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APRNet: Convolutional neural networks for a content-adaptive particle representa-
tion of images
JOEL JONSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Convolutional neural networks have shown outstanding performance in a wide range
of image processing and computer vision tasks. The processing of biological fluo-
rescence microscopy images is no exception. However, practical applications are in
many cases hampered by the size of the datasets, which typically take the form
of 3D stacks of high-resolution pixel images sampled through time. To reduce the
memory and computational resources required to store and process such data, the
Adaptive Particle Representation (APR) has been proposed as a replacement for
the pixel representation. By replacing pixels with particles positioned according to
the contents of the image, the APR enables orders of magnitude reductions in the
computational and memory cost of storing and processing 3D microscopy images.

In this work, first steps are taken toward a full extension of convolutional neural
networks to the APR. This is achieved by designing and implementing the funda-
mental components of such networks for 2D image classification as operations on the
APR. These components are built into custom modules in the popular deep learning
framework PyTorch, allowing seamless design and application of the resulting net-
work type, which we call APRNet. The potential of APRNets is demonstrated on
image classification tasks using both synthetic and natural images. It is shown that
APRNets can achieve equal classification performance to pixel networks of similar
design, while enabling significant reductions in both memory usage and computa-
tional cost. The results also indicate that processing on the APR may provide
additional benefits by imposing a regularizing effect on the learning.

Keywords: deep learning, computer vision, CNN, adaptive image representation,
APR, microscopy
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1
Introduction

1.1 Background

Deep learning methods, and in particular convolutional neural networks, are finding
an increasing number of successful applications in the analysis of biological floures-
ence microscopy data [1, 2, 3, 4]. This data often comes in the form of 3D stacks
of pixel images sampled through time. Depending on the technique used and the
required resolution, such images can easily reach sizes where even simple visualiza-
tion tasks exceed the memory and computational capticity of current techniques
and hardware [5]. Hence, the application of deep learning methods, which are inher-
ently demanding both in terms of computational power and memory requirements,
is either not possible on the full datasets, or requires special pre-processing and
algorithms [6].

The Adaptive Particle Representation (APR) [7] has been developed to alleviate
computational and memory bottlenecks in the storage and processing of such large
images. It does so by adapting the image resolution according to local information
content, enabling orders of magnitude reductions in the size of the representation
[7]. Unlike standard image compression techniques, once an image is converted to
an APR the adaptive representation can be used for processing and visualization
tasks, without returning to the original pixel image. Many algorithms do, however,
need to be modified to account for the more complex data structures.

Due to the prominence of deep learning methods in image analysis, their adap-
tation to the APR is both useful and necessary. Firstly, it would enable the use
of powerful deep learning approaches in APR-based pipelines. Secondly, with the
methods in place the APR could be used as a tool to significantly reduce the compu-
tational resource requirements for applications of deep learning to very large images.
Lastly, the formulation and evaluation of classical deep learning approaches, such
as convolutional neural networks, directly on such a content-aware, multi-resolution
image representation constitutes a theoretically interesting problem.

1.2 Aims and objectives

The aim of the project is to develop and implement convolutional neural networks
that operate directly on the APR. In order to achieve this, the fundamental building
blocks of a convolutional neural network, e.g. the convolution, down- and upsam-
pling operations, must be adapted to the data structure of the APR. Subsequently,
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1. Introduction

the performance of the developed methods should be evaluated on benchmark learn-
ing tasks.

1.3 Limitations
Convolutional neural networks constitute a broad class of algorithms, and may be
comprised of various building blocks depending on the task at hand. To constrain
the required amount of work, this work focuses on networks for image classification.

Furthermore, much of the recent success of convolutional neural networks can be
attributed to efficiently implemented algorithms. In particular, the use of graphics
processing units (GPUs) to accelerate computation has had a profound impact.
While computational performance is a key topic in this work, the limited time span
of the project does not allow for a highly optimized implementation, nor the use of
GPUs. The expected outcome is to have a working prototype for central processing
unit (CPU) computation, serving as a proof of concept.

1.4 Thesis outline
The remainder of the thesis is structured as follows:

Chapter 2 introduces the concepts and theory necessary to understand the
work. First, the problem of image classification is briefly formalized and dis-
cussed. Subsequently, convolutional neural networks for image classification are
described, and the APR is motivated and introduced.
Chapter 3 describes the adaptation of convolutional neural network operations
to the APR, as well as their implementation and related work.
Chapter 4 presents the results of empirical studies of the developed networks
for image classification using the APR. This is done on benchmark learning tasks
using both synthetic and natural images.
Chapter 5 summarizes what has been accomplished and discusses conclusions
that can be drawn from the presented work, as well as possible directions for
future work.

2



2
Preliminaries

This chapter introduces the concepts and theory required to understand the main
body of the text. The first section briefly introduces and formalizes the problem of
image classification, and describes how a classification algorithm can be “trained”
in the supervised learning regime. Subsequently, artificial neural networks, which
constitute a family of machine learning algorithms often used for classification, are
introduced. Particular focus is placed on convolutional neural networks and their
building blocks, as well as the processes of building and training such models. Fi-
nally, the adaptive particle representation is motivated and the necessary theory
behind it is described.

2.1 Image classification
Image classification is the task of assigning a single label, from a fixed set of cat-
egories, to an input image. While most such problems can be trivially solved by
humans, there is great value in automating the process. Automated image classifi-
cation finds applications in software for, e.g., facial recognition in security systems
[8] and the detection of cancer or other anomalies in medical images [9].

From a probabilistic perspective, an image x and its “true” label y can be viewed
as realizations of random variables X and Y , characterized by a joint probability
distribution PX,Y (x, y) := P (X = x, Y = y).1 If the joint distribution is known, the
label of an observed image x is characterized the conditional distribution

PY (y|x) = PX,Y (x, y)
PX(x) = PX,Y (x, y)∑

y PX,Y (x, y) .

With this information one could make an educated guess to classify x, for instance
by choosing its most probable label

ŷ = arg max
y

PY (y|x).

However, these probability distributions are unknown and intractable. Instead, they
can only be approximately inferred from data. In this work we consider the use of
artificial neural networks as data-driven discriminative models. That is, models
focused on the direct mapping from images to labels. Note that this does not
necessarily equate to estimating PY (y|x); the probabilistic reasoning above merely

1Both X and Y are assumed to be discrete random variables here, but similar arguments can
be made in the continuous case using probability densities.
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2. Preliminaries

serves as one example of several possible formalizations of the problem. Prior to
introducing neural networks in detail we give a brief description of the problem of
“training” a generic classifier in the supervised learning regime.

2.1.1 Supervised learning
Consider a generic image classification model that simply defines a function f(x; θ),
where x denotes an input image and θ a set of free parameters, which outputs a
score for each category considered. The functional form of f depends on the specific
model, and is here assumed to be fixed. Suppose now that we have a set of labeled
images {(xi, yi)}Ni=1, which we refer to as training data. These data provide examples
of outputs of an optimal mapping yi = f ∗(xi) at the points xi. For instance, by
encoding the observed labels as vectors of class probabilities with probability one
for the observed class and zero for all others2, f ∗(x) can intuitively be thought of as
a conditional probability distribution PY (y|x). The parameters θ can then be tuned
so that f is close to f ∗ at the points xi where it is known. Here “close” is defined by
a functional L : Y × Y −→ R+ on the set Y of possible labels or class scores. The
functional L is typically referred to as the loss function, and often takes the form of
a divergence or distance metric on Y . Thus, the model f is presented with inputs
xi as well as corresponding supervisory signals f ∗(xi), and is corrected (“taught”)
to produce similar signals under L.

Of course, in any practical application the objective is to derive a model that
can classify new images, outside of the training data set. Hence, the ultimate goal
of the learning process is to find the parameters such that f is as close as possible
to f ∗ for all possible inputs. In the probabilistic framework this can be stated as
finding

θ∗ = arg min
θ
E [L(f(x; θ), y)] ,

where
E [L(f(x; θ), y)] =

∫
L(f(x, θ), y)dPX,Y (x, y) (2.1)

is the expected loss over the joint distribution of images and labels, referred to as
the risk associated with the model. Again, since this distribution is unknown the
expected value can only be estimated, typically by the sample mean over the training
data. This is known as the empirical risk:

Etrain[L(f(x, θ), y)] = 1
N

N∑
i=1
L(f(xi, θ), yi). (2.2)

Training the model is thus stated as the optimization problem of finding the pa-
rameters that minimize the empirical risk, which is referred to as empirical risk
minimization. However, it is important to remember that (2.2) is only an estimate
of (2.1), and low empirical risk does not necessarily imply low risk. In fact, any
model with sufficient capacity can achieve near-perfect empirical risk by “memoriz-
ing” the training data. That is, the model adapts to the noise in the specific dataset,
and most likely provides a poor representation of the underlying structure. This is

2This is often referred to as one-hot encoding.
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2. Preliminaries

referred to as overfitting. The converse, i.e. when the model capacity is insufficient
to capture the underlying structure, is referred to as underfitting.

To keep track of how the model performs on data not used in the training pro-
cess, the available labeled data set is typically divided into three parts: training,
validation and test data. The training data are used to update the model parame-
ters, while the generalization performance is estimated using the validation set and
tracked throughout the training. If the training loss (2.2) is large, the model is
underfitting and its complexity must be increased. Overfitting is instead charac-
terized by small training loss and large, or growing, validation loss. This can be
combated by either decreasing the model complexity or applying various regulariza-
tion techniques to improve the generalizability. Some such techniques are described
in Section 2.2.4.4. Figure 2.1 shows examples of typical learning curves, i.e. the
progression of the loss during training with an iterative scheme, when the model is
fitting appropriately versus under- and overfitting.

Training progression

Lo
ss

Training

Validation

Desired performance

(a) Appropriate fit

Training progression

Lo
ss

Training

Validation

Desired performance

(b) Underfitting
Training progression

Lo
ss

Training

Validation

Desired performance

(c) Overfitting

Figure 2.1: (a) Example of ideal progression of the generalization error during
training. (b) Underfitting is characterized by large training loss. (c) Small training
loss and large (or growing) validation loss is an indication of overfitting.

In this way, one can compare different models by their ability to make predictions
on the unseen validation data and choose the best-performing model. However,
tuning or choosing a model to perform well on the validation data introduces bias
to the selection. The performance of the final model is therefore measured on the
test data set, which must be held out during both the model selection and training
procedures.
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2. Preliminaries

2.2 Artificial neural networks
Artificial neural networks (ANNs) constitute a class of machine learning algorithms
loosely inspired by the way the human brain processes information. They consist of
simple, interconnected processing elements, which are referred to as neurons. Each
neuron recieves one or more input signals, from which an output signal is computed.
A network is formed by passing the output of certain neurons as input to other
neurons, typically through weighted connections. The neurons are usually further
aggregated into layers, such that each layer performs a certain operation. In this
terminology, signals are passed to the network through the input layer, transformed
through a series of hidden layers and finally returned by the output layer. Hence,
at a high level, an ANN simply defines a parameterized function from some input
space to some output space.

In the common jargon, the depth of a network refers to the number of hidden
and output layers, i.e. exluding the input layer. A neural network is said to be deep
if it comprises multiple hidden layers. Deep neural networks constitute the most
fundamental class of algorithms in the field of deep learning. Many breakthroughs
reported in recent years have used such networks to advance the state of the art
in visual recognition as well as the processing of text, speech and audio [10]. The
essential idea is that the first processing layers extract simple features from the
input data, out of which subsequent layers build increasingly complex and abstract
features. In successful applications, these features are highly correlated with the
(desired) outputs, allowing the network to make good predictions. For a detailed
introduction to deep learning and its applications, the reader is referred to [11].

This section aims to describe convolutional neural networks, which constitute a
specific class of networks that is at the center of this work. Focus is placed on the un-
derlying mathematics and technical aspects of building and training such networks.
First, a brief description of the most fundamental neural network architecture is
given, namely the multilayer perceptron. This provides a simple introduction that
progresses naturally to the more complex convolutional networks.

2.2.1 Multilayer perceptron
The multilayer perceptron (MLP) is a simple neural network architecture consisting
of at least one hidden layer and where each layer is dense, or fully connected. That
is, each neuron in a given layer is connected to every neuron in the previous layer,
as shown in Figure 2.2. The individual neurons are mathematical functions of their
inputs and the corresponding connection weights. More precisely, suppose that a
neuron receives n real-valued input signals, denoted by (x1, x2, ..., xn) = x ∈ Rn,
through individually weighted connections with weights ω ∈ Rn. The neuron then
outputs a value y of the form

y = ϕ

(
n∑
i=1

ωixi + b

)
= ϕ

(
ωTx + b

)
,

where ϕ is referred to as the activation function, ωi denotes the connection weight
for input xi and b is a bias parameter.

6



2. Preliminaries

HiddenInput Output

x1

x2

h1

h2 y1

y2h3

h4

x3

Figure 2.2: Illustration of the connectivity in a multilayer perceptron consisting
of 3 input neurons, 4 hidden neurons and 2 output neurons.

The activation functions can be chosen freely, but most training procedures in
popular use are restricted to differentiable functions. If the activations are chosen
to be linear, the entire MLP becomes a linear function of the inputs. Therefore,
nonlinear activation functions are required to enable the network to approximate
nonlinear functions. Currently, the most popular choice is the rectifier function

f(x) = x+ = max(0, x)

and variants thereof. It has been shown [12] to yield better performance in deep
neural networks than historically popular choices, such as the logistic sigmoid

σ(x) = 1
1 + e−x

,

or the hyperbolic tangent

tanh(x) = ex − e−x

ex + e−x
.

Multilayer perceptrons are powerful function approximators [13] that find uses
in a wide range of regression and classification problems [14, 15, 16]. However, due
to the dense connectivity between the layers, the number of parameters can quickly
grow to extremely large numbers for wide layers and inputs of very high dimen-
sionality. Furthermore, the dense connectivity means that MLPs learn features at
fixed spatial locations. This is often undesirable in image processing and visual
recognition tasks. Consider for example the task of classifying images according
to the presence of certain objects. The objects are characterized by local relation-
ships between the pixel intensities. A human observer can easily recognize a given
object independent of its global location in the image. However, MLPs inherently
lack this ability, and would therefore have to be trained to recognize each object at
each location in the image. Convolutional neural networks, on the other hand, are
specifically designed to respond to local interactions in spatially structured data,
and circumvent the problems described above.

7



2. Preliminaries

2.2.2 Convolutional neural networks
Convolutional neural networks (CNNs) employ connectivity patterns between neu-
rons inspired by the visual cortex in animals [17]. In recent years, they have found
groundbreaking success in the processing of images, video, text and audio [10, 18].
Applications of CNNs in image processing cover a wide range of tasks, including im-
age classification [17], semantic segmentation [19], as well as inverse problems such
as image denoising [20] and superresolution [21].

Unlike multilayer perceptrons, which consist solely of fully connected layers,
CNNs generally employ a number of different layer operations. The most fundamen-
tal component of a convolutional neural network is the convolutional layer, which
computes its output by means of discrete convolution. Before describing the typical
structure of these layers, we give a relatively thorough description of the discrete
convolution operation.

2.2.2.1 The discrete convolution operation

Convolution is a mathematical operation that takes two functions as input and
produces a new function. For instance, let f, g : Z → C. The discrete convolution
of f and g at a point k ∈ Z is defined as

(f ∗ g)[k] :=
∞∑

n=−∞
f [n]g[k − n] =

∞∑
n=−∞

f [k − n]g[n]. (2.3)

This definition is easily extended to functions on Zd by replacing indices with d-
tuples and taking the sum over Zd. If either f or g has finite support, the convolution
at a given point is a finite sum. Furthermore, when both f and g are compactly
supported functions, their convolution also has compact support.

As a simple one-dimensional example, consider a sequence (or one-dimensional
image) I = (Ik)N−1

k=0 , with Ik ∈ R for all k. In light of the definition in (2.4), I
can be thought of as a function mapping points in D := {0, 1, ..., N − 1} to R.
Similarly define g = (ω−1, ω0, ω1).3 In the context of image processing and CNNs,
I is referred to as the input (image) and g as a convolution kernel or filter. The
discrete convolution of I and g takes the form

(I ∗ g)[k] =
1∑

n=−1
I[k − n]g[n] =

1∑
n=−1

Ik−nωn,

which is well-defined and easily computed for k = 1, ..., N − 2. However, in many
applications it is desirable to produce an output that is structurally identical to the
input. This can be achieved by extending the domain of the input, typically by
defining I[m] = 0 for m ∈ Z \ D. In practice, this amounts to zero-padding the
input. In this case, an output sequence of length N can be obtained by defining
I−1 = IN = 0. With this type of zero-padding, the convolution operation can be
thought of as a sliding window operation where the kernel is slid across the input

3Note that the indexing only affects the indexing of the output, and not its structure or value.
This particular indexing has been chosen to emphasize the center of the kernel, which may ease
the intuitive understanding in later parts of the text.

8



2. Preliminaries

domain, combining values in small neighborhoods to produce an output value at
each spatial position of the kernel center. This is illustrated in Figure 2.3. The sizes
of the neighborhoods are determined by the spatial extent of the kernel, which is
fixed across the domain. This is often referred to as the receptive field in the context
of CNNs.

x1

x0

w-10

*

*

0

w0

w1

w-1

w0

w1

x2

x3

x4

x5

x6

x7

x8

x9

y1

y0 = x1w-1 + x0w0 + 0w1

y7 = x8w-1 + x7w0 + x6w1

y0

y2

y3

y4

y5

y6

y7

y8

y9

Figure 2.3: Illustration of the discrete convolution as a sliding window operation
in one dimension. Zero padding is employed to preserve the spatial structure of the
input.

2.2.2.2 Convolutional layers

Now, a convolutional layer essentially consists of a number C of convolution kernels
and optionally a set of bias parameters. The input to the layer is convolved with
each kernel to produce C outputs, which are often referred to as feature maps. Bias
parameters, if used, are typically added element-wise to the feature maps, with
each feature map receiving a different bias. Furthermore, if the input has several
channels, as with color images and the outputs of previous convolutional layers, the
kernels span the entire additional dimension. For instance, if the input is an RGB
image of size 3 ×W × H, where the first dimension represents the color channels,
one employs kernels of size 3 × k × k. In this way, the feature map obtained by
convolving the input with a kernel corresponds to a 2D image. Hence, the output
of the entire layer is a set of C feature maps (images). These are then stacked and
treated like a single image with C channels in later convolutional layers. This is
illustrated in Figure 2.4.

As an example, suppose that a convolutional layer receives one-dimensional im-
ages of size W with C channels. The images are convolved with D kernels of shape
C × k, where k = 2n + 1, and each kernel has a single associated bias parameter.
Further suppose that the input images are padded with n zeroes on both sides. That
is, the input is a tensor of shape C×(W +2n) with elements xc,i. The kernel weights
are collected in a tensor of shape D×C×k with elements ωd,c,j, with corresponding

9



2. Preliminaries

Image

(1 x W x H)

Stacked feature 

maps

(C x W x H)

Stacked feature 

maps

(D x W x H)

C kernels

(1 x k x k)
D kernels

(C x k x k)

Conv1 Conv2

Figure 2.4: Illustration of two consecutive convolutional layers in two spatial di-
mensions. Discrete convolution operations on stacks of images by constraining the
kernels to span the entire additional dimension, so that the kernels are moved only
in the spatial dimensions.

bias parameters bd. Then the output tensor (of shape D×W ) is computed according
to

yd,i =
C∑
c=1

k∑
j=1

xc,i+k−jωd,c,j + bd, (2.4)

for d = 1, ..., D and i = 1, ...,W . Nonlinear activation functions are then applied to
these values before they are passed to subsequent layers.

Despite the seemingly more intricate definition, convolutional layers are in many
ways similar to fully connected layers. In fact, fully connected layers can be repli-
cated by using kernels that span the entire input domain. Similarly, a convolutional
layer can be obtained from a fully connected layer by restricting certain connection
weights to be zero and constraining groups of the remaining connections to have
equal weights. Thus, the essential new properties of convolutional layers are sparse
connectivity and parameter sharing, both of which are intuitively useful for the pro-
cessing of certain spatially structured data, such as images. The sparse connectivity
forces the layer to focus on local interactions in the input data, while the particular
form of parameter sharing induces an equivariance to translations. That is, the
local response to a shifted region in the input will be identical and equally shifted.
Finally, unlike fully connected layers, convolutional layers accept input of variable
size.

2.2.2.3 Downsampling

Downsampling generally refers to the process of subsampling a signal to represent
it by fewer samples. Applied to an image, which can be viewed as a sampled signal,
the downsampling process reduces its resolution. For example, by discarding every
other pixel the resolution is halved or, stated equivalently, the image is downsampled
by a factor of two.

In convolutional neural networks, downsampling methods typically take the form
of strided sliding window operations. At each position of the window, data points
in its range are aggregated via some function to produce a single value. In the
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machine learning community, this is commonly referred to as a pooling operation,
and the corresponding layers are called pooling layers. The most common choices of
the aggregation function are the max and average operations [11]. Figure 2.5 shows
an example of max pooling in two dimensions. When the input comprises multiple
channels, each channel is typically pooled independently.

2x2 max pool, stride 2

12

1 0

36

2 4

43

1 0

10

3 7

62

7 4

Figure 2.5: Illustration of 2× 2 max pooling with stride 2 applied to an input of
size 4× 4.

Interlaced with convolutional layers in a network, pooling has several effects. By
reducing the spatial size of the feature maps, fewer values need to be stored and the
operations in subsequent layers require fewer computations. Hence, it reduces the
computational cost and memory footprint of the network. Pooling also increases
the (indirect) receptive field of subsequent neurons onto previous neurons. As an
example, consider the output depicted in Figure 2.5. An operation using all values
in the output 2×2 map is indirectly using information from the entire 4×4 map that
was input to the pooling operation. In this way, pooling induces a multiplicative
increase in the receptive field of subsequent neurons (by a factor equal to the stride
of the operation). Lastly, max pooling gives the network some degree of invariance4

to small translations (“spatial jitter”) of the input. While this may be desirable
when the task is to simply detect the presence of an object in the image, it may
constitute a problem in tasks where the exact location of the object is important.

2.2.3 Network design
The design of a neural network has a profound impact on its capacity and perfor-
mance [11]. Of course, the choice of architecture depends strongly on the task which
is to be solved by the network. For image classification, the general idea is that inter-
laced convolutional and pooling layers allow the network to extract representative
features from images in a hierarchical fashion. The first layer filters typically re-
spond to basic features such as edges and colors, while deeper layers respond to
conjunctions of these features, which correspond to increasingly abstract features in
the original input [22]. Typical CNNs for image classification therefore consist of two
parts: a feature extractor composed of interlaced convolutional and pooling layers,
followed by a classifier that predicts class labels based on the extracted features.
The classifier, or head, often takes the form of a multilayer perceptron.

Older milestone designs such as LeNet-5 (1998) [23] and AlexNet (2012) [24] were
composed of relatively few convolutional layers, all of which were followed by a non-

4This invariance is not to be confused with the equivariance of the convolution operation.
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linear activation function and some also by pooling. AlexNet is often accredited as
the trigger for the recent resurgence of commercial interest in deep CNNs for visual
recognition, by almost halving the second-best error rate in the ImageNet Large
Scale Visual Recognition Challenge [25] (ILSVRC) of 2012. Since then, CNNs have
dominated the leaderboards in the ILSVRC and other visual recognition challenges.
New network designs that perform well on these benchmark tasks are frequently
reported in the literature. Using modern techniques, such as skip connections and
residual modules, networks with hundreds or even thousands of layers have been
successfully trained [26]. However, this work is focused on the basic operations of
CNNs. Therefore, we instead give an overview of a straightforward design that is still
in popular use, namely the VGG16 network depicted in Figure 2.6. The VGG team
won the ILSVRC-2014 localization challenge and placed second in the classification
challenge with this type of architecture [27].

Convolution 3x3

Max pooling 2x2, stride 2

Fully connected

Output

vector

1x1000

FC

1x4096

Conv 1

64x224x224

Conv 2

128x112x112

Conv 3

256x56x56

Conv 4

512x28x28

Conv 5

512x14x14

Input 

image

3x224x224

Feature extractor Classi!er / Head

Figure 2.6: Illustration of the VGG16 network architecture for classification of the
1000-class ImageNet dataset. It consists of five convolutional modules and a fully
connected head. Each convolutional module is composed of two or three convolu-
tional layers followed by max pooling.

Note that, out of the roughly 138 million parameters in the VGG16 network, only
14.7 million belong to the convolutional layers. The output of the last convolution
module, which is of size 512 × 7 × 7, is flattened to a one-dimensional vector with
25088 entries and fully connected to the 4096 neurons in the first layer of the head.
This results in a staggering 102.7 million parameters in the first fully connected layer
alone. While allowing the head to learn complicated mappings from the learned
feature space to the final output, this also makes the network prone to overfitting.

A major drawback of the densely connected head is that it restricts the network
to inputs of fixed size, even though the pooling and convolutional layers accept
inputs of variable size. There are a number of ways to circumvent this, for instance,
by modifying the last max pooling layer to map inputs of variable size to outputs
of fixed dimensionality. One such operation is used in the spatial pyramid pooling
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layer [28], which essentially divides its input into a fixed number of bins at different
resolution levels and outputs a summary statistic for each bin. A simpler approach
is to use global average pooling, which computes the spatial average of each feature
map, thus transforming a generic input array of shape C ×W ×H into a vector of
length C.

2.2.4 Training neural networks
Once the architecture of a neural network has been fixed, it can simply be viewed
as a parameterized function. The parameters can then be tuned in various ways
to allow the network to perform a certain task. Here we consider the supervised
learning approach of empirical risk minimization, as discussed in Section 2.1.1, for
the specific task of image classification.

To this end, suppose that we have a CNN f : X × Θ → Y that maps images
x ∈ X to vectors y ∈ Y of class scores, parameterized by a set of parameters θ ∈ Θ.
For an input image x, denote by ŷ = f(x; Θ) the predicted class scores and take
ĉ = arg max ŷ to be the predicted class. Given a training dataset Dtrain = {xi, ci}Ni=1
of labeled images, with the labels encoded as probability vectors yi, the network is
trained by minimizing the empirical risk

Etrain[L(f(x, θ), y)] = 1
N

N∑
i=1
L(f(xi; θ), yi). (2.5)

In this way, training the network is stated as an optimization problem. The fol-
lowing sections describe in detail some of the most commonly applied steps in this
process. Firstly, choices of loss functions are discussed. This is followed by a detailed
description of the most commonly used parameter updating scheme. Lastly, a few
popular regularization techniques are outlined.

2.2.4.1 Loss functions

In order to measure the performance of the CNN, it is logical to consider the clas-
sification accuracy, that is, the percentage of correct predictions. This is easily
computed for a given dataset D = {xi, ci}Ni=1 of images xi with labels ci through

accuracy = 1
N

N∑
i=1

1{ĉi=ci}.

The loss function most closely related to this performance measure is the 0-1 loss

L(ĉ, c) = 1ĉ6=c =

1 if ĉ 6= c

0 otherwise
.

Substituted into (2.5), it is easily seen that this results in Etrain = 1 − accuracy.
However, the 0-1 loss is inappropriate for direct optimization. By only considering
the maximum class score, information about the confidence of the prediction is lost.
Furthermore, gradient based optimization techniques cannot be used as its gradient
is either 0 or undefined everywhere. For these reasons, it is typically not used in
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practice. Instead, surrogate loss functions can be used. A common choice is the
cross entropy loss, which in the specific case considered here takes the form

L(ŷ, y) = −
∑
i

yi log(ŷi). (2.6)

Here yi is 1 if class i is the true label and 0 otherwise, while ŷi is the predicted
probability for class i. These probabilities are obtained by normalizing the output
class scores into a probability vector. That is, a vector with entries in [0, 1] that
sum to unity.

Since only the term corresponding to the true class is nonzero in (2.6), the loss
depends only on the predicted probability of the true class. The dependence is
shown in Figure 2.7. It is seen that heavy penalties are given to very low predicted
probabilities. As the predicted probability increases, the loss transitions into a gentle
descent toward zero for the correct value of one.
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Figure 2.7: The cross entropy loss’ dependence on the predicted probability of the
true class.

It is intuitively clear that minimizing the cross entropy loss corresponds to maximiz-
ing the correct class scores in relation to the faulty ones. Therefore, the classification
accuracy is indirectly maximized. In fact, when optimizing with respect to the cross-
entropy loss, the test accuracy often continues to increase long after the 0-1 loss over
the training set has reached zero [11]. This is because the smoothness of the cross
entropy loss allows the robustness of the classifier to continue to increase by further
separating the classes.

2.2.4.2 Stochastic gradient descent

With the network architecture f(x; θ) and loss function L fixed, training the network
is stated as the optimization problem of finding

θ∗ = arg min
θ∈Θ

1
N

N∑
i=1
L(f(xi, θ), yi). (2.7)
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However, recall that the goal of the training is to minimize the expected loss over
the unknown underlying data distribution. Neural network training therefore differs
from traditional optimization in that the objective function is unknown, and only
estimates of it can be evaluated. Combined with the risk of overfitting, this means
that it is typically not desirable to find a global minimum of the empirical risk.
It is therefore common to apply iterative optimization methods, while tracking the
generalization loss in regular intervals using a held-out validation dataset.

For differentiable loss functions L, such as the cross entropy loss, iterative
gradient-based optimization methods can be employed. Therefore, the parameters
are initialized as θ0, typically with (small) randomly sampled values5. The first-order
method of gradient descent then updates the parameters according to

θk+1 = θk − α∇θ

(
1
N

N∑
i=1
L(f(xi, θk), yi)

)

= θk −
α

N

N∑
i=1
∇θL(f(xi, θk), yi),

(2.8)

where α is the step length or learning rate. However, computing the gradient over the
entire training dataset is computationally expensive and often leads to suboptimal
generalization performance [29]. One can instead apply stochastic gradient descent,
where a single example is selected at random for each iteration. In practice, this is
achieved by randomly shuffling the dataset and then iterating through it, performing
one parameter update per example according to

θk+1 = θk − α∇θL(f(xi, θk), yi), i ∈ {1, ..., N}. (2.9)

Similarly to how the empirical risk is viewed as an estimate of the risk, the gradi-
ents computed using one or more examples can be viewed as estimates of the true
risk gradient. As long as previously unseen examples are used, these estimates are
unbiased. Thus, using a single example for each gradient estimation means that N
updates can be performed without introducing any bias to the network. However,
the estimates obtained using single examples have very high variance. It is therefore
common to apply mini-batch gradient descent, where some number m ∈ (1, N) of
examples are used in each iteration. The number m is referred to as the mini-batch
size, or simply batch size. There are many variables to consider when choosing the
batch size, including the specific task and dataset as well as the implementation of
the algorithm and the hardware it is run on. The reader is referred to [11] for details
on this subject.

2.2.4.3 Backpropagation

In order to update the parameters using gradient-based methods, one must of course
be able to compute the gradients

∇θL(f(x; θ), y) = ∂

∂θ
L(f(x; θ), y)).

5The randomness is necessary as it breaks the symmetry of the network. Without this asym-
metry, groups of neurons may perform the same computations and thus also be updated equally.
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Suppose for simplicity that the network f consists of a single sequence of layers
fj(xj; θj), for j = 1, ..., d. The network function can then be broken down into a
composition of the layer functions:

f = fd ◦ fd−1 ◦ ... ◦ f1,

where (g ◦ h)(x) = g(h(x)). Thus, expressions for the required gradients can be
obtained by repeated application of the chain rule

(g ◦ h)′ = (g′ ◦ h) · h′.

In practice this is done using the backpropagation algorithm. Given the network
output yd = fd(xd, θd) and the supervisory signal y, one can compute

∂L
∂yd

= ∂

∂yd
L(yd, y).

That is, the gradient of the loss with respect to the output yd of the last layer. Using
the chain rule, the gradient is then propagated to the input xd and parameters θd
of the layer according to

∂L
∂xd

= ∂L
∂yd

∂yd
∂xd

∂L
∂θd

= ∂L
∂yd

∂yd
∂θd

.

Now, the input xd to the last layer is the output yd−1 of the previous layer. This
procedure can thus be repeated, layer by layer, until the gradients are obtained for
all parameters. All that is required to do this is the ability to differentiate the output
of each layer with respect to its inputs and parameters.

As a detailed example, consider the convolutional layer described in (2.4). In the
backward pass, the derivatives of the loss with respect to the layer outputs are given
as tensor of shape D×W with elements νd,i = ∂L/∂yd,i. Using the chain rule, each
of these derivatives can be propagated to any given input element or parameter.
The derivative of the loss with respect to the input element or parameter is then
obtained as a sum over all such contributions. Thus, the derivatives with respect to
the kernel weights are given by

∂L
∂ωd,c,j

=
D∑
d′=1

W∑
i=1

∂yd′,i
∂ωd,c,j

∂L
∂yd′,i

=
W∑
i=1

xc,i+k−jνd,i. (2.10)

In similar fashion, the derivatives with respect to the inputs take the form

∂L
∂xc,i

=
D∑
d=1

W∑
j=1

∂yd,j
∂xc,i

∂L
∂yd,j

=
D∑
d=1

k∑
j=1

ωd,c,jνd,i+j−n−1, (2.11)

for i = n + 1, ..., n + W (excluding the zero-padding in the input). Lastly, the
derivatives with respect to the bias parameters are given by

∂L
∂bd

=
D∑
d′=1

W∑
i=1

∂yd′,i
∂bd′

∂L
∂yd′,i

=
W∑
i=1

νd,i. (2.12)
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2.2.4.4 Regularization

In this context, regularization refers to any strategy used to improve the general-
ization performance of a model, possibly at the expense of increased training loss.
There are a large number of such strategies [11]. This section outlines a few popular
choices.

The simplest regularization technique is known as early stopping. This refers to
the act of discontinuing the training procedure when the validation loss starts to
increase, even though the training loss may be steadily decreasing. That is, training
is stopped before the model starts to overfit. In practice, this is usually done by
storing the parameters that achieve the best performance on the validation dataset.
After training, the model is returned to these parameters in the hope that the test
performance is better as well.

Another type of regularization strategy is to limit the capacity of the model by
penalizing large parameter values during training. For instance, weight decay or L2

regularization adds a penalty term λ
2‖θ‖

2
2 to the objective function. This effectively

drives the parameters toward zero, with a strength controlled by the parameter
λ > 0.

A popular form of regularization in deep neural networks is dropout. Here, the
neurons in certain layers are “dropped out” with some probability at each training
iteration. That is, their incoming and outgoing connections are ignored. In this
way, random reduced networks are trained with each iteration. At test time, the full
network is used, with the output of neurons rescaled according to the probability
that they were present during training [30].

Lastly, we outline the method of batch normalization. This is not purely used as
a regularization technique, although it has been shown to have a regularizing effect
[31]. Batch normalization transforms the inputs to certain layers. During training,
each input value is standardized, using the sample mean and standard deviation
computed over the mini-batch, and subsequently scaled and translated by learnable
parameters. At inference time, population statistics are used to standardize the
inputs. These are often tracked by moving averages of the batch statistics computed
during training.

2.3 The Adaptive Particle Representation
The Adaptive Particle Representation (APR) is a multi-resolution image represen-
tation, devised by Cheeseman et al [7] to relieve bottlenecks in the processing and
storage of large microscopy images. It achieves this by replacing pixels with particles
positioned according to the contents of the image. This section briefly motivates
and introduces the APR.

2.3.1 Motivation
Modern fluorescence microscopy techniques allow scientists to image biological spec-
imens at high resolution in both space and time [5]. This provides image data that
are vital for the study of e.g. developmental processes in biology [32]. However, in
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order to acquire quantitative data from the output image datasets, various image
processing techniques must be applied to, for instance, detect, count and track bio-
logical structures such as cells. This poses technical challenges, as the processing of
potentially terabyte-sized datasets of 3D images through time often proves to be a
severe bottleneck [5].

Cheeseman et al posit that the heart of the problem is not the amount of infor-
mation contained in the images, but rather how that information is encoded as a
regular grid of pixels. Due to the uniformity of the pixel representation, the sampling
resolution in each dimension, spatial or temporal, is set everywhere according to the
smallest inherent length scale in the process under study. This results in redundan-
cies as, for instance, uniform background areas that convey little or no information
are represented at this resolution as well. The APR reduces such redundancies by
adaptively resampling the image based on local information content, as shown in
Figure 2.8.

Orignal Pixel Image Adaptive Particle Representation (APR)

Figure 2.8: (left) Pixel image of cell nuclei in a zebrafish embryo (source: Gopi
Shah, Huisken lab, MPI-CBG). The sparsity in the image gives rise to redundan-
cies when represented by pixels. (right) Direct visualization of the APR of the
image. Regions with little information content, or larger inherent length scale, are
downsampled to reduce the redundancy of the representation.

2.3.2 How it works
The APR takes a regularly sampled input function I, such as a pixel image, and
represents it using set of particle cells V and function values stored at particle
collocation points P . The particle cells partition space, and are defined by an integer
level l specifying the size of the cell, and a multi-index i specifying its location.
Consider a hyperrectangular image domain Ω ⊂ Rd with maximum side length Ω0.
Then the particle cell ci,l occupies the spatial domain

s(ci,l) =
d∏

k=1
[ik

Ω0

2l , (ik + 1)Ω0

2l ). (2.13)
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The set of particle cells can thus be written as V = {{cip,lp}
Np
p=1|ip ∈ Nd, lp ∈ N}.

Note here that Ω0 is assumed to be rounded up to the nearest power of two, and the
levels are capped at lmax = log2 Ω0. In this way, particle cells at the maximum level
lmax coincide with the pixels; particle cells at level lmax − 1 coincide with groups of
2d pixels, and so on. Moreover, the particle collocation points xp are taken to be
the centers of the particle cells in V , and the particle set P = {{I(xp)}Npp=1} holds
intensities resampled at these points.

Now, the set of particle cells defines a piecewise constant implied resolution
function R∗(y), that takes value 2−lΩ0 for y ∈ s(ci,l). The function value at any
point y ∈ Ω can be reconstructed according to

Î(y) =
∑

xp∈N (y,R∗(y))
ξpI(xp), (2.14)

where N (y,R∗(y)) = {x ∈ Ω : |x − y| ≤ R∗(y)} and the coefficients satisfy ξp ≥ 0
and ∑

N ξp = 1. That is, the reconstructed value is allowed to be an weighted
average of particle intensities within R∗(y) distance of y. Formation of the APR is
formulated as the problem of finding the largest everywhere R∗(y) (particle cells)
such that the original image can be reconstructed within some user-set error bound.
This is referred to as the reconstruction condition, stated formally as requiring that∥∥∥∥∥I − Îσ

∥∥∥∥∥
∞
≤ E, (2.15)

where the norm ‖h‖∞ = maxx |h(x)| is taken over all original pixel locations x. Here
I are the original pixel intensities and Î are the corresponding values reconstructed
from the particles according to (2.14). The denominator, σ, is referred to as the
local intensity scale. It is essentially a measure of the (local) contrast range in the
image. By allowing σ to be spatially varying, effective adaptation in both bright
and dim regions can be achieved [7]. Lastly, E is the user-set error threshold.

In practice, a sufficient condition for (2.15) is used, and the problem is reformu-
lated in terms of the local intensity scale σ and the image gradient ∇I. Exactly how
to compute these quantities is a design choice. The original implementation intro-
duced in [7] uses smoothing B-splines to estimate the gradient, and a type of local
standard deviation filter to compute the local intensity scale. These quantities are
then input to a novel algorithm called the pulling scheme, which finds the optimal
particle cell set V . After this, all that remains is to interpolate the intensity values
to the particle locations. Importantly, the entire pipeline from pixel image to APR
has computational and memory costs proportional to the number of pixels in the
image.

For additional details and a full derivation of the APR formation pipeline, the
reader is referred to [7]. The following sections give a more intuitive view of the
APR and how it can be interpreted and used in image processing tasks.

2.3.3 Interpretations of the APR for image processing
Just like pixel images, the APR can be interpreted in various ways to develop image
processing methods. Taken at face value, the image is partitioned into regions
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(particle cells) of different sizes and each cell is assigned a particle carrying an
intensity value. In this way, the particles can be viewed as a generalization of pixels;
see Figure 2.9a. Moreover, using the reconstruction formula (2.14), intensity values
can be reconstructed at any location to obtain a continuous function approximation,
as illustrated in Figure 2.9b. If neighbor relations are defined, for instance between
face-connected particle cells, the APR can be interpreted as a graph. The particles
then constitute the vertices of the graph and edges are drawn between neighboring
particles. This is shown in Figure 2.9c.

(a) Particle cells and
collocation points

(b) Continuous recon-
struction

(c) Neighbor graph

Figure 2.9: Examples of interpretations of the APR for image processing (repro-
duced from [7]). (a) illustrates the particle cells (squares) and particles (dots). (b)
shows how intensity values can be obtained at arbitrary points as weighted averages
of particles (yellow dots) within a radius defined by the implied resolution function.
(c) The APR interpreted as a graph, where the particles are the vertices and edges
are drawn between particles belonging to face-connected particle cells.

All of these interpretations can be used to define image processing techniques
using the APR. In this work, a fourth interpretation of the APR as a tree structure
is used extensively. It is described in detail below.

2.3.3.1 Tree interpretation

The tree interpretation of the APR is best explained with a simple example. Suppose
we have a one-dimensional image comprised of eight pixels, and consider the set of
all possible particle cells. At the maximum resolution level lmax = 3, there are eight
possible particle cells that coincide with the pixels. One resolution level lower, l = 2,
has four possible particle cells, each spanning two pixels. Similarly, at l = 1 there
are two possibilities and at l = 0 the entire image domain is represented by a single
particle cell. The spatial relationships between particle cells at different levels give
rise to a binary tree structure, as shown in Figure 2.10. This extends easily to higher
dimensions, with quadtrees in 2D or octrees in 3D.

In the pixel representation of the image, the maximum resolution lmax = 3 is
chosen everywhere. Thus, the pixels constitute the leaf nodes of the full binary tree.
The APR, on the other hand, selectively downsamples certain regions of the image,
representing them at lower resolution levels. In this way, the APR constitutes the
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level l = 1

level l = 0

level l = 2

level l = 3

Figure 2.10: Possible particle cells (intervals) and particles (gray dots) for a 1D
image with 8 pixels. Links are drawn between particle cells at different levels that
occupy the same space, forming a binary tree structure.

leaf nodes of a pruned version of the tree, as shown in Figure 2.11. There is a clear
correspondence between the pixel representation and APR when viewed in this way.
The main difference is that the pixel representation is restricted to a single resolution
level, while the APR is not. From this perspective, the pixel representation can be
viewed as a special case of the APR.

(a) Pixel image (b) APR

Figure 2.11: Binary tree interpretation of a 1D pixel image (a) and a corresponding
APR (b). Formation of the APR can be viewed as a pruning of the full binary tree,
where certain regions are downsampled and represented by ancestral nodes at lower
resolution.

The tree interpretation relates the APR to several existing concepts in image
processing, including wavelet decompositions [33] and image pyramids [34]. An
image pyramid can be obtained from a pixel image by applying successive down-
sampling operations. When downsampling by factors of two, the image pyramid
coincides with the tree structure depicted in Figure 2.10. That is, each level of the
tree (or pyramid) represents the image at a certain resolution. Essentially, the APR
is formed by selecting a partition of spatially non-overlapping elements from the
pyramid. Hence, each resolution level of the APR constitutes a sparse (incomplete)
version of the image at the corresponding level of the pyramid.
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2.3.4 Data structures
The APR and related functionality is implemented in C++ and freely available
through the open-source software library LibAPR [35]. Full details on the APR
and its implementation can be found there. Here, a brief description of the data
structures utilized in this work is given.

Recall that the APR consists of two sets: the particle cell set V , which defines the
spatial locations and resolution levels of the particles, and the particle properties P .
These are kept separate in the sparse APR data structure used to store and access
the APR data. The particle properties are stored as a contiguous array, whereas the
spatial location and resolution information is encoded as a separate “access” class.
This is done by separating the particle cells by level, as illustrated in Figure 2.12,
and encoding each level as a sparse matrix in a format similar to compressed row
storage [36]. More precisely, for each non-empty level l and spatial index x, each
contiguous block of occupied particle cells in the y-direction is encoded by its first
and last y-index, as well as a global index for the first element in the block. These
global indices are used to access the particle properties. In this way, particles can
be accessed by specifying the level and x-index, and iterating over the sparse y
dimension using a special iterator.

Figure 2.12: The sparse APR data structure separates the data, first by level and
then by spatial index in the x-direction.

In order to use the tree interpretation for processing tasks, particle cells that are
not part of the APR must be accessed. This can be done by “filling” and storing the
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interior of the tree, i.e. the ancestors of the APR nodes, as a separate instance of
the sparse APR data structure. We call this set of nodes the APRTree. Figure 2.13
illustrates the distinction between the APR and APRTree.

APR

APRTree

Figure 2.13: The APR constitutes the leaf nodes of the tree, whereas the APRTree
comprises all ancestors of the APR nodes. Both of them can be stored and accessed
using separate instances of the sparse APR data structure.
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APRNet

The main objective of this work is to design an extension of convolutional neural
networks to allow direct operation on the APR. This would first of all allow users
of the APR to apply deep learning methods without the need to revert to pixel
images. Furthermore, it may be potentially useful for deep learning practitioners by
reducing the computational costs of processing large and sparse images.

In order to extend any given neural network architecture to the APR, its layer
operations must be modified to allow operation on the APR data structure. Here,
focus is placed on the two most commonly used operations in CNNs for image
classification, namely convolution and pooling. It is worth mentioning that the
various interpretations of the APR give rise to several alternatives for extending
these operations. The extension of CNNs to graphs, point clouds and irregular or
non-Euclidean data in general are popular topics of current research [37]. Published
work in this area may provide direct approaches for certain interpretations of the
APR. However, the APR maintains a close connection to the original pixel image
through the reconstruction condition (2.15). Since CNNs are best-established for
pixel images, it is reasonable to attempt to leverage this fact. Therefore, the tree
interpretation is used. As discussed in Section 2.3.3.1, this allows the APR to be
viewed simply as a multi-resolution image, or as a sparsely populated image pyramid.

This chapter first features a discussion of related work on the use of convolu-
tional neural networks for multi-scale image pyramids and sparse image data. The
methods developed for the APR are then described in detail, followed by notes on
implementation and a brief discussion of computational and memory costs.

3.1 Related work

Image pyramids are useful in a wide range of image processing tasks [34], and sev-
eral works make use of them in deep learning methods. LeCun et al [38] perform
semantic segmentation by applying a single CNN to multiple levels of a Laplacian
pyramid constructed from the input image. The resulting feature maps at different
scale are then concatenated, with the coarser maps upsampled to match the finest-
scale map, and used to predict the pixel labels. Similar approaches are used for
classification in [39] and [40]. Yoo et al [39] propose a Multi-scale Pyramid Pooling
(MPP) layer to combine the different-scaled feature maps for general recognition.
Nam et al [40] introduce the pyramid-based scale-invariant CNN (PSI-CNN) archi-
tecture for facial recognition. Several pyramid levels are convolved independently
and pooling is performed on the highest resolution features. The pooled features
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are then concatenated to the features at the lower level, and the resulting stack is
combined using convolution operations.

Note that the image pyramid representation of an image with N elements in d
dimensions, when downsampling by factors of 2, contains up to 2dN/(2d − 1) ele-
ments. The computational and memory requirements for processing such a pyramid
are thus increased accordingly. Other works attempt to make use of multi-scale rep-
resentations while limiting the additional computations. For instance by applying a
CNN to the original image and extracting pyramids of feature maps from different
stages of the network [41, 19], which are then used to form the final predictions.

Sparsity in data can be leveraged to increase the efficiency of processing tasks.
Riegler et al [42] introduce the OctNet architecture for sparse 3D data. The domain
is divided into regions of 83 voxels, which are further subdivided into shallow octrees
depending on their information contents. In this way, the data is represented as a
grid of shallow octrees. Low-resolution nodes in the octrees are viewed as groups
of voxels that share the same value. Regular voxel convolutions are performed,
but reimplemented to exploit the lower resolution tree nodes in order to reduce the
amount of floating point operations. Similarly, pooling is performed on the highest
resolution nodes and groups of octrees are merged to maintain the maximal depth.

Graham [43] implemets efficient algorithms to apply convolutional neural net-
works to sparse image data by reducing the amount of redundant computations.
Essentially, each layer has a “ground state”, corresponding to its output when the
network receives all-zero input. Then, as non-trivial inputs are processed, hidden
neuron values only need to be computed where they differ from the ground state.
The computational workload is thus decreased for sparse inputs.

To summarize, previous works apply convolutional neural networks to multi-scale
pyramid representations of images by processing each pyramid level independently.
Feature maps or results at different scales may then be downsampled (pooled) or
upsampled to matching scales and combined to form the final prediction. Sparsity
in data is leveraged to reduce the computational burden by identifying and filtering
out redundant computation.

3.2 Layer operations for the APR
In order to extend convolutional neural networks to the APR, the layer operations,
here convolution and pooling, must be defined as mappings from APR to APR.
Importantly, to allow the APR to have a beneficial impact on computational and
memory costs, these should scale with the number of particles and not depend on
the original image size. The following sections detail one way of achieving this, and
how the resulting methods relate to the works described above.

3.2.1 Pooling
Using the tree interpretation of the APR, pooling can be done conveniently by ag-
gregating values of sibling nodes and inserting the result into the parent node. At
the maximum resolution level, this corresponds to pooling of pixels in windows of
size 2d, where d is the number of spatial dimensions, with a stride of 2. Since the

26



3. APRNet

APR forms a spatial partition of the image domain, the maximum level particles
always exist in such groups. Moreover, since lower resolution particles are already
downsampled, it is reasonable to only pool the highest-resolution particles. Intu-
itively, this can be viewed as a simple tree operation, where the maximum level
nodes are “pulled” up to their ancestral nodes, as depicted in Figure 3.1.

x0

y0

x1

y0 = f(x0 , x1)

Figure 3.1: One-dimensional example of pooling on the APR as a tree operation.
Sibling nodes (particles) at the maximum resolution level are aggregated by a generic
function f , and the results are inserted into the parent nodes.

This is similar to how pooling is performed on image pyramids in the PSI-
CNN [40]. That is, the highest resolution feature maps are pooled and joined with
the features at a lower resolution. The main difference is that there is no spatial
overlap between the pooled APR particles and those already occupying the target
level. Hence, the feature maps can be joined directly rather than concatenated and
integrated by convolutions. Although such an integration step could be added to
any network design for the APR as well, if deemed useful.

Consider now the APR pooling operation, as illustrated in Figure 3.1, with
f being the maximum operation. The first output feature, y0, is then computed
according to

y0 = max(x0, x1).
In the backward pass, the corresponding pooling layer receives ∂L/∂y0 as input,
which must be propagated to the inputs x0 and x1. Utilizing the chain rule, this is
easily done through

∂L

∂x0
= ∂L

∂y0

∂y0

∂x0
= ∂L

∂y0
1{x0≥x1} (3.1)

∂L

∂x1
= ∂L

∂y0

∂y0

∂x1
= ∂L

∂y0
1{x0<x1} (3.2)

where 1{A} is an indicator variable for the statement A. That is, it takes value 1
if A is true and 0 otherwise. Note that the case x0 = x1 is somewhat ambiguous
as, strictly speaking, the derivatives of the max function do not exist at such points
(the left and right derivatives exist but are not equal). With subderivatives in mind,
propagating the error to x1, x2 or dividing it between the two are all valid options.
However, the choice is of little practical importance as the situation is extremely
unlikely when working with floating-point numbers.
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3.2.2 Convolution
There are several options available for extending the convolution operation to the
APR. For instance, the variant used in OctNet [42] could be applied with minimal
modification. This would be equivalent to performing a regular convolution oper-
ation on the fully reconstructed pixel image and average pooling the result back
to the particles. While such an approach is likely to yield results comparable to
those of traditional (single-scale) CNNs, the computational complexity depends on
the original image size. Moreover, the different resolution scales of the APR carry
potentially useful information that would not be utilized.

To allow the network to take advantage of this information, the convolution
operation should be performed at different scales. In line with previous works on
CNNs for image pyramids, each resolution level of the APR could be processed
independently using (sparse) convolutions. However, since the resolution levels of
the APR only constitute incomplete images, processing them in a completely inde-
pendent manner would again result in suboptimal use of the available information.
The convolution operation should therefore be able to make use of neighborhood
information also at different resolution levels.

Therein lies a problem, as the neighborhoods are anisotropic with variable struc-
ture that depends on the adaptation. However, using the formula (2.14), values can
be reconstructed at any location. Hence, rather than defining a convolution opera-
tion that allows for anisotropic interactions, an intermediate reconstruction step can
be used to temporarily isotropize the neighborhoods. This is shown in Figure 3.2.
Regular discrete convolutions can then be performed on the reconstructed isotropic
patches.

Anisotropic neighborhood Isotropic neighborhood

Figure 3.2: Using the reconstruction formula (2.14), information can be interpo-
lated between resolution levels to form isotropic neighborhoods.

There is some freedom in choosing exactly how to interpolate information be-
tween resolution levels. High-resolution particles can be downsampled to obtain
values at lower resolution levels, similar to the pooling operation described in the
previous section. Due to the symmetry of the problem it is reasonable to simply
take the average value of the descendant nodes. To interpolate from low to high res-
olution, low-level particle cells can be viewed as regions of constant value spanning
several higher-level cells. Descendant nodes in the tree can therefore directly inherit
the value of the parent. This is referred to as piecewise constant upsampling. Impor-
tantly, both average downsampling and piecewise constant upsampling are always
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valid reconstructions with respect to the reconstruction condition (2.15). Figure 3.3
illustrates the interpolation steps as tree operations using a simple 1D example.

x0 x1 x2

x4

x3

x5

?

(a) Anisotropic neighborhoods
x0 x1 x2

x4

x3

x5ξ1

ξ1 = (x2 + x3) / 2

(b) Downsample high-resolution infor-
mation

x0 x1 x2

x4

x3

x5ξ1

ξ2 ξ2 = x4

(c) Upsample low-resolution informa-
tion

x0 x1 x2

x4

x3

x5ξ1

ξ2

(d) Locally isotropic neighborhoods

Figure 3.3: Illustration of the steps used to interpolate information between res-
olution levels. In this way, isotropic neighborhoods are temporarily reconstructed
around each particle, allowing for isotropic interactions.

This technique allows the full image pyramid to be reconstructed from the APR.
Hence, regular discrete convolutions can be applied at any resolution and any loca-
tion, using arbitrary kernel sizes. However, for practical reasons, the structure of
the APR should be preserved by the convolution operation. That is, output values
should only be computed at the actual particle locations. This can be achieved by
only applying the convolutions where the kernel center coincides with a particle,
with zero padding and reconstructions applied as necessary to complete the neigh-
borhoods. Effectively, this corresponds to applying a type of sparse convolution to
each level of the sparse image pyramid defined by the APR. Note also that the kernel
parameters can be allowed to differ between the resolution levels. Figure 3.4 illus-
trates the procedure, using the isotropic neighborhoods constructed in Figure 3.3.

In order to formalize the above procedure and build it into a neural network
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x0

α -1 α0 α1
*

*

0

0

x1 x2

x4

x3

x5ξ1

ξ2 y0

x1α -1 + x0α0 + 0α1
=

y3 = ξ2α -1 + x3α0 + x2α1

y4 = x5β-1 + x4β0 + ξ1β1

y1 y2

y4

y3

y5

β-1 β0 β1

Figure 3.4: Using the reconstructed isotropic neighborhoods and zero padding,
convolutions can be applied independently to each resolution level, with the kernels
centered on each APR particle.

layer, consider again a one-dimensional example. Let Îc,i,` denote the value of cth
channel of the particle with spatial index i at level `. If X` denotes the set of spatial
indices where particles exist at level `, the value Îc,i,` corresponds to a particle value
if i ∈ X`, and a reconstructed value otherwise (or 0 if the location is outside of the
image domain). Suppose that there are C input channels, and define D convolution
kernels of (odd) spatial size K. Allowing the kernel parameters to vary between
resolution levels, the kernel bank is given by a 4D tensor with elements ωd,c,k,λ(`),
where λ maps levels to tensor indices. The output of the layer is a tensor with
elements of the form

Od,i,` =
∑
c,k

Îc,i−k,`ωd,c,k,λ(`), (3.3)

computed for output channels d = 1, ..., D and all spatial indices i ∈ X` for each
level `. The sum is taken across all input channels and the spatial extent of the
kernel, with indexing such that the center element coincides with Îc,i,`.

In the backward pass, the gradient of the loss L with respect to the layer output
is given as a tensor with elements

dOd,i,` := ∂L
∂Od,i,`

.

Using the chain rule, these derivatives can be propagated to the kernel weights
according to

∂L
∂ωd,c,k,l

=
∑
d′,i,`

dOd′,i,`
∂Od′,i,`

∂ωd,c,k,l
=

∑
i∈X`

` s.t. λ(`)=l

dOd,i,`Îc,i−k,`. (3.4)

Here, the sum is taken over all spatial indices of particles at each level where the
corresponding kernel was used. In similar fashion, the derivatives can be propagated
to the intensities Î through

∂L

∂Îc,i,`
=
∑
d,j,`′

dOd,j,`′
∂Od,j,`′

∂Îc,i,`
=
∑
d,k

dOd,i+k,`ωd,c,k,λ(`). (3.5)
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However, the Î-values include reconstructed particles not part of the input APR.
To obtain the correct derivatives with respect to all of the originally input particles,
some of the derivatives in (3.5) must be backpropagated further through the recon-
struction operation. This is easily done, as the reconstructed values take the form of
averages of one or more particle values. Hence, viewing the backward reconstruction
as a tree operation, the derivative value at a temporary node is either added to an
ascendant, or divided evenly among its descendants.

If bias parameters are used, they contribute to each output element by a constant
amount. Therefore, the corresponding derivatives are easily computed as sums of the
dO-values at the output positions they contributed to. Different parameter sharing
schemes can again be used for the bias terms. For example, one might use one bias
parameter per output channel, or one parameter per output channel and level.

3.3 Implementation

In order to utilize existing implementations of data structures and iterators, the
operations have been implemented in C++ as part of the library LibAPR. Com-
putations are performed by the central processing unit (CPU), and accelerated by
shared-memory parallelism using OpenMP [44].

When it comes to building and applying neural networks, there are many deep
learning frameworks and libraries that provide user friendly high-level APIs that
simplify the process tremendously. However, most of these frameworks are Python-
based. For this reason, the operations implemented in C++ have been wrapped to
Python using pybind11 [45] and built into custom, high-level “layer” modules in the
popular deep learning framework PyTorch [46]. This allows seamless design of APR-
Nets, as well as the use of existing implementations of loss functions, optimization
schemes and regularization techniques without modification.

This section briefly describes the communication between C++ and Python, and
outlines the algorithmic implementation of the convolution and pooling operations.

3.3.1 Communication between C++ and Python

In the current implementation, three C++ classes are wrapped to Python. Two of
the classes contain methods for basic APR usage, such as the setting of parameters
and creation of APRs from Python arrays, as well as the retrieval of particle prop-
erties as Python arrays. All of the developed operations are wrapped in a separate
class. The operations are called from Python as methods of an instance of this
class. These methods take as input a number of Python arrays, containing APRs
(as Python objects) as well as the operation inputs (particle properties), parameters
and initialized output arrays. On the C++ side, the operations are implemented
using pybind11 to accept Python arrays passed by reference. This allows direct
manipulation of the data in C++, without any copy operations.
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3.3.2 Max pooling algorithm
The forward max pooling operation, as described in Section 3.2.1, essentially boils
down to finding the particles in the input and output that are connected in the
tree. This is done using two iterators, one over the maximum level APR1 particles
and one over the APRTree particles at the level below. Lower level particles, which
remain untouched by the operation, are simply copied to the output.

In the backward pass, the gradient with respect to the output is propagated to
the input particles that constituted the maxima in the forward pass. This can be
done by repeating the forward operation and registering the indices of the maxima.
However, it is more efficient to do this in the original forward pass and storing the
indices for the backward operation. In this way, the backward pass reduces to reading
an index map and inserting values at the corresponding positions. Algorithms 1 and
2 outline the forward and backward operations utilizing this technique. Of course,
when employing trained networks the forward pass can be made more efficient by
not storing the indices.

Data: input
Result: output, index_map
compute size of output;
initialize output (−∞) and index_map;
for level < max_level do

for p in input at level do
copy p to output;
insert index of p into index_map;

end
end
for p in input at max_level do

find parent node of p;
if p > output at parent position then

update output at parent position to p;
update index_map at parent position to index of p;

end
end

Algorithm 1: Outline of the forward pass of the max pooling operation on the
APR. The index map is kept to increase the efficiency of the backward pass during
training.

It is clear that the computational cost of the backward pass is linear in the
number of output particles. In the forward pass, the input particles are iterated over
exactly once. One comparison is performed for each maximum level particle, whereas
particles at lower levels only require an insertion. The exact number comparisons
or insertions depend on the precise adaptation, but they are clearly bounded by
the number of particles. Therefore, the computational cost of the forward pooling
operation is linear in the number of input particles.

1and possibly also tree particles, if pooling operations have been applied previously.
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Data: grad_out, index_map
Result: grad_in
initialize grad_in;
for i < size of index_map do

insert grad_out at i into grad_in at index_map[i];
end

Algorithm 2: The backward pass of the max pooling operation on the APR.
This operation is trivial when storing the index map in the forward pass (see
Algorithm 1).

3.3.3 Convolution algorithm

The convolution operation requires more care to be implemented in an efficient man-
ner. It could be implemented as a simple loop over the particles, where the isotropic
patch is computed at each location and convolved with the kernel. However, that
would result in poor memory access patterns and cache efficiency. Instead, the cur-
rent implementation performs the operation in blocks, sacrificing some temporary
memory usage to improve the computational efficiency. Algorithm 3 outlines the
procedure. First, the APRTree is filled by successively averaging the input parti-
cles. This allows for isotropic patches to be reconstructed rapidly, as the values are
precomputed. The convolution operation is performed in a loop over the levels and
spatial indices. For each level, a temporary image buffer is initialized. This buffer
spans the entire sparse dimension (y), and its extent in the x-direction can be cho-
sen anywhere from the size of the kernel to the entire image domain. In this way,
isotropic patches can be reconstructed in bulk and stored in the temporary buffer
for efficient access. The operation is performed by iterating over the x dimension,
possibly updating one line of the buffer at each position, and the existing y indices
for the given x and level. Convolution outputs are computed by applying the kernel
to the corresponding locations in the temporary buffer.

Data: input, kernel, bias
Result: output
initialize output;
initialize and fill APRTree;
for level < max_level do

initialize temp_img;
for spatial index x at level do

update temp_img (insert values from input and APRTree);
for existing y at level and x do

convolve kernel with temp_img at (x, y);
insert result+ bias into output;

end
end

end
Algorithm 3: Outline of the forward convolution operation on the APR.
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To propagate gradients backward through the convolution operation, the for-
ward pass is repeated with a few extra steps. Essentially, each part of the forward
pass is done in reverse. The convolution outputs are computed by convolving the
temporary image buffer. Hence, the gradients with respect to the kernel weights
receive contributions of temporary buffer values at each particle location. The gra-
dients with respect to the input particles are obtained in three stages. First, the
gradients with respect to the temporary image values are computed and stored in
an additional temporary buffer. This buffer is in turn updated in reverse by propa-
gating its values to the input gradient if they correspond to existing particles, and
to an additional APRTree structure otherwise. Finally, the reverse of the tree filling
operation is used to propagate these values to the input APR particles. Algorithm 4
summarizes the procedure.

Data: input, kernel, grad_out
Result: grad_in, grad_kernel, grad_bias
initialize output gradient arrays;
initialize and fill APRTree;
initialize grad_APRTree;
for level < max_level do

initialize temp_img and grad_temp_img;
for spatial index x at level do

update temp_img;
for existing y at level and x do

dO = grad_out at current position;
add dO times patch of temp_img at (x, y) to grad_kernel;
add dO times kernel to grad_temp_img;
add dO to grad_bias;

end
propagate (parts of) grad_temp_img to grad_in and
grad_APRTree;

end
end
propagate grad_APRTree to grad_in;
Algorithm 4: Outline of the backward convolution operation on the APR.

It is difficult to exactly assess the computational complexity of the algorithms
implemented in this way. Most of the floating-point operations take place in the
innermost loops, i.e. to compute the convolution outputs or the corresponding gra-
dients. Since the algorithm iterates over the particles exactly once, this requires
Np(k2 + 1) multiply-add operations in the forward pass and Np(2k2 + 1) such oper-
ations in the backward pass, where Np is the number of particles and k the kernel
size. However, additional floating-point operations are required to fill and unload
the APRTree. More precisely, four operations are required for each node in the tree.
The exact number of tree nodes depend on the precise spatial structure of the APR,
but is clearly no larger than the number of APR particles. Thus, it can be concluded
that the computational costs of both the forward and backward pass are linear in
the number of particles.
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3.3.4 Notes
Implemented as neural network layers, batches of multi-channel inputs must be
processed. This is achieved by additionally iterating over the batch, input channels
and output channels. For all operations the outermost loop, over the APRs in the
batch, is parallelized using OpenMP. Furthermore, three versions of the convolution
operations are implemented. One version accepts kernels of arbitrary size, while the
others are specialized for kernels of size 3×3 and 1×1, respectively. The specialized
implementations employ explicit loop unrolling to speed up the innermost loops,
and the 1× 1 version additionally ignores all reconstruction steps.

To ensure that the gradients are computed correctly, the outputs of the backward
operations have been compared to approximate values obtained by central finite
differences. These values are exact for the convolution operation, since it is linear.
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4
Results

In this chapter, we empirically evaluate and study properties of the APRNets in
relation to traditional pixel CNNs. This is done by training and testing several
architectures of both APRNets and pixel CNNs on benchmark image classification
tasks. Focus is placed on the classification performance and learning characteris-
tics of the networks, which is investigated using both synthetic and natural image
datasets. Also of interest is the impact of different APR parameter settings on the
performance of APRNets. This is studied by repeating certain experiments with dif-
ferent values of the error threshold E in the reconstruction condition (2.15). Lastly,
the potential benefits of APRNets to computational and memory costs are discussed
and empirically evaluated.

4.1 Synthetic image benchmarks
The use of synthetic images offers a high degree of control and freedom in the
design of experiments. This section describes the implementation of a simple image
generation pipeline, which is used to develop two experiments. First, the capacities
of the networks are studied by training them using streams of data sampled directly
from the image generating distribution. This effectively reduces the learning problem
to a traditional optimization problem, and should expose fundamental shortcomings
of the networks. It also provides an ideal setting in which the effects of the relative
error threshold can be studied. In the second experiment, networks are trained and
tested on fixed datasets, emulating real-world learning problems.

4.1.1 Image generation
Noise-free images containing one of six possible object types are generated. The
object types are the contours of regular and “fuzzy” versions of three basic geo-
metric shapes: circles, squares and triangles. Examples of the classes are shown in
Figure 4.1. To generate the objects, the contours are parameterized in a continuous
manner. Fuzzy objects are obtained by adding sinusoidal perturbations with random
amplitude and frequency to the contour. The parameterized curves are then crudely
mapped to pixel locations by rounding. This results in pronounced aliasing effects,
which essentially constitute the difficulty of the task, as smaller perturbations can be
masked behind them and challenging to detect. One object of random size, location
and orientation is generated for each image. The intensity values of the background
and foreground regions are uniformly sampled in [0, 1], with a minimum difference
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of 0.05.

Triangle Square Circle

Fuzzy triangle Fuzzy square Fuzzy circle

Figure 4.1: Examples of the regular and fuzzy shapes. Here, the random pertur-
bations in the fuzzy triangle and circle have large amplitude and are clearly visible.
The fuzzy square is an example of a more difficult case, as the perturbations are
more subtle and partially lost in the rounding to pixels.

In all experiments described in subsequent sections, images of size 256×256 pix-
els are generated, with the maximum object size covering roughly one fourth of the
image. The resulting images are extremely sparse, and in some sense optimal for the
APR. Essentially, all the information is located in a band of pixels surrounding the
object boundary. The remaining areas are constant and convey no useful informa-
tion. Therefore, the APR can achieve perfect reconstruction using few particles by
fully resolving the object boundary and aggressively downsampling the remaining
areas of the image.

4.1.2 APR performance

Prior to building and training any models, the performance of the APR on the
images is investigated, as well as the effects of different parameter settings. For the
sake of simplicity, only one parameter is considered here, namely the relative error
threshold E that bounds the reconstruction error. The remaining APR parameters
are fixed at default values.

Two metrics are used to assess the performance of the APR. Its benefit is mea-
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sured by the computational ratio (CR), defined as

CR = number of pixels
number of particles .

Information loss due to the APR is assessed by looking at the reconstruction error.
That is, the difference between the original pixel image and that reconstructed from
the APR. In addition to these two metrics, images of other particle properties can
be reconstructed. For instance, reconstructing an image where each pixel encodes
the level of the particle cell it belongs to gives a more holistic view of the adaptation.
We refer to such images as level maps.

The performance of the APR on the synthetic images is evaluated using a set of
1000 generated images. For each image, the APR is computed for different values
of the error threshold E and the performance metrics registered. Figure 4.2 (A-B)
summarize the results. It is seen that values of E around 0.2 or lower produce
lossless APRs in most cases. The computational ratio varies significantly with e.g.
object size, but is on average slightly above 50 for these settings. As E is increased,
pixel level information around the object contours is gradually lost until eventually
only downsampled information remains, which occurs around E = 0.5. This pattern
then repeats itself as E continues to increase. An example of this effect is shown
in Figure 4.2 (C-E). With E = 0.1, the APR captures all the information in the
original image by retaining a band of pixel-resolution particles around the object
contour, whereas for E = 0.4 only some of these particles are retained.

Figure 4.2: Summary of APR performance on synthetic images. (A-B): Box plots
of computational ratios (A) and average absolute reconstruction errors (B) for 10
different values of the relative error threshold E, on a set of 1000 generated images.
(C-E): Example image of a perturbed triangle (C), as well as level maps showing the
adaptation of the APR for E = 0.1 (D) and E = 0.4 (E). Brighter pixels in the level
maps indicate higher level particles, with white corresponding to pixel resolution.
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4.1.3 Experiments
Two learning tasks are devised using the synthetic image generator. First, networks
are trained on streams of data directly from the generator. In this way, examples are
not used more than once during training. Therefore, there is no risk of overfitting and
no need to perform additional validation or testing: the training loss for each batch
is an unbiased estimate of the generalization loss or risk (2.1). Networks trained
in this way should approach the best-possible performance. Hence, the resulting
classification performance should be a good indicator of a network’s capacity to
solve the task. This is also an ideal scenario in which to study the effect of different
APR parameters.

In the second experiment, fixed datasets of different size are generated and used
to train the networks, emulating more typical real-world scenarios. The networks
are validated and tested on separate datasets. This gives insight into the networks’
ability to generalize from a finite training set, and the required amount of training
data.

4.1.3.1 Network architectures

There are certain difficulties in comparing single-scale pixel CNNs to the developed
APRNets. The layers can be nested together in the same order, using the same
number of input and output channels, to give the networks equivalent architectures.
However, due to the multi-resolution nature of the APR and APRNets, they process
the data differently. To allow the an APRNet to make full use of the available
information, the convolution kernels used for different resolution levels should be
allowed to differ. This does, however, significantly increase the number of parameters
of the network. If the APRNet is constrained to use the same kernels across all
resolution levels, the number of parameters are equal to the pixel counterpart, but
the performance may be suboptimal.

Two baseline network architectures are evaluated in the experiments. These
are detailed in Table 4.1. As high resolution information and context should be
valuable in distinguishing perturbations from aliasing effects, it is reasonable to
give the networks a rather large “direct” receptive field of the original images or
APRs. This can be achieved either by successive convolutional layers with smaller
kernels, without intermediate pooling, or a single convolutional layer with larger
kernel size. In order to save computation time for the APRNets, the latter option is
used. The networks are therefore given an initial convolutional layer with a kernel
size of 11 × 11. This is followed by two convolutional layers with 3 × 3 kernels in
one of the architectures, and four such layers in the other. All of these convolutions
are followed by batch normalisation, max pooling and rectifier activation functions.
Since the number of particles may vary after these layers, the networks are concluded
with two layers of 1× 1 convolution followed by global average pooling.

Note in Table 4.1 how the level-specific kernels inflate the number of parameters
of the APRNets. It could be argued that individual kernels at 5 resolution levels
in the first layer is somewhat excessive for this type of image, and likely inflates
the parameter count without adding much benefit. Nevertheless, in this way the
APRNets are given full freedom. To give more fair direct comparisons, additional
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APR_A Pix_A APR_B Pix_B

conv1
32× 112 (5)
BN, relu
pool

32× 112

BN, relu
pool (22, str 2)

32× 112 (5)
BN, relu
pool

32× 112

BN, relu
pool (22, str 2)

conv2
32× 32 (4)
BN, relu
pool

32× 32

BN, relu
pool (22, str 2)

32× 32 (4)
BN, relu
pool

32× 32

BN, relu
pool (22, str 2)

conv3
32× 32 (3)
BN, relu
pool

32× 32

BN, relu
pool (22, str 2)

64× 32 (3)
BN, relu
pool

64× 32

BN, relu
pool (22, str 2)

conv4 32× 12 (1)
relu

32× 12

relu

64× 32 (2)
BN, relu
pool

64× 32

BN, relu
pool (22, str 2)

conv5 6× 12 (1) 6× 12
64× 32 (1)
BN, relu
pool

64× 32

BN, relu
pool (22, str 2)

conv6 - - 64× 12 (1)
relu

64× 12

relu
conv7 - - 6× 12 (1) 6× 12

Global Average Pooling
#parameters 85088 23520 226592 109728

Table 4.1: The network architectures used in the experiments. Convolutional layers
are described as n× k2, where n specifies the number of output feature maps and k
the kernel size. Additionally for the APR networks, the number of resolution-specific
kernels are specified in parentheses. Batch normalization is denoted by BN, rectified
linear unit activations by relu and max pooling by pool. For the pixel networks, the
kernel size and stride of the max pooling are given in parentheses.

results are presented with modified architectures. First, the APRNets may be con-
strained to use the same kernels across all levels. In the subsequent sections, this
is specified by adding the suffix “same” to the network name. Second, as a middle
ground between the baseline and “same” APRNets, fewer level-specific kernels can
be used. By allowing for two of them in the first layer, and only one in subsequent
layers, the number of parameters only increases by 3872. This is specified by the
suffix “close”. Lastly, instead of modifying the APRNets, the pixel networks can
be expanded to use more kernels (channels) in the early layers. In this way, their
parameter counts can be increased to match those of the baseline APRNets.

4.1.3.2 Unlimited data availability

Here the results of the first experiment are presented. Each network is trained using
3000 mini-batches, each consisting of 36 images, sampled directly from the generator.
The cross entropy loss is used, together with the Adam optimizer. Learning rates are
fixed at 0.0005 for all networks. Unless otherwise stated, the relative error threshold
E is set to 0.1, corresponding to lossless representation of the APR.
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Figure 4.3 shows the learning curves of the small networks, APR_A and Pix_A,
as well as the “same” and “close” versions of APR_A that use significantly fewer
parameters. The pixel network converges slowly and displays large dips in accuracy.
There are several possible explanations for this. Since the batches are rather small,
it may simply be that certain batches contain more images that are difficult for
the network to classify. It could also be an indication that the learning rate is
too high. The APRNets converge significantly faster, and each stage of increased
complexity seems to slightly improve both convergence speed and “final” accuracy.
Interestingly, there are pronounced dips in accuracy also for the “same” APRNet,
but they seem to decrease as more level-specific kernels are allowed.
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Figure 4.3: Learning results of the small baseline networks, as well as two varia-
tions of APR_A whose number of parameters are the same as Pix_A (“same”) and
slightly larger (“close”).

Figure 4.4 shows the corresponding results of the larger networks. Increasing the
depth of the networks speeds up the convergence in all cases. All of the networks
achieve virtually perfect classification after a few hundred batches. Once again, the
pixel network and “same” APRNet display pronounced dips in accuracy, whereas
the level-adaptive networks do not. Moreover, the level-adaptive APRNets converge
significantly faster.

The APR guides the APRNets in the sense that convolutions are applied only
where particles exist. In these ideal images, the APR assigns maximum resolution
particles only in a band-like region around the object boundary. Therefore, the
maximum-level convolutions receive useful (non-constant) input at every position
of the kernel. Lower-resolution convolutions should also receive useful input for the
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Figure 4.4: Learning results of the larger baseline networks, as well as two varia-
tions of APR_B whose number of parameters are the same as Pix_B (“same”) and
slightly larger (“close”).

most part, due to the increased spatial extent of the lower-level kernels. The pixel
networks, on the other hand, apply maximum-resoution kernels everywhere in the
image. Therefore, a majority of the convolutions are performed in constant regions
that convey no useful information. It is possible that the faster convergence of the
APRNet is due to this guidance. Irrelevant background regions regions are “filtered
out” by the APR, allowing the network to focus the learning around the object
boundary. With level-specific kernels, the networks could potentially only focus on
this information by giving lower-resolution features less weight. Pixel CNNs, and to
some extent the “same” APRNets, must learn to handle the background using the
same set of kernels as the feature detection.

4.1.3.3 Impact of the error threshold E

This section presents a simple study of the impact of information loss in the APR
formation process on the classification performance of the APRNets. Here, the
information loss is controlled by varying the user-set relative error threshold E.
Based on the APR performance on the synthetic images, presented previously in
Figure 4.2, four values of E that tend to give qualitatively different adaptation have
been selected: 0.1, 0.4, 0.6 and 0.8. The typical adaptive properties of the APR for
these values are illustrated in Figure 4.5.

For each selected value, APRNets of type APR_B are trained in exactly the
same way as in the previous section. That is, using 3000 mini-batches of size 36,
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Original image

APR Level maps

E = 0.1

E = 0.6

E = 0.4

E = 0.8

Figure 4.5: Example illustrating the typical adaptation of the APR for the selected
values of the error threshold E. White corresponds to pixel-level resolution, whereas
darker shades indicate lower resolution. For E = 0.1, the object boundary is fully
resolved, while for E = 0.4 parts of the boundary are downsampled. This pattern is
repeated for the larger thresholds. Using E = 0.6, the boundary is fully represented
at one resolution level below the maximum, while for E = 0.8 parts of the boundary
are downsampled further.

with the cross-entropy loss, Adam optimizer and a fixed learning rate of 0.0005.
In addition, three pixel networks of type Pix_B are trained using pixel images of
different resolution. More precisely, one network is trained on the original images,
while the remaining two are trained on images downsampled, by means of bilinear
interpolation, to size 128× 128 and 64× 64 pixels, respectively.

To get a rough estimate of the classification performance achieved by the net-
works, the mean and standard deviation of the error on the last 100 training batches
are registered. The results are presented in Table 4.2. Roughly speaking, the net-
works trained on original images and lossless APRs perform equally. For E = 0.4,
the APR partially downsamples of the boundary. This is reflected in the classifica-
tion performance, as the corresponding error lies between those of the full-resolution
and once-downsampled pixel networks. Similarly, the APRNet trained with E = 0.6
performs roughly equal to the CNN trained on once-downsampled images, while for
E = 0.8 the error lies between those for once and twice-downsampled pixel images.
In other words, the classification error of the APRNets seems to correlate perfectly
with the information loss due to the representation. Hence, we may posit that
APRNets achieve similar classification performance to regular CNNs applied to the
reconstructed images. However, this claim does need further verification.
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Data type image size / E Classification error
APR E = 0.1 0.0013± 0.0015
Pixels 256× 256 0.0016± 0.0028
APR E = 0.4 0.0071± 0.0031
APR E = 0.6 0.0102± 0.0048
Pixels 128× 128 0.0116± 0.0040
APR E = 0.8 0.0261± 0.0067
Pixels 64× 64 0.0770± 0.0123

Table 4.2: Classification performance of the network APR_B, trained using four
different values of the reconstruction error threshold E, and Pix_B trained using
full-size (256×256), once-downsampled (128×128) and twice-downsampled (64×64)
images. The classification errors and standard deviations are computed from the last
100 training batches, each consisting of 36 images.

4.1.3.4 Finite datasets

The ideal scenario in the experiments above, being able to sample the generating
distribution indefinitely, is not common in practice. Instead, one typially only has a
finite set of data, divided into subsets for training, validation and testing. Here, this
scenario is emulated by generating finite sets of synthetic images. Several networks
are trained on datasets of different size. Hence, the performance of the networks
should give insight into their ability to generalize from finite datasets, as well as the
amount of training data required to reach a certain accuracy.

To this end, seven training datasets of different size have been generated in such a
way that the smaller datasets are subsets of the larger ones. These datasets contain
20, 50, 100, 200, 500, 1000 and 2000 labeled images from each class. Independent
datasets are used for validation and testing, each containing 500 images per class.
These are generated using the same parameter settings, so that the training, val-
idation and test datasets consist of independent, identically distributed examples.
However, in practice it may happen that the training dataset only represents a sub-
set of the distribution for which the network is employed. This scenario is emulated
by testing the models on yet another dataset, consisting of 500 images per class
generated with slightly different parameters1.

For each of the training datasets, networks of type APR_B and Pix_B are
trained. Since overfitting is likely to be a problem, especially with the smaller
training datasets, several regularization techniques are employed during training.
Spatial dropout is used after the last max pooling layer, with a probability pdrop = 0.3
to zero out any given feature map. Between the 1 × 1 convolution layers, regular
dropout is used to zero out individual neurons with probability pdrop = 0.5. Finally,
weight decay (L2 regularization) is employed with parameter λ = 1e − 4. During
training, the networks are evaluated on the validation dataset in regular intervals,
and the models with the minimum validation loss saved. These models are then
evaluated on the test datasets, the results of which are shown in Figure 4.6.

1The parameters are modified to be “more extreme”, so that the training data represent a
subset of the new distribution.
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Figure 4.6: Classification accuracy on the test datasets (500 images per class) for
APR and pixel networks trained on fixed datasets of different size. One test dataset
is distributed identically to the training data (left), while the other is sampled from a
modified distribution (right). Approximate 95% confidence intervals for the accuracy
measurements are shown by dashed lines.

Interestingly, the APRNets trained on very small datasets perform significantly
better than their pixel counterpart. Once again this could be attributed to the higher
information density of the APR compared to the pixel representation. However,
there is also a significant amount of randomness involved in the procedure above.
Further experiments are required to make any definitive claims. When trained on
larger datasets, the APR and pixel networks display similar performance, with the
pixel networks performing slightly better. Here the confidence intervals are overlap-
ping, so it is not clear whether or not the differences are statistically significant.

4.2 Natural image benchmark
The synthetic images used in the previous section are, in a sense, optimal for the
APR due to their extreme sparsity and lack of noise. In this section, APRNets are
evaluated on the classical task of distinguishing natural images of cats and dogs,
which are much less ideal for the APR. First, a brief description of the dataset is
given. This is followed by a summary of the APR’s performance on the images,
details on the benchmarked network architectures, and finally the results.

4.2.1 Dogs vs. Cats dataset
The dataset used is the set of training images from the Dogs vs. Cats competition
on Kaggle2. It consists of 25000 labeled images of cats and dogs, distributed evenly
between the classes. The images are a subset of the Asirra database [47], which
contains over three million manually labeled photographs.

There is tremendous variation in quality and resolution of the images in the
dataset. Processing batches of different-sized images is somewhat problematic in

2https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition
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practice, as they cannot be stacked into regular arrays. This could be solved by
zero-padding the smaller images to match the size of the largest image in the batch.
However, since the image sizes vary over an order of magnitude in the dataset, zero-
padding would result in large amounts of redundant computation. For this reason,
the images are resized to 256 × 256 pixels by means of bilinear interpolation prior
to processing or transformation to the APR.

4.2.2 APR performance
Although the current implementation of the APR does not support multi-channel
images, a simple workaround can be employed. To convert color images, they are
first converted to grayscale to allow computation of the APR, after which each
color channel is resampled at the particle locations. It should be noted that the
reconstruction condition is only guaranteed for the grayscale image, and not the
individual channels. However, the procedure seems to work well in practice.

Figure 4.7 summarizes the performance on a set of 1000 randomly sampled im-
ages. Clearly, the computational benefits of the APR are limited in comparison to
the sparse synthetic images. For the most conservative error threshold, E = 0.2,
the computational ratio is roughly 2 on average. It then approximately doubles for
each successive value. Looking at the average errors, the largest step occurs between
E = 0.2 and E = 0.4. Further increasing the threshold seems to slightly increase
both the mean and variance of the error measurements.
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Figure 4.7: APR performance on a set of 1000 randomly sampled images from the
cats and dogs dataset, for different values of the error threshold E. The images are
resized to 256 × 256 pixels prior to transformation. (Top) Benefit of the APR in
terms of the computational ratio. (Bottom) Average absolute reconstruction error,
taken over all pixels.
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Figure 4.8 illustrates the APR adaptation for an example image. In this case,
the APR fully resolves most of the edges for E = 0.2, which is reflected in the
smoothness of the reconstructed image. Higher values of E lead to some loss of fine
detail, in particular around the ear, nose and eye, where the contrast is not as high
as between the contours of the dog and the background. This is also reflected in the
reconstructions, by the increasingly pronounced pixelation.

(a) E = 0.2 (b) E = 0.4 (c) E = 0.6 (d) E = 0.8

Figure 4.8: Example of APR performance for different values of the reconstruction
error threshold E. The top row shows the adaptation by mapping particle resolution
levels to pixels (brighter means higher resolution), whereas the bottom row shows
the corresponding reconstructed images.

4.2.3 Network architectures

Three network architectures are evaluated on the task. These are detailed in Ta-
ble 4.3. Notably, the APRNet is here given an auxiliary input channel, encoding
the resolution level of the particles, normalized to the interval [0, 1]. Furthermore,
level-specific kernels are used in the APRNet, leading to an increased number of
parameters. To account for this and allow for more fair comparisons, an expanded
version of the pixel network is evaluated. Judging the potential of the networks
solely by number of parameters, the APRNet can be expected to place somewhere
between the pixel networks. However, this is of course an overly simplistic view,
as the performance of any neural network depends on a large number of additional
variables.
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Pixels APR Pixels (expanded)
input channels RGB RGB + level RGB

conv1
32× 32

BN, relu
pool (22, str 2)

32× 32 (4)
BN, relu
pool

128× 32

BN, relu
pool (22, str 2)

conv2
64× 32

BN, relu
pool (22, str 2)

64× 32 (3)
BN, relu
pool

128× 32

BN, relu
pool (22, str 2)

conv3
128× 32

BN, relu
pool (22, str 2)

128× 32 (2)
BN, relu
pool

128× 32

BN, relu
pool (22, str 2)

conv4
128× 32

BN, relu
pool (22, str 2)

128× 32 (1)
BN, relu
pool

128× 32

BN, relu
pool (22, str 2)

conv5 128× 12

relu
128× 12 (1)

relu
128× 12

relu
conv6 2× 12 2× 12 (1) 2× 12

Global Average Pooling
#parameters 257473 371809 462977

Table 4.3: Network architectures for cats vs dogs classification. Convolutional
layers are described as n× k2, where n specifies the number of output feature maps
and k the kernel size. Additionally for the APR networks, the number of resolution-
specific kernels are specified in parentheses. Batch normalization is denoted by BN,
rectified linear unit activations by relu and max pooling by pool. For the pixel
networks, the kernel size and stride of the max pooling are given in parentheses.
The APR network receives input with four channels, encoding RGB color intensities
as well as the particle levels.

4.2.4 Classification performance
To evaluate the networks, the dataset is randomly divided into 24000 images for
training and 1000 for validation. Data augmentation is employed during training,
where the images undergo the following transformations:

• resize to 256× 256 pixels (bilinear interpolation)
• random choice of:

– random rotation (max 30 degrees)
– color jitter (brightness and contrast scaled by a random factor r ∈ [0.8, 1.2])
– random translation (±5%) and scaling (±10%)

• random horizontal flip (p = 0.5)
Images used for validation are resized to 256 × 256, but not augmented. For the
APRNet, the input APRs are computed from the transformed images. All networks
are trained using a mini-batch size of 24 and a fixed learning rate of 1e − 4. After
each pass through the training dataset, or “epoch”, the networks are evaluated on
the validation dataset.

Figure 4.9 shows the validation accuracy during training of the networks. It is
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Figure 4.9: Progression of the validation accuracy during training of the APRNet
and two pixel networks on the cats and dogs dataset.

seen that all networks converge to roughly the same accuracy. The APRNet and
expanded pixel network converge faster than the smaller pixel network. Once again,
both pixel networks display significant dips in accuracy, whereas the APRNet is
more stable. As previously mentioned, this could indicate that the learning rate
is too high for the pixel networks. However, since all networks are trained using
a fixed learning rate, it begs the question of whether APRNets allow for higher
learning rates in general.

Quantitative measures of the network performances are given in Table 4.4. This
includes three more APRNets, trained using different values of the error threshold
E. For each network, the highest achieved validation accuracy is reported. It should
be noted that these values are biased estimates of the true generalization accuracy.
Better comparisons could be made by evaluating the selected models on a held-out
test dataset. Nevertheless, taking into account that the exact values ought to be
taken with a grain of salt, they do give some insight into the performance of the
networks. It may be concluded that the pixel networks and the APRNet trained
using E = 0.2 achieve similar performance. APRNets trained with higher values of
E suffer slightly in terms of accuracy. Although, interestingly, the loss of accuracy
when increasing E from 0.4 to 0.8 seems to be only marginal, despite the pronounced
difference in quality displayed in Figures 4.7 and 4.8. For E = 0.8, the details in the
images are essentially represented at once resolution level lower than for E = 0.4.
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Network Top validation accuracy
Pixels 0.9709
Pixels (expanded) 0.9739
APR (E = 0.2) 0.9739
APR (E = 0.4) 0.9589
APR (E = 0.6) 0.9579
APR (E = 0.8) 0.9549

Table 4.4: Highest achieved validation accuracies of the pixel networks, as well as
the APRNet trained using different values of the reconstruction error threshold E.

4.3 Computational scalings of APRNet operations
To assess the computational scalings of the layer operations, suppose that an input
APR with Np particles and C channels is given. The pooling operation (Algo-
rithm 1) is easily seen to have a worst-case computational cost of O(CNp). For the
convolution operation (Algorithm 3), suppose that D kernels of size C × k × k are
applied, resulting in an output APR with Np particles and D channels. Each output
value is computed using Ck2 + 1 multiply-add operations, where the one accounts
for addition of bias terms. Thus, computing all of the DNp output values requires
D(Ck2 + 1)Np floating-point operations. However, the APRTree must be filled for
each of the C input channels. This requires 4CNt operations, where Nt < Np is the
number of tree nodes. Hence, in big O notation, the computational complexity of
the forward convolution is O(CDk2Np). In the backward pass of the convolution op-
eration (Algorithm 4), the DNp output-gradient values are propagated to the inputs
and parameters. For each output position, Ck2 contributions go to the inputs and
another Ck2 + 1 go to the parameters (Ck2 to the weights and 1 to the bias term).
Thus, the operation requires D(2Ck2 + 1)Np operations. In addition, the APRTree
has to be filled, and the gradient tree unloaded, for each input channel. This results
in an addition of 8CNt operations. Once again the cost grows asymptotically as
O(CDk2Np), and the actual cost is roughly twice the cost of the forward operation.

Now, the analysis above does not give any information about the real-time con-
sumption of the algorithms. To assess this, synthetic images containing different
numbers of objects are generated. As the number of objects increase, the sparsity
decreases and the number of particles required to represent the image increases.
The APRs are then passed repeatedly to the convolution and pooling operations
to measure the average time required for each operation. Figures 4.10 and 4.11
illustrate some measurements obtained in this way. The timings are recorded for
a single APR, one input channel and one output channel. Due to the hard-coded
OpenMP batch parallelism in the current implementation, this means that all pro-
cessing is done by a single thread. The presented measurements are obtained using
a MacBook Pro Retina (2013), equipped with a 2.3GHz Intel Core i7 processor.
It is clearly seen that the computation time of each operation scales linearly with
the number of particles. Moreover, the time required by the backward convolution
passes are indeed almost exactly two times the forward computation time in each
case.
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Figure 4.10: Measurements of the real time required by the forward and backward
passes of the convolution operations. Each measurement is the average time of 5000
operation calls, recorded after a burn-in of 500 calls.
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Figure 4.11: Measurements of the real time required by the forward and backward
pass of the max pooling operation. Each measurement is the average time of 10000
operation calls, recorded after a burn-in of 1000 calls.

In light of these results, convolutions and pooling on the APR have the potential
to be faster than the corresponding pixel operations by a factor equal to the com-
putational ratio. In reality this is likely not achievable, due to the overhead work
required by the APR operations. However, for large enough computational ratios,
significant reduction in real processing time can be achieved.

4.3.1 Memory benefits of APRNets

Here the potential reductions in memory usage of APRNets compared to pixel CNNs
are discussed. In the application of any given neural network model, the inputs are
passed through successive layer operations to compute an output. During training,
the inputs received by each layer in the forward pass must be stored in memory for
the backward pass. Thus, at the very end of the forward pass, the network input as
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well as every intermediate feature map are stored in memory. This, together with
the parameters of the network and potentially some additional workspace buffers,
make up the memory footprint of the network.

In order to assess the potential memory benefits of APRNets, the memory foot-
print of input and intermediate feature maps are computed for an example network
architecture. The cost of storing the network itself, as well as temporary memory
usage of individual layer operations, are ignored. For the input to the network and
feature maps before any pooling layers, the APR reduces the memory cost by a fac-
tor equal to the computational ratio (CR). Each successive pooling operation makes
the APR more dense. Thus, the CR of pooled feature maps is smaller than the
input CR. Because of this, the exact memory footprint of the APR depends on the
adaptation to the specific input image. This complicates the analytical study of the
memory footprint of APRNets, but it can be studied empirically by computing the
feature map sizes for specific inputs.

As an example of the potential reductions in memory usage of APRNets, the
feature extractor part of the VGG16 network described in Figure 2.6 is considered.
Since this part is fully convolutional, it can accept inputs of any size. To compute the
memory footprint of the network, the sizes of all the layer inputs are accumulated.
This is done for synthetic images of size 512×512 pixels containing increasing num-
bers of objects. Figure 4.12 shows the memory required to store the feature maps as
APRs relative to the pixel representation. In this case, the increased representation
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Figure 4.12: Example of the benefit of APRNet to the memory cost of storing
intermediate feature maps. Feature map sizes are computed for increasingly dense
synthetic images of size 512 × 512 pixels to obtain the memory usage. The x-axis
shows the reduction in network input size and the y-axis shows the memory cost of
the APR feature maps relative to the pixel versions.

density combined with the greatly increased number of channels in the later layers
causes the scaling to differ quite significantly from linearity3. Nevertheless, it is
clear that significant reductions in memory usage can be achieved for large enough

3The relationship can be brought closer to linearity by altering the network architecture. In
this way the memory benefits can be controlled by the user, to a certain degree
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computational ratios. It should also be noted that the actual memory benefit will
increase significantly when a third spatial dimension is included, due to the increased
contribution from the high-resolution images to the total memory footprint.

54



5
Conclusions and future work

5.1 Conclusions

In this thesis project, convolutional neural networks (CNNs) for the Adaptive Par-
ticle Representation (APR) have been developed, implemented and evaluated. This
has been achieved by extending the operations of convolution and pooling layers to
the APR, and we call the resulting network type APRNet. The developed opera-
tions share several similarities with existing processing methods for image pyramids,
but differ in that computations are applied in a sparse manner to select spatial loca-
tions defined by the APR. In this way, the APR guides the network operations and
focuses the feature extraction to regions of high information content, such as edges.

The APRNet operations have been implemented in C++, using multithreading
by OpenMP to speed up computations. In order to enable seamless building and
application of APRNets, the functionality has further been wrapped to Python and
implemented as custom, high-level PyTorch modules. As a result, APRNets can
be built and trained in PyTorch similarly to traditional CNNs, with only marginal
added complexity for the user.

To evaluate the performance of APRNets, several networks have been built and
trained on tasks of image classification using both synthetic and natural images.
The results clearly show that APRNets are able to learn and achieve classification
performances similar to pixel CNNs with equivalent architectures. In addition, sev-
eral interesting observations about the learning characteristics of APRNets can be
made from the results:

• When training equivalent APRNet and CNN architectures with a fixed learn-
ing rate, the APRNets display a more stable progression of validation accuracy.
This seems to indicate that processing on the APR has a regularizing effect,
and can be attributed to the fact that the feature extracting filters receive
fewer inputs, with increased proportions of meaningful signals.

• In the task of synthetic image classification, the APRNets seem to converge
significantly faster than equivalent pixel CNNs. This is most likely a conse-
quence of the above bullet point. For natural images, this is not as apparent.
However, the regularizing effects can be expected to be much less pronounced
in this case due to the high density of the particle representation.

• A third observation, further supporting the hypothesis that the APR has a
regularizing effect on the learning, is that the APRNets are able to generalize
significantly better from very small datasets of synthetic images.

Finally, the computational costs of the APRNet layer operations have been shown,
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both empirically and analytically, to scale linearly with the number of particles
rather than the original image size. Similarly, the memory cost of intermediate
feature maps scale with the number of particles. Therefore, the APRNet has the
potential to significantly reduce computational and memory costs in the processing
of large and sparse images. These reductions are most significant in the early layers
of the network, and diminish with each pooling layer as the density of the APR is
increased.

5.2 Future work
The presented work has served as a proof of concept of the potential of APRNets.
Comparisons have been made between APRNets and single-scale CNNs. However,
due to the multi-resolution nature of the APR, these network types process data
in fundamentally different ways. By instead considering multi-resolution CNNs for
image pyramids, which have a clear connection to APRNets, better direct compar-
isons can be made. In addition, several improvements and extensions can be made
to increase the practical usefulness of APRNets:

• Perhaps most importantly, the implementation of the operations can be op-
timized to increase the computational speed. We expect that tremendous
speedups can be achieved by utilizing graphics processing units (GPU) to
perform the computations. Several of the elements necessary to implement
the operations for GPU computing already exist as part of previously imple-
mented pipelines. It is therefore expected that full GPU implementations of
the convolution and pooling operations are possible.

• Since the primary target application of the APR concerns large, 3D fluores-
cence microscopy images, the operations should also be extended to three
spatial dimensions. This can be done trivially for the current implementation.
However, processing such data in reasonable time would require significant
improvements to the computational efficiency of the implementation.

• To enable the use of APRNets in a wider range of learning tasks, additional
layer operations are required. For instance, modern CNNs for image seg-
mentation [19, 2] and restoration [1] typically employ learnable upsampling
operations. We expect that these, too, can be extended to the APR similarly
to the convolution and pooling operations treated here.

• Finally, we envision that hybrids between APRNets and CNNs can be useful
for many reasons. For instance, neural networks mapping APRs to images
could be used to optimally reconstruct and restore pixel images. Moreover,
the APR becomes increasingly dense and approaches the pixel representation
as it undergoes successive pooling operations. Hence, real-time computational
benefits could be made possible by using the APR in the early layers, and
switching to the pixel representation in the later layers to make use of more
efficient algorithms.
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