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Abstract

Wind turbines consist of many mechanical, electrical and hydraulic com-
ponents. Failures in any of these can lead to high financial loss, both as
actual repair costs and from lost production time. Often, failures do not
occur instantaneously but rather as a consequence of sequential degrad-
ing. Therefore, many failures can be detected in advance using so-called
condition monitoring systems. Through their supervisory control and data
acquisition system, modern wind turbines store information about their op-
erating state. Among other things, signals such as produced power, wind
speed, and various component temperatures are recorded. In this thesis,
a condition monitoring system that leverages this data is developed. The
system is based on deep autoencoders, a type of neural network that learns
to reconstruct its input data. By training an autoencoder on data from a
healthy wind turbine it can learn the dependencies between different SCADA
signals under normal conditions. If it then gives a poor reconstruction for
new data, it is likely that something has changed in the internal dynamics
of the wind turbine which could indicate a degraded component.

Previously, many similar systems have been developed. These have
shown good results and detected multiple component failures up to months
in advance. However, they usually only monitor one component at a time
and are therefore not able to provide a complete condition monitoring sys-
tem. Autoencoders, which do not suffer this problem, have also been inves-
tigated but not at a larger scale.

In this thesis, a relatively large, labeled dataset was utilized. With this
data, the efficiency of condition monitoring systems based on autoencoders
was tested on a variety of real faults. Moreover, the influence of various prop-
erties of the autoencoder was investigated. The results of the investigation
showed that an autoencoder based condition monitoring system is capable
of detecting a variety of failures in wind turbines. Finally, suggestions for
future developments are discussed in the thesis.

Keywords: Wind turbine, condition monitoring system, anomaly detection,
preventive maintenance, SCADA, machine learning, unsupervised learning,
neural network, autoencoder, hyperparameter selection



Acknowledgments
I would like to thank the whole of Greenbyte for making this thesis possible.
In particular, I would like to thank Pramod for his patience and guidance,
Edmund for his never-ending help with all sorts of strange issues and Thomas
for his light-heartedness and support.

I would also like to thank my examiner Kristian for all the reviews and
text discussions; they were not required of you and I am grateful for your
aid.

Not only for this thesis, but for my entire education: Tack Mamma,
Pappa, Ola och Anette—utan er hade det inte varit samma sak!

Finally, I would like to thank all my friends—past, present, and future—
you continue to teach me new things and make life not boring.



Contents

1 Introduction 1
1.1 Background and problem formulation . . . . . . . . . . . . . . 1
1.2 CMS based on the Supervisory Control And Data Acquisition

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Previous studies . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical background 6
2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Model of a neuron . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Activation functions . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Network structure . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Single hidden layer feedforward neural networks . . . . 9
2.1.5 Deep feedforward neural networks . . . . . . . . . . . . 9
2.1.6 Training of a network . . . . . . . . . . . . . . . . . . . 11
2.1.7 Regularization for neural networks . . . . . . . . . . . . 14
2.1.8 Enabling training of deep neural networks . . . . . . . . 16
2.1.9 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Mahalanobis distance and whitening . . . . . . . . . . . . . . 21
2.3 Exponentially weighted moving average . . . . . . . . . . . . . 24
2.4 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Designing an autoencoder model 27
3.1 Preprocessing of SCADA data . . . . . . . . . . . . . . . . . . 27
3.2 Anomaly detection using autoencoders . . . . . . . . . . . . . 30
3.3 Parallel training with stacked networks . . . . . . . . . . . . . 31
3.4 Hyperparameter selection for the autoencoder models . . . . . 32

3.4.1 Selection of training hyperparameters . . . . . . . . . . 32
3.4.2 Selection of model architecture . . . . . . . . . . . . . . 34



4 Validation study 39
4.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Postprocessing of the reconstruction error . . . . . . . . . . . . 45
4.3 Alarm system . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Code size 6 . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Code size 12 . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 Code size 18 . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4 Code size 24 . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.5 Code size 30 . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.6 Code size 36 . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.7 Comparison between different code sizes . . . . . . . . . 53

5 Closure 55
5.1 The importance of code size . . . . . . . . . . . . . . . . . . . 55
5.2 The effect of normally distributed input noise . . . . . . . . . 56
5.3 Discussion of the validation study . . . . . . . . . . . . . . . . 57
5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography

Appendix

A Literature review A1
A.1 Similarity-based models . . . . . . . . . . . . . . . . . . . . . . A2
A.2 Residual-based models . . . . . . . . . . . . . . . . . . . . . . A3

A.2.1 Polynomial models . . . . . . . . . . . . . . . . . . . . . A4
A.2.2 Single output neural networks . . . . . . . . . . . . . . . A5
A.2.3 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . A9

A.3 Power curve monitoring . . . . . . . . . . . . . . . . . . . . . . A11

B Case studies B1
B.1 Change in hydraulic oil temperature . . . . . . . . . . . . . . . B1
B.2 Yaw encoder malfunction . . . . . . . . . . . . . . . . . . . . . B3



Glossary
AE Autoencoders
ANFIS Adaptive neuro-fuzzy inference systems
ANN Artificial neural network
DAE Deep autoencoders
DBSCAN Density-based spatial clustering of applications with noise
DFN Deep feedforward neural network
ELM Extreme learning machine
EWMA Exponentially weighted moving average
GPR Gaussian process regression
kNN k-nearest neighbours
MAPE Mean absolute percentage error
MD Mahalanobis distance
NSET Non-linear state estimation technique
PCA Principal component analysis
RBM Restricted Boltzmann machines
ROC Receiver operating characteristics
RUL Remaining useful life
SCADA Supervisory Control And Data Acquisition
SDP State-dependent parameter model
SGD Stochastic Gradient Descent
SLFN Single hidden layer feedforward neural network
SOM Self-organizing map
SVM Support-vector machines
WT Wind turbine
ZCA Zero-phase component analysis



Chapter 1

Introduction

1.1 Background and problem formulation
Climate change is one of the greatest challenges of our time according to the
UN [1]. The Paris Agreement, signed by 195 countries and entered into force
on the 4th of November 2016 aims to limit the rise of global temperature to
2 ◦C over pre-industrial levels [2]. For this to be achieved it is imperative that
energy production is moved from non-renewable resources such as oil and
coal to renewable resources such as wind and solar. Facilitating this change
requires economic incentives for the construction of renewable energy and
one of the most straightforward ways of achieving this is by reducing the
overall production cost.

Wind power stands for a large part of the world’s current renewable
electricity with 23.6 % of the total capacity in 2017 and 28% of the newly
installed capacity between 2016 and 2017 [3]. Operations and maintenance
costs contribute between 11% and 30% to the levelized cost of energy 1 for
onshore wind farms and an even greater part for offshore wind farms [4]. A
cost reduction in this area will therefore greatly impact the competitiveness
of wind power and green energy as a whole.

Wind turbines (WT) are complex machines subjected to highly variable
environmental conditions. They can fail in numerous different ways and
failures are usually expensive to repair and cause long downtimes. This is
especially true for WTs located at inaccessible locations such as offshore.
Many failures are not caused by a sudden event but rather stem from con-
tinuous wear and tear and the subsequent degrading of components such as
gears and bearings. Consequently, many critical failures could be prevented
if the worn down component was identified.

Due to the large scale of modern-day wind farms, manual inspection of
all turbines is very labor intensive and, instead, a lot of effort has been put

1The levelized cost of energy is defined as the price of electricity required for an instal-
lation to break even over its lifetime [4].
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into developing automated systems that can detect damaged components.
Many different techniques can be used to develop such condition monitor-
ing systems (CMS) and among the most common are vibration analysis,
oil analysis and strain measurements [5]. However, such systems require
the installation of additional measurement devices which typically comes
with high installation costs [6]. Furthermore, while vibration analysis-based
systems that monitor mechanical parts such as the gearbox typically per-
form well, other systems that monitor electrical and hydraulic parts are
not equally developed and are less capable [6]. Because of these drawbacks,
there is a demand for different kinds of CMS’s that do not require significant
installation costs and perform well for the entire system.

1.2 CMS based on the Supervisory Control And
Data Acquisition system

All modern WTs have a supervisory control and data acquisition (SCADA)
system installed. This system allows the user to remotely control and mon-
itor the WT. It also records a number of different signals from the WT’s
operation that can be used for condition monitoring. The signals can be
sorted into four different categories: environmental signals, such as wind
speed and ambient temperature; monitoring signals, such as gearbox oil
temperature and gearbox bearing temperature; electrical signals, such as
power output and generator voltages; and control variables, such as pitch
angle and yaw angle. The data can be seen as a digital representation of the
WT and a lot of work has been put into developing a CMS based on this
SCADA data.

Most SCADA-based CMS can be divided into three steps: preprocess-
ing, anomaly detection, and postprocessing. In the preprocessing step the
SCADA data is collected and prepared for further analysis. Typically this
involves removing timestamps where some signal was missing and scaling all
signals to be in the same range.

It is in the anomaly detection step where the actual data inspection
happens. Usually, some kind of model is built from healthy data and is
then used to score the “normality” of new data. The effectiveness of a given
model can make or break the entire CMS and a lot of research has been put
into investigating different anomaly detection models and finding the ones
best suited for WTs.

The incoming SCADA data can be quite noisy. Wind gusts, turbine
startups, and sensor misreadings can all trigger an anomaly detection model
without necessarily implying that the WT is malfunctioning. For this rea-
son, it is important to further analyze the outputs of an anomaly detection
model in order to distinguish true faults from noise; this is done in the post-
processing step. Usually, postprocessing systems work under the assumption

2



that, given a true change in the WT dynamics, the anomaly detection model
will be triggered more often and indicate larger deviations from normality
than what would happen under normal conditions. Typical methods include
threshold systems and moving averages, but, since the postprocessing is de-
pendent on the anomaly detection model used, there is no “best” method.

1.2.1 Previous studies

Various researchers have investigated the effectiveness of a SCADA-based
condition monitoring system for WTs. Mainly, different anomaly detection
models have been compared. An extensive literature review can be found in
Appendix A and Table 1.1 presents a summary of the models and methods
investigated. It can be observed that the gearbox and generator are the
most investigated components. The interest in gearbox and generators is
expected as they fail often, detecting failures in them is relatively simpler,
and there exist economic incentives to detect failures in these components
at an early stage.

Model/Method References Case studies pre-
sented for

Self-organizing map [7] Gearbox
Nonlinear state estima-
tion technique

[8] Gearbox

Density-based cluster-
ing

[9] Generator

Polynomial fit [10], [11], [12] Generator, Blades,
Main bearing

Statistical methods [11], [13], [14], [15] Gearbox, Generator,
Blades

Gaussian Processes Re-
gression

[16], [17] Not applicable

Adaptive neuro-fuzzy
inference system

[16], [18], [19] Various components

Single hidden layer feed-
forward neural network

[20], [21], [22], [23], [14],
[16], [24]

Gearbox, Generator

Deep feed-forward neu-
ral network

[12] Gearbox

Autoencoder [7], [25], [26] Gearbox, Generator,
Blades

Table 1.1: Summary of the models and methods presented in Appendix A
used for detecting different faults.

Methods based on neural networks; single hidden layer feed-forward neu-

3



ral network (SLFN), deep feedforward neural networks (DFN) and adap-
tive neuro-fuzzy inference systems (ANFIS) are the most applied and have
in comparative tests often outperformed other kinds of anomaly detection
models [16], [22], [14]. Typically, these models work by reconstructing one
of the available SCADA signals from a subset of the others. Next, the value
of the reconstructed signal is compared with the actual signal value and a
reconstruction error is calculated. This serves as the basis for an anomaly
detection model where a higher than usual reconstruction error indicates
that something has changed in WT dynamics. These models have shown
good results by detecting faults well in advance. Since these models only
reconstruct a single signal, however, a fault will only be detected if it affects
that signal. Therefore, these models lack an overall system perspective and
cannot detect all faults that can occur in a WT. In [18] and [19] Schlechtin-
gen et. al attempted to employ one neural network model for each subsystem
of a WT to get more complete coverage and their system was successful at
detecting a variety of faults. To select a proper mapping between inputs
and outputs, a combination of data reduction techniques and a physical un-
derstanding of the system was, however, required. Since different types of
turbines often have different sets of signals this could become troublesome
if the system was to be employed at scale. Moreover, the system requires a
large number of neural networks to be trained which can also cause issues
for scalability.

Lately, anomaly detection models have been constructed using a differ-
ent kind of neural network, the autoencoder (AE). These networks have
proven successful at detecting both blade issues [25] and sensor failures [26].
Since autoencoders reconstruct all of their input signals they are capable of
detecting faults in many different components of a WT. Furthermore, since
only one network needs to be employed per WT, some of the scalability
issues previously mentioned are mitigated.

1.3 Aim of the thesis
In this thesis, a condition monitoring system for wind turbines which uti-
lizes SCADA data will be developed. Drawing upon the valuable knowledge
generated by previous academic research, this system will utilize deep au-
toencoders for anomaly detection. Autoencoders have the theoretical capa-
bility to provide a complete condition monitoring of a WT and they should
be possible to employ at a large scale. In previous studies [25], [26], au-
toencoders have proven capable of detecting a variety of faults, but they
have still not been thoroughly investigated at a large scale with realistic,
10 minute sampled SCADA-data.

One of the main contributions of this thesis is to study the effectiveness of
autoencoders as anomaly detection models for wind turbines. A relatively
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large dataset is available where six different types of anomalies could be
identified using service logs. This enables investigating different properties
of the autoencoder in terms of their actual influence on anomaly detection
performance.

1.3.1 Scope of the thesis

This thesis focuses on investigating anomaly detection models for WTs based
on deep autoencoders. To test these, a full CMS with additional preprocess-
ing and postprocessing steps is employed. These, however, are of a sec-
ondary nature and no thorough comparison between different possibilities is
performed.

Different autoencoders are the only anomaly detection models tested.
The purpose of this work is not to do an exhaustive comparison of all possible
models but rather to find one or a few that works well from a system-wide
perspective. Further, since many anomaly detection models only monitor at
a component level, a fair comparison between these and autoencoders would
require the development of one such model per component which is a major
work beyond the scope of this thesis.

1.4 Thesis structure
The rest of this thesis is structured as follows:

• Chapter 2 provides the theoretical background to the methods and
models employed such as artificial neural networks and exponentially
weighted moving averages. In particular, it provides detailed infor-
mation on the training and application of artificial neural networks as
this is a major part of the thesis.

• Chapter 3 describes the process of designing autoencoder models for
anomaly detection and gives information on how and why certain de-
sign decisions were made. It further discusses the preprocessing of
SCADA data, practical implementation details and presents a study
of different hyperparameters’ effect on training and validation errors.

• Chapter 4 presents a large validation study which, using a labeled
dataset, compares different autoencoder models and evaluates their
effectiveness as anomaly detection models. Further, the postprocessing
of reconstruction errors is discussed.

• Chapter 5 discusses the findings in the thesis and proposes future work.
Finally, the thesis is concluded.
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Chapter 2

Theoretical background

This chapter presents a theoretical background to the tools and concepts used
in this thesis.

2.1 Artificial Neural Networks
Modern day computers are capable of performing trillions of computational
operations every second [27] and have revolutionized the way our society
works. Still, some tasks that the human brain perform on a daily basis such
as holding a conversation or understanding pictures are very difficult for a
computer. The field of Artificial Intelligence is devoted to the simulation
of such intelligent behaviour in machines and one of the most successful
models is the Artificial Neural Network (ANN). ANNs are loosely based
on the structure of the human brain and can perform complex information
processing. Typically, they can be described as a transfer function from some
input x to some output y. The inputs can be anything from instrument
readings to light-intensity of pixels but they are almost always encoded as
a single or a vector of real numbers, x = (x1, x2, . . . , xm), xi ∈ R. The
outputs are given in a similar form, y = (y1, y2, . . . , yl), yi ∈ R, but can be
interpreted as the value of a different signal, as the probability of an image
belonging to a certain class or as anything else that can be represented by
real numbers.

The following Sections goes more in-depth of the various parts of an
ANN and how it can be trained and “learn” from input data.

2.1.1 Model of a neuron

The human brain is a network of neurons (or nerve cells) that receive, process
and transmit electrical or chemical information. Similarly, an ANN is a
network of artificial neurons. Each artificial neuron receives a set of input
variables and produces an output. First, all of the inputs are weighted and
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then they are combined with a bias in a sum. Next, this weighted sum is
passed to an activation function ϕ(·) which introduces a nonlinearity to the
transfer function of the neuron. A diagram of the procedure is shown in
Figure 2.1.

x1

x2

xl

b

×w1

×w2

×wl

Σ ϕ y

Figure 2.1: An artificial neuron that transforms the input x as

x→ y = ϕ(v), v =
∑
i

wixi + b

2.1.2 Activation functions

The activation function ϕ(·) in Figure 2.1 is important since it introduces
a nonlinearity to the transfer function of a neuron. Without this, it doesn’t
matter how we combine different neurons: if all we do is pass linearly trans-
formed data around all we’re going to get in the end is linearly transformed
data.

There are many different activation functions that one can think about
and below some are described, starting from the simplest ones to the ones
currently in use.

Step function

The real neurons in the human brain fire when the input signal is strong
enough. Inspired by this, one of the first artificial neurons, the Perceptron,
used a simple step function to make a binary classification of points [28].
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A step function is defined as

ϕ(v) =
{

1 if v > 0,
0 otherwise

(2.1)

and can thus have an output of either 0 or 1 depending on if the weighted
sum is negative or positive.

Logistic function

Since most ways of training a network (see Section 2.1.6) relies on deriva-
tives it is beneficial if the activation function of a neuron is differentiable
everywhere. The logistic function,

ϕ(v) = 1
1 + exp(−v) , (2.2)

has this property and can be seen as a “smooth step function”. This and
similarly shaped (together called sigmoid) activation functions have been
widely used in ANNs, especially for classification.

Rectified linear unit

A problem with both the step and the logistic function is that of vanishing
gradients. If the input v is too high or too low the gradient of the activation
function will be zero or close to zero and the algorithms used for training
(Section 2.1.6) cannot sense in which direction they should shift the weights
to get a better output. To counteract this problem the activation function
called Rectified Linear Unit (ReLU) is commonly used. ReLU maps negative
inputs to zero and positive inputs to themselves:

ϕ(v) =
{
v if v > 0,
0 otherwise .

(2.3)

In comparison with the logistic function, the derivative is quick to calculate
and, for positive inputs, the problem with vanishing gradients is removed.
For negative inputs, the problem still exists and is referred to as “dying
ReLU”. In some cases, however, this can be a strength instead of a weak-
ness since it causes a regularization (Section 2.1.7) of the network. During
training, some nodes will become deactivated for some of the inputs and the
network will thus get a lower and lower complexity as the training proceeds.

Because of these benefits, ReLUs have become the most commonly used
activation function for deep neural networks in the most recent years [29].
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2.1.3 Network structure

A single artificial neuron is not capable of modeling very complex phenom-
ena. In fact, it was shown that the Perceptron, one of the first artificial
neurons which learnt to classify points into one of two classes, only had the
capability to solve linearly separable problems [30]. To overcome this prob-
lem researchers started investigating connecting neurons to each other in a
network, just as in the human brain. Several network structures have been
proposed and different structures have proven successful at solving different
kinds of problems. Below, three different architectures, most closely related
to the work in this thesis are discussed. They are all subsets of the class
feedforward neural networks, in which neurons are organized in consequent
layers and information flows forward from one layer to the next.

2.1.4 Single hidden layer feedforward neural networks

The simplest kind of feedforward neural network is the single hidden layer
feedforward neural network (SLFN). The network consists of the input
nodes, a single layer of artificial neurons (referred to as the hidden layer),
and the output node(s). Each neuron in the hidden layer receives a weighted
sum of the inputs and this value is passed through its activation function
which produces an output, just as in Figure 2.1. After the hidden layer,
all outputs are once again combined in a weighted sum to produce the final
output of the network. The whole architecture is shown in Figure 2.2.

Training the network refers to adjusting all its weights so that it produces
the desired output. In [31], Hornik et. al showed that, given a large family
of activation functions, such a network is a universal approximator, i.e. it is
capable of approximating a large set1 of transfer functions with an arbitrary
precision given a sufficient number of artificial neurons in the hidden layer.

2.1.5 Deep feedforward neural networks

According to the universal approximation theorem [31] a SLFN is capable
of approximating almost any transfer function. However, the number of
hidden units required is not fixed and, in the worst case scenario, it can
grow exponentially with the number of input configurations that need to
be distinguished [32]. To overcome this problem one can add depth to the
network. Depth means that instead of one large hidden layer the network
has several smaller hidden layers put in sequence, see Figure 2.3.

The sequence of layers allows the network to decompose the transfer
function: to identify a cat in an image it can first identify that there is an
animal and in the next step that the animal is a cat. The following example
illustrates why depth has the potential to greatly reduce the total number

1Borel measurable functions
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x1
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y

Figure 2.2: Architecture of a single hidden layer feedforward neural network.

of neurons. Suppose we want to classify the type and colour of a vehicle
in an image. We may have images with bikes, motorcycles, and cars and
each one of these might have the colour red, green or yellow. If we want to
perform the classification in one step we would have to separate 3 × 3 = 9
different combinations and need equally many decision units. However, we
can split the decision making into two steps and first determine the type
and then the colour. This way we disentangle the decisions and since they
do not depend on each other we would only need 3 + 3 = 6 decision units.

There is no way of proving exactly how beneficial depth is and when it
is needed since the transfer functions we wish to model vary a lot and are
inherently unknown. There is, however, empirical evidence showing that
greater depth seems to give better generalization results for a wide variety
of tasks [32].

x1

x2

xl

ϕ(Σ)

ϕ(Σ)

ϕ(Σ)

ϕ(Σ)

ϕ(Σ)

ϕ(Σ)

ϕ(Σ)

ϕ(Σ)

ϕ(Σ)

y

Figure 2.3: Architecture of a single hidden layer feedforward neural network.
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2.1.6 Training of a network

Since the transfer functions we wish to model with ANNs are inherently
unknown, the weights of the networks need to be learnt from data. This
procedure is referred to as training of a network. A training dataset, contain-
ing a set of inputs {xi}Ni=1 and their respective targets {yi}Ni=1, is provided.
The inputs are fed through the network and the outputs {ŷi(xi)}Ni=1 are com-
pared to the desired output {yi}Ni=1 using a cost function C({ŷi}Ni=1, {yi}Ni=1).
Typical cost functions include mean squared error:

C({ŷi}Ni=1, {yi}Ni=1) = 1
N

N∑
i=1

(ŷi − yi)2, (2.4)

and mean absolute error:

C({ŷi}Ni=1, {yi}Ni=1) = 1
N

N∑
i=1
|ŷi − yi|. (2.5)

The problem of setting the weight parameters now becomes equivalent to
minimizing the value of the cost function and various sorts of optimization
algorithms can be used. Today, the most popular algorithms are based
on using information from the derivatives of the cost function with respect
to the weights. Methods that only use the first derivative are referred to
as gradient descent-based methods and are described below. There has
been some work using methods which include second derivatives but these
have not proven as useful for deep networks [32] and will therefore not be
presented here.

Gradient descent

Gradient descent can be described as finding the lowest point on a surface
by first taking a step in the direction with the steepest slope downward,
then reevaluating where the slope is now the steepest, taking another step
in this direction and so on. In mathematical terms, the surface corresponds
to the value of the cost function and the steps corresponds to small changes
in the dependent variables, i.e. weights for a neural network. The slope
is determined by the partial derivatives of the cost function and it can be
proven that the steepest slope corresponds to the gradient vector of the cost
function. Therefore, gradient descent calls for taking successive steps in the
direction of the negative gradient of the cost function. Gradient descent
for a neural network is explicitly stated in Algorithm 1 where the vector
w refers to all the weights of the neural network. The speed with which
the network learns is dependent on the variable ε which is the length of a
step and referred to as the learning rate. The value of ε is often important
for the convergence of gradient descent. A low learning rate will lead to a
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while Convergence criteria not met do
Calculate ∇wC(w);
New weights w = w − ε∇wC(w);

end
Algorithm 1: Gradient descent for a neural network.

slow convergence while a high one might cause the model to oscillate and
never converge. In practice, one often tests several different rates to find the
one leading to the best results. Such optimization of the learning algorithm
itself is referred to as hyperparameter optimization where the learning rate
is one of many hyperparameters [32].

The gradient descent algorithm works well for functions that only have
one global minimum. If, however, a function has many local minima or
other flat areas such as saddle points, the algorithm can get stuck in one of
these areas. Some methods that help the algorithm escape these regions are
presented below. Additionally, these methods can significantly decrease the
time required to train the network.

Stochastic algorithms

Computing the gradient using the entire dataset can be computationally
heavy when the number of samples becomes large. The gradient on the
training dataset is really only an estimation of the gradient for unseen ex-
amples; another estimate of the gradient can be calculated from a subset of
the training dataset. For a subset with n samples the estimate’s standard
error goes as σ/

√
n where σ is the standard deviation of the distribution of

data samples [33]. The improvements in accuracy are thus less than linear in
n and, since the computation time is linear, we will get diminishing returns
for using more samples to estimate the gradient.

It has been shown empirically that most optimization algorithms con-
verge much faster if they are allowed to calculate approximate gradients on
subsets of the training dataset [32]. Such algorithms are called minibatch or
stochastic algorithms and one of the simplest and most commonly used is
stochastic gradient descent (SGD) which works just as normal gradient de-
scent except that at each step a sample of size n is drawn from the training
dataset to provide an estimate of the gradient. This can also alleviate the
problem of converging to a local minimum since the gradients calculated on
different minibatches can point away from the minimum even if the gradient
on the entire dataset would be zero.

The choice of the minibatch size n is not straightforward since a smaller
n introduces more noise to the calculated gradient which can cause the
error of the model to fluctuate heavily while a larger n will increase stability
but also significantly slow down the computation time for each estimate.
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Therefore, n is, similarly to the learning rate ε, a hyperparameter to be
selected. In practice, one often tests several different values in order to
find the right compromise between stability and computational effort. The
minibatch estimation introduces a level of noise to the gradient. Hence, the
choice of learning rate ε is even more important than for the deterministic
gradient descent. In fact, for the algorithm to converge at all one must
successively decrease the learning rate [32]. Otherwise, the minibatch noise
would forever cause the model to oscillate around a minimum.

Momentum

To speed up learning and also provide a tool for escaping flat regions some
algorithms incorporate momentum. Momentum algorithms accumulate an
exponentially weighted moving average (see Section 2.3) of the previous
gradients and continue to move in their direction. More concretely, momen-
tum introduces a velocity v and updates this as an exponentially weighted
moving average of the negative gradient. The weights are then updated by
adding v. The update scheme is shown in equation (2.6) where a hyper-
parameter λ ∈ [0, 1), determines how quickly the contributions of earlier
gradients decay.

vk+1 = λvk − ε∇wC(wk+1) (2.6)
wk+1 = wk + vk (2.7)

Momentum derives its name from a physical analogy in which the weight
vector w is a particle moving through space with velocity v. It experiences
a driving force from the negative gradient and a dampening force akin to
viscous drag which causes the exponential decay.

Algorithms that incorporate momentum have empirically shown quicker
and better convergence than those without [32]. The decay parameter λ
is, however, a new hyperparameter that needs to be considered. Hence, the
finetuning of algorithms with momentum is more complex than that of those
without.

Adaptive algorithms

We have previously discussed how the learning rate ε needs to be fine-tuned
for gradient descent algorithms to be effective. Not only does one need to
correctly set the initial value but, in the case of SGD, one also has to choose
a proper scheme for decreasing it. To overcome these problems many re-
searchers have looked into schemes to automatically adjust this parameter.
Typically the learning rate is decreased proportionally to the squared values
of the previous gradients ensuring a large learning rate for flat areas and a
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smaller one for steep ones. Empirically, algorithms that include some adap-
tive learning scheme have been shown quite robust to the hyperparameter
selection and some of the most commonly used ones are AdaDelta, RM-
SProp and ADAM. That said, plain SGD and SGD with momentum are
also commonly used and produce similar results once correctly tuned [32].

2.1.7 Regularization for neural networks

For a neural network, good performance on seen data is not the ultimate
goal. Rather, we want it to perform well on new, previously unseen inputs.
This is called the network’s generalization capability and in practice, it can
only be optimized indirectly with the training data. In a perfect world, this
would not matter since any information that could be extracted from seen
data would also be featured in new data and therefore useful to learn. In
reality, however, all data is contaminated in some way by measurement noise
or missing values and if the network is too capable it will also fit on this
incorrect data. This is referred to as overfitting and must be limited when
designing a good machine learning algorithm.

To know whether a network is overfitted or not it is important to be able
to test it on unseen data. Therefore, a given dataset is usually split into two
parts: the training dataset and the testing dataset where the former is used
to train the network and the latter to infer how well it performs on unseen
data.

Apart from optimizing the weights of the network, the training phase is
also used to determine parameters of the model or optimization algorithm
itself, so-called hyperparameters. These include the learning rate and mo-
mentum parameters discussed earlier but also parameters such as the overall
structure of the network or the choice of optimization algorithm. If these
were learnt on the training dataset they would always be set so as to give
the network as high capacity as possible and thus making it keen to overfit.
If they were induced from the testing dataset, however, the testing error
would no longer be an unbiased estimate of the generalization error of the
network since the model had been selected to favour this data. Therefore,
it is common practice to split the training dataset into two parts, one for
optimizing the weights and one for determining all the various hyperparam-
eters. Usually, the former part is larger and still referred to as the training
dataset while the latter is smaller and referred to as the validation dataset.

Since overfitting occurs when the model is too capable one of the sim-
plest ways to avoid it is by limiting the network in some way. If, however,
a too simple model is used, the target function would be missed altogether.
Fitting a sinus wave with e.g. a linear model would make both the general-
ization and training errors huge. Consequently, instead of simply restricting
the number of nodes in a network it is often better [32] to regularize the train-
ing process by inducing some prior knowledge on how the network should
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behave. Regularization methods include restricting the size of the weights
and adding additional noise to the data. Some of these are discussed below.

Early stopping

One of the simplest ways to regularize a network is to keep track of the error
on the validation set and stop training the network once the error seizes to
decrease. In practice, one stores the configuration with the lowest validation
error and if no improvements are made for a fixed number of iterations p
(called patience) training halts and the stored configuration is used.

Due to its effectiveness and simplicity, early stopping is one of the most
commonly used regularization techniques for deep as well as shallow neural
networks.

Penalizing weights

Another regularization technique is to force weights toward a fixed value
w0, chosen to be a value which we expect the weights to take. Typically
we have no prior information on what the weights should be and we simply
set w0 = 0 and the method penalizes big weights. Two common ways of
penalizing the weights are L2 or ridge regression and L1 or lasso regression.
Both methods add an extra term to the cost function:

C̃(w) = C(w) + αΩ(w).

For ridge regression, the extra term equals half the L2-norm of the
weights:

ΩRidge(w) = 1
2 ||w||

2
2.

It can be shown that, from a probabilistic point of view, optimizing with
ridge regression is the same as having a normal distribution as a prior distri-
bution on the weights and then solving in a maximum likelihood fashion [32].

There is a close connection between ridge regression and early stopping.
Ridge regression tries to limit the L2-norm of the weights which can be in-
terpreted as limiting their distance from the origin. With early stopping
one essentially limits the number of steps the weights are allowed to travel
from an initial value, usually the origin. Thus there is a maximum distance
that the weights are allowed to travel. For a simple kind of loss function, a
quadratic function, the methods have in fact been proven perfectly equiva-
lent [32], and, in practice, one method can often be used as a substitute for
the other.

Similarly to Ridge regression, Lasso regression also penalizes large weights
but this time it’s the L1-norm that’s being penalized:

ΩLasso(w) = |w|.
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Instead of forcing small weights overall, this causes some weights to be small
and others to vanish completely [32]. Thus the network becomes sparse with
active connections between only some of the nodes.

Dropout

Dropout refers to randomly dropping connections between network nodes
during training. At each iteration, a random number of weights are set
to zero and different features are thus hidden from the network. From a
different perspective, at each step, a different network is used for inference
and the weights are adjusted accordingly. For this reason, dropout can be
seen as a cheap way of implementing bagging, i.e. training several different
models and combining the results. Especially for deep networks, dropout has
been successful, often outperforming other regularization techniques such as
penalizing weights [32].

2.1.8 Enabling training of deep neural networks

In the early ’00s, DNNs were considered too difficult to optimize and most
machine learning research focused on other methods such as support vector
machines and random forests. The main issue is that when backpropagation
is applied to DNNs the resulting gradients can vary greatly in size between
different layers. This causes some layers to learn faster than others and
the network can get “stuck” in a region where its activation functions are
saturated but its performance is suboptimal. Most of the time, the gra-
dients decrease from one layer to the next as a consequence of successive
multiplications of matrices with maximum eigenvalues smaller than 1. The
problem is known as the “vanishing gradient problem” and it was not until
2006 when Hinton et. al [34], [35] applied so-called “layer-wise pretraining”
to overcome it that DNNs reached state-of-the-art performance. Since then,
many methods and tools have been developed to achieve efficient training
of DNNs and some of these are described below.

Pretraining, weight initialization and activation functions

In [34] Hinton et. al applied Restricted Boltzmann machines (RBM) to
“pretrain” the weights of a DNN model and subsequently achieve state-of-
the-art classification errors on the MNIST dataset and reignited the research
into neural networks. The theory behind RBMs is beyond the scope of
this thesis but, in short, they can be described as a two-layer model that
encodes a representation of its input variables (layer one) in a set of hidden
variables (layer two) [32]. RBMs are equivalent to a kind of ANN with
sigmoid activation functions and the idea of pretraining is to stack layers of
RBMs. The first layer is trained to encode the inputs from the dataset to
the second layer and the outputs of this are then used to encode another
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representation in the third layer and so on. Finally, the last layer of the
ANN is tuned in a traditional way to solve the task at hand. This solves the
problem of saturated activation functions by moving the network parameters
to a “good” initial region and then learning from there.

Following the success of pretraining, Glorot et. al [36] investigated why
traditional training had failed by looking at the activation of hidden units
as well as the sizes of backpropagated gradients for different layers. They
found that, at the beginning of training the gradients quickly decayed from
one layer to the next, and, as a likely consequence of this, the layers stopped
adapting one after the other. Using a linear toy model they proposed a new
initialization strategy to allow gradients to persist in size as they propagated
through the network. According to this Glorot initialization the weights for
each layer should be initialized from the distribution

Wij ∼ U(−
√

6
# inputs + # outputs ,

√
6

# inputs + # outputs). (2.8)

With this initialization, the authors obtained equally sized activation values
and gradients across all layers and were able to successfully train DNNs with
up to five hidden layers. Moreover, they found that the choice of activation
function made a big difference with the traditionally popular sigmoid func-
tion being suboptimal. Subsequent works [37], [38], [39] showed good results
for the ReLU activation function which has the benefit of not saturating in
the same sense as sigmoidal activation functions.

In [40] Sussilo showed that, since the matrices in a feedforward NN are
all different, the propagation of gradients from one layer to the next can be
interpreted as a random walk. If the activations were adjusted with a gain
factor g, which depends on the network architecture, the vanishing gradient
problem could mostly be avoided. Using this Random walk initialization
Sussilo was able to effectively train networks as deep as a thousand layers.

After this, many different initialization schemes have proven successful
in training DNNs, especially in combination with ReLU activation functions.
However, none of the schemes consistently leads to the best results which,
according to [32], can be for three reasons:

• It may not be optimal to preserve the norm of a signal throughout the
network.

• The properties imposed by initialization may not persist after learning
has begun to proceed.

• The strategy might succeed at improving convergence speed but will
also increase the generalization error.

For this reason, the authors recommend treating the initialization as a hy-
perparameter to be searched for.
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Batch Normalization

The main issue with depth is that it introduces highly non-linear dependen-
cies on the parameters: an ever so slight change of the first layer’s output
will cascade through the network and either grow or decay exponentially
depending on the weights in the following layers. A gradient-based learning
algorithm either has to use a very low learning rate or utilize higher order
information to address this issue. There are some learning algorithms that
use second-order derivatives but these are computationally expensive and in
deep networks even third or fourth order interactions can be important.

Batch normalization is an elegant solution to this problem. In essence, it
re-parametrizes the outputs of any layer making it less sensitive to changes
in the previous layers. With H being a minibatch of activations with rows
as samples and columns as features, the first step is to transform its elements
Hij to have zero mean and unit standard deviation:

H ′ij = Hij − µj
σj

,

where µj and σj are the mean and standard deviation of the j’th feature
calculated on the minibatch. This step ensures that any gradient-based
optimization algorithm will not propose a change that only alters the mean
or standard deviation of a layer’s activations since any such changes would
be canceled out by the normalization.

During the training, running averages of the means and standard de-
viations are calculated and these are then used for inference at test time.
This way, all test examples are normalized the same way and even a single
example can be evaluated.

The normalization can limit the capacity of the network and to coun-
teract this it is common that each normalized hidden activation H ′ij is re-
placed with the affine transformation γjH ′ij + βj . γj and βj are parameters
trained by the network that once again allow the activations to have any
mean or standard deviation. All in all, batch normalization allows the new
parametrization to represent the same family of functions as the old ones
but changes the learning dynamics. While the mean and standard deviation
of Hij can depend on complicated interactions of the previous layers, the
mean and standard deviation of γjH ′ij + βj will only depend on βj and γj
respectively. This significantly decreases the problems with deep learning
and gradient descent.

In addition to simplifying the training, batch normalization has a reg-
ularizing effect that helps with generalization. Each time the network sees
an example xi it is normalized differently depending on what other exam-
ples are in the same batch. This has the effect of adding random noise to
the samples after each layer and forces the network to be more robust to
inherent noise in the training dataset.
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2.1.9 Autoencoders

An autoencoder is a neural network which tries to transfer the input x onto
itself. To force autoencoders to not only copy the input perfectly they are
restricted in either their architecture or in their training procedure. These
restrictions force the autoencoder to learn only the most important features
of the training data since it cannot model everything correctly. The learnt
features often provide a better representation of the data and autoencoders
have, among other things, been used for anomaly detection, dimensionality
reduction, and feature extraction.

Internally, an autoencoder can be viewed as consisting of two parts, an
encoder function that produces a code c from the input, c = e(x), and a
decoder function that tries to reconstruct the input from this code, r = d(c).
Typically, the network is built in a feed-forward fashion and the code c
simply corresponds to a hidden layer. The architecture of such a network
is shown in Figure 2.4. This network only has one hidden layer, the code
layer c. However, just as depth can be beneficial for traditional feedforward
networks it can be successfully used for autoencoders as well. Such an
autoencoder is shown in Figure 2.5.
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Figure 2.4: Architecture of a shallow autoencoder.

In this thesis, autoencoders will be used to model the distribution of
wind turbine data and to determine whether new data points come from
this distribution or not. The idea is simple: during training, the autoen-
coder learns to reproduce data from a distribution similar to the training
distribution. If new data is reproduced well it is likely that it’s coming from
the same distribution as the training data. If, on the other hand, it is not
reproduced well and the reconstruction error is large then it is likely that
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Figure 2.5: Architecture of a deep autoencoder.

this data comes from a different distribution than the training data.

Undercomplete autoencoders

One way of restricting the network is to set the code to have fewer neurons
than there are inputs. The network is then forced to represent the data in a
lower dimension and will only learn its most prominent features. These au-
toencoders are referred to as undercomplete autoencoders and the networks
in Figures 2.4 and 2.5 are of this type.

Denoising Autoencoders

A different way of ensuring that an autoencoder learns useful features of
the data distribution is to add noise to the input x during training. The
autoencoder then learns to denoise the input which forces it to learn the
underlying structure of the data distribution. If noise with an expected
value of zero is applied, the autoencoder learns to contract a point x̃ to the
nearest point in the underlying distribution. This is illustrated in Figure 2.6
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Figure 2.6: A picture illustrating the mapping learnt by a denoising autoen-
coder. The solid line represents the underlying distribution of the data and
the blue x’s correspond to training data drawn from this distribution. Dur-
ing training of the autoencoder these are corrupted to the red x’s and the
autoencoder learns to contract everything toward the solid line as is shown
by the green arrows.

2.2 Mahalanobis distance and whitening
The Mahalanobis distance (MD) is a unitless distance between a point x
and a distribution D or alternatively between two points x1 and x2 from
the same distributionD. It can be seen as a multi-dimensional generalization
of the idea to measure how many standard deviations away from the mean of
a distribution a point is. First introduced by P.C. Mahalanobis in 1936 [41]
it is defined for a point x as

MD(x) =
√

(x− µ)TΣ−1(x− µ), (2.9)

where µ is the mean vector of the distribution and Σ its covariance matrix.
Similarly, it can be defined as a distance between two points x1 and x2:

MD(x1,x2) =
√

(x1 − x2)TΣ−1(x1 − x2). (2.10)

Since it is calculated through the covariance matrix, the Mahalanobis
distance is invariant under a scaling or any other form of linear transforma-
tion. It has been used for anomaly detection in many different fields and
Bangalore et. al applied it successfully in the context of detecting gearbox
faults in a WT [23].

Closely related to the MD is the concept of whitening. While the MD
uses the covariance matrix to calculate a unitless distance between points in
a distribution, whitening refers to transforming all points so that they have
the identity matrix as covariance matrix. The concept is best illustrated
graphically and in Figure 2.7 three stages of a transformation are shown. In
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the first plot samples from a multivariate Gaussian distribution with covari-
ance matrix Σ =

[
1 1/2

1/2 2

]
and zero means. Because of the codependency

between the features, the distribution takes an elliptic form. In the second
plot, traditional normalization by dividing each feature by their respective
standard deviation (1 and 2 in this case) is applied. One can see that this
brings the x and y-axes to the same scale but does nothing to remove their
codependency. In the final picture, ZCA-whitening is applied on the origi-
nal data. By removing the codependencies the data becomes symmetrically
distributed with each feature being more representative of underlying the
features.
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Figure 2.7: From left to right: (Blue) Samples from a multivariate Gaussian
distribution. (Red) The same samples scaled by their standard deviation.
(Green) The samples after a ZCA-whitening transform.

Any procedure that linearly transforms a distribution to have the identity
matrix as a covariance matrix can be called a whitening transform. In fact,
since the covariance matrix does not change under rotation of the data,
there exists an infinite number of different whitening procedures. The first
and perhaps most common whitening is called principal component analysis-
whitening or PCA-whitening2 and is done by projecting the sampled data
points onto the eigenvectors of the covariance matrix and then normalizing
them by dividing with the square root of the eigenvalues. Formally, denoting
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by U the matrix of eigenvectors:

U =

 | | |
u(1) · · · u(M)

| | |

 ,
and by D−1/2 the diagonal matrix containing the square root of the eigen-
values λi:

D−1/2 =



1√
λ1

0 · · · 0

0 . . . · · · 0
... · · · . . . 0
... · · · · · · 1√

λM

 ,

the PCA-whitening is defined by:

xPCA = D−1/2UTx =


u(1)Tx/

√
λ1

...
u(L)Tx/

√
λL

 , (2.11)

where one in the final expression can see how it is the projection onto the
space spanned by the eigenvectors ui of U .

A different whitening is referred to as zero-phase component analysis-
whitening or ZCA-whitening uses U to rotate the PCA-whitened variables
back to their original coordinate system:

xZCA = UxPCA = UD−1/2UTx. (2.12)

ZCA-whitening has the useful property that its whitening matrix is equal
to the square root of the inverse covariance matrix Σ:

WZCA = UD−1/2UT = Σ−1/2.

This can be proven by using the fact that the covariance matrix, being sym-
metric and positive semi-definite, can be diagonalized using its eigenvectors
and eigenvalues:

Σ = UDUT .

From its definition, it follows that the squared distance between two
2The transformation is as its name implies, closely related to the unsupervised learning

algorithm PCA reduction. The difference is that in PCA reduction the data is projected
onto only a few of the eigenvectors to produce a more compressed representation. More-
over, since the goals are different, scaling is not performed.
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ZCA-whitened points is equal to the squared Mahalanobis distance:

(xZCA − x̂ZCA)2

=(Σ−1/2(x− x̂))T (Σ−1/2(x− x̂))
=(x− x̂)T (Σ−1/2)TΣ−1/2(x− x̂)
=(x− x̂)TΣ−1(x− x̂)
=(MD(x, x̂))2. (2.13)

Furthermore, it can be proven that ZCA-whitening is the whitening that
minimizes the total squared distance between the original and whitened
variables [42]. For these reasons, ZCA-whitening was the whitening of choice
in this work.

2.3 Exponentially weighted moving average
Time series data, i.e. data sampled and indexed by time can be used to
monitor processes. If the value goes above or below a preset threshold an
operator is alerted and the process investigated. Real life data is, however,
often noisy and if this noise is large enough it can make the value cross
the thresholds even if the underlying process is fine. To counteract this
issue, one often wishes to smooth the signal so that noise is averaged out
and underlying trends are more easily detected. For this, a commonly used
method is the exponentially weighted moving average (EWMA). For a signal
xt the EWMA at timestamp t, denoted zt, is calculated as:

zt = λxt + (1− λ)zt−1, (2.14)

where λ is a constant such that 0 ≤ λ < 1. The initial value, z0, is usu-
ally set to the expected value of xt, z0 = E[xt] [43]. The EWMA can be
viewed as a weighted average of all past and present observations where the
constant λ determines their relative importance. The term “exponentially
weighted” comes from the fact that the weights decay exponentially when
looking backwards in time from the present timestamp. Using equation
(2.14) recursively we find

zt = λ
t−1∑
i=0

(1− λ)ixt−i + (1− λ)tz0. (2.15)

Thus the sequence of weights, (w0, w1, w2, . . . ) = (1, 1
1−λ ,

1
1−λ2 , . . . ) form a

decreasing geometric sequence which is the discrete version of an exponential
function.

To get a feeling for how quickly the EWMA picks up change, we define a
response time τ as the time it takes for a constant function to reach 1−1/e ≈
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63% of its value given an initial EWMA-value of z0 = 0. Equivalently, this
is the time it takes for the contribution from previous timestamps, zt−1 to
drop to a level less than 1/e ≈ 37%. Given equation (2.15), with xt = 1∀t,
z0 = 0, we have

1− 1
e

= zτ = λ
τ−1∑
i=0

(1− λ)i = (Geometric sum)

= λ
1− (1− λ)τ

1− (1− λ) = 1− (1− λ)τ

=⇒ τ = 1
log 1

1−λ
,

which for λ� 1 implies τ ≈ 1
λ .

If the observations xt are independent random variables with variance
σ2 the variance of zt is [43]

σ2
(

λ

2− λ

)(
1− (1− λ)2t

)
. (2.16)

Based on these upper and lower control limits, thresholds that the EWMA
should not cross are usually defined as

UCL = µ+ Lσ

√
λ

2− λ(1− (1− λ)2t) (2.17)

LCL = µ− Lσ

√
λ

2− λ(1− (1− λ)2t), (2.18)

where µ is the mean of the observations, µ = E(xt) and L determines the
width of the control limits. Typically L is set to around 3 [43]. The term
1 − (1 − λ)2t approaches unity as t grows, and, after the EWMA control
chart has been running for several periods, the control limits approach the
following steady-state values:

UCLSS = µ+ Lσ

√
λ

2− λ (2.19)

LCLSS = µ− Lσ

√
λ

2− λ. (2.20)

If the process is not expected to be off-target early on, these fixed thresholds
can be used instead.

2.4 Precision and Recall
The performance of an anomaly detection model can be determined by its
confusion matrix. The confusion matrix is a table which splits the output of
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the model into columns according to its actual condition and into rows ac-
cording to its predicted condition. The structure is shown in Table 2.1 where
positive/negative refers to if a sample is an anomaly or not. One can see how
it provides a summary of the false positives (falsely predicted anomalies),
false negatives (missed anomalies), true positives (detected anomalies) and
true negatives (correctly detected normal behaviour).

Actual positive Actual negative
Predicted positive True Positive (TP) False Positive (FP)
Predicted negative False Negative (FN) True Negative (TN)

Table 2.1: A confusion matrix: a helpful tool for determining the perfor-
mance of an anomaly detection model.

The data in the confusion matrix can be used in many different ways
to provide different performance measures of the model. Two commonly
used measures are recall and precision. Recall, also called sensitivity or true
positive rate, measures how many of the actual anomalies that the model is
able to identify. It answers the question “How good is the model at finding
anomalies?” and is defined as

Recall = TP
TP + FN . (2.21)

Precision on the other hand, answers the question “Given a predicted anoma-
liy, what is the probability that it is an actual anomaly?”, or, in other words,
“How much can we trust an alert”? It is sometimes referred to as positive
predictive value and is defined by

Precision = TP
TP + FP . (2.22)

For a system that uses a discriminative threshold to make its decision, the
specific value of the threshold is very important. If the threshold is set
low the system will classify most instances as anomalies. Almost all actual
anomalies will be detected and the recall will be high. However, many of the
normal cases will also be labeled as anomalies which lowers the precision.
With a high threshold, the opposite results are obtained. Consequently, the
optimal threshold value depends on what is considered the most important
of precision and recall.

The tradeoff between precision and recall can be captured by a so-called
precision-recall curve which is a plot of precision (y-axis) versus recall (x-
axis) for varying threshold values.
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Chapter 3

Designing an autoencoder
model

This chapter describes the process of designing an autoencoder and selecting
relevant hyperparameters. Furthermore, both the preprocessing of SCADA
data and a scheme to train multiple networks in parallel are presented.

3.1 Preprocessing of SCADA data
The SCADA data was extracted from a database containing data for a
large number of WTs from many different manufacturers. All the data was
recorded at a 10-minute interval, but, for some signals, there were missing
recordings for some timestamps. Different turbine types had different sets
of signals available and to simplify the comparison between different models
a single, 2 MW type turbine was used.

The signals were classified according to “type”, i.e. what kind of signal it
was. This “type” could be e.g. Power or Temperature but also labels such as
Curtailment or Reactive power, that is, signals corresponding to operations
or the energy market. To construct a good CMS the signals were first filtered
on this “type” and only those that were relevant to the WT dynamics were
selected. For the selected turbine there were 33 relevant signals available
and these are presented in table 3.1.

Once the signals were selected they were loaded into Python for fur-
ther processing with the libraries Numpy and Pandas. Here the data was
represented in a matrix format were rows corresponded to different times-
tamps and columns to different signals. First, all rows containing missing
values were dropped. Since there was relatively few missing values, all sig-
nals from a given timestamp (i.e. the whole row) were dropped even if only
one signal was missing. When a turbine is stopped, i.e. it is producing
zero power, many of the SCADA signals are still recorded. The behaviour
and co-dependencies of these signals are, however, a lot different compared
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to when the turbine is running. It might be difficult for an autoencoder
to learn the dynamics in both regimes. Moreover, a fault will most likely
be apparent during running conditions. Therefore, learning the stand-still
operations was considered unnecessary. Consequently, all rows with zero or
negative power 1 were dropped. Furthermore, the first three timestamps
after a stop were dropped to avoid capturing transient dynamics during the
initial startup of the WT.

It is desirable to have all the signals with mean close to zero and a
variance close to one for application with standard neural network regu-
larization and training tools. In this thesis, this and an additional step of
decoupling signals from each other was performed through ZCA-whitening
which is described further in section 2.2. The transformed data matrix had
uncorrelated columns and the idea is to help the neural network separate
different signals from each other by transforming highly correlated inputs
to a set of less redundant features. The whitening required the means and
covariance matrix of the data distribution and these were estimated from
the training data and then stored so that the data could be reconstructed.
In addition to providing the network with uncorrelated data, the whiten-
ing also facilitated an easier training with the Mahalanobis distance as an
objective function. This is described further in the next section.

1Sometimes WTs are supplied energy from the grid to keep running even when there is
no wind. This is done to avoid unnecessary wear due to many starts and stops. In these
cases, the power produced is recorded as negative.
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Signal name Unit
Power kW
Wind speed m/s
Wind direction ◦

Nacelle Position ◦

Generator bearing front temperature ◦C
Generator bearing rear temperature ◦C
Generator phase 1 temperature ◦C
Generator phase 2 temperature ◦C
Generator phase 3 temperature ◦C
Generator slip ring temperature ◦C
Hydraulic oil temperature ◦C
Gear oil temperature ◦C
Gear bearing temperature ◦C
Nacelle temperature ◦C
Ambient temperature ◦C
Grid inverter temperature L1 ◦C
Top controller temperature ◦C
Hub controller temperature ◦C
Controller VCP temperature ◦C
Spinner temperature ◦C
Rotor inverter temperature L1 ◦C
Rotor inverter temperature L2 ◦C
Rotor inverter temperature L3 ◦C
Grid busbar temperature ◦C
Voltage L1 V
Voltage L2 V
Voltage L3 V
Current L1 A
Current L2 A
Current L3 A
Generator RPM RPM
Rotor speed RPM
Blade angle (pitch position) ◦

Table 3.1: Relevant SCADA-signals for the type of wind turbine used in this
thesis.
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3.2 Anomaly detection using autoencoders
In this thesis, autoencoders were used as anomaly detection models. In
short, an autoencoder takes a number of signals as input, encodes these to a
condensed representation in a code layer and then decodes this representa-
tion back to reconstructed signals. Restrictions are put on the code layer so
that the model cannot simply learn an identity mapping. For more details,
see Section 2.1.9.

The choice of autoencoders was inspired by the works in [25] and [26]
and further motivated by the fact that autoencoders more directly model
the entire WT and not only a subsystem as is the case for a single-output
neural network.

To build and train the networks the Python library PyTorch was used.
Among other things, this library supports automatic differentiation, GPU-
powered tensor calculations and many other useful tools.

The output of an autoencoder model is a large number of reconstructed
signals. To simplify the interpretation it is desirable to summarize all of
these residuals to a single value. The naive approach is to simply take the
mean or root mean square (RMS) of all the signals. However, this has the
downside that if the signals are highly correlated they will contribute dis-
proportionally. To illustrate this imagine that we construct a very simple
autoencoder modelling three signals: Power, gearbox oil temperature and
gearbox bearing temperature. If the turbine experiences a gearbox fault it is
likely that both the oil and bearing temperatures are higher than usual and
the autoencoder will, if properly trained, reconstruct them as lower than
they actually are. Both of these residuals will contribute to the mean/RMS
which will increase. If, on the other hand, the WT experiences a different
fault, say a fracture in the blades, the power might go down. The autoen-
coder will then model the power as larger than it actually is and this residual
will contribute to the mean/RMS. However, only one of the three signals will
have a significant reconstruction error and the mean/RMS will only be in-
creased by half of which it would have been in the previous case. This model
is thus biased toward detecting gearbox faults and will be less sensitive to
other faults. To overcome this problem, the Mahalanobis distance (MD) was
used in the present work. The Mahalanobis distance is a unitless measure
which can be seen as a multi-dimensional generalization of measuring how
many standard deviations apart two points of the same distribution are. It is
described more in detail in Section 2.2. Normally, the Mahalanobis distance
is calculated as a quadratic form with the inverse covariance matrix accord-
ing to (2.10). Because of the ZCA-whitening performed in the preprocessing
step, however, the mean squared Mahalanobis distance is equivalent to the
mean squared error and this was indeed used for the models constructed.
This simplified both training and inference since existing library functions
could be used.
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One network was trained for each turbine and, initially, one year of
SCADA data was used. The time period was chosen so that all seasons were
represented. This ensured that many different environmental conditions
were present without setting too high requirements on the availability of
good SCADA data. Initially, 20% of the timestamps from this year were
extracted randomly to provide a validation set while the other 80% were used
for training. In the later postprocessing steps, however, it was found that
while the network produced low errors for both the training and validation
sets it produced higher errors on new data, even if the new data came from
healthy conditions. This might have occurred because the data points within
the same year are more similar than data points from different years. To
get a more representative validation set, the network was instead trained on
all the data from one year and then the following six months were used for
validation. This provided training datasets of roughly 30 000 timestamps
and validation sets of 15 000 timestamps.

3.3 Parallel training with stacked networks
In this thesis, to make a thorough hyperparameter search many networks
had to be trained. Training networks on GPUs has become popular in
the last few years as they excel at performing many calculations in parallel
which is exactly what is required for neural network training. However,
when a GPU was tested for training networks in this thesis, it was quickly
discovered that it performed equally or worse than a standard laptop CPU.
Most likely, the missing speedups were due to the relatively low number of
parameters of the networks. The employed autoencoders had no more than
200 000 parameters and were trained on roughly 30 000 data points. In
comparison, the record-breaking AlexNet that won the ImageNet LSVRC-
2012 competition had 60 million parameters and was trained on 1.2 million
images [44].

After measuring the time of different parts in the training it was found
that, when training on the GPU, the main bottleneck was not the actual
calculations but rather data transfer and other overhead processes. To over-
come these problems and fully take advantage of GPU computing, algo-
rithms which enabled training of multiple networks simultaneously on the
same GPU were developed. This worked by stacking all internal parameters
on top of each other, adding an additional dimension to all tensors: 2-D
weight matrices became 3-D tensors, 1-D bias vectors became 2-D matrices
and so on. By doing this, existing PyTorch library functions could be used
which handled all the GPU-specific instructions.

With the architecture in place a lot of the hyperparameter search could
be parallelized and training times were reduced from around 3.7 s per model
and epoch to around 0.08 s per model and epoch, that is, GPU training was
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approximately 46 times faster per model.

3.4 Hyperparameter selection for the autoencoder
models

To be effective as an anomaly detection model the autoencoder does not
only need to reconstruct unseen data from a healthy WT well; it also needs
to produce a large error for data from a malfunctioning WT. Typically, hy-
perparameter selection is based on the reconstruction error on a validation
dataset. For an autoencoder, this is, however, only fair for parameters that
do not directly affect its capacity, i.e. its ability to reconstruct complex
datasets. To understand why, imagine a very simple “autoencoder” with-
out any hidden layers that only maps the incoming signals onto themselves.
This model would have a perfect, zero reconstruction error not only on the
training dataset but also on any dataset used for validation. It would, how-
ever, continue to reconstruct perfectly even for data from a malfunctioning
WT. Therefore, it would be useless for anomaly detection.

Some hyperparameters only have a minor effect on the autoencoder’s
capacity; instead, they affect how well a given model fits a certain type
of data. Therefore, they can well be determined in a traditional fashion
from the validation error. These parameters include the activation function,
how weights are initialized, the optimization algorithm and its specific pa-
rameters, the minibatch size, and, to some extent, the regularization used.
Together they are referred to as training hyperparameters in this thesis and
the particular choices are discussed in Section 3.4.1.

The autoencoder’s architecture, i.e. the number of layers and the num-
ber of nodes in each layer, does, however, strongly affect the autoencoder’s
capacity and can therefore not be selected by just minimizing the validation
error. For the selection of these in this thesis, a more qualitative approach
was taken which is described further in Section 3.4.2. The proposed method
was then verified in a large validation study.

3.4.1 Selection of training hyperparameters

By using all reasonable signals it is very likely that some are not very related
to each other. We can make the network use this information by imposing
that it is sparse, i.e. that only some neurons are active at a time. To do this
ReLUs was used as activation functions. ReLU returns zero for negative
inputs and this can force different signals to take different paths through
the network. A more in-depth description of ReLU can be found in section
2.1.2.

As an optimization algorithm “ADAM” was chosen because of its the-
oretical benefits and empirically good results, see Section 2.1.6 for more
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details.
After this, additional hyperparameters were selected in stages. First

of all, the parameters relevant to the training, i.e. weight initialization,
learning rate, and minibatch size were selected in order to minimize the
error on a validation set. It was found that, among the common weight
initializations, the particular choice did not matter much. In this thesis, the
weights were normally distributed with µ = 0 and σ = 1/

√
# inputs. The

biases were all filled with positive values equal to σ so that all ReLU units
were initially active.

For the learning rate, it was found that 0.01 caused the training error
to fluctuate heavily through the training which prevented a good fit. How-
ever, both 0.001 and 0.0001 converged well, achieving similar low validation
errors which shows that 0.01 was probably a too large learning rate. Since
convergence was quicker 0.001 and it indeed is the standard for ADAM, it
was chosen.

As for the minibatch size, a bigger batch ensures less variance in the
gradient which can facilitate a quicker training. However, if it becomes too
large with respect to the size of the training set there is a risk of overfitting
since the gradients quickly become biased, see section 2.1.6 for further ex-
planation. Indeed it was found that when the minibatch size was increased
over 4000 samples the fit on the validation set worsened. To be on the safe
side a minibatch size of 256 was chosen.

It is possible that models trained with the same parameters behave dif-
ferently because of the randomness in weight initialization and stochastic
optimization algorithms. During the early experimentation, there was a big
variation in the performance of different models. Even with the same hyper-
parameters, some models showed lower training and validation errors than
the others. It is likely that the divergence occurred early on in the training
with many of the ReLU activation functions “dying” to select optimal routes
for the initial data. The network was then unable to fit data received later
in the training as a ReLU cannot come back to being active once dead.

Switching from ReLU to its close relatives leaky ReLU or ELU decreased
the variance between the models but also increased the average error slightly.
The same effect could be achieved with plain ReLU by applying batch nor-
malization between the layers. Batch normalization re-parametrizes the neu-
ral network to facilitate an easier training with gradient descent, see section
2.1.8. Because of its sound theoretical background and proven track record
of training deep neural networks [32], the combination of batch normaliza-
tion and ReLU was used.

Next, additional regularization techniques were investigated. Dropout,
which has proven successful for many tasks [32], was tried first. Surprisingly
it significantly increased the models’ reconstruction error by a factor of ten
or more. Under closer investigation, it was found that almost all ReLUs were
killed during the first iterations and that the network after this produced
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the same output for all inputs. This is likely another manifestation of the
problems of training deep neural networks described in section 2.1.8 but,
due to time constraints, the issue had to be left unresolved and, instead,
another regularization method, input noise, was used.

Adding noise to the inputs of an autoencoder is another way of ensuring
that the autoencoder does not simply learn an identity mapping. These
autoencoders are called denoising autoencoders and are described further in
section 2.1.9. The details of the selection of input noise are left for the next
section as it likely affects the model’s capacity.

3.4.2 Selection of model architecture

In this thesis, the autoencoders were shaped like an “X”. The first layers,
referred to as the encoder, started wide but then got consequently narrower
until reaching the code layer in the middle. This layer was the narrowest
and serves as a bottleneck for the information flow through the network.
After the code layer, the layers got wider and wider, mirroring the encoder.
This part is referred to as the decoder. The architecture is similar to that
in Figure 2.5 but instead of two layers for the encoder/decoder, three were
used. The idea behind the X shape is to allow the network to learn features
at higher and higher abstraction levels. In reality, the number of nodes in
each layer’s is a hyperparameter to be tuned. However, in this work, the
X shape was fixed with a constant ratio of 1.5 between consecutive layers
in order to limit the search space for hyperparameters. Furthermore, the
decoder was a perfect mirror of the encoder with the same number of nodes
in layers one and seven, two and six and three and five. The number of layers
in the encoder/decoder was fixed to three and no further investigation of the
effect of depth was undertaken.

After limiting the search space, the remaining hyperparameters were the
size (number of nodes) of the first encoding layer, the size of the code layer
and the level of the input noise. If either the code or encoder/decoder size is
increased the model’s capacity is also increased. The interplay between these
parameters is, however, not clear: lowering the code size while increasing
the encoder size could either increase or decrease the capacity depending on
what amount they were changed with.

The effect of noise is not certain, but, since it acts to distort the input
data, it is likely that raising the level of noise has a similar effect as lowering
the model capacity. For models with high capacity, input noise might be
necessary to make them learn anything but the identity mapping while it
for a low capacity model might be redundant.

There is no known method to optimize these parameters using only
the training and validation datasets. In the following sections, however,
a method is described, that, by using so-called “encoder curves” and “noise
curves” intends to accomplish this. The method is highly speculative and
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therefore a larger validation study is presented in Chapter 4 where the
method’s results are compared with actual performance of the models.

Encoder curves

“Encoder curves” refer to curves formed by the reconstruction error on the
training and validation sets when the size of the encoder was varied but
the code size and noise level were fixed. In Figure 3.1 three such graphs
are shown for code size of 20 but for different levels of input noise. Four
turbines from the same wind farm were used and all showed similar results.
To average out randomness in the training ten networks were trained for
each configuration and turbine.
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Figure 3.1: So called “encoder curves”: reconstruction error on the training
and validation sets for different sizes of the encoder/decoder.

“Encoder size” refers to the number of nodes in each layer of the en-
coder/decoder so that, with code size 20, a value of (144, 96, 64) implies
a network with the shape (144, 96, 64, 20, 64, 96, 144). All curves show
that the reconstruction error on the training set, denoted “training error”,
gets lower with higher encoder complexity. For the reconstruction error on
the validation set, however, this is only true up to a point: after (144, 96,
64) it remains the same or worsens. This indicates that up to this point
the model improves its representation of the true data distribution, but,
beyond, it instead starts to fit the noise in the training distribution. The
point seems to shift to a lower complexity as the noise increases. It appears
that given a fixed code size and noise level there is only a part of the true
data distribution that the autoencoder can model. Viewed in this light, it
is reasonable to select the encoder size at the threshold as the model then
captures as much as possible of the true data distribution but nothing more.
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Noise curves

To select an appropriate code size and noise level so-called “noise curves”
were used. Similar to encoder curves, a noise curve shows the training and
validation errors but now as a function of the input noise with the code and
encoder/decoder size being held fixed. Figure 3.2 show five such graphs, all
with encoder size (144, 96, 63) but with different code sizes.
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Figure 3.2: So called “Noise curves”: reconstruction error on the training
and validation sets for different levels of input noise.

At first glance, all curves look the same: for low noise the errors are
roughly constant but after a certain threshold both the validation error and
the training error increase rapidly. This threshold seems to decrease as the
code size increases: for code size 15 the errors start to rise after input noise
0.2 but for code size 25 it happens already after input noise 0.1.

On closer inspection, one can also see that, after a certain point, the
validation and training errors start to diverge. This is more clearly seen
in Figure 3.3 where the actual differences between the curves are plotted.
The threshold seems to decrease as the code size increases: while the gap
remains constant until after input noise 0.4 for code size 15 it starts to grow
already after input noise 0.1 for code size 25. Note that for the lower code
size the two thresholds differ but for the higher ones they seem to converge.
It is difficult to pinpoint exactly where the two thresholds are for different
code sizes, but, by graphical inspection, an attempt was made. The results
are summarized in Table 3.2 where the column “Both” corresponds to the
first threshold and the column “Difference” corresponds to the second. As
indicated by the table, the two points collapse between code sizes 17 and 19
and afterwards decrease together.

Exactly why this happens is not fully understood. An educated guess,
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Figure 3.3: The difference between the training and validation errors shown
in Figure 3.2.

however, is that the input noise hides some of the features of the training
data. If a model has a too low capacity, learning would not be affected at
all. For such a model, it is only possible to learn a subset of the features
in the data distribution; if some features are masked by input noise, the
model will just learn a different subset. It is not until enough features are
hidden and the model is forced to learn a smaller subset that performance
gets worse. This would explain the first threshold and why models with a
lower code size experience it later.

After the second threshold, the validation and training errors start to
diverge. Thus, the model’s ability to generalize gets worse. This could
be explained if some of the features hidden are those that make models
able to extrapolate to new, unseen data. Still, why the first and second
threshold differ for low-capacity models but not for high-capacity models is
unclear. However, since we are looking for an optimal code size in this area
and there is a distinct behaviour of the two thresholds collapsing, it seems
reasonable to select the code size right at this point as a starting point for
further investigation. From Table 3.2, this code size would be 18. Since the
encoder/decoder size of (144, 96, 63) was ideal for the nearby code size of
20, it seemed reasonable to hold this fixed moving forward.

37



Codes size Both Difference
15 0.2-0.3 0.4-0.5
17 0.2-0.3 0.3-0.4
19 0.2-0.3 0.2-0.3
20 0.2-0.3 0.2-0.3
25 0.1-0.2 0.1-0.2

Table 3.2: Thresholds for when the input starts affecting the training and
validation errors of the models. Column ’Both’ represents a threshold after
which both the training and validation errors start to increase. Column ’Dif-
ference’ corresponds to a threshold after which the training and validation
errors, in addition to increasing, also diverge from each other. Note how the
thresholds in the two columns are equal for the high code sizes but different
for the low ones.
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Chapter 4

Validation study

This chapter describes a large validation study. Autoencoder models with
different code sizes and different level of input noise were compared using a
large, labeled dataset containing actual fault cases.

4.1 Dataset description
Data from 19 WTs and four wind farms was used to form a labeled dataset.
All turbines were located in Europe and of the same type with a rated
capacity of 2 MW. Their available signals can be found in Table 3.1 as the
turbines were of the same type as the ones used in the previous selection
stage. For each turbine, the time period from the first of July 2015 to the
last of June 2016 was used as training data and the period from the first of
July 2016 to the last of December 2016 was used as validation data.

The turbines had service logs available and these served as a basis for
labeling test cases. A test case refers to a time period ranging from three to
six months where one turbine was either considered healthy or showed some
anomalous behaviour.

For each turbine the logs were read thoroughly and all anomalies that
the models should be able to detect were recorded. Next, the logs were
compared with the output of some models. During this comparison, addi-
tional anomalies were detected that had previously been overlooked in the
logs. If an anomaly existed in the logs it was added to the list of anomalies.
Sometimes it was not clear whether an event would induce a fault in the
model or not. This was the case for e.g. storms and grid instabilities. In
these cases, the data was excluded from the test cases as it could not be
labeled. Furthermore, some anomalies occurred multiple times. If all of
them had been used the results would have been biased toward the model
most capable of detecting this kind. Therefore, for each kind of anomaly,
only one test case was included.

In Tables 4.1, 4.2, 4.3 and 4.4 all different test cases and the excluded
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data is shown. In total six different anomalies; a yaw encoder malfunction, a
rotor sensor malfunction, high generator temperatures due to a malfunction-
ing ventilation duct, a preventive maintenance that changed the hydraulic
oil temperature, high VCP temperatures, and a grid curtailment were con-
sidered.
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Wind farm A – test cases
Turbine Timespan Description
1 2017-01-01:2017-07-01 Normal behaviour
1 2017-07-01:2017-12-31 Normal behaviour
1 2018-02-01:2018-07-01 Normal behaviour
1 2018-07-01:2018-12-31 Normal behaviour
4 2017-01-01:2017-07-01 Normal behaviour
4 2017-07-01:2017-11-30 Normal behaviour
4 2018-01-01:2018-07-01 Malfunctioning yaw encoder, replaced in 2018-

04
5 2017-01-01:2017-07-01 Normal behaviour
5 2017-07-01:2017-11-30 Normal behaviour
Wind farm A – excluded data
Turbine Timespan Reason
All 2018-01-01-2018-02-01 Large storms highly affected the wind speed.

Since these are abnormal conditions this time
period was excluded for all turbines.

2, 3 2017-01-01: All models detected a change in the operations
caused by a preventive maintenance during the
validation period. Since the reason of the faults
is unknown, these turbines were ignored.

4 2017-11-30:2017-12-31 As it was unclear when the fault fixed 2018-
04 started, an additional month before was ex-
cluded.

4 2018-10-08:2018-10-09 The turbine was paused but still produced a low
power. Thus, the power filter was not triggered
but the model showed an abnormal behaviour.

5 2017-12-15: After a preventive maintenance, the Hub con-
troller temperature is consistently lower than
expected. Most likely a setting was changed or
something was clean but since the reason cannot
be determined from the logs the remaining time
period is ignored.

Table 4.1: Description of test cases and excluded data for the wind farm
labeled A.
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Wind farm B – test cases
Turbine Timespan Description
6 2017-01-01:2017-07-01 Normal behaviour
6 2017-07-01:2017-12-31 Normal behaviour
6 2018-02-01:2018-07-01 Normal behaviour
6 2018-07-01:2018-12-31 Normal behaviour
8 2017-01-01:2017-07-01 Normal behaviour
8 2017-07-01:2017-12-31 High generator temperatures, replacing an ex-

traction duct fixes it.
8 2018-02-01:2018-07-01 Normal behaviour
8 2018-07-01:2018-12-31 Normal behaviour
9 2017-01-01:2017-07-01 Normal behaviour
9 2017-07-01:2017-12-31 Normal behaviour
9 2018-02-01:2018-07-01 Normal behaviour
9 2018-07-01:2018-12-31 Normal behaviour
Wind farm B – excluded data
Turbine Timespan Reason
All 2018-01-01-2018-02-01 Large storms highly affected the wind speed.

Since these are abnormal conditions this time
period was excluded for all turbines.

7 2017-01-01:

Table 4.2: Description of test cases and excluded data for the wind farm
labeled B.
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Wind farm C – test cases
Turbine Timespan Description
10 2017-01-01:2017-07-01 Normal behaviour
10 2017-07-01:2017-12-31 Normal behaviour
10 2018-02-01:2018-07-01 Normal behaviour
10 2018-07-01:2018-12-31 Preventive maintenance changes the hydraulic

oil temperature, most likely a setting.
11 2017-01-01:2017-07-01 Normal behaviour
11 2017-07-01:2017-12-31 Normal behaviour
11 2018-02-01:2018-07-01 Normal behaviour
11 2018-07-01:2018-12-31 Normal behaviour
12 2017-01-01:2017-07-01 Normal behaviour
12 2017-07-01:2017-12-31 High VCP temperatures from 2018-07-19 and

onward.
13 2017-01-01:2017-07-01 Normal behaviour
13 2017-07-01:2017-12-31 Normal behaviour
13 2018-02-01:2018-07-01 Normal behaviour
13 2018-07-01:2018-12-31 Normal behaviour
14 2017-01-01:2017-07-01 Normal behaviour
14 2017-07-01:2017-12-31 Normal behaviour
14 2018-02-01:2018-07-01 Normal behaviour
14 2018-07-01:2018-12-31 Normal behaviour
Wind farm C – excluded data
Turbine Timespan Reason
All 2018-01-01-2018-02-01 Large storms highly affected the wind speed.

Since these are abnormal conditions this time
period was excluded for all turbines.

12 2018-01-01: A fault occurred in 2017-07-19 and was never
fixed. To not overrepresent this fault only the
first time period where it was present was used
and the following were dropped.

Table 4.3: Description of test cases and excluded data for the wind farm
labeled C.
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Wind farm D – test cases
Turbine Timespan Description
15 2017-07-01:2017-12-31 Normal behaviour
15 2018-02-01:2018-06-01 Normal behaviour
15 2018-07-01:2018-12-31 Grid curtailment between 2018-11-06 and 2018-

11-08
16 2017-07-01:2017-12-31 Normal behaviour
16 2018-02-01:2018-06-01 Normal behaviour
16 2018-07-01:2018-11-01 Normal behaviour
17 2017-07-01:2017-12-31 Normal behaviour
17 2018-02-01:2018-06-01 Multiple rotor sensor errors and strange

recorded rotor speeds.
17 2018-07-01:2018-11-01 Normal behaviour
18 2017-07-01:2017-12-31 Normal behaviour
18 2018-02-01:2018-06-01 Normal behaviour
18 2018-07-01:2018-11-01 Normal behaviour
Wind farm D – excluded data
Turbine Timespan Reason
All 2018-01-01-2018-02-01 Large storms highly affected the wind speed.

Since these are abnormal conditions this time
period was excluded for all turbines.

All 2017-04-12:2017-04-13 A possible grid curtailment was noticed in the
data but not in the logs. To avoid overrepre-
senting grid curtailments, this time period was
excluded.

All 2017-04-29:2017-05-01 A possible grid curtailment was noticed in the
data but not in the logs. To avoid overrepre-
senting grid curtailments, this time period was
excluded.

All 2017-06-06:2017-06-07 A possible grid curtailment was noticed in the
data but not in the logs. To avoid overrepre-
senting grid curtailments, this time period was
excluded.

All 2018-06-04:2018-06-06 A grid curtailment was noticed both in the data
and in the logs. To avoid overrepresenting grid
curtailments, this time period was excluded.

All except 15 2018-11-06:2018-11-08 A grid curtailment was noticed both in the data
and in the logs. To avoid overrepresenting grid
curtailments, this time period was excluded for
all but one wind turbine.

Table 4.4: Description of test cases and excluded data for the wind farm
labeled D.
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4.2 Postprocessing of the reconstruction error
The reconstruction error can be noisy even for healthy WT data and a well-
fitted autoencoder model. Wind gusts, grid instabilities, and other environ-
mental anomalies can cause high spikes that would trigger a threshold-based
alarm system, even if the WT is still functioning well. Hence, it is necessary
to process the reconstruction error in some way so that the alarm system
doesn’t trigger for isolated errors.

For a real malfunction, it is expected that the errors have a larger ampli-
tude on average and occur more frequently. It is desirable to capture even
small shifts in the average error and not trigger alarms for big but rarely
occurring spikes. The exponentially weighted moving average (EWMA) is
commonly used to construct a control chart for such cases. It smoothens the
input data and accumulates a history of previous inputs, giving it exactly
the desired properties. EWMAs are described further in Section 2.3.

For each of the test cases described in Section 4.1 an EWMA was cal-
culated according to equation (2.14), using the Mahalanobis distance of the
reconstruction error as the underlying time series. The smoothing parame-
ter λ was set to give a reasonable trade-off between smoothing spikes and
having a short response time. By visual inspection of calculated EWMAs,
it was found that values between λ = 0.001 and λ = 0.01 were appropriate.
To have a physical interpretation, the value λ = 1/144 ≈ 0.007 was chosen.
This corresponds to a response time of approximately 24h or one day.

In Figures 4.1 and 4.2 EWMA are compared with the original data for
normal SCADA data and SCADA data from a turbine which experienced
a grid curtailment. It can be seen how the EWMA removes all spikes for
the normal data but doesn’t completely remove the spikes from the grid
curtailment as these were larger and continuously occurring.

4.3 Alarm system
To determine when the alarm system should trigger, a threshold was used for
the EWMA. Typically, the so-called control limits (2.17) and (2.18) are used
as an upper and lower threshold respectively. However, these control limits
are derived for a process that has a normal distribution with mean µ. With
the Mahalanobis distance, this is not the case. Positive or negative does not
make sense when talking about a summary of multiple reconstruction errors
and the Mahalanobis distance is always positive. Therefore, it is not reason-
able to use its mean and standard deviation as the target and width of the
control chart as is done in equations (2.17) and (2.18). As a target, zero is
reasonable since we are aiming for a perfect reconstruction on normal data.
For the width, it helps to imagine a hypothetical “signed Mahalanobis dis-
tance” which is symmetric around zero. For a single signal, the Mahalanobis
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Figure 4.1: The difference between the Mahalanobis distance and an EWMA
calculated on this distance. The data is from normal conditions.

distance corresponds to the absolute value of the reconstruction error and
this “signed Mahalanobis distance” would hence be the actual signed recon-
struction error. The standard deviation of a single, signed, reconstruction
error r is estimated as its root mean square (RMS):

σr = 1
n

n∑
i=1

r2.

Similarly, it makes sense to estimate the width of the actual control chart
with the root mean square of the Mahalanobis distance and the only control
limit is therefore set to

CLMD = 0 + L× RMS(MD)×

√
λ

2− λ. (4.1)

Note that this is a steady-state control limit and therefore more resemblant
to the control limits (2.19) and (2.20) than to (2.17) and (2.18). With the
selected λ, the difference between the actual control limits and the steady-
state control limits less than 0.0001% after the EWMAs had been running for
one week. Since all test cases ranged for months and all anomalies occurred
at least one week after the EWMAs were initiated it was justified to use this
simplified control limit.
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Figure 4.2: The difference between the Mahalanobis distance and an EWMA
calculated on this distance. Included in the data is a grid curtailment at
around the sixth of November.

If the control limit (4.1) was passed at any time in the test case this was
considered a positive verdict by the model. The value of L was varied from
zero to the maximum value required to yield zero positives. Based on this,
precision-recall curves where calculated for all models.

4.4 Results
Using the test cases listed in Tables 4.1, 4.2, 4.3 and 4.4 precision-recall
curves were calculated for different code-sizes and noise levels. To minimize
the effect of the stochasticity in training five networks were trained for each
configuration and their resulting precision-recall curves were averaged.

From Section 3.4.2 we expect code size 18 to be the optimal capacity. For
this code size, there existed one distinct threshold for the level of input noise.
Before this threshold, training and validation errors were barely affected by
the noise, but after they both increased. Based on this threshold, four
different noise levels were chosen. These were 0, 0.2, 0.3 and 0.5 which,
respectively, correspond to no input noise, noise slightly lower than the
threshold, noise slightly higher than the threshold and a high level of input
noise.
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The code sizes ranged from low to high capacity, covering the optimal
capacity. They were 6, 12, 18, 24, 30 and 36 and the four previously chosen
noise levels were tested for each one.

In the following sections, precision-recall curves and their interpretations
are presented. First, for each code size, the effect of input noise is investi-
gated. Then, using the best performing model for each case, a comparison
between the code sizes is shown.

4.4.1 Code size 6

Figure 4.3 shows a comparison between the different levels of input noise
for code size 6. All curves show similar behaviour of detecting most of the
anomalies but struggling to reach a recall above 83%, only doing so at very
low precision. This corresponds to failure at detecting one of the anomalies
and, upon closer inspection, it was found that the change in hydraulic oil
temperature did not give any significantly increased Mahalanobis distance.
This case is presented in more detail in Appendix B. From the figure, it also
appears that the input noise had an ever so slightly worsening effect.

4.4.2 Code size 12

Figure 4.4 shows the same comparison for code size 12. Once again the
models struggle to detect the final anomaly and once again this corresponds
to the change in hydraulic oil temperature. Now, however, the noise has a
clear effect, giving increasingly better models up to input noise 0.3 and then
a worse model for highest level of input noise 0.5.

4.4.3 Code size 18

For code size 18, shown in Figure 4.5 the results are a bit different. The
models still struggle to detect all the anomalies but they do manage at a
higher precision than previously. Also, they reach a higher recall of around
90% before the precision gets too low. Upon closer inspection it was found
that the rotor sensor errors and the change in hydraulic oil temperature
were both difficult, albeit not impossible, to detect. The odd number of
90% comes from the averaging over iterations. For some iterations, the
model detected all anomalies; for some, the model missed the sensor errors;
and, for some, it missed the hydraulic oil change. For the effect of input
noise, it is hard to give a concise verdict, 0.5 gives the best recall for a high
precision while the others reach perfect, unity, recall without losing as much
precision.
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4.4.4 Code size 24

In Figure 4.6, the models with code size 24 show similar behaviour to those
with code size 18. Once again, when investigating the Mahalanobis distances
it was found that the rotor sensor error and hydraulic oil change where the
most difficult to detect. In this case, the contribution of noise is more clear,
the high levels of 0.3 and 0.5 show a relatively high recall for a high precision
but then fail to detect the final anomalies. On the other hand, noise of 0
and 0.2 show a quick drop in precision but then manage to reach perfect
recall sooner.

4.4.5 Code size 30

Code size 30, shown in Figure 4.7 shows similar behaviour to code sizes 6
and 12. For all noise levels, the models quickly detect all but one anomaly,
the hydraulic oil temperature change. There is a slight variation between
noise levels but not a lot.

4.4.6 Code size 36

The overcomplete models with code size 36, Figure 4.8, show similar be-
haviour to those with code size 30 of quickly detecting all but one anomaly,
once again the change in hydraulic oil temperature. It is surprising that
these models are able to detect anything as with a code size of 36 and only
33 inputs they should be able to perfectly model the identity mapping and
thus yield zero reconstruction error.
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Figure 4.3:
Precision-recall
curves for Au-
toencoder models
with code size 6
but different lev-
els of input noise.
For each setting,
five models were
trained and the
results averaged.
This was done to
account for the
stochasticity in
training.

Figure 4.4:
Precision-recall
curves for Au-
toencoder models
with code size 12
but different lev-
els of input noise.
For each setting,
five models were
trained and the
results averaged.
This was done to
account for the
stochasticity in
training.
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Figure 4.5:
Precision-recall
curves for Au-
toencoder models
with code size 18
but different lev-
els of input noise.
For each setting,
five models were
trained and the
results averaged.
This was done to
account for the
stochasticity in
training.

Figure 4.6:
Precision-recall
curves for Au-
toencoder models
with code size 24
but different lev-
els of input noise.
For each setting,
five models were
trained and the
results averaged.
This was done to
account for the
stochasticity in
training.
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Figure 4.7:
Precision-recall
curves for Au-
toencoder models
with code size 30
but different lev-
els of input noise.
For each setting,
five models were
trained and the
results averaged.
This was done to
account for the
stochasticity in
training.

Figure 4.8:
Precision-recall
curves for Au-
toencoder models
with code size 36
but different lev-
els of input noise.
For each setting,
five models were
trained and the
results averaged.
This was done to
account for the
stochasticity in
training.
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4.4.7 Comparison between different code sizes

In Figure 4.9 a comparison of the best autoencoder models for each code
size is shown. In some cases, there was no obvious best model as some
curves showed a high precision early on but had troubles surpassing a certain
recall while others quickly dropped in precision but then reached a higher
recall. It is possible that precision can be improved with more effective
post-processing. If, on the other hand, a model fails to detect an anomaly,
post-processing cannot help. Therefore, the latter models were chosen in
these ambiguous cases.

From the graph, code size 24 is the clear winner with code size 18 being
the second best. These were the only two code sizes for which the models
could reliably detect all anomalies. Hence, the perfect model capacity should
be somewhere in this region.
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Figure 4.9:
Precision-recall
curves for the best
performing Au-
toencoder models
for each code size.
For each setting,
five models were
trained and the
results averaged.
This was done to
account for the
stochasticity in
training.
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Chapter 5

Closure

This chapter discusses the various parts of the thesis, suggests future work
and finally summarizes the thesis.

5.1 The importance of code size
Out of all the models compared in Chapter 4, the ones with code size 24 and
no or low input noise performed the best, being able to detect all anomalies
in the dataset. The models with code size 18 were also able to detect all
faults but at lower precision. For all the other code sizes, the precision was
very low when the last two faults were detected. It cannot be said that these
models actually found anything as pure random guessing would come close
to the same precision.

All of this indicates that the optimal code size is somewhere close to 24,
although it appears that the exact choice is not crucial since code size 18
also performed well. There seems to be a rather wide range of code sizes
that perform well and as long as one of these is selected, an autoencoder
works fine for anomaly detection. This is good news for a practitioner since
one often wants to model different data distributions, each requiring different
model capacities, Performing a study such as this for each case would require
a lot of work and is not always feasible.

Surprisingly, even the overcomplete autoencoders with code size 36 were
able to detect a large number of the anomalies indicating that they did not
just learn the identity mapping. Potential reasons for this are the depth of
the neural network, the use of ReLU as an activation function, the stochas-
ticity in training or the noise induced by batch normalization. For a concrete
explanation, however, a deeper understanding of autoencoders and neural
networks is required. What can be said though, is that one need not be
too concerned about an autoencoder designed this way learning the identity
function.
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5.2 The effect of normally distributed input noise
In this study, denoising autoencoders were used to construct anomaly de-
tection models. The input noise applied during training was normally dis-
tributed and various scales were tested. It was believed that this would help
the autoencoder to model the true data distribution rather than the iden-
tity function, thus rendering it more capable as an anomaly detection model.
For the models compared in Chapter 4, however, the effect of noise was not
clear. For some code sizes, noise increased the model performance, while for
others it decreased it. Even where noise had a positive effect there was no
clear pattern as the performance went fluctuated with increasing noise.

The zero noise models were among, if not the best, performing models
for almost all code sizes. Since no clear benefits of noise could be found,
and it adds an additional hyperparameter to be selected, it is the author’s
recommendation to not use normally distributed noise for anomaly detection
in WTs. However, this need not be the case for all types of input noise. As
is described in the literature review in Appendix A, Jiang et. al [26] used
masking noise to train autoencoders for anomaly detection. During training,
masking noise replaces some of the inputs with a zero value, forcing the
autoencoder to disregard information from this signal for the reconstruction.
Compared to normally distributed noise this likely has a completely different
effect on what the autoencoder learns, and it appears that it was beneficial
for anomaly detection. Further studies of the effects of this kind of noise
would be interesting.

In Chapter 3 the effect of input noise was investigated by the means
of so-called “noise curves”: plots of training and validation errors versus
the input noise. Two thresholds were distinguished: one for when training
and validation errors started to increase, and one for when they started to
diverge from each other. It was found that as the code size was increased
from low to high, the two thresholds came closer and collapsed around code
size 18. Why this happened remains unclear, but code size 18 was considered
a plausible candidate for a model with optimal capacity. In the validation
study, however, the models with code size 18 were proven inferior to those
with code size 24. Nevertheless, the proposed code size does lie within the
region of good performance and the investigation appears to have had some
merit. If the effect of normally distributed input noise was to be studied
further, it could be possible to devise a method to select an autoencoder’s
optimal capacity based purely on training and validation errors which could
prove helpful for hyperparameter selection.
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5.3 Discussion of the validation study
The ultimate goal of this field of research is to maximize a condition monitor-
ing system’s ability to detect and prevent faults in a wind turbine. To achieve
this, it is important to distinguish different components of a CMS and test
each component according to its responsibilities. For the autoencoder, the
task is to detect anomalies; it is not to distinguish between anomalies that
will lead to critical failures and anomalies that can be safely ignored. Such
filtering would require the incorporation of additional information, e.g. do-
main knowledge or environmental conditions, and this is probably easier
done in the postprocessing step. Since this thesis focused in particular on
the autoencoder, all kinds of anomalies were included in the validation study
presented in Chapter 4. Neither the grid curtailment nor the shift in hy-
draulic oil temperature will lead to a failure in the wind turbine, but, they
have the same characteristics as a real impending fault in that they consti-
tute a persistent change to some of the signals. Thus, from the autoencoder’s
perspective, they look the same and an autoencoder that detects these will
also detect a real impending fault.

For the validation study, service logs were utilized to create a labeled
dataset. This, however, was not without difficulties. A test case was only
labeled as positive if the logs described a clear event. Since these were all
detectable by the models they appear to have been correctly labeled. The
validity of the negatively labeled cases is not as certain. There were multiple
cases where almost all models showed errors at the same time despite there
being nothing in the logs. Whether such cases should have been included
in the validation study or not is up for debate. Here, they were, and this
might have skewed the comparison between different models. In Figure 4.9
it can be seen that some models quickly drop in precision as one lowers
the threshold. The first drop comes as the models pick up these uncertainly
labeled cases as false positives. If these cases correspond to actual anomalies
and consequently should have been labeled as positives, they would instead
have increased both the precision and recall of these models. Nevertheless,
labeling these cases as positives, or even removing them from the test suite,
would have introduced a selection bias since such a choice would be based
solely on the results from some models.

Because of the difficulties in correctly labeling test cases, only data which
had service logs was utilized. This limited the number of anomalies in the
dataset; perhaps the models would have been more distinguishable if exposed
to a larger variety of anomalies. Hence, if more data with more detailed
service logs was available, the results of a validation study could be improved.

As a basis for an alarm system, the Mahalanobis distance was used in
this work. The MD summarizes all reconstruction errors into one represen-
tative error signal. When analysing the results, it was found that, for a given
fault, the reconstruction errors that contributed the most to the MD were
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the ones related to the fault. This was the case for e.g. the shift in hydraulic
oil temperature studied in Appendix B. The shift caused a reconstruction
error for this temperature but the other signals were barely affected. Conse-
quently, the shift was difficult to detect by just looking at the Mahalanobis
distance. If an alarm system instead monitored each reconstruction error
individually, this case would have been easily detected. Such an alarm sys-
tem could, therefore, have narrower control limits and be more sensitive to
anomalies. Furthermore, a CMS that monitored each reconstruction error
individually could, on top of saying when an anomaly occurred, also give
some insight to why it occurred. This could prove valuable to the industry
and suggests a topic for further investigation.

5.4 Concluding remarks
In this thesis, a condition monitoring system for wind turbines was devel-
oped. The system, which was based on deep autoencoders, was able to de-
tect a variety of faults and other anomalous behaviours in the wind turbines.
This suggests that system-wide condition monitoring is possible. Moreover,
the system developed could well be applied at an industrial scale.

From a more academic standpoint, the work here provides an investi-
gation of autoencoders in light of their effectiveness as anomaly detection
models. Different hyperparameters are tested and their influence on perfor-
mance is evaluated. This can, potentially, lead to a better understanding of
this unsupervised learning technique.

To improve upon these results, two main areas of future investigations
can be identified. First, to further benefit the development of autoencoders,
it would be interesting to do a more thorough investigation of the connection
between input noise and training and validation errors. Perhaps, by looking
at something similar to the noise curves here, a method could be developed
that automated hyperparameter selection for autoencoders. To perform such
a study, it would probably be beneficial to use synthetic data for which the
retrieval of labeled cases would be trivial.

Second, to further develop a condition monitoring system for wind tur-
bines, it would be useful to monitor the individual reconstruction errors as
opposed to summarizing them to a single value as was done here. This
could, in addition to providing a more sensitive anomaly detection, make it
possible to identify which subsystem that is responsible for a given anomaly.
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Appendix A

Literature review

Condition monitoring systems for wind turbines based on SCADA-data is an
active field of research. Many different methods have been investigated and
some have proven quite successful. Studies differ mainly in what anomaly
detection model they use and in general these can be classified into one
of three categories. The first kind of model summarizes training data and
then calculates how similar new data points are to this summary. These
models are referred to as similarity-based models and typically unsupervised
machine learning techniques such as clustering are used.

The second kind of model reconstructs one or all available signals from a
combination of the other available signals. The hypothesis is that, since the
parametrized reconstruction model is configured using healthy training data,
it will only give correct results for data coming from the same distribution.
Consequently, a fault in the WT and a change in its dynamics will lead to
detectable errors the reconstruction. These models are called residual-based
models and various techniques have been employed including artificial neural
networks (ANN) and polynomial fitting.

The third category of models monitor the power curves of WTs. These
models are typically not as sophisticated as models in the other categories
and may not be as sensitive to impending failures. Nevertheless, they have
the advantage of it being simple to compare different WTs with each other
and monitoring can be done on a wind farm level as opposed to at a wind
turbine level. Therefore, the models are more robust to abnormal weather
conditions and other environmental effects because these will affect all tur-
bines equally. Comparing the results for different turbines is not as straight-
forward for the other kinds of models as these tend to be more individualized.
For the same reasons, this category of models can also be effective for a more
general performance assessment.

The following subsections present a review of the scientific work on the
three different kinds of models. Some models could be categorized into
several categories, in such case the study is presented where it makes the
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most sense with regards to the surrounding text in order to enhance the
readability of this chapter.

A.1 Similarity-based models
Similarity-based models detect anomalies by comparing the properties of
new data to data which represents normal operating conditions.

Kim et. al [7] investigated two methods for detecting a gearbox fault
in a research turbine in Colorado. The first method was based on deep
autoencoders (DAE) which is a neural network that takes its input data,
compresses it to fewer nodes and then decompresses it back to a model
of the original input data, see Section 2.1.9 for further detail. The model
is trained with healthy WT data and then the values at the middle layer
were used to form two statistical measures. Thresholds for these statistics
were constructed from the training data and these were then used to deter-
mine whether a new sample was normal or abnormal. The model produced
alarms both when tested on healthy data and data leading up to the gearbox
fault showing that this threshold system was unsuccessful. Nevertheless, the
statistics exceeded the thresholds a lot more on the day of the failure than
on the days of healthy data, indicating that it could be possible to get better
results using a different monitoring method.

In a second method the authors used a self-organizing map (SOM) to
create clusters in the data. A SOM is a neural network in which a given
number of neurons are randomly placed in the data space. During a train-
ing process these are then iteratively moved toward input data points in
a competitive process. Eventually, the neurons stabilize at center points
of different clusters of the training data. They thus provide a compressed
representation of the data to which new signals can be compared. The au-
thors used both faulty and healthy data for their training and found that
some clusters only contained healthy data, some only faulty data and some
a mixture of both. Therefore, the results were inconclusive.

In [8] Infield et. al employed a nonlinear state estimation technique
(NSET) which was originally developed for condition monitoring in nuclear
power plants to compute a similarity measure between historical and new
data. NSET is a rather simple method in which a so-called state memory
matrix is constructed by putting together historic data vectors in a matrix.
Next, the new data is projected onto the space spanned by this matrix. The
distance between the data and its projection is finally used to determine
whether the data comes from healthy or faulty conditions. A case study was
performed with two months of data from ten turbines. Seven of these were
used for training, one for validation and the two others that had experienced
gearbox faults were used for testing. The model was able to detect the
failures one month in advance.
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Zhao et. al [9] applied density-based clustering (DBScan) to predict the
remaining useful life (RUL) of a generator. The intuition goes as follows:
most of the time the wind turbine is functioning properly and therefore this
data should be much more numerous and dense than data coming from an
unhealthy state. The largest cluster should, therefore, be the one corre-
sponding to healthy data. For a healthy turbine the other clusters will come
from special weather conditions and other abnormal working states but for a
turbine with a gradually progressing fault smaller clusters would correspond
to worsening states of the turbine. Based upon this, the authors introduced
an anomaly operation index equal to the proportion of data instances not
in the biggest cluster during a time period t. They set a threshold for what
was considered a normal and abnormal value of this index and used this to
calculate the RUL by weighting with the life expectancy of a healthy WT.
The authors had access to 18 months of data from 150 WTs and they knew
when faults had occurred for these. They looked at five WTs that experi-
enced generator faults and took data from 30, 40, 50 and 60 days backwards
in time. Based upon this they were able to estimate the RUL with around
80% accuracy up to 18 days in advance.

A.2 Residual-based models
Residual-based models recreate some part of the SCADA data and use the
recreation error to detect if a fault has occured. For this to work the model
has to be accurate for healthy data and a number of different approaches
have been investigated.

Some authors have looked into the physics of a WT and from this con-
structed parametrized functions (typically polynomial) which have been fit-
ted on data [10]. Although this approach has shown some promise, the
models often have to be adjusted from case to case since two WTs do not
have the exact same behaviour and different wind farms often have different
weather conditions. Therefore, this approach is not applicable for large scale
condition monitoring and only one work is presented here. Other authors
have also attempted to fit polynomials to the data but instead of physical
reasoning they have applied various statistical methods to derive the shape
of the polynomials [11], [13]. These methods would be easier to apply at scale
and the results show some promise. All polynomial models are presented in
Section A.2.1.

Common supervised learning methods have also been applied to cre-
ate residual-based models including linear models (LM), k-nearest neigh-
bours (kNN), support vector machines (SVM), Gaussian process regres-
sion (GPR) and artificial neural networks (ANN). In comparative stud-
ies [22], [14], [16] ANNs have often been the winner and a lot of studies
have shown the feasability of ANN-based fault detection. ANNs are able to

A3



capture the nonlinear relations between SCADA-signals and are also gen-
eral enough to be applied on a large scale. Different network structures have
been employed, including single hidden-layer feedforward networks (SLFN),
deep feedforward networks (DFN), layer-recurrent networks (LRN), adap-
tive neuro-fuzzy inference systems (ANFIS) and autoencoders (AE).

To alert the operator that a fault has occurred different error measures
have been employed including the Euclidean distance from the true sig-
nal, the Mahalanobis distance (MD) and T 2-statistics. An alarm is then
produced when the error has been large enough over a long enough time.
Schemes to determine this has included simple and more elaborate threshold
models and, more recently, exponentially weighted moving average (EWMA)
where old errors contribute a little and newer more.

A.2.1 Polynomial models

Wilkinson et. al [10] showed three different methods for fault prediction in
a WT. First, they compared the temperature of a component of one WT to
the temperature of the same component in five other WTs in the same farm.
They showed that such a method could indicate a fault but ultimately they
dismissed this method since the fault detection was not very reliable. Next,
they investigated the use of SOMs and measured the distance between input
data and its closest node in the trained SOM. Based upon this they were
also able to detect impending failures. But, since a SOM cannot say which
component that had generated the fault this method was also dismissed.
Finally, they looked into the physics of a WT and used correlation analysis
to fit polynomial models to various component temperatures. This method
was then pursued in a large case study on different wind farms with an
operational range from two and a half to seven years. In total 472 WT-years
of data was used and the models were able to predict 24 out of 36 various
generator and main bearing faults one month to two years in advance and
only produced three false positives.

Yang et. al [11] took a statistical based approach to create a anomaly
detection model. They filtered the SCADA-data to interesting ranges of op-
erations and removed standby data. Next, they binned the data according
to wind speed and used the expected value for each bin. From this prepro-
cessed data they fitted pairs of signals to each other with a fourth-degree
polynomial and least squares. The pairs where chosen so that they would
correlate to the subsystem in which the fault took place. E.g. for detecting
a blade breakage they looked at the power versus wind speed and torque
versus wind speed. They compared a historic fit to a present fit and corre-
lation statistic on which they determined if a fault was on its way. Their
method was able to detect an impending blade breakage and a generator
bearing fault months ahead.

Dao et. al [13] used a statistical method called cointegration to create a
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simple polynomial model. Cointegration is a technique originally developed
in the field of Econometrics which is based on the concept of stationary time
series. A stationary time series is one which has a distribution that doesn’t
change with a shift in time, see Figure A.1. Usually, time series occuring
in engineering problems are not stationary, but, there may be stationary
patterns within them. Cointegration is one way of finding such a pattern.
Formally a set of non-stationary time series are said to be cointegrated if one
can create a stationary time series by taking the linear combination of them.
This happens when there are some long-run correlations between the time
series and there are various methods to test for this. The authors first used
methods in [45] to establish optimal time delay between the signals. Then
they used Johansen’s cointegration method [46], a sequential procedure of
maximum likelihood estimates, to find a set of cointegrated stationary time
series from the SCADA data. The method determines which signals that
should be combined and calculates the coefficients between them. Given
this combination one of the signals can be expressed as a linear combination
of the others and given that there indeed exists some stationary pattern the
residual should be a white-noise signal. The method can thus be summa-
rized as a method based on maximum likelihood estimates to create linear
mappings with optimal time delay between different SCADA-signals. The
proposed method was tested on 30 days of data from a 2 MW WT. During
this time period the data exhibited two anomalies: one sudden wind speed
drop that caused the rotor to stop and one temporary gearbox fault. Using
a threshold-based alarm system the cointegration residual alerted for both
of these anomalies without giving any false alarms.

A.2.2 Single output neural networks

One of the first attempts to use neural networks for anomaly detection was
done by Garcia et. al in 2006 [20]. They developed a complete system
for predictive maintenance called SIMAP and tested it on a gearbox fault
in a WT. They modeled three characteristic temperature properties of the
gearbox with single hidden layer feedforward neural networks (SLFN) and
selected a different set of inputs for each. These inputs included signals such
as generator power and nacelle temperatures and also time-delayed values
of the modeled signal. The inputs and outputs for the different models are
summarized in table A.1. Next, they used a fuzzy system which, based on the
reconstruction error of the models, determined when a fault had occurred.
For the gearbox fault investigated, the system was able to produce a warning
roughly 26 hours in advance.

Zaher, McArthur, and Infield [21] created a similar model to the SLFNs
in SIMAP by using three months of SCADA data from 26 WTs. Next, the
model was tested on two years of data from the wind farm. Two gearbox
faults were detected, one six months in advance and one one month in ad-
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Figure A.1: A comparison between a stationary (top) time series and a
nonstationary (bottom).

vance. No reports of false positives or missed faults (false negatives) were
given. The authors also created a similar model for a generator and this
model was able to detect faults up to one year in advance.

Schlechtingen and Santos [22] compared two different SLFNs with a lin-
ear model. One of the SLFNs only used current values of the signals while
the other also used time-delayed values of the output signal. All models
were trained on three months of data from a turbine with a newly replaced
bearing and were used to model generator stator temperature. Next, the
models were tested on the same turbine to detect a second bearing fault.
Both the SLFNs and the linear models were able to detect the second fault
well ahead in time (18, 25 and 25 days ahead). Next, they performed a
number of similar studies investigating two bearing damages and two sta-
tor temperature anomalies in other WTs. The authors argued that a linear
model was hard to scale to many WTs since important parameters and cor-
relations had to be determined for each individual WT. This was, however,
automized with the neural networks. Therefore, in these studies, they only
compared SLFNs with and without time-delayed signals. The results showed
similar performance of both approaches.
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Output Inputs

Gearbox bearing temperature (t)

Gearbox bearing temperature (t− 1)
Gearbox bearing temperature (t− 2)
Generated power (t− 3)
Nacelle temperature (t)
Cooler fan slow run (t− 2)
Cooler fan fast run (t− 2)

Gearbox thermal difference (t)

Gearbox thermal difference (t− 1)
Generated power (t− 2)
Nacelle temperature (t)
Cooler fan slow run (t− 2)
Cooler fan fast run (t− 2)

Cooling oil temperature (t)

Cooling oil temperature (t− 1)
Generated power (t− 2)
Nacelle temperature (t)
Cooler fan slow run (t− 2)
Cooler fan fast run (t− 2)

Table A.1: The various input and output combinations used by Garcia et.
al in [20].

In a different study [18] Schlechtingen and Santos investigated the usage
of adaptive neuro-fuzzy interface system (ANFIS) as a residual-based model.
ANFIS aims to combine the easy interpretation of a fuzzy inference system
with the learning capabilities of a neural network. In short, the model learns
how to assign membership functions to the input and how to construct rules
given a membership. For a more detailed explanation on fuzzy design and
ANFIS see [47]. For each of 18WTs, the authors constructed 45 models using
different combinations of SCADA signals. Inputs to output were chosen
with the help of genetic algorithms and expert knowledge. The models were
trained on nine months of data. SLFNs with the same inputs and outputs
were also created and the reconstruction errors were similar. Compared
to ANFIS’s, however, SLFNs have a relatively long learning time which
becomes important when many models have to be trained.

Next, the authors proposed a fuzzy inference system that, based on ex-
pert knowledge, could correlate the reconstruction errors to faults in various
subsystems of the WT. In a second paper [19] the whole system was tested on
two and a half years of additional data from the same 18 WTs. The system
was able to detect a variety of anomalies including a hydraulic oil leakage,
cooling system filter pollutions, converter fan malfunctions, anemometer off-
sets and a turbine performance decrease. For many of these cases service
was performed months after and related components were replaced.

Bangalore et. al [23] created five SLFNs with time-delayed inputs to
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model five different gearbox bearing temperatures. It was found that the
size of the reconstruction error was dependent on the actual, operating tem-
perature of the monitored component. To take this into account, their co-
variance matrix was calculated on the training dataset and the Mahalanobis
distance (MD) with respect to this was used for a threshold-based alarm
system. The models were trained on two different WTs using data from one
year of operation where there were no logged faults. During the following
year, a bearing fault happened for one of the WTs while the other remained
healthy. For the healthy WT none of the models gave any alarm but for the
one with a fault all of the models gave alarms around three months before
the replacement and one week before a warning issued by a vibration based
CMS. Further, the model corresponding to the faulty bearing produced the
largest error which indicates that it could be possible to detect which bear-
ing that was damaged. Next, the authors showed that the MD gave a much
better signal to noise ratio than the typical root-mean-square error.

In a comparative study from 2015, Cross et. al [14] compared linear mod-
els, SLFNs and so-called state-dependent parameter (SDP) models. The
SDP can be seen as a linear model in the inputs but for which the coeffi-
cients are themselves functions of the inputs (state). To get the coefficient-
functions the authors used a Kalman filter and a fixed-interval smoothing
algorithm. They used data from 26 turbines and 16 months and modeled
gearbox bearing temperature with old temperatures and one or two extra
SCADA-parameters. For the models with the single extra input the SLFN
gave the best fit on the validation set, but, for the ones with two extra in-
puts, the SDP gave better results which was interpreted as that the SLFN
had overfitted on the data. They applied their SDP with two extra inputs to
a turbine which had shown a gearbox fault and used fuzzy rules to establish
when the residuals had broken a threshold for too long. With this, they
were able to give an alarm 20 hours before the fault occurred.

In a different comparative study, Watson et. al [16] compared linear
models, linear models which also had terms with products of the inputs,
SLFNs, Layer recurrent neural networks in which the output of layers was
sent back as input to include inertial effects, GPR, SVMs and ANFIS. To
select the best inputs they used crosscorrelation and also included lag of
the different signals. They did not include previous values of the output
in order to be able to predict faults. Bearing temperature and generator
wind temperature was modeled for 100 WTs individually in a wind farm in
the US with 52 days of data. Next, the models were tested on a remaining
four months of data and compared by how well they were able to predict
the temperatures. They found that most models performed better the more
inputs that were used except for the ANFIS and the GPR. Most models also
gave good precision with mean absolute errors around 2 ◦C. The SVMs and
GPRs were, however, often outperformed.

Qian et. al [24] applied the extreme learning machine (ELM) in com-
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bination with a genetic algorithm to set up a SLFN for various gearbox
parameters. The ELM works by randomly initializing the input weights of
the network and then solving for the best weights in the output using a
matrix method. This is much faster than gradient descent based training
agorithms and has been proven to have universal approximation capability
just as normally trained SLFNs. Since the training is so fast multiple train-
ings can be tested using different input weights. The authors took advantage
of this and applied a genetic algorithm to search for good input weights and
biases. They modeled three different gearbox temperatures and trained the
models with SCADA data from one year of data from one WT which later
had a gearbox failure. The Mahalanobis distance was used as a measure
of the size of the residual and the models were combined to give a better
fault detection. The fault was detected in advance and the warning time
was dependent on which threshold sensitivity that was chosen since it was
seen that the residual errors started rising around 400 hours before the fault
occurred.

Wang et.al [12] compared a DFN to kNN, two linear models, SVM and
SLFN to model gearbox lubricant pressure in order to detect gearbox fail-
ures. The authors argued that this would be better than modelling for gear-
box temperature since the temperature is more strongly affected by ambient
temperatures and that it, therefore, would be more difficult to detect faults.
The DFN model used had three hidden layers with 100 nodes each and was
trained using stochastic gradient descent and dropout to avoid overfitting.
Six different wind farms were analysed and data from all healthy WTs in a
farm were used to train the models for that farm. The training data ranged
from 3641 to 76500 datapoints per farm, corresponding to approximately 1
- 22 WT-months per farm. The models were compared using mean absolute
percentage errors (MAPE) on a validation set and it was seen that the DFN
outperformed the others with a MAPE of 6.01%. The SLFN came closest
with 7.13% and the others had around 9%, see table A.2. Next, an EWMA
was set up as an alarm system and the DFN was run on all WTs in the
farms. It successfully identified all gearbox failures for the WTs affected
and produced no false alarms. A similar model was then created to model
the gearbox temperature and this one showed one true alarm, missed four
of the failures and produced three false alarms. This clearly indicates that
the lubricant pressure is a more reflecting property.

A.2.3 Autoencoders

In [25] Wang and Zhang used deep autoencoders (DAE) to predict blade
breakages. DAEs use more hidden layers than normal AEs, in this study five
hidden layers were used. Ten neurons were used in the central layer, a result
based on a preliminary PCA. For the other layers different configurations
were tested and the one selected had hidden layers with 500, 250, 10, 250
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Models MAPE
Lasso 9.51
Ridge 9.48
kNN 9.01
SVM 9.76
SLFN 7.13
DFN 6.01

Table A.2: Mean absolute percentage reconstruction errors of the models
in [12] on data from normal conditions.

and 500 nodes. The DAEs were first pretrained using restricted Boltzmann
machines (RBM) and then trained to recreate all the 25 SCADA signals
available. In a first study, the authors selected the data from all healthy
WTs in a wind farm for six months. From this data, they created one DAE
according to the procedure described above, one DAE without temperature
parameters, one without the RBM pretraining and one shallow AE with one
hidden code layer. These were all compared studying one healthy WT and
one with an impending blade breakage. The squared euclidian norm, i.e.
the mean square, of the reconstruction errors was used and the only model
able to detect the blade breakage was the proposed DAE with pretraining
and temperature parameters. Next, the authors looked at two months of
data from two new wind farms where it was known that two blade breakages
had occurred but not when nor for which turbines. The authors trained one
DAE for each wind farm using the data from all WTs in that farm. Next,
they used an EWMA to construct a threshold-based alarm system. Despite
the danger of overfitting, the models detected both blade breakages and did
not produce any false alarms.

Similarly to [7] and [25] Jiang et. al [26] used an autoencoder model for
anomaly detection. Their model was a shallow, sliding-window, denoising
autoencoder. Denoising means that, during training, the input data is cor-
rupted and the AE is taught to decrypt the corrupted data. For this work,
the authors applied masking noise, which randomly masks some of the in-
put signals with a zero value during training. Hopefully, this prevents the
AE from purely learning an identity mapping and instead it should extract
more representative features. Denoising autoencoders are described further
in Section 2.1.9.

Sliding-window means that not only one but several timestamps, i.e. a
window of time were used. In particular, for most cases, they modeled the
six most recent timestamps. As a basis for an alarm system, they used a
version of the MD which is more robust to outliers. A threshold was set by
estimating the distribution of the MD on training data. Initially, the authors
used data from a generic, well-established WT benchmark model. This
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benchmark models an offshore 5 MW WT and is able to simulate a variety of
realistic malfunctions in different parts of the WT. In this work, six fifferent
sensor faults and two different actuator faults were simulated and different
autoencoder models were compared with PCA-based methods. The data
was sampled at a high frequency, 0.125 s, and individual timestamps were
labeled as either normal or faulty. The comparisons were done with Receiver-
operating-charactheristic (ROC) plots, which are similar to the precision-
recall curves described in Section 2.4 but instead of precision, false positive
rate is used. More information on ROC plots can be found in e.g. [48].
It was found that the autoencoder models outperformed the PCA-based
methods. Among the autoencoder models, the proposed method was better
than both denoising autoencoders without the sliding window and sliding
window autoencoders without the denoising. Additionally, the effect of some
of the hyperparameters was investigated. In particular, it was found that
the number of nodes in the hidden layer did not have a significant effect
on performance. After this study with simulated data, the method was
validated on a Mongolian wind farm with over 100 WTs with a rated capacity
of 1.5 MW. The data was acquired at 30 s intervals and, with the help of
service logs, individual timestamps could be labeled as either normal or
faulty. The authors selected two different types of faults, each containing
2000 normal samples and 2000 fault samples. Training was done with 8000
normal samples and the comparisons were done using ROC-plots for both
fault cases. Once again, the proposed sliding-window denoising autoencoder
model showed the best performance with both high recall and low false
positive rate.

A.3 Power curve monitoring
By comparing power curves of different WTs in a wind farm it is possible
to detect underperforming WTs. This has mainly been used for anomaly
detection [17], [15], for a single WT where one, just as for the previously
discussed residual-based models, detects a change in the PC and concludes
that a fault has happened. However, these methods could also be applied
to detect WTs that have always been underperforming; this could be due
to a fault that the WT had from birth or due to influence from the other
WTs such as wake. Since the previously discussed residual-based models are
trained on the normal data they cannot possibly detect these faults since
they have always existed and would, therefore, be categorized as “normal”.

Papatheou et. al [17] modeled power curves for 48 offshore WTs in
the Lillgrund wind farm where the WTs are spaced particularly close. They
developed two different types of models, one based on a SLFN, and one based
on GPR. The measured wind speed at each turbine was used as input. The
data was collected from one year of service and bad data was filtered with
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the help of SCADA statuses. Two models (one SLFN and one GPR) was
trained for each WT and using wind data of that WT. Next, the models were
tested with the wind speed data from the other WTs. Overall all models
performed well despite being fed with the data from different turbines. Next,
the authors developed an alarm system based on extreme value statistics.
The system was able to detect some anomalies which were verified by the
SCADA status data, however, many statuses remained unnoticed.

Long et. al [15] investigated the shape of PCs to determine if a WT
was malfunctioning. They argued that PCs may shift with factors such as
air density and to simply compare it with reference PCs may not give an
accurate picture. Instead, the authors took wind speed and power data from
one WT and divided it into sequential time periods. For each time period,
they fitted two models, one linear and one Weibull cumulative distribution
function. Both of these models had two parameters and in a first phase
a Hotelling T-squared control chart was used to detect extreme outliers
amongst the parameters for different time periods. The authors argued
that this method is effective at detecting data with irregular curvature but
perhaps not abnormally widely spread data. For this, the authors used a
residual approach where the sums of residuals for each time period were
compared against each other. If the sum exceeded a threshold this time
period was classified as abnormal. Next, the authors performed two blind
studies on WTs in the U.S. and China. SCADA data sampled at 10 s interval
from two months of operations was provided together with fault logs. The
data was divided into 177 time periods based on a fixed interval and out
of these 27 were, according to visual inspection, abnormally shaped. Out
of these, the combined methods were able to detect 22 abnormal cases.
Additionally, fives cases were detected that appeared normal during the
visual inspection, but, according to the fault logs responded to cases where
the WT had experienced various problems like emergency stops and brake
malfunctions. For the second study SCADA data sampled at a 10 minute
interval from three months and 32 WTs was provided without fault logs.
Two of these WTs had, however, been manually investigated by experts and
were analyzed closer by the authors. The methods were able to detect a
number of abnormal PCs which all corresponded to anomalies detected by
the manual inspections. The authors concluded that the proposed methods
could be implemented for online monitoring of a WT but suffered from not
being able to predict faults as timely as methods based on data from single
timestamps.
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Appendix B

Case studies

In this chapter, two particular anomalies are studied. The first anomaly
was an increased hydraulic oil temperature which occurred after a preventive
maintenance. Most likely, this happened because of a settings change which
was not noted in the service logs. Even if this is not a fault per se, it is
interesting to study as it clearly shows how the autoencoder is able to identify
which signal is abnormal.

The second anomaly was a malfunction in the yaw encoder system lasting
for about one month. The system was later replaced and it is clear how the
reconstruction errors of the autoencoder model immediately decrease.

B.1 Change in hydraulic oil temperature
On the 5th of November 2018, a preventive maintenance was performed on a
2 MW wind turbine. The wind turbine appears to have been functioning well
both before and after the maintenance. As is clear from Figure B.1, however,
the maintenance caused a consistent rise in the hydraulic oil temperature.
Figure B.1 shows the reconstruction of this temperature and one can notice
how the autoencoder model fails to reconstruct the temperature after the
maintenance as its behaviour is different from the behaviour during the
training period.

While the reconstruction of the hydraulic oil temperature got worse after
the maintenance, other signals were not as affected. This is clear from Figure
B.2 where the reconstruction of a gear bearing temperature is shown. For
this signal, as well as many other signals, the autoencoder was still able
to give a good reconstruction. Consequently, the monitored Mahalanobis
distance did not increase significantly. Since the MD is a measure of all
the reconstruction errors combined, a slight change in only one of these
errors does not affect it much. It can be observed from Figure B.3 where
the MD along with its inferred EWMA are presented. For this reason, it
might be beneficial to construct an alarm system based on all individual
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Figure B.1: Reconstruction of a turbine’s hydraulic oil temperature, before
and after a preventive maintenance on the 5th of November. The recon-
structed signal is plotted in red and the original in blue. It is clear how
the maintenance changed the temperature and how the reconstruction got
worse.

reconstructions as opposed to combining them with something similar to
the Mahalanobis distance, as discussed in Section 5.3.

Figure B.2: Reconstruction of the same turbine’s gear bearing temperature,
before and after the preventive maintenance. The reconstructed signal is
plotted in red and the original in blue. Clearly, the reconstruction error did
not change by a lot for this signal.
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Figure B.3: The Mahalanobis distance along with its inferred exponentially
weighted moving average from all the reconstructions of the different signals
for the same time period as in Figure B.1. Only a slight increase is visible.

B.2 Yaw encoder malfunction
A different 2 MW turbine experienced a number of failures in the yaw en-
coder which were detected by the SCADA system beginning from the 15th
of March 2018. On the 11th of April, the yaw encoder was replaced and
the alarms seized. This fault was easily detected by the autoencoder models
which showed errors as early as the 2nd of March. As is shown in Figure
B.4, the errors went back down after the replacement.

The yaw encoder system determines how the turbine should turn to catch
most of the wind. If this is malfunctioning, power production will be highly
affected. This was caught by the autoencoder model, which had its largest
reconstruction errors for the power signal and the blade angle signal. For
other signals, e.g. a gear bearing temperature, the reconstruction errors were
much lower. All of these reconstructions are shown in Figure B.5, were, for
increased visibility, a shorter timespan than in Figure B.4 is covered. This
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Figure B.4: Mahalanobis distance and exponentially weighted moving aver-
age of the reconstruction errors for a wind turbine experiencing faults in the
yaw encoder system. It is clear when the faults start occurring and when
the yaw encoder system is replaced.

behaviour suggests that the autoencoder model could be used to indicate
where a fault is, in addition to just saying when it occurred and this is also
discussed further in Section 5.3.
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Figure B.5: Reconstructed (red) and original values (blue) for some different
signals during the time of the yaw encoder malfunction. It is clear how the
signals related to the yaw system (power and blade angle) are highly affected
while the unrelated gear bearing temperature does not show any indication
of a fault.
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