
values, are accurate approximations. The exceptions are, as previously noted, when
the values of the velocity and especially steepness are rather extreme.
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5. Discussion

5.4 Has the aim been fulfilled?

So far only the results of the goals have been discussed, but have the goals fulfilled the
overall aim to give additional information of the tumour to improve the treatment
of Low Grade Glioma? Unfortunately, it does not seem like it.
As for the survival analysis discussed in section 5.1, the only thing that is certain
is that the velocity has a significant effect on overall survival of the patients, since
it has been shown to be significant in previous papers [20]. The invasiveness could
potentially have an effect on survival and would be interesting to test again on a
larger data set. However, the method of calculating steepness is rather unreliable
since it is dependent of the visibility thresholds. The thresholds used throughout
this thesis are 0.80 for the Magnetic Resonance image with acquisition sequence T1
and 0.16 for the MR image with T2-FLAIR, suggested by Kristin Swanson in 2008
[1]. However, an article from 2013 by Chloé Gerin concludes that it is uncertain if
these constant thresholds even exist [7]. This not only affects the steepness but all
measures that are influenced by these thresholds, such as the numerically calculated
mismatch and the invisible volume.
If recalling the results mentioned in section 4.3.2, the invisible volume was the
difference in volume calculated using the radii measured at u = 0.16 and u = 0.01
respectively for PDEpso. The invisible volume was meant to be used as a tool for
the doctors at Sahlgrenska to better estimate the amount of remaining cancer cells
after surgery, but with the arguments regarding the visibility thresholds above these
retrieved numbers are probably not that reliable. It could still give an indication of
how large the invisible volume is, which might could help the doctors when taking
a decision regarding the marginals of choice when performing surgery or tuning
the radiotherapy. Also, since a visible trend is seen between invisible volume and
steepness in figure 4.19, although maybe not accurately calculated, one can after
only one measurement determine if the invisible volume possibly is large or small.
Secondly, one should really question the estimated time made from the results of
the PSO algorithm. Although it is unknown which of the methods to estimate the
age of the tumour, PDEpso, AEacp or linear regression LR, is the most accurate,
the PDEpso for some patients gives unreasonably high age of the tumours. One
example is Patient 2, see Appendix D, where the estimated age of the tumour is
approximately 15-20 years for AEacp, 20-25 years for LR and 50-55 years for PDEpso.
A questionable time considering that the patient age of diagnosis was 63, thus the
result from the PSO implies that this patient got the tumour 13 years of age.
This result puts into question if the Fisher equation really is a good model after
all. As all models, the Fisher equation lacks a lot of details concerning Low Grade
Glioma. At the same time that is exactly what models are made for, to only con-
sider the central concept of a process in order to return an accurate approximation
of reality. The problem here therefore could be that an important factor regard-
ing tumour growth is not included in this variant of the Fisher equation. Such a
central concept could the anisotropy, the non-homogeneous spatial distribution of
the tumour. In this model isotropy is assumed, resulting in a PDE with spherical
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symmetry and a diffusion coefficient independent of space. The MR images shown
throughout this thesis however, for example figure 5.1, are clearly not spherical or
independent of its surroundings. There already exists at least one model taking into
account anisotropy, but this is used to simulate a glioma of higher grade [10]. It
could thus be of interest to create a similar model to instead simulate growth of Low
Grade Glioma, to investigate if it improves the result.
Although the Fisher equation could use some improvements, one can not exclude
the effect of deficient data that can make all models fail. The most obvious case
is Patient 16, the 69 year old patient with an approximately 85 year old tumour,
see figure 4.15. A possible explanation could be that the diffusion coefficient D and
growth rate ρ are not constant over time, yielding a higher growth velocity at the
initial phase of the tumour. How to investigate these changes in values over time is
uncertain, since for a patient the tumour has already grown for some time when the
patient is diagnosed.
Another explanation could also simply be that errors have occurred when estimating
tumour volumes from MR images, which would not be the first case in this thesis.
It is very difficult and time consuming to estimate tumour volumes, especially when
using acquisition sequence T1. As mentioned in section 4.1.1, data from 14 patients
was discarded in order to get a subset of the data with reasonable values and even
that subset was not flawless. This approach of estimating specific values of D and ρ
for each patient requires accurate and many volume estimates for all patients, which
certainly is not the case. As already mentioned, 14 patients were discarded due to
contradictory data and if that data could have been used more efficiently, or if data
from other patients could give information about the patient set as a whole, that
would be of large interest.
One approach to include the whole data set in one model could be to used Non-
Linear Mixed Effect modelling (NMLE). These kind of models includes both fixed
effects and random effects of a model, giving rise to a deterministic model that can
include the effect of variability in the data [30].
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Conclusion

After filtering the original patient data set, the extraction of tumour properties from
data showed reasonable behaviour for most patients with large variety in values. The
survival analysis shows that high velocity and diffuse tumours have a negative effect
on survival, while mismatch does not have an effect. However, due to the small data
set the power of the test is small, questioning the reliability of the significance of the
tests. It would be interesting to investigate the effect of invasiveness and mismatch
on a larger data set, whose effect is currently unknown.
The comparison between the different methods of calculating velocity and steepness,
as well as solving the Fisher equation, shows that in most cases the results are
similar in the range of parameter values that was tested. The largest difference in
all cases is found for small values of ρ but could be due to an error when using
numerical methods. Although safety measures have been taken to avoid this kind
of error it would be of interest to check again if the calculations are accurate for
all combinations of parameter values. The difference between the solutions of the
Fisher equation are due to the curvature of the curves, the PDE solution having
more smooth edges than the Analytic Equation, and the sum of squares is small but
not constant for all combinations of parameter values. These findings indicates that
the different solutions behave differently dependent of the parameters, but that in
most cases the curves are similar.
The parameter estimation using the Particle Swarm Optimization algorithm yields
accurate numerical estimates of velocity and steepness and in general objective func-
tion values close to zero. The exceptions where the PSO has failed to capture the
properties measured from data has been due to extreme values of the properties
rather than an error in the optimization process and the optima are not affected by
the stochasticity in the algorithm. However, improvements of the algorithm could
be made and it would be of interest to use another algorithm for the same purpose
that could give more information regarding the robustness and sensitivity of the
result. The parameter values estimated from the PSO algorithm differs from the
analytically calculated parameters, concluding once again that the analytic calcu-
lations and the PDE differs. This behaviour is most often seen for extreme values
of velocity and steepness, but in general PDEpso and AEacp yields similar results,
concluding that the analytic approximations gives accurate results.
Although all goals have been reached, no new insights have been discovered con-
cerning Low Grade Glioma and its behaviour. That the invasiveness was shown to
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6. Conclusion

have an effect on survival is promising but should be investigated on a larger data
set. The measure of invisible tumour from PDEpso is questionable, especially since
the assumed visibility thresholds for the MR images are probably not accurate, but
could be used as an indicator for the doctors to determine if a larger marginal or
stronger radiotherapy should be applied during treatment. The combination of the
measure of the invisible volume, the invasiveness truly having a significant effect on
survival and the visible relation between invisible volume and steepness in figure
could thus be interesting to further look into.
Lastly the model of choice, the PDE solution of the Fisher equation in Spherical
coordinates, should be questioned especially regarding the estimate of the age of
the tumour. A possible expansion to the model could be to include the effect of
dependence of its surrounding, but does not takes into consideration the sometimes
unreliable data or small number of measurements. For this reason a model based
on Non-Linear Mixed Effect modelling could be of interest, that can better use the
information from data and include the random effects of the process.
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A
Particle Swarm Optimisation

algorithm

Here the Particle Swarm Optimisation algorithm (PSO) will be described more thor-
oughly to let the reader in detail understand how the algorithm works. Since the
algorithm is based on the PSO algorithm described in Mattias Wahdes book Bio-
logically inspired optimization methods: an introduction, only the steps that differs
from his algorithm are presented here [29, p. 123]. Consider again the flowchart of
the PSO algorithm in figure 3.4, where the steps that differs are Initialise condi-
tions, Evaluate particle and Terminate and save results and will be discussed below.
Lastly, a test for checking the robustness of the algorithm was made and the result
will be presented below.

A.1 Initialise conditions

The first step in the algorithm is to extract data from the patient of consideration.
The data of interest is the age of the patient, the volumes estimated from Magnetic
Resonance images with T2-FLAIR, the time difference between the measurements
and lastly the volume estimated from MR images using T1 and the time point it
was taken. From this data, the velocity and steepness from data can be calculated,
together with the mismatch that will be used when examining the result. The
velocity is calculated from the linear regression

rdata = r0
data + cdatatdata i = 1, 2, ... (A.1)

using least squares, and the steepness is calculated as

sdata = −(0.16− 0.80)
r0.16 − r0.80

(A.2)

where r0.80 is the radius calculated from the volume estimated from MR images using
T1 and r0.16 is the corresponding radius measured from MR images using T2-FLAIR
taken at the same time point as r0.80. With the data extracted and velocity and
steepness defined, the next step is to define the settings necessary for solving the
Fisher equation.
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A. Particle Swarm Optimisation algorithm

Figure A.1: Flowchart illustrating in general how the Particle Swarm Optimisation
algorithm works. The colors represents different phases of the code: Initialisation
phase in dark green, the iteration process in yellow/orange and the termination step
in light green
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A. Particle Swarm Optimisation algorithm

Assuming that the analytically calculated parameters are close to the optimal values
of the parameters, they can be used as an initial guess of the parameters. The
parameter values estimated analytically are calculated as

c = 2
√
ρD

s = −(0.16−0.80)
c
ρ(ln( 1

0.16 −1)−ln( 1
0.80 −1))

⇔


D = 0.16−0.80

ln( 1
0.80 −1)−ln( 1

0.16 −1)
c

4s ≈ 0.053 c
s

ρ = ln( 1
0.16 −1)−ln( 1

0.80 −1)
0.80−0.16 cs ≈ 4.757cs

(A.3)

and are used to solve the PDE solution of the Fisher equation. From that solution,
time and spatial size is decided, in order to minimise the risk of numerical errors.
In addition, the maximum radius and time is initially defined as the radius of the
last measurements and the time estimated from the linear regression and additional
time and space is added according to the solution in order to make sure that the
constant wave phase is reached. Using the analytically calculated parameter values,
the range of possible values for the PSO is defined.

A.2 Evaluate particle

In this step, every particle with its unique combination of parameter values is evalu-
ated based on its capability to properly estimate the velocity and steepness measured
from data. The PDE solution of the Fisher equation is solved using the parameter
values from the particle and using this solution, the velocity and steepness is calcu-
lated numerically according to the procedure presented in section 3.3. These values
are then used in the objective function, defined as

f(cnumeric, snumeric) = (cnumeric − cdata)2

cdata
+ (snumeric − sdata)2

sdata
(A.4)

where f is the objective function that should be minimized, cnumeric snumeric is
the velocity and steepness measured using the parameter values D and ρ for each
particle and cdata and sdata is the velocity and steepness measured from data. The
value of the objective function is returned to the main algorithm and the particles
that minimises the objective function the most is the ones that performs the best
and thus leads the rest of the swarm closer to the optimum.
In this step, there are many ways of getting either unreasonable results or even
values of the objective function that is Not a Number (NaN). In order to restrict the
algorithm and discard unreasonable solutions, the objective function of a particle
directly gets a large value, ranging from 1000 to 1000000, if:
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A. Particle Swarm Optimisation algorithm

1. One or both of the parameters D and ρ have a value below zero,

2. The MATLAB function pdepe, calculating the PDE solution of the Fisher
equation, gets numerical errors and fails to calculate the proportional cell
density for all time steps. If this happens, the code enters a while-loop that
decreases the spatial step size and calculates the Fisher equation once again.
If the numerical errors remains after ten iterations, the solution is discarded.

3. The solution of the Fisher equation has not reached the constant wave phase,

4. either c or s is NaN.

A.3 Terminate and save results

The algorithm is terminated if the maximum number of iterations is reached or
the objective function gets a value below 10−8. After termination, the velocity and
steepness profiles over time are calculated and visualised in order to check if the
results seems reasonable. If so, the optimum parameter values and the value of the
objective function is saved, together with the settings that was used in order to
retrieve the result, for reproducibility.

A.4 Robustness test of the PSO algorithm

In order to investigate if the stochastic optimization algorithm PSO gets different
values for every run or not, the algorithm was run ten times under the same settings
and the result was retrieved for every run. The result is summarised in table A.1
and shows that it is able to find the same optimum for every run. This shows that
although the PSO was only run once for many patients, the result would not have
been different if averaging over many runs.

Table A.1: Results from running a PSO using the same settings multiple times.
The values varies barely and indicates that the algorithm finds the same optimum
every time.

Run 1 2 3 4 5 6 7 8 9 10 Mean:
Dopt 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.313
ρopt 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.609 0.608 0.608 0.6081
Obj.fct · 108 0.014 14 0.67 0.80 5.00 2.00 2.60 27.0 5.00 5.00 6.21
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B
Tumour growth over time for all

patients in the SC-data

In this Appendix additional plots illustrating tumour growth are visualised, using
the subset SC-data of 14 patients in total. The volumetric growth is shown in
figure B.1 and the radial growth in figure B.2, illustrating great variety in growth
and number of measurements. In figure B.3, the normalised growth is visualised,
where the radius at each time point is divided by the initial radius. Figure B.3 thus
illustrates at which rate the tumour grows relative its own size. For most patients,
the radius of the last measurement is 1.2-1.4 times larger than the initial radius,
but for one patient the last radius is approximately 2.6 times larger. For better
visibility, the y-axis is given a maximum value of 1.5, thus not visualising the radius
mentioned above.

Figure B.1: Volumetric growth over time, using the data subset that is also used
in the parameter estimation, SC-data.
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B. Tumour growth over time for all patients in the SC-data

Figure B.2: Radial growth over time, using the data subset that is also used in the
parameter estimation, SC-data.

Figure B.3: Normalised radial growth over time, using the data subset that is also
used in the parameter estimation, SC-data. The radii is divided by the initial volume
in order to visualise how fast the tumours grow relative their own size.
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C
Complete tables of data and

results

In section 4.1.1 and 4.3.2, only summaries of the data and values of parameters
and properties have been presented. In this Appendix, the complete tables of all
summaries will be visualised. The tables in consideration are table 4.1, 4.2 and 4.6.
For the summary of tumour properties, table 4.1 and 4.2, the full table can be
found in table C.1, where the rows colored in green represents the patients also
included in the subset SC-data. The abbreviations used is patient index (Index),
age at diagnosis (Aged [years]), time to surgery (Times [years]), tumour volume at
diagnosis (Vd [cm3]), tumour radius at diagnosis (rd [mm]), velocity (c [mm/year]),
steepness (s [mm−1]) and mismatch (MM).
For the results from the parameter estimation using Particle Swarm Optimization,
table 4.6, the full table is presented in table C.2. The abbreviations is patient in-
dex (Index), age at diagnosis (Aged), velocity (c [mm/year]), steepness (s [mm−1]),
diffusion coefficient analytically calculated (DA [mm2/year]), growth rate analyt-
ically calculated (ρA [year−1]), diffusion coefficient calculated from PSO (DPSO

[mm2/year]), growth rate calculated from PSO (ρPSO [year−1]), value of objec-
tive function (ObjFct), estimated time before diagnosis (Timed [years]), invisible
tumour volume (VI [cm3]) and invisible radius (rI [mm]). The horizontal lines is
only to divide the table into smaller sections, for better readability.

VII



C. Complete tables of data and results

Table C.1: Complete table of the tumour properties for all patients. The rows
coloured in green represents the patients that are also used in the parameter estima-
tion and all abbreviations are described in the text above.

Index Aged Times Vd rd c s MM
1 67 1.693 75.600 26.231 2.950 0.071 0.636
2 63 3.189 15.042 15.313 0.811 0.088 0.767
3 62 3.986 66.330 25.112 1.222 -0.896 -0.073
4 57 0.416 20.270 16.914 -0.070 1.027 0.107
5 50 0.729 0.000 0.000 34.206 -0.209 -0.415
6 49 0.375 29.800 19.233 -0.831 0.096 0.723
7 48 0.230 42.432 21.637 -0.210 0.630 0.135
8 21 0.479 138.968 32.132 26.730 0.047 0.668
9 66 0.192 3.757 9.644 83.341 0.051 0.869
10 53 0.315 54.853 23.571 15.959 0.211 0.338
11 46 0.482 18.390 16.374 -3.378 -0.239 -0.651
12 32 0.148 81.240 26.867 -5.508 -1.214 -0.062
13 56 0.910 1.779 7.517 1.267 1.205 0.172
14 40 0.622 113.840 30.066 -3.815 -2.205 -0.032
15 25 1.471 14.800 15.231 4.156 0.552 0.161
16 69 3.973 104.956 29.262 0.341 1.700 0.037
17 48 0.367 3.693 9.589 0.349 -1.921 -0.106
18 41 0.455 2.700 8.638 1.218 -0.435 -0.712
19 37 0.726 18.414 16.381 1.456 0.169 0.520
20 31 0.208 31.270 19.544 -0.879 0.410 0.223
21 43 0.244 10.510 13.588 -0.463 0.229 0.502
22 58 0.258 81.933 26.944 -2.564 0.110 0.518
23 56 8.055 31.611 19.615 0.873 1.300 0.056
24 63 1.085 17.000 15.951 0.630 0.538 0.239
25 42 0.247 2.509 8.430 -0.761 -0.516 -0.603
26 40 4.367 22.681 17.560 0.911 0.155 0.461
27 67 0.263 10.410 13.545 2.030 0.347 0.344
28 51 7.186 9.980 13.356 0.743 2.369 0.046
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C. Complete tables of data and results

Table C.2: Complete table of the result from the parameter estimation using Par-
ticle Swarm Optimization, abbreviations are described in the text above.

Index Aged c s DA DPSO ρA ρPSO ObjFct Timed VI rI
1 67 2.950 0.071 2.171 1.705 1.002 1.019 1.19 · 10−6 19 118.654 7.582
2 63 0.811 0.088 0.482 0.413 0.341 0.350 2.83 · 10−9 50 40.694 6.570
8 21 26.730 0.047 30.123 25.452 5.930 6.043 1.83 · 10−9 3 421.824 12.504
9 66 83.341 0.051 86.256 67.320 20.131 20.148 2.20 · 10−6 1 160.220 13.258
10 53 15.959 0.211 3.969 3.914 16.043 16.219 4.40 · 10−10 2 22.234 2.152
13 56 1.267 1.205 0.055 0.047 7.261 7.344 4.61 · 10−9 6 0.381 0.382
15 25 4.156 0.552 0.395 0.388 10.923 11.063 8.50 · 10−9 4 4.230 0.805
16 69 0.341 1.700 0.011 0.004 2.754 2.770 6.34 · 10−9 87 3.575 0.312
19 37 1.456 0.169 0.452 0.411 1.172 1.206 4.40 · 10−9 18 12.322 2.767
23 56 0.873 1.300 0.035 0.029 5.401 5.439 5.33 · 10−9 23 3.218 0.359
24 63 0.630 0.538 0.062 0.061 1.612 1.636 4.89 · 10−9 28 2.988 0.826
26 40 0.911 0.155 0.309 0.276 0.672 0.692 4.54 · 10−10 32 20.509 2.920
27 67 2.030 0.347 0.308 0.305 3.349 3.405 8.39 · 10−9 9 3.547 1.301
28 51 0.743 2.369 0.017 2.34 · 10−7 8.37 7.402 3.21 · 10−2 18 1.227 0.294
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D
Results from the Particle Swarm
Optimization algorithm for all

patients

In this Appendix the results of the PSO is presented for all patients that were not
mentioned in section 4.3.1. Here only the table presenting the summary of the
performance is shown with a short comment regarding the result.

Patient 2

The summary is found in the table below and the solutions differs slightly.

Table D.1: Summary of the velocity c, steepness s, mismatch MM and the pa-
rameter values D and ρ for Patient 2 (63 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 0.811 0.088 0.767 - -
Analytic - - - 0.482 0.341
PSO 0.811 0.088 0.838 0.413 0.35

Patient 8

The summary is found in the table below and the solutions differs slightly.

Table D.2: Summary of the velocity c, steepness s, mismatch MM and the pa-
rameter values D and ρ for Patient 8 (21 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 26.73 0.047 0.668 - -
Analytic - - - 30.123 5.93
PSO 26.728 0.047 0.739 25.452 6.043
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D. Results from the Particle Swarm Optimization algorithm for all patients

Patient 9

The summary is found in the table and figures below. Here, the results differs quite
much. Also, when running the PSO, numerical errors occurred on regular basis even
in the neighbourhood of the analytic solution, which is used as a initial guess. Since
particles with parameter values that fails to calculate the proportional cell density u
for all r and t automatically gets a objective function value of 1000000, see Appendix
A, the true optimum may have been discarded.

Table D.3: Summary of the velocity c, steepness s, mismatch MM and the pa-
rameter values D and ρ for Patient 9 (66 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 83.341 0.051 0.869 - -
Analytic - - - 86.256 20.131
PSO 83.342 0.05 0.892 67.32 20.148

Patient 10

The summary is found in the table below and the solution using the result from the
PSO and the analytic calculations are very similar.

Table D.4: Summary of the velocity c, steepness s, mismatch MM and the pa-
rameter values D and ρ for Patient 9 (53 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 15.959 0.211 0.338 - -
Analytic - - - 3.969 16.043
PSO 15.959 0.211 0.335 3.914 16.219

Patient 13

The summary is found in the table below and the solutions differs slightly.

Table D.5: Summary of the velocity c, steepness s, mismatch MM and the param-
eter values D and ρ for Patient 13 (56 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 1.267 1.205 0.172 - -
Analytic - - - 0.0553 7.261
PSO 1.267 1.205 0.173 0.0471 7.344
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D. Results from the Particle Swarm Optimization algorithm for all patients

Patient 19

The summary is found in the table below and the solution using the result from the
PSO and the analytic calculations are very similar.

Table D.6: Summary of the velocity c, steepness s, mismatch MM and the param-
eter values D and ρ for Patient 19 (37 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 1.456 0.169 0.52 - -
Analytic - - - 0.452 1.172
PSO 1.456 0.169 0.533 0.411 1.206

Patient 23

The summary is found in the table below and the solutions differs slightly. For this
patient the properties are well estimated from data, since in total 17 measurements
were used which is much larger than the average number of measurements per pa-
tient. This could imply that the Fisher equation can catch tumour behaviour for
this specific patient, since the properties are accurately estimated by the PSO and
the patient data is reliable, assuming that the Fisher equation is a good model.

Table D.7: Summary of the velocity c, steepness s, mismatch MM and the param-
eter values D and ρ for Patient 23 (56 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 0.873 1.3 0.056 - -
Analytic - - - 0.0353 5.401
PSO 0.874 1.3 0.056 0.0286 5.439

Patient 24

The summary is found in the table below and the solution using the result from the
PSO and the analytic calculations are very similar.
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D. Results from the Particle Swarm Optimization algorithm for all patients

Table D.8: Summary of the velocity c, steepness s, mismatch MM and the param-
eter values D and ρ for Patient 24 (63 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 0.63 0.538 0.239 - -
Analytic - - - 0.0615 1.612
PSO 0.63 0.538 0.24 0.0607 1.636

Patient 26

The summary is found in the table below and the solutions differs slightly. This
patient has the same problem as Patient 16, meaning that the estimated age of the
tumour is very unreasonable. Patient 26 is 40 years old while the estimated tumour
age is 32 years, meaning that the PSO result implies that the patient got its tumour
at 8 years of age.

Table D.9: Summary of the velocity c, steepness s, mismatch MM and the param-
eter values D and ρ for Patient 26 (40 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 0.911 0.155 0.461 - -
Analytic - - - 0.309 0.672
PSO 0.911 0.155 0.462 0.276 0.692

Patient 27

The summary is found in the table below and the solution using the result from the
PSO and the analytic calculations are very similar.

Table D.10: Summary of the velocity c, steepness s, mismatch MM and the pa-
rameter values D and ρ for Patient 27 (67 years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 2.03 0.347 0.344 - -
Analytic - - - 0.308 3.349
PSO 2.03 0.347 0.348 0.305 3.405
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D. Results from the Particle Swarm Optimization algorithm for all patients

Patient 28

The summary is found in the table below. What is interesting with this patient
is that the Fisher equation in Spherical coordinates fails to capture the steepness
from the data. The PDE is unable to be as steep as the data suggests, leading to
a solution that differs from the analytic calculations and a much larger value of the
objective function (0,0321), relative the other patients (median: 5.111 · 10−9).

Table D.11: Summary of the velocity c, steepness s, mismatch MM and the pa-
rameter values D and ρ for Patient 28 ( years), calculated either from Data, using
Analytic calculations or estimated using PSO.

c [mm/year] s [mm−1] MM D [mm2/year] ρ [year−1]
Data 0.743 2.369 0.046 - -
Analytic - - - 0.0165 8.377
PSO 0.743 2.093 0.052 2.34 · 10−7 7.402
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