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Characterisation of a travelling-wave parametric amplifier for improved qubit mea-
surements

HAMPUS RENBERG NILSSON
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Abstract

In order to build a large-scale quantum computer, one of the requirements is high-
fidelity multiplexed qubit readout, which in turn relies on the use of ultralow-noise
amplifiers. While Josephson Parametric Amplifiers (JPAs), using a cavity with
few Josephson junctions, have shown promising results for single qubit readout,
they have limitations such as low saturation power and a gain-bandwidth product
restriction. This makes them less suited for frequency multiplexed qubit readout. A
current-pumped Josephson Travelling-Wave Parametric Amplifier (JTWPA), using
4-wave mixing in a lumped-element transmission line, features both high saturation
power as well as no restriction on large bandwidth and high gain. This is possible
due to multiple junctions and the lack of a cavity. However, also this current pumped
JTWPA has an inherent problem, namely phase mismatch between the pump and
the signal. This prevents exponential gain. In this thesis, a current pumped JTWPA
using the resonant phase matching (RPM) technique to reduce the phase mismatch
problem is studied and characterised. The JTWPA shows high gain, high saturation
power and a large signal-to-noise ratio improvement. The JTWPA is also used for
qubit readout, for which it clearly improves the readout fidelity.

Keywords: parametric amplifier, parametric amplification, low-noise amplifier,
ultralow-noise amplifier, Josephson effect, Josephson junction, Josephson travelling-
wave parametric amplifier, TWPA, JTWPA, Josephson parametric amplifier, JPA,
signal-to-noise ratio, qubit, scattering theory, directional coupler, isolator, circu-
lator, VNA, digitizer, bandwidth, gain, average gain, microwaves, quantum effi-
ciency, noise temperature, fidelity, single-shot readout, noise floor, noise power,
up-conversion, down-conversion, frequency mixing, IQ-mixer, arbitrary waveform
generator.
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1
Introduction

This chapter aims to introduce the reader to basic concepts relevant for the rest of
the thesis. The main goal of the thesis is to improve quantum computation using
the studied amplifier, therefore we start by introducing the basics of quantum com-
putation. Then, since a Josephson junction is at the heart of the amplifier studied
here which consists of a superconductor-insulator-superconductor junction, we con-
tinue with introducing superconductivity and then the Josephson effect, the concepts
necessary to understand the Josephson junction. Then we continue with cryogenic
cooling, i.e. the technique to reach the temperatures where these phenomena take
place. Lastly we describe the basic concepts of parametric amplification.

1.1 Quantum computation

Quantum computation is the name of the computation process of a quantum com-
puter, using quantum mechanical effects in order to execute certain algorithms.
This allows for a significant computation speedup for certain problems [1]. The ba-
sic building block of any quantum computer is a qubit1. The basic idea of a qubit
is a two-level system that can be put in a superposition state as well as entangled
to other qubits. In reality there are usually higher energy levels, but due to a large
enough anharmonicity in the qubit the two lowest states can be distinguished from
the other states.

A qubit can be built in many different ways, but in this thesis only superconducting
transmon qubits have been used. Superconductivity will be explained in Section 1.2
while qubit theory will be explained in Section 2.2. In order for superconductivity to
work the qubits need to be cooled down below their critical temperature, therefore
cryogenic cooling will be explained below in Section 1.4. The methods about how
to calibrate and use a qubit will be explained in Section 3.3.

1Qubit is short for “quantum bit”, where “bit” refers to the basic information unit of a classical
computer.
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1. Introduction

1.2 Superconductivity

Superconductivity is a phenomenon which most people associate with zero resis-
tance, i.e. current flow without dissipation, which is achieved once the material is
cooled below a certain critical temperature Tc [2]. This is however not the whole
picture.

Firstly, there are mainly two characteristic properties of a superconductor, the first
is the known zero resistance property while the other is the Meissner effect. The
Meissner effect is the phenomenon that a superconductor completely expels magnetic
fields from its interior, see Figure 1.1, except for a tiny fraction of the field at the
edge of the material on a tiny characteristic length scale, the penetration depth λ. A
perfect conductor, i.e. a conductor with zero resistance, would simply require that
the internal magnetic flux density is constant, ∂tB⃗ = 0, which is not as a strong
statement as the Meissner effect which states that B⃗ = 0 [3]. Superconductivity is
thus more than simply perfect conductivity. The Meissner effect is enabled by the
flow of dissipationless supercurrents creating an equally strong magnetic field, but
in the opposite direction, as the externally applied one.

Normal state Superconducting state

B⃗ B⃗

⇒
Transition

⎡⎢⎢⎢⎢⎢⎣

T < Tc
J < Jc
H <Hc

⎤⎥⎥⎥⎥⎥⎦

Figure 1.1: Illustration of the Meissner effect. (Left) Some metal in its normal state, i.e.
not superconducting at the moment, is put in a magnetic field B⃗. (Right) The transition
to the superconducting state has taken place and all magnetic field B⃗ is now expelled from
the material. The dotted circle illustrates the characteristic penetration depth λ for which
the magnetic field manages to penetrate the metal. The blue arrows indicate the flow of
supercurrents creating the magnetic field of opposite direction which enables the Meissner
effect.

Furthermore, a superconducting material does not only have a critical temperature
Tc but also a critical current density Jc and a critical external magnetic field Hc. If
any of these are exceeded, superconductivity is broken and the material goes into a
resistive state, i.e. the normal state.

These critical values are not independent of each other; if one of the parameters
(T, J,H) is increased, the critical values of the others are decreased. One could
say that the critical temperature is a function of current density and magnetic flux
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1. Introduction

density, Tc(J,H), where the maximum of this function is when J and H are zero,
i.e. max (Tc(J,H)) = Tc(0,0). But one could just as well say that the critical current
density is a function of temperature and magnetic field, Jc(T,H), or that the critical
magnetic field is a function of temperature and current density, Hc(T, J) [4].

When the material goes into its superconducting state, electrons pair up in so called
Cooper-pairs. Then they form a so called superconducting condensate, which can
be described by a single wave function with an amplitude and a phase describing all
the electrons in the condensate.

1.3 Josephson effect

An interesting and very useful superconducting phenomenon is the Josephson effect,
which takes place within something called a Josephson junction [5]. A Josephson
junction consists of two superconductors connected to each other via some kind of
weak link between them, usually an insulating material, see Figure 1.2. There are
lots of variations of the weak link, it could be a resistive conductor, a ferromagnetic
conductor, another kind of superconductor, etc, but I will not go into this deeper
here since it is not relevant for this thesis. The interested reader is referred to
Reference [6] for further reading. The junctions used in this thesis use an insulator
as weak link.

. . . . . .

. . . . . .

Superconductor
Weak link

Superconductor

ψ1 =
√
n1 eiθ1 ψ2 =

√
n2 eiθ2

Phase difference δ ∶= θ2 − θ1

Figure 1.2: Illustration of a Josephson junction. Two superconductors are connected via a
weak link. Each superconductor has its own wave function ψi where ni is the Cooper-pair
density and θi is the phase. The phase difference δ is defined as the difference between the
phases of the two superconductor’s wave functions.

For an ideal Josephson junction the Josephson relations can be derived [6] to be

IJ = Ic sin δ “Josephson I”, (1.1a)
UJ = ϕ0 δ̇ “Josephson II”, (1.1b)

where UJ is the voltage over the junction, IJ is the current through it, ϕ0 ∶= h̄/(2e)
is the reduced superconducting magnetic flux quantum, Ic is the Josephson junction
critical current and δ is the phase difference over the junction.

Note that for zero voltage, UJ = 0, there may still be a supercurrent I < Ic through the
junction. For currents greater than the critical current, i.e. I > Ic, superconductivity
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1. Introduction

is broken and the junction transitions into a resistive state. These relations, usually
referred to as the “Josephson relations”, give rise to a nonlinear inductance LJ called
“the Josephson inductance”, which will be derived in Section 1.3.2.

1.3.1 The ideal and real Josephson junction

For any real Josephson junction the interfaces of the superconductors act as tiny
capacitor plates, giving rise to an intrinsic capacitance of the junction, CJ. This is
easily accounted for in circuit schematics by replacing the real Josephson junction
with an ideal junction, which obeys the Josephson relations given in Equations (1.1a)
and (1.1b), in parallel with a capacitor with the capacitance CJ, see Figure 1.3.

Ic,CJ

Real
⇔ CJ

Ic

Ideal

Figure 1.3: (Left) Schematic of a real Josephson junction with critical current Ic and
intrinsic capacitance CJ. (Right) Circuit equivalent schematic with an ideal junction with
the same critical current Ic in parallel with a capacitor with the same capacitance CJ.

1.3.2 Josephson inductance

Inductance describes how much an electrical conductor opposes a change of the
electrical current through it [7] and is defined by

U = LdI
dt . (1.2)

We now apply this concept to the Josephson relations to calculate the Josephson
inductance. First we use the relation from Equation (1.1a) to calculate İJ as

dIJ

dt = Ic cos δ ⋅ δ̇. (1.3)

Then we solve Equation (1.2) for the Josephson inductance using Equation (1.1b)
together with Equation (1.3),

LJ =
UJ

İJ
= ϕ0 δ̇

Ic cos δ ⋅ δ̇
= LJ0

cos δ (1.4)

where LJ0 ∶= ϕ0/Ic is a characteristic constant of a Josephson junction which is
completely determined by its critical current. By using the trigonometric identity
we can rewrite the cosine as

cos δ = ±
√

1 − sin2 δ (1.5)
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1. Introduction

where the sign is positive for δ ∈ [−π/2, π/2] and negative for δ ∈ (π/2,3π/2). By
using this and rewriting Equation (1.1a) as i = sin δ, where i = I/Ic is a normalised
and unit-less current variable, we can write the Josephson inductance as

LJ = ±
LJ0√
1 − i2

. (1.6)

As we can see in the equation the inductance diverges as the current approaches the
critical current, i → 1, which can also be seen in Figure 1.4. We also see that the
inductance is non-linear, which is a necessary criterion for parametric amplification.

Using Taylor expansion to the second order for small currents (i≪ 1) we get

LJ ≈ ±LJ0 (1 + 1
2i

2) (1.7)

which is an approximation we use later. The approximation is also plotted in Fig-
ure 1.4. As we see here, the approximation fits well for low currents but approaches
1.5LJ0 for I → Ic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

LJ0

2LJ0

3LJ0

4LJ0

5LJ0

Current i = I/Ic

Jo
se
ph

so
n
In
du

ct
an

ce
∣L

J∣ Exact value
2nd order Taylor expansion

Figure 1.4: Absolute exact and approximate value of the Josephson inductance of a Joseph-
son junction for a current I ∈ [0, Ic). The inductance for I = 0 is LJ0, increases for I ≠ 0 and
diverges as I → Ic.

1.4 Cryostats and the dilution refrigerator

A cryostat2 is used to reach very low temperature, usually < 4 K. Cryogenic tem-
peratures can be achieved with different kinds of refrigeration techniques such as
helium-4 evaporation, helium-3 evaporation, Pomeranchuk cooling, nuclear mag-
netic refrigeration, helium-3-helium-4 dilution, etc [8]. All the experiments in this
thesis have been performed within a Bluefors LD dilution refrigerator which uses
the last of these refrigeration techniques.

2Cryo means cold and stat means stable.
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1. Introduction

The dilution refrigerator is a specific kind of cryostat which can reach ultra low tem-
peratures, typically < 30 mK, and is currently the only known continuous refrigera-
tion method for temperatures below 300mK [8]. Details about dilution refrigerators
and their cooling mechanism are described in Reference [8]. A shorter description
of the dilution refrigerator is described in Reference [9].

1.5 Parametric amplification

The amplifier studied in this thesis is a parametric amplifier. A parametric amplifier
is an amplifier using some kind of energy source in order to modulate a parameter
of a dynamical system to add energy to the signal desired to amplify, instead of
adding the energy directly to the signal. Parametric amplification does not require
any energy dissipation, making it possible for them to reach quantum-limited noise
performance [10].

1.5.1 An intuitive example: a massive particle in a parabolic
potential

The principle of parametric amplification is presented in Figure 1.5.

↔

(a) (b)

←→

(c)

←

→←

(d)

←→

(e)

↔

(f)

Figure 1.5: A visual representation of parametric amplification. The signal we want to
measure is the movement of the particle and the parameter is the curvature of the parabolic
potential. (a) The signal is very weak, i.e. the particle only moves slightly back and forth.
(b) The particle has just reached its maximum height and is about to turn back. (c) The
parameter is changed, i.e. the curvature of the potential, right before the particle starts moving
in the other direction, which makes it go a little higher. (d) The particle has reached the
lowest point, now with more momentum than before, and the parameter is changed back. (e)
The particle has just reached its new maximum height and the parameter is changed again,
raising it even higher. (f) The parameter is changed back and the particle goes back and
forth in a much bigger parabola than before, i.e. the signal has been amplified by changing
the parameter back and forth.

In this example the signal is a massive particle moving back and forth within a
parabolic potential and an amplified signal would be equivalent to the particle reach-
ing a higher maximum position in the potential. To accomplish this we could push
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1. Introduction

the particle and hence directly add energy into the system. But alternatively we
could, by using parametric amplification, change the curvature of the potential back
and forth. By increasing the curvature when the particle is at a high position we
increase its potential energy, hence giving it more total mechanical energy. Then by
decreasing the curvature when the particle is at a low position, we do not remove the
newly added mechanical energy while we make it possible to increase the curvature
again. Then we can increase the curvature once again when the particle reaches
its new maximum height. In this way the change in the parameter, by twice the
particle frequency, leads to signal amplification.

1.5.2 The Josephson Travelling-Wave Parametric Amplifier

The amplifier treated in this thesis is a certain kind of parametric amplifier called a
Josephson Travelling-Wave Parametric Amplifier3, which uses the non-linear induc-
tance of Josephson junctions to achieve parametric amplification of microwaves.

The specific JTWPA treated in this thesis is from MIT, by MIT referred to as “MIT
TWPA package 665”. In this thesis it is referred to only as “the JTWPA”. It is one
of MIT’s 5th generation JTWPAs.

Another kind of superconducting parametric amplifier is the Josephson Parametric
Amplifier (JPA), which is based on a cavity with few Josephson junctions. For this
design, the gain-bandwidth product [11] has a restriction which forces the designer
to choose between high gain in a narrow range or low gain in a wider range [12].
Due to the low number of junctions, it also features a low saturation power.

In comparison, the JTWPA is not based on a cavity and is thus not limited by
the gain-bandwidth product. It can therefore have a much larger bandwidth while
also having high gain. Due to the use of multiple junctions, instead of a few in the
JPA, it also has a higher saturation power. This makes it much more suitable for
multiple applications, e.g. multiplexed readout of qubits on the same readout line,
i.e. amplifying several signals at different frequencies simultaneously.

1.5.3 Pumping types

Generally in parametric amplification the signal that modulates the parameter is
usually referred to as the pump. More specifically for TWPAs there are both current
pumped and flux pumped TWPAs (see more in Section 2.4.3), i.e. the pump is either
an alternating current travelling in the same line as the signal, or it is an alternating
magnetic flux, inductively coupled to the signal line.

There are also two different amplification processes that can take place, either three-
wave mixing or four-wave mixing, and they can be either degenerate or nondegener-

3Short: JTWPA, or just TWPA, pronounced “two-pa”.
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ate, as shown in Table 1.1. For the different types of amplification there are different
relations between the frequencies which can be found in Table 1.1.

Table 1.1: Frequency relations for different types of parametric amplification. Table is copied
from Reference [13]. fp refers to the pump frequency, fs to the frequency of the signal to be
amplified and fi the frequency of the idler. Note that degenerate four-wave mixing never is
used in reality since then fs = fp.

Three-wave mixing Four-wave mixing
Degenerate
amplification
(phase-sensitive)

fp = fs + fi
fs = fi = 1

2fp

2fp = fs + fi
fs = fi = fp

Nondegenerate
amplification
(phase-insensitive)

fp = fs + fi
fs ≠ fi

2fp = fs + fi
fs ≠ fi

For energy to add up, all amplification processes involve the generation of another
signal called the idler, and the type of mixing affects the frequency it will get. For
three-wave mixing the idler frequency is symmetrically placed around half the pump
frequency, with respect to the signal frequency, while for four-wave mixing the idler
frequency is placed symmetrically around the pump frequency.

For degenerate amplification, also known as phase-sensitive amplification, it is pos-
sible to achieve noiseless amplification. This is possible due to “quantum squeezing”.
The information of a signal is stored both in its amplitude and its phase. When
using quantum squeezing, we amplify one of the quadratures4 while we de-amplify
the other [13].

In the regime of degenerate 3-wave mixing, to get parametric amplification it is im-
portant that the pump power is below a certain threshold, otherwise the parametric
amplification turns into parametric oscillations. Parametric oscillations can also be
used for certain applications [14]–[18], also in the nondegenerate case [19], but it has
not been studied in this thesis.

For a current pumped TWPA the non-linear inductance of the Josephson junctions
permits four-wave mixing [20]. Furthermore we want the amplification to be phase-
insensitive, otherwise the signal frequency will be equal to the pump frequency
making it hard to distinguish, so the relevant type of amplification in our case is
the nondegenerate four-wave mixing, see the lower right corner of Table 1.1. Note
that as mentioned above, for four-wave mixing the frequency of the idler will be
symmetrically placed around the pump with respect to the signal, i.e. if the signal
frequency is 1GHz below the pump, the idler frequency will be 1GHz above the
pump.

4The two quadratures can be regarded as the real- and imaginary parts of the complex valued
signal.



2
Theory

This chapter aims to give the reader a sufficient understanding of the relevant the-
ories for this project. First there is a section about microwave theory, since the
signals that we use and amplify are microwave signals. Then we go to something
completely different, namely qubit theory, since we will use qubits for several mea-
surements throughout this thesis. Then there is a part about noise theory, since our
goal is to reduce the noise and to do this we need to understand where the noise
comes from and how to avoid it. Finally there is a section about JTWPA theory
where the JTWPA structure and gain derivation are presented.

2.1 Microwave theory

This section will give a brief overview of some microwave theory relevant for the
project. Microwaves are typically in the range 3 - 300GHz, corresponding to wave-
lengths of 10 cm to 1mm in vacuum. Because of these short wavelengths, standard
circuit theory cannot be used directly in many cases since it assumes the wave
lengths to be much longer than the elements they propagate through. For further
reading on the subject the reader is recommended to see Reference [21].

2.1.1 Scattering theory and the scattering matrix

When describing waves travelling through some sample and interacting with some
kind of elements, scattering theory turns out to be useful to characterise the observed
effects. If we have an N -port1 network, where U+

i is the amplitude of the incoming
voltage wave at port i and U−

i is the amplitude of the outgoing voltage wave at port
i, then the scattering matrix relates the incoming and outgoing voltage amplitudes
in the following way:

⎡⎢⎢⎢⎢⎢⎣

U−
1
⋮
U−
N

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

S11 ⋯ S1N
⋮ ⋱ ⋮

SN1 ⋯ SNN

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

U+
1
⋮
U+
N

⎤⎥⎥⎥⎥⎥⎦
(2.1)

1A port is simply a connection point between one system and another.
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2. Theory

or simply just
U⃗− = SU⃗+ (2.2)

which describes the scattering of the voltage amplitude of each wave. A general
picture of a 3-port network is depicted in Figure 2.1.

If a system is characterised by a symmetric scattering matrix, i.e. Sij = Sji ∀i, j, we
call it reciprocal, while if Sij ≠ Sji for at least one pair of indices i, j, then we call it
non-reciprocal [21].

S
U+

1
U−

1

U−
2U+

2

U+
3

U−
3

Figure 2.1: A general scattering for a 3-port network. Microwaves with the voltage am-
plitudes U+i enter the network at port i ∈ {1,2,3} and leave the network with the voltage
amplitudes U−i .

In general the diagonal elements of the scattering matrix describe the reflection at
the ports, while the off-diagonal elements describe the transfer between ports. In
a more specific example, for a 2-port network with port 1 = IN-port and port 2 =
OUT-port it follows that S21 relates to the transmission through the device while
S11 relates to the reflection at the IN-port.

2.1.2 Impedance matching

When a signal travels from one medium to another it is either reflected or trans-
mitted depending on the characteristic impedance of the two media. The reflected
power is given by the reflectance R which is given by

Γ ∶= S11 =
Z2 −Z1

Z2 +Z1
, (2.3a)

R ∶= ∣Γ∣2 = ∣Z2 −Z1

Z2 +Z1
∣
2

(2.3b)

where Zi, i ∈ {1,2} are the characteristic impedances of the two media. We see that
R = 0 if Z1 = Z2 while R ≠ 0 for Z1 ≠ Z2. In order words, if the two media have the
same characteristic impedance, the impedance is matched and there is no reflection,
while if there is a difference, the impedance is mismatched and we have a non-zero
reflection. In other words, the S11-element of the scattering matrix directly relates
to the impedance matching as well as the reflection at the IN-port.
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2.1.3 Directional coupler

The directional coupler is one of the components used in this thesis, which we are
now going to describe using scattering theory. It is a 4-port network which consists
of two lines coupled to each other, usually called the “main line” (port 1 to port 2)
and the “coupled line” (port 3 to port 4), see Figure 2.2a. Ideally, if we send a signal
into port 1, some of the power2 P1 going into port 1 will exit out of port 4 given by
the coupling C, P4 = P1 −C, while the rest goes out of port 2 given by the insertion
loss L, P2 = P1 − L. Equivalently the same applies to the coupled line; some of the
power going into port 3 exits out of port 2, P2 = P3 −C, while the rest of the power
goes out of port 4, P4 = P3 −L.

Another important property of a directional coupler is the directivity, which relates
the amount of power going into port 3 to the amount going out of port 1. In other
words, if a signal with power P3 goes into port 3 then a signal with power P3−C −D
exits out of port 1. For an ideal directional coupler the directivity is D = ∞dB
which is equivalent to saying that none of the power going into port 3 goes out of
port 1. However, in reality it is finite.

The arrows in the directional coupler in Figure 2.2a show how the ports couple to
each other. However, in this work we have always terminated port 4 and only used
the directional coupler to couple the pump to the input of the JTWPA. This is
illustrated in Figure 2.2b.

Port 1
P1 →

Directional
coupler

Port 4
P4 ↓

Port 3
P3 ↑

Port 2
→ P2

(a)

P1 →
P3 −C −D ← ↱

Directional
coupler

50Ω P3 ↑

→ P1 −L
→ P3 −C

(b)

Figure 2.2: A directional coupler. (a) A general directional coupler without anything
connected to its ports and with directions of input and output powers defined for the usage
of this work. (b) A terminated directional coupler giving it the desired property of adding
two signals together. Two signals with the powers P1 and P3 enter the coupler as given in the
figure and two signals exit through port 2 with the powers changed due to the effects of the
insertion loss L and the coupling C. Some of the power P3 also exits out of port 1 due to the
directivity D, also shown in the figure. There is also power going out of port 4, but it is not
shown in the figure since port 4 is terminated with 50Ω.

If port 4 is perfectly matched with a 50Ω termination, see Figure 2.2b, we get the
version of the directional coupler most commonly used. In this setup we get the
desired property of the coupler, for this thesis, that we can send both signals, signal
& pump, to the amplifier.

2All powers here are expressed in dBm and all coefficients in dB.
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A directional coupler is symmetric. We could just as well use port 2 for inputs,
terminate port 3 and send signals into port 4 and these signals would exit, at least
in theory, through port 1 exactly like the signals exit port 2 in Figure 2.2b.

2.1.4 Circulators and isolators

A circulator is one of the components used for this project. An ideal circulator is a
nonreciprocal network with N ports where all of the voltage at port 1 goes out of
port 2, the voltage of port 2 goes to port 3 and so on, and the voltage at port N
goes to port 1.

The elements of the general scattering matrix of the ideal circulator can be written

Sij,N−port circulator =
⎧⎪⎪⎨⎪⎪⎩

1, if i = j + 1 (mod N)
0, otherwise

(2.4)

which is illustrated in Figure 2.3.

↻
Circulator

N

1
2

3

Figure 2.3: A general N -port circulator. The arrows indicate where a signal travels; a signal
entering port 1 exits out of port 2, a signal at port 2 exits out of port 3, and so on, and finally
the signal entering port N exits out of port 1.

Even though a circulator in theory can have an arbitrary number of ports, it usually
has only 3 or 4 ports [22]. For a 3-port ideal circulator the scattering matrix is
reduced to

S3-port circulator =
⎡⎢⎢⎢⎢⎢⎣

0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
. (2.5)

By terminating one of the ports of a 3-port circulator we get an isolator which works
like a diode for microwaves. In other words, if port 3 is terminated, microwaves can
travel from port 1 to port 2 but not the other way around, see Figure 2.4.
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IN
Isolator

OUT ⇔ IN ↻
Circulator

OUT

50 Ω

Figure 2.4: Similarities between isolators and circulators. (Left) An isolator. (Right) An
equivalent circuit using a circulator with a 50Ω termination. Note that the circulator will act
as an isolator since signals travelling to the circulator from the OUT-port will exit into the
termination.

For the ideal isolator the scattering matrix is reduced to the very simple form

Sisolator = [0 0
1 0] . (2.6)

In reality we of course never have a completely ideal isolator so there will be some
tiny part reflected at the ports, some power from port 2 going out of port 1 and some
power loss within the isolator. The reflection at the ports is typically negligible but
power loss and power from port 2 to port 1 is not, therefore there are two important
quantities one should know about an isolator before using it, namely:

• The insertion loss Lisol., i.e. how much power the out-signal has lost compared
with the in-signal when travelling from port 1 to port 2. The insertion loss
reduces the S21-element of the scattering matrix in Equation (2.6) slightly
below 1.

• The isolation Iisol., i.e. how much power the out-signal has lost compared with
the in-signal when travelling from port 2 to port 1. A finite isolation implies
that the S12-element of the scattering matrix in Equation (2.6) is slightly larger
than zero.

Both of them are typically dependent on frequency.

A double isolator is simply two isolators in a row, or in terms of circulators two
3-port circulators in a row both with a terminated port. This typically gives both a
higher isolation and a higher insertion loss.

2.2 Qubit theory

Now to something completelly else, basic theory of the qubit. The qubit can be any
two-level system [1]. Any qubit state can be described by Equation (2.7a), where
the coefficients α,β fulfill Equation (2.7b). The equations read

∣ψ⟩ = α ∣0⟩ + β ∣1⟩ , (2.7a)
∣α∣2 + ∣β∣2 = 1. (2.7b)
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Without loss of generality, we can think of the qubit as a spin-1/2 particle in a
magnetic field [23]. By putting the global phase to zero, we can then conveniently
rewrite Equation (2.7a) as

∣ψ⟩ = cos(θ2)∣0⟩ + sin(θ2) eiϕ∣1⟩ (2.8)

where θ ∈ [0, π], ϕ ∈ [0,2π) can be thought of as the angles within a unit sphere
called the Bloch sphere, see Figure 2.5. Note that θ = 0 Ô⇒ ∣ψ⟩ = ∣0⟩ and
θ = π Ô⇒ ∣ψ⟩ = ∣1⟩, while ϕ contains the phase information of the qubit.

∣0⟩

∣1⟩

x

y

z

∣ψ⟩θ

ϕ

Figure 2.5: The Bloch Sphere with a general qubit state ∣ψ⟩, where the angle θ ∈ [0, π]
determines the projection on the z-axis and ϕ ∈ [0,2π] is the angle between the x-axis and the
projection of the state onto the xy-plane. Note that these two angles completely determine
the state of a single qubit.

2.2.1 The transmon qubit

The transmon qubit [24] is a type of superconducting qubit based on the Cooper-pair
box3 [25] with an extra capacitor, and is the one that is used in the experimental
work of this thesis. The qubit itself consists of a parallel-plate capacitance in parallel
with either a Josephson junction or a SQUID4. The transmon used in this thesis
had a SQUID making the qubit frequency flux-tuneable, see Figure 2.6. Another
qubit that is used is a non-flux-tuneable Xmon, which has a very similar design, see
Figure 2.7.

The qubit is capacitively coupled to a quarter-wave resonator which is inductively
coupled to a feed line. The interactions between a qubit and a resonator can be
described using circuit quantum electrodynamics [26], [27]. Due to the inductive
coupling photons travelling through the feed line may interact with the resonator,
which interacts with the qubit. If the resonator and the qubit frequencies are well

3Also known as a charge qubit, a simple circuit with a Josephson junction and a capacitor.
Read more in [25].

4The SQUIDs (Superconducting Quantum Interference Devices) used here are superconducting
loops with two identical Josephson junctions.
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detuned we can use the dispersive approximation to describe the interaction, which
will be explained further in Section 2.2.3.

Feed line

Qubit

λ/4 Resonator

IN OUT

I

(a)

Feed line

Qubit

λ/4 Resonator

IN OUT

IInductive coupling

Grounded Capacitive
coupling

SQUID

(b)

Figure 2.6: (a) A flux-tunable transmon qubit with a quarter-wave resonator and a feed
line. (b) The former with additional comments.

Feed line

Qubit

λ/4 Resonator

IN OUT

I

(a)

Feed line

Qubit

λ/4 Resonator

IN OUT

IInductive coupling

Grounded Capacitive
coupling

J.J.
(b)

Figure 2.7: (a) A non-flux-tunable xmon qubit with a quarter-wave resonator and a feed
line. (b) The former with additional comments. J.J. is short for Josephson junction.

2.2.2 Qubit control

In the spin-1/2 particle in a magnetic field-analogy, a magnetic field makes the qubit
state rotate along the direction the magnetic field points. As long as the magnetic
field remains pointing in the same direction, it is easily shown [23] that the exact
shape of the pulse is not of importance to determine how the pulse changes the
qubit state, but only its amplitude-time-integral. For example, a 100 ns-100mV
rectangular pulse will affect the qubit equally as a 50 ns-200mV will do.

There are then two kinds of pulses of specific interest for qubit control in this thesis.
First let us consider the π-pulse. The π-pulse is a pulse with the integral such that
it rotates the qubit state π radians around the some axis, in Figure 2.8 we choose
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the y-axis. For a qubit in the ground state, as in Figure 2.8a, a perfect π-pulse will
put the qubit in the excited state with a 100% probability.

The second especially interesting pulse is the π/2-pulse, which only rotates the qubit
state π/2-radians, see Figure 2.9, making a qubit in ground state go to the equator
of the Bloch sphere, i.e. ∣0⟩↦ 1√

2 ( ∣0⟩+ ∣1⟩ ). A similar pulse is the −π/2-pulse which
rotates −π/2-radians in the opposite direction, i.e. 1√

2 ( ∣0⟩ + ∣1⟩ )↦ ∣0⟩.

∣0⟩

∣1⟩

π

(a)

∣0⟩

∣1⟩

(b)

Figure 2.8: Illustration of the π-pulse. (a) The qubit is in its ground state when a π-pulse
is applied. (b) The qubit was just exposed to a π-pulse and is now in its excited state.

∣0⟩

∣1⟩

π/2

(a)

∣0⟩

∣1⟩

(b)

Figure 2.9: Illustration of the π/2-pulse. (a) The qubit is in its ground state when a π/2-
pulse is applied. (b) The qubit was just exposed to a π/2-pulse and is now in the superposition
state given by θ = π/2, ϕ = 0.

2.2.3 Qubit readout

Below we first explain the Hamiltonian for this system, and then how this is prac-
tically affects the choice of readout frequency.
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2.2.3.1 The Jaynes-Cummings Hamiltonian

To fully quantum mechanically describe a qubit in a cavity we use the Jaynes-
Cummings Hamiltonian [28], [29], which reads

ĤJ.C. =
h̄ω0

2 σz + h̄ω (â†â + 1
2) + h̄g (âσ+ + â†σ−) . (2.9)

Here ω0 is the qubit frequency, ω is the angular frequency of the cavity, g is the
coupling between the cavity and the qubit, â, â† are the annihilation and creation
operators for photons in the cavity, σ± are the excitation and de-excitation operators
of the qubit and σz is the Pauli z spin matrix.

In the case of large detuning between the qubit frequency and the resonator fre-
quency, i.e. the dispersive regime where ∣∆∣ ≫ g,∆ ∶= ω0−ω, we can use perturbation
theory to rewrite this Hamiltonian. We assume that the number of photons is below
a certain critical photon number [30] and we can thus rewrite the Jaynes-Cummings
Hamiltonian [31] as

Ĥdisp = h̄(ω + χσz)n̂ +
h̄ω̃0

2 σz, (2.10)

where χ ∶= g2/∆ is the dispersive shift, n̂ = â†â is the number operator and ω̃0 = ω0+χ
is the new effective qubit frequency. This Hamiltonian is known as the dispersive
Hamiltonian.

In this dispersive region the photons in the resonator cannot induce any transitions
in the qubit, but the state of the qubit still affects the effective cavity frequency.
We also see that the shift depends on the number of photons n in the cavity.

2.2.3.2 Choosing readout frequency

To readout the state of the qubit, we probe the resonator by sending a pulse at the
resonator frequency along the feedline (recall Figure 2.6) and measure the transmis-
sion. Study Figure 2.10. We can probe the resonator at a frequency which either
give us a big difference of the output in magnitude or in phase, in the figure marked
at a frequency with big difference in magnitude. Then we can deduct the state of the
qubit depending on whether we get high or low transmission. The readout contrast
is determined by the difference between the two curves, see “Readout contrast” in
Figure 2.10. The signal we are interested in measuring is hence the resonator probing
pulse, to see whether many or a few of these photons are transmitted. Information
about the state can also be given by the phase of the probing signal, if one probes
at another frequency with high difference in phase between the states.
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∣Qubit⟩ = ∣0⟩
∣Qubit⟩ = ∣1⟩2χ/(2π)

κ/(2π)

Readout contrast

Potential readout frequency

κ = 4.67 MHz
χ = 1.2 MHz
∆ = 16.7 GHz

Figure 2.10: A measurement of the dispersive shift, illustrating the effect the state of the
qubit has on the resonator. The readout frequency is swept while measuring transmission
magnitude ∣S21∣ while the qubit is either in its ground state or its excited state. To readout
the qubit state we pick a frequency in this range where the difference between the two curves is
large, e.g. the frequency marked in the figure, and measure the transmission at this frequency.
Note that the parameters in the box, the coupling strength κ, the dispersive shift χ and
the resonator-qubit-detuning ∆, all are expressed in angular frequency, so to get them in
non-angular frequency one has to divide by 2π.

2.3 Noise theory

In a noiseless environment any difference between two quantum states, e.g. the states
of a qubit, would suffice in order to unambiguously distinguish one state from the
other. However, in reality there is always noise, making the readout result of a
quantum state distributed in the IQ-plane [10]. In most cases the distribution is
Gaussian. Then, depending on the overlap between the state distributions, there
will be some uncertainty when trying to determine a state.

The noise has multiple origins; there is vacuum noise, there is noise added by the
amplifier due to Heisenberg’s uncertainty principle, there may be non-idealities in
the equipment used and also losses between the signal source and the first amplifier
which appear as added noise [10], [31].
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2.3.1 System noise temperature

The system noise temperature Tsys, which describes the total noise temperature of
a chain of k amplifiers, is given by Friis’ formula,

Tsys =
k

∑
i=1

TN,i
i−1
∏
j=1
Gj

= TN,1 +
TN,2

G1
+
TN,3

G1G2
+ ..., (2.11)

where TN,i is the noise temperature of amplifier i and Gj is the gain of amplifier j.
This formula can easily be derived, see Appendix C.1.

Note that when G1 →∞ then Tsys → TN,1. In other words, if the first amplifier has
a large gain, the noise temperature of the system as a whole will be dominated by
the noise temperature of the first amplifier.

2.3.2 Signal-to-Noise Ratio

As mentioned above, if we measure and plot a quantum state in the IQ-plane, the
data points will display a Gaussian distribution. The width of the distribution will
correspond to the noise while the distance between the state and the origin will
correspond to the signal strength and the direction from the origin to the state will
correspond to the phase information about the state.

If we have two states, e.g. the states of a qubit ∣0⟩ and ∣1⟩, it is the overlap between
the distributions that determine the fidelity, i.e. how well we can distinguish the
states. If we amplify the signal and the noise equally then the overlap remains
unchanged. It is hence not only the gain that is an important factor, but the ratio
between the signal and the noise, known as Signal-to-Noise Ratio (SNR).

In other words, if the JTWPA in one case has mediocre gain but a low noise tem-
perature and in another case has a larger gain but also a higher noise temperature,
the former might distinguish the two states better than the latter. For some cases
the JTWPA might even have a large gain but adding so much noise that it actually
makes the readout resolution worse than compared with not using the JTWPA at
all. An illustration of this is presented in Figure 2.11.
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I

Q ∆V
σ = 1

(a)

I

Q ∆V
σ = 1.8

(b)

I

Q ∆V
σ = 0.8

(c)

Figure 2.11: An illustration of distributed quantum states. The dot signifies the expectation
value of the quantum state and the circle one standard deviation away from the expectation
value. The value ∆V

σ
is the difference between expectation values divided by one standard

deviation. (a) The two states have some overlap when only using the other amplifiers. (b) The
states are amplified also with a JTWPA and not much noise is added, resulting in a decreased
overlap. (c) The states are greatly amplified but also much noise is added, resulting in an
increased overlap.

2.3.3 The Standard Quantum Limit

The quantum state distributions depicted in Figure 2.11 cannot get arbitrarily small
standard deviations. Due to Heisenberg’s uncertainty principle, there is a fundamen-
tal lowest value in accuracy possible to achieve, caused by so called “vacuum noise”.
This noise limit corresponds to adding half a noise photon. This limit not even
noiseless degenerate amplification, as described in Section 1.5.3, can surpass.

However, when using non-degenerate amplification, another half a photon must be
added [12] unless the gain is very low [13]. This results in a new lowest limit of
adding one whole noise photon, one half from the vacuum noise and one half from
the non-degenerate amplification. This limit we call the Standard Quantum Limit
(S.Q.L.). As long as we use non-degenerate amplification, we cannot surpass this
limit.

2.4 JTWPA theory

Below the theory to understand the JTWPA, its structure and the theory for the
amplification process, is presented.

2.4.1 Structure and unit cell

The structure of the JTWPA is nothing more than a long chain of JTWPA unit
cells, see Figure 2.12, where the unit cells are built as presented in Figure 2.13.
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Each unit cell consists of n Josephson cells followed by an RPM5 resonator.

IN OUT

= unit cell

Figure 2.12: A basic overview of the JTWPA structure. Each gray box signifies a JTWPA
unit cell. The JTWPA used in this thesis has approximately 700 of these unit cells.

IN
↱

Zchar

Ic,CJ

C0

Josephson cell

Ic,CJ

C0

Josephson cell

Ic,CJ

C1

Josephson cell

Cc

Lr Cr

RPM resonator

OUT

n Josephson cells

Figure 2.13: A circuit diagram of the JTWPA unit cell. The unit cell consists of n Josephson
cells, in this figure n = 3, followed by an RPM resonator. The Josephson cell consists of a
Josephson junction with a Josephson inductance LJ, an intrinsic capacitance CJ and a critical
current Ic and a capacitive shunt Cg, g ∈ {0,1}, to ground. The RPM resonator is coupled
to the line with a strength set by the capacitance Cc and consists of a capacitance Cr in
parallel with an inductance Lr. The capacitance C1 of the n:th Josephson cell is slightly
less than the capacitance C0 of the other Josephson cells in order to compensate for Cc. The
relations between these inductances and capacitances are designed such that the characteristic
impedance Zchar is expected to be close to 50Ω.

There is also another convention used in other papers to define the unit cell, e.g.
in Reference [20]. Then the unit cell would either be just a Josephson cell or a
Josephson cell followed by an RPM resonator. In this thesis I have chosen to use
the definition of the unit cell above so that “unit cell” only refers to one kind of cell
and not two different kinds of cells.

5RPM = Resonant phase matching, see Section 2.4.2.
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2.4.2 Resonant phase matching and the stopband

In previous versions of JTWPAs, the JTWPA unit cell only consisted of a Josephson
cell. Then the gain was limited because exponential gain is only achieved for a
low phase mismatch between the signal and the pump, something which will be
shown further down in Section 2.4.4. For a strong pump the phase velocities are
changed due to self- and cross-modulation which gives a phase mismatch and hence
no exponential gain [32].

By adding a resonator, the RPM resonator, to the unit cell the dispersion relation
diverges to infinity close to the resonance frequency of the RPM resonator. Then,
if the pump frequency is set to be just below the resonance frequency of the RPM
resonator, the new dispersion relation will give the wave vector of the pump the
increase necessary to make the phase mismatch small enough to get exponential
gain [32].

Due to these resonators the dispersive feature will effectively work like a stopband
around the resonator frequency. However, when the pump is on, there will be an
effective stopband twice as wide. The reason for this is that we use 4-wave mixing
and hence, recall Table 1.1, the idler frequency will be symmetrically placed around
the pump frequency. Assume that the stopband of the dispersive feature reaches
from fdisplower to f

disp
upper with a bandwidth BWdisp ∶= fdispupper − fdisplower, and that the pump

frequency fp ≈ fdisplower. If the signal frequency fs is inside the stopband it cannot
be amplified. But also, if fs is less than BWdisp below fp then the idler frequency
fi will end up in the stopband. Then the signal cannot be amplified either, since
parametric amplification requires that the idler also is amplified. We can hence
conclude that the effective stop-bandwidth should have the same upper limit as the
dispersive feature, while the lower limit should reach the distance between the pump
and the upper limit. In other words,

f stopbandupper = fdispupper ∶= fupper, (2.12a)
f stopbandlower = fdisplower −BWdisp ≈ 2fp − fupper, (2.12b)

BWstopband ≈ fupper − (2fp − fupper) = 2(fupper − fp). (2.12c)

where fp is the pump frequency, fdispi are the lower and upper bounds of the dis-
persive feature (for i ∈ {lower,upper}), f stopbandi are the lower and upper bounds of
the effective stopband when the pump is on, and BWj are the bandwidths of the
dispersive feature and the effective stopband respectively (for j ∈ {disp,stopband}).

2.4.3 Current pumping versus flux pumping

In this thesis I have only worked with implementing a current based JTWPA, using
the Josephson cell as shown above. But there are also flux pumped TWPAs, which
are based on SQUID cells instead. The structure of the flux based JTWPA is very
similar to the current pumped one. It also consists of a chain of similar unit cells,
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except that they do not contain any RPM resonators since the phase matching is
inherently good [33]. The other difference is that the unit cell does not contain
Josephson cells, as in Figure 2.14a, but SQUID cells, see Figure 2.14b.

IN
Ic,CJ

Cg

Josephson cell

OUT

(a)

IN
Ic,CJ

Ic,CJ

L0
Cg

SQUID cell

OUT

(b)

Figure 2.14: The different subcells for the current pumped JTWPA and the flux pumped
JTWPA. (a) The Josephson cell, the basis for the current pumped JTWPA, just as in Fig-
ure 2.13. (b) The SQUID cell, the basis for the flux pumped TWPA. In the SQUID cell the
Josephson junction is replaced with a DC-SQUID, i.e. two Josephson junctions in parallel
with each other. An inductance L0 is inductively coupled to the SQUID which induces the
flux.

2.4.4 Analytical calculation of JTWPA gain

In this section I will present a reduced version of the derivation of the gain of a cur-
rent pumped JTWPA. The full derivation can be found in Reference [12] Chapter 7
and Appendix A.

2.4.4.1 Derivation of the discrete wave equation

In this section I go through the derivation of the discrete wave equation very similar
to the one done in Reference [12], but slightly different in order to use what we have
already defined and derived.

Study Figure 2.15 and its definitions, where each Josephson junction in each Joseph-
son cell has been split up into an ideal junction and a capacitor.
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. . . . . .

. . . . . .

CJ

Ic

CJ

IcCg Cg Cg

a

Un−1 Un Un+1→
In−1

→
In−2

→
In+1

→
In↓Ig,n↓ Ig,n−1 ↓Ig,n+1↓IJ,n

↑IC,n

Figure 2.15: A chain of Josephson cells with definitions for voltages and currents. Note that
the Josephson junctions have been split up in ideal junctions in parallel with a capacitor, as
discussed in Section 1.3.1.

We know from Section 1.3.2 that for the n:th Josephson junction

UJ,n = LJ,n
dIJ,n

dt ≈ LJ0 (1 + 1
2
I2

J,n

I2
c

)
dIJ,n

dt (2.13)

for IJ,n ≪ Ic. By noting that the voltage over the n:th Josephson junction with
current IJ,n equals the difference between the node voltages, i.e. UJ,n = Un − Un+1,
we can rewrite Equation (2.13) as

Un+1 −Un = −LJ0
dIJ,n

dt − LJ0

2 (
IJ,n

Ic
)

2 dIJ,n

dt = −LJ0
dIJ,n

dt − LJ0

6I2
c
[3I2

J,n]
dIJ,n

dt . (2.14)

Then by noting that
d
dtI

3
J,n = 3I2

J,n
dIJ,n

dt (2.15)

we get
Un+1 −Un = −LJ0

dIJ,n

dt − LJ0

6I2
c

d
dtI

3
J,n. (2.16)

Now by defining the node fluxes Φn such that

Un ∶=
dΦn

dt (2.17)

and integrating Equation (2.16) over time we get

Φn+1 −Φn = −LJ0IJ,n −
LJ0

6I2
c
I3

J,n. (2.18)

By rewriting this for IJ,n and assuming that the nonlinear term is small we get

IJ,n = −
1
LJ0

(Φn+1 −Φn) −
�
�
�
��>

0
1

6I2
c
I3

J,n ≈ −
1
LJ0

(Φn+1 −Φn) (2.19)

And by now putting this approximate value of IJ,n into the cubic term in Equa-
tion (2.18) we get

Φn+1 −Φn = −LJ0IJ,n +
1

6I2
cL

2
J0

(Φn+1 −Φn)3 (2.20)
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which we can solve for the current to be

IJ,n = −
1
LJ0

(Φn+1 −Φn) +
1

6ϕ2
0LJ0

(Φn+1 −Φn)3. (2.21)

Now let us note that current conservation implies that

In = IJ,n + IC,n, (2.22a)
Ig,n = In−1 − In, (2.22b)

Ô⇒ −Ig,n = IJ,n − IJ,n−1 + IC,n − IC,n−1. (2.22c)

The current to ground is given by

Ig,n = −Cg
d
dt(0 −Un) = Cg

dUn
dt = {Equation (2.17)} = Cg

d2Φn

dt2 (2.23)

and the current corresponding to the current going through the intrinsic capacitance
of the Josephson junction is given by

IC,n = −CJ
d
dt(Un+1 −Un) = {Equation (2.17)} = −CJ

d2

dt2 (Φn+1 −Φn). (2.24)

Now, let us rewrite Equation (2.22c). By using Equation (2.21) to express IJ,n−IJ,n−1
of Equation (2.22c), Equation (2.24) to express IC,n− IC,n−1 of Equation (2.22c) and
Equation (2.23) to express the left-hand side of Equation (2.22c), we finally arrive
at the discrete wave equation for the JTWPA,

−Cg
d2Φn

dt2 = [−CJ
d2

dt2 −
1
LJ0

] (Φn+1 − 2Φn +Φn−1)

+ 1
6ϕ2

0LJ0
((Φn+1 −Φn)

3 − (Φn −Φn−1)
3).

(2.25)

2.4.4.2 Derivation of the continuum wave equation

Now we would like to take the discrete wave equation and turn it into a continuous
equation. The length of the Josephson cell a = 16 µm [20] and the wave length of
the shortest waves that are going to be used (f = 8 GHz) is ∼9.43mm (on silicon),
giving us that a/λ ≈ 1.7 ⋅ 10−3. We can hence use the approximation that the wave
length of a propagating wave is much longer than the cell, a/λ≪ 1, and then we can
replace the node fluxes Φn(t) with a continuous flux variable φ(x, t) dependent on
the continuous position x and replace the differences of the discrete wave equation
with their continuous counterparts to the second order in a/λ and we get

Φn+1 −Φn ≈ a
∂φ

∂x
+ 1

2a
2∂

2φ

∂x2 , (2.26a)

Φn −Φn−1 ≈ a
∂φ

∂x
− 1

2a
2∂

2φ

∂x2 , (2.26b)

Ô⇒ Φn+1 − 2Φn +Φn−1 ≈ a2∂
2φ

∂x2 (2.26c)
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and

(Φn+1 −Φn)
3 − (Φn −Φn−1)

3 ≈ 3a4∂
2φ

∂x2 (∂φ
∂x

)
2
. (2.27)

Thus we can now rewrite Equation (2.25) as a continuous equation,

[Cg
∂2

∂t2
−CJa

2 ∂
2

∂t2
∂2

∂x2 −
a2

LJ0

∂2

∂x2 ]φ +
a4

2ϕ2
0LJ0

∂2φ

∂x2 (∂φ
∂x

)
2
= 0, (2.28)

which we will call the continuum wave equation of the JTWPA.

2.4.4.3 Summary of JTWPA parametric amplification derivation

The full calculation of the parametric amplification of the JTWPA is rather tedious
but can be found in Reference [12] Appendix A. Here I will only summarise the most
important parts of this derivation. First we use the continuum wave equation of the
JTWPA as derived above with the ansatz that the solutions are forward travelling
waves given by

φ =∑
j

φj, φj =
1
2Aj(x)e

i(kjx+ωjt) (2.29)

for j ∈ {s,i,p} where ‘s’ denotes signal, ‘i’ idler and ‘p’ pump. Then we use the slowly
varying envelope approximation6, we neglect the small frequency dependence of the
wave impedances and the small dispersion due to CJ and we use the stiff pump
approximation7. Then with the definitions

As = aseiαsx, (2.30a)
Ai = aieiαix, (2.30b)

kj =
ωj

√
CgLJ0

a
√

1 −CJLJ0ω2
j

, (2.30c)

κ =
a2k2

p ∣Zchar∣2

16L2
J0ω

2
p

(
Ip

Ic
)

2
, (2.30d)

κs =
κ(2kp − ki)kskia2

LJ0Cgω2
s

, (2.30e)

κi =
κ(2kp − ks)kskia2

LJ0Cgω2
i

, (2.30f)

∆kL = 2kp − ks − ki, (2.30g)
∆k ≈ ∆kL − 2kpκ (2.30h)

6The approximation that the second derivative with respect to unit length is much smaller than
the first derivative times the wave vector.

7we assume the that the energy of the pump remains the same over the length of the transmission
line
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we arrive at the coupled equations

∂as

∂x
− iκsāiei∆kx = 0, (2.31a)

∂ai

∂x
− iκiāsei∆kx = 0. (2.31b)

Here the aj are the slowly-varying amplitudes of the signal and the idler, ∆kL is the
phase mismatch in the low pump power limit and ∆k is the phase mismatch taking
the self-phase and cross-phase modulation into consideration. Note the approxima-
tion done in Equation (2.30h) is the one done by neglecting the small frequency
dependence of the wave impedances, as well as the small dispersion due to CJ.

Assuming that ai(0) = 0, i.e. that initially there is no idler, the solution to Equa-
tions (2.31a) and (2.31b) is then shown to be

as(x) = as(0) (cosh(gx) − i∆k
2g sinh(gx)) ei∆kx/2 (2.32)

where the gain coefficient g is given by

g =
√
κsκ̄i − (∆k/2)2 . (2.33)

For perfect phase matching ∆k = 0 we get that

as(x) = as(0) cosh(gx) x≫0ÐÐ→ 1
2as(0)egx, (2.34)

i.e. the gain scales exponentially with length. By studying Equation (2.33) we
see that for increasing phase mismatch ∆k the gain coefficient g decreases, and
in Equation (2.30h) we see that for increasing pump power, the phase mismatch
increases.

This is why we use the RPM resonators. As mentioned in Section 2.4.2, using
the resonators the dispersion relation just below the resonance frequency diverges,
hence by using a pump frequency in this region we can give the pump wave vector the
increase for the phase mismatch to be close to zero and thereby enable exponential
gain. The full derivation is once again found in Reference [12], while a summary is
presented here. By introducing the cutoff frequency ω0 = (LJ0Cg)−

1
2 together with

the impedances Cc, Lr,Cr shown in Figure 2.13 on page 2-13, we get that the wave
vector now can be approximated by

(kja)2 ≈ (
ωj
ω0

)
2
+
ω2
jLJ0Cc(1 − ω2

jLrCr)
1 − ω2

jLr(Cr +Cc)
(2.35)

which for certain pump frequencies and pump powers may make the phase mismatch
small enough to get exponential gain.
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3
Methods

In this chapter all the methods used throughout this thesis are described. Firstly
there is a section about cryogenic measurements, where the cryogenic setup is de-
scribed. Then there is a section about CAD designs, i.e. the designs used to mount
and thermalise the components. Then the methods to characterise a qubit are
described and finally the section describing the characterisation methods for the
JTWPA. Even though the section about the JTWPA characterisation is the most
central one for this thesis, the others are also necessary in order to get the whole
picture and to understand the JTWPA characterisation section.

3.1 Cryogenic measurements

Qubits and the JTWPA need to be operated at cryogenic temperatures (T ≪ 1 K).
Therefore all experiments were performed in a dilution refrigerator, with a base
temperature ∼ 10 mK. The refrigerator is made of multiple stages with different
temperatures, successively reaching the base temperature at the lowest stage, see
Figure 3.1. The input signals all enter at room temperature and continue to the
50K-stage, then go down to a 3K-stage, then to the still at ∼ 800 mK, then via the
“cold plate” at ∼ 100 mK and then finally reach the mixing chamber at ∼ 10 mK. At
and between the stages there are attenuators. The high temperature plates (≥ 3K)
are cooled using a pulse tube while the low temperature stages get their cooling
power from helium-3-helium-4-dilution refrigeration, as described in Section 1.4. At
the mixing chamber there might be filters, isolators and switches, depending on the
setup, before the signals finally reach their experimental setups respectively. Once
the signals have passed their respective experimental setup there might be more
isolators, filters, etc. (not shown in the figure) while travelling back through the
stages to room temperature again. At the 3K plate they encounter a low-noise
amplifier using a HEMT1 amplifier which amplifies the signals before they exit the
cryostat and reach room temperature amplifiers.

1High Electron Mobility Transistor.
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HEMT−xdB

−xdB

−xdB

−xdB

Room temp.
amplifier

∼ 50 K

∼ 3 K

Still (∼ 800 mK)

Cold plate (∼ 100 mK)

Mixing chamber (∼ 10 mK)

Experimental setups

Input signals Output signals
Room temperature

Figure 3.1: A simple schematic of the levels of the dilution refrigerator. Multiple signals,
here marked by the thick line, travel down through attenuators, which are thermally anchored
in the different stages, to the mixing chamber where the experimental setups are placed. These
setups might include some filters,isolators, cryogenic switches, etc. The output signals from
the setups then travel back up to room temperature and are amplified by a low-noise HEMT
amplifier at the 3K stage and then amplified at room temperature using room temperature
amplifiers.

3.1.1 Magnetic shielding at low temperature

As mentioned in Section 1.2 the critical current of a superconductor, and hence of
a Josephson junction, is suppressed by external magnetic fields. And as mentioned
in Section 1.3, the characteristic inductance of a Josephson junction is completely
determined by its critical current. Therefore, if the JTWPA experiences magnetic
flux it will change the inductances of the Josephson junctions which in turn might
then affect its performance. To minimise the influence of external magnetic fields
the JTWPA was magnetically shielded by being put into a box made of CryoPerm
10®, from MµShield®, which is a material specifically made for magnetic shielding
at cryogenic temperatures. Isolators and circulators nearby, which are magnetic by
default, were also put into boxes of CryoPerm. While common magnetic shield-
ing gets lower permeability when temperature is decreased, CryoPerm gets higher
permeability.
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3.2 Design of bracket using CAD

In order to mount the experimental setup2 onto the mixing chamber the necessary
components had to be mounted onto a plate and this plate, the “bracket”, had to
have screwing holes matching the ones in the cryostat and the components. This was
done by creating a model in Autodesk® Inventor® Professional 2018, see Figure 3.2.
Most holes in the design were made elongated, so that the components could be
moved around a little if necessary. Then this model was fabricated of OFHC3

copper, see Figure 3.3.

One problem with this bracket design was that it was longer than the distance
between the mixing chamber plate and the cold plate. Therefore it could only be
mounted in areas where there was an opening in the cold plate. In order to be able
to mount the JTWPA module in any available area on the mixing chamber plate, a
new shorter design was made, see Figure 3.4, which was also fabricated. This design
fits below the cold plate, and it is less wide than the original bracket (50mm width
instead of 54mm) and can still carry both JTWPAs. However, the drawback with
this design is that the cables now need to be drawn on the sides of the bracket, since
all the components now are mounted in a horisontal position rather than a vertical
one, effectively making it wider than the original design.

IN-isolators
mounting
holes

Directional
coupler
mounting
holes

JTWPA
mounting
holes

OUT-
isolators
mounting
holes

(a)

IN-isolatorIN-port

Directional
coupler

Termination

PUMP-port

JTWPA

OUT-isolator

OUT-port

(b)

Figure 3.2: The first bracket design of the JTWPA module, designed to be able to carry
two JTWPAs in parallel. (a) Front of the bracket without components. The white- and
yellow-dashed holes were never used for anything. Note that almost all holes are elongated, in
order to be able to adjust the position of the components in order to match the cable lengths.
(b) The bracket with the components for one JTWPA line.

2The experimental setup itself is shown in Section 3.4.
3Oxygen-Free High thermal Conductivity
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IN-port

Isolator IN

Directional
coupler

Termination

PUMP-port

JTWPA in
CryoPerm

Isolator OUT

OUT-port

(a)

JTWPA in
CryoPerm

IN-port
OUT-portPUMP-port

Isolator IN

Directional coupler

Termination

Pump signal entering
directional coupler

Isolator OUT

(b)

Figure 3.3: (a) The JTWPA module, i.e. the JTWPA with all the components necessary
to use it mounted on the bracket. (b) The JTWPA module mounted into the dilution refrig-
erator.
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mounting
holes
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OUT-
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Figure 3.4: The second bracket design of the JTWPA module, also designed to be able to
carry two JTWPAs in parallel. (a) Front of the bracket without components. Note that all
holes are elongated, in order to be able to adjust the position of the components in order to
match the cable lengths. (b) The bracket with the components for one JTWPA line.
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3.3 Characterisation of qubit

We used a qubit to measure the system noise temperature and the quantum efficiency
of the JTWPA, but first, the qubit needs to be characterised itself. The methods for
characterising the qubit are described below. The theory necessary to understand
this characterisation is described in Section 2.2 on page 2-5.

3.3.1 To determine the ground state resonator frequency

As a first step to characterise and calibrate a qubit, we want to find the resonance
frequency of the resonator fr = ωr/(2π) when the qubit is in the ground state. This
is done by connecting a VNA4 to the IN- and OUT-ports to the qubit feed line and
sweep frequencies in the interval we expect the resonator to be, see Figure 3.5.

Multi qubit chip
1 2

A

A

B

B

C

C

Figure 3.5: A sweep of transmission magnitude of a multi qubit chip with three qubits and
resonators. Each of the three dips correspond to one of the resonators.

We know from Section 2.2 that for low power, i.e. few photons, the resonance fre-
quency of the resonator will be shifted as described by the dispersive Hamiltonian
in Equation (2.10), and this new frequency we call the dressed resonance frequency.
For high power, i.e. many photons, the approximation for the dispersive Hamilto-
nian is no longer valid and we will then measure the bare resonance frequency, i.e.
the resonance frequency of the resonator as if the qubit were not there.

4A Vector Network Analyser.
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Since we do not know whether the frequency found in the transmission sweep in
Figure 3.5 is the dressed or the bare resonance frequency, we sweep both power
and frequency in a narrow range around the measured resonance frequency, see
Figure 3.6. At some power we see a shift in frequency and then we know that the
resonance frequency at low power is the dressed resonance frequency, i.e. the one
we are looking for.

Frequency (GHz)

O
ut
pu

t
po

we
r
(d
Bm

)

Transmission ∣S21∣

Figure 3.6: Transmission magnitude around the resonator frequency for different resonator
powers. Note the shift of frequency between −30 dBm and −15 dBm. Also note that the powers
here are the powers at room temperature, which then are attenuated before they reach the
mixing chamber and the resonator, by approximately 75 dB.

3.3.2 Up and down conversion of pulses

In order to control and readout a qubit, we will need to be able to send multiple
pulses at high frequency (GHz) after each other. To create the pulses we need pulse
“up conversion”. To readout the response of these pulses once they have interacted
with the qubit and the resonator we need pulse “down conversion”. The methods to
accomplish this are described below.

3.3.2.1 Frequency mixing

The main principle for up and down conversion is frequency mixing, which is depicted
in Figure 3.7. A typical mixer takes two signals with the frequencies fLO and fIF
and mix them to a signal with the joint envelope of them both with either, or both,
of the frequencies fRF = ∣fLO ± fIF∣. This process also works in reverse, where an RF-
frequency pulse after mixing with a local oscillator becomes a pulse with a frequency
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fIF = ∣fLO − fRF∣.

Time t (a.u.)

Vo
lta

ge
U

(a
.u
.)
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IF

(a)

Time t (a.u.)

Vo
lta

ge
U

(a
.u
.)

IF
RF

(b)

Figure 3.7: Schematics of frequency mixing. (a) Two signals enter the RF mixer, a contin-
uous signal with the frequency fLO and a pulse with the frequency fIF (here only its envelope
is shown). (b) The pulse envelope of the intermediate frequency signal (IF) and the signal
output with, depending on the mixer, either or both of the frequencies fRF = ∣fLO ± fIF∣.

3.3.2.2 Up conversion

Microwave generators that directly outputs pulses at GHz frequencies are expensive.
Instead we use an AWG5 which can generate well-defined pulses at MHz frequencies,
combined with mixers and local oscillators that can generate continuous GHz signals.
Schematics for this are depicted in Figure 3.8.

I Q

I Q

To refrigerator

∼
LOr

AWG

∼
LOq

IQ-mixer

IQ-mixer

ΣCombiner

fr fq

Figure 3.8: Schematics of generating two pulses of different frequencies after each other.
Two signal generators generate two continuous signals of the frequencies fLO,r, fLO,q and send
these signals into one mixer each respectively. An AWG generates two pulses each with an
I and a Q component with the frequencies fAWG,r, fAWG,q and these pulses also reach each
mixer. After the mixing there are two pulses at the frequencies fr = fLO,r − fAWG,r and
fq = fLO,q − fAWG,q exiting the mixers. These two pulses reach some kind of combiner where
they form a pulse train which is what enters the refrigerator. The IQ-mixers are calibrated
such that pulses of other frequencies, such as fLO,q + fAWG,q, are small.

5Arbitrary Wave Generator.
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3.3.2.3 Down conversion

To convert the output pulse from the refrigerator to a frequency commercial elec-
tronics can keep up with we use so called down conversion. This works in the same
way as the up conversion process but in reverse, see Figure 3.9. The down converted
pulse exits the IQ-mixer as an in-phase pulse (I) and a π

2 out-of-phase pulse (Q).
These pulses go into a digitizer which takes a number of samples of each. Finally,
through data processing, these samples are turned into two voltages which we can
see as the real and imaginary parts of a complex number.

From refrigerator

fr
∼

LOr

Q

I

IQ-mixer

Digitizer
z = I + iQ

Data processing

Figure 3.9: Schematics of down conversion of a pulse. The pulse at frequency fr enters an
IQ-mixer and is down-converted into two pulses I and Q, which go into a digitizer. After
some data processing these samples are turned into two voltages, which we see as the real and
imaginary parts of a complex number.

3.3.3 Calibrating demodulation for optimal readout con-
trast

Until now, only continuous waves have been used for finding the dressed resonance
frequency, and then we do not need to fine-tune the time of sampling the response.
In the next step, however, we will start using the pulse setup shown in Figures 3.8
and 3.9. The data processing in the down conversion requires us to sample at the
right time, otherwise we will only sample noise.

Study Figure 3.10. Here we see the response in time when a pulse at the resonance
frequency is sent. Comparing the two different responses, dependent on the state
of the qubit, we see that there is an optimal time for sampling when the difference
in response between the qubit states is high. We aim hence to adjust our skip time
and sampling time such that the demodulation takes place within the short optimal
integration window. An actual measurement of this is shown in Figure 3.11.
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Figure 3.10: Sketch of the envelope of different responses of a pulse at the resonator fre-
quency, depending on the state of the qubit. If the qubit is in the excited and it has shifted
the resonator frequency more than a line width, the pulse will be unchanged. If the qubit is in
the ground state the pulse will have a dip after a certain time. Note that if we measure what
comes out at the time marked “Low contrast” there is almost no difference between the pulses,
while if we measure at the time marked “High contrast” there will be a big difference. Since
we want as good resolution as possible, we try adjusting the triggers such that we measure at
the “High contrast”-time.
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Figure 3.11: The response after sending a 2µs pulse at the resonance frequency. The period
marked “Integration window” is the time where good resolution between the qubit states will
be achieved.
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3.3.4 Qubit spectroscopy to determine the qubit frequency

Now we know the dressed resonator frequency and we have adjusted the demod-
ulation of the readout pulse to get high resolution between the qubit states. The
next step is to find the qubit frequency fq. We send a pulse at a frequency f and
then send a readout pulse to the resonator. If the state of the qubit is changed, the
readout response of the resonator will be changed as depicted in Figure 3.10. We
sweep f and once f = fq we will see a peak, see Figure 3.12.

Qubit pulse frequency (GHz)

Q
ub

it
pu

lse
am

pl
itu

de
(m

V
)

Readout probe output voltage (mV)

Figure 3.12: Qubit spectroscopy. A long high-amplitude pulse at a frequency f is sent,
followed by a calibrated readout pulse. The amplitude and the frequency f are both swept.
The frequency of this qubit appears to be around 3.69GHz. Note that the qubit linewidth
broadens the higher the power is. Also note that this figure does not depict the qubit that we
used for most measurements, since that qubit had fq ≈ 3.64 GHz.

Since we do not yet know the time and amplitude of a π-pulse we cannot simply
excite the qubit with a π-pulse. Instead, we send a long pulse with high amplitude,
driving the qubit into a mixed state, and then we take many averages. Thus when
f = fq the average value will be 50% excited and we will get a visible peak.
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3.3.5 Rabi oscillations to determine the integral of a pi- and
pi-half-pulse

Now that we know the dressed resonator frequency fr and the qubit frequency fq we
want to find a specific pulse corresponding to a π-pulse as described in Section 2.2.2.
This is done by sending pulses as shown in Figure 3.13 and sweep the pulse length
∆t. Then we will get so called Rabi oscillations, see Figure 3.14, and we know that
half the period time of these oscillations correspond to a π-pulse at this specific pulse
amplitude. Once it is known we also know that a π/2-pulse is a pulse of the same
length but half the amplitude, since this will give an integral half as big. A pulse
of half the plateau time instead of half the amplitude will not correspond exactly
to a π/2-pulse since the pulse is not perfectly rectangular, which is seen by noting
that t0 ≠ t1 and t2 ≠ t3 in Figure 3.13. We do not use rectangular pulses in order to
reduce other frequency components.

fq
fr

t

A

0 t0 t1 t2 t3

∆t

Figure 3.13: Pulse schematics to find the π-pulse. First a pulse at the qubit frequency with
some amplitude and a plateau length ∆t is sent, followed by a readout pulse. Note that the
pulses are not perfectly rectangular but have some rising time, t0 to t1, and a descending
time, t2 to t3. By sweeping the plateau length and averaging over many measurements we
will be able to determine the plateau length for a π-pulse.
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Figure 3.14: Rabi oscillations with a readout pulse at the dressed resonance frequency for an
excited qubit, i.e. high voltage corresponds to the ground state and low voltage corresponds
to the excited state. Note that the period time is about 730 ns, giving us that the time of a
π-pulse at this amplitude is tπ ≈ 365 ns.

3.3.6 Ramsey fringes to fine-tune the qubit frequency

The qubit frequency determined in the qubit spectroscopy is approximately the
correct one, but may be minimally detuned from the actual qubit frequency. In
order to fine-tune the qubit frequency we measure so called Ramsey fringes, see the
pulse schematics in Figure 3.15.

π
2

π
2

Readout

t

A

∆t

Figure 3.15: The pulse schematics to measure Ramsey fringes. A π
2 -pulse is sent, then we

say a time ∆t, and then another π
2 -pulse is sent, followed by a readout pulse.

We sweep many different frequencies in a small range around the approximate qubit
frequency we determine earlier, and we sweep the pulse separation time ∆t, see
Figure 3.16. From this measurement we can now determine the qubit frequency
very precisely.
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Figure 3.16: Measured Ramsey fringes. From this measurement a very precise qubit fre-
quency can be extracted to be fq = 3.643229 GHz.

One way to determine the qubit frequency is to take a horisontal line cut. We know
from theory that the oscillations will oscillate with the same frequency as we are
detuned from the qubit frequency, hence we add or subtract the oscillation frequency
from the one of the line cut. In theory it is hence enough with one of these line cuts,
but due to noise and non-ideal readout we take many separate line cuts and average
the frequency they point to.

Another way to determine the qubit frequency is to take a vertical line cut at ∆t > 0.
The line cut should then be symmetric around the qubit frequency. Also in this case
one line cut should be enough to accurately determine the qubit frequency, but in
order to average away noise and non-idealities it is good to take multiple and average
the result.

3.3.7 To measure coherence times

A qubit has two characteristic coherence times, the relaxation time T1 and the
decoherence time T2. When characterising a qubit it is good to determine these for
multiple reasons, e.g. to know how long your readout pulse can be before relaxation
has to be considered.

The decoherence time T2 we already have enough data to determine at this point. It
is simply determined by the exponential decay of the envelope of the Ramsey fringes
measurement. It is found by fitting an exponential sinusoidal function to one of the
horisontal line cuts of the Ramsey fringes measurement.
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The relaxation time T1 is given by exciting the qubit, wait a time ∆t and then
readout the state, see Figure 3.17. We sweep the waiting time and fit an exponential
to the data, see Figure 3.18. The relaxation time is then given by the fitting constant
of the exponent, giving us that T1 = 101.3 µs and with a 95% confidence bound in
the interval [98.96µs, 103.6 µs].

π
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t
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∆t

Figure 3.17: Schematics for how to measure T1. First the qubit is excited, then we wait for
a time ∆t and then we readout the state of the qubit. The waiting time is swept and then an
exponential is fitted to the results, and T1 is found as the constant of the exponential.
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Figure 3.18: Measurement of T1 as described in Figure 3.17. An exponential is fit to the
data from which we extract that T1 = 101.3 µs.

3.3.8 To determine measurement result of a single-shot read-
out

In the above measurements we use a lot of averages. A single-shot readout is, on
the other hand, a readout with no averages. To determine the fidelity, i.e. the
probability of a correct single-shot readout, we measure the qubit state nmeas times
without preparing it in any state and n times directly after a π-pulse. The waiting
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time between each measurement is 1ms. Since the qubit naturally relaxes to its
ground state on a time scale around 100 µs, we assume the qubit is in its ground
state at the beginning of each measurement.

We plot each measurement in the IQ-plane and calculate the average value of the
ground state measurements and the excited state measurements. Assuming that
noise is random, that we do many measurements nmeas ≫ 1 and that thermal exci-
tations are rare, the average values correspond to the states ∣0⟩ and ∣1⟩.

The result of a single-shot readout is defined as which state is the closest to the
measured value. The fidelity is determined by counting the number of measurements
na∣b that were expected to be in state b but were measured in state a. The fidelity
is hence

F =
n0∣0 + n1∣1

2nmeas
= 1 −

n0∣1 + n1∣0

2nmeas
. (3.1)

There are methods for further improving the fidelity calibration, such as heralded
state preparation [34], but we have not done any of those in this thesis.

3.3.9 Calibrating the resonator photon number

To further calibrate our qubit-resonator system, we want to calibrate the number of
photons in the resonator. This is done in a number of steps described below.

3.3.9.1 To determine the coupling strength

First we measure the transmission with a VNA and extract the real and imaginary
parts of the data, see Figure 3.19. Then we use a fitting program, based on the
method described in Reference [35], to find a fit to the data, also shown in Fig-
ure 3.19. From this fit we can extract the resonator frequency ω0 and its complex
valued quality factor Qc, amongst others. From these fitting parameters we extract
the coupling strength as

κ = ω0 ∣Qc∣−1 ≈ 4.471 MHz = 2π ⋅ 712 kHz. (3.2)
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Figure 3.19: The real and imaginary parts of the transmission around the resonator fre-
quency, together with a fit. The fit is based on the method described in Reference [35].

3.3.9.2 To determine the AC Stark shift and the measurement induced
dephasing

The next step in our calibration is to determine the AC Stark shift and the measure-
ment induced dephasing. This is done by following the pulse schematics shown in
Figure 3.20. In this figure, note that there are two lines with pulses that are sent at
the same time. The pulses on the upper line, marked “Qubit”, have the frequency
f = fq − δf , where δf is some detuning from the qubit frequency. The pulses on the
lower line have the same frequency as the readout frequency, fr.

First a driving pulse to the resonator arrives. After some time, when the resonator
ring-up time has passed and the number of photons in the resonator hence is stable,
a π

2 -pulse is sent to the qubit. Then we wait some time ∆t. Next another π
2 -pulse

is sent and finally a readout pulse is sent, and the measured output voltage of the
readout pulse is the measurement result. We sweep this for multiple values of ∆t.
This sequence is then repeated, but with the second qubit pulse replaced with a
−π2 -pulse, in order to get a reference to suppress low frequency noise. We repeat
both of these sequences 30 times, in order to be able to average away more noise.
Finally we run the whole sequence again, with another value of Adrive. This we do
for Adrive ∈ {0,2,4,6,8,10}mV.
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Figure 3.20: Pulse schematics to determine the measurement induced dephasing. At time
0 a drive signal is turned on with a frequency close to the resonator frequency. Then at time
t0 a π/2-pulse at the qubit frequency is sent. At time t1 the π/2-pulse is completed. Then at
time t2, i.e. after time ∆t, the drive signal is turned off while a π/2 or a −π/2-pulse is sent.
Finally at time t3, when the second qubit pulse is completed, a measurement pulse is sent
which is completed at time t4.

When this measurement is done we subtract the reference from the results and
take the average from the 30 different measurements for each value of Adrive, see
Figure 3.21. Then to each of these curves we fit the amplitude of the readout
output voltage U to the expression

U = Ae−Γ∆t sin(ω ⋅∆t + δ) , (3.3)

where ∆t is the pulse separation as depicted in Figure 3.20 and {A,Γ, ω, δ} are the
fitting parameters. The parameter A is the maximum amplitude of the oscillations,
Γ the envelope exponential decay constant, ω the oscillation angular frequency and
δ a phase shift. The fits are presented in Figure 3.21. From these fits we can then
extract the AC Stark shift ωac and the measurement induced dephasing Γϕ.

The AC Stark shift is found by the fact that ωac = 2πδf − ω, where δf = 529 kHz is
the detuning of the qubit pulses from the qubit frequency.

The measurement induced dephasing is found by the fact that Γϕ,m = Γ−Γ∗
2, where

Γ∗
2 = T −1

2 is the decoherence rate we find for Adrive = 0mV.

By putting these results together, we can plot the AC Stark shift ωac and the mea-
surement induced dephasing rate Γϕ,m as functions of A2

drive, see Figure 3.22.
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Figure 3.21: Ramsey oscillations using a −π2 -pulse to create a reference, for different ampli-
tudes of Adrive, together with a fit of the kind shown in Equation (3.3).
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Figure 3.22: The AC Stark shift ωac and the measurement induced dephasing Γϕ as functions
of A2

drive with 95% confidence bounds, determined from the fitting of the Ramsey oscillations
presented in Figure 3.21, together with linear fits. Both are expressed in angular frequency.

3.3.9.3 To determine the dispersive shift and the photon number

We know from theory [12] that A2
drive ∝ P̄ ∝ n̄, where n̄ is the average number of

photons in the resonator, for both the AC Stark shift and the measurement induced
dephasing. We also know that

ωac = 2χn̄, (3.4a)
Γϕ = 8χ2n̄κ−1. (3.4b)

Hence by taking the ratio of the slopes of the linear fits we get

mϕ

mac
= 8χ2κ−1

2χ = 4χ
κ

≈ 1.0246, (3.5)

where the mi are slopes of the fits. This value is with a 95% confidence bound in
the interval [0.965,1.086]. By using this value together with the κ determined in
Equation (3.2), we get the dispersive shift

χ ≈ 1.0246 ⋅ κ4 = 1.197 MHz. (3.6)

Now we can solve Equation (3.4a) for n̄ to get the average photon number in the
resonator as a function of the AC Stark shift, which is given by the linear fit in
Figure 3.22a, see Table 3.1 below.

Table 3.1: Number of photons n̄ in the resonator, given the amplitude Adrive in mV of the
resonator pulse.

Adrive (mV) 0 2 4 6 8 10 100
n̄ 0 0.01 0.03 0.06 0.11 0.17 17.27
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3.4 Characterisation of the JTWPA

In this section the methods used for characterising the JTWPA are described. In
Figure 3.23 we see the circuit schematics of the JTWPA module, which was used
throughout all experiments. Almost all focus has been put on studying the effects of
the JTWPA module on the interval 4-8GHz because most of the HEMT amplifiers
and the isolators only work well in this band.

IN
Double isolator

↱

Directional
coupler JTWPA Double isolator

OUT

PUMP

50Ω

JTWPA module

Figure 3.23: Design of the JTWPA module. The signal to amplify enters at the IN-port,
goes through a double isolator, couples with the pump when going through the directional
coupler, enters the JTWPA and is amplified and finally goes through another double isola-
tor to the OUT-port. The first double isolator prevents reflections at the JTWPA and the
backwards-travelling pump signal (due to finite directivity in the directional coupler) to enter
the sample. The last double isolator mainly blocks heat radiation from higher stages entering
the JTWPA module.

3.4.1 Characterisation of the JTWPA module components

In order to better understand how the JTWPA module circuit works it would help
to characterise each component and each cable, measure the reflection, insertion
loss and other properties. But since the properties of materials are not the same
at room temperature as at cryogenic temperatures, these characterisation measure-
ments would need to be performed in the cryostat when it is cold. This was not
done however, since it then would require a separate cool down which would take a
lot of both space in the cryostat, preventing others from doing other experiments,
and also time from other measurements. Instead focus was put on characterising
the JTWPA module as a whole and see how it works as an amplifier circuit.

3.4.2 Basic determination of the pump region

The first step of characterising the JTWPA is to identify in what region the param-
eters of the pump, the pump frequency and the pump power, should be in order for
the JTWPA to be able to amplify. The steps of doing this are described below.
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3.4.2.1 Use of cable through for background correction

The JTWPA is connected into a circuit, the “JTWPA module”, as depicted in Fig-
ure 3.23. Then the JTWPA module is connected in parallel with a through line as
depicted in Figure 3.24. A signal generator is connected to the PUMP-port and a
VNA is connected to the IN- and OUT-ports in order to measure the S21-parameter.
From the VNA and the signal generator down to the JTWPA module, there multi-
ple attenuators as depicted in Figure 3.1. For a full overview of the complete setup,
see Figure A.2 on page A-2.

IN º
Cryogenic
switch

↶ OUT
Through

PUMP

JTWPA module

Mixing chamber

Figure 3.24: The experimental setup in the dilution refrigerator for characterisation of the
JTWPA module gain. The JTWPA module, depicted in Figure 3.23, is put in parallel with
a line through, in order to measure gain over the JTWPA module compared with not having
it there at all.

In the whole setup there are multiple components. There are components at room
temperature, at the different stages in the cryostat, etc, and every part has its
own noise temperature and insertion loss. The whole setup except for the actual
experimental setup is referred to as the background. If the gain was calculated by
comparing what signal we send down to the JTWPA module with what comes out of
the cryostat, the result would be very misleading since the background attenuation,
the amplification and noise would then be included in the results.

To correct for the background we use a cable through, as depicted in Figure 3.24, in
parallel with the JTWPA module. In this way we can get a reference measurement
which we can put as zero gain. Then we can see if and how much the JTWPA module
actually amplifies, the “effective gain”, by taking the subtraction

Geff = SPump on
21 − SThrough

21 , (dB) (3.7)

where SPump on
21 is the transmission through the JTWPA module in dB with the

pump on and SThrough
21 is the transmission through the cable through in dB, not to

be confused with the parametric gain, which is given by

Gpar = SPump on
21 − SPump off

21 , (dB) (3.8)

where SPump off
21 is the transmission through the JTWPA module in dB without using

a pump. The difference between effective and parametric gain is hence that effective
gain is the gain compared with not using the amplifier at all, while parametric gain is
the gain the amplifier circuit, the JTWPA module, gives relative to its own insertion
loss.
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3.4.2.2 Determination of the insertion loss and pump frequency region

In order to get a reference to the background for all measurements, the transmis-
sion through the cable through was compared with the transmission through the
JTWPA module when there was no pump signal, see Figure 3.25.
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Figure 3.25: Measurement of the transmission, S21, through the JTWPA module compared
with the transmission through the cable through. Note the reduced transmission at the
dispersive regime, just above 6GHz. Note also the other transmission reduction at 9GHz, for
which the explanation remains unknown.

By subtracting the transmission through the cable through from the JTWPA module
transmission we then find the insertion loss of the JTWPA module, see Figure 3.26.
By studying the insertion loss we find that the dispersive feature is around 6.1GHz
and thereby that the pump frequency should be set to around 6.05GHz. Disregard-
ing the dispersive feature, the JTWPA module insertion loss in dB is approximately
linear with respect to frequency. A linear fit gives us that the insertion loss L in dB
at frequency f in GHz is well approximated by

L = 0.91f + 0.4 ± 0.25. (3.9)
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Figure 3.26: The insertion loss of the JTWPA, calculated as the transmission through the
JTWPA without a pump minus the transmission through the cable through. The dispersive
feature is identified by heavy losses, since the resonators of the JTWPA work as a band-stop
filter there, and the region for where the optimal pump frequency is expected to be slightly
below that.

3.4.2.3 Determination of pump power interval

While fixing the pump frequency to 6.05GHz, we increase the pump power from
low powers of −70 dBm at the JTWPA module PUMP-port, which corresponds to
approximately −83 dBm at the chip6, and increase the power until we get gain. At
approximately Pp = −55 dBm we start seeing gain. At −52 dBm we have reached a
pretty stable gain profile with a wide band with ≥ 10 dB gain, and at approximately
−48 dBm we no longer have any gain, see Figure 3.27.

By calculating the average gain in dB, given by

Gavg(interval) = ⟨Geff(interval)[in dB]⟩ , (3.10)

where the interval may be the whole frequency interval 4-8GHz or a smaller interval,
we get a clear figure showing what the pump power should be, see Figure 3.28.
Therefore we conclude that we the optimal pump power roughly should be in the
interval −55 dBm to −48 dBm at the JTWPA module pump input port.

6We get 13 dB attenuation from the directional coupler.
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Figure 3.27: Gain profiles for a fixed pump frequency fp = 6.05 GHz and different pump
powers. Note that for high powers, noticeable in this figure from −49.6 dBm, the gain quickly
drops for signal frequencies above the stopband. Meanwhile higher powers, like −48.4 dBm,
are required for the gain for frequencies below the stopband to drop heavily.
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Figure 3.28: The average effective gain in dB, defined as the average difference
SJTWPA module

21 − SThrough
21 in dB on a given interval, for a pump of frequency 6.05GHz at

different pump powers. The intervals studied are the whole interval 4-8GHz (ignoring the
stopband), the region below the stopband, and the region above the stopband. We can see
that at Pp = −55 dBm we start getting gain but at Pp = −48 dBm we have lost almost all
gain even for the frequency interval below the stopband, which tends to be higher than the
frequencies above the stopband.
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3.4.3 Characterisation of the gain profiles and determina-
tion of the optimal pump parameters

To characterise different gain profiles the same setup as above was used. Now we
know that the optimal pump frequency is around 6.05GHz and that the optimal
pump power is in the interval −55 to −48 dBm, but since we do not know the exact
parameter values of the JTWPA7 what pump powers and pump frequencies are
expected to be the optimal ones. Therefore we sweep both pump power and pump
frequency in their relevant intervals respectively and measure the gain profile. After
a few simple tests, in order to not sweep unnecessary frequencies, the pump frequency
was chosen to be swept in the interval 5.95GHz to 6.1GHz. Using frequency steps
of 1MHz and power steps of 0.2 dB, this results in 151 × 36 = 5436 different gain
profiles.
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Figure 3.29: Gain profile with mathematical fit. The data is the S21-values of the
JTWPA module minus the S21-values of the cable through, i.e. the effective gain, for a pump
of frequency fp = 6.009 GHz and power Pp = −50.2 dBm. To each side of the stopband a 4th
degree polynomial was fitted in order to determine gain bandwidths and the ripple level. Note
that the stopband simply is ignored when fitting the curves.

To evaluate all the measured gain profiles in a systematic way a characterisation
protocol is followed for each gain profile in the following manner: First the stopband
is identified8 and ignored since the amplifier does not work in that region. Then
to each side of it a 4th degree polynomial is fitted9. Next these two polynomials
are put together as one function and we define the bandwidth BWx for xdB gain

7The characteristic values Cg,Cc,Cr, Lr, Ic as depicted in Figure 2.13.
8The stopband is identified based on the theory described in Section 2.4.2.
9Note that there is nothing physical about 4th degree polynomials. These fits were only done

in order to determine the ripple level and bandwidth of the gain profiles.
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to be the width of the interval when this function is above xdB10. We define the
ripple value to be the square root of the sum of all quadratic distances from the
fitted curve, i.e. a value similar to the variance, which then gives us a number on
the smoothness of a curve. Finally, since this definition of the bandwidth includes
the stopband but the size of the stopband is different for different pump frequencies,
we define the effective bandwidth BWx,eff for xdB gain to be the bandwidth minus
the width of the stopband.

An example of this can be seen in Figure 3.29. In this figure we see that we have a
gain larger than 15 dB from approximately 4.5GHz all the way to 6.75GHz, giving
us a bandwidth for 15 dB gain BW15 = 6.75 GHz−4.5 GHz = 2.7 GHz. The stopband
for this profile reaches from 5.87GHz to 6.16GHz, giving us a stop-bandwidth of
0.29GHz resulting in an effective bandwidth for 15 dB gain of BW15,eff = 2.7 GHz −
0.29 GHz = 2.41 GHz.

The results of the gain profile analysis are presented in Section 4.1 on page 4-1.

3.4.4 To determine the saturation power

The saturation power, also known as the 1 dB compression point, is defined as the
signal power where the gain is decreased by 1 dB. It is measured by fixing the pump
frequency and pump power and then measure the gain profile for different signal
powers Ps over the whole JTWPA module interval. Then the saturation power, at
a specific signal frequency fs, on the whole JTWPA module interval 4-8GHz or on
a smaller interval, e.g. 4-5GHz, is extracted by simply identifying the signal power
Ps for which the gain is 1 dB below the maximum gain.

3.4.5 Measurement of Signal-to-Noise Ratio improvement

Once the gain profiles are measured the next step is to measure the Signal-to-
Noise Ratio improvement (∆SNR), i.e. to determine how much better the Signal-
to-Noise Ratio (SNR) becomes when using the JTWPA, or in other words, how
much more the JTWPA module can amplify the signal compared with how much
it amplifies the noise. The ∆SNR most certainly differs at different frequencies,
since the JTWPA module amplifies differently at different frequencies, therefore we
measure the ∆SNR at 36 different frequencies spread on the whole band 4 to 8GHz,
namely the frequencies 4 - 5.7GHz and 6.3 - 8GHz with steps of 100MHz.

For the ∆SNR characterisation the same setup as above is used, except that an RF-
source is connected to the IN-port and a spectrum analyser to the OUT-port. Using
this setup we can measure the ∆SNR of the JTWPA module at a given frequency,
using the method described below.

10This definition of bandwidth and the reason for using it will be explained in Chapter 5.
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3.4.5.1 To determine Signal-to-Noise Ratio

The SNR is determined by first sending a signal at a frequency fs and sweep the
spectrum with the spectrum analyser in a narrow range of 500 kHz around this
frequency, i.e. f ∈ [fs − 250 kHz, fs + 250 kHz]. Then the signal strength is defined as
the value in the middle of this interval and the noise floor is defined as the average
value of the rest of the data points, i.e. the average excluding the signal. Finally the
SNR, in dB, is defined as the signal strength minus the noise floor, see Figure 3.30.

3.4.5.2 To determine a reference

Just as when determining the effective gain, we need to measure the SNR using
a through line in order to get a reference for when using the JTWPA. Since the
SNR may vary with frequency, we measure the SNR with the through at all the 36
frequencies. We also measure this with the JTWPA module switched in but with
pump off, so that we can compare the parametric ∆SNR with the effective ∆SNR.

3.4.5.3 To determine ∆SNR for a specific pump

To determine the ∆SNR for a specific JTWPA pump, we measure the SNR using
the JTWPA with this pump, and then we subtract the SNR of the through at
the same frequency. For example in Figure 3.31 a pump with fp = 6.058 GHz and
Pp = −52.6 dBm is used and the SNR is 54 dB. Using the through, the SNR is
45 dB, recall Figure 3.30. The ∆SNR for this pump at this frequency is hence
54 dB − 45 dB = 9 dB.

3.4.5.4 To determine ∆SNR over the whole band

Finally we want to measure the ∆SNR over the whole band 4 - 8GHz, at many
different frequencies and for many different pumps to see if we can find a pump that
gives high ∆SNR at all frequencies.

Given the results from the gain characterisation we know that gain drops quickly for
pump frequencies above 6.08GHz, hence we limit ourselves to the pump frequencies
5.95GHz to 6.08GHz. We begin with a small range of pump powers around the
pump region of maximum gain, but realise soon that a bigger interval is needed
because the ∆SNR tends to be higher for pump powers lower than the ones for
maximal gain11.

In the end we sweep the pump power interval −53.5 dBm to −49.5 dBm with 0.1 dB
steps, pump frequencies 5.95GHz to 6.08GHz with steps of 1MHz and signal fre-

11Possibly because at high pump powers some junctions turn normal and add extra noise photons.
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quencies 4GHz - 5.7GHz and 6.3GHz - 8GHz. We skip measuring the ∆SNR in
the interval 5.8GHz to 6.2GHz since the stopband is approximately in this region.

The most significant ∆SNR results are presented Section 4.2 on page 4-5, while all
the ∆SNR data is presented in Appendix B.
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Figure 3.30: The transmission in a 500 kHz range around the signal frequency 4GHz using
the through line and 14 averages. The amplified signal is at −43 dB and the amplified noise
floor approximately at −88 dB. The SNR is hence 45 dB.
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Figure 3.31: The transmission in a 500 kHz range around the signal frequency 4GHz using
the JTWPA with fp = 6.058 GHz and Pp = −52.6 dBm and no averages. The amplified signal
is at −30 dBm and the amplified noise floor approximately at −84 dBm. The SNR is hence
54 dB. Note that the noise floor looks very noisy since no averages have been used.

3.4.6 Measurement of quantum efficiency

In order to measure the quantum efficiency we use a well characterised qubit in the
setup depicted in Figure 3.32. The qubit is characterised as described in Section 3.3.
We use this qubit to calibrate the number of photons at the qubit chip, which com-
bined with a spectrum measurement lets us determine the system noise temperature
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which finally lets us determine the quantum efficiency.

Qubit chip
IN º

Cryogenic
switch Double isolator

PUMP

JTWPA module

↶ OUT

Mixing chamber

Figure 3.32: The second experimental setup in the mixing chamber to measure the quantum
efficiency of the JTWPA module. The qubit is of the Xmon design here. The JTWPA module
is put in parallel with a double isolator in order to compare results with the regular readout
setup.

3.4.6.1 To measure cavity-referred power

In order to measure the system noise temperature we need to determine the number
of photons at the JTWPA IN-port. Assuming low losses between the qubit chip
and the JTWPA module, the number of photons is closely related to the cavity-
referred power. To measure the cavity-referred power, we send a continuous signal of
amplitude 100mV at a frequency slightly detuned from the qubit resonator frequency
and measure the output with a digitizer.

From the qubit calibration, see Section 3.3, we know the number of photons in the
resonator at a given readout amplitude. For Adrive = 100mV we get

ωac ≈ 41.3 MHz (3.11)

which, recall Equation (3.4a) on page 3-19, gives us that

n̄ = ωac

2χ ≈ 17.27photons. (3.12)

Using the measured coupling strength and the assumption that we have no internal
losses in the resonator, the cavity-referred power is given [36] by

P̄ = 1
2 h̄ωrκn̄ ≈ −127.7 dBm (ωr = 6.305 GHz) (3.13)

which we then set as the maximum value of the transmission measurement.

3.4.6.2 The standard quantum limit

The standard quantum limit (S.Q.L.) noise power is given by

PS.Q.L. = 2 ⋅ 1
2 h̄ωrS (3.14)
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where S is the measurement resolution bandwidth. The factor 2 comes from the
fact that we do non-degenerate amplification. In our setup we sampled 400 data
points over 1MHz in both quadratures, implying that

S = 2 ⋅ 1 MHz
400 = 5 kHz (3.15)

giving us that the noise power S.Q.L.12 is −166.8 dBm. The factor 2 here comes
from the fact that we sample data points in both quadratures, effectively giving us
twice the sampling speed. The corresponding S.Q.L. noise temperature is given by

TS.Q.L. = 2 ⋅ 1
2
h̄ωr

kB
≈ 303 mK. (3.16)

The factor 2 here also comes from the fact that we do non-degenerate amplification.

3.4.6.3 Noise temperature calculation

We set the power of the S.Q.L. noise floor in Figure 3.33 equal to the vacuum noise
temperature in Equation (3.16). Then we use the difference between the measured
and calibrated values of the noise floor for pump on and pump off and the vacuum
noise floor in order to find the equivalent noise floor temperatures. That is, if

∆i = Pi − PS.Q.L. (in dB) (3.17)

for i ∈ {pump off, pump on, through} then

Ti = TS.Q.L. ⋅ 10
∆i
10 . (3.18)

The noise floor of the through was not measured, but estimated by using the dif-
ference between previous measurements of the through and pump off transmissions.
The through line includes two switches and a double isolator, which will add loss and
effectively increase the noise floor. Find the specific values from the measurement
and the estimation in Table 3.2.

12Recall S.Q.L. from Section 2.3.3.
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Figure 3.33: Measurement of noise floor for JTWPA pump on and pump off, using the
calibrated value of n̄ = 17.27 at readout frequency fr ≈ 6.306 GHz. The noise floor with the
through is only an estimation. The pump has fp = 6.0123 GHz and Pp = −52.41.

Table 3.2: The noise floor in dBm and its equivalent temperature for the measure-
ment. The noise floor with the through is only an estimation.

Noise floor PN.-floor (dBm) TN (mK)
S.Q.L. −166.8 303
Pump On −164.0 570
Pump Off −146.6 31,874
Through −149.0 18,194
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4
Results

4.1 Gain characteristics

Below the results from the gain characterisation of the JTWPA module are pre-
sented.

4.1.1 Gain profiles

In Figure 4.1 three gain profiles are presented that are the “best” gain profiles in
different aspects. The first two use a pump with Pp = −50.2 dBm while the third
uses Pp = −52 dBm.
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Figure 4.1: Gain profiles for three different pump parameters . The first one has the
greatest BW20,eff ∶= BWG≥20 − BWStopband. The second one has the greatest BW15,eff ∶=
BWG≥15 −BWStopband and also a very low ripple value. The third one has the lowest ripple
value of all gain profiles that reach 15 dB gain at any point.
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The one with fp = 6.03 GHz has the greatest BW20,eff1. The one with fp = 6.065 GHz
has the greatest BW15,eff. The latter also has a relatively low ripple level. The third
use a pump with fp = 6.047 GHz and Pp = −52 dBm and has the lowest ripple value
of all the gain profiles with any gain above 15 dB, i.e. BW15 ≠ 0.

4.1.2 Average gain

In Figure 4.2 the average gain in dB on the whole interval, excluding the stopband,
is presented. A high average gain does not imply high gain at every frequency
within the JTWPA module bandwidth2 but gives a rough estimate on what pump
frequencies and pump powers that work for the JTWPA.

Note that there is no data in the region fp ∈ [6.051,6.1]GHz, Pp ∈ [−55,−52.4]dBm.
This is only because we ran out of measurement time and that region seemed less
interesting due to its low average gain.
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Figure 4.2: The average effective gain (dB) on the interval 4 to 8GHz, exluding the stopband,
for the different measured pumps. All values below 0 have been given the same colour in order
to optimise contrast for values above 0. Note the sharp line at pump power equal to −51.2 dBm;
the data above and below this line was measured at different times.

1Recall, effective bandwidth BWx,eff is defined as the width of the polynomial fit to the curve
above xdB gain minus the width of its stopband.

2The JTWPA module bandwidth is 4 - 8GHz.
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4.1.3 Bandwidths

In Figure 4.3 the effective bandwidth of 20 dB gain is presented and in Figure 4.4 the
effective bandwidth of 15 dB gain is presented. Note that the former has its highest
values in the range Pp ∈ [−51,−50]dBm, fp ∈ [6.01,6.03]GHz, while the latter has
its highest values in the range Pp ∈ [−51,−50]dBm, fp ∈ [6.05,6.07]GHz.
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Figure 4.3: The bandwidth (in GHz) for gain above 20 dB minus the bandwidth of the
stopband, i.e. the effective 20 dB-bandwidth.
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Figure 4.4: The bandwidth (in GHz) for gain above 15 dB minus the bandwidth of the
stopband, i.e. the effective 15 dB-bandwidth.
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4.1.4 Saturation power

Gain as a function of signal power is presented in Figure 4.5 at 4 different frequencies.
In Figure 4.6 the average gain at three different intervals is presented. The saturation
power3 varies when studying gain at a single frequency, but converges to Psat =
−94 dBm when studying the average gain on intervals, both below the stopband,
above the stopband and the whole interval except for the stopband.

-110 -105 -100 -95 -90 -85 -80 -75 -70−20

−10

0

10

20

Signal power Ps at JTWPA module IN-port (dBm)

G
ai
n
(d
B)

G at 4GHz
G at 5GHz
G at 7GHz
G at 8GHz

Figure 4.5: Gain at different frequencies for different signal powers using a pump with
fp = 6.065 GHz and Pp = −50.2 dBm. At 4GHz, Psat = −90 dBm. At 5GHz, Psat = −93 dBm.
At 7GHz, Psat = −90 dBm. At 8GHz, Psat = −87 dBm.
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Figure 4.6: Average gain on different intervals for different signal powers using a pump
with fp = 6.065 GHz and Pp = −50.2 dBm. All of the these gains have a saturation power
Psat = −94 dBm.

3Also known as the 1-dB compression point, i.e. the signal power when the gain is 1 dB less
than maximum gain.
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4.2 Signal-to-Noise Ratio improvement

The SNR was measured at 36 different frequencies, 4.0-5.7GHz and 6.3-8.0GHz
with 100MHz steps, for 5371 different combinations of pump frequencies and pump
powers. In Figure 4.7 the average ∆SNR over all 36 the different signal frequencies
as a function of all the different pumps is presented.

Figure 4.7: The ∆SNR averaged over the signal frequencies, as a function of pump frequency
and pump power.

In Figure 4.8 we see the standard deviation of the ∆SNR for each combination of
pump frequency and pump power. Finally in Figures 4.9 and 4.10 we see the maxima
and minima ∆SNR:s at each combination of pump frequency and pump power. For
the interested reader, all ∆SNR data is presented in Appendix B.
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Figure 4.8: The standard deviation of the ∆SNR between the signal frequencies, as a
function of pump frequency and pump power.

Figure 4.9: The maximum ∆SNR of any of the signal frequencies, as a function of pump
frequency and pump power.
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Figure 4.10: The minimum ∆SNR of any of the signal frequencies, as a function of pump
frequency and pump power.

4.3 Results from qubit measurements

4.3.1 Quantum efficiency

Using the measured value of the system noise temperature TN, recall Table 3.2 on
page 3-31, we calculate the quantum efficiency to be

η = h̄ωr

kBTN
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

53.1 % for TN = 570 mK (pump on)
0.95 % for TN = 31.8 K (pump off)
1.66 % for TN = 18.2 K (through)

(4.1)

4.3.2 Single-shot readout

Single-shot readout without the JTWPA is presented in Figure 4.11 and single-shot
readout with the JTWPA is presented in Figures 4.12 and 4.13. In these figures
the fidelities and the normalised state separation ∆V /σ are presented, where ∆V
is the length difference between the average values (given by the crosses) and σ is
one standard deviation of the ground state. Discussion about the measurements is
presented in Chapter 5.
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Readout after no pulse

∗Readout after π-pulse

×Average values

Multiples of standard
deviations
State separation line

Figure 4.11: A single shot measurement of an Xmon qubit connected to the through, with
a total of 2000 points. The fidelity is F = 86.4 % and the normalised state separation is
∆V /σ = 3.4294.

Readout after no pulse

∗Readout after π-pulse

×Average values

Multiples of standard
deviations
State separation line

Figure 4.12: A single shot measurement of an Xmon qubit connected to the JTWPA with
fp = 6.064 GHz, Pp = −51.2 dBm, with a total of 60.000 points. The fidelity is F = 95.42 % and
the normalised state separation is ∆V /σ = 4.3420.
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Readout after no pulse

∗Readout after π-pulse

×Average values
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deviations
State separation line

Figure 4.13: A single shot measurement of an Xmon qubit connected to the JTWPA with
fp = 6.0635 GHz, Pp = −51.3 dBm, with a total of 20.000 points. The fidelity is F = 99.54 %
and the normalised state separation is ∆V /σ = 4.9558. Note that the state separation line
now is in the middle between the states but that moving it closer to the excited state should
improve the fidelity.

Readout after no pulse

∗Readout after π-pulse

×Average values

Multiples of standard
deviations
State separation line

Figure 4.14: A single shot measurement of an Xmon qubit connected to the JTWPA with
fp = 6.064 GHz, Pp = −51.2 dBm, with a total of 2.000 points. The fidelity is F = 99.9 % and
the normalised state separation is ∆V /σ = 5.7621.
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5
Discussion and Conclusions

Below the results are discussed and the conclusions drawn are presented.

5.1 Gain discussion

As mentioned earlier, it is not easy to define what a good gain profile is. A “good”
gain profile will differ depending on what the user needs. However, characteristics
that usually are positive are high gain, low gain ripple and a large bandwidth.

5.1.1 Gain ripples

For some combinations of pump power and pump frequency the gain ripples were,
without exaggeration, very large. Study Figure 5.1 and note that for Pp = −50.8 dBm
and fs ≈ 6.45 GHz we can find a gain difference within a range of 21MHz as big as
24 dB1.

A hypothesis for the reason of this was that some of the junctions had turned
resistive, and hence created resonances within the JTWPA which may interfere con-
structively for some frequencies and destructively for others. An argument against
this hypothesis is that if some junctions have become resistive for one set of pump
parameters, more should become resistive if the pump power is increased. This was
however not the case, but rather the opposite. When a gain profile showed this
gain ripple behavior, the oscillations in many cases disappeared if the pump power
is increased. An example of this is also shown in Figure 5.1.

In the end this was not explored completely. The gain oscillation behaviour only
occurred at relatively high pump powers, i.e. pump powers giving high gain but low
∆SNR. Since what we really wanted to optimise was the ∆SNR, we decided to not
spend too much time investigating the properties of the JTWPA for a pump we will
not use in the end anyway.

1More specifically, at fs = 6.444 GHz the gain is 33.04 dB, while at fs = 6.465 GHz it is only
8.59 dB.
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Figure 5.1: Two gain profiles at the same pump frequency fp = 6.062 GHz but at different
pump powers. Note the gain oscillations close to the stopband for the gain profile with the
lower pump power.

5.1.2 Stopband

According to the theory in Section 2.4.2, the stopband should reach from 2fp−fupper
to fupper, where fp is the pump frequency and fupper = fdispupper. In other words, the up-
per bound of the stopband should be fix at the same value as the dispersive feature’s
upper bound while the lower limit should be dependent on the pump frequency and
the upper limit.

This was measured and verified to almost be the case, see Figure 5.2. The theoretical
prediction was right about the upper limit being fixed, and it almost is. But it is
not exactly at the same frequency as the upper bound of the dispersive feature,
fdispupper = 6.2 GHz, but slightly lower, f stopbandupper ≈ 6.18 GHz. This upper limit also got
smaller in regions of high gain. If fupper is redefined to be this slightly lower upper
limit, the lower limit is still given by the same equation.

5.1.3 Comparison of parametric and effective gain

Recall the difference between effective gain (Equation (3.7) on page 3-21) and para-
metric gain (Equation (3.8) on page 3-21). The effective gain is the actual gain of the
JTWPA module, while the parametric gain is the difference between the amplified
signal and the attenuated signal due to the insertion loss of the JTWPA module.
These gains are hence related to each other as

Geff = Gpar −LJTWPA module (5.1)
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if they are expressed in dB. Obviously the effective gain is the gain of interest, which
usually can be estimated from the parametric gain by subtracting the losses accord-
ing to the previously determined loss equation (recall Equation (3.9) on page 3-22).

Figure 5.2: The effective gain for Pp = −50.6 dBm as a function of pump frequency fp and
signal frequency fs. It is clear that the stopband upper limit fupper is fix while its lower limit
flower is linearly dependent on the pump frequency fp. Note that all values below zero dB,
i.e. the regions where the JTWPA module attenuates instead of amplifying, have been put to
zero in order to increase the gain contrast.

However, as discussed above in Section 5.1.2, the upper bound of the dispersive
feature is slightly higher than the upper bound of the stopband. This will result in
a seemingly very large gain around the upper bound of the stopband when measuring
the parametric gain (an example of this is shown further down, in Figure 5.5). This
very large gain is only visible when studying the parametric gain since it is not
actual strong signal gain but rather a strong compensation of the JTWPA module
losses in this region.
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5.1.4 Definition of bandwidth

There are multiple definitions of a bandwidth, while the most common is when the
gain profile is 3 dB below maximum gain, while in this thesis the definition used is
the one described previously, i.e. BWx is the width of the mathematical fit for gain
above xdB. The reasons for this choice are discussed below.

The mathematical fit is considered when determining bandwidth, instead of the
actual measured gain profile data, because many of the gain profiles have big gain
ripples. If the actual data was considered instead, the maximum gain would be at
the top of one of these ripples, and the bandwidth would hence only be the width
of the ripple.

The above-xdB bandwidth is considered instead of 3 dB below maximum gain be-
cause some of the gain profiles, e.g. the one depicted in Figure 3.29 on page 3-25,
have a knob-like feature, giving them high gain in a narrow range, while others do
not have this feature. Using the 3 dB below maximum gain definition would hence
tell us that some gain profiles have a very narrow bandwidth and others a very wide
bandwidth, while the ones with the narrow bandwidth still might have the overall
highest gain. It would hence be misleading.

5.2 SNR discussion

Recall Figure 4.7 on page 4-5. Note that the ∆SNR is the highest around Pp ≈
−52 dBm, even though we know from the gain results that the highest gain is reached
at Pp ≈ −50 dBm (recall Figure 4.2 on page 4-2). This implies that the highest gain
does not necessarily mean that the ∆SNR is the highest.

Let us study the amplification of the signal, see Figure 5.3, and we see that the
signal is amplified both for the low pump powers (Pp ≈ −52 dBm) and for high
pump powers (Pp ≈ −50 dBm). Now let us compare it with the amplification of
the noise floor, see Figure 5.4. We see that for high pump powers, the noise floor
is more or less equally amplified, implying that the ∆SNR is approximately zero.
Meanwhile, for low pump powers, the noise floor is only slightly amplified, giving
us high ∆SNR. We can hence draw the conclusion that at high pump powers the
∆SNR is low because the amplifier adds about the same amount of noise photons
as it adds signal photons.

There is a strange feature with the ∆SNR-measurements worth to mention. In the
region with high ∆SNR, i.e. for fp ∈ [6.03,6.06]GHz and Pp ∈ [−53,−51]dBm, there
are two smaller regions where the ∆SNR drops significantly (recall Figure 4.7 on
page 4-5). The reason for this is yet to be understood and it should be investigated
further, but for now we can draw the conclusion that these regions should be avoided.
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Figure 5.3: The average signal amplification as a function of pump frequency and pump
power.

Figure 5.4: The average noise floor amplification as a function of pump frequency and pump
power.
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5.3 Single-shot readout and quantum efficiency

It is clear from the single-shot readout measurements that the JTWPA enhances
the readout fidelity, but it is hard to say exactly how much it enhances the readout.
The main reason for this is because the qubit used had to be recalibrated after
the JTWPA was switched in and therefore the measurements cannot be directly
compared.

There is also a strange feature in some of the JTWPA amplified single-shot readout
measurements, recall Figure 4.13 on page 4-9. In theory the JTWPA should, since
we use non-degenerate 4-wave mixing (recall Table 1.1 on page 1-8) amplify the
two quadratures of the qubit equally, and also keep them symmetrically Gaussian
distributed. This we see in Figure 4.12. But, in Figures 4.13 and 4.14 it is clear that
the ground state is amplified more and also that its shape is changed. The reason for
this is not understood. Even more strange is that the pump parameters are almost
identical for these three measurements. However, these results were acquired during
a time when we experienced gain instabilities, which we think were caused by an
unstable pump source. It is hence possible that the pump parameters in reality were
more different than we think.

Another thing about Figure 4.13 on page 4-9 is that we do not seem to have any
relaxation at all. The qubit relaxation time is T1 ≈ 100 µs, the readout is completed
about 2 µs after the π-pulse is done and we do 10.000 measurements after a π-pulse.
Therefore there should be about 200 stars in the ground state, but we do not measure
ground state one single time. We have not been able to determine why this is, but a
hypothesis is that in some cases the strong readout stabilises the qubit in the excited
state.

From the quantum efficiency measurement it is clear that the losses in the JTWPA
have a very negative impact if there is no pump. Therefore the JTWPA should not
be used in a readout line without also using a pump.

5.4 Conclusions

To summarise the results and the discussion of the JTWPA, the conclusions we can
draw are:

• Pump power and frequency interdependent, i.e. one cannot determine the best
pump power and pump frequency independently.

• Highest gain does not imply highest ∆SNR.

• Small changes in the pump can strongly affect the gain profile.

• Different pumps, and thereby different gain profiles, may be useful for different
applications.
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• The JTWPA module insertion loss L in dB at frequency f in GHz is well
approximated by L = 0.91f + 0.4 ± 0.25.

• The JTWPA module stopband is well estimated to reach from 2fp − fupper to
fupper, where fp is the pump frequency in GHz and fupper = 6.18 GHz.

• The saturation power is Psat ≈ −94 dBm.

• Highest gain is generally reached for Pp ≈ −50 dBm and fp ≈ 6.06 GHz.

• Highest ∆SNR is generally reached for Pp ≈ −52 dBm and fp ≈ 6.05 GHz.

• There are two regions with low ∆SNR very close to the region with high ∆SNR
in the pump power/frequency-plane which need to be avoided.

• For Pp ≈ −50 dBm the JTWPA adds noise photons to the extent that the SNR
remains unchanged, while for Pp ≈ −52 dBm it adds very few noise photons,
increasing the SNR with between 5 and 11 dB.

• The JTWPA module can reach a system noise temperature close to the stan-
dard quantum limit and a system quantum efficiency above 50%.

5.5 JTWPA calibration for new measurements

If the JTWPA is going to be installed and used in a new setup it needs to be
recalibrated. The pump frequency does not need to be calibrated, since a properly
working pump source will generate a signal with the frequency requested of it, but
the pump power needs to be recalibrated since the exact total loss of all cables, all
contacts, all attenuators, etc, is hard to know and the JTWPA is very sensitive to
both pump frequency and pump power. In order to do this calibration, follow the
instruction below.

1. Connect a VNA to the signal line and the pump source to the pump input
line.

2. Set the pump frequency to fp = 6.065 GHz and the pump power to what is
expected to be Pp ≈ −60 dBm at the JTWPA module pump-port.

3. Measure the parametric gain, i.e. the difference in transmission for pump on
and pump off, for these pump settings in the interval 4-8GHz.

4. Redo this for higher and higher pump power, with steps of 1 dB. At some point
you should start getting gain. Keep increasing the pump power until the gain
drops to zero.

5. Once you have found an approximate pump power region where the gain is the
highest, sweep the pump power in this region in a 4 dB interval, with 0.2 dB
steps.
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6. Now you should have a similar image to the one presented in Figure 5.5.
Determine the pump power giving the highest parametric gain. This pump
power corresponds to −50 dBm at the JTWPA module pump-port. Now the
results from the thesis can be used by subtracting the difference between pump
source output power giving the highest gain and −50 from whichever pump
power you want to use.

Figure 5.5: The parametric gain of the JTWPA module for fp = 6.065 GHz as a function
of pump power at the JTWPA module and signal frequency. Note the huge parametric gain
around the upper bound of the stopband.

5.6 Future work

Things that could be done in a future work to improve the JTWPA characterisation
are:

• Measure the gain profiles multiple times. In this thesis work the gain
profiles were measured with a VNA using averages, in order to average away
noise. An improvement for the future could be to measure the gain profiles
many times instead of using averages, since then the gain stabilities could be
studied.

• Measure the gain profiles for high ∆SNR. In this work the gain was
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mainly studied in the region where the gain was the highest. Later it turned
out that the highest ∆SNR was reached at lower pump powers. It would be
interesting to study the gain profiles closer in this region.

• Measure the ∆SNR multiple times. Due to time limitations we could
only measure the SNR for each pump once, making the results fairly noisy
(recall Figure 3.31 on page 3-28). The ∆SNR-results would be more clear if
the ∆SNR was measured multiple times in the relevant region (i.e. for fp ∈
[6.03,6.06]GHz and (Pp ∈ [−53,−51]dBm).

• Characterisation of the components. By measuring each component’s
and each cable’s transmission, reflection and insertion loss, it would be easier to
make more accurate predictions about the JTWPA module as a whole. Then
the resonance at 9GHz (recall Figure 3.25 on page 3-22) might be located to
one of the components.

• Use of integrated through. In this work the through has always been
put in parallel with the JTWPA module as a whole. This was done since
the JTWPA module as a whole was what was going to be used in the end.
Increased understanding of the JTWPA could be reached by integrating a
through into the JTWPA module and hence be able to measure intrinsic ef-
fective gain2. The circuit schematics for this are shown in Figure A.1 on
page A-1.

• Quantum efficiency map. Gain and ∆SNR were measured for multiple
pump powers and frequencies, which could then be shown in maps (recall
Figure 4.2 on page 4-2 and Figure 4.7 on page 4-5), while the noise temperature
and the quantum efficiency only were for one pump frequency and power. A
similar map of quantum efficiency for different pump frequencies and powers
could be useful. This was not done in this work simply due to lack of time.
Some unexplained experimental problems took a lot of time, such as strong
gain fluctuations.

• Use of pump filter. The pump power exiting the refrigerator was quite
high, about ∼ 7 dBm. The effects of the pump in the down conversion process
is not completely known, but it might be one of the reasons for the strange
amplification of the ground state of the qubit. To ensure that the pump does
not affect the down conversion, or any other process outside the refrigerator,
a bandstop filter should be added to the OUT-port of the JTWPA module,
which would then reflect the pump into the OUT-isolators.

• Ensure atomic reference lock. We experienced some gain instabilities. It
seemed like the JTWPA switched between different gain profiles. We believe
the reason for this is that the pump source used an internal reference instead
of the atomic clock and hence was not stable in frequency. To ensure this does
not happen again for future measurements, the user should ensure that the

2That is, the effective gain of the JTWPA excluding the insertion loss of the other
JTWPA module components.
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pump source is properly locked to an atomic clock reference.

• Use of one good qubit for calibration. Throughout this work we have
worked with multiple qubits. Since we kept changing qubits between the
cooldowns, a lot of time was put into calibrating each new qubit. Multiple
cooldowns were more or less wasted since many of the qubits turned out to
be too bad to use for the calibration. A lot of time would hence be saved by
using one good qubit for all cooldowns.

• Measure reflection and backwards-travelling pump. By putting a circu-
lator in front of the JTWPA module, one could measure the JTWPA module
reflection as well as the pump signal travelling out of the IN-port due to finite
directivity and reflection at the JTWPA. This could help understanding the
possible back-action of the JTWPA module on the sample.

• Further investigation of single-shot measurements. Some of our single-
shot measurements using the JTWPA were only slightly better compared with
a line through, while others were a lot better, but the pump parameters were
almost identical between the measurements. This is not yet completely un-
derstood and should be investigated further.

• Use of pump cancellation. We used a double isolator at the JTWPA module
IN-port to isolate the sample from the reflected and the backwards-travelling
pump, but some of pump will still leak through. This can be improved by
connecting another signal at the directional coupler isolation port, an “anti-
pump”, at the pump frequency which is π-shifted compared with the pump.

• Measure two JTWPAs in parallel. Both JTWPA brackets were made to
be able carry two JTWPAs in parallel, but we never got to that point. It
could be interesting to study if the JTWPAs disturb each other, and if adding
a second JTWPA line makes thermalisation of the refrigerator harder or not.

• Measure two JTWPAs in series. It could be interesting to connect two
JTWPAs in a series after each other and do a similar characterisation as the
one described in this thesis for this new system.
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A
Setup schematics

In this appendix more setup schematics are shown. In Figure A.1 the setup schemat-
ics of the JTWPA module with an integrated through line is depicted.

In Figure A.2 the first setup is completely depicted, including all attenuators on
all cryostat levels, which was used to measure the gain profiles and make a first
measurement of the ∆SNR. These first ∆SNR-measurements are not presented in
this thesis.

In Figure A.3 the second setup used is completely depicted. The results from this
setup are not presented in this thesis because the qubit was too unstable to get
any good results. The pulse generator signify the up conversion setup shown in
Figure 3.8 on page 3-7 and the digitizer in the setup schematics signify the down
conversion setup shown in Figure 3.9 on page 3-8.

In Figure A.4 the third and fourth setups used are completely depicted. The only
differences between the third and fourth setups are that the qubit was replaced
with another qubit (not shown here). It was in this setup the noise temperature,
quantum efficiency, single-shot readout and the ∆SNR presented in this thesis were
measured.

IN
Double isolator

↱

Directional
coupler

º

Cryogenic
switch

↶

Through
JTWPA

Double isolator

OUT

PUMP

50Ω

JTWPA module with integrated through

Figure A.1: Setup for measuring the gain specifically of the JTWPA, without including the
losses in the lines, contacts, etc in the JTWPA module.
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Through

VNA

1 2

∼
RFsource ↶

−30dB

∼
PUMP

Room temperature

∼ 50 K

∼ 3 K

Still (∼ 800 mK)

Cold plate (∼ 100 mK)

Mixing chamber (∼ 10 mK)

−3dB

−6 dB −6dB

−10dB −10dB

−21dB −21dB

−20dB

º
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↶

JTWPA module Double
isolator
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filter
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Room temp.
amplifier

Room temp.
amplifier

Digitizer

º

Figure A.2: The complete setup for the gain profile and ∆SNR measurements. Note the
switches at room temperature allowing us to switch between using a VNA and using an
RF source together with a digitizer. Also note the cryogenic switches allowing us to choose
between measuring the through line and measuring through the JTWPA module. Assuming
the lines down into the refrigerator have approximately 10 dB line attenuation each, the total
attenuation is 97 dB of the signal line and 50 dB of the pump line. The directional coupler
has a coupling of 13 dB.
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Figure A.3: The complete setup for the first try to measure the quantum efficiency. Assum-
ing the lines down into the refrigerator have approximately 10 dB line attenuation each, the
total attenuation is 75 dB on the signal line, excluding the 30 dB attenuator on the VNA, and
53 dB on the pump line. The directional coupler has a coupling of 13 dB.
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Figure A.4: The complete setup for the second try to measure the quantum efficiency.
Assuming the lines down into the refrigerator have approximately 10 dB line attenuation
each, the total attenuation is 75 dB on the signal line, excluding the 30 dB attenuator on the
VNA, and 58 dB on the pump line. The directional coupler has a coupling of 13 dB.
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B
All Signal-to-Noise Ratio

improvement data

Below is all the data from the ∆SNR measurements presented.
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C
Derivations

This appendix contains interesting derivations that did not get into the thesis.

C.1 Derivation of Friis’ formula

Consider a chain of n amplifiers with lossless cables as depicted in Figure C.1. Each
amplifier has a gain and a noise temperature. Since we assume lossless cables the
signal at node 1, denoted S1 will be equal to the signal at the signal source, the
initial signal Si.

. . .Signal
source

G1, TN,1

1

G2, TN,2

2

G3, TN,3

3 4

Figure C.1: A signal source connected to an amplifier chain, where amplifier i has gain Gi
and noise temperature TN,i.

The signal will be amplified through the chain with the gain of each amplifier and
the final signal Sf will hence be given by

Sf = Si
n

∏
i=1
Gi Ô⇒ S4 = G1G2G3S1 (C.1)

where the latter equality is a simplification in the case of three amplifiers.

The noise will have a contribution from each amplifier which will then be amplified
through all the remaining amplifiers,

Tcont.i = TN,i
n

∏
j=i
Gj. (C.2)

The total noise after the amplifier chain can hence be expressed as

Tf =
n

∑
i=1

(TN,i
n

∏
j=i
Gj)

= G1G2G3TN,1 +G2G3TN,2 +G3TN,3

(C.3)
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where the latter equality is a simplification in the case of three amplifiers.

Now we express the signal-to-noise-ratio after the amplifier chain,
Sf

Tf
= Si∏n

i=1Gi

∑ni=1 (TN,i∏n
j=iGj)

= Si

∑ni=1 (TN,i
∏n

j=iGj

∏n
i=1Gi

)
= Si

∑ni=1 (TN,i/∏i−1
j=1Gj)

(C.4)

and we see that the noise at the end of the chain, compared with the original signal,
is given by the denominator of this fraction, i.e. the system noise temperature is

Tsys =
n

∑
i=1

TN,i

∏i−1
j=1Gj

(C.5)

which is Friis’ formula for the system noise temperature.

In the case of three amplifiers this calculation would hence be
S4

T4
= G1G2G3S1

G1G2G3TN,1 +G2G3TN,2 +G3TN,3

= S1

(G1G2G3TN,1+G2G3TN,2+G3TN,3
G1G2G3

)

= S1

TN,1 +
TN,2
G1

+ TN,3
G1G2

(C.6)

and we extract that the system noise temperature is

Tsys = TN,1 +
TN,2

G1
+
TN,3

G1G2
(C.7)

which is Friis’ formula for the system noise temperature of 3 amplifiers.

C.2 Derivation of rotation angle for maximised
resolution

Assume we have two complex numbers z1, z2, e.g. the readout results of a single-shot
readout measurement of a qubit. The goal here is to rotate these complex numbers
such that all information is stored in one axis, e.g. the real axis. Then only the I
channel contains information and the Q channel can be disregarded.

After a rotation of θ radians around origin the complex numbers can be written as

z1 = r1ei(θ1+θ), (C.8a)
z2 = r2ei(θ2+θ). (C.8b)

In order to maximise the readout resolution, we rotate them such that they get the
same imaginary part. Then all the information will be stored in the real-part, i.e.
we want

I(z1) = I(z2) Ô⇒ r1 sin(θ1 + θ) = r2 sin(θ2 + θ) (C.9a)
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which we can write as a function,

f(θ) = r2 sin(θ + θ2) − r1 sin(θ + θ1) . (C.9b)

We know that the sum of two sine functions of the same variable, in this case θ, will
be another sine with the same frequency, i.e.

f(θ) = r sin(θ + θ′) (C.9c)

where θ′ is some phase shift. Since we want the difference between the imaginary
parts to be zero we now want to find the θ making f = 0, which we see from
Equation (C.9c) is θ = −θ′, so the task now is to find −θ′. By putting together
Equations (C.9b) and (C.9c) and using smart choices of θ we can find useful relations
in order to identify θ′,

f(−θ1) = r sin(θ′ − θ1) = r2 sin(∆θ) , (C.10a)

f (π2 − θ1) = r cos(θ′ − θ1) = r2 cos(∆θ) − r1, (C.10b)

where ∆θ ∶= θ2 − θ1. Now by dividing Equation (C.10a) with Equation (C.10b) we
get

tan(θ′ − θ1) =
r2 sin(∆θ)

r2 cos(∆θ) − r1
(C.11)

which we can solve for θ′ and we get

θ′ = θ1 + arctan( r2 sin(∆θ)
r2 cos(∆θ) − r1

) + nπ, n ∈ Z. (C.12)

To summarise, by rotating the two complex numbers z1, z2 with −θ′ given in Equa-
tion (C.12) we get

z1 = r1ei(θ1−θ′), (C.13a)
z2 = r2ei(θ2−θ′) (C.13b)

which will have the same imaginary part and thus all information in the real axis.

C.3 Estimation of system noise temperature us-
ing the JTWPA

In this section I estimate the system noise temperature using the JTWPA module,
as a function of JTWPA gain and JTWPA ∆SNR. The main differences from the
derivation of Friis’ formula in Appendix C.1 are two: firstly the signal strength is
assumed to be so small that vacuum noise has to be considered, and secondly the
lines are now assumed to not be lossless anymore.
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C.3.1 Schematics

The schematics of a general setup are presented in Figure C.2 and the JTWPA module
setup is presented in Figure C.3.

. . .Signal
source

Switch
JTWPA module

Switch HEMT

Figure C.2: A general schematic with the JTWPA module. Some signal is sent
through a cable to the JTWPA module and then it goes to the HEMT-amplifier.

IN
Double isolator

↱

Directional
coupler JTWPA Double isolator

OUT

PUMP

50Ω

JTWPA module

Figure C.3: The JTWPA module setup.

This schematic is rewritten as a model with attenuators representing the cable losses
and insertion losses of the non-amplifying components, and the amplifiers, presented
in Figure C.4. Since the insertion loss of the JTWPA is not included in the attenu-
ation in the figure, the gain G considered for the calculations must be the effective
gain.

. . .Signal
source

−x1 dB JTWPA−x2 dB HEMT

S1 S2 S3 S4

Figure C.4: A model of Figure C.2. The signal source generates a signal S1
which is then attenuated and amplified by the cables and the components in the
JTWPA module before reaching the HEMT amplifier.

C.3.2 Attenuation estimation

In order to estimate the noise temperature, first we need to estimate the attenuators
x1 and x2. The attenuation x1 corresponds to the losses between the signal source
and the JTWPA. This path contains a switch with approximately 1 dB attenuation,
an isolator with approximately 0.2 dB attenuation and a directional coupler with
insertion loss L presented in Table C.11.

1Values taken from https://www.markimicrowave.com/Assets/datasheets/C13-0126.pdf
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C. Derivations

Table C.1: The insertion loss L of the directional coupler according to its specifi-
cations and the estimated attenuation x1 at a few selected frequencies. The latter
relates to the first one by adding 0.2 dB for the isolator and 1 dB for the cables.

f L x1
4GHz 0.4 dB 2.60 dB
5GHz 0.45 dB 2.65 dB
7GHz 0.5 dB 2.70 dB
8GHz 0.55 dB 2.75 dB

The attenuation x2 we estimate to be 2.2 dB, where 0.2 dB is from the double isolator,
1 dB from the cables between the JTWPA module and the HEMT amplifier and 1 dB
from a switch.

C.3.3 Noise temperature estimation

The classical noise temperature can be estimated by estimating the signal strength
S4 at the HEMT amplifier. We do this step by step. First we estimate S2 simply as

S2 = S1 ⋅ 10−
x1
10 (C.14a)

then S3 as
S3 = GS2 (C.14b)

where G is the effective gain of the JTWPA. Finally S4 is estimated as

S4 = S3 ⋅ 10−
x2
10 . (C.14c)

All put together we get
S4 = 10−

x1+x2
10 G

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G′

S1. (C.15)

The noise after the first attenuator will be the same as before the amplifier [13],
hence the first attenuator does not affect the noise amplitude, but otherwise the
calculation is the same for the noise as for the signal. We end up with the noise T4
at the HEMT amplifier to be

T4 = G ⋅ 10−
x2
10 (Tvacuum + TJTWPA)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S.Q.L.

+THEMT (C.16)

where Tvacuum is the noise temperature due to vacuum fluctuations, TJTWPA is the
noise temperature of the JTWPA and TS.Q.L. is the standard quantum limit, which
is equal to the sum of these two. The signal-to-noise-ratio at the HEMT is hence

S4

T4
= G′S1

G ⋅ 10−
x2
10 TS.Q.L. + THEMT

= S1 /(10
x1
10 TS.Q.L. +

THEMT

G′ )
(C.17)
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and the system noise temperature can be extracted as the denominator of this
fraction, i.e.

Tsys =
THEMT

G′ + TS.Q.L. ⋅ 10
x1
10 (C.18)

where THEMT = 2 K is the noise temperature of the HEMT amplifier and TS.Q.L. is
given by

TS.Q.L. = 2 ⋅ 1
2
hf

kB
(C.19)

at frequency f .

We can now solve Equation (C.18) for different effective gains G of the JTWPA,
which are presented Figure C.5.
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Tsys at 8 GHz
TS.Q.L. at 8 GHz

Figure C.5: System noise temperature for different effective gains of the JTWPA,
compared with the noise temperature of the HEMT amplifier and the vacuum noise
temperature at the frequencies 4,5,7,8GHz.
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D
Investigation of directional

couplers

One crucial component in the JTWPA setup is the directional coupler. In the thesis
it is stated that the directional coupler used was Marki’s model “C13-0126”, but it
is never really explained why. This appendix aims to go through the investigation
of directional couplers and explain why the chosen one was chosen.

D.1 The priorities for the coupler

A list of priorities for the coupler was made in order to simplify the process. Below
is the list revised by the supervisor.

1. Couples the interval 5.8 - 6.2 GHz. We knew that the optimal pump
frequency was going to be in this interval. The reason to use a directional
coupler was to couple the pump, so if it did not couple signals in this interval
there would not be any reason to use it at all.

2. Low insertion loss in the interval 4 - 8 GHz. Since the HEMTs work in
the interval 4 - 8 GHz the qubit readout resonators are also made to work in
this interval. Since the point of the JTWPA is to amplify a very weak signal
in this interval it is important that the signal is not reduced further, i.e. that
the insertion loss is as small as possible.

3. High directivity in the interval 5.8 - 6.2 GHz. A finite directivity, which
is always the case in reality, implies that some part of the pump signal will
exit the wrong port of the coupler and travel towards the qubit. This signal
could then interfere with the qubit. Therefore the directivity should be large
enough that it is negligible compared with the pump signal reflected at the
JTWPA.

4. A low coupling factor, i.e. high coupling, in the interval 5.8 - 6.2
GHz. The part of the pump that is not coupled is turned into heat at the
isolated port. If the coupling is low then the power of the pump must be higher



D. Investigation of directional couplers

and thereby there will be more heating, which we do not want since we want
the system to stay at 10mK.

D.2 Comparison of different couplers

It was known at the division that directional couplers from Marki worked well at
cryotemperatures, which is why only directional couplers from Marki were investi-
gated thoroughly. In Table D.1 a selected few directional couplers from Marki are
compared with a theoretical desired directional coupler.

Table D.1: Some of the most promising directional couplers from Marki that coupled the
relevant frequency interval. Insertion loss refers to the maximum insertion loss on the interval
4 - 8 GHz and directivity and coupling to the directivity and coupling around 6GHz. The
values in the table are read out from graphs so they are only approximately correct.

Coupler Insertion loss Directivity Coupling
Desired ≤ 0.5 dB ≥ 25 dB ≤ 20 dB

C09-0R412 1.1 dB 7 25 dB 3 9 dB 3

C10-0116 1 dB 7 29 dB 3 10 dB 3

C13-0126 0.5 dB 3 27 dB 3 13 dB 3

C20-0226 0.3 dB 3 22 dB 7 21 dB 7

C20-0R518 0.9 dB 7 30 dB 3 20 dB 3

In the end the model C13-0126 was chosen because it met all requirements while
other models failed in one of the categories. Some other models, that are not listed
in the table above, also met the requirements of the table but failed in some other
way. Either they did not have SMA connectors, they coupled the wrong interval,
they had an internal termination of the isolated port, or something else.
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E
Pump filter design

In order to get rid of the pump from the output line of the refrigerator, without
attenuating the signal, a high-quality narrow-band notch filter is needed. The steps
of making this filter are described below.

E.1 Definitions

First we define the desired characteristics of the filter by defining at which frequencies
the stopband should work. We define the relevant frequencies as

f1 = 5.9 GHz, (E.1a)
f2 = 6.1 GHz, (E.1b)

f0 =
f1 + f2

2 , (E.1c)

δf = f2 − f1, (E.1d)
ωi = 2πfi, (E.1e)
δω = 2πδf (E.1f)

where f1, f2 are the lower and upper cutoff frequencies of the stopband, f0 the
center frequency, δf the bandwidth and ωi the corresponding angular frequencies
for i ∈ {0,1,2}.

E.2 Ideal filter design

We use the topology shown in Figure E.2 with a high quality factor Q = 1000 of the
resonators and we find an ideal filter which performs very well in simulations. The
filter is simulated in Advanced Design System and the results from this simulation
are presented in Figure E.2.
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L1
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L3

C3
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C2

L2

C2

Q = 1000

Figure E.1: An ideal filter filtering frequencies in the relevant stopband interval while letting
frequencies outside the stopband transmit with low losses. The filter is symmetric and alter-
nates between parallel resonators along the transmission line and series resonators to ground.
Each resonator has the quality factor Q = 1000.
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Figure E.2: The transmission results of simulating the filter in Figure E.1 in Advanced
Design System. The filter has almost zero losses outside the stopband, while the stopband
reaches almost 150 dB attenuation. (a) Transmission on the whole interval 4-8GHz. (b)
Transmission only around the stopband.

To find the necessary inductances and capacitances for the resonators we use the
constants

k1 = 1.1468, (E.2a)
k2 = 1.3712, (E.2b)
k3 = 1.975 (E.2c)
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from a table in Reference [37] and define the impedances as

C−1
1 = Z0k1δω, (E.3a)

C−1
2 = L2ω

2
0, (E.3b)

C−1
3 = Z0k3δω, (E.3c)
L−1

1 = C1ω
2
0, (E.3d)

L−1
2 = 1

Z0
k2δω, (E.3e)

L−1
3 = C3ω

2
0. (E.3f)

E.3 Transformation to ideal transmission lines

As a next step the ideal lumped-element filter is transformed into ideal transmission
lines. This transformation is done using a method described in Reference [37]. By
defining the impedances

Z1 =
√

L2

C1
≈ 45.73Ω, (E.4a)

Z2 =
√

L2

C2
≈ 1094Ω, (E.4b)

Z3 =

¿
ÁÁÀL2C2

3
C2

1C2
≈ 635.2Ω (E.4c)

we can then rewrite the filter to a transmission line filter, see Figure E.3. Then this
new, transformed, version of the filter is simulated using Advanced Design System,
presented in Figure E.4.

The results from this simulation may seem very interesting. The highest attenuation
of the transformed filter is now almost 800 dB while the losses are still very small.
In theory this filter should have 0 transmission, i.e. −∞dB transmission. That
we still get a finite value, 800 dB, is probably due to some simulation or rounding
limitations.

Z1 Z1 Z1 Z1 Z1 Z1

Z2 Z2 Z2 Z2Z3

Figure E.3: The ideal filter transformed into ideal transmission lines with impedances
Z1, Z2, Z3. Each transmission line has centre frequency f0 and electrical length π

2 , i.e. the
phase for a signal at the centre frequency changes π

2 over the length of the transmission line.
The filled circles signify that the circuit is open there.
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Figure E.4: The simulated transmission response of the filter in Figure E.3 in Advanced
Design System. This filter has some, but still negligible, losses outside the stopband, while
having almost 800 dB attenuation at the lowest point. (a) Transmission on the whole interval
4-8GHz. (b) Transmission only around the stopband.

E.4 Transformation to rectangular wave guides

To be able to fabricate the filter, a physical design is needed. This was not possible
to realistically simulate in Advanced Design System so instead it was simulated in
Ansys® HFSS. Ansys HFSS simulates the propagation of the actual electric fields,
which makes its simulations very accurate.

At this point we got a problem though. The technology needed in order to get a high
enough quality factor Q of the resonators requires wave guide technology. But the
calculated value of Z1 is below the impedance of free space, Z0 ≈ 377Ω, so we could
not translate our ideal transmission line model directly to a wave guide. Instead, we
tried to make it as similar as possible and then simply used numerical optimisation
to find a fairly good filter. The best simulated result is presented in Figure E.5 and
the design for this result is presented in Figures E.6 and E.7.

E.5 Transformation to a manufacturable filter

The results from the simulation shown in Figure E.5 were no longer as good as in
the simulation using ideal transmission lines, but we thought it might still be good
enough.

However, it turned out it would be hard to manufacture this filter design with a
high quality, due to the resonators being placed on multiple sides of the main wave
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guide. Therefore we tried transforming the filter design into a design where all the
resonators were located on one side of the main wave guide. None of the simulations
of these transformed filters ever showed any promising results and finally we gave
up on the task.
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Figure E.5: The results of simulating the wave guide filter in Ansys® HFSS. (a) Transmission
on the whole interval 4-8GHz. (b) Transmission only around the stopband.

Parallel resonators

Series resonators
IN-port

OUT-port

Figure E.6: The wave guide filter simulated in Ansys® HFSS. The filter is basically a long
metal box, the main wave guide, with different boxes on the sides, the resonators. Whether a
resonator works as a parallel resonator or a series resonator depends on what side of the wave
guide the resonator is placed.
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Figure E.7: The wave guide filter in a half section view. Note that all the resonators are
simply hollow boxes with an opening towards the main wave guide.
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