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Modeling and Finite Element Simulation of the Bifunctional Performance of a Microporous Structural Battery
Electrolyte
Master’s thesis in Applied Mechanics
VINH TU
Department of Industrial and Materials Science
Chalmers University of Technology

Abstract
The structural battery composite is an innovative solution for a light-weight storage of electrical energy. It is
multifunctional since it carries mechanical loads and stores electrical energy simultaneously. Such multifunc-
tional materials will become important for e.g. the electrification of vehicles since large weight-reductions can
be gained. This innovation will contribute greatly to realizing the vision of a carbon-neutral circular economy.
Due to the infancy of this technology, the structural batteries still need to be developed further.

The main purpose of the project is to model and simulate the diffusive transport of lithium ions through the
structural battery electrolyte (SBE) between the structural battery electrodes in a laminar setup, and to simu-
late the SBE’s mechanical behaviour. The SBE is a microporous polymer matrix filled with a liquid electrolyte.
By generating an artificial SBE microstructure and performing some virtual material testing, it will become
possible to evaluate the effective multifunctional performance of the SBE for varying pore sizes.

The artificial SBE microstructure is generated by manipulating the stationary heat equation. It is possible to
choose heat sources and heat sinks in a clever fashion in order to obtain the desired shape for the artificial
microstructure. The choice of heat sources and heat sinks is based on a periodic Voronoi tessellation that is
embedded in a solid unit cube. By letting the Voronoi edges be heat sources, and the Voronoi seeds be heat
sinks, an artificial microstructure which is microporous and bicontinuous is obtained after some modification
and post-processing of the temperature field.

The multifunctional performance of the SBE is evaluated by applying the theory of computational homoge-
nization on the artificial SBE microstructure which serves as a statistical volume element with the ability to
almost fully characterize the material’s heterogeneities. In particular, the weakly periodic boundary conditions
are used. The results from the virtual material testing indicate that the lower bound of the stiffness increases
for increasing volume fraction of polymer matrix, while the upper bound of the stiffness and the ionic conduc-
tivity decreases. Furthermore, the effective diffusivity seems to scale linearly with the volume fraction while the
bounds of the effective stiffness seem to scale non-linearly.

Although the goal of the project is to mimic the SBE in the structural battery, the end result is a quite general
recipe on artificial microstructure generation. Nevertheless, this thesis paves the way for more rigorous artificial
SBE microstructure generation in the future.

Keywords: Structural battery, porous media, artificial microstructure, statistical volume element, computational
homogenization, virtual material testing
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1 Introduction
Carbon fibers are traditionally combined with a plastic resin to form a carbon fiber reinforced polymer (CFRP)
which is a high strength-to-weight ratio material when loaded in a favorable direction. However, as of late it
has been shown that carbon fibers are high capacity Li-ion battery negative electrodes. This means that carbon
fibers can carry load, and at the same time intercalate lithium ions in a similar way as the negative electrode
in lithium ion batteries [1, 2]. This gives rise to a new multifunctional material, namely the structural battery
composite.

The structural battery composite is an innovative light-weight multifunctional material since it has both struc-
tural and electrical energy storage functionalities [2]. A more holistic approach where two different needs are
addressed by a multifunctional material instead of two separate subsystems results in huge savings that otherwise
would be limited when considering the subsystems individually [3]. For example, the multifunctional structural
battery composite can contribute greatly to the electrification of vehicles where large weight-reductions can be
gained [4]. In the case of a traditional electric car, the vehicle frame offers no extra benefit other than supporting
the mechanical loads, and the heavy battery pack offers no extra benefit other than storing the electrical energy.
By utilizing the structural battery composite in the vehicle frame, the electric car could potentially exclude the
heavy battery pack, and thus reducing the mass significantly. The bottom line is that this innovation enhances
the system performance in various applications, and addresses the demand for more efficient and sustainable
systems. However, due to the infancy of this technology, the structural battery composite still need to be
investigated further.

Figure 1.1: Futuristic concept of utilizing structural battery in an electric car. Reproduced with permission
by Leif Asp and Yen Strandqvist [5].

1.1 Structural battery architecture
The structural battery can be realized based on the laminated battery concept or the 3D battery concept. It
is the laminated architecture that is of interest in this project. The laminated battery was first introduced by
Wetzel and his team at the United States Army Research Laboratory [6]. This battery consists of several layers
that have different functions. One of the layers is called the negative electrode lamina, and the opposite layer
is called the positive electrode lamina. In-between these two layers is a polymeric separator layer. Lastly, the
current collectors correspond to the uppermost and lowermost layers. The negative electrode lamina consists of
carbon fibers that are embedded in structural battery electrolyte (SBE), and it is this lamina that utilizes the
carbon fiber’s ability to act as high capacity Li-ion battery negative electrodes. The positive electrode lamina
is exactly the same, except that the carbon fibers are covered in a lithium-metal-oxide doped coating (e.g.
LiFePO4) in order to act as the Li-ion battery positive electrodes. The SBE is a microporous polymer matrix
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1. Introduction

that is submerged in a liquid electrolyte. Furthermore, the SBE is bicontinuous, i.e. both the solid polymer
foam and the pore space are continuous. Its function is to be electrically insulating but ionically conductive
while being able to carry mechanical loads. It is this polymer matrix that will be modeled and simulated in the
project. The separator layer between the electrodes is an extra safety layer to prevent electrical short circuiting
in case the electrodes come into contact. This separator layer can be manufactured in the same material as the
SBE. As in conventional batteries, the ion transport occurs through the layers between the electrodes while the
electrons transport to the current collectors via the carbon fibers.

The 3D battery was first presented by Carlson [7], and Asp et al. [8]. It is different from the laminated
architecture since it is not built up by several layers, instead this concept uses individual carbon fibers as
battery electrodes. The 3D battery consists of carbon fibers that are embedded in a polymer matrix similar to
traditional CFRP, but the carbon fibers are more spread out. In this case, the carbon fiber is still the negative
electrode, but the polymer matrix is the positive electrode since it is doped with lithium-metal-oxide based
particles. Each carbon fiber is covered in a thin polymer coating which acts as the separator and electrolyte.
Due to this, each carbon fiber embedded in the doped polymer matrix corresponds to a battery cell. Furthermore,
unlike the laminated architecture, the ion transport occurs in a radial direction out of each carbon fiber during
discharge.

Figure 1.2: Schematic overview of the (a) Laminated architecture and the (b) 3D architecture of structural
batteries. Reproduced with permission by David Carlstedt [9].

1.2 Problem statement and approach
The main purpose of the project is to model and simulate the diffusive transport of Lithium ions through the
SBE between the structural battery electrodes in a laminar setup. As mentioned above, the polymer matrix
is microporous and submerged in a liquid electrolyte. It turns out that the transport of the lithium ions and
the mechanical behaviour are dictated by the size of the pores in the polymer matrix. By performing virtual
material testing on artificial microstructures of the SBE, it will become possible to evaluate the effective mul-
tifunctional performance of the SBE for varying pore sizes.

In order to carry out the project, several sub-goals need to be achieved:

• Generation of artificial microstructures representing the microporous polymer matrix, i.e. the SBE. The
generated artificial microstructure must be a statistical volume element (SVE).

• Modeling and finite element simulation based on stationary diffusion and linear elasticity.
• Computation of the effective multifunctional performance, i.e. the ionic conductivity and mechanical load

transfer of the polymer matrix for varying pore sizes.
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1. Introduction

1.3 Project limitations
In order to reduce the complexity of the problem and to fit the project into a Master’s thesis course, several
limitations are made:

• Charging and discharging of the structural battery is a truly transient problem, but for simplicity, only
the stationary lithium ion transport problem will be investigated.

• The fully coupled electrochemical equations are simplified into a single chemical diffusion problem.
• Although this project focuses on the linear elasticity and the diffusion problem, they are not solved in a

coupled way. They are decoupled for simplicity.
• For this project, the carbon fibers will not be modeled inside the SBE. Thus, there is no interaction

between the SBE and the fibers. In short, this is an analysis of an isolated constituent, i.e. the SBE, of
the structural battery. However, this analysis does represent the separator layer well since there are no
CF-electrodes in it.

• It is known that during charge and discharge cycles, the structural battery generates heat due to ohmic
heating. This is concerning due to the fact that polymers in general are vulnerable to heat, i.e. a large
portion of the mechanical properties can be lost if high temperatures are obtained. Furthermore, heat will
affect the volume and elastic properties of the constituents, which induces internal stresses. However, all
thermal effects are neglected in this project.

3



2 Two-scale modeling approach
Computational homogenization is a well-established method that includes the effects of micro-heterogeneity in
material substructures when dealing with constitutive modeling. From a computational standpoint, it is much
more feasible to introduce a separation of the macro- and sub-scales, rather than trying to directly resolve a
model which captures both scales. The theory of computational homogenization is often used in conjunction
with the FE2-method where one couples two different geometric scales and solves the problem in a fully nested
fashion. The aim is usually to obtain effective properties for the macro-scale via homogenization of the sub-
scale problem, where the sub-scale problem is defined by a Representative Volume Element (RVE) that can
fully characterize the heterogeneity in the material substructures [12]. In such a case, every macro-scale point
x̄ ∈ Ω corresponds to an RVE in the sub-scale domain Ω�. However, in this project the focus will be on the
homogenization of the sub-scale output in order to obtain the effective properties. The homogenized effective
properties are never re-incorporated into a macro-scale problem, i.e. no FE2-approach will be employed as
one would do in a true multi-scale analysis. The theory of computational homogenization is presented in the
following sections, in particular for the linear elastic case. For brevity, the section on the diffusion problem
omits some of the finer details that are completely analogous to the linear elastic case.

2.1 Linear elasticity in the sub-scale
Since the mechanical performance of the SBE will be evaluated, the standard equilibrium problem for a body of
isotropic linear elastic material is described. For an RVE with the spatial domain Ω� and boundary Γ� in the
sub-scale, the strong format of the standard quasistatic equilibrium problem for linear elasticity [10] is defined
as:

− σ ·∇ = f in Ω� (2.1)

where the body forces f = 0 are neglected in this project. The constitutive equation which corresponds to
linear elasticity reads:

σ = E : ε (2.2)

ε = ε[u] := (u⊗∇)sym (2.3)

where E is the constant stiffness tensor defined as:

E = 2GIsym
dev +KI ⊗ I (2.4)

Isym
dev := Isym − 1

3I ⊗ I (2.5)

Isym := 1
2 [I ⊗ I + I⊗I] (2.6)

and the operator ⊗ is defined as:
I⊗I := IilIjkei ⊗ ej ⊗ ek ⊗ el (2.7)

The standard Dirichlet and Neumann boundary conditions are:

u = uP on Γ�,D (2.8)

t := σ · n = tP on Γ�,N (2.9)

In order to obtain the weak form, the strong form (2.1) is multiplied by a test function δu and integrated
over the domain Ω�. By using the product rule, Gauss’s divergence theorem, the Neumann boundary condi-
tion (2.9), the symmetric property of σ and the constitutive equation (2.2), the following weak form is obtained:
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2. Two-scale modeling approach

Find ∀u ∈ U such that
a(u, δu) = l(δu) ∀δu ∈ U0 (2.10)

where the introduced functionals are defined as:

a(u, δu) :=
∫

Ω�

ε[u] : E : ε[δu] dΩ (2.11)

l(δu) :=
∫

Ω�

f · δu dΩ +
∫

Γ�,N

tP · δu dΓ (2.12)

and the introduced spaces as:
U =

{
u : u ∈ H1(Ω�),u = uP on Γ�,D

}
(2.13)

U0 =
{
u : u ∈ H1(Ω�),u = 0 on Γ�,D

}
(2.14)

Note that the Sobolev space H1(Ω) = {u :
∫

Ω |u|
2 + |u ⊗∇|2 dΩ < ∞} imposes both differentiability and

integrability requirements such that even functions that are only piecewise differentiable can be used.

2.2 Linear elasticity in the macro-scale
Let the linear elastic problem described in Section 2.1 be the sub-scale problem defined by an RVE occupying
Ω� and Γ�, then the corresponding macro-scale problem analogously becomes:

− σ̄ ·∇ = f̄ in Ω (2.15)

σ̄ = Ē : ε̄ (2.16)

ε̄ = ε[ū] := (ū⊗∇)sym (2.17)

where the body forces f̄ = 0 are neglected in this project. The standard Dirichlet and Neumann boundary
conditions are:

ū = ūP on ΓD (2.18)

t̄ := σ̄ · n = t̄P on ΓN (2.19)

The weak form becomes:

Find ∀ū ∈ Ū such that
ā(ū, δū) = l̄(δū) ∀δū ∈ Ū0 (2.20)

where the introduced functionals are defined as:

ā(ū, δū) :=
∫

Ω
ε̄[ū] : Ē : ε̄[δū] dΩ (2.21)

l̄(δū) :=
∫

Ω
f̄ · δū dΩ +

∫
ΓN

t̄P · δū dΓ (2.22)

and the introduced spaces as:
Ū =

{
u : u ∈ H1(Ω),u = ūP on ΓD

}
(2.23)

Ū0 =
{
u : u ∈ H1(Ω),u = 0 on ΓD

}
(2.24)

Note that the functionals and spaces are analogous to the sub-scale case.
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2. Two-scale modeling approach

2.3 Computation of effective stiffness
Now that the upscaling of linear elasticity is formulated, the next step is to apply the prolongation rule which
is a scale separation method which employs an additive split of the displacement field:

u(x) = uM(x) + uS(x) x ∈ Ω� (2.25)

Here, u(x) is the sub-scale displacement field, uM(x) is the smooth displacement field, and uS(x) is the sub-scale
displacement fluctuation field. In the same way, the strain is decomposed as:

ε(x) = ε̄+ εS(x) (2.26)

where:

εS = ε
[
uS] (2.27)

The smooth displacement field is known since it is prescribed according to the assumption of first order homog-
enization:

uM(x) = ū+ ε̄ · [x− x̄] x ∈ Ω� (2.28)

where the user-defined macro-scale strain ε̄ serves as the driving force for the problem and the macro-scale
displacement field ū can simply be put to zero in order to remove rigid body motion. The reference point x̄ is
chosen arbitrarily, but a common choice is the RVE centre. Together with the necessary material parameters and
boundary conditions, the weak form can be solved, whereby the sub-scale stress is obtained. Volume averaging
the sub-scale stress as a post-processing step gives the macro-scale stress:

σ̄ = 〈σ〉� (2.29)

where the volume average operator is defined as:

〈•〉� := 1
|Ω�|

∫
Ω�

• dΩ (2.30)

With known macro-scale stress and strain, it becomes easy to compute the effective macro-scale stiffness, see
Figure 2.1 for an overview of the whole process.

Figure 2.1: Overview of the computation of effective stiffness.

One crucial constraint that has not yet been discussed is the Hill-Mandel macrohomogeneity condition which
serves as a link between the macro-scale variables {σ̄, ε̄} and the sub-scale variables {σ, ε}. For the case of
macro-scale strain control, two types of constraints must hold a priori:
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2. Two-scale modeling approach

〈ε〉� = ε̄ (2.31)

which is the strain identity, and also:

〈σ : ε〉� = 〈σ〉� : 〈ε〉� (2.32)

which is the work identity. After rewriting the Hill-Mandel macrohomogeneity condition, it can be summarized
in a neat fashion: ∫

Γ�

[t− σ̄ · n] · [u− ε̄ · [x− x̄]] dΓ = 0 (2.33)

where tM := σ̄ · n and uS = [u − ε̄ · [x − x̄]]. See the compendium [12] by R. Jänicke, F. Larsson and K.
Runesson for more information.

2.4 Weakly periodic boundary conditions for linear elasticity
So far, the sub-scale problem defined by the RVE is still not solvable since the boundary conditions are not
fully specified. There are several standard choices for prescribing the boundary conditions on Γ� in order to
estimate Ē, but the challenge is to choose the boundary conditions which give the most accurate estimation.
The standard choices are Dirichlet boundary conditions (DBC), Neumann boundary conditions (NBC) and
Periodic boundary conditions (PBC). See the compendium [12] by R. Jänicke, F. Larsson and K. Runesson for
more information.

In this project, the weakly periodic boundary conditions (WPBC) are used for the finite element simulations,
but first, the strongly periodic boundary conditions (SPBC) need to be introduced. One of the most crucial
aspects of the SPBC is fulfilling the micro-periodicity assumption in a strong sense. Micro-periodicity assumes
that the sub-scale fluctuation field uS is periodic on the boundary of the RVE. An RVE can in general have
any arbitrary shape, but for simplicity and convenience, they often take the shape of a 2D unit square or a
3D unit cube. For a 2D square RVE, micro-periodicity results in that the left and the right RVE boundaries
must have the same fluctuation field, and the same goes for the bottom and the top RVE boundaries. While
a 2D square RVE has 2 pairs of periodic boundaries, a 3D cube RVE has 3 pairs of periodic boundaries. The
micro-periodicity assumption comes from the perception that all materials consist of repetitive RVEs with the
same shape and content [13]. This implies that even if several RVEs are pieced together, they still remain
kinematically compatible during deformation. Before employing the micro-periodicity assumption, it is first
necessary to introduce the following boundary split:

Γ� = Γ+
� ∪ Γ−� (2.34)

where Γ+
� is the image boundary (positive side) and Γ−� is the mirror boundary (negative side), see Figure 2.2.

Figure 2.2: Splitting the boundary of a 2D square RVE into an image and mirror boundary.
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2. Two-scale modeling approach

The consequence of introducing such a boundary split is that each and every point on the boundary gets a
partner point on the opposite side. However, this does not apply for the corner points since they have 2 partner
points each for a 2D square RVE, and 3 partner points each for a 3D cube RVE. Due to this, the corner points
are not included in the image and mirror boundaries. The solution is that they form their own definition on Γ�

and are dealt with separately:

xi,j,kc = L� · [ie1 + je2 + ke3] (2.35)

where L� is the RVE side length and i, j, k = 1 or 0 for a 3D cube RVE with the origin in the corner. The next
step is to introduce the periodic mapping operator:

ϕper : Γ+
� 7→ Γ−� (2.36)

such that:

x− = ϕper(x+) (2.37)

Finally, the micro-periodicity of the displacement fluctuation field can be expressed as:

uS(x) = uS(ϕper(x)) ∀x ∈ Γ+
� (2.38)

A neat way to express this is as follows:
JuSK� = 0 ∀x ∈ Γ+

� (2.39)

where the jump operator between the image and mirror boundaries is defined as:

JuSK�(x) := uS(x)− uS(ϕper(x)) ∀x ∈ Γ+
� (2.40)

Due to the introduction of the jump operator, the image boundary is henceforth chosen as the main computation
domain for boundary integration. Another condition that needs to be fulfilled is the symmetry condition of the
sub-scale stress:

σ(x) = σ(ϕper(x)) ∀x ∈ Γ+
� (2.41)

which in turn automatically leads to the anti-periodicity condition for the traction:

t(x) = −t(ϕper(x)) ∀x ∈ Γ+
� (2.42)

Finally, the last SPBC-constraint to fulfill is the periodicity condition for the corners which results in that all
corner points get the same displacement fluctuation field:

uS(xi,j,kc ) = uS
c (2.43)

With all of this, the SPBC are properly defined and the micro-periodicity can be prescribed in a strong sense.
A crucial consequence of SPBC is that the Hill-Mandel macrohomogeneity condition (2.33) becomes trivially
satisfied:∫

Γ�

[t(x)− σ̄(x)·n(x)] · uS(x) dΓ =
∫

Γ+
�

[t(x)− tM(x)] · uS(x) dΓ +
∫

Γ−
�

[t(x)− tM(x)] · uS(x) dΓ (2.44)

=
∫

Γ+
�

[t(x)− tM(x)] · uS(x) dΓ +
∫

Γ+
�

[t(ϕper(x))− tM(ϕper(x))] · uS(ϕper(x)) dΓ

=
∫

Γ+
�

[t(x)− tM(x)] · uS(x) + [−t(x) + tM(x)] · uS(ϕper(x)) dΓ

=
∫

Γ+
�

[t− tM] · JuSK dΓ

= 0

where the micro-periodicity condition JuSK = 0 from Equation (2.39) is used.
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2. Two-scale modeling approach

However, a way to relax the strict constraints of SPBC is to introduce the WPBC which impose the micro-
periodicity in a weak sense. Consider the general sub-scale weak form (2.10) in a slightly rewritten format:

1
|Ω�|

∫
Ω�

ε[u] : E : ε[δu] dΩ− 1
|Ω�|

∫
Γ�,N

tP · δu dΓ = 0 (2.45)

Using the anti-periodicity of the traction (2.42) on the boundary term from (2.45) yields:

1
|Ω�|

∫
Γ�,N

tP(x) · δu(x) dΓ = 1
|Ω�|

[∫
Γ+
�,N

tP(x) · δu(x) dΓ +
∫

Γ−
�,N

tP(x) · δu(x) dΓ
]

(2.46)

= 1
|Ω�|

[∫
Γ+
�,N

tP(x) · δu(x) dΓ +
∫

Γ+
�,N

tP(ϕper(x)) · δu(ϕper(x)) dΓ
]

= 1
|Ω�|

[∫
Γ+
�,N

tP(x) · δu(x)− tP(x) · δu(ϕper(x)) dΓ
]

= 1
|Ω�|

[∫
Γ+
�,N

tP · JδuK dΓ
]

Furthermore, the strong micro-periodicity constraint from (2.39) is formulated in a weak sense for WPBC:∫
Γ+
�,N

δt · JuSK dΓ = 0 ∀δt ∈ T+
� (2.47)

where the traction t corresponds to the Lagrangian multiplier field λ. Finally, the weak form of the WPBC
problem for linear elasticity can be formulated as:

Find ∀u ∈ U� and ∀t ∈ T+
� for given macro-scale strain ε̄ such that

a�(u; δu)− d�(t, δu) = 0 ∀δu ∈ U� (2.48)
−d�(δt,u) = −d�(δt, ε̄ · [x− x̄]) ∀δt ∈ T+

� (2.49)

where the introduced functionals are defined as:

a�(u, δu) := 1
|Ω�|

∫
Ω�

ε[u] : E : ε[δu] dΩ (2.50)

d�(t,u) := 1
|Ω�|

∫
Γ+
�

t · JuK� dΓ (2.51)

and T+
� is the trace of functions in the self-equilibrating traction space T� on Γ+

�:

T� =
{
t : t sufficiently regular in Ω�,

∫
Γ�

t dΓ = 0
}

(2.52)

U� =
{
u : u ∈ H1(Ω�),

∫
Ω�

u dΩ = 0,
∫

Γ�

(u⊗ n)skw dΓ = 0
}

(2.53)
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2. Two-scale modeling approach

2.5 Fluid–structure interaction in SBE
For the linear elastic problem, it is unclear how to determine the internal pressure when the polymer matrix
deforms and compresses the liquid electrolyte in the pore space. Since solving the fully coupled structural and
CFD problem is beyond the scope of this project, a more feasible approach is to only consider the polymer
matrix and to account for the fluid–structure interaction by adding additional global constraint equations to
the weak form.

Consider two extreme scenarios that serve as lower and upper bounds. The so called drained case corresponds to
when the liquid electrolyte is free to escape from the pores without any resistance, i.e. no internal fluid pressure
acts on the polymer matrix during loading. This scenario gives the lower bound of the effective stiffness. The
upper bound is given by the so called undrained case where the liquid electrolyte is assumed to be completely
trapped inside the pore space by a very stiff membrane, thus an internal fluid pressure acts on the polymer
matrix during loading since the liquid electrolyte is assumed to be incompressible. The reason this scenario
serves as the upper bound is because the internal fluid pressure contributes to the effective stiffness. The reality
however, must be a case that lies somewhere in between these extreme cases, i.e. the liquid electrolyte must be
trapped by a membrane that has a certain reasonable stiffness.

Since the drained case is not affected by the fluid, no modifications to the current weak form (2.48,2.49) are
necessary. However, the undrained case requires special treatment since there is an internal fluid pressure that
acts on the interface between the solid polymer matrix and liquid electrolyte, see Figure 2.3.

  Figure 2.3: Special domain and boundary split of a periodic 2D square RVE for undrained elasticity.
Subscripts: S = Solid, F = Fluid and SF = Solid-Fluid interface.

For the undrained case, both the solid and fluid phase have to satisfy the equilibrium equation (2.1):

− σ ·∇ = 0 in Ω� = Ω�,S ∪ Ω�,F (2.54)

σ = E : ε in Ω�,S (2.55)

σ = −λ̄ · I in Ω�,F (2.56)

where the added unknown degree of freedom (DOF) λ̄ is the internal pressure. Using the current weak form
(2.48,2.49) as a starting point and inserting the new split of the domains and stresses (2.55,2.56) gives the weak
form for undrained elasticity:

10



2. Two-scale modeling approach

Find ∀u ∈ U�, ∀t ∈ T+
� and ∀λ̄ ∈ R for given macro-scale strain ε̄ such that:

1
|Ω�|

∫
Ω�,S

ε[u] : E : ε[δu] dΩ + 1
|Ω�|

∫
Ω�,S

λ̄I : ε[δu] dΩ− 1
|Ω�|

∫
Γ+
�,S

t · JδuK� dΓ = 0 ∀δu ∈ U� (2.57)

− 1
|Ω�|

∫
Γ+
�,S

δt · JuK� dΓ = − 1
|Ω�|

∫
Γ+
�,S

δt⊗ JxK� dΓ : ε̄ ∀δt ∈ T+
� (2.58)

δλ̄

[
1
|Ω�|

∫
Γ�,SF

u · n dΓ + 1
|Ω�|

∫
Γ+
�,S

JuK� · n dΓ
]

= δλ̄I : ε̄ ∀δλ̄ ∈ R (2.59)

where R corresponds to the set of real numbers.

Note that the undrained case results in an extra contribution to the weak form and one additional global
constraint equation. These changes correspond to imposing an incompressibility constraint on the fluid.

2.6 Stationary diffusion and heat flow in the sub-scale
The standard diffusion problem is formulated in order to evaluate the ionic conductivity of the SBE. Note that
only the fluid phase in the pore space is considered for the diffusion problem since the ions are transported via
the liquid electrolyte. Although the thermal effects are not taken into account in this thesis, the heat equation
plays an important role in the generation of the artificial SBE microstructures. The details of how the heat
equation is utilized are described in Section 4.2. The governing equations for diffusion and heat flow have the
same structure, hence it is convenient to describe the equations using generic variables.

Consider the strong form of a generic stationary (steady-state) continuity equation [11] which balances the flux-
and the source contributions per unit volume and per unit time in a sub-scale domain:

∇ · q = Q in Ω� (2.60)

where the internal source Q = 0 for the diffusion problem. The corresponding generic constitutive relation is
defined as:

q = −D ·∇u (2.61)

where Fick’s first law is used for chemical diffusion and Fourier’s law of thermal conduction is used for heat
flow. The generic variables will have different definitions depending on the type of problem that is considered,
see Table 2.1.

Table 2.1: Definition of generic variables for chemical diffusion and heat flow.

Chemical diffusion Heat flow
q Ion flux Heat flux
Q Internal ion supply Internal heat supply
D Diffusion coefficient matrix Thermal conductivity matrix
u Ion concentration Temperature

The standard Dirichlet and Neumann boundary conditions are:

u = g on Γ�,D (2.62)

qn := q · n = h on Γ�,N (2.63)

In a similar way as for linear elasticity, the weak form is obtained by multiplying the strong form (2.60) by a
test function δu and integrating over the domain Ω�. Using the product rule, Gauss’s divergence theorem, the

11



2. Two-scale modeling approach

Neumann boundary condition (2.63), and the constitutive equation (2.61), the following weak form is obtained:

Find ∀u ∈ V that solves
â(u, δu) = l̂(δu) ∀δu ∈ V0 (2.64)

where the introduced functionals are defined as:

â(u, δu) :=
∫

Ω�

[∇u] ·D · [∇δu] dΩ (2.65)

l̂(δu) :=
∫

Ω�

Q · δu dΩ−
∫

Γ�,N

qn · δu dΓ (2.66)

and the introduced spaces as:
V =

{
u : u ∈ H1(Ω�), u = uP on Γ�,D

}
(2.67)

V0 =
{
u : u ∈ H1(Ω�), u = 0 on Γ�,D

}
(2.68)

2.7 Stationary diffusion in the macro-scale
Once again, let the diffusion problem described in Section 2.6 be the sub-scale problem defined by the RVE in
Ω� and Γ�, then the corresponding upscaled macro-scale problem analogously becomes:

∇ · q̄ = Q̄ in Ω (2.69)

q̄ = −D̄ ·∇ū (2.70)

where the internal source Q̄ = 0 for the diffusion problem. The standard Dirichlet and Neumann boundary
conditions are:

ū = ḡ on ΓD (2.71)

q̄n := q̄ · n = h̄ on ΓN (2.72)

The weak form becomes:

Find ∀ū ∈ U such that
ˆ̄a(ū, δū) = ˆ̄l(δū) ∀δū ∈ Ū0 (2.73)

where the introduced functionals are defined as:

ˆ̄a(ū, δū) :=
∫

Ω�

[∇ū] · D̄ · [∇δū] dΩ (2.74)

ˆ̄l(δū) :=
∫

Ω
Q̄ · δū dΩ−

∫
ΓN

q̄n · δū dΓ (2.75)

and the introduced spaces as:
V̄ =

{
u : u ∈ H1(Ω), u = ūP on ΓD

}
(2.76)

V̄0 =
{
u : u ∈ H1(Ω), u = 0 on ΓD

}
(2.77)

Note that the functionals and spaces are analogous to the sub-scale case.

2.8 Computation of effective diffusivity
In the same way as described for linear elasticity in Section 2.3, the prolongation rule is used. The assumption
of first order homogenization gives:

uM(x) = ∇ū · [x− x̄] x ∈ Ω� (2.78)

12



2. Two-scale modeling approach

where it is assumed that the diffusion problem is invariant for the overall level ū. For convenience, ū = 0 is
chosen henceforth. Note that in this case, the macro-scale ion gradient ∇ū is the driving force. Together with
the necessary material parameters and boundary conditions, the weak form can be solved, whereby the sub-scale
ion flux is obtained. Volume averaging the sub-scale ion flux as a post-processing step gives the macro-scale ion
flux:

q̄ = 〈q〉� (2.79)
With known macro-scale ion flux and ion gradient, it becomes easy to compute the effective macro-scale diffusion
coefficient matrix, see Figure 2.4 for an overview of the whole process.

Figure 2.4: Overview of the computation of effective diffusion coefficient matrix.

2.9 Weakly periodic boundary conditions for stationary diffusion
The details of WPBC for diffusion are omitted, the reader is referred to Section 2.4. The weak form of the
WPBC problem for the diffusion equation analogously becomes:

Find ∀u ∈ Û� and ∀qn ∈ T̂+
� for given macro-scale ion gradient ∇ū such that

â�(u; δu)− d̂�(qn, δu) = 0 ∀δu ∈ Û� (2.80)
−d̂�(δqn, u) = −d̂�(δqn,∇ū · [x− x̄]) ∀δqn ∈ T̂+

� (2.81)

where the introduced functional is defined as:

â�(u, δu) := 1
|Ω�|

∫
Ω�

[∇u] ·D · [∇δu] dΩ (2.82)

d̂�(qn, u) := 1
|Ω�|

∫
Γ+
�

qn · JuK� dΓ (2.83)

and T̂+
� is the trace of functions in the self-equilibrating normal flux space on Γ+

�:

T̂� =
{
qn : qn sufficiently regular in Ω�,

∫
Γ�

qn dΓ = 0
}

(2.84)

Û� =
{
u : u ∈ H1(Ω�),

∫
Ω�

u dΩ = 0
}

(2.85)
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3 Voronoi tessellation
The microstructure of real materials can be obtained from 3D measurements such as X-ray computed tomogra-
phy (CT), and by combining the data from Focused ion beam (FIB) with Scanning electron microscopy (SEM)
based on the FIB-SEM method. However, the amount of data in these scans is way too large for the RVE. It
is too expensive to perform any FE-analysis on models based on them. An efficient alternative is to generate
artificial microstructures and to use them as the RVEs instead. Ideally, the 3D measurement data should be
used to identify stochastic structural parameters (e.g. volume fraction and pore size distribution) that can
be imposed on the artificial microstructure. This results in an artificial microstructure that is simplified, yet
stochastically similar to the real one.

The usage of Voronoi tessellation for generation of artificial microstructure is a well-established method. E.g.
the Voronoi tessellation is utilized in the modeling of crystalline aggregates [14], asphalt concrete [15], and
even skeletal muscle tissues [16]. In this project, the Voronoi tessellation will form the basis for a foam-like
microstructure that fulfills the SBE microstructure constraints, i.e. micro-porosity and bicontinuity.

3.1 Standard Voronoi tessellation
Although it is the 3D Voronoi tessellation that is used for the generation of artificial microstructures, the 2D
Voronoi tessellation is more illustrative and easier to explain. Therefore, the examples given here will pertain to
the 2D case since extending the theory to 3D is straightforward. The 2D Voronoi tessellation partitions the 2D
domain into convex polygons called Voronoi cells based on n user-defined seeds {p1, ...,pn}. In essence, each
Voronoi cell is a set of points that is defined as follows:

Vi = {x ∈ Ω | d(x,pi) ≤ d(x,pj) ∀ i 6= j} (3.1)

where d(x,pi) is the Euclidean distance d(x,pi) = |x − pi| and i, j = 1, 2, ..., n. See Figure 3.1 for a standard
2D Voronoi tessellation with 10 seeds. Note that each Voronoi cell contains exactly one seed each.
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Figure 3.1: Standard 2D Voronoi tessellation with 10 seeds. The blue lines partition the 2D domain, and the
orange points are the seeds.
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3. Voronoi tessellation

If two seeds are placed very close to each other, then the Voronoi tessellation creates very small cells. Clearly,
this is not the case for Figure 3.1 since a minimum distance criterion is implemented, i.e. the seeds have to
satisfy:

d(pi,pj) ≥
R

2 + R

2 ∀ i 6= j (3.2)

where R
2 + R

2 = R is the specified minimum distance between the seed points. Note that this condition can be
visualised as spheres at the position pi and pj , each with radius R

2 . In order to fulfill this condition the spheres
may not overlap.

3.2 Periodic Voronoi tessellation
The issue with the standard Voronoi tessellation is that it causes a clear boundary layer effect. The consequence
is that the Voronoi cells close to the boundary are always too large. The boundary layer effect is clearly an
artificial consequence caused by the implementation method and must be removed since the aim is to use the
Vornoi tessellation to generate a realistic artificial microstructure with as much control as possible. A remedy
for this is to introduce the periodic Voronoi tessellation which results in that the Voronoi boundaries become
compatible with each other. The implication is that a Voronoi cell that sticks out at one side of the boundary
re-enters the Voronoi tessellation from the other side, see Figure 3.2. Note that each Voronoi cell no longer
contains exactly one seed each since the empty cells are a part of already existing cells at the opposite boundary.

Figure 3.2: Periodic 2D Voronoi tessellation with 10 seeds. Periodicity obtained by extracting the middle 1x1
Voronoi tessellation from the extended 3x3 Voronoi tessellation via truncation.

One issue with the periodic Voronoi tessellation is that it can not respect the minimum distance criterion (3.2)
across the boundaries if only one 2D domain is considered. Instead, one has to consider the neighbourhood of
the main domain as seen in Figure 3.2; 3x3 domain for 2D and 3x3x3 domain for 3D.

Another benefit of having a periodic Voronoi tessellation is that it lays the foundation for generating a periodic
RVE. The artificial SBE microstructure must be an RVE if the theory of computational homogenization is used.
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4 Generation of artificial SBE microstructure
One way to create the SBE as a two phase system is by using reaction induced phase separation [4] as described
by Ihrner et al. In short, they combined a liquid electrolyte with a stiff vinyl ester based thermoset matrix
and let the phase separation be induced during the polymerization. The main advantage is that the combined
solution of liquid electrolyte and vinyl ester based thermoset matrix can directly be vacuum-infused onto the
carbon fibers and cured in one step. It turns out that the morphology of the SBE varies slightly depending
on the exact type of monomer that is combined with the liquid electrolyte. When they combined bisphenol
A dimethacrylate (M = 364.43 g mol−1), bisphenol A ethoxylate dimethacrylate (M = 540 g mol−1), lithium
trifluoromethanesulfonate (LiTFS 96%) and 2.2-Dimethoxy-2-phenylacetophenone (DMPA), they produced an
SBE with a morphology as shown in Figure 4.1. The figure shows that the SBE is indeed bicontinuous and
microporous with connected pore channels. However, it has been difficult to determine more morphological
parameters such as the polymer matrix volume fraction of the SBE. Due to lack of data and understanding
of the SBE morphology, Figure 4.1 will serve as a rough guideline for the generation of the artificial SBE
microstructure.

Figure 4.1: Scanning electron microscope (SEM) image of an SBE that reveals the microstructure morphology.
Reproduced with permission by Niklas Ihrner [4].

The microstructure generation consists of several steps in different softwares. First the seeds are generated in
MATLAB. They are then imported into Voro++ where a periodic Voronoi tessellation is created, which lays
the foundation for the artifical microstructure. The Voronoi tessellation goes back to MATLAB again where it
is post-processed, and then it is imported into COMSOL. COMSOL generates a new geometry in STL format
based on the Voronoi tessellation which represents the SBE, but since the SBE geometry from COMSOL is
defective, it is repaired in MATLAB by adding STL triangles to the geometry. Lastly, the geometry is imported
into COMSOL one last time where it is converted into a mesh-able solid. The details of each step are presented
in the following subsections. An overview of the whole microstructure generation process can be seen in Figure
4.2.
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4. Generation of artificial SBE microstructure

Figure 4.2: Flowchart for the generation of artificial SBE microstructure which shows the software interactions.

4.1 Voronoi tessellation in MATLAB and Voro++
First the seeds need to be placed in order to generate a periodic Voronoi tessellation. This is done in a stochas-
tic fashion based on a uniform distribution inside a unit cube in MATLAB. Since 3 seeds correspond to the
simplest artificial microstructure, this case will be used for demonstration throughout the section. However, it
is in general preferred to include as many seeds as possible since this increases the amount of statistics in the
Voronoi tessellation, which in turn increases the SVE size for the artificial microstructure.

The generation of the periodic Voronoi tessellation itself is done by utilizing Voro++ [17] which is an open-
source software library written in C++ that performs 3D computations of Voronoi tessellations. One issue with
Voro++ is that the periodic structure that is produced is not contained inside a unit cube, which is a convenient
geometric shape to work with when it comes to computational homogenization. The solution is to first obtain
the extended structure which can later be truncated to a unit cube, i.e. a 1x1x1 Voronoi tessellation extends
to a 3x3x3 Voronoi tessellation where the original Voronoi tessellation is in the middle. This post-processing
step is performed in MATLAB. Note that only the Voronoi cells that are partially inside the unit cube are of
interest. The remaining cells are filtered away, see Figure 4.3 and 4.4.

Figure 4.3: Voronoi tessellation with
3 seeds in 3D.

Figure 4.4: Extended Voronoi tessellation
with 3 seeds in 3D.
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4. Generation of artificial SBE microstructure

4.2 Heat manipulation in COMSOL Multiphysics
The next step is to import the extended Voronoi tessellation as points (seeds) and lines (cell edges) into COMSOL
where it is truncated such that only the parts that are inside the unit cube are preserved, see Figure 4.5.

  

Figure 4.5: Truncation of extended Voronoi tessellation to obtain a periodic structure contained in a unit
cube.

The result is a periodic Voronoi tessellation that is embedded in a solid cube. It turns out that by assigning
a unit thermal conductivity to the solid cube, and choosing heat sinks and heat sources in a clever fashion, it
becomes possible to manipulate heat in order to generate a geometry that resembles the SBE. By solving the
heat equation with SPBC where the seeds are heat sinks, and the remaining parts of the Voronoi tessellation
are heat sources, an isosurface and isovolume that resembles the SBE, as shown in Figure 4.1, can be obtained.
The isovolume is obtained by applying an element filter on the mesh that reveals all elements with nodal values
that are above a certain temperature, see Figure 4.6 and 4.7. Note that the number of seeds that are used
in the Voronoi tessellation will roughly correspond to the number of pores that will appear in the artificial
microstructure. Moreover, since the heat equation was solved a fully periodic fashion, the resulting isosurface
and isovolume also becomes periodic.

Figure 4.6: Isosurface based on 3 seeds. Figure 4.7: Isovolume based on 3 seeds.
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4. Generation of artificial SBE microstructure

It is possible to obtain different polymer matrix volume fractions of the structure by adjusting the isolevel.
However, one issue is that the continuous pore channels might close and become isolated at high volume frac-
tions. When this happens, the microstructure is no longer bicontinuous. It turns out that this method can not
generate artificial bicontinuous microstructures above around 70% volume fraction.

Both the isosurface and the isovolume can be extracted from COMSOL as STL files. Since the isosurface is just
a surface made up by STL triangles, it needs to be post-processed in MATLAB order to form a closed solid.
Lastly, note that combining the isosurface and the isovolume gives a microstructure that resembles a closed
solid, see Figure 4.8 - 4.11.

Figure 4.8: Combination of isosurface and
isovolume based on 3 seeds with 48.02%
polymer matrix volume fraction.

Figure 4.9: Combination of isosurface and
isovolume based on 3 seeds with 30.28%
polymer matrix volume fraction.

Figure 4.10: Combination of isosurface and
isovolume based on 10 seeds with 46.44%
polymer matrix volume fraction.

Figure 4.11: Combination of isosurface and
isovolume based on 20 seeds with 39.31%
polymer matrix volume fraction.
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4. Generation of artificial SBE microstructure

4.3 Combining and repairing the isosurface and isovolume
The isovolume in itself already corresponds to a closed solid geometry, but it can not be used directly as the
artificial microstructure since the surface roughness is too high. In fact, each element is clearly visible from
the element filtering in COMSOL. The coarse surface of the isovolume would lead to high computational costs,
and it would affect the meshing of the geometry since it is already discretized. Hence, it is of interest to use
the isosurface as a geometric shell for the artificial microstructure due to the smoothness of the surface. The
smoothness of the isosurface is a result of COMSOL’s interpolation algorithm between the nodal values. In
order for the isosurface to become an airtight solid, the openings at the cube faces of the isosurface need to be
patched up. This post-processing step is performed in MATLAB.

The STL files of the isosurface and isovolume are imported into MATLAB. STL files are surface representations
of geometries, where the surface is made up by a network of connected triangles. Each STL triangle consists of
3 vertices and 1 outward-pointing normal vector, see Figure 4.12.

Figure 4.12: The constituents of an STL triangle.

For the post-processing step, only the triangle vertices will be needed. Note that the interior vertices of the
isosurface and isovolume are not of interest. Since the goal is to form a closed solid out of an open isosurface
geometry, only the vertices at the 6 cube faces are considered, see Figure 4.13 and 4.14. Furthermore, the data
is split such that only one cube face is treated at the time, see Figure 4.15 and 4.16.

Figure 4.13: Imported boundary vertices
from isosurface STL in 3D.

Figure 4.14: Imported boundary vertices
from isovolume STL in 3D.
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Figure 4.15: Isosurface vertices on image
cube face in x-direction.
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Figure 4.16: Isovolume vertices on image
cube face in x-direction.

As shown in Figure 4.6, there are large holes at the cube faces of the isosurface. These must be patched up in
order to obtain an airtight solid. A way to achieve this is to modify the original isosurface STL file and manually
add more triangles such that the isosurface results in a volume. By combining the data from the isosurface and
the isovolume in Figure 4.15 and 4.16, a poor preliminary Delaunay triangulation can be performed, see Figure
4.17. The Delaunay triangulation is a method to generate a network of connected triangles based on a given
point cloud. This triangulation method tries to maximize the minimum angle such that the triangles obtain a
good aspect ratio.
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Figure 4.17: Preliminary Delaunay triangulation to be used for patching up the holes on the isosurface.

The reason Figure 4.17 is a preliminary Delaunay triangulation is because the Delaunay triangulation indis-
criminately generates triangles everywhere, which is an unwanted effect in this case since some parts of the
microstructure should be the polymer matrix and the rest should be the pores. The small triangles with good
aspect ratio in Figure 4.17 correspond to the polymer matrix, and the two semi-ellipses at the top and bottom
correspond to the pores which should not be triangulated. An algorithm was developed in order to remove the
triangles that were generated inside the pores. Note that it is necessary to identify the pore-polygons which in
this case correspond to the two semi-ellipses. In short, the task of the algorithm is to perform polygon tracing
of the isosurface vertices, see Algorithm 1.
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4. Generation of artificial SBE microstructure

Initialize MATLAB
Load the isosurface vertices per cube face;
Pick any vertex as the first vertex;
Pick the second vertex, which is the vertex that is closest to the first one;
Save these two initial vertices in a vertex list;
while there exist unidentified vertices in the neighbourhood do

Define a search direction based on the 2 latest vertices from the vertex list;
Define a normal vector associated with the STL triangle orientation for the latest vertex from the
vertex list;
Pick the closest point that has a small search direction deviation and a small normal vector deviation;
if closest point is closer than user-defined minimum distance then

Add the closest point to the vertex list;
else if special case at edge or corner then

Apply special rule that ignores the user-defined minimum distance;
Add the best available candidate to the vertex list;

else
Exit while loop since there are no more candidates in the neighbourhood;

end
end

End MATLAB

Algorithm 1: Simplified overview of the polygon tracing algorithm for distinguishing the polymer matrix from
the pores.

By using Algorithm 1 it is possible to identify and separate each individual polygon from Figure 4.15, see Figure
4.18 and 4.19.
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Figure 4.18: Identifying the top semi-ellipse
with the polygon tracing algorithm.
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Figure 4.19: Identifying the bottom semi-ellipse
with the polygon tracing algorithm.

One way to filter out the unwanted mesh triangles from the preliminary Delaunay triangulation is to consider
whether or not the mesh triangle midpoint is inside any polygons. If a mesh triangle midpoint is inside any of
the identified polygons, then that is an unwanted mesh triangle which should be removed. See the final filtered
Delaunay triangulation in Figure 4.20.
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Figure 4.20: Final filtered Delaunay triangulation to be used for patching up the holes on the isosurface.

After completing the post-processing of the STL data, the Delaunay triangulation is finally added to the
isosurface STL file. Doing this 5 additional times for the remaining cube faces results in a patched up isosurface
which encloses a volume. The last step is to import the modified isosurface STL file into COMSOL where the
STL file is repaired and converted into a solid, see Figure 4.21.

Figure 4.21: Modified isosurface STL file that has been repaired and converted into a solid in COMSOL.

4.4 Issues with the artificial SBE microstructure generation
As shown in Figure 4.2, a large part of the microstructure generation process is automated. Although the seed
generation is performed in MATLAB, executing operating system commands in MATLAB makes it possible to
directly use MATLAB’s output to create the Voronoi tessellation in Voro++. The output from Voro++ can
then be seamlessly imported into MATLAB and also post-processed. The next step is to import the Voronoi
tessellation into COMSOL and perform the heat manipulation, which is a step that can also be fully controlled
from MATLAB by using the COMSOL LiveLink module. In short, generating the structures shown in Figure
4.8 - 4.11 from the very beginning requires minimal effort since the whole process is automated and performed
by one single MATLAB script.

Despite this, mass generation of artificial SBE microstructure is still a tall task since selecting a suitable volume
fraction for the microstructure is difficult. Not all STL files can be patched up and repaired, especially if they
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4. Generation of artificial SBE microstructure

contain several small details and defects. This means that before extracting the STL data from COMSOL, the
user has to carefully inspect whether or not it is viable to repair it. Additionally, it seems that the difficulty
in obtaining repairable STL files increases for increasing number of seeds in the Voronoi tessellation. This ef-
fectively means that the artificial microstructure can only have a limited number of seeds, and that the volume
fraction is not chosen freely.

After trial and error, it turns out that the highest number of seeds that consistently results in viable artificial
microstructures is 10. While 3 seeds are used to demonstrate the microstructure generation process, 10 seeds
are used for the simulations in this project. Furthermore, it was found that microstructures with low volume
fractions constantly cause issues. The volume fraction range for the polymer matrix which consistently results
in viable artificial microstructures corresponds to around 45% - 70%.

4.5 The inverse artificial SBE microstructure
A remedy to the above-mentioned constraint in volume fraction range is to introduce the inverse artificial SBE
microstructure. It is possible to perform boolean operators in COMSOL which can result in the inverse of the
microstructure in Figure 4.21. Although the reference microstructure that is being mimicked is Figure 4.1, it
is still not completely clear whether the original microstructure or the inverse microstructure is more similar to
the real SBE microstructure. The only definitive constraints that the artificial microstructure must fulfill are
the properties of micro-porosity and bicontinuity, which are properties that the inverse microstructure also has,
see Figure 4.22.

Figure 4.22: Inverted microstructure with 3 seeds by performing boolean operators in COMSOL.

The consequence of introducing the inverse artificial SBE microstructure is that the solid polymer phase and
the pore space swap places. The main advantage of this method is that the new viable volume fraction range
is 30% - 70%. This is a more realistic range since a volume fraction above 70% will probably have too much of
the solid polymer matrix which results in great mechanical properties, but bad ion conductivity. The reverse
will also be true, i.e. a volume fraction below 30% probably results in poor mechanical properties but good ion
conductivity.

4.6 Mass generation of artificial SBE microstructures with 10 seeds
Due to the limitation on the maximum number of seeds per Voronoi tessellation, the artificial microstructure
is more of an SVE rather than an RVE. The evaluation of the effective properties will become slightly different
for every realization of the artificial microstructure. Since the scatter of the effective properties depend on
how much statistics that are included in the SVE, a robust strategy (statistical ensembling) is to first generate
several SVE realizations at the same volume fraction and then compute the average effective properties based
on a large enough sample.
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4. Generation of artificial SBE microstructure

As mentioned above, the volume fraction is not chosen freely. Hence, it is difficult to generate many SVE
realizations with the exact same volume fraction. For simplicity, a generous ±1.5% volume fraction tolerance
is introduced, where e.g. everything between 70% and 67% will be considered to have the volume fraction
68.5%. In preparation for the simulations, 46 SBE microstructures were generated. Unfortunately, some of
the structures failed the meshing stage or had convergence issues, which explains why some cases have more
structures than others. The volume fraction distribution of the generated SBE microstructures is presented in
Table 4.1:

Table 4.1: Volume fraction (VF) groups of original and inverse structures.

Number of structures per VF group
Elasticity:
Drained

Elasticity:
Undrained

Chemical
diffusion

Original
structure

VF 68.5%: 5 out of 7 3 out of 7 6 out of 7
VF 65.5%: 3 out of 5 3 out of 5 3 out of 5
VF 62.5%: 6 out of 7 7 out of 7 6 out of 7
VF 59.5%: 3 out of 4 3 out of 4 3 out of 4

Inverse
structure

VF 31.5%: 5 out of 7 3 out of 7 6 out of 7
VF 34.5%: 3 out of 5 3 out of 5 3 out of 5
VF 37.5%: 6 out of 7 7 out of 7 6 out of 7
VF 40.5%: 3 out of 4 3 out of 4 3 out of 4

Total: 34 out of 46 32 out of 46 36 out of 46

For demonstration purpose, the successful SBE microstructures in the volume fraction group 65.5% and 34.5%
are presented, see Figure 4.23-4.28.

Figure 4.23: Original
structure VF 66.17%.

Figure 4.24: Original
structure VF 65.10%.

Figure 4.25: Original
structure VF 64.16%.

Figure 4.26: Inverse
structure VF 33.83%.

Figure 4.27: Inverse
structure VF 34.90%.

Figure 4.28: Inverse
structure VF 35.84%.
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5 Mesh convergence analysis
Before evaluating the multifunctional performance of the SBE, a convergence study is performed to serve as
a rough guideline for which mesh quality to use. The assessment of mesh convergence can be performed by
investigating some scalar quantity which can serve as a convergence indicator. One such example is to observe
the largest eigenvalue λ1 of the constitutive matrix. For simplicity, the convergence study is only done for
one artificial SBE microstructure, which in this case is one of the structures from the group VF 31.5%. It is
assumed that the converged mesh for one artificial SBE microstructure will roughly be the same as for the other
structures. Another interesting convergence indicator is to compute the homogenized strain energy for linear
elasticity, and free energy for stationary diffusion:

Ψ̃i =〈εi · E · εi〉� (Drained elasticity) (5.1)
Ψ̂i =〈(∇u)i ·D · (∇u)i〉� (Diffusion) (5.2)

where i = {x, y, z} indicates the direction of the macroscopic driving force. Furthermore, the computed conver-
gence indicators are normalized with respect to a converged overkill solution:

Normalized λ̃1:
λ̃1

λ̃1,∞
(Drained elasticity)

Normalized λ̂1:
λ̂1

λ̂1,∞
(Diffusion)

Normalized Ψ̃1:
Ψ̃i

Ψ̃i,∞
(Drained elasticity)

Normalized Ψ̂1:
Ψ̂i

Ψ̂i,∞
(Diffusion)

It should be noted that the volume averaged convergence indicators such as Equation (5.1) and (5.2) converge
even for relatively coarse meshes. The reason is that they are homogenized global quantities that smear out
the effects of local nonconvergence. The homogenized free energies are suitable convergence indicators since the
quantities of interest are the homogenized effective properties.

5.1 Mesh choice for linear elasticity
For simplicity, the convergence study is only done for the drained case since the undrained case requires a
more complex implementation. The meshing is performed in COMSOL’s native meshing environment, and the
user-defined parameters that are investigated in the convergence study are presented in Table 5.1.

Table 5.1: Intervals of COMSOL’s user-defined mesh parameters that are used in the convergence test.

User-defined mesh parameters
Number of DOF: [17.7, 314.4] ·103

Number of elements: [2.617, 65.64] ·103

Maximum element size: [0.508, 0.045]
Minimum element size: [0.071, 0.006]

Maximum element growth rate: [2.00, 1.46]
Curvature factor: [1.00, 0.505]

Resolution of narrow regions: [0.100, 0.595]

Figure 5.1 shows how the largest eigenvalue converges at around 100000 DOF. Figure 5.2 shows that the energy
indicator Ψ̃i from Equation 5.1 also converges at around 100000 DOF. While the largest eigenvalue λ̃1 from the
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5. Mesh convergence analysis

elasticity matrix seems to converge in a stable manner, the strain energies Ψ̃i have some fluctuations early on.
However, as soon as the number of DOF surpasses 100000, the strain energies Ψ̃i stabilizes and converges.
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Figure 5.1: Normalized largest eigenvalue
from homogenized elasticity matrix.
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Figure 5.2: Normalized strain energy with
a macroscopic driving force in different directions.

The conclusion of the convergence study for linear elasticity is to use the user-defined mesh settings as shown
in Table 5.2:

Table 5.2: Converged mesh parameters in COMSOL.

User-defined mesh parameters
Number of DOF: 103434

Number of elements: 15975
Maximum element size: 0.08762
Minimum element size: 0.01173

Maximum element growth rate: 1.50528
Curvature factor: 0.55025

Resolution of narrow regions: 0.54975
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5. Mesh convergence analysis

5.2 Mesh choice for stationary diffusion
The investigated user-defined mesh parameters for stationary diffusion are presented in Table 5.3.

Table 5.3: Intervals of COMSOL’s user-defined mesh parameters that are used in the convergence test.

User-defined mesh parameters
Number of DOF: [5.90, 104.4] ·103

Number of elements: [2.617, 65.35] ·103

Maximum element size: [0.508, 0.045]
Minimum element size: [0.071, 0.006]

Maximum element growth rate: [2.00, 1.46]
Curvature factor: [1.00, 0.505]

Resolution of narrow regions: [0.100, 0.595]

Figure 5.3 shows how the largest eigenvalue converges at around 40000 DOF. Figure 5.4 shows how the energy
indicator Ψ̂i from Equation 5.2 also converges at around 40000 DOF.

10
4

10
5

1

1.005

1.01

1.015

1.02

1.025

1.03

Figure 5.3: Normalized largest eigenvalue
from homogenized diffusion coefficient matrix.
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Figure 5.4: Normalized free energy with
a macroscopic driving force in each direction.

The conclusion of the convergence study for stationary diffusion is to use the user-defined mesh settings as
shown in Table 5.4:

Table 5.4: Converged mesh parameters in COMSOL.

User-defined mesh parameters
Number of DOF: 39422

Number of elements: 21785
Maximum element size: 0.0811
Minimum element size: 0.0101

Maximum element growth rate: 1.45
Curvature factor: 0.500

Resolution of narrow regions: 0.600
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6 Virtual material testing
The effective properties are obtained by following the procedure described in Figure 2.1 and 2.4. The sub-scale
material parameters for linear elasticity were set to E = 1 (dimensionless) and ν = 0.499 since the polymer
matrix is assumed to be close to incompressibility. These choices result in an effective stiffness matrix that is
normalized with respect to the Young’s modulus. A similar approach was used for the diffusion problem where
the sub-scale diffusion coefficient was set to D = 1 (dimensionless). Yet again, this results in a normalized
effective diffusion coefficient matrix.

6.1 Effective stiffness of SBE
The COMSOL implementation of the isotropic sub-scale constitutive relationship is based on the Voigt format:

σ11
σ22
σ33
σ23
σ13
σ12

 = E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2




ε11
ε22
ε33
2ε23
2ε13
2ε12

 (6.1)

The implementation of the macro-scale constitutive relationship is also in Voigt format:
σ̄11
σ̄22
σ̄33
σ̄23
σ̄13
σ̄12

 =



Ē1111 Ē1122 Ē1133 Ē1123 Ē1113 Ē1112
Ē2211 Ē2222 Ē2233 Ē2223 Ē2213 Ē2212
Ē3311 Ē3322 Ē3333 Ē3323 Ē3313 Ē3312
Ē2311 Ē2322 Ē2333 Ē2323 Ē2313 Ē2312
Ē1311 Ē1322 Ē1333 Ē1323 Ē1313 Ē1312
Ē1211 Ē1222 Ē1233 Ē1223 Ē1213 Ē1212




ε̄11
ε̄22
ε̄33
2ε̄23
2ε̄13
2ε̄12

 (6.2)

The computation of the effective stiffness is done by setting the macro-scale strains to unit strains component-
wise. Consider the unit strain ε̄11 = 1 in 11-direction:

ε11 =


1
0
0
0
0
0

 (6.3)

Matrix multiplication with the stiffness matrix from (6.2) gives:
σ̄11
σ̄22
σ̄33
σ̄23
σ̄13
σ̄12

 =



Ē1111
Ē2211
Ē3311
Ē2311
Ē1311
Ē1211

 (6.4)

which means that the stiffness matrix is simply computed columnwise and obtained by volume averaging the
sub-scale stress to macro-scale stress σ̄ = 〈σ〉� in a post-processing step. The same procedure is repeated for
all six strain components. Note that for the shear strain component in 12-direction, the unit strain corresponds
to ε̄12 = 1

2 . This is true for all the shear strain components since they exist in symmetric pairs.

Figure 6.1-6.3 illustrates how the SBE microstructure is deformed by the componentwise input macro-strain ε̄ij
during the virtual material testing. The deformations in the figures correspond to the total sub-scale deformation
u = uM + uS. The deformations are obtained by solving the drained linear elasticity problem on an example
structure (VF 63.06 % polymer matrix) using the unit strain ε̄11 = 1 and unit shear strain ε̄12 = 1

2 .
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6. Virtual material testing

Figure 6.1: Undeformed body
of polymer matrix.

Figure 6.2: Deformed body by
normal strain ε̄11 = 1.

Figure 6.3: Deformed body by
shear strain ε̄12 = 1

2 .

The corresponding fluctuation field uS from the unit normal strain ε̄11 = 1 is given in Figure 6.4-6.6.

Figure 6.4: Fluctuation field
uS
x in x-direction by ε̄11 = 1.

Figure 6.5: Fluctuation field
uS
y in y-direction by ε̄11 = 1.

Figure 6.6: Fluctuation field
uS
z in z-direction by ε̄11 = 1.

The corresponding von Mises effective stress σvM from the unit normal strain ε̄11 = 1 is given in Figure 6.7-6.9.

Figure 6.7: Volume plot of
von Mises effective stress σvM.

Figure 6.8: Multislice plot of
von Mises effective stress σvM.

Figure 6.9: Contour plot of
von Mises effective stress σvM.
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6. Virtual material testing

After solving both the drained and undrained sub-scale problem, the elasticity matrix in Voigt format is obtained
for respective case. Figure 6.10 and 6.12 reveal the relationship between the structural stiffness and the volume
fraction of polymer matrix. The curve shows the ensemble average of the normalized largest eigenvalues of each
VF group, while the vertical bars show the spread. Each vertical bar corresponds to the range µ ± σ where µ
is the average and σ is the standard deviation.
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Figure 6.10: λ̃1 in drained case. In total 8 sta-
tistical ensembles based on 34 microstructure re-
alizations.
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Figure 6.11: λ̃1 in drained case. Individual SBE
simulations without VF grouping.
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Figure 6.12: ˜̃λ1 in undrained case. In total 8
statistical ensembles based on 32 microstructure
realizations.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

600

800

1000

1200

1400

1600

1800

Figure 6.13: ˜̃λ1 in undrained case. Individual
SBE simulations without VF grouping.

Combining both plots gives Figure 6.14 which shows that the undrained case is the upper bound while the
drained case is the lower bound for the SBE’s structural stiffness.
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Figure 6.14: Upper bound (undrained) and lower bound (drained) of λ1 in a semi-log plot.

It seems that the curves in both cases show some non-linearity in the range of volume fraction that is studied. It
can also be noted that the structural stiffness increases for increasing volume fraction of polymer matrix in the
drained case, which is as expected. It may seem unintuitive that the structural stiffness decreases for increasing
volume fraction in the undrained case, but this is in fact a consequence of the extreme assumptions that are
used to compute the upper bound. Since the liquid electrolyte is incompressible, it has a much larger bulk
modulus than the polymer matrix. Thus, the liquid electrolyte contributes more to the largest eigenvalue than
the polymer matrix does. This can only happen when the liquid electrolyte is completely trapped by a very stiff
membrane. However, in reality the membrane will not be stiff enough to fully trap the liquid electrolyte inside
the pores. See Figure 6.15-6.18 to consider the normal component Ē1111 and shear component Ē1212 separately.
Note that the shear components are almost identical, the differences are found in the normal components.
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Figure 6.15: Ē1111 in drained case. In total 8
statistical ensembles based on 34 microstructure
realizations.
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Figure 6.16: Ē1111 in undrained case. In total
8 statistical ensembles based on 32 microstructure
realizations.
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Figure 6.17: Ē1212 in drained case. In total 8
statistical ensembles based on 34 microstructure
realizations.
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Figure 6.18: Ē1212 in undrained case. In total
8 statistical ensembles based on 32 microstructure
realizations.

6.2 Effective ionic conductivity of SBE
The isotropic sub-scale constitutive relationship is:q1

q2
q3

 = −

D 0 0
0 D 0
0 0 D

∇u (6.5)

and the corresponding macro-scale relationship is:q̄1
q̄2
q̄3

 = −

D̄11 D̄12 D̄13
D̄21 D̄22 D̄23
D̄31 D̄32 D̄33

∇ū (6.6)

In a similar fashion as for linear elasticity, the effective diffusion coefficient matrix is obtained by setting the
macro-scale ion gradient to 1 componentwise. Figure 6.19-6.21 show the simulation results obtained by solving
the sub-scale problem on the pore space (porosity 36.94% liquid electrolyte) of the same example structure
using the unit ion gradient ∇ū = [1 0 0]T as the driving force.

Figure 6.19: Dimensionless
fluctuation field uS in liquid
electrolyte.

Figure 6.20: Dimensionless
ion concentration field u and
normalized ion flux vectors q̄.

Figure 6.21: Dimensionless ion
concentration field u and normalized
ion flux projected on the middle xz-
plane.
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6. Virtual material testing

Figure 6.22 shows the relationship between the diffusivity and the porosity. Note that the microstructure
porosity φ is computed in the following way:

φ = 1−VF (6.7)

where VF corresponds to the volume fraction of the solid polymer phase.
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Figure 6.22: Largest normalized eigenvalue λ̂1.
In total 8 statistical ensembles based on 36 mi-
crostructure realizations.
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Figure 6.23: Largest normalized eigenvalue λ̂1.
Individual SBE simulations without VF grouping.

Once again, it can be noted that the SBE diffusivity increases with increasing porosity. Furthermore, it seems
that the graph is revealing a linear relationship between the diffusivity and the porosity. See Figure 6.24 and
6.25 to consider the normal component D̄11 and off-diagonal component D̄12 separately. Note that the effective
diffusivity is dominated by the normal components since the off-diagonal components are very small.
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Figure 6.24: Normal component D̄11. In total
8 statistical ensembles based on 36 microstructure
realizations.
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Figure 6.25: Off-diagonal component D̄12. In to-
tal 8 statistical ensembles based on 36 microstruc-
ture realizations.
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7 Concluding remarks and future works
In order to evaluate the multifunctional performances of the SBE, a method for generating artificial SBE
microstructures was developed. The generated artificial SBE microstructure was utilized as an RVE for com-
putational homogenization. At the end of the project, a semi-automated artificial microstructure generation
technique was achieved. Initially 23 unique artificial microstructures were produced, but inverting these re-
sulted in 23 additional structures which in the end adds up to a total of 46 structures. These structures were
used in finite element analyses based on linear elasticity and stationary diffusion. In particular WPBC were
used in the computational homogenization. Due to meshing and convergence issues, a few of these structures
failed. After obtaining the effective properties, the data was visualized in graphs which revealed that the
lower bound of the stiffness increases for increasing volume fraction of polymer matrix, while the upper bound
of the stiffness and the ionic conductivity decreases. Furthermore, it seems that the ionic conductivity scales
linearly with the volume fraction of polymer matrix, while the bounds of the effective stiffness scale non-linearly.

Many obstacles were encountered during the project and several compromises were made. Some issues stem
directly from the STL files exported from COMSOL. E.g. structures with many seeds fail more often since
COMSOL’s STL files tend to become corrupted for complicated structures. Furthermore, structures with many
seeds usually result in more small details that are hard to trace and patch. Thus, a compromise of limiting
the number of seeds was made. It turns out that 10 seeds correspond to the maximum number of seeds that
consistently result in manageable artificial microstructures. A major risk with limiting the number of seeds is
that it also limits the amount of statistics that fit in the SVEs. This implies that the effective properties might
not be predicted with a reasonable confidence level; the spread might be too large. However, the results show
that the spread in general seems quite small. This confirms that 10 seeds actually do result in an SVE with
sufficient statistics.

Another issue is the inability to fully automate the microstructure generation process. Some isolevels in COM-
SOL are completely infeasible to patch since they might contain too small fragments or e.g. zero thickness
shell objects that cannot form volumes. Due to the inability to fully automate the microstructure generation,
massproducing SVEs for computational homogenization requires too much manual work. This explains why the
SVE sample size is limited in this project. However, a brute force strategy can be employed to fully automate
the structure generation. The COMSOL STL files can be generated for each increment of the isolevel, then
MATLAB can try to patch it up, and lastly COMSOL can try to repair and convert it into a solid. If any error
occurs during the process, then the code can simply throw away the current microstructure and move on to
the next. One disadvantage with this brute force method is that the fail rate is going to be very high and the
majority of the structures will be thrown away, see Algorithm 2 for an overview of the method.

Initialize MATLAB
for n artificial SBE microstructures do

Start with random placement of seeds and end up with a heat manipulated structure in COMSOL;
for each discrete increment in isolevel do

Compute the isosurface and isovolume;
Export isosurface and isovolume STL files;
Patch STL files in MATLAB;
Repair and convert structure in COMSOL;
Invert structure in COMSOL with boolean operator;
if any error is encountered along the process then

Throw away artificial SBE microstructure and move on to the next one;
else

Save artificial SBE microstructure
end

end
end

End MATLAB

Algorithm 2: Simplified overview of the automated structure generation.
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7. Concluding remarks and future works

Another major challenge that has yet been addressed is the accuracy of the SBE representation. Currently only
two criterions are imposed on the artificial microstructure, i.e. micro-porosity and bicontinuity. However, these
characteristics are still far too common and they might apply for other porous materials too. If more knowledge
of the SBE can be obtained, then the artificial microstructure can be modified to better represent the real SBE.

The current results are in a general format since they are normalized and dimensionless. This means that as
soon as real material parameters are known, it will then be easy to compare the results from this thesis to other
experimental studies for validation purposes. Experimental validation is crucial for this type of project since it
can be used as a feedback to improve the current artificial SBE microstructure. This can be achieved by e.g.
comparing the artificial microstructure to FIB-SEM data, or by performing real material testing on the SBE.
Hence, the accuracy of the artificial SBE can be increased as more experimental data is obtained in the future.
Throughout this project, the methodology has been to construct an artificial SBE which visually mimics Figure
4.1, but this is a highly subjective method which should be avoided in future works.

In essence, this thesis demonstrates the concept of utilizing the heat equation in order to generate an artificial
microstructure. Although the goal of the project is to mimic the SBE in the structural battery, the end result is
a quite general recipe on artificial microstructure generation. Any future work that uses this thesis as a starting
point should focus on implementing the fully automated structure generation and gathering experimental data
to validate against. Nevertheless, the bottom line is that this thesis paves the way for more rigorous artificial
SBE microstructure generation in the future.

36



Bibliography
[1] Fredi et al., "Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes",

Multifunctional Materials, vol. 1, no. 015003, 2018.
[2] Johannisson et al., "Multifunctional performance of a carbon fiber UD lamina electrode for structural

batteries", Composites Science and Technology, vol. 168, pp. 81-87, 2018.
[3] L. Asp and E. Greenhalgh, "Multifunctional structural battery and supercapacitor composites" in Multi-

functionality of Polymer Composites, William Andrew, 2015.
[4] N. Ihrner, W. Johannisson, F. Sieland, D. Zenkert and M. Johansson, "Structural Lithium Ion Battery

Electrolytes via Reaction Induced Phase-Separation", Journal of Materials Chemistry A, vol. 5, no. 48, pp.
25652–25659, 2017.

[5] Chalmers University of Technology, Gothenburg, “Carbon fibre can store energy in the body of a ve-
hicle” 2018. [Online]. Available: https://www.chalmers.se/en/departments/ims/news/Pages/carbon-fibre-
can-store-energy.aspx, Accessed on: May 16, 2019.

[6] Snyder et al., "Multifunctional Structural Composite Batteries for U.S. Army Applications" presented at
Proceedings of the 2006 Army Science Conference, Orlando, Florida, 2006.

[7] T. Carlson, "Multifunctional composite materials: Design, manufacture and experimental characterisation",
Ph.D. dissertation, Department of Engineering Sciences and Mathematics, Luleå University of Technology,
Luleå, Sweden, 2013.

[8] Asp et al., "A battery half cell, a battery and their manufacture", EP2893581A1 European Patent Office,
2012.

[9] D. Carlstedt, "On the multifunctional performance of structural batteries", Lic. thesis, Industrial and
Materials Science, Chalmers University of Technology, Gothenburg, Sweden, 2019.

[10] M. Ekh, R. Jänicke, F. Larsson and K. Runesson, Compendium: "The finite element method - Solid
Mechanics", Chalmers University of Technology, Gothenburg, Sweden, 2018.

[11] N. S. Ottosen and H. Petersson, Introduction to the finite element method, Wiltshire, United Kingdom:
Prentice Hall, 1992.

[12] R. Jänicke, F. Larsson and K. Runesson, Compendium: "Computational Homogenization in Material
Mechanics", Chalmers University of Technology, Gothenburg, Sweden, 2019.

[13] F. Larsson, K. Runesson, S. Saroukhani and R. Vafadari, "Computational homogenization based on a weak
format of micro-periodicity for RVE-problems", Computer Methods in Applied Mechanics and Engineering,
vol. 200, pp. 11-26, 2011.

[14] F. Fritzen, T. Böhlke and E. Schnack, "Periodic three-dimensional mesh generation for crystalline aggregates
based on Voronoi tessellations.", Computational Mechanics, vol. 43, pp. 701-713, 2009.

[15] T. Schüler, R. Jänicke and H. Steeb, "Nonlinear modeling and computational homogenization of asphalt
concrete on the basis of XRCT scans.", Construction and Building Materials, vol. 109, pp. 96-108, 2016.

[16] L. Spyrou, S. Brisard and K. Danas, "Multiscale modeling of skeletal muscle tissues based on analytical and
numerical homogenization.", Journal of the Mechanical Behavior of Biomedical Materials, vol. 92, 2018.

[17] C. H. Rycroft, "Voro++: A Three-Dimensional Voronoi Cell Library in C++", Chaos (Woodbury, N.Y.),
vol. 19, 2009.

37


	Introduction
	Structural battery architecture
	Problem statement and approach
	Project limitations

	Two-scale modeling approach
	Linear elasticity in the sub-scale
	Linear elasticity in the macro-scale
	Computation of effective stiffness
	Weakly periodic boundary conditions for linear elasticity
	Fluid–structure interaction in SBE
	Stationary diffusion and heat flow in the sub-scale
	Stationary diffusion in the macro-scale
	Computation of effective diffusivity
	Weakly periodic boundary conditions for stationary diffusion

	Voronoi tessellation
	Standard Voronoi tessellation
	Periodic Voronoi tessellation

	Generation of artificial SBE microstructure
	Voronoi tessellation in MATLAB and Voro++
	Heat manipulation in COMSOL Multiphysics
	Combining and repairing the isosurface and isovolume
	Issues with the artificial SBE microstructure generation
	The inverse artificial SBE microstructure
	Mass generation of artificial SBE microstructures with 10 seeds

	Mesh convergence analysis
	Mesh choice for linear elasticity
	Mesh choice for stationary diffusion

	Virtual material testing
	Effective stiffness of SBE
	Effective ionic conductivity of SBE

	Concluding remarks and future works
	Bibliography

