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Abstract
Nanoalloys are of interest in many fields of research such as catalysis, sensing and
energy storage. They are, however, challenging to model due to the large number
of available atomic configurations. In this thesis, the first-principle based method
of cluster expansion is used to study atomic ordering and surface segregation of the
PdAuCu system. It is shown that under vacuum conditions, Au shows a pronounced
tendency to segregate towards the surface in relation to both Cu and Pd, while the
CuPd system shows a slight excess of Pd at the surface. In addition, it is found that
the AuCu system as well as the full AuCuPd system exhibit phase segregation in
bulk due to several ordered phases, while AuPd and CuPd show complete miscibility.

Keywords: palladium, Pd, gold, Au, copper, Cu, Cluster expansion, surface segre-
gation, ordering
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1
Introduction

Metallic nanoparticles are of interest both in fundamental research and for appli-
cations in catalysis [1, 2], energy storage [3, 4], and hydrogen sensing [5, 6]. The
appeal of nanoparticles is multifaceted. First, nanoparticles offer a higher surface-to-
volume ratio than conventional materials by definition, since a large fraction of the
atoms are at the surface. Second, many material properties change with nanopar-
ticle size and shape, with both scalable and non-scalable regimes, which opens up
for new degrees of freedom [7–9]. Third, many nanomaterials exhibit interesting
optical properties, including their plasmonic response [10, 11], suitable for a range
of sensing applications.

In essence, nanoengineering is one way to expand the space of design parameters
in the material design process, which can be crucial when optimizing a system for a
certain application. Another approach is to introduce more than one species. The
number of existing elements is finite, which poses a constraint in material design.
Naturally, by considering multicomponent systems the available scope of materials
increases. The combination of these two approaches, resulting in nanoengineered
multicomponent systems, enables tuning of material properties and, in principle,
the ability to tailor materials for specific applications.

Parallel to this development is the increasing importance of computational meth-
ods in materials science. Ab initio techniques such as density functional theory
(DFT), which enable a quantum mechanical description of a system, have become
standard procedure in many fields of research. Accurate modelling of physical sys-
tems provides means to scan a larger portion of the space of design parameters,
since the time and resource-expensive process of synthesis and characterization can
be limited to the candidate systems with most promise.

An unavoidable paradox is that as the system considered becomes more complex,
by nanoengineering and/or expanding the number of components, the modelling be-
comes increasingly complicated. The consequence is a compromise between approxi-
mations in the computational model and the size of the parameter space considered.
To fully take advantage of the possibilities provided by large parameter spaces and
ab initio calculations, smart modelling schemes are necessary, which is where this
thesis takes off.

1.1 Pd-based nanoparticles for hydrogen sensing

An example of a nanoengineered multicomponent system can be found in the field
of nanoplasmonic hydrogen sensing. Given the urgent demand for non-fossil fuels,
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1. Introduction

hydrogen has emerged as a candidate due to its high gravimetric energy density
and natural abundance. Since hydrogen is highly explosive and challenging to store,
efficient hydrogen sensing techniques are needed to detect potential leaks in order
to enable safe hydrogen fueled vehicles.

Nanoplasmonic hydrogen sensing is a technique where localized surface plasmon
resonance (LSPR) of metal nanoparticles is used to measure the amount of hydrogen
in the surrounding environment [6]. A candidate nanoparticle material is Pd due
to its favourable plasmonic, thermodynamic and kinetic properties during hydrogen
absorption and desorption [5, 12]. Pd nanoparticles show, however, hysteresis when
measuring hydrogen absorption and desorption as well as a tendency for CO poison-
ing [12, 13]. To solve these problems, the introduction of a second alloying element
such as Au or Cu has been suggested. Both the PdAu and the PdCu systems can
be tuned to eliminate hysteresis, but the introduction of Au does not improve CO
poisoning while Cu solves the CO poisoning but strongly reduces the sensitivity of
the nanoplasmonic sensor [12, 13]. A natural next step is to investigate the ternary
PdAuCu system, which has shown promise in solving the above mentioned problems
without sacrificing sensitivity [13].

A common issue with nanoparticle alloys is surface segregation [14]. Since the
surface constitutes the interface to the surrounding environment, its composition
is crucial. In the case of Pd-based nanoplasmonic hydrogen sensing, the surface
composition greatly affects the hydrogen sorption kinetics [13]. Therefore, in order to
develop long-lived plasmonic hydrogen sensors, it is of interest to study the ordering
and segregation of atoms in nanoalloys, such as the PdAuCu system.

1.2 Thesis objective and limitations
This thesis is devoted to studying the thermodynamic ordering and surface segrega-
tion of the PdAuCu system at various concentrations. The work is purely compu-
tational and focused on the issue posed by the extremely large configuration space
associated with binary and ternary systems, with a method based on the cluster
expansion (CE) technique [15, 16]. The aim is to produce results, such as phase
diagrams and surface segregation profiles, that provide a theoretical basis for design
rules of PdAuCu nanoparticles for nanoplasmonic hydrogen sensing. The results
are also of general interest since the methods could easily be generalized to any
multicomponent bulk or surface system.

The thesis work is limited to studies of bulk and surface of the PdAuCu system,
rather than nanoparticles. This is motivated by the fact that in sensing applications,
nanoparticles are typically on the 100 nm-scale [13], where bulk and surface sites
dominate as opposed to edge and corner sites. All systems studied have FCC crystal
structure and all surfaces are in (111) direction. In addition, the system will be
studied in vacuum neglecting the interactions with hydrogen or other adsorbates.

The thesis will be structured as follows. In Chapter 2, the necessary background
theory is covered. Then, in Chapter 3, the methodology of the thesis work is pre-
sented. Chapter 4 is devoted to passing on the insights obtained on how to design
and evaluate a CE. The following chapters, Chapter 5 and 6, are focused on results
related to bulk and surfaces, respectively. Lastly, Chapter 7 concludes the thesis.
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2
Theory

This chapter introduces the computational methods used in this thesis, starting
with the most important method, CE, which enables ab initio based studies of
multicomponent systems. Then, the basis of DFT is explained which is a key method
for providing the necessary training data for CE construction. Lastly, Monte Carlo
(MC) simulation, which is used for thermodynamic sampling of a CE, is covered.

2.1 Cluster expansion
Before describing the CE formalism, it is instructive to introduce a few key concepts.

The atomic configuration of a crystalline material can be described by the config-
uration vector

σ = {σ1, σ2, ..., σN},

where σi is a number describing what species occupies lattice site i and N is the
total number of atoms in the unit cell. For a ternary system, σi can be defined as 0
for species A, 1 for species B and 2 for species C.

Zerolet                  Singlet                     Pairs                   Triplets             Quadruplets      

Figure 2.1: An overview of clusters on a FCC lattice. Each column represents a
certain order, where zerolets are order 0, singlets are order 1 and so on.
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2. Theory

A cluster is defined as a set of k lattice sites. Clusters can be classified by order,
which is the number of sites k, and by radius, which is the average distance between
cluster sites and the geometric center of mass of the cluster. Examples of clusters
of order 0–4 on a FCC lattice is shown in Fig. 2.1. Clusters obey the symmetry of
the lattice, and a group of clusters that can be turned into each other by allowed
symmetry operations are said to belong to the same orbit.

For each lattice site i, a set of M so called point functions Θn(σi) can be defined
as

Θn(σi) =


1, n = 0
− cos

(
π(n+1)σi

M

)
, n odd

− sin
(
πnσi

M

)
, n even

where M is the number of allowed species on a site, for example M = 3 in a ternary
alloy, and n = 0, 1, ..,M − 1 is the point function index.

These point functions can be used to construct an orthogonal basis that is com-
plete in the configuration space [16] with basis functions

Πα(σ) = Θn1(σ1)Θn2(σ2) · · ·Θnl
(σl),

where l is the total number of lattice sites and α = {n1, n2, ..., nl} is a vector where
element ni represents lattice site i. For a specific cluster, ni = 0 for all sites i not
included in the cluster and ni = 1, 2, ...,M − 1 for sites included in the cluster. This
notation is convenient since Θ0(σi) = 1, meaning that sites not included in a cluster
α will not affect the corresponding basis function Πα(σ).

The CE formalism is based on the fact that if an orthogonal basis of the config-
uration space with basis functions Πα(σ) can be found, then any function f of the
configuration (such as the energy) can be expressed as [17]

f(σ) = f0 +
∑
α

fαΠα(σ),

where f0 corresponds to the contribution from zero-order clusters (with configuration
independent basis functions since ni = 0 for all sites i) and the summation is over
all nonzero-order clusters α of the lattice. For reasons of symmetry, the sum over
all clusters can be reduced to a sum over all orbits where each orbit is represented
by one of its clusters α and the basis function is averaged over all clusters α′ in the
orbit

f(σ) = J0 +
∑
α

mαJα 〈Πα′(σ)〉α , (2.1)

where mα is the multiplicity of clusters in the orbit represented by α and effective
cluster interactions (ECIs) Jα has been introduced.

2.1.1 Cluster expansion construction
In practice, a CE is constructed by using reference data f = [f1(σ1), f2(σ2), ...]T at
some arbitrary configurations {σ1,σ2, ...}, usually obtained by ab initio calculations.
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2. Theory

Equation (2.1) can then be written as a matrix equation

f = ΠJ (2.2)

where the sum over α has been truncated to only include orbits of clusters below
some cutoff radius rcutoff. The truncation is motivated by the fact that physical
interactions are generally short-ranged, meaning that larger clusters will have a
less significant contribution. The vector J = [J0, J1, J2, ...]T holds the ECIs of all
non-truncated orbits and each row Πi of the sensing matrix Π corresponds to the
multiplicity and averaged basis function of all non-truncated orbits

Πi = [1,
〈
Πα′

1
(σi)

〉
α1
mα1 ,

〈
Πα′

2
(σi)

〉
α2
mα2 , ...].

Equation (2.2) is a linear system of equations that, if solved, provides the ECIs for
all non-truncated orbits. The ECIs can then be inserted into Eq. (2.1), providing a
CE of the system that enables calculation of f for any configuration σ.

In general, the length of f and J is not the same, resulting in an over or underde-
termined system, which calls for linear regression techniques to find J that minimizes
‖ΠJ − f‖2. Examples of linear regression techniques used for CE are ordinary least-
squares (OLS), least absolute shrinkage and selection operator (LASSO), recursive
feature elimination (RFE) and automatic relevance detection regression (ARDR)
[15]. These solution techniques may well be combined with cross-validation (CV) to
improve and evaluate the CE. CV consists of splitting the reference data into one
training and one validation set, where the former is used to fit ECIs and the latter
to calculate the CV root mean square error (RMSE) of the CE as

CV-RMSE =

√√√√ 1
N

N∑
i=1

(
fCE(σi)− f(σi)

)2

where N is the number of configurations σi in the validation set, fCE is the function
value calculated from the CE and f is the function value from the reference data.
This process can be repeated with different splits, until an optimized CE is found.

2.1.2 Sampling the cluster expansion

Once a CE is constructed, it can be used as a function for determining the mixing
energy of any atomic configuration of a system with the same lattice structure and
species. This opens up for ab initio based studies of systems that are too large
and/or have too large configuration spaces to be feasible to study with ab initio
methods alone.

A CE can be sampled with MC simulations where the CE is used to calculate the
mixing energy in each step of the simulation. This allows for calculation of macro-
scopic quantities such as the free energy of mixing as a function of the concentration
at varying temperature, which is crucial in determining phase diagrams.
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2. Theory

2.2 Density functional theory
In several fields of research it is of interest to calculate the quantum mechanical
ground state of many-body systems. This is, for most realistic systems, a compli-
cated task that requires advanced computational methods. The most widely used
such method is DFT. For the purpose of this thesis, DFT calculations are performed
to generate the reference data f in Eq. (2.2). This section provides the theory behind
DFT, based on Ref. [18].

2.2.1 The Hohenberg-Kohn theorems
The Hamiltonian for the electrons of a many-body system with fixed nuclei can be
written as

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) + 1
2
∑
i 6=j

e2

|ri − rj|
,

where the first term is the kinetic energy, the second is due to an external potential
Vext(r) (including the effect of the fixed nuclei) and the last is the Coulomb inter-
action between electrons. The nuclei are regarded as fixed in accordance with the
Born-Oppenheimer approximation.

For most real systems, it is not feasible to solve the corresponding Schrödinger
equation, which is where DFT enters. The base of DFT is the following two theo-
rems and their corollaries proved by Hohenberg and Kohn in 1964 [19].

Theorem I: The external potential Vext(r) is uniquely determined by
the ground state particle density n0(r)

Corollary I: The many body wavefunctions for all states, and
therefore all properties of the system, are completely determined by
the ground state particle density n0(r).

Theorem II: For any external potential Vext(r), a universal func-
tional E[n] for the energy of the density can be defined. The global
minimum of this functional is the ground state energy of the system
and the corresponding density is the ground state particle density n0(r).

Corollary II: The functional E[n] is sufficient to determine the exact
ground state energy and density.

What these theorems mean in practice is that the problem of finding the ground
state of a system is reduced from solving the Schrödinger equation to minimizing
some functional of the particle density. They provide, however, no guidance on how
to find said functional.

A general expression for the energy functional is

EHK[n] = T [n] + Eint[n] +
∫

drVext(r)n(r) + EII , (2.3)
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2. Theory

where T and Eint are the kinetic and internal energy contributions of the interacting
electrons and EII is the interaction energy of the nuclei.

2.2.2 The Kohn-Sham ansatz
In most DFT implementations, the Kohn-Sham ansatz [20] is used. The main idea
is to replace the many-body problem by an auxiliary independent-particle problem
that is easier to handle. The underlying assumption is that the independent-particle
problem can be defined such that both problems share the same ground state.

The Hamiltonian for an electron in the auxiliary system is

ĤKS = − ~2

2me

∇2 + VKS(r)

where VKS(r) is the effective Kohn-Sham potential, which will be explained later. If
the corresponding Schrödinger equation,

ĤKSφi(r) = εi φi(r), (2.4)

can be solved, the ground state density for a system of N electrons can be identified
as

n0(r) =
N∑
i=1
|φi(r)|2

where φi are the N eigenvectors with lowest corresponding eigenvalue εi.
The energy functional Eq. (2.3) of the interacting many-body problem can be

rewritten in terms of the auxiliary problem as

EKS[n] = TKS[n] +
∫

drVext(r)n(r) + EII + EHart[n] + Exc[n] (2.5)

where TKS is the kinetic energy contribution in the auxiliary system. EHart[n] is the
Hartree energy,

EHart[n] = e2

2

∫
drdr′

n(r)n(r′)
|r− r′|

,

which is the Coulomb interaction energy in terms of electron density. The many-
body effects are grouped into the exchange-correlation functional Exc[n]. The phys-
ical meaning of the exchange-correlation functional is the difference in kinetic and
internal energy of the electrons in the auxiliary and interacting systems, but in
practice it has to be approximated.

The effective Kohn-Sham potential VKS(r) is found by minimizing the energy
functional in Eq. (2.5) with the Lagrange multiplier method, which yields

VKS(r) = Vext(r) + δEHart

δn(r) + δExc

δn(r) = Vext(r) + VHart(r) + Vxc(r).

Once this potential is found, the auxiliary problem in Eq. (2.4) can be solved by
numerical means and the ground state energy and density can be calculated. Then,
in accordance with the Hohenberg-Kohn theorems, all properties of the system are
completely determined.

7



2. Theory

In most implementations, the solution of the Kohn-Sham equation Eq. (2.4) is
done with a self-consistent approach. The ground state density is set to an initial
guess and the Kohn-Sham effective potential is calculated. Then, the Kohn-Sham
equation is solved and a new ground state density is calculated. This new ground
state density is used to reiterate the process from the calculation of the Kohn-
Sham effective potential, and this loop is continued until the ground state density
converges.

Vext n0 n0 VKS

ψn ψ0 φi

HK
KS

(2.6)

Equation (2.6) shows a schematic overview of the principle of DFT. The right
side shows the self consistent Kohn-Sham loop of the auxiliary problem where the
ground state density is used to calculate the Kohn-Sham potential. The potential
is used to calculate the wavefunction, which is then used to recalculate the ground
state density. The left side show the corresponding flow for the interacting problem.

2.3 Monte Carlo simulation
MC methods are based on using random numbers and probabilities to navigate
large configuration spaces. A common example is MC integration [21] of multi-
dimensional integrals. The most straight-forward approach would be to resolve the
integrand on some grid over the domain and sum the values. MC integration, on the
other hand, enables a more efficient numerical scheme where the sampling points
are chosen at random and weighted by their probability.

The MC approach can also be used to simulate complex physical systems and
processes. The idea is to sample some trajectory, starting from an initial guess, by
taking steps where the system is subjected to some random change and each step
is kept or discarded based on the difference in probability before and after. In the
case of CE sampling, it is the configuration of atoms that is randomly changed and
the corresponding probability is based on the thermodynamic potential.

For the purpose of this thesis, each step of a MC simulation starts with a change
in the atomic configuration. This can be done in a number of ways, but the most
common method is the Metropolis algorithm [22], where the generation of new
configurations follows a Markov chain, meaning that the new configuration has no
memory of previous configurations. For any given configuration X, the probability
ρ is defined as

ρ(X) ∝ exp
[
−Φ(X)
kBT

]
(2.7)

where Φ is the thermodynamic potential, which will be explained in Section 2.3.1.
The probability of the new configuration, ρ(Xi), is compared with the probability of
the old configuration, ρ(Xi−1). If ρ(Xi) > ρ(Xi−1), the new configuration is always
kept. Otherwise, the probability of keeping the new configuration is ρ(Xi)/ρ(Xi−1).
With this scheme, a lower energy configuration will always be kept and a higher

8



2. Theory

energy configuration might be kept, with a lower probability the higher the energy.
This is convenient since it avoids getting trapped in local minima. Usually, a MC
simulation contains a large number of steps and any studied observable is averaged
over a large series of steps.

2.3.1 Statistical physics and thermodynamic ensembles
In order to define an appropriate thermodynamic potential Φ(X) to use in the
probability expression in Eq. (2.7), knowledge in statistical physics is necessary.

Consider a system of N particles confined to a volume V in the thermodynamic
limit, where N and V go to infinity while the particle density remains fixed. The
total energy of the system is E, and the values of these three variables (N, V,E)
define the macrostate of the system. Generally, each macrostate can be built from
multiple microstates, where the microstate contains information about the state of
every single particle.

As time progresses, the microstate of the system will change within the same
macrostate. Thus, it is usually more interesting to study the averaged properties
of the system rather than the instant microstate. This is done by introducing an
ensemble, which is a collection of copies of the system in different microstates, where
the microstates X are distributed according to the probability or density function
ρ(X). Any observable can then be studied in terms of ensemble averages. There
are many ways to set up the ensemble, depending on the system in question. In the
following, three ensembles relevant to this thesis will be presented.

2.3.2 The canonical ensemble
Often it is more convenient to study systems with fixed temperature T rather than
energy. This is the basis of the canonical ensemble, where a macrostate is defined by
(N, V, T ) [23–25]. The canonical ensemble represents a physical system in contact
with an infinite reservoir at constant T . The system can be extended to include
different species, with Ni particles of species i. The system can exchange energy
with the reservoir, but the boundaries of the system inhibit exchange of particles
and change of volume, thus keeping (Ni, V, T ) constant.

The probability distribution of microstates in the canonical ensemble reads

ρC(X) ∝ exp
[
−U(X)
kBT

]
where U is the mixing energy of the microstateX. Since the concentrations of species
are kept constant, the only driving force to change the microstate is a decrease in
mixing energy. The consequence of this is that the chemical potential can not be
observed, which is, as will become clear in the following sections, inconvenient when
studying multicomponent systems.

2.3.3 The semi-grand canonical ensemble
In the semi-grand canonical (SGC) ensemble, the fixed thermodynamic variables are
(N,∆µi, V, T ), where ∆µi = µ1 − µi is the difference in chemical potential between

9



2. Theory

species 1 and the other species [24, 25]. The physical representation is a system in
contact with an infinite reservoir with fixed temperature and chemical potentials,
such that both energy and particles can be exchanged. The probability distribution
of microstates in the SGC ensemble is

ρSGC(X) ∝ exp
[
−U(X) +∑

i>1 ∆µiNi

kBT

]
.

The difference between ρSGC and ρC is that in the SGC ensemble, there is a second
driving force related to the chemical potentials of the microstate.

Within the SGC ensemble, the chemical potential can be observed, which yields
the free energy derivative via the relation

∆µ = − 1
N

∂F

∂c
,

for binary systems. This means that the free energy derivative can easily be sampled
with a MC simulation, and then integrated to obtain the free energy as a function
of the concentration, which is often used to determine the corresponding phase
diagram. A remaining issue is that the SGC ensemble can sample single-phase
regions only, since the concentration as a function of the difference of chemical
potential becomes multi-valued in multi-phase regions.

2.3.4 The variance-constrained semi-grand canonical ensem-
ble

The variance-constrained semi-grand canonical (VCSGC) ensemble is similar to the
SGC ensemble but defined such that sampling across multi-phase regions is possible
[24, 25]. The only difference in the physical representation is that now, the reservoir
is finite, which affects the fluctuations of the thermodynamic variables.

The fixed thermodynamic variables are (N, φ, κ, V, T ), where φ and κ control
the average concentration and its fluctuation. The probability distribution in the
VCSGC ensemble reads

ρVCSGC(X) ∝ exp
[
−U(X) + κN(c+ φ/2κ)2

kBT

]

for a binary system. The corresponding relation for the free energy derivative is

∆µ = − 1
N

∂F

∂c
= φ+ 2Nκ 〈c〉 .

From this relation, it is clear that φ→ ∆µ as κ→ 0. This provides the interpretation
of κ as the the (inverse) size of the finite reservoir. When κ → 0, the reservoir
becomes infinite and the VCSGC ensemble transitions into the SGC ensemble.

The free energy can be obtained from the free energy derivative with the same
procedure as for the SGC ensemble, but within the VCSGC ensemble both single-
and multi-phase regions can be sampled. There are methods to obtain the free energy
within the canonical ensemble, but they are more complicated and less efficient [24],
which is why the VCSGC ensemble is used for the majority of the MC simulations
in this thesis.
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3
Method

All of the work of this thesis follows the same workflow that can be divided into
four steps. First, the reference structures needed to construct the CE are selected.
Second, the energies of these structures are calculated to create a reference data
set. Third, the CE is constructed by training against the reference data set. Lastly,
the finished CE is sampled to calculate the energies of various configurations and
thereby obtain information about material properties. These steps are carried out
for binary and ternary bulk systems, followed by binary surfaces.

3.1 Selection of reference structures

All structures considered are FCC crystalline with different configurations of Au,
Cu and Pd. In order to construct a reliable CE, the reference structures need to
be selected with care. The goal is to have a sufficiently large number of reference
structures that span the configuration space. In order for the numerical solution of
the matrix equation to be optimal and converge quickly with the number of training
structures, the sensing matrix should be well-conditioned, which essentially means
that the reference structures should span the cluster space.

In bulk systems, this can be done in straightforward fashion by limiting the max-
imum number of atoms in the unit cell and enumerating all inequivalent configu-
rations that can be achieved [26, 27]. The software used for CE construction and
sampling, ICET [15], supports this functionality. In this thesis, bulk structures with
up to 8 atoms were used, which yields 631 reference structures for binary systems
and 9808 reference structures for ternary systems. The actual number of reference
structures used is lower, in part due to computational difficulties in the next step
leading to some structures being skipped. In addition, for the ternary bulk system,
a selection of 2573 structures was done do reduce the number of calculations.

In surface systems, structure selection requires more thought. The surface struc-
tures used in this thesis are 10 layer FCC-(111) slabs with periodic boundary con-
ditions in the surface plane and 10Å of vacuum in the direction perpendicular to
the surface. The unit cells considered have 1 to 9 atoms per layer, which yields a
total of 10 to 90 atoms per unit cell. Figure 3.1 shows how the number of structures
produced by enumeration increases with the number of atoms in the unit cell for
bulk systems. From this analysis, one can estimate that the corresponding number
for 90 atoms in a surface cell would be very large and it is not feasible to include
all inequivalent configurations. A few different approaches to structure selection for
surface slabs were tested, as presented in section 4.2. The method chosen is based
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Figure 3.1: The number of structures produced by ICET enumeration as a func-
tion of the maximum number of atoms in the unit cell, for ternary and bulk FCC
systems.

Concentrations 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
#structures 1 5 9 13 17 21 17 13 9 5 1

Dimensions 1×1 1×2 1×3 1×4 2×2 3×3

Table 3.1: A specification of the random configuration unit cells used as surface
reference structures. The upper part simply presents the number of structures used
for each concentration. The dimensions refer to how many multiples of the 10 layer
FCC-111 primitive cell are included in the unit cell, in each direction of the surface
plane.

on generating random configurations at specific concentrations, while randomly se-
lecting the shape of the unit cell from a set of unit cells dimensions1, see Table 3.1.
To reflect the natural number of available configurations at different concentrations,
a larger number of structures was generated for intermediate concentrations. The
number of reference structures is lower than for the binary bulk systems, even though
the configuration space is larger, because the necessary DFT calculations are more
computationally expensive compared to bulk.

In addition to this approach, simulated annealing was used to extend the reference
data set for the AuCu surface. A CE was constructed from the initial random struc-
tures2 and used in MC simulations in the canonical ensemble where the temperature
is decreased throughout the simulation, to simulate an annealing process. If this is
done with a very large number of steps, the end configuration will be the ground
state of the system. For the sake of structure selection, the simulated annealing

1The 3×3-cells were added at a later stage, due to ordered phases requiring a 3x3 unit cell.
2The 3×3-cells are not included.
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was done with relatively short simulations (1000 trial steps), to generate low energy
structures rather than the actual ground states. This was done 10 times for each
concentration, generating a total of 90 additional structures.

3.2 Calculation of reference structure energies
The reference energies were calculated with DFT using the software VASP [28,
29] which uses a plane wave basis set [30, 31] and the projector augmented wave
(PAW) method [32, 33]. The functional used is the vdW-DF-cx functional [34],
with PBE pseudopotentials [32]. The calculations are done in two steps starting
from ideal FCC structures. First, the unit cell and atoms are relaxed until the
force is minimized, using the Methfessel-Paxton method. Then, the total energy is
calculated in a final run using a denser k-point mesh and the tetrahedron method.

During relaxation, the calculation is set up such that first the Kohn-Sham equa-
tions are solved for the electronic part of the problem (while the atoms are regarded
as fixed). Then, the atomic positions and cell metrics are subjected to a small
change and the electronic problem is solved again until forces and stresses converge.
For the surface calculations, the cell metric is kept fixed at the lattice parameter
found by interpolating the bulk results. For the final calculation of the total energy,
the atoms are kept fixed and the electronic problem is solved again with slightly
different settings appropriate for energy calculations.

The k-points, which are the points on the computational grid in reciprocal space,
were specified such that the minimal spacing between k-points was 0.20 and 0.15Å−1

for the relaxation and final calculation, respectively, and centered around the Gamma-
point. The convergence criteria used were 10−6 eV for the electronic loop and
10meV/Å for the ionic loop, meaning that the self-consistent loop is terminated
when the difference in energy or force between two steps is below the corresponding
criterion. Other computational details can be found in Appendix A where the full
INCAR files of VASP input parameters are presented.

In some initial testing, embedded atom method (EAM) potentials [35, 36] were
used to relax and calculate the total energy of the structures, using the software
LAMMPS [37]. This approach is significantly faster at the expense of a lower
accuracy compared to DFT. Since the results of these calculations will not be used
for purposes other than testing and comparison, this method will not be covered in
great detail.

3.3 Cluster expansion construction and validation
CE construction was carried out using the ICET software [15]. The workflow im-
plemented in ICET, shown in Fig. 3.2, can be divided into five steps as follows.

1. A cluster space is set up, which holds information about all orbits that are
to be included in the CE. In order to set up the cluster space, a few input
parameters are needed. The prototype structure is a representation of the
lattice structure of the system, for example the FCC primitive cell. The cutoff
radii are the maximum distances between atoms of clusters to be included, for
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Prototype structure

1. Cluster space

Cutoff radii Species

Reference structures

2. Matrix equation

4. Cluster expansion

3. Optimizer

Obtain ECIs

5. Calculator Predict mixing energy

Monte Carlo simulations

Supercell structure Arbitrary structures

Figure 3.2: The workflow of constructing and using CEs in ICET.

each order. The species argument specifies which chemical elements are to be
included in the CE.

2. The cluster space is merged with the reference data to define the matrix equa-
tion that is to be solved. For each reference structure, the values of the cluster
functions are listed and the corresponding basis functions are calculated and
averaged.

3. The matrix equation is numerically solved by an optimizer module that per-
forms linear regression. This step is flexible and can either be used for training
an optimal CE with the full reference data set or performing CV in a controlled
manner to asses the CV-RMSE of the CE.

4. After optimization, the ECIs is extracted and a CE is constructed. The CE
can be saved and used as a model to predict the mixing energy of an arbitrary
structure within the same crystal structure and set of species.

5. The CE can be further used as input to a MC simulation together with a

14
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supercell based on the same lattice structure.
The prototype structure used was a FCC primitive cell. For the bulk structures,

this means a single atom with appropriate lattice vectors. For the surfaces, the
primitive cell is produced by slicing out a 10 layer surface slab from a FCC lattice
in the (111) surface plane. The smallest repeating unit, that is the primitive cell, is
then a row of 10 atoms in the direction of the surface normal. In the bulk cluster
spaces, clusters up to fourth order were included, with cutoff radii 13.0, 6.6, and
6.0Å for pairs, triplets and quadruplets, respectively. In the surface cluster spaces,
clusters up to third order were included, with cutoff radii 10.0 and 5.0Å for pairs and
triplets, respectively. The reference structure selection and associated calculations
are described in Sections 3.1 and 3.2, respectively.

The optimizing step was performed with the ARDR method for the most parts.
This selection is motivated in Section 4.1. Detailed CV was performed to tune the
selection of hyperparameters related to linear regression and study the influence of
the size of the reference data set. Then, the ECIs were extracted by training the
model on the full reference data set with the optimized hyperparameters, and the
final CE was constructed.

3.4 Sampling of cluster expansions
Several MC simulations were conducted in order to sample the CEs over the entire
concentration range, with a larger supercell and at different temperatures. The
sampling was done using the MCHAMMER module of ICET [15].

Figure 3.3: An illustration of the importance of sampling cell size. If the symmetry
to the left is to be sampled on a 3×3 unit cell (middle), phase boundaries where
the symmetry break will be introduced when the periodic boundary conditions are
applied (right).

The choice of supercell size for the simulations needs to be handled with care
with respect to the ordered phases that might appear. As illustrated in Fig. 3.3, the
supercell size should be chosen such that the relevant ordered phases can be resolved
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in the cell without phase boundaries. The latter introduce additional interface
energy, which means that the energy is not sampled correctly, and ordered phases
might be overlooked. It is not trivial how to make this choice, since in principle the
ordered phases are not known before sampling. If possible, the supercell selection
should be based on a study of the mixing energy of all enumerated structures.
In addition, multiple ordered phases might be possible, which further complicates
the choice. The approach taken in this thesis work is to start with simulations
on a 3×3×3 times the FCC conventional cell for the bulk systems, which yields
4 ·3 ·3 ·3 = 108 atoms as the FCC conventional cell has 4 atoms. For the surfaces, a
12×12×1 times the prototype cell is used, which yields 10 · 12 · 12 · 1 = 1440 atoms.
Then, additional simulations with other supercells were conducted in some cases,
based on prior knowledge of the systems and results from the CE.

Most MC simulations were done with the VCSGC ensemble because of the ad-
vantage of being able to sample across multiphase regions. For these simulations, φ
was varied from −2.2 to 0.2 with a step of 0.02, while κ was kept at 200. In some
cases, sampling was done also with the SGC ensemble, since it enables detecting
multiphase regions by studying the discontinuities of the free energy derivative as a
function of concentration. In these cases, ∆µ was varied from −1.5 to 1.5 eV/atom
with a step of 0.01 for the binary systems and 0.02 for the ternary system. The
lower resolution for the ternary system is due to the increased number of simula-
tions needed to cover the full ternary system. The canonical ensemble was used in
all simulated annealing simulations.
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Cluster expansion design

This chapter is devoted to presenting insights obtained during this thesis work re-
garding how to construct, validate, and asses a CE for multicomponent bulk and
surface systems.

4.1 Validation of cluster expansions
Before constructing the final CE, it is often useful to construct learning curves to
study the influence of parameters, such as the training set size and the number of
ECIs, on the CV-RMSE. Based on these studies, one can determine appropriate
parameter values and gain intuition on what CV-RMSE values are to be expected,
in a more efficient way than studying individual CEs. Examples of such curves are
shown in Fig. 4.1, for the AuPd bulk system with reference data produced with
an EAM potential. Learning curves are constructed from data obtained during a
5-split, shuffle-split CV. This means that CV is done by fitting the ECIs 5 times,
each time the reference data set is split into a training set and a testing set, and the
data set is shuffled between the splits meaning that there is no memory of how the
previous split was made.
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Figure 4.1: Hyperparameter (a) and training set size (b) learning curves for the
AuPd bulk system based on reference data calculated with an EAM potential.

Figure 4.1 a) shows what will from now on be referred to as a hyperparameter
learning curve, where the hyperparameters of the linear regression methods are
varied and the training set size is kept fixed at 90% of the full reference data set. The
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4. Cluster expansion design

hyperparameter of ARDR, LASSO, and RFE controls the sparsity of the solution,
which means the number of features (ECIs) that contributes in the fitted model.
The less complicated OLS method has no hyperparameter, and as such the number
of features is always the number of clusters included in the cluster space. In general,
a lower number of features is preferred since it will produce a more efficient model.
The hyperparameter learning curve can thus be used to both compare the different
methods and find an optimal value of the hyperparameter for the chosen method.

Figure 4.1 b), on the other hand, shows a training set size learning curve where
the hyperparameters are fixed while the training set size is varied. The training set
size is the number of reference structures, out of the reference data set, used for
fitting the model. This curve provides insight in whether the size of the reference
data set is appropriate or not. Ideally, one would like to have a training set size
learning curve that converges, and the ideal reference data set size would be around
the point of convergence.
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Figure 4.2: Hyperparameter (a) and training set size (b) learning curves for the
AuPd bulk system, based on DFT reference data.

Figure 4.2 shows the same learning curves for the AuPd bulk system with DFT
based reference data. The CV-RMSE is generally about twice as large as in the case
of EAM based data, likely reflecting the more detailed description of the interactions
with DFT. The relative performances of the methods are similar to the results for
the EAM based reference data. ARDR and RFE are superior when in comes to the
number of features versus the CV-RMSE, while ARDR and LASSO performs better
in terms of the training set size. Based on this analysis, ARDR is the most suitable
method for the problem at hand, and will thus be used in the rest of the thesis work.

Figures 4.3 and 4.4 show the ARDR learning curves for all binary bulk systems and
the ternary bulk system, respectively. Based on these results, the hyperparameter
for ARDR, λ, is set to 30000. This value is used in all following CEs and training
set size learning curves. The training set size learning curves seem to be reasonably
converged, meaning that the maximum training set sizes are sufficient.
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Figure 4.3: Hyperparameter (a) and training set size (b) learning curves for the
binary bulk systems, based on DFT reference data and optimized with ARDR. The
stars in the hyperparameter curves mark the points where λ = 30000.
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Figure 4.4: Hyperparameter (a) and training set size (b) learning curves for the
ternary bulk system, based on DFT reference data and optimized with ARDR. The
star in the hyperparameter curve marks the point where λ = 30000.

4.2 Structure selection for large configuration spa-
ces

Learning curve analysis is useful also for optimizing the structure selection for large
configuration spaces, such as for surface CEs.

Figure 4.5 compares two approaches for structure selection, tested out with the
EAM potential for the AuPd surface system. Both are based on generation of ran-
dom configurations on a unit cell with randomly selected dimensions within the
range presented in Section 3.11. With the first approach (method 1) the structures

1The 3×3 unit cells are not included in any part of this chapter, since they were added later.
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Figure 4.5: Hyperparameter (a) and training set size (b) learning curves for the
AuPd system, based on EAM reference data with varying reference data set size.
The legend indicates the total number of structures in the reference data set. Method
1 and 2 for structure selection is shown in green and blue, respectively.

are uniformly distributed over the concentration range while with the second ap-
proach (method 2) the structures are distributed in a stair-like fashion such that the
number of structures peaks around 50 %. Both methods perform reasonably well in
comparison to the bulk studies, but method 2 is more efficient as it requires fewer
reference structures.

With that being said, one should be careful when comparing CV-RMSE scores
based on different structure selection methods. While the score reflects the perfor-
mance of the method, it also reflects the homogeneity of the reference data set. If
the reference data set contains similar structures, the training and testing sets will
be correlated and the CV-RMSE will be lower. In this case, the choice of method
2 can be further motivated by the fact that there is a larger number of available
configurations at concentrations around 50 %, meaning that this approach gives a
better sampling of the entire configuration space.

A third approach tested (method 3) was to set up the set of reference structures
in the same manner as in method 2, followed by an optimization of the condition
number of the sensing matrix. This included MC simulated annealing where the
structures were randomly swapped out within the same concentration, while using
the condition number as the thermodynamic potential to be minimized during sim-
ulation. This approach yields a reference data set that is optimized in the sense that
the rows of the corresponding matrix equation will be as uncorrelated as possible. A
comparison between methods 2 and 3 is shown in Fig. 4.6. The difference between
these two approaches is not significant enough to motivate the extra effort required
to optimize the data set. However, this method might be worth revisiting for larger
reference data set sizes where the random configurations might be more correlated.

Based on these results, method 2 was chosen for surface reference structure se-
lection. Learning curves for the binary surfaces with DFT based reference data
are shown in Fig. 4.7. The training set size learning curves are not converged but
rather suggest a linear dependence between the training set size and the CV-RMSE,
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Figure 4.6: Hyperparameter (a) and training set size (b) learning curves for the
AuPd system, based on EAM reference data. The reference data sets are chosen
such that the number of structures is peaked around 50 % concentration and the
legend indicates the total number of structures in the set. Method 2 and 3 is shown
in blue and red, respectively.
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Figure 4.7: Hyperparameter (a) and training set size (b) learning curves for the
binary surface systems, based on DFT reference data and optimized with ARDR.
The stars in the hyperparameter curves mark the points where λ = 30000. For the
AuCu system, the results both before (orange) and after (red) simulated annealing
are shown.

indicating that a larger reference data set would improve the CE. Simulated anneal-
ing can be used during surface selection also to expand an existing reference data
set. This is done to improve the high CV-RMSE for the AuCu surface system. By
constructing a CE based on the existing reference data set and performing regular
simulated annealing, low energy structures structures can be generated and added
to the reference data set. In contrast to the previous simulation annealing to opti-
mize the condition number, this approach will likely produce correlated structures
and thus worsen the condition number. On the other hand, low energy structures
are more likely to appear in a real system, and one can thus argue that a reference

21



4. Cluster expansion design

data set with low energy structures better represents reality.
To conclude this section, structure selection of large configuration spaces is a com-

plicated issue. The aspects to keep in mind are i) how well the configuration space
is sampled, ii) how well the structures represents the reality and iii) the correlation
between structures (and thus the condition number of the sensing matrix). It is not
always possible to optimize the surface selection with respects to all aspects, and
the approach taken might depend on the problem at hand.

4.3 Cluster expansions vs. EAM potential
Even if CEs are first-principle based, there will always be an error when comparing a
CE prediction with the corresponding DFT calculation. While the size of this error
is a relevant measurable, it is also important to keep in mind that usually, it is not
feasible to perform ground state searches and MC simulations on multicomponent
systems with DFT calculations alone, due to the extremely large configuration space.
It is therefore meaningful to also compare CEs to other methods that could be used
interchangeably, such as EAM potential calculations, to get a better understanding
of the usefulness of a CE.

Figure 4.8 shows CE predictions and EAM calculations of mixing energies, com-
pared to the DFT calculated values that are regarded as the true mixing energies.
The CEs are produced during a 5-split validation, as in Section 4.1, such that 5
independent CEs are obtained. In every split, ten reference structures are used for
testing. The mixing energies of all testing structures are calculated using both the
corresponding CE and an EAM potential. In this way, the CE used in a prediction
is independent of the structure in question, which enables a more fair comparison
than if the structure had been involved in training.

This comparison is done for bulk and surface systems in Fig. 4.8. In both cases,
it is clear that the CEs outperform the EAM potentials, even in the case of the
AuCu-surface where the CV-RMSE scores seemed alarmingly large in Section 4.2.
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Figure 4.8: A comparison between calculating the mixing energy with CEs and
with an EAM potential, for the bulk and surface AuPd and AuCu systems.
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5
Bulk

In this chapter, the results of CE construction and sampling for the bulk systems
are presented and discussed.

5.1 Cluster expansions

System CV-RMSE RMSE #structures #orbits #features ∆E
AuPd 1.9 1.7 607 81 41 97
AuCu 4.6 3.8 533 81 79 131
CuPd 2.7 2.3 561 81 55 114
AuCuPd 3.8 2.8 2573 586 189 209

Table 5.1: Characteristics of final bulk CEs. RMSE and ∆E are given in units
of meV/atom. The difference between CV-RMSE and RMSE is that CV-RMSE is
calculated during validation from the structures not included in the training data
set, while RMSE is calculated against all reference structures after training the final
CE. The total number of structures in the reference data set is #structures, the
number of orbits in the cluster space is #orbits, the number of non-zero ECIs in
the final CE is #features and the difference between the maximum and minimum
mixing energy in the reference data set is ∆E.

The characteristics of the CEs constructed are presented in Table 5.1. Overall,
the CV-RMSE scores agree well with the learning curves presented in Section 4.1,
with slightly lower values since the CEs are properly trained with the full reference
data set. Table 5.1 also presents the total energy span of the reference data, which
puts the CV-RMSE scores in context. All CV-RMSE scores are within 1.8-3.5% of
the corresponding energy interval.

Figure 5.1 a) shows the mixing energies of the reference structures over the con-
centration range of the binary systems, both calculated with DFT and predicted
with CEs. The AuPd and CuPd system have similar mixing energy graphs, with a
deep minimum and almost all data points on the negative side. The AuCu system,
on the other hand, have a shallower minimum and many reference structures have
positive mixing energy, suggesting a less stable mixing. Figure 5.1 b) shows how the
predicted mixing energy deviates from the target mixing energy, for the reference
structures. The higher CV-RMSE for the AuCu system manifests as a larger devi-
ation of predicted energy compared to the other systems, especially for high energy
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Figure 5.1: Comparisons of the target mixing energies (calculated with DFT) and
the corresponding CE predictions of the bulk binary systems.

structures.
Figure 5.2 shows a comparison of the DFT calculated and CE predicted values

of the mixing energies for all reference structures used to construct the ternary
CE. These plots are similar to the corresponding plots for the binary systems, in
Fig. 5.1, indicating that the accuracy is preserved when introducing a third element.
The minimum mixing energies of all ternary and binary structures with less than
ten atoms in the unit cell is shown in Fig. 5.3, calculated with the ternary CE.
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Figure 5.2: Comparison of the target mixing energies (calculated with DFT) and
the corresponding CE predictions for the bulk ternary system.
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ten atoms in the unit cell, calculated with the ternary CE. The convex hull structures
are marked with black edges.
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5.2 Monte Carlo sampling of the binary systems
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Figure 5.4: The free energy derivative and free energy of the binary bulk sys-
tems, obtained by MC sampling (50000 trial steps, 3×3×3 supercell) in the VCSGC
ensemble at different temperatures.
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5. Bulk

The free energy derivative and free energy curves for the binary systems, obtained
by MC sampling, are shown in Fig. 5.4. The sampling of the AuPd system, Fig. 5.4
a), results in a smooth free energy derivative curve and a concave up free energy
curve, indicating complete miscibility at all concentrations. For the CuPd system,
in Fig. 5.4 b), the free energy derivative has some jumps, but the free energy curve
is still concave up at all temperatures. This indicates that there is a phase at around
0.75% Cu low in energy, but not low enough to cause phase separation. It should
be noted that other work suggest the presence of a BCC ordered phase in the CuPd
system [38], which cannot be found with the present method since the CE is limited
to FCC structures. The sampling of the AuCu system in Fig. 5.4 c), on the other
hand, shows several jumps in free energy derivative and convex up regions in the
free energy curve. These results indicate a phase diagram with multiple ordered
phases, which is analysed further in the following section.

5.2.1 Ordering in the bulk AuCu system
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Figure 5.5: CE predicted mixing energies for all AuCu structures with less than 13
atoms in the unit cell. The structures on the convex hull are represented by black
circles.

To construct a phase diagram for AuCu, more detailed sampling is necessary.
Figure 5.4 shows the CE predicted mixing energies of all AuCu structures with
less than 13 atoms in the unit cell. The structures on the convex hull represents
candidate ordered phases and the MC supercell should ideally be able to resolve all
of these structures without phase boundaries. By comparing the unit cells of the
convex hull structures with different supercells, it is found that a 15×3×3 times the
FCC conventional cell is cell suitable.

Sampling of the free energy derivative of the AuCu system in the SGC ensemble,
compared with the VCSGC sampling from Fig. 5.4 c), is shown in Figure 5.6. Multi-
phase regions are revealed by gaps in the SGC curve and jumps in the VCSGC
curve. Based on these results, a phase diagram can be sketched, as in Fig. 5.7 e).
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Figure 5.6: The free energy derivative of AuCu, obtained by MC sampling in the
VCSGC and SGC ensembles at different temperatures. The VCSGC sampling is
done with 50000 trial steps and a 3×3×3 supercell. The SGC sampling is done with
150000 trial steps and a 15×3×3 supercell.

The corresponding ordered phases are illustrated in Fig. 5.7 a-e). This step could
obviously be done more carefully, with higher resolution in both temperature and
concentration, to obtain a more accurate phase diagram. For the purpose of this
thesis, the aim is to get a qualitative understanding of the ordered phases rather
than a reliable phase diagram.

5.3 Monte Carlo sampling of the ternary system

The mixing energy obtained by MC sampling of the ternary system is shown in
Fig. 5.3. Recall that the step size of ∆µi is doubled compared to the SGC sampling
of binary systems, which makes it harder to distinguish multiphase regions from
gaps in resolution. It is, however, clear that as the temperature decreases, the plot
becomes more sparse indicating that phase separation do appear.

At all temperatures, an ordered phase around the AuCu2Pd composition is present,
extending towards the AuCu axis with constant Cu concentration at 50%. A similar
feature appears slightly below at 33% Cu. These phases should be further inves-
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5. Bulk

(a) Au4Cu (b) Au2Cu (c) AuCu (d) AuCu3

(e) Phase diagram

Figure 5.7: A sketch of the AuCu phase diagram (e) and the corresponding ordered
phases (a-d). The grey crosses are the concentrations from the SGC sampling in
Fig. 5.6, acting as a guide for the phase diagram.

tigated with respect to the competing ordered BCC CuPd phase. The gaps at the
AuPd axis on the Pd rich side are surprising given that the bulk results indicate
complete miscibility. The gap position is, however, inconsistent with temperature
decrease, indicating that this is not a real phase separation but rather a resolution
issue.
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Figure 5.8: The mixing energy of the ternary bulk systems, obtained by MC
sampling (50000 trial steps, 3×3×3 supercell) in the SGC ensemble at different
temperatures.
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Surfaces

In this chapter, the results of CE construction and sampling for the surface systems
are presented and discussed.

6.1 Cluster expansions

System CV-RMSE RMSE #structures #orbits #features ∆E
AuPd 6.6 1.5 110 155 86 95
AuCu 10.6 4.0 188 155 124 126
CuPd 6.9 1.9 110 155 98 98

Table 6.1: Characteristics of final surface CEs. RMSE and ∆E are given in units
of meV/atom. The difference between CV-RMSE and RMSE is that the CV-RMSE
is calculated during validation from the structures not included in the training data
set, while the RMSE is calculated against all reference structures after training the
final CE. The total number of structures in the reference data set is #structures,
the number of orbits in the cluster space is #orbits, the number of non-zero ECIs in
the final CE is #features and the difference between the maximum and minimum
mixing energy in the reference data set is ∆E.

The CE characteristics are presented in Table 6.1. The CV-RMSE scores are in
line with the learning curves, and as expected they are significantly larger than for
the bulk systems. Compared the total energy spans, the CV-RMSE scores consti-
tute 6.9-8.4%. Surfaces are generally more complicated to model and in addition,
the number of reference structures are lower than for the bulk systems. Another
difference compared to the bulk CEs is that the RMSE is significantly lower than
the CV-RMSE. It is expected that the RMSE is lower than the CV-RMSE, since
the RMSE is calculated after training the model against the full data set. If the
difference is large, however, it implies that the numerical fitting of ECIs performs
well, but that the physics is not picked up properly since the error for structures
excluded from training is high.

The mixing energies of the reference structures, calculated with DFT and pre-
dicted with CEs, are shown in Fig. 6.1. The energy curves over the concentration
ranges, in Fig. 6.1 a) are similar to the bulk results with deep minima for the AuPd
and CuPd systems and shallower minimum for the AuCu systems with even more
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Figure 6.1: Comparisons of the target mixing energies (calculated with DFT) and
the corresponding CE predictions of the binary surfaces.

structures in the positive side. The comparison between the predicted and target
energies in Fig. 6.1 b) shows a linear relation between the two.
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6.2 Monte Carlo sampling of binary surfaces
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Figure 6.2: The free energy derivative and free energy of the binary surfaces,
obtained by MC sampling (50000 trial steps, 12×12×10 supercell) in the VCSGC
ensemble at different temperatures. 35



6. Surfaces

The free energy derivative and free energy obtained from MC sampling are shown in
Fig. 6.2. The free energy curves of the surface systems have similar general features
as in bulk, but some features, such as the AuCu ordering, are less pronounced. MC
sampling of surface slabs is different from bulk, since the ordering is more complex.
Bulk ordering might be present in the inner layer as well as ordering at the surfaces
and between the surface layers (i.e. surface segregation). By simply studying the
free energy curve, it is not possible to distinguish between these competing effects.
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Figure 6.3: The average composition per layer calculated from the MC simulation
(50000 trial steps, 12×12×10 supercell). The matching layers on each side of the
slab have been averaged such that layer index one represent layer one and ten, and
so forth. The color indicates the overall concentration of the supercell, and the
y-axis the concentration by layer.

To study the surface segregation, the average concentration of each layer can
be extracted from the MC simulation, as in Fig. 6.3. Starting with the AuPd
system, this graph shows a pronounced surplus of Au at the surface. In addition, an
interesting segregation mechanism, where the concentration oscillates between the
layers, is revealed. The surplus of Au at the surface is followed by a deficit of Au
in the second layer, followed by another surplus of Au in the third layer, and so on.
This behaviour is strong for Au-rich simulations, continuing into layer five, indicating
that ten layer slabs are not sufficient to obtain bulk conditions in the middle. The
AuCu system also show a strong tendency for Au to segregate towards the surface.
Cu-rich simulations show a similar, but less pronounced, oscillation pattern. The
concentration by layer is reasonably converged at the fifth layer, indicating that
ten layer slabs are sufficient to include bulk conditions in the AuCu system. The
CuPd system shows only a small surplus of a few percent of Pd at the surface.
The concentration of the inner layers, on the other hand, show extreme oscillations.
The effect at the fourth layer is particularly striking, where the majority of the
simulations have Cu concentration at 33 or 66%.

The oscillation of concentration between the layers is an important result, high-
lighting the importance of computational studies. Experimental studies might not
disclose this feature, since it is often challenging to probe the first layer only. If
the measured segregation is averaged over a few layers, the effect would be under-
estimated in the present cases. Other EAM based work [39] have found similar
behaviour for the AuPd system. The general segregation tendencies at the surface
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6. Surfaces

are also confirmed by other work [40, 41].
To further investigate the segregation and ordering between layers, the same re-

sults are visualized again by plotting the concentration of each layer against the
total concentration in Fig. 6.4, 6.5 and 6.6. The offset from the diagonal displays
the surplus or deficit of atoms and ordered phases will appear as steps. Here, results
at 100K are included to highlight ordering effects. The surface ordering can also
be assessed by visually studying the atomic configuration of the surface slabs after
MC simulation. A few snapshots are selected to represent the observed ordering
patterns.
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(a) The average composition per layer compared to the total concentration for the AuPd system,
calculated from the MC simulation (50000 trial steps, 12×12×10 supercell), at different tempera-
tures.

(b) Au2Pd (c) AuPd2

Figure 6.4: The concentration by layer (a) of the AuPd surface system and iden-
tified atomic configurations at the surface (b)-(c) after MC simulation at 300K.

Figure 6.4 a) shows the concentration of each layer compared to the total concen-
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tration for the AuPd system. At the surface layer, a noticeable step appears at 33%
Pd surface concentration. This step corresponds to the ordering observed in Fig. 6.4
b). By studying the atomic configurations at higher Pd-concentration, the reversed
ordering pattern in Fig. 6.4 c) is also found. This does not appear as a step in the
concentration graph, which is probably due to the fact that Pd tends to avoid the
surface. The concentration graphs for the inner layers show the oscillation behaviour
between the layers. In addition, steps can be distinguished at 66, 33 (layer 4) and 25
(layer 5)% Pd, indicating some surprising ordering phenomena. Since the surface
segregation profile in Fig. 6.3 indicates that the slabs are too thin to simulate bulk
behaviour, no reliable comparison to the bulk results can be made.
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Figure 6.5: The concentration by layer (a) of the AuCu surface system and iden-
tified atomic configurations at the surface (b)-(d) after MC simulation at 300K.
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The concentration of each layer compared to the total concentration for AuCu is
shown in Fig. 6.5 a). Here, the surface layer has a step at 25% Cu and a barely
noticeable kink at 66% Cu. For the most part, the atomic configurations at the
surface at 300K forms clusters, as in Fig. 6.5 d), rather than ordered phases, which
is reflected by the lack of steps in the 300K curve. Ordered patterns corresponding
to 25 and 66% Cu are, however, observed on some surface areas, as visualized in
Fig. 6.5 b-c). In the inner layers, steps can be distinguished at 33 and 75% Cu. This
ties back to the bulk results where Au2Cu and AuCu3, among others, are identified
as ordered phases of the bulk.
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(a) The average composition per layer compare to the total concentration for the CuPd system,
calculated from the MC simulation (50000 trial steps, 12×12×10 supercell), at different tempera-
tures.

(b) Cu2Pd (c) Cu3Pd

Figure 6.6: The concentration by layer (a) of the CuPd surface system and iden-
tified atomic configurations at the surface (b)-(c) after MC simulation at 300K.

For the CuPd system, the concentration of each layer compared to the total con-
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centration is shown in figure Fig. 6.6 a). In the surface layer, steps appear at 66
and 75% Cu, while there is no apparent ordering in the Pd-rich region. The corre-
sponding patterns can be found in the atomic configurations, as shown in Fig. 6.6
b-c). A very striking feature of Fig. 6.6 a) is the extreme ordering of the fourth
layer, also visible in Fig. 6.3. There are pronounced steps at 33 and 66% Cu, and a
slightly less pronounced steps at 50% Cu. This feature is unexpected and it is not
certain if this is a real effect or due some error, such as nonphysical ECIs in the CE
or strain imposed due to insufficient thickness of the slabs. Further investigation is
thus needed.
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Conclusion

This thesis outlines the importance and performance of CEs in studies of multi-
component systems, such as the AuCuPd system. It is found that with a relatively
small number of reference calculations, a CE can be trained to predict the energies
in a complex configuration space, with accuracy far exceeding EAM potentials. This
shows the potential of using CEs to benefit from ab initio calculations on systems
large in size or configuration space, as a step towards accurate multiscale modeling.

CEs were successfully constructed for FCC binary and ternary bulk systems as
well as binary FCC-(111) surfaces. This showcases the scalability of the method,
in both increased number of components and decreased dimensionality. Based on
these results, CEs of ternary surfaces, such as the full AuCuPd system, are within
reach, and a possible extension is to study nanoparticles.

The constructed CEs were used to calculate the energy of atomic configurations
during MC simulation, to obtain information about the ordering and segregation
phenomena at different temperatures. For the AuPd system, results indicate com-
plete miscibility in the bulk and a strong segregation of Au to the surface. At the
surface, a tendency for ordering was observed, dominated by an Au2Pd-phase. The
characteristic phase separation of AuCu in bulk was observed, as well as segrega-
tion of Au to the surface. The AuCu surface consisted of both ordered regions and
clustering of atoms. The CuPd system was found to be completely miscible in bulk,
while the surface system showed unexpectedly strong ordering phenomena. Further
modeling is needed to determine if this is a real phenomena or an error in the model.
MC sampling of the full ternary bulk system was performed and phase separation
with ordered phases at 50 and 33%Cu was indicated.

An additional important finding is that in the systems studied, surface segregation
tend to introduce an oscillation of concentration between the layers, such that the
second layer compensates for the surface deficit, and the third layer compensates
for the surplus of the second layer, and so forth. This is an important result since
experimental measurements often lack the ability to target the surface layer only,
which will lead to an underestimation of the segregation effect. For the AuPd
and CuPd systems, this oscillation continues into the middle of the surface slabs,
indicating that the slab thickness is not sufficient to get rid of surface effects in
the core. In future studies, thicker slabs should be investigated to ensure that the
surface atoms are not affected by the other surface.

This thesis provide several insights about the ordering and segregation in the
PdAuCu system in vacuum. For the purpose of using PdAuCu nanoparticles for
hydrogen sensing, future studies where the influence of adsorbates, such as H and
CO, is encouraged.
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A
VASP INCAR files

INCAR file used during relaxation:
ADDGRID = .TRUE.
AGGAC = 0.0
ALGO = Normal
AMIN = 0.01
AMIX = 0.05
EDIFF = 1e−06
EDIFFG = −0.01
ENCUT = 400
GGA = CX
IBRION = 1
ISIF = 2
ISMEAR = 1
KPAR = 2
LCHARG = .FALSE.
LREAL = .FALSE.
LUSE_VDW = .TRUE.
LWAVE = .FALSE.
NELM = 120
NPAR = 2
NSIM = 1
NSW = 40
PREC = Accurate
SIGMA = 0.1
SYMPREC = 1e−08

I



A. VASP INCAR files

INCAR file used during final energy calculation:
ADDGRID = .FALSE.
AGGAC = 0.0
ALGO = Normal
AMIN = 0.01
AMIX = 0.05
EDIFF = 1e−06
ENCUT = 400
ENMAX = 40
ENMIN = −20
GGA = CX
ISIF = 0
ISMEAR = −5
KPAR = 2
LCHARG = .FALSE.
LORBIT = 11
LREAL = .FALSE.
LUSE_VDW = .TRUE.
LWAVE = .FALSE.
NEDOS = 1201
NELM = 120
NPAR = 2
NSIM = 1
NSW = 0
PREC = Accurate
SIGMA = 0.05
SYMPREC = 1e−08

II
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