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Abstract
Lithium-ion batteries are currently one of the most commonly used type of batteries
and in this thesis the main goal has been to find a minimum-time open-loop optimal
control strategy for charging a lithium-ion battery. The idea was to use a complex
but accurate model of a lithium-ion battery for evaluation and try to fit a simple
equivalent circuit model which could be used for optimisation. The optimal control
problem was solved using CasADi and it was possible to achieve charging times
up to 42% faster than with the conventional CC-CV charging method while still
keeping within the same constraints. The biggest decrease in charging time was at
lower temperatures for long charging intervals. The method should be applicable
for a physical battery although constraints will be more difficult to choose.

Keywords: Fast charging, Minimum-time, Open-loop optimal control, Lithium-ion
battery
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1
Introduction

1.1 Background

Lithium-ion batteries are interesting as they currently are one of the most commonly
used type of batteries [1]. There are multiple different kinds of lithium-ion batteries
with varying properties but the one thing they all have in common is that they need
to be charged. There exists numerous strategies for charging such as Constant Cur-
rent(CC) and/or Constant Voltage(CV) charging. More complex charging strategies
exist such as multistage constant current charging which make use of predefined cur-
rent steps and results in a charging current similar in appearance to a descending
staircase.

The most common model used in control applications is an Equivalent Circuit Model
(ECM), but due to the extensive simplifications in the model compared to a physi-
cal battery, a lot of important information is unobservable and therefore unavailable
for optimisation. This is a concern when solving optimisation problems since the
solution is based on the predetermined boundaries of the states, which are far from
trivial to decide, and can therefore cause the solution to be unsuitable for real world
applications. To try to deal with this issue, two different models are used for two
different purposes, an ECM which is used for optimisation and an Electrochemical
Model (EM) for simulation. The latter simulates the battery in more depth and can
therefore validate if the charging is somewhat safe and feasible.

1.2 Purpose

The main purpose of the thesis is to investigate how an optimal open-loop control
strategy for charging a lithium-ion battery cell can be found. There are many
parameters which needs to be taken into consideration to not cause damage to the
the battery. The main method to complete this is to develop a minimum-time
solver for the ECM where constraints on the available states limits the charging
and then evaluate the resulting charging current in simulation in the EM. By doing
this, the hope is to achieve a non-destructive charging strategy. As the battery
characteristics change with temperature and State of Charge (SoC) the optimisation
will be performed for different initial conditions and for different intervals of SoC to
see how they compare.

1



1. Introduction

1.3 Limitations
• Existing battery models will be used.
• Only a single cell will be considered.
• The theory behind the software tools used for solving non-linear optimization

problems will be excluded from the work.
• No analysis of the battery’s expected lifetime will be made.
• No cooling/heating system will be taken into consideration.
• No physical testing will be performed.
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2
Theory

This chapter details the theory on which the thesis is based, starting with some
general theory about lithium-ion batteries followed by a more detailed description
of the models used for simulation and optimisation as well as the principle behind
the optimisation method used for minimum-time optimal control.

2.1 Lithium-ion batteries
A normal lithium-ion battery is made up of multiple cells in order to reach the de-
sired voltage and capacity, each cell consisting of a cathode, separator and anode.
In figure 2.1, the process of charging a battery is shown. The current is notated as
flowing from the anode through the charger to the cathode, which means that the
electrons flow in the opposite direction. Simultaneously, the lithium ions migrate
from the cathode to the anode. The battery is fully charged when the anode has
reached its maximum lithium-ion storage capability.

Figure 2.1: The process of charging in a lithium-ion battery, showing the lithium
ions moving from the cathode to the anode

The characteristics and performance of a cell, such as capacity, lifetime and charg-
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2. Theory

ing/discharging performance varies with the materials being used; the term "lithium-
ion battery" represents a wide variety of chemistries and cell designs [2]. As a result,
the optimal charging profile for one type of battery might be different from another
depending on which materials are used. There are also different types of lithium-ion
cells in regards of structure; cylindrical, prismatic and pouch cells are all common.
As an example, the Tesla Model 3 uses a high number of cylindrical cells for their
cars whereas the Nissan Leaf and the Chevrolet Bolt uses pouch cells [3][4][5].

Lithium-ion batteries consists of dual-intercalation cells, making them recharge-
able since the ions can be stored in both the cathode and the anode. The term
intercalation can be described as moving ions in and out of an interstitial site of
a lattice. The anode is often made of graphite and the cathode of a combination
of active materials, where numerous alternatives exists such as LiCoO2 (Lithium
Cobalt Oxide) or LiNCAO2 (Lithium Nickel Cobalt Aluminium Oxide) [6].

2.2 Battery models

Models which describe and monitor different processes and states of the battery
are very useful and in this thesis two different models are discussed and used, the
EM and the ECM. The most significant difference between the two is that the EM
models what happens chemically in the battery while the ECM only replicates the
behaviour of the cell’s terminal voltage. Because of this, the EM has a much higher
complexity which is why the optimisation is based on the ECM and the EM is used
for verification and testing.

2.2.1 Electrochemical model

Doyle et al.[7] developed a model in 1993 of the lithium ions’ intercalation process
and expanded models have since then been developed further, the principle behind
the one used in this thesis is shown in figure 2.2. The model consist of five sections,
a current collector at each side, a cathode, a separator and an anode. The current
collectors are made of a conductive material, like copper or aluminium, that dis-
tributes the current uniformly. In the positive and negative electrode, i.e. cathode
and anode, the lithium ions can be stored in the solid phase, which is modelled
and visualised as circular solid-phase particles. The separator makes sure no elec-
trons, only lithium ions, are able to pass. The cathode-separator-anode section is
filled with electrolyte, which enables the lithium ions to move. The lithium ions
can therefore be in either the electrolyte or in the particles in the cathode or the
anode. Included in the figure as well is the Solid Electrolyte Interphase (SEI) film,
which is not taken into consideration here but can play a large role in aged batteries.

Also seen in figure 2.2 is the charging process, including the movement of ions.
The ions starts with exiting the particles of the cathode, making their way past the
separator into the anode to finally intercalate into the particles in the anode.
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2. Theory

Figure 2.2: A model of a battery with the components relevant during charg-
ing, showing the lithium ions moving from the cathode to the anode. Increased
impedance of the SEI over time is one of the main causes of increased overall
impedance in an ageing battery.

The behaviour of the battery is described by a set of partial differential equations
which cover the electric potentials in the solid phase and electrolyte, the transport of
ions in the electrolyte and solid phase, the conservation of charge and the relationship
between the molar flux and the solid phase intercalation overpotential [8]. The
overpotential is crucial in fast charging since it is closely related to a side reaction
that causes lithium plating, a phenomenon that damages the cell and degrades the
capacity. The side reaction that causes lithium plating, ηsr, can by making some
general assumptions be described as the difference in electric potential in the solid
phase and the electrolyte in the anode and should stay above zero, according to the
following equations:

ηsr = Φs − Φe

ηsr > 0
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2. Theory

Another important part of fast charging is the highest allowed ion concentration in
the particles in the anode, which is connected to the battery’s state of charge. This
can be seen in equation 2.1, where t is the time, Ln is the length of the anode and
cs is the lithium-ion concentration in the particles. The cell is fully charged when
all particles in the anode have reached their maximum concentration. During fast
charging the concentration in the particles closest to the separator is maximised
first which raises the risk of overcharging those particles. Overcharging a battery
is a safety risk where problems like swelling and, in extreme cases, explosions can
occur. Exceeding the maximum ion concentration even by a small amount causes
destruction of the electrode materials which negatively affects the mobility of the
electrons and lithium-ions. This results in higher internal resistance, capacity fading
as well as a higher rate of heat generation [9][10].

SoC(t) = 1
Lnc

max,n
s

∫ Ln

0
cavg

s (x, t)dx (2.1)

2.2.2 LIONSIMBA

The EM model has been implemented in MATLAB by Torchio M et al. [11], call-
ing it LIONSIMBA, Lithium-ION SIMulation BAttery toolbox. The battery cell is
modelled according to the battery parameters used in the works of Northrop et al.
[12][13]. The materials used in the anode is graphite (C6) and in the cathode LCoO2,
or LCo, which is a type commonly seen in mobile phones [6]. In LIONSIMBA it is
possible to set up and initialise the battery, run simulations and observe processes
of interest like the side reaction voltage, ηsr, as well as the lithium-ion concentration
in the anode.

LIONSIMBA simulates a predefined number of particles in the cathode and an-
ode separately. As an example, figure 2.3 shows the side reaction voltage ηsr as
well as the lithium-ion concentration in ten simulated particles in the anode. In
the example the battery was charged with a constant current for 1000 seconds.
The particle closest to the separator is closest to potentially reaching harmful levels
which is visible in both graphs; to the left where its corresponding value of ηsr is
closest to zero, and to the right where its lithium concentration is closest to the
maximum limit. Henceforth, only the particle closest to the separator is observed
when comparing performance of different charging strategies.
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2. Theory

Figure 2.3: The figure shows the side reaction voltage ηsr and the lithium-ion
concentration in the solid phase for 10 particles in the anode after charging the
battery with constant current for 1000 seconds. ηsr is never below zero and the
concentration never exceeds the limit for this battery.

While this model describes the dynamics in an actual battery fairly well, it is too
complex for the objective of finding a minimum-time optimal charging current. A
simpler model is needed for the optimisation, and an equivalent circuit model is used
for this.

2.2.3 Equivalent circuit model

The ECM is an electric model which uses passive electric components to model the
terminal voltage of the battery. The model is commonly used and figure 2.4 shows
the circuit [14].

7



2. Theory

Figure 2.4: The equivalent circuit model (ECM) which models the dynamics of a
battery using common electrical components.

The model can, by removing all resistors and capacitors, be seen in its simplest form
as an ideal voltage source with the same voltage as the Open Circuit Voltage (OCV)
of the battery. The OCV of the battery is the voltage the battery has when rested
and unloaded, and is mainly dependent on SoC. In the equations the SoC is notated
as z, which ranges from 0 to 1, and is modelled based on the principle of coulomb
counting as shown in equation 2.2. The current is positive for charging and Q is the
capacity of the battery, usually measured in Ah.

z(t) = z(t0) + 1
Q

∫ t

0
i(τ)dτ (2.2)

An ideal voltage source alone does not capture the dynamics of the battery which is
why the resistors and capacitors are added. Adding a resistance, R0, in series with
the ideal voltage source captures the voltage drop that occurs because of the internal
resistance of the battery. This is shown in figure 2.5 where a current pulse is used as
input. The biggest part of the voltage change comes from R0i(t) for the part when
the current is applied. The OCV rises as the SoC increases and the terminal voltage
coincides with the OCV after a period without input. The nonlinear dynamics that
the series resistor and the ideal voltage source do not capture, is captured by the
RC-pairs as the voltage notated as vs, where vs = vT − vOCV −R0i(t).

8



2. Theory

Figure 2.5: The terminal voltage, vT , is seen here as the voltage response after a
current pulse has been applied to the battery. The series resistor, R0, captures the
main part of the rise and drop in voltage while the voltage over the RC-pairs, vs,
model the non-linear parts. As the input current is positive, the SoC of the battery
will rise as is seen by the small rise in voltage for the open circuit voltage, vOCV .

The resulting terminal voltage, vT , of the battery is then calculated according to
equation 2.3.

vT (t) = OCV (SoC(t)) + i(t)R0 +
n∑
i

vi(t) (2.3)

Determining vi can be done by using Kirchhoff’s current law and then extending
with Ri since vi = iRi

Ri, which can be seen in equation 2.4. The reformulated
version used later in the state-space model can be seen in equation 2.5.

iRi
(t)Ri = (i(t)− Ci

dvi

dt
)Ri (2.4)

dvi

dt
= − vi(t)

CiRi

+ i(t)
Ci

(2.5)

2.2.4 Thermal model
For the ECM to be useful for optimisation, a model for how the temperature of the
cell behaves is needed as well. One commonly used model consists of two states,
one for the core temperature and one for the surface temperature of the cell [15][16].
However, for modelling and parameter estimation simplicity, a model with only one
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2. Theory

state is used, which is assumed to be the average temperature of the cell. Equation
2.6 shows how the model works.

Cc
dTc

dt
= Tamb − Tc

Rc

+QECM (2.6)

Cc is the specific heat capacity of the cell and Rc is the heat conduction resistance
between the cell and the air around it. Tc is the temperature of the cell and Tamb is
the ambient air temperature. QECM is the generated heat from all components in
the ECM, which is calculated as QECM = (R0i+ v1 + ...+ vn)i.

2.3 State-space model
To simulate the battery, the ECM and thermal model needs to be combined into a
single state-space system. As all the equations are defined already it can simply be
defined as seen in equation 2.7.

v̇1
...
v̇n

ż

Ṫc


=



− v1
R1C1

+ i
C1...

− vn

RnCn
+ i

Cn

i
3600Q

Tamb−Tc

RcCc
+ QECM

Cc


(2.7)

2.4 Minimum-time optimal control
The goal with optimal control is to find a set of inputs which minimises a pre-defined
cost function without breaking any of the constraints. In the case of fast charging,
the variable which needs to be minimised is time. This results in a problem which
has the general form as seen in equation 2.8,

minimise
u

T

subject to ẋ = f(x, u)
g(x, u) ≤ 0
x(T ) = xf

(2.8)

where x are the states, u the input which we control the system with and T is the
time it takes to reach the target state xf .

2.4.1 Reformulating the problem
As it is not possible to solve a minimisation problem directly when on the form
shown in equation 2.8 it needs to be reformulated. One common way to solve
minimum-time optimisation problems is to rewrite it on the form shown in equation
2.9.

10



2. Theory

minimise
u

ξ

subject to ẋ = ξf(x, u)
g(x, u) ≤ 0
x(tf ) = xf

(2.9)

Two things are changed, the variable ξ, which speeds up or slows down the dynamics
of the system, is added and an assumption of what tf will be is made. The solver
will minimise ξ by finding inputs which reaches the final state with as slow dynamics
as possible, but as the dynamics of the real system does not change, the actual final
time will be T = tf · ξ. Since ξ is minimised the same result will be obtained as if
the problem defined in equation 2.8 was solved.

2.5 C-Rate for Batteries [C]
A common way of describing charging and discharging currents in the field of bat-
teries is to use C-rates and it is therefore used in this thesis as well. C-rate is used
by letting 1 C be defined as the capacity of the battery, so if the battery has capacity
of 2.3 Ah, charging with 1 C would in this case be to charge with a current of 2.3
A. The reason why this is useful is that the capacity varies a lot between different
batteries, and the rate at which you can charge with is linearly dependent on the
capacity.

11



3
Method

To be able to perform the minimum-time optimisation with the ECM, model pa-
rameters needed to be estimated. In this thesis the model is based on the battery
simulated in LIONSIMBA, which means that the measurements for parameter esti-
mation had to be performed in LIONSIMBA. The first part of this chapter describes
the method used for system identification followed by two different modelling ap-
proaches and finally some details about how the optimisation was performed.

3.1 System identification

Three different types of tests were needed to identify all parameters of the ECM and
temperature model. The first step was to estimate the OCV as a function of SoC
and temperature, followed by estimating the values of all components in the ECM.
Lastly, the two parameters for the temperature model needed to be identified.

3.1.1 Open circuit voltage

The OCV has a big impact on the estimated values which makes it important to
have accurate data. LIONSIMBA supports the possibility to initialise the battery at
a specific SoC and therefore the open circuit voltage was measured by initialising the
battery at different SoCs ranging from 0-100%, as well as different temperatures, and
then measuring the voltage. The result can be seen in figure 3.1. The temperature
dependence is very small compared to the SoC dependence but was chosen to be
taken in consideration as it made a difference in some cases, especially with smaller
inputs. The capacity of the battery is predefined in LIONSIMBA to be 29.23Ah,
meaning that a charging rate of 1 C is 29.23A.

12



3. Method

Figure 3.1: vOCV as a function of SoC at different temperatures

3.1.2 Estimating component values for the ECM
The principle behind the parameter estimation is to use the voltage difference, vd,
between the terminal voltage, vT , and the already measured OCV. As an example,
figure 3.2 shows vT and the OCV for the corresponding SoC as well as the difference
between them. The input used is a step beginning with a 10 second rest followed
by an input of 2 C for 1000 seconds.

Figure 3.2: The terminal voltage and the open circuit voltage to the left after
an input current of 2 C for 1000 seconds had been applied. To the right is vd, the
difference between vT and vOCV , which is the voltage that the parameter estimation
is based on.
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3. Method

The principle for the estimation is the same independent of the number of RC-
pairs used, but here it is shown for two RC-pairs as that is what was used for
reasons shown further on. To estimate the parameters for the ECM based on the
measurements, a discrete time state-space system which models the voltage vd was
used. The state-space model is shown in equations 3.1 & 3.2, which is a discretised
version (assuming zero order hold for i) of the first two states of the state-space
model described in equation 2.7.

x(k + 1) =

 e
− Ts

R1C1 0

0 e
− Ts

R2C2

x(k) +

 R1(1− e− Ts
R1C1 )

R2(1− e− Ts
R2C2 )

 i(k) (3.1)

vd(k) =
 1

1

x(k) +R0i(k) (3.2)

In the equations above, the state vector x = [v1 v2]T consists of the voltages over
the two RC-pairs. To identify the values of the parameters, the transfer function of
the state-space representation, calculated as G(z) = C(zI − A)−1B +D, was used,
which can be seen in equation 3.3.

G(z) = Vd(z)
I(z) = R0 +

R1

(
e

Ts
C1 R1 − 1

)
z e

Ts
C1 R1 − 1

+
R2

(
e

Ts
C2 R2 − 1

)
z e

Ts
C2 R2 − 1

(3.3)

It was then simplified through substitution of expressions as follows:

a = e
Ts

C1R1 , b = e
Ts

C2R2 =⇒

Vd(z)
I(z) = R0 + R1 (a− 1)

a z − 1 + R2 (b− 1)
b z − 1 (3.4)

Next, both sides were multiplied with (az−1)(bz−1) to get rid of the denominators.
After transforming back to the time domain, this resulted in coefficients on the form
that can be seen in equation 3.5.

vd(k + 2) = c1i(k + 2) + c2i(k + 1) + c3i(k) + c4vd(k + 1) + c5vd(k) (3.5)

To make use of this, a vector of regressors, Φ, was defined

Φ = [i(k + 2) i(k + 1) i(k) vd(k + 1) vd(k)]

as well as a parameter vector, θ.

θ = [c1 c2 c3 c4 c5]T

Finally the observation, Z = vd(k + 2) was defined. For all vectors k ranges from 0
to N − 2, where N is the number of samples. This resulted in a system of equations
on the form

Z = Φθ

14



3. Method

By doing a least squares fitting to find θ, it was then possible to find the values of
all 5 parameters by solving equation 3.6 for R0, R1, R2, a and b. By how a and b is
defined in equation 3.4 it was simple to calculate C1 and C2 when a, b, R1 and R2
were known.

θ =



c1

c2

c3

c4

c5


=



R0

−R0 a+R2 a+R0 b+R1 b−R1 a b−R2 a b
a b

R0+R1+R2−R1 a−R2 b
a b

a+b
a b

− 1
a b


(3.6)

3.1.3 Choosing the number of RC-pairs
In the ECM, the number of RC-pairs used affects how well the model can follow
the dynamics of the battery. In Lin X et al. [16] a comparison between one, two
and three RC pairs was made and the result showed that the difference between
one and two pairs was fairly large when compared to the difference between two
and three. To provide more ground for the decision, the three different alternatives
were compared to LIONSIMBA as well. By constructing methods to calculate the
parameter values for all three cases according to the method described above, a
comparison could be made for different types of input currents and the result was
evaluated by comparing the improvement in percent with two vs. three RC-pairs
over a single one in terms of Root Mean Square Error (RMSE). In each example
shown the parameters were estimated for the specific input current used. Figure 3.3
shows an example of what the general result looked like, in this case an input current
of 2 C for 1000 seconds following the initial rest was used at a starting temperature
of 15 ◦C and initial state of charge of 20%.

Figure 3.3: Comparison between one, two and three RC-pairs with an input of 2
C for 1000 seconds.

In this case the difference between two and three RC-pairs were fairly small, a 37%
decrease in RMSE with two RC-pairs and a 44% decrease with three. Another
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example can be seen in figure 3.4 where the fast charging curve for charging from
10-95% at 1 ◦C was used as input.

Figure 3.4: Comparison between one, two and three RC-pairs using a charging
curve for charging from 10-95% at 1 ◦C as input.

In this case, there was a 25% decrease in RMSE with two RC-pairs and a 33%
decrease with three. Based on these results and tests with other inputs it was decided
that two RC-pairs was a good compromise between complexity and accuracy.

3.1.4 Estimating thermal model parameters
Estimating the two parameters in the thermal model was done in a similar manner
as the ECM components. By expanding the previously defined thermal model shown
in equation 2.6,

dTc

dt
= (Tamb − Tc)

1
RcCc

+QECM
1
Cc

it was simple to choose a vector of regressors,

Φ = [(Tamb − Tc) QECM ]

a parameter vector,

θ =
[ 1
RcCc

1
Cc

]T

and the observations were chosen as Z = Ṫc. Which, as before, gave us a system on
the form

Z = Φθ
which could be solved for Rc & Cc.

3.2 Parameter fitting
The dynamics of the battery change depending on both SoC and temperature. To
illustrate this, figure 3.5 & 3.6 shows how the estimated values vary with either SoC
or temperature, with the other at a constant value. The parameter estimations are
based on a 500 second step with a current rate of 0.25 C.
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Figure 3.5: ECM parameter values as a function of SoC at T = 15◦C

Figure 3.6: ECM parameter values as a function of temperature at SoC = 50%

To handle these variations, two different approaches towards the modelling were
tested.

3.2.1 Parameters defined as polynomials
The first approach was to create functions depending on both SoC and temperature
for each separate parameter. To do this, estimations of the parameter values were
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made at different points of temperature and SoC. SoC was ranged from 10-95% in
5% intervals and at each SoC temperature was ranged from 0 to 45 ◦C in 2.5 ◦C
intervals. After data had been collected, MATLAB’s fit function which can generate
polynomials of different degrees in each variable were a simple solution to create
functions depending on temperature and SoC for the parameters. By evaluating
the RMSE for different degrees of polynomials in each variable it was decided that
polynomials according to table 3.1 was the best choice in regards of complexity and
accuracy. Figure 3.7 shows the measurement points as well as the surfaces based on
the polynomials.

Table 3.1: Polynomial degrees for paramter fitting

Parameter Degree in SoC Degree in temperature
R0 2 2
R1 4 3
R2 5 2
C1 5 2
C2 5 2

Different types and lengths of input currents for the estimation were evaluated but
as both SoC and temperature had to remain close to their initial values for it to
make sense, the amount of energy which could be used at each point was fairly
limited. The best result was achieved with a 500 second step with a charging rate of
0.25 C. Other types of input currents were tested as well, such as single or multiple
pulses, short or long, however non of these got close to the performance of a long step.

As both temperature and SoC are included as states in the state-space model, it was
fairly simple to make the parameters depend on the current state when optimising
the charging. Worth mentioning is that it had a big impact on the computational
time as the model became a lot more complex with 5th degree polynomials in it.
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Figure 3.7: ECM parameter values as functions of temperature and SoC

3.2.2 Static parameters

The second approach tested was to use constant parameters. By leaving the param-
eters constant it was instead possible to estimate the best parameters for the whole
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charging sequence instead of the alternative approach above. This resulted in one
set of parameters for each case evaluated in the results section.

3.2.3 Performance comparison
To compare the two modelling methods, several different types of input currents
were used. As a first example, figure 3.8 shows the result when an input current of
2 C for 1000 seconds was used, with an initial SoC of 20% at 15 ◦C. In each of the
cases shown the static parameters have been optimised for the specific current.

Figure 3.8: Comparison of performance with the estimated ECM parameters as
polynomials or kept static using a current step as input.

In this case the model with static parameters was clearly more accurate, and fig-
ure 3.9 and 3.10 shows two more cases with the same result. For these two cases
optimised fast charging currents were used as input.

Figure 3.9: Comparison of performance with the estimated ECM parameters as
polynomials or kept static using a charging curve as input.
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Figure 3.10: Comparison of performance with the estimated ECM parameters as
polynomials or kept static using a second charging curve as input.

Lastly, just for illustration, figure 3.11 shows the result when the same input which
was used for finding the data for the polynomials is used, which leads to close to
identical performance.

Figure 3.11: Comparison of performance with the estimated ECM parameters as
polynomials or kept static using the same current step that was used for estimating
the polynomial parameters as input.

Based on these results the model with static parameters was the obvious choice.
The complexity was lower and the accuracy was higher for all cases tested.

3.3 Solving the optimal control problem
To solve the minimisation problem based on the state space model in equation 2.7
a plug-in for MATLAB called CasADi was used [17][18]. CasADi is a toolbox de-
veloped for efficient numerical optimisation using Automated Differentiation (AD),
which makes it extremely useful for this kind of problems, however, how CasAdi and
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AD works is outside the scope of this thesis. The method used to solve the min-
imisation problem is called direct multiple shooting which is a numerical method
for solving boundary value problems. A summary of the minimisation problem can
be seen in Appendix A and here follows a more detailed description of the key parts.

The Non-Linear Programming (NLP) solver used in CasADi requires a decision
variable array w, containing the inputs, the states and in this case the minimum-
time variable ξ as well, structured as:

w = [u0 u1 ... uP x0 x1 ... xN ξ]

The reason for separating the number of inputs, P , and the number of simulation
points, N , is to allow for the possibility to use a lower P since this kept the compu-
tational requirements reasonable.

The usual way the inputs are used is to assume that the input is piecewise con-
stant, but with few control points this leads to a non-continuous current trajectory.
By instead choosing the input between each control point as the linear interpolation
between the points according to equation A, the current trajectory will be contin-
uous. In the equation, k goes from 0 to N − 1 and p goes from 1 to P during the
same time. In all cases in the results section, P was set to 25 and N to 2000, which
was enough for all cases tested.

u(k) = up + (up+1 − up)
(
kP

N
− p+ 1

)
(3.7)

The cost variable ξ was added by inserting it in the discretisation phase. A fourth
order Runge-Kutta method was used for the integration and the progression of states
was defined according to equation 3.8.

xn+1 = xn + ξ
1
6(k1 + 2k2 + 2k3 + k4) (3.8)

The input required for the solver was the cost function, ξ in this case, the decision
variable array w, and finally the equality and inequality constraints. Every element
of w has a fixed lower and upper bound, setting the minimum and maximum values
of the state variables and inputs. The basic constraints for direct multiple shooting
are the following set of equality constraints:

g(w) =


f(x0, u0)− x1

...
f(xN−1, uN−1)− xN

 = 0

which forces the solution to follow the integrator function, defined as f(xk, uk) =
xk+1.

In order for the system to reach the desired final state, a constraint was added
to xN with the chosen requirements, the most important being the constraint which
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ensures that the battery reaches the desired SoC. With everything mentioned above
the solver was able to converge to a solution, but additional constraints were needed
as well in order to end up with a feasible charging curve.

As a final note, it is worth mentioning that CasADi supports something which
they call warm start, which is to reuse the previous solution as a starting point,
which drastically decreased the computational time after the first solution had been
found.

3.3.1 Battery specific constraints

As the ECM does not model most of the states inside a physical battery, choosing
constraints for the optimisation was one of the more difficult tasks. The only con-
straint which was added to a state directly and kept constant in all cases was to
limit the maximum temperature that the battery was allowed to reach. Due to the
quick decrease in lifespan which occurs when charging at higher temperatures, the
upper limit was chosen as 45 ◦C [19][20]. Another constraint which might be useful
would be to limit the maximum input current if a specific charger with a known
power output limit is used, especially in cases with high capacity batteries where
higher C-rates are unreasonable.

The most important constraint was the one added to vs, which can be seen as
vd without the voltage from the internal resistance of the battery. The side reaction
voltage, ηsr, has some relation to the voltage vs, although not linear. By constrain-
ing vs it was possible to control the resulting charging current and end up with a
working result, as the model itself would otherwise just maximise the current with
regard to temperature only.

Several different types of constraints for vs are possible, and in this thesis two dif-
ferent types were tested mainly. The first one was to limit v̈s, which was calculated
as seen in equation 3.9, together with a limit on the final value of vs.

v̈s = vs(k + 2)− 2vs(k + 1) + vs(k)
Ts

2 (3.9)

The hope with this constraint was that it would result in a smooth charging curve,
but problems arose as the NLP-solver had big problems with convergence for the
first solution, which made it difficult to use. It was also hard to tune and in some
cases impossible to achieve a well working result, and even if a result was obtained,
conventional charging methods would often result in a shorter charging times.

The second type of limit tested was a simple linear constraint, of which an ex-
ample can be seen figure 3.12. In the shown example the battery was charged from
20-80% at a starting temperature of 1 ◦C.
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Figure 3.12: Linear constraint applied to vs during a charge from 20-80% with a
starting temperature of 1 ◦C.

The linear constraint was easy to tune with only 2 parameters, a starting value and
a final value and there were never any problems with convergence. Because of these
reasons it was decided to use a linear constraint for vs.

Lastly, a constraint on the second derivative of the input current was added in
the same way as described in equation 3.9. This was done mostly to get a smoother
looking charging curve that would be more realistic to use in practice, as it had
minimal effect on the charging time. The effect of the constraint is illustrated in
figure 3.13.

Figure 3.13: Comparison between not having and having a constraint on the the
second derivative of the input current.
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3.4 Comparison with constant current-constant
voltage charging

A comparison between the optimised charging and a commonly used charging method
was needed to see how much could be gained over a conventional method. The Con-
stant Current-Constant Voltage (CC-CV) method [21] was chosen and implemented.
The principle behind the CC-CV method is to charge the battery with a constant
current until a predefined cut-off voltage is reached, after which it switches to a con-
stant voltage. With the constant voltage applied, the current gradually decreases
and finally stops when the difference between vT and the applied voltage reaches 0.
In all the evaluated scenarios, the CC part was maximised in regards of tempera-
ture and ion concentration in the anode to reach as short charging time as possible
to make a fair comparison. The cutoff voltage was chosen, as is standard, as the
maximum working voltage of the battery.

There are other methods for charging like MultiStage Constant Current Charg-
ing (MSCCC) which is similar to the CC-CV method, but instead of the constant
voltage in the end, it uses descending levels of constant currents. In Khan AB et
al. [22], the method is shown to be up to 12% better in regards of charging time
than the conventional CC-CV method. The MSCCC method is not the only method
which decreases the charging time compared to CC-CV but in this thesis the CC-CV
method was used for its simplicity.

3.5 Program for fast charging
To systematically get consistent results a MATLAB script was written containing all
the different steps required for the optimisation. The flowchart in figure 3.14 shows
the basics of how the program work after the initial conditions and constraints have
been chosen. By running the script multiple times it converges to a result in 3-4
runs such that the changes in charging current and parameter values are minimal.
This program is what was used to generate the results in the thesis.
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Figure 3.14: Program for optimal fast charging. After 3-4 runs, the change in
parameter values and optimised input current is minimal.
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Results

To evaluate how the optimised fast charging performed compared to the CC-CV
method, 6 different scenarios were chosen. Two different SoC intervals, 20-80% and
10-95%, at three different temperatures, 1, 15 and 30 ◦C. The charging interval of
20-80% is one of the most common intervals in the context of fast charging and it
was decided that a longer interval was needed as well.

The logic behind the selection of temperatures was to have one with high enough
initial temperature such that temperature was the only constraint, one case with
the lowest possible temperature and one in between. A summary of the charging
times and the improvement over CC-CV can be seen in table 4.1 & 4.2 for 20-80%
and 10-95% respectively, also included in the tables are the constraint applied to vS

for each case. The constraint has 2 parameters, initial value and final value, where
the final value is in percent of the initial value.

After the 6 different scenarios had been studied it was also investigated how much
effect errors in the estimated parameters had on the generated charging current to
see how robust the ECM was as a base for optimal charging.

4.1 Charging from 20-80% at different tempera-
tures

The cases shown here are for charging from 20-80% for the three different initial
temperatures that were chosen.

4.1.1 Test case 1: 20-80%, 1 ◦C

The first case evaluated was 20-80% at a temperature of 1 ◦C. The resulting charging
time was approximately 21 minutes. Figure 4.1 shows the result from the optimisa-
tion as well as what happened in the battery when the generated charging current
was used as input in LIONSIMBA.
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Figure 4.1: Results after an optimised input current calculated for the ECM with
CasADi was used as input in LIONSIMBA. In this case charging from 20-80% at an
initial temperature of 1 ◦C.

To start with, the top left plot shows ηsr, vs from the ECM as well as the constraint
used. The side reaction voltage in red was never close to reaching a value below zero
which was the most important aspect. To simplify the comparison of vs and ηsr, vs

was negated and given the same initial value as ηsr. The top right plot shows the
main limiting factor in terms of charging rate in most cases, cs, the ion concentration
in the solid phase in the anode. The limit, as defined by default in LIONSIMBA,
is plotted as a dashed line. In the bottom left plot the temperature is shown. The
modelled temperature was fairly accurate for the most part but had some problems
during the middle, although it was still within ±5%. Lastly, the current which was
the result of the minimum time optimisation, is shown in the bottom right corner.
Interesting to note is that the form of the charging current was similar in appearance
to what was obtained by R. Methekar et al.[23].

Next, the optimised charging was compared to the more traditional CC-CV charg-
ing. The CC-CV charging was manually optimised, in this scenario and the other
5, by setting the constant current rate to the maximum value which did not make
the charging exceed the maximum concentration in the solid phase or the maximum
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temperature. The fast charging was approximately 38% faster in this case. Figure
4.2 shows plots of the same parameters as in figure 4.1, but instead of comparing
the ECM and LIONSIMBA, it compares the fast charging and CC-CV charging.

Figure 4.2: Comparison between the optimal charging and the optimised CC-CV
method, simulated in LIONSIMBA, charging 20-80% at an initial temperature of 1
◦C.

As the plots show, the different charging strategies produced very different results.
When looking at the currents it can be seen that the CC-CV method barley reaches
the CV stage due to only charging to 80% and thus mostly charges with a constant
current. The temperature, unavoidably since the charging was faster, reached a
higher value with the optimised current, but what is interesting to note is that the
side reaction voltage had its lowest voltage at the end with CC-CV as opposed to fast
charging which had its minimum somewhere around the middle and never reached
a voltage that low.
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4.1.2 Test case 2: 20-80%, 15 ◦C

In the second case, the starting temperature was instead set to 15 ◦C. The charging
time was drastically improved over charging at 1 ◦C, and the resulting charging
time, almost cut in half, was around 14 minutes. Figure 4.3 shows how the battery
behaved in simulation.

Figure 4.3: Results after an optimised input current calculated for the ECM with
CasADi was used as input in LIONSIMBA. In this case charging from 20-80% at an
initial temperature of 15 ◦C.

The result was similar to the the previous case, with the main difference being that
temperature also became a limiting factor in the optimisation, and the constraint
on vs was only needed at the end to control the ion concentration in the solid phase.
The side reaction voltage reached a slightly lower value but was still well above
0. When comparing it to CC-CV charging the difference was smaller than before,
and the fast charging was approximately 22% faster. Figure 4.4 shows how they
compared in simulation.
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Figure 4.4: Comparison between the optimal charging and the optimised CC-CV
method, simulated in LIONSIMBA, charging 20-80% at an initial temperature of
15 ◦C.
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4.1.3 Test case 3: 20-80%, 30 ◦C

In this case, no limit was applied to vs as the only limiting factor was the temper-
ature. The charging time in this case was around 18 minutes and the results from
the simulation can be seen in figure 4.5.

Figure 4.5: Results after an optimised input current calculated for the ECM with
CasADi was used as input in LIONSIMBA. In this case charging from 20-80% at an
initial temperature of 30 ◦C.

Figure 4.6 shows the comparison to CC-CV and in this case the constant current
was maximised so that the battery reached approximately the same maximum tem-
perature with both charging methods. The fast charging was 14% faster in this
case. Both charging methods reached approximately the same ηsr as well as ion
concentration but the average temperature was lower with CC-CV charging which
might be healthier for the battery over time.
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Figure 4.6: Comparison between the optimal charging and the optimised CC-CV
method, simulated in LIONSIMBA, charging 20-80% at an initial temperature of
30 ◦C.
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4.2 Charging from 10-95% at different tempera-
tures

As the results were similar at 10-95%, graphs showing the ECM and CC-CV com-
parisons can be seen in appendix B, except for one case which is shown below. The
overall improvement in charging times can be seen in table 4.2.

4.2.1 Test case 6: 10-95%, 30 ◦C
This case was interesting as it indicated that the ECM might not be a good model
at higher temperatures. As before with high initial temperature, the limit on vs was
removed and temperature was the only constraint. Figure 4.7 shows the result from
the simulation as before.

Figure 4.7: Results after an optimised input current calculated for the ECM with
CasADi was used as input in LIONSIMBA. In this case charging from 10-95% at an
initial temperature of 30 ◦C.
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The accuracy of the temperature model was worse in this case compared to the pre-
vious ones and underestimates the temperature. The temperature model is directly
dependant on vd, and a comparison of vd for the ECM and LIONSIMBA can be
seen in figure 4.8.

Figure 4.8: Comparison of vd for the ECM and LIONSIMBA. When the current
is constant the ECM reaches an equilibrium while the voltage keeps decreasing in
LIONSIMBA.

As the figure shows, the behaviour of the two models was fairly different in this
case. As the current was constant for the latter part of the charging, vd in the ECM
reached a constant value. Because of how it was modelled it reached an equilibrium
where v1

R1C1
= i

C1
and v2

R2C2
= i

C2
. The problem was that the voltage continued to

decrease in LIONSIMBA which was why the model fit badly since this behaviour
could not be modelled with the ECM used here. A similar behaviour could be seen
when charging from 20-80% at the same initial temperature as well, although not
as extreme.

Finally, the fast charging is compared to CC-CV charging in figure 4.9. When the
battery was charged to 95% the CC-CV method entered the CV stage for a longer
duration of time as can be seen in the bottom right plot. This was also the case
where the improvement over CC-CV was smallest, only about 7%.
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Figure 4.9: Comparison between the optimal charging and the optimised CC-CV
method, simulated in LIONSIMBA, charging 10-95% at an initial temperature of
30 ◦C.

Table 4.1: Charging times in minutes & constraints used on vs, 20-80%

Temp (◦C) CC-CV Optimised Improvement vmax
s (V) vmin

s /vmax
s

1 36 22 38% 0.20 33%
15 18 14 22% 0.19 33%
30 21 18 14% - -

Table 4.2: Charging times in minutes & constraints used on vs, 10-95%

Temp (◦C) CC-CV Optimised Improvement vmax
s (V) vmin

s /vmax
s

1 86 50 42% 0.14 25%
15 37 26 30% 0.12 25%
30 29 27 7% - -
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4.3 Parameter errors
The last thing investigated was how much the optimised current was affected by
errors in the estimated parameter values. Only one case was chosen for testing,
10-95% at 15 ◦C. By allowing all 5 parameters in the ECM to have three values,
80%, 100% and 120% of the original value, 243 different combinations of values
were generated. By performing the optimisation in the same way, with the same
constraints for all cases, it was possible to see how the result changed and which
cases resulted in the biggest changes in charging time. Figure 4.10 shows the extreme
cases, the slowest, the fastest and the one generated with unchanged values. The
shortest time was achieved when all parameters were at 80% and the slowest when
all parameters was at 120% except C1 which was at 80%. Several other tolerances
were tested as well, ±10%, ±30%, ±40% and ±50% and in all cases the charging
time changed with the same percentages in the worst cases as the tolerance applied
to the parameters.

Figure 4.10: ECM parameter errors of ±20% on each parameter, resulting in
243 possible combinations. Seen here is the unchanged, the fastest and the slowest
combination.
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There are many parts of this project where there are no definite answers for what
method is correct. Because of this there are many areas where improvements are
possible through further testing and other changes. In this chapter the results will
be discussed as well as where the improvements can be made and what they might
look like.

5.1 Results

In terms of results, it is clear that there are better alternatives than the tradi-
tional CC-CV charging method. In most cases the ECM worked well for estimating
temperature, SoC and vd with fairly consistent performance except at high temper-
atures. In terms of optimisation the main problem was at the endpoints of SoC
where it was significantly harder to optimise and choose constraints, but as it is rare
that you need to fast charge from 0-100%, it was deemed to be a small problem.

The charging times were shortest with 15 ◦C as initial temperature and the change
in charging time compared to the cases starting at 1 ◦C was very large. If the same
charging current is used at different temperatures it has been shown that the life-
time of the battery is severely decreased when charging at a low temperatures [24].
This is probably the reason why the charging has to be so much slower to still keep
within the same constraints.

As can be seen in the tables showing the overall results, the improvement over
CC-CV decreases as the initial temperature increases. The reason for this is likely
that the benefit of starting with a rested battery with a low initial ion concentration
can not be taken advantage of to the same extent when the temperature also limits
the optimisation while the CC-CV method is mostly unaffected by the temperature
constraint.

In most cases it was easy to find which limit to choose for vs and it was inter-
esting to see that the constraint for each case within the same SoC interval was
almost the same, indicating the constraint choice could be mostly based on the SoC
interval. The constraint in each case was found through trial and error to maximise
the ion concentration but if a more complex constraint would be used, some kind of
optimisation method for finding it could be developed. One problem that will arise
if this is to be applied to physical battery is that it will be difficult to analyse what
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happens inside the battery and it will therefore be hard to tune the constraints.

5.2 Static vs. polynomial parameters
For the parameter estimation it was interesting to see that the much simpler method
with constant parameters performed better than the more complex one. The main
reason for this is probably that the battery behaves differently when it has been
charged for some time compared to when it has been unused. The data for fitting
the polynomials was at all points estimated when the battery was initialised as
rested, which is probably why it worked poorly, especially in the latter half of the
charging, but at the same time it would be hard to come up with a consistent method
to reach each point so that battery would not be rested when the parameters were
to be estimated.

5.3 LIONSIMBA
The main problem with LIONSIMBA was simulating the battery at low tempera-
tures, which was where the largest improvements in charging time seemed possible
according to the results. The reason why 1 ◦C was selected as the lowest tempera-
ture was only because LIONSIMBA could not simulate high input currents at lower
temperatures as it lead to behaviours which could not happen in a real battery, such
as temperature increases of 30 ◦C which only lasted a few seconds. Worth mention-
ing as well is that there exists two different temperature models in LIONSIMBA of
different complexity. In this thesis the simpler version was used as the more complex
one had even more trouble at low temperatures.

An interesting addition would be if another type of battery was added. The type
which is simulated now is a LiCoO2 battery which is primarily used in electronic
devices such as phones and laptops, and it would be interesting to see how a bat-
tery which is used in electric vehicles would behave. Perhaps ηsr would become the
limiting factor instead of the ion concentration.

5.4 Future work
One of the more interesting aspects of charging which was not investigated in this
thesis is degradation of the battery after multiple cycles of charging and discharg-
ing. A function for simulating this exists in LIONSIMBA, although it is still being
developed and not completely ready for use yet. After multiple cycles of charging
a battery, the overall impedance of the battery will increase and one of the main
contributors to this is the increased resistance of the SEI film, as seen in figure 2.2.
It is not clear how much resistance increase fast charging causes which makes it
difficult to account for, and is therefore in need of further research.

It would be very interesting to cycle the optimal charging profile obtained from
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this thesis on a physical battery and evaluate the degradation and overall perfor-
mance. Real world testing overall would be interesting to evaluate how well the
method actually works and if not, how it may be altered so that it does.

5.4.1 ECM
When it comes to the ECM part of the battery model, more RC-pairs can be added
to increase the accuracy of vd. The main problem, even with improved accuracy, is
that the voltage vs has no linear connection to ηsr even if vd is modelled perfectly.
Another important state that would be useful to estimate for optimisation and such
is the ion concentration, which was the main limiting factor for charging time in
this thesis. As the results indicated that the ECM was less accurate at higher
temperatures as well as close to the minimum and maximum SoC that could be
interesting to research further as well, it might be possible to replicate the behaviour
in some way by adding more components to the model.

5.4.2 Temperature model
The temperature model coincides fairly well with the model in LIONSIMBA, but a
physical battery, especially if some kind of battery pack is used instead of single cell,
will probably require a different model. It could also be interesting to investigate
if there is an optimal temperature to start charging at, but if so, more specific
information regarding the battery pack is needed. Another possible scenario is if
there exists a cooling and/or heating system, then it could be investigated how that
would affect the charging.

5.4.3 Different scenarios
When the battery was charged in this thesis it was always initialised as rested. It
was not investigated how the behaviour of the simulated battery cell would change
if it was used in some way previous to charging it. This would interesting to test for
multiple reasons and regenerative breaking is one scenario that could be simulated
to see how it can be controlled to charge the battery safely.

5.4.4 Optimisation
The minimum-time optimisation works well with the current model complexity, and
converges to a result in a reasonable amount of time. In regards of optimisation it
would be interesting to further investigate the robustness of the solution as well as
seeing if a feedback controller could be constructed for real world usage.

Other things which could be investigated further would be to try to find some kind
of constraint that would depend only on measurable states instead of time as it is
now, then it might be possible to come up with constraints that work in multiple
scenarios without needing to be changed for each one. The constraint values which
seemed to minimise the charging time seemed to be approximately the same for
each SoC interval. It could be investigated if it is possible to choose the initial value
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for the constraint based on the initial SoC and the final constraint value based on
the SoC that it should reach. The problem still remains however that this mapping
would be difficult to do for a physical battery.
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Conclusion

By performing optimisation on an equivalent circuit model of a lithium-ion cell
simulated in LIONSIMBA it was possible to achieve charging times that were up
to 42% faster than with traditional CC-CV charging while still keeping the battery
within the same constraints. By iteratively estimating the model parameters based
on the previous charging curve the equivalent circuit model accurately estimated the
terminal voltage of the battery simulated in LIONSIMBA for most cases. To control
the charging and avoid both lithium plating and overcharging a linearly decreasing
constraint was applied to the voltage over the two RC-pairs in the equivalent circuit
model. The result clearly shows that the method has potential and that it should
be possible to apply it on a physical battery even though it will be more difficult to
choose constraints for the optimisation.
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A
Summary of optimisation problem

The problem to be solved was:

minimise
u

ξ

subject to xk+1 = F (xk, uk, ξ)
g(w) ≤ 0
xN = xf

where

w = [u0 u1 ... uP x0 x1 ... xN ξ]
and the input at each step was defined as:

uk = up + (up+1 − up)
(
kP

N
− p+ 1

)
where 0 ≤ k ≤ N and 0 ≤ p ≤ P . The system dynamics were defined as:

ẋ =


v̇1

v̇2

ż

Ṫc

 =


− v1

R1C1
+ i

C1

− v2
R2C2

+ i
C2

i
3600Q

Tamb−Tc

RcCc
+ QECM

Cc


QECM = (R0i+ v1 + v2)i

and the integrator function, F , based on the dynamics was calculated with a fourth
order Runge-Kutta method in CasADi according to the following code with the
minimum-time variable ξ added:

%Function which defines the system dynamics
f_dyn = Function('f', {x, i}, {xdot});
%Minimum time variable
xi=MX.sym('xi');
% Fixed step Runge-Kutta 4 integrator
M = 4; % RK4 steps per interval
DT = T/N/M;
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A. Summary of optimisation problem

X0 = MX.sym('X0', 4);
U = MX.sym('U');
X = X0;
Q = 0;
for j=1:M

k1 = f_dyn(X, U);
k2 = f_dyn(X + DT/2 * k1, U);
k3 = f_dyn(X + DT/2 * k2, U);
k4 = f_dyn(X + DT * k3, U);
%Add min-time constant
X=X + xi*DT/6*(k1 +2*k2 +2*k3 +k4);

end
%Integrator function
Fdyn = Function('F', {X0, U}, {X}, {'x0','i'}, {'xf'});

The constraints defined by g(w) were the following, starting with the state con-
straints:



0
...
0

xmin

...
xmin

0.25



≤ wT ≤



5C
...

5C
xmax

...
xmax

5


where xmin = [−∞ −∞ 0.05 0]T and xmax = [ ∞ ∞ 1 45]T . The
constraint on vs was added in the following way:


xT

0

...
xT

N




1
1
0
0

 ≤ vmax
s (k)

where vmax
s (k) is the linearly decreasing constraint. A constraint on the second

derivative of the input current was added as well:


|ü1|
...

|üP −1|

 =


|u2−2u1+u0

Ts
2 |
...

|uP −2uP −1+uP −2
Ts

2 |

 ≤

ümax

...
ümax


The last two constraints, not contained in g(w), were the constraint which forces
the solver to follow the integrator function:
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A. Summary of optimisation problem


F (x0, u0)− x1

...
F (xN−1, uN−1)− xN

 = 0

and the constraint on the final state which ensured that the battery was charged:

[−∞ −∞ zf 0] ≤ xT
N ≤ [∞ ∞ zf 45]

After the setup is complete, a warm-start option is available for the solver if a
previous solution exists, making it easier and faster for the solver to reach the new
solution woptimal. This is coded accordingly:

% Create NLP solver
prob = struct('f', J, 'x', w, 'g', vertcat(g{:}));
%If warm start is enabled the previous result is used to improve
%computation time
options = struct;
if(prevSolutionExist)

options.ipopt.warm_start_init_point = 'yes';
solver = nlpsol('solver','ipopt',prob,options);
sol = solver('x0', sol.x, 'lam_g0', sol.lam_g, 'lam_x0', ...

sol.lam_x, 'lbx', lbw, 'ubx', ubw,'lbg', lbg, 'ubg', ubg);
else

solver = nlpsol('solver','ipopt',prob,options);
sol = solver('x0', w0, 'lbx', lbw, 'ubx', ubw,'lbg', lbg, ...

'ubg', ubg);
end
w_opt = full(sol.x);
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B
Test case 4 & 5

B.1 Test case 4: 10-95%, 1 ◦C

Figure B.1: Results after an optimised current profile is calculated for the ECM
with CasADi and then used as input current in LIONSIMBA. In this case charging
from 10-95% at an initial temperature of 1 ◦C.
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B. Test case 4 & 5

Figure B.2: Comparison between the optimal charging and the optimised CC-CV
method, simulated in LIONSIMBA, charging from 10-95% at an initial temperature
of 1 ◦C.
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B. Test case 4 & 5

B.2 Test case 5: 10-95%, 15 ◦C

Figure B.3: Results after an optimised current profile is calculated for the ECM
with CasADi and then used as input current in LIONSIMBA. In this case charging
from 10-95% at an initial temperature of 15 ◦C.
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B. Test case 4 & 5

Figure B.4: Comparison between the optimal charging and the optimised CC-CV
method, simulated in LIONSIMBA, charging from 10-95% at an initial temperature
of 15 ◦C.
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