
EPGTOP: A tool for continuous
monitoring of a distributed system
Master’s thesis in Computer Systems and Networks

Konstantinos Peratinos, Sarkhan Ibayev

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

EPGTOP: A tool for continuous
monitoring of a distributed system

Konstantinos Peratinos, Sarkhan Ibayev

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

EPGTOP: A tool for continuous
monitoring of a distributed system
KONSTANTINOS PERATINOS
SARKHAN IBAYEV

© KOSTANTINOS PERATINOS & SARKHAN IBAYEV, 2019.

Supervisor: Romaric Duvignau, Computer Science and Engineering
Advisor: Eric Nordstöm, Ericsson AB
Examiner: Marina Papatriantafilou, Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Networking Connections, artistic impression by GDJ.

Typeset in LATEX
Gothenburg, Sweden 2019

iv

EPGTOP: A tool for continuous monitoring of a distributed system
Konstantinos Peratinos, Sarkhan Ibayev
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Monitoring is fundamental to provide operational support for online systems and has
been an integral part of most computer systems for decades. Kernel-level counters
maintaining statistics such as the number of accepted/dropped packets are examples
for classic monitoring. The ever-increasing number of connected devices has affected
the scale of computer systems. Distributed systems are now inherent to most large-
scale computer systems and require adjustments to existing monitoring algorithms
since monitoring statistics are no longer retained locally and must be communicated
over a network.

Evolved Packet Gateway (EPG) is a performance-critical distributed system re-
sponsible for processing mobile broadband data. An EPG system contains cards to
process requests and can scale up to thousands of worker processes when running
in production. The amount of data generated and transmitted to monitor these
processes using traditional methods can overload the network cards in EPG use to
communicate with one another and adversely affect the system’s performance.

This thesis provides an overview of continuous distributed monitoring and evalu-
ates continuous monitoring algorithms for distributed systems. The thesis presents
EPGTOP, a monitoring service developed for continuous monitoring of EPG to
asses communication-efficiency of monitoring algorithms. EPGTOP provides two
modes of operation: basic and approximate. When running in the basic mode,
monitoring data is periodically transmitted to a designed management node. To
improve communication-efficiency of monitoring, the approximate mode allows an
error threshold to be configured. The threshold is used to adjust the accuracy of
system statistics continuously reported by the management node. Furthermore, the
thesis discusses adjustments required to monitoring algorithms to integrate them
into EPG and provides results for EPGTOP to compare and analyse trade-offs
between accuracy and communication-efficiency when continuously monitoring dis-
tributed systems.

Our results demonstrate that continuous distributed monitoring algorithms are
able to improve the efficiency of monitoring significantly by reducing communication
costs. Additionally, utilizing larger error thresholds leads to far less monitoring data
to be generated, albeit at the expense of accuracy.

Keywords: Computer, science, computer science, engineering, project, thesis.

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Problem Description . 3
1.4 EPGTOP . 4
1.5 Report Structure . 5

2 Distributed Monitoring 7
2.1 Approaches for distributed monitoring 7
2.2 Simple algorithms for distributed monitoring 8
2.3 Models for Distributed Monitoring 8

2.3.1 The Continuous Distributed Monitoring Model 8
2.3.2 The Data Stream Model . 11
2.3.3 Distributed Online Tracking 13

2.4 Monitoring problems . 14
2.4.1 Forms of monitoring . 14
2.4.2 Functional monitoring problems 15

2.5 Algorithms for Distributed Monitoring 17
2.5.1 Countdown and frequency moments 18
2.5.2 Basic counting . 19
2.5.3 Approximate counting, heavy hitters and quantiles 21

3 Distributed Monitoring of EPG 23
3.1 EPG Architecture . 23
3.2 Monitoring of EPG . 25

3.2.1 Definitions . 25
3.2.2 Measurements . 28

3.3 Implementation . 30
3.3.1 The system . 30
3.3.2 Communication . 31
3.3.3 Monitoring service and observers 32
3.3.4 Coordinator . 36

3.4 Limitations . 39

4 Results 41
4.1 Configuration . 41

vii

Contents

4.2 Results . 42
4.2.1 Processor utilization . 42
4.2.2 Packet Processing Rate . 52

4.3 Discussion . 60

5 Conclusion 63

Bibliography 65

List of Figures 67

List of Tables 69

viii

1
Introduction

1.1 Background
In recent years, the number of devices connected to the Internet has seen a steep rise.
The Internet of Things (IoT) devices are expected to push this figure even further - in
tens of billions according to industry projections. A large portion of these devices will
use mobile broadband to connect to the Internet. Evolved Packet Core is the core
network of Long-Term Evolution (LTE), the current mobile broadband standard,
responsible for bridging the gap between cellular networks and the Internet [1].
Evolved Packet Gateway (EPG) sits in the middle of Ericsson’s Evolved Packet Core
and is responsible for processing all traffic that passes through a mobile network.

Figure 1.1: A simplified view of EPC architecture [2].

The architecture of EPG is inherently distributed. A typical EPG system can
contain several nodes, referred as cards. These cards can be further categorized by
the function that they are performing. Usually there is more than one card of the
same kind in each EPG subsystem for fault tolerance. EPG is also divided into two
distinct planes that do not interact directly with each other. These two planes are
known as the user plane where most of subscriber data exists and the control plane
that handles internal control data. Figure 1.1 presents a simplified view of the
standardized EPC architecture.

As networked systems grow in size, monitoring becomes necessary to assess the
performance of a system and ensure that desired utilization levels are maintained.
An effective monitoring system has to provide an accurate view of the whole system
and its respective subsystems, while minimizing monitoring costs. A global view

1

1. Introduction

can be crucial in allocating appropriate amount of resources to fulfill service level
agreements and achieve high utilization. Additionally, monitoring data can be used
for a variety of applications, ranging from computing usage statistics and detection
of abnormal behaviour in the network to providing feedback on the design of the
system.

A user plane card in EPG deploys worker processes to handle incoming traffic.
Currently, monitoring in EPG is performed only at the card level, meaning statistics
specific to each worker is maintained only on the card that worker is running on. In
order to have a complete view of the whole system and its subsystems, monitoring
data have to be gathered manually by connecting to each node through a secure shell
(ssh). The aim of this thesis is to develop methods and a service - EPGTOP for
continuously obtaining, storing and displaying measurements collected from different
cards in an EPG system with considerations for communication-efficiency in order
to monitor the real-time behaviour of the system.

1.2 Motivation
Monitoring has been an essential part of computer systems since the early origins of
computers. A simple kernel-level packet filterer that displays statistics for dropped
and allowed packets is an example for classic monitoring. When observations and
retaining of monitoring statistics are performed only locally, the monitoring algo-
rithms are generally straightforward to implement. As more nodes are added to a
system, communication and coordination are required to perform monitoring at the
system-level, thus monitoring algorithms need to be adjusted to reduce communi-
cation, and in certain systems, such as embedded, space and computation costs.

The architectural shift from high-performance computer systems utilizing small
number of computationally powerful machines to systems utilizing large networks
of components using commodity hardware is evident in current distributed systems
design trends [3]. As systems grow in size, the complexity increases and necessities
development of new algorithms and tools to operate on these systems and accommo-
date growth. Tracking system performance and health in these distributed systems
is of paramount importance to ensure reliability in order to continuously adapt as
components fail or under-perform over time. Such systems require rethinking of
traditional monitoring algorithms originally designed to operate on a single machine
or networks small in size.

Effective monitoring algorithms allow analyzing and identifying under-performing
components, bottlenecks and anomalies in the system while ensuring costs associ-
ated with monitoring do not outweigh the benefits. A key design challenge for
developing monitoring algorithms for distributed systems is to account for scala-
bility. A distributed system consisting of large number of interconnected nodes is
bound to have failures either due to hardware malfunction or software faults. A
monitoring algorithm for such a system to track system health and performance
needs to be designed in a manner to adapt to system growth since an increase in
scale also leads to an increase in the complexity of interactions between components.
Perfectly accurate monitoring is exceptionally costly for most distributed systems
due to each observation detected requiring a monitoring message to be exchanged,

2

1. Introduction

thus overloading the network with monitoring data.

1.3 Problem Description
EPG is a performance critical distributed system that can process millions of packets
per second. Monitoring of a running EPG system involves monitoring individual
cards and processes running on these cards. EPG is horizontally scalable with adding
more cards to the system. An EPG system can contain thousands of processes
running in parallel and cards use an internal network to communicate with one
another. A monitoring system for EPG must ensure that extensions to existing
processes to support monitoring do not disrupt the performance or behavior of these
processes and is communication efficient to avoid overloading the internal network
with monitoring data.

Processes such as workers running in EPG record their own statistics. Pro-
cess specific statistics including associated processors’ utilization, memory usage,
the number of routed, processed, and failed requests are maintained and retained
locally. Events that occur in an EPG system such as retrieval and processing of
a packet cause these statistics to be updated. Correspondingly, these events and
the affected values form an input to a monitoring system to track the behaviour of
both the individual processes and cards they are running on. Considering there are
hundreds of statistics that are of interest to be monitored in EPG, a monitoring
system for EPG must be extendable to support adding more statistics and mon-
itoring functions. EPG designates a certain group of cards as management cards
and a monitoring system is required to transfer and make monitoring data gathered
from processes available at these cards over a TCP network. The current approach
to monitoring in EPG involves manually connecting to cards from the management
cards and retrieving locally retained statistics and monitoring data. Such an ap-
proach is neither extendable nor communication-efficient since the monitoring data
must be transferred regardless of the amount of changes in values of the monitored
system parameters.

The most important metric that is of interest in EPG is processor utilization.
Utilization allows detection of nodes and/or processes within nodes that are over
or under utilized and allows identifying inconsistencies and anomalies in usage of
the components. Additionally, the primary task of a worker is to process packets
and packet processing rate is used as an indication of performance. In the most
simplest form, a monitoring service for EPG must support monitoring the following
system parameters:

1. Processor utilization
2. Packet Processing Rate
Due to the architecture of EPG, management cards control resources of a run-

ning system and a monitoring system is required to provide the management cards
the values of these parameters for workers and averages for cards and the entire
system continuously. These parameters are used to track the behaviour of an EPG
system in real-time. Considering that the cards use the internal network to commu-
nicate, an efficiency of a monitoring system is mainly attributed to the number of
monitoring messages it sends. To achieve better communication efficiency, a mon-

3

1. Introduction

itoring system will attempt to reduce the number of messages sent, thus affecting
the accuracy of the reported values of these parameters by the management cards.
The monitoring system must guarantee that the error bounds on its output, in our
case, the reported values of these parameters, is maintained all the time. In addi-
tion, due to the performance requirements of the system, monitoring must not have
significant impact on the performance of processes running on cards. Neither the
cards in EPG are globally time synchronized nor the changes to local monitoring
statistics are time-stamped. Therefore, an eventual consistency must be provided by
the monitoring system. The monitoring data from cards will be transferred over a
TCP network, thus ordering of monitoring messages sent to the management cards
is assumed to be handled by the internal network.

The main challenges in monitoring of EPG are its distributed nature and archi-
tecture specific requirements. Thousands of processes running in EPG can generate
large amounts of monitoring data and a monitoring system must be able to optimize
the amount of monitoring messages sent and adapt to system scale. Flooding the
internal network with large amounts of monitoring data will directly affect the la-
tency of processing of requests by the workers, thus the monitoring system must aim
to minimize the number of messages transferred while ensuring the error guaran-
tees are maintained continuously. Additionally, due to the implementation specific
details of EPG and it components, any system added must be adapted to avoid
re-engineering of these components to support monitoring. Monitoring algorithms
for distributed systems make assumptions such as detection of events or transfer of
messages being instantaneous to make analyzing and comparisons with other algo-
rithms easier that do not have a direct implementation support either in EPG or in
most distributed systems. These algorithms require adjustments to integrate them
into EPG and effects of these changes on the efficiency and accuracy of monitoring
need to be verified and will be the main focuses of our discussions. Additions to ex-
isting components must also be configurable to adjust accuracy and efficiency since
monitoring of a system running in various settings such as production or testing can
have different requirements.

1.4 EPGTOP
EPGTOP is a monitoring system developed to evaluate continuous monitoring algo-
rithms for distributed systems and runs as part of EPG. EPGTOP executes moni-
toring services on cards in an EPG system to monitor worker processes and transfer
monitoring data to a coordinator continuously that runs as part of a management
card. Monitoring services execute monitoring algorithms designed for distributed
systems that are modified to be integrated into EPG. The main objective of EPG-
TOP is to provide dynamic real-time monitoring statistics for the entire user plane,
individual cards in the user plane and the workers running on these cards with a
command-line tool while optimizing the number of monitoring messages exchanged.
Evaluation of the algorithms that are executed as part of EPGTOP will be the
main focus of our discussions regarding compromises in accuracy to achieve better
communication efficiency when monitoring this distributed system in real-time.

The metrics described in the previous section for EPG can further be reduced

4

1. Introduction

to monitoring counts and frequencies to represent events over a sliding interval of
time. As an example, processing rate is merely the total the number of events over
an interval of time where in our case, an event is handling of a packet received. A
dedicated coordinator running on a management card acts as a sink node and sub-
sequently uses the values streamed by monitoring services to continuously compute
and report values of the monitoring functions such as average processor utilization of
the system. Displaying real-time values of the monitored parameters corresponding
to individual processes, cards and the entire system requires the coordinator to be
able to continually receive and process updated counts and frequencies sent by mon-
itoring services. EPGTOP supports running monitoring services either in a basic
or approximate mode. The basic mode executes a simple polling based monitoring
algorithm and the approximate mode executes an approximate algorithm where the
level of accuracy needed can be configured to minimize the number of messages
transmitted. In approximate mode, monitoring services that are running as part of
EPGTOP must ensure that the coordinator’s reported values are accurate up to a
specified error threshold. As the following chapters will explore, continuously flood-
ing the coordinator with updates as in the basic mode is communication intensive
for most systems and would increase the latency of transmissions over the internal
network, thus affecting the performance of the entire system.

Moreover, due to the performance oriented design of the system, we are aiming
to analyze communication costs associated with different configurations of moni-
toring algorithms such as error thresholds for this system. Benefits of reducing
the accuracy to minimize the number of monitoring messages transferred will be
the main determining factor to establish if approximate mode is able to reduce the
number of messages transmitted in comparison to the basic mode. The accuracy
of the monitored values reported by EPGTOP running in approximate mode will
be investigated to determine whether the monitoring services are capable of main-
taining the error guarantees in real-time. Furthermore, we will be describing and
reasoning about data structures and adjustments to theoretical algorithms needed
to implement and integrate a monitoring system into EPG.

1.5 Report Structure
The structure of the report has been organized as follows. Section 2 presents an
overview of distributed monitoring and the state of the art algorithms for solving
common monitoring problems. Section 3 describes EPG architecture in more detail
and presents our implementation of monitoring algorithms for this system. Our
evaluation methodology and results are presented in section 4. Finally, section 5
concludes our findings.

5

1. Introduction

6

2
Distributed Monitoring

Distributed monitoring is a generalization of classic monitoring that became relevant
due to ever-increasing number of connected systems and networks. Deploying trivial
solutions can have significant impact on system performance. Fundamentally, dis-
tributed monitoring algorithms achieve higher efficiency by tolerating a small loss of
accuracy. Understanding trade-offs between accuracy and efficiency in the context
of monitoring is crucial to designing algorithms for distributed systems. The main
focus of this chapter will be continuous distributed monitoring, where a coordinator
acts as a sink node and continually receives monitoring updates from nodes in a
system to compute a monitoring function.

2.1 Approaches for distributed monitoring
Distributed monitoring systems for federating clusters operate on a massive scale to
aggregate statistics from thousands of nodes to monitor system health and perfor-
mance. Ganglia [4] is a cluster monitoring system that collects monitoring data in
a distributed fashion within the network and displays a view of the clusters along
with performance statistics for individual nodes and subsystems. In service-oriented
large-scale architectures, tracing systems are employed to track the interactions be-
tween components to monitor system performance. Distributed monitoring systems
such as Dapper [5] and Magpie [6] are deployed to collect information about request
behavior for system tuning, capacity planning and performance debugging. An im-
portant feature of these systems is the ability to trace interactions and detect anoma-
lies in the behavior of specific components in a system such as mis-configurations
and software faults. These systems combine numerous algorithms and technologies
to perform distributed monitoring effectively either for aggregate or local system
metrics.

A particular form of widely-used monitoring is continuous monitoring in which
an aggregate function is computed repeatedly over time and the results provide a
view of the changes in the behaviour of a system for a certain time-frame. The input
to the function is a multiset of observations detected at each node in a system. In
this form of monitoring, we are more interested in the overall behaviour of the
system rather than the behaviour of individual nodes or the interactions between
them, such as computing the total number of packets processed in the entire system
within the past minute. Certainly, sending monitoring data for each observation
detected allows computing the result of an aggregate function trivially, however, this
form of monitoring is very communication intensive for most distributed systems.

7

2. Distributed Monitoring

This chapter focuses on continuous distributed monitoring and we will use the term
“distributed monitoring” for brevity in our discussions.

2.2 Simple algorithms for distributed monitoring
Monitoring in distributed systems requires deploying an observer at each site. Ob-
servers relay locally computed statistics to a coordinator, which acts as a sink node to
aggregate and computes statistics for an entire system. A straightforward method
of retrieving monitoring data from observers would be requiring each observer to
inform the coordinator for each observation, such as an arrival of a packet, or pe-
riodically. These forms of monitoring in general are known as flooding and polling.
However, these approaches have significant disadvantages. When observers commu-
nicate with a coordinator to inform about each observation separately, the number
of packets transmitted for monitoring will be equivalent to the total number of ob-
servations and accuracy of periodic polling is dependent on the poling frequency,
which can easily overload the network if narrow gaps are used and have reduced
accuracy if larger gaps are used [7].

In this chapter, we are concentrating on continuous distributed monitoring of ag-
gregate system metrics with particular attention to communication costs for the task.
Our aim is to analyze distributed monitoring algorithms to develop a monitoring
service for a performance-critical distributed system that minimizes communication
costs by approximating a value of an aggregate function with a certain error margin
rather than directly computing it by forwarding all locally detected observations.
Sending a monitoring message for each detected observation will require a moni-
toring algorithm to produce linear number of messages to the number of detected
observations, thus overloading the network with large amounts of monitoring data.

2.3 Models for Distributed Monitoring
Models for distributed monitoring formalize definitions and describe the system
architecture a monitoring algorithm is developed for. The assumptions regarding
calculating monitoring statistics such as definitions of an event, communication and
processing delays are outlined for a model to enable formally defining the communi-
cation and space complexity of an algorithm. A correct monitoring algorithm must
be able to provide guarantees defined for specific monitoring problems based on a se-
lected model. This section describes widely used models for distributed monitoring
and introduces definitions that form the basis of our discussions in the subsequent
sections to formally define monitoring problems.

2.3.1 The Continuous Distributed Monitoring Model
The continuous distributed monitoring model describes a system where a coordinat-
ing node aims to continuously compute a function of all detected local observations
combined to monitor the system. This section introduces the model and formally
defines its requirements. A schematic view of the system architecture is provided

8

2. Distributed Monitoring

as well. Since the continuous distributed monitoring model is general enough to be
applied to a wide range of scenarios, it forms the basis of our discussions throughout
this chapter when discussing other models and monitoring problems.

Technical Background

In the continuous distributed monitoring model, each site (or node) acts as an ob-
server in a system. Observers transmit information about locally detected events to
a coordinator, which aggregates and computes the result of a monitoring function.
Observers could be routers in a computer network, base stations in a cellular network
or even services within a single system. Each individual observation is assumed to
be a simple event, such as arrival of a packet. Figure 2.1 provides an architectural
view of the continuous distributed monitoring model. The communication chan-
nels between observers and the coordinator shown as arrows and are assumed to be
bidirectional. In this model, the observers communicate only with the coordinator
about local observations. The communications and detection of events are assumed
to be instantaneous.

Figure 2.1: The Continuous Distributed Monitoring Model [7]

The straightforward methods of computing aggregate functions to perform dis-
tributed monitoring such as flooding and polling were presented in the previous sec-
tions. In the continuous distributed monitoring model, monitoring costs are reduced
by approximating results of a monitoring function over an interval. An interval is
defined either in terms of time units or events. Unless specified, we will generally
refer to intervals as defined in terms of time units in our discussions for this model.
Approximation allows computing monitoring statistics for a distributed system up
to a certain error margin while aiming to minimize communication costs.

The Model

In the continuous distributed monitoring model, there are k remote sites and a
single coordinator denoted as S1 ... Sk and C respectively. Let A = (a1, ... , am) be a
sequence of items, where ai ∈ [n] was observed by exactly one site at time ti and
t1 < t2 < ... < tm. [n] denotes the set of all possible items. A(t) represents the

9

2. Distributed Monitoring

multiset of items received from all sites up until time t and we define the monitoring
function as f : [n]m → R. Let ε be an approximation parameter such that 0 < ε < 1.
The aim of a monitoring algorithm defined based on this model is to approximate
the value of f(A(t)) with a relative error of ε.

A connection is only allowed to be initiated by a remote site upon arrival of
an item. Assume an item ai arrives at ti at site Sj, meaning an observation was
made. Sj performs a local computation and chooses whether to inform C or not. All
parties know ε and n in advance. Once C is informed about local results, C initiates
connections to all remote sites and computes a global state, then shares it with all
sites. Therefore, sites do not communicate with one another about local results. At
any time t, C can calculate and approximate the value of f(A(t)). The cost of an
algorithm is measured in the number of bits transmitted in total [8]. Even though
we can define probabilistic protocols based on this model as well, we are focusing
on deterministic protocols only in the following discussion.

The definition of A(t) above implies that all items received up to time t form an
input for the monitoring function f . The result of a monitoring function f can also
be computed based on a list of items received in a recent window of size w. A recent
window of size w is defined either in terms of time units or events. We denote each
item as a tuple of (ai, ti) which indicates item ai was received at time ti. Given a
time t and A(t) = ((a1, t1), ..., (am, tm)), the input to a monitoring function f in this
case is defined as A′(t) = {(ai, ti) | 0 ≤ i ≤ m ∧ t− ti ≤ w} . Distributed streaming
is an analogous name for this variation of the model with an additional requirement
that only sub-linear amount of memory can be used [9, 10].

Geometric approach

The geometric approach is based on the continuous distributed monitoring model.
The algorithms for the geometric approach allow monitoring an arbitrary threshold
function f over frequency of items. In the centralized version of this approach, we
assume the system has the same architecture as shown in Figure 2.1.

Let ~v1(t), ~v1(t), ..., ~vk(t) be d-dimensional real vectors, where d denotes the num-
ber of distinct items, i.e. the size of [n]. These vectors are known as the local
statistics vectors. Let w1, w2, ..., wk be positive weights assigned to each stream be-
longing to a site. Usually, wi corresponds to the number of data items in a local
statistics vector. Weights are either defined for all items since initialization or a
recent window of items and can change over time due to arriving events. Let

~v(t) =
∑k
i=1 wi~vi(t)∑k

i=1 wi
(2.1)

denote the global statistics vector.
We define an arbitrary monitoring function f : Rd → R from the space of d-

dimensional vectors to the reals. The estimated vector, denoted as ~e(t), is computed
from the local statistics vectors. At a given time t, let ~v′

i(t) denote the latest statistics
vector received from a site i. Then, the estimate vector is computed as:

~e(t) =
∑k
i=1 wi

~v
′
i(t)∑k

i=1 wi
(2.2)

10

2. Distributed Monitoring

Each node maintains a parameter known as the statistics delta vector, ∆~vi(t), which
is the difference between the current and the last shared statistics vector, i.e. ∆~vi(t) =
~vi(t)− ~v

′
i(t). Each node also maintains a drift vector ~ui(t) computed as

~ui(t) = ~e(t) + ∆~vi(t) +
~δi
wi

(2.3)

where ~δi denotes a slack vector assigned to each site by the coordinator and∑k
i=1

~δi =
0. At any given time, the estimate vector is known by all sites. In a centralized
setting, this is the responsibility of the coordinator.

The main idea behind the geometric approach is to divide the monitoring task
into a set of local constraints maintained at remote sites. It can be shown that the
global statistics vector is in the convex hull of the drift vectors corresponding to each
site. Therefore, a site does not initiate communication with a coordinator unless its
local constraint is violated [11].

2.3.2 The Data Stream Model
The data stream model for distributed monitoring is adapted from the classic data
streaming model. The key difference between the data streaming model and the
continuous distributed monitoring model is that unlike in the continuous model,
distributed observers in the data streaming model do not compute a function of all
their inputs combined together, but instead keep a sublinear amount of information
to approximate the result of a monitoring function. The continuous distributed
monitoring model does not require each observer to use sublinear space; it treats
space as a property of an algorithm used instead [7]. This section introduces a
stream model for distributed monitoring, defines its requirements and provides a
view of the system architecture.

Technical Background

Figure 2.2: The Data Streaming Model [12]

The data stream model has a similar system architecture compared to the architec-
ture of the continuous distributed monitoring model and is shown in Figure 2.2.

11

2. Distributed Monitoring

The major difference between the architectures is that the communications between
observers and the coordinator are unidirectional and always from observers towards
the coordinator instead of bidirectional. Therefore, the coordinator does not share
the global state with observers and observers perform their local computations based
on their own past history and decide when to inform the coordinator about local
observations. It is important to note that this model for distributed monitoring
matches closely to the classic data streaming model with the exception that we have
k ≥ 1 sites instead of 1. Furthermore, as discussed in the preceding section, dis-
tributed streaming in comparison to this model assumes that the communications
are bidirectional as in the continuous distributed monitoring model, however bounds
space requirements of an algorithm used in addition to communication costs [10].

The space complexity and error bound of an algorithm defined based on this
model are crucial, since observers and the coordinator are assumed to not be able
to hold all the received items in memory. Therefore, each site can only use sub-
linear amount of space and maintains its statistics approximately. In comparison
to streaming algorithms where space complexity is crucial, we are also interested
in communication costs when streaming data to the coordinator in the context of
distributed monitoring.

The Model

The data stream at each site is assumed to be a sequence of items from a totally
ordered set U that defines the set of possible distinct items a data stream can
contain. Each item in a sequence is associated with an arrival time-stamp based on
a local clock. Each data stream is denoted as σ. We have S1 ... Sk remote sites (or
observers) and a coordinator C. For a remote site Si, the corresponding data stream
is noted as σi. For a given stream σ, let cj,σ and cσ be the count of item j ∈ U and
all items such that cj = ∑

σ cj,σ and c = ∑
σ cσ denote the count of j and all items

in all streams combined. The algorithms defined for this model typically attempt
to approximate the count (or frequency) of specific items and all items to compute
various statistics.

The statistics computed with an algorithm based on this model either applies
to the whole stream or a recent window of size w. Count-based sliding window
includes the last w items in each stream, and time-based sliding window includes
items received in the last w time units. Unlike in the continuous distributed mon-
itoring model, more than one item can be associated with a specific time t in the
time-based sliding window. Sliding-window algorithms usually require adjustments
to existing algorithms for the whole-stream case in regards to the space complexity
due to sliding-windows converting monotonic functions to non-monotonic functions
because of “deletions”. Assume we are interested in counting the frequency of a spe-
cific item. For the whole-stream case, this is achieved trivially by keeping a single
counter. For the sliding-window case, this requires a space of Θ(1

ε
log2(εw)) bits if

we allow a relative error of ε [13].

12

2. Distributed Monitoring

2.3.3 Distributed Online Tracking
The distributed online tracking describes a system with a general-tree structure. A
coordinating node in this system aims to continuously compute a function of all
local computed functions combined to monitor the system. This section introduces
the model and formally defines its requirements. A schematic view of the system
architecture for the model is provided as well. General-tree structure used in the
distributed online tracking algorithms encapsulates the system described for the
data streaming model in its simplest form. Our discussions in this section will focus
on the most general form of a system - an arbitrary tree.

Technical Background

A system in distributed online tracking has a general-tree structure in which each
leaf denotes a node (or an observer) and the root of the tree is the coordinator.
Intermediate nodes in the tree are “relay” nodes that retrieve information from
children nodes and transmit them to their parent nodes. Relay nodes do not observe
their children, but are merely responsible to bridge the commutation between leaf
nodes and a root. In practice, a relay node can be a router, a switch or a computing
node solely responsible for transmission.

Figure 2.3: An example system for Distributed Online Tracking [14]

The communication channels between nodes are unidirectional and always from
a child towards its parent. Figure 2.3 provides a schematic view of an example
system. Relay nodes in this system are shown as circles and Si denotes a remote site
i. It is important to note that any system that has a general-tree structure is valid
in distributed online tracking. In the simplest case, all remote nodes are directly
connected to the root and is similar to the system used in the data streaming model.
An arbitrary number of relay nodes, leaf nodes and sub-trees can be inserted into
the shown tree.

The Model

There are k remote sites (observers) denoted as S1 ... Sk and a single coordinator
C. Let f denote a monitoring function. The coordinator aims to compute f(t) for
a given time t continuously for all values of t. f is a function that takes a list of
values such that each one was received from one observer for time t and computes an

13

2. Distributed Monitoring

aggregate result for t. Therefore, the coordinator is able to compute an aggregate
function f to monitor the entire system since initialization. Due to computing
f(t) accurately requiring flooding the network with a monitoring message for each
observation, the coordinator aims to approximate f(t) by computing g(t) such that
g(t) ∈ [f(t)−∆, f(t) + ∆] for any t ∈ [0, tnow] and some user-defined error threshold
∆ [14].

Let fi and fi(t) denote a local function at site Si and its value at time t re-
spectively. f at the coordinator is effectively a function that takes results of all
local functions as an input for time t. Specifically, f(t) = f(f1(t), f2(t), ..., fk(t)) for
time t. Depending on the choice of a monitoring function, f and fi can be either
one-dimensional or multi-dimensional. As an example, consider an aggregate “max”
function that determines the maximum value observed at time t since initialization.
For each site, fi(t) corresponds to the local maximum value observed at time t,
and f(t) corresponds to the maximum value observed in the entire system since
initialization at time t.

2.4 Monitoring problems

Monitoring problems are simplifications of common system metrics. The problems
in this section are described with a reference to a general monitoring function f
that takes a list of observations A and returns a value. Note that the definition of
each item in this list depends on the model chosen and may be defined as a tuple of
multiple parameters. We assume that the goal of a distributed monitoring algorithm
is to either compute or approximate the result of f(A).

2.4.1 Forms of monitoring

In general, distributed monitoring problems can be categorized into three main
types: threshold, value and set monitoring. “Threshold monitoring” is the simplest
form of monitoring and the objective is to be able to determine if f(A) ≥ τ at a given
time for a threshold τ . The goal of “value monitoring” is to estimate the actual
value of a function at a given time. Consequently, the aim is to provide an estimate
f̂(A) for f(A) such that

∣∣∣f̂(A)− f(A)
∣∣∣ is bounded [7]. Naturally, threshold and

value monitoring are related problems. If the value of a function can be estimated,
it is trivial to determine if it is greater than a certain threshold or not regardless of
the algorithm used with respect to the error margins of the estimation. Similarly,
running O(1

ε
log T) instances of a threshold monitoring algorithm in parallel solves

value monitoring with a relative error of 1 + ε [8]. Finally, “set monitoring” aims to
provide a set of all observations that satisfy some property. “Set monitoring” has
many variations, and a popular example is to determine “top-k” largest values in a
system, such as the most popular web documents across all servers or destinations
that receive the most packets [15].

14

2. Distributed Monitoring

2.4.2 Functional monitoring problems

Sum and Countdown

The aim of a monitoring function that solves the sum problem is to determine
if a number of observations has reached a certain threshold τ . Countdown is an
interchangeable term for the same problem. The monitoring function must output
“1” if the threshold has been reached; “0” otherwise. Since calculating the sum
precisely is communication intensive, a monitoring algorithm will define an error
margin on its results. Depending on the formal definition of this problem, the
error margin and guarantees of a given monitoring algorithm can differ from other
monitoring algorithms. In [8], Cormode et al. define the guarantees in a way that
the monitoring algorithm always outputs “1” if the threshold has been reached, i.e.
f(A(t)) ≥ τ at time t. However, the algorithm might output “1” or “0” if the actual
value is below than the threshold but within a certain error margin of it. When the
value is bellow the threshold minus the safety margin, then the algorithm will always
output “0”. In [16], Cormode et al. define the problem slightly differently such that
the algorithm always outputs “0” if the threshold has not been reached and may
still output “0” even if the actual value reaches the threshold due to approximations.
However, the approximated value is bounded and stays within a fixed error margin
of the actual value, which allows the algorithm to output “1” subsequently. It is
evident from the definition of the “sum” problem that algorithms solving it are
instances of “threshold monitoring”.

Basic and Approximate counting

In counting problems, a monitoring algorithm aims to approximate the actual count
of an in item at a given time. Each observer’s stream of observations can contain
items of various interest. In basic counting, we are interested in the total count of all
items. In approximate counting, we are interested in the count of a specific item or
items. For instance, in a distributed computer network, basic counting can identify
the total number of received packets at a given time since initialization or within a
recent window, and approximate counting can determine the number of processed
packets at that time since initialization or within that window. Distributed moni-
toring algorithms solving the counting problems are instances of “value monitoring”.
Depending on an algorithm, we are interested in the counts either at a given time t
or within a recent window of size w defined in time units or events.

Let c and cj denote the actual count of all items and a specific item j. In
counting problems, a monitoring algorithm provides approximations for c and cj
with a certain relative error. Let ĉ and ĉj denote these approximations respectively.
More formally, in the data streaming model (2.3.2), we define cσ and cj,σ as the
count of all items and item j ∈ U whose time-stamps are in the current window of
size w at a given time t for a stream σ. In other words, let ti represent the arrival
time-stamp of item i ∈ U . Then, for any item i in the current window of size w at
time t, it holds that t − ti ≤ w. Note that, even though we define these counting
problems for a setting in which we only consider the items in a recent window of size
w at time t, these definitions can be extended to the whole-stream case (counting is

15

2. Distributed Monitoring

performed since initialization) by taking an infinitely large window of size W . For
the data streaming model, we define c and cj as [12]:

c =
∑
σ

cσ and cj =
∑
σ

cj,σ (2.4)

The count of all items and specific items in the continuous distributed monitor-
ing model (2.3.1) are defined with different terminologies but the guarantees that
must be provided by an algorithm approximating these values are the same. More
precisely, let a pair of (ai, ti) denote that an item ai ∈ [n] was received at time ti.
For a recent window of size w, let

c =
k∑

i= 1
|{1 ≤ x ≤ m, (ax, tx ∈ Si) | t− tx ≤ w}| (2.5)

denote the count of all items. The count in this context represents the size of a set
that contains all items received in a recent window of size w. Let

cj =
k∑

i= 1
|{1 ≤ x ≤ m, (jx, tx ∈ Si) | t− tx ≤ w}| (2.6)

denote the count of a specific item j ∈ [n] in a recent window of size w. According to
this definition, cj represents the size of a set of all items received in a recent window of
size w excluding items that are not j. Given an approximation parameter 0 < ε < 1,
the following are the formal definitions of counting problems [9, 12]:

• Basic Counting: return an estimate ĉ such that |ĉ− c| ≤ cε for all items in
the current window.

• Approximate Counting: for an item j, return an estimate ĉj such that
|ĉj − cj| ≤ cε for all j in the current window.

Voting and Ranking

Voting (or ranking) is a form of non-monotonic counting. A site is allowed to
make either a positive or negative contribution to the overall count. Similar to
counting problems, we are interested in the current count at a given time t. Since
the contributions can either increase or decrease the overall count, the monitoring
algorithm must be able to support “deletion” operations to determine the voting
margin. A simple approach to solve the voting problem would be utilizing two
separate data streams for basic counting each with their own specific accuracy.
However, computing the basic counts separately and taking their difference will not
yield a relative error guarantee for the difference [17]. In general, voting problems
are defined formally in the same way as counting problems with the exception that
the assumption about all items being positive (or negative) is relaxed.

Frequency moments, heavy hitters and quantiles

Various other functional monitoring problems have also been studied in addition to
the problems presented in the preceding sections. Frequency moments are frequently

16

2. Distributed Monitoring

referred and discussed in the literature [8, 17, 18, 19]. A frequency moment k is
defined as Fk = ∑n

i=1 f
k
i for a list of frequencies f = (f1, f2, ..., fn) of items. F0 and

F1 map to counting the number of distinct items and all items correspondingly. F2
is used to compute statistical properties of data and F∞ is defined as the frequency
of the most frequent item(s). In the context of monitoring, an item refers to an
application-specific type of an observation detected at a remote site.

Frequent items (or Heavy hitters) is the problem of determining the most frequent
item(s) whose frequencies are φ-heavy, meaning for an item i, fi ≥ φ

∑n
j=1 fj. This

is a simplification of the problem of finding the maximum frequency element in
all streams of observations, since it is impossible to approximate the maximum
frequency in sub-linear space [20]. Quantiles is the problem of finding φ-quantile
element of a multiset of observations, which is an element x, such that for a set of
size l at most φ l elements are smaller than x, and at most (1 − φ) l elements are
greater than x [21]. Given 0 < φ < 1, the following are the formal definitions of
these problems [12]:

• Frequent items: return a set which includes all items j with cj ≥ φc and
possibly some items j ′ such that (φ− ε)c ≤ cj′ ≤ φc.

• Quantiles: return an item whose rank is in [(φ− ε)c, (φ+ ε)c].
Frequent items and quantiles for distributed monitoring have been studied ex-

tensively [21, 22, 23, 24, 25, 26]. “Set monitoring” problems in certain cases can
be reduced to data streaming problems. A popular data streaming problem - “top-
k”, such as determining most frequent destinations in a computer network, can be
solved using an existing algorithm for frequent items [25]. Furthermore, the exact
property in “set monitoring” that members of a set need to satisfy is not defined
generally. Thus, algorithms for “set monitoring” tend to be more problem specific.

The functional monitoring problems discussed in this section clearly indicate
similarities to problems defined and studied for classic data streaming algorithms.
In the context of monitoring, these problems map to metrics to compute statistics
for in a system and we assume that there are more than one site. Additionally, these
problems are generally studied in a setting where only items in a recent window are
considered, so an algorithm’s space complexity is of importance.

2.5 Algorithms for Distributed Monitoring

Monitoring algorithms are defined for a specific model and a correct algorithm must
be able to provide guarantees required by a monitoring problem. In the context of
distributed monitoring, aside from correctness, we are also interested in the commu-
nication costs of an algorithm. If sites in the system are assumed to not be able to
hold all items in memory, a monitoring algorithm must also achieve sub-linear space
complexity. Previous sections described common monitoring models and problems,
and this section provides an overview of renowned distributed monitoring algorithms.

17

2. Distributed Monitoring

2.5.1 Countdown and frequency moments
Recall that countdown is a “threshold monitoring” problem described in 2.4.2. Simi-
larities exist among algorithms solving countdown and frequency moments problems,
since frequency moments are generally studied in the context of “threshold monitor-
ing”. An overview of simple algorithms in addition to a more advanced algorithm
based on the geometric approach is provided in this section.

A simple algorithm
An algorithm for the countdown problem works like a software trigger switching
from “0” to “1” whenever τ is reached. A simple algorithm for this problem defined
based on the continuous distributed model works by distributing local thresholds to
every observer [7]. The algorithm works by realizing that τ can not be reached unless
the local count of at least one of the observers has reached τ/k. The coordinator
keeps track of a slack, denoted as S, which is the difference between τ and the
current total count. Therefore, the initial slack is set to τ . Whenever one of the
local thresholds is reached, that site informs the coordinator of its current count,
which in turn prompts the coordinator to ask each observer about its current local
count. Then, the coordinator calculates a new slack as S = τ − n where n is the
sum of all local counts. Finally, the coordinator distributes a new local threshold
of S/k to each observer and all sites restart the counting process. This algorithm
repeats until the slack is equal to k, at that point, observers inform the coordinator
about every event. This algorithm has a communication cost of O(k2log τ

k
).

The algorithm can be improved by introducing a relative error of ε and splitting
the counting process into log (1/ε) rounds [8]. At the start of round j, the coordi-
nator sends the current total count n and a new local threshold tj = τ−n

2k to each
observer. Each site sends a bit whenever

⌊
(n′ − n)/tj

⌋
increases by one, where n′

is n plus the local increases in round j. Note that the initial threshold is half of
that of the simple algorithm, since the coordinator ends a round whenever k bits
in total have been received. At the end of a round, the coordinator retrieves the
local increases from each observer, and shares the new total count and tj+1. The
algorithm returns “1” and terminates whenever the total count becomes larger than
or equal to (1−ε/2)τ for some error parameter 0 < ε < 1. The approximate version
has an upper bound of O(k log(1/ε)) on the communication costs.

This bound cannot be improved further without using randomization methods,
but such algorithms are out of the scope of this thesis. Note that the original
algorithm actually operates on frequency moments and is simplified in this discussion
due to F1 mapping directly to the total count of all items. Thus, a monitoring
function to determine whether Fp for the p-th frequency moment has reached a
threshold τ can be computed with the original version of the algorithm [8].

A geometric algorithm
There are two algorithms that derive from the geometric approach described in
2.3.1 [11]. The first algorithm is fully decentralized and relies on broadcasting. The
second algorithm conforms to the continuous distributed monitoring model, where

18

2. Distributed Monitoring

sites do not communicate directly with one another but send their calculations to
the coordinator. This section describes the centralized version of the algorithm.

Let ~vi(t) denote the local statistics vector as defined previously. During the
initialization phase, all sites send their local statistics vectors to the coordinator.
The coordinator calculates the estimate vector ~e(t), which is distributed to all sites.
Additionally, the coordinator sets the initial slack vector ~δi to 0 during start-up.
One of the advantages of the centralized algorithm over the decentralized one is
that the coordinator uses the slack vector to balance out the local statistics vectors
of the observers [11].

After the initialization, when a site receives new data, it calculates the statistics
delta vector ∆~vi (t) = ~vi (t)− ~v′i, which is the difference between the current vector
and the last statistic vector collected from the node. The site also calculates the
drift vector defined as ~ui (t) = ~e (t) + ∆~vi (t) + ~δi

wi
. After that, it checks to determine

if its local constraint is not violated, i.e. B (~e (t) , ~ui (t)) remains monochromatic -
all the vectors contained in a ball have the same color, where B is the ball on the
site’s drift vector, centered at e+ 1

2∆vi with a radius of 1
2 ‖∆vi‖2. If the constraint

does not hold anymore, it informs the coordinator. The coordinator then tries to
create a balanced monochromatic vector from a group of sites in a way that the
average of their vectors remain monochromatic:

~b =
∑
pi∈P ′ wi~ui (t)∑

pi∈P ′ wi
(2.7)

Once the coordinator has selected the group of nodes, it sends them an updated
slack vector which is calculated as: ∆~δi = wi~b−wi~ui (t). If the coordinator is unable
to balance the nodes, it calculates a new estimate vector and forwards it to all the
nodes, thus restarting the process. At all times, the sum of all slack vectors must
be equal to 0 for the algorithm to function correctly.

2.5.2 Basic counting
The formal definitions of counting problems in the context of monitoring were pro-
vided in 2.4.2. A monitoring algorithm that provides an approximation for the total
count of all items (basic counting) or specific items (approximate counting) at a
given time t can define the count either based on the time since initialization or
in a recent window of size w. In this section, we provide three different notable
monitoring algorithms that solve the basic counting problem.

Thresholded Counting

Let A denote an algorithm defined based on the continuous distributed monitoring
model that solves the countdown problem. The thresholded counting algorithm is
performed by running O(1

ε
log T) instances of A in parallel for thresholds of τ =

1, (1 + ε), (1 + ε)2, ..., T to approximately count all items with a relative error of
1 + ε since initialization [8]. Let r = 1, 1, 1, ...1, 0, 0, ...0 denote the output of all
running instances of A at some time t. Each output in this set corresponds to an
output of instance of A for a specific threshold. The first output corresponds to A

19

2. Distributed Monitoring

for τ = 1, the second output to τ = (1 + ε), and so forth. We can approximately
determine the current count by checking the last “1” in this set, since the actual
value will be between the corresponding threshold for the last “1” and the first “0”
after it in the set. If the actual value was larger than the threshold for this “0”, then
the instances up to that value would have outputted “1” instead of “0”. Therefore,
running O(1

ε
log T) instances of A solves any “value” monitoring problem including

“counting” given that the actual value is between 1 and T [8].

The forward/backward algorithm

The forward/backward algorithm solves the basic counting problem for a recent
window of size w [9]. Assume that the time starts at 0 for simplification. The time
axis can be divided into windows of fixed sizes: [0..w), [w..2w), A sliding-
window at time t: [t − w, t) can overlap with at most two fixed-size windows [(i −
1)w, iw) and [iw, (i+1)w) for some positive integer i. Essentially, our current sliding
window is split into two windows known as “expiring” and “active” at any time t:
[t − w, iw) and [iw, t). It is straightforward to realize that as the time passes, new
items arrive in the active window and old items in the expiring window get removed.
Therefore, approximation of the current count is performed by determining the
respective counts in both of these windows.

In the forward problem, a site starts with an initial value at time t0. Whenever
this value increases by a (1+ε) factor, the site sends a bit to the coordinator. Conse-
quently, the coordinator can keep track of the count of arriving items at each site. In
the backward problem, the simplest approach is to send information about arrivals
at the end of each fixed window. Then, the coordinator can decrease the count for
a specific site whenever an item in the expiring window gets outside of the current
sliding-window. This necessities each site to maintain a history of past arrivals for
the current fixed sized window. A more space efficient approach utilizes an expo-
nential histogram described in [13]. An exponential histogram allows approximate
counting of the number of items in the expiring window. A site initially informs
the coordinator about the number of time-stamps stored in the local histogram. As
items expire, the site sends a bit to the coordinator. From these, the coordinator is
able to recreate the current approximate count of the expiring window for each site.
At the end of each fixed-sized window, the current local active window becomes the
next expiring window, and both algorithms are run again in parallel.

The forward/backward algorithm has a communication cost of Θ(k
ε
log(εn

k
)) bits

where k is the number of sites and n is the number of observations in a window.
Therefore, the communication costs depend on the number of items received in
a window rather than the size of the window. Despite the fact that the original
algorithm is defined based on distributed streaming, only one-way communication
is required between the coordinator and sites. When an exponential histogram is
used, the algorithm has a space cost of O(1

ε
log(εn)) [9].

The up/down algorithm

The up/down algorithm also focuses on a recent window of size w [12]. Let λ and γ
be two constants set to ε

9 and 4λ respectively. Each site maintains a λ-approximate

20

2. Distributed Monitoring

data structure as in the backward problem. Therefore, at any time t, a site can
compute ĉσ(t). Let p denote the time ĉσ(p) was sent to the coordinator and p < t.
We define two events as follows:

• Up: ĉσ(t) > (1 + γ)ĉσ(p).
• Down: ĉσ(t) < (1− γ)ĉσ(p).

A site informs the coordinator whenever one of the events occur at any time t.
Therefore, the coordinator is able to compute the approximate count by summing
all corresponding counts of each stream. In the most basic form, each event requires
a message of size one word to be sent, since ĉσ(t) is sent to inform about the current
count. The communication costs are reduced by maintaining a “restricted” estimate.
Assume we have a set of possible estimates denoted as K = k0, k1, Consider a
site that sent an estimate kx the last time. Let a restricted estimate corresponding
to a new event be ky. The site only computes and sends the difference between
these indices: y − x, which allows the coordinator to determine the corresponding
restricted estimate. Therefore, a trade-off between accuracy and communication
efficiency can be achieved by using different definitions for K. This algorithm has a
communication complexity of Θ(k

ε
log(εn

k
)) [12].

2.5.3 Approximate counting, heavy hitters and quantiles
In this section, we focus on heavy hitters and quantiles problems for distributed
monitoring. Both of these problems reduce to performing approximate counting of
specific items. We initially describe approximate counting and explain the compu-
tations performed to extract heavy hitters and quantiles for each algorithm. As in
basic counting, we focus on a recent window of size w.

The forward/backward algorithm

The forward/backward algorithm for heavy hitters (or frequent items) is an exten-
sion of the same algorithm for basic counting [9]. This extension allows approximat-
ing the count of every item j in addition to all items. Let A be equal to 1 for a site
at time t0. In the forward problem, each site maintains nj and n which denote the
count of j and all items. Whenever, nj increases by A, i.e. nj mod A is equal to
0 after an arrival of an item j, the site sends nj to the coordinator. Additionally,
the value of A is doubled whenever n becomes larger than 2ε−1A. At any time, the
coordinator knows the count of any item j with an additive error of at most A− 1.

In the backward problem, the reverse of the forward algorithm is run in parallel.
Let B denote the local error tolerance. The initial value of B is set to the value of A
from the active window that concluded at the end of some fixed interval [(i−1)w, iw)
for a positive integer i. Initially, a site informs the coordinator about each j such
that nj ≥ B. Then, as long as B is in the range [0.5εn, εn], a site sends a bit to
the coordinator whenever an expiration of an item causes nj to decrease by B, i.e.
the equation nj mod B = 0 holds. Similar to the forward algorithm, B is divided
by two whenever it goes out of the allowed range and the algorithm repeats. The
termination is done at the end of a fixed size window. After that, the current active
window becomes the expiring window, and both algorithms are executed in parallel

21

2. Distributed Monitoring

again.
As in the algorithm for basic counting, space requirements are reduced by ap-

proximating counts at each site instead of exactly computing them. From the coor-
dinator’s perspective, it is able to determine the approximate count of each item j
at all sites at time t by considering active and expiring items. Therefore, the current
cj is estimated by adding all corresponding counts for each site. The coordinator
can then apply the equation presented in 2.4.2 to extract the frequent items. The
presented algorithm has a communication complexity of Θ(k

ε
log(εn

k
)) and a space

complexity of O(1
ε
log(εn)) bits [9].

For the quantiles problem, the algorithm is more involved and makes use of a data
structure presented in [27] that stores ε-approximate quantiles over a fixed sized se-
quence of items. It can be shown that an upper and lower bound of O(k

ε
log2(1

ε
)log n

k
)

and Ω(k
ε
log(εn

k
)) can be achieved with a space complexity of O(1

ε
log2 1

ε
log n) to ex-

tract quantiles with this algorithm [9].

The up/down algorithm

Let λ be a constant set to ε
11 . Each site maintains a λ-approximate data structures

as described before to count cσ and cj,σ, the count of all items and item j. Let p
denote the time ˆcj,σ(p) was sent to the coordinator and p < t. In the simplest form
of the algorithm, we define only two events as follows:

• Up: ˆcj,σ(t) > ˆcj,σ(p) + 9λĉσ(t).
• Down: ˆcj,σ(t) < ˆcj,σ(p)− 9λĉσ(t).
A site informs the coordinator whenever one of the events occur at any given

time t. Therefore, the coordinator is able to compute the approximate count of
item j by summing all corresponding counts for each stream. Note that, in this
simplified algorithm, the communication cost depends on the number of distinct
items. The algorithm is extended further to reduce this dependency, and an upper
bound of O(k

ε
log(n

k
)) and a lower bound of Θ(k

ε
log(εn

k
)) can be achieved [12]. To

extract the frequent items, the sites and the coordinator perform both the basic and
approximate counting algorithms for error parameters of ε

24 and 11ε
24 , and return all

items that the equality ĉj ≥ (φ− ε
2)ĉ holds.

The quantiles problem with an up/down algorithm is solved by maintaining λ-
approximate φ-quantiles for φ = 5λ, 10λ, ..., 1. The coordinator is updated by each
site to ensure that these approximations maintained at the coordinator and a site
are the same. This algorithm achieves the same lower bound of Ω(k

ε
log(εn

k
)) for the

communication costs as the forward/backward algorithm, but has an upper bound
of O(k

ε2 log(n
k
)) bits [12].

22

3
Distributed Monitoring of EPG

Evolved Packet Gateway (EPG) is a performance-critical distributed system that
processes mobile broadband traffic. EPG in its virtual form is designed and op-
timized to scale and handle massive loads as mobile traffic grows aggressively as
a result of increasing number of IoT devices. A monitoring service developed for
such a system that processes millions of packets per second must adapt to traffic
growth and incur minimal communication costs to avoid overburdening the internal
network with monitoring data. Adjustments are required to theoretical solutions for
distributed monitoring due to assumptions such as instantaneous communications
having no equivalent practical implementation in EPG and such adaptations are the
main focus of this chapter.

3.1 EPG Architecture

Figure 3.1: A simplified overview of EPG architecture.

An individual EPG system is a distributed system of interconnected components
known as “cards”. Figure 3.1 provides a simplified overview of an architecture of
an EPG system. Cards are either physical or virtual Linux machines that run on

23

3. Distributed Monitoring of EPG

custom or multi-processor architectures depending on their functionality. Payload
is received through Ethernet ports of Line Cards (LC) and is routed within the
network. A Routing Processor (RP) card is a management machine that provides
administrative tools to control other cards in the system and is accessed via an SSH
tunnel. Smart Services Cards (SSC) are the main worker nodes in the system and
are in charge of processing the received payload. In an EPG system, functionality
of a card is denoted as “role”. An SSC can either run in “control plane” or “user
plane” role in EPG jargon. Control Plane SSC’s are utilized to manage User Plane
cards and are supported with redundant cards to provide fault tolerance. An EPG
system contains many SSC cards running in “user plane” role to process the received
requests. Redundancies in the diagram are depicted with boxes with dashed borders.
EPG is designed to tolerate one failure in each of its subsystems (N+1 redundancy),
for RP and SSC in control plane role, this is achieved by having an additional
card in “hot standby” mode. In the case of SSC user cards, N+1 is accomplished
by reserving a portion of the resources and the use of sharding techniques such as
routing requests based on identifiers.

Figure 3.2: A simplified overview of User Plane SSC.

A User Plane SSC contains three types of processes: control (single), proxy
(few) and worker (multiple). A control process of a card handles control traffic and
proxy processes route the traffic within the card to worker processes and act as
internal load balancers. Figure 3.2 demonstrates the architecture of an example
User Plane card. Circles with an orange and grey background represent worker
and control processes respectively. Note that the number of proxies, worker, and
control processes are specific to a card and in this example, there are ten worker
processes and a single control process. Redundancies for subsystems within a card
are omitted for simplification. Proxies are the entry endpoints to a card and receive
all incoming traffic. The exact behaviour of proxies, internal routing mechanisms,
and load-balancing logic are irrelevant to our discussions. We assume that the
system is always operational and omit considering intricacies of fail-over mechanisms.
Processor affinity is used for worker processes to bind each worker to a specific
CPU. Inter-process communication is used to send messages and access shared data

24

3. Distributed Monitoring of EPG

structures between processes. A worker process runs in a busy loop always polling
for incoming requests. Workers also maintain statistics about their operations such
as the number of received packets. A control process is aware of all worker processes
and has access to internal performance statistics. Workers are dedicated to process
incoming traffic and any additional task is the responsibility of a control process.

A straightforward method of retrieving monitoring data from cards would be
creating SSH tunnels to each card from an RP card and retrieving data for each
observation or periodically. As explained in the preceding chapter, both approaches
can overload the internal network with monitoring data and induce significant costs
for monitoring. The inherent distributed nature of the architecture and its perfor-
mance requirements necessitate development of monitoring methods that can ag-
gregate and compute metrics for each card, subsystems and the entire system while
ensuring the costs associated with monitoring are minimized and bounded. Addi-
tionally, standard Linux tools such as “top” can not be used to compute metrics
such as utilization, since worker processes are running in busy loops and will still
report 100% CPU utilization even if no packets are processed.

3.2 Monitoring of EPG

EPG is a complex system of many interconnected components. Continuous dis-
tributed monitoring of an EPG system can be performed on the entire system, sub-
systems such as RP, Control and User plane, individual cards and processes running
on cards. Accordingly, we narrow down our focus to monitoring of worker processes
running on SSCs in a “user plane” role only. Monitoring functions for an SSC are
computed from monitoring data corresponding to workers running on that SSC and
monitoring functions for the entire system are computed from monitoring data cor-
responding to all SSCs running in “user plane” role. Supporting “control plane”
SSCs is merely an implementation detail and is not relevant to our discussions in
this chapter of the monitoring algorithms implemented, since the monitoring ser-
vices operate on a collection of counts and frequencies and there are implementation
related differences in retrieving these values on a “control plane” card. We provide
definitions to describe the system architecture and implementation of EPGTOP
in subsequent sections, define metrics and briefly describe approaches to compute
statistics for these metrics.

3.2.1 Definitions
Continuous distributed monitoring of an EPG system is performed with deploying
a monitoring service on each card. The coordinator is a process running in RP. A
monitoring service on a User Plane card is a POSIX thread running as part of the
control process for that card. The coordinator has a bidirectional communication
channel to each monitoring service. Cards do not communicate with one another to
share information about local monitoring data. The coordinator uses the communi-
cation channels both to send control messages and retrieve updates from monitoring
services.

25

3. Distributed Monitoring of EPG

On a User Plane card, a worker process always runs in a busy loop and up-
dates its associated local performance statistics as it processes requests. A worker
process’s actions generate observations such as processing of packets and updating
counters. Observations are monitored by the monitoring service on that card. The
monitoring service utilizes local statistics corresponding to each worker to execute
a monitoring algorithm on the behalf of that worker. Therefore, a worker does
not communicate with the coordinator directly and the monitoring service acts as
a relay maintaining and facilitating communications of worker processes with the
coordinator. Even though a card only has a single process running as a monitoring
service, from an algorithmic and the coordinator’s perspective, each worker running
on a card is treated as an observer due to monitoring data being associated with
workers only. The main advantage of maintaining a single process for monitoring
observations instead of a dedicated process for each worker is due to implementation
specific details, since the workers should only be responsible for processing and not
handle monitoring requests and a dedicated process to observe each worker would be
resource intensive. Additionally, the monitoring service running on a card does not
perform any aggregation other than packaging updates corresponding to multiple
workers into a single message, meaning that the amount of monitoring updates sent
is equivalent to allocating a dedicated monitoring service for each worker. In the fol-
lowing discussions, a worker refers to an observer from the systems described in the
previous chapter. Conceptually, each worker in EPG performs its own observations
by updating its internal counters. Considering each worker as a distinct observer
allows the coordinator to compute and report monitoring statistics specific to that
worker. Aggregating the monitoring data of all workers running on a card would
have removed the association of the monitoring data with individual workers and
the coordinator would only be able to report aggregate monitoring statistics for a
card.

Figure 3.3: Periods for fetching and making monitoring decisions.

Albeit each processed packet by a worker generating an observation by defini-
tion, the observations are only reviewed periodically on a card. An SSC may process
hundreds of thousands of packets per second, thus monitoring computations if per-
formed per packet basis would have induced significant computation costs. EPG is
a performance-oriented system and additions such as monitoring services to a card
must ensure that the workers and services running on a card are neither disrupted

26

3. Distributed Monitoring of EPG

nor affected by these additions significantly to allow the system to maintain the same
service-level agreements such as response time. Figure 3.3 provides an overview of
the time-line seen by a monitoring service. A monitoring period refers to a period
which a monitoring service executes a monitoring algorithm for each worker at the
end of this period such as updating internal data structures and making a decision
regarding whether to send an update to the coordinator or not. The decision is
specific to each monitored value for each worker. The polling frequency refers to
the number of times a monitoring service queries internal data structures to retrieve
statistics about observations made during a monitoring period for all workers. Both
the monitoring period and the polling frequency are implementation details config-
ured by the coordinator and can be adjusted to increase and decrease the number of
local calls to retrieve monitoring data. A monitoring window refers to the window
the monitoring statistics are kept for and is a sliding window of fixed size defined
in time units. Each worker is associated with its own monitoring window for each
monitored value. As shown in the figure, a monitoring window is divided into mon-
itoring periods and each monitoring period is divided into polling periods. The size
of a polling period is equal to the size of a monitoring period divided by the polling
frequency. The polling period is basically the amount of time a monitoring service
must wait before performing the next local fetches for all workers. At the end of
each monitoring period, the monitoring service checks local statistics correspond-
ing to each worker process and performs monitoring computations. A monitoring
algorithm dictates whether the monitoring service should inform the coordinator
about the monitoring data for each worker or not. Unlike sending a message over a
network to the coordinator, local polling is vastly faster and induces minimal costs
due to inter-process communication. The aim of these parameters is to configure
the frequency of local fetches and execution of the monitoring algorithms since due
to performance reasons, we cannot perform monitoring calculations for each arriv-
ing packet. Naturally, these parameters can be configured to achieve much better
accuracy on reported values due to more frequent data fetches. However, in our
analysis, these parameters are set to fixed values, since our discussions of accuracy
are more concerned with determining whether a monitoring service is capable of
maintaining the error bounds it is configured to guarantee on its reported values.
The monitoring service in a card maintains both its own data structures and data
structures corresponding to each worker. An important detail to mention is that
the actions of the monitoring service, a control process or proxies in a card do not
generate observations. Therefore, worker processes are the only entities observed in
a card.

The system architecture of EPGTOP resembles similarities to the architectures
discussed in the previous chapter. In particular, as in the continuous distributed
monitoring (2.3.1), the communication channels are bidirectional and the observers
do not communicate with one another. Sites map to worker processes in this system
and we have a tree architecture as described in 2.3.3 where a monitoring service
is a relay node. The coordinator can communicate with each monitoring service
to share control information, such as error parameters, frequencies and periods,
or state (restart, terminate, etc.). Contrary to the theoretical models, monitoring
calculations are not performed per packet basis due to resource and performance

27

3. Distributed Monitoring of EPG

implications outlined in this section.

3.2.2 Measurements
EPGTOP aims to compute performance figures such as processor utilization and
packet processing rate for the whole system which contains the entire User Plane,
subsystems (SSCs running in “user plane” role) and worker processes (running on
User Plane SSCs) to accurately and efficiently display real-time information about
the system performance at any time continuously. Processor utilization is the main
metric to consider since each worker is assigned to and runs on a dedicated processor
and its affinity does not change throughout the execution. The rest of this section
discusses all the metrics used by EPGTOP.

Monitoring Events

Most system metrics such as packet processing rate or CPU utilization can be rep-
resented as a combination of counters and frequencies. The functional monitoring
algorithms enable tracking counters and frequencies for a distributed system in a
communication and space efficient manner. We treat observations occurring in this
system as events and track the corresponding counts of these events for a fixed-sized
sliding monitoring window. A sliding monitoring window provides an overview of
the recent behaviour of the system and its size is configured by the coordinator.
An important implication of tracking counts and frequencies is that the following
system metrics are subsequently represented as a set of monotonic functions that
are computed from these counts and frequencies.

Processor Utilization

The principal metric to monitor system utilization in EPG is to track CPU utiliza-
tion. Section 3.1 described technical details about worker processes. An important
property of this system is processor affinity, meaning each worker process is associ-
ated with a particular dedicated processor and its affinity is fixed throughout the
execution. Therefore, utilization of a worker process can be defined as utilization of
its corresponding processor.

Existing kernel methods only provide information about utilization of a specific
worker either for the last second or one microsecond which is computed from the
number of executed CPU cycles over time. We are interested in tracking the ag-
gregate processor utilization of the entire system and individual cards in addition
to worker processes for a sliding window of any size specified by the coordinator.
Processor utilization is a non-monotonic value and can change rapidly over short
periods of time. Therefore, our monitoring algorithm to track processor utilization
works on a recent window of items defined in time units to compute an average
value. A monitoring service keeps track of the frequencies of processor utilization
from 0 to 100 for each worker process, meaning there are 100 entries per worker
for each monitoring period. The local fetches performed in a monitoring period
update the corresponding frequencies of the current period and a sliding window
is maintained per worker to keep track of all the frequencies for a recent window.

28

3. Distributed Monitoring of EPG

The coordinator computes the average utilization for a recent window corresponding
to a worker process by multiplying each individual frequency fi with its respective
weight and dividing them by F1, the first frequency moment. Correspondingly, for
a card, the average utilization is computed from the utilization of its workers, and
for a system, the average utilization is computed from the utilization of all cards
running with a “user plane” role.

The average processor utilization computed by the coordinator will be the focus
of our analysis since we are more interested in the efficiency of transferring these
frequencies and counts to the coordinator than the monitoring function computed
by the coordinator. An advantage of not simply relaying only locally computed
averages to the coordinator is that with these sets of frequencies, the coordinator
can be extended to compute more monitoring functions such as min, max, mode
and standard deviation for processor utilization without modifying the algorithms
executed by the monitoring service. Essentially, a monitoring service is tasked only
with retrieving local monitoring data and executing a monitoring algorithm, and the
coordinator is tasked with processing the monitoring updates and displaying results
of computed monitoring functions. Subsequently, since a monitoring algorithm is
only executed by the monitoring services, additions of new algorithms or adjustments
to current algorithms do not require modifying the coordinator.

Packet processing rate

Since the primary function of EPG is to process packets, we also monitor packet
processing rate for the User Plane, individual cards running on this plane, and worker
processes. Packet processing rate is defined as the count of processed packets over
an interval. We compute the packet processing rate for a recent sliding window of
items which contains the total number of processed packets in this window, but this
definition can be extended to the whole-stream case by taking an infinitely large
window.

Computing the rate requires counting the total number of processed items over
a window defined in time units. For a single worker process, this calculation is
straightforward to implement due to workers maintaining their own statistics. How-
ever, aggregate counts must be calculated to determine the rate for a card and
the entire system. Note that, the packet processing rate is calculated by efficiently
tracking the value of a counter. The coordinator at any given time is able to provide
counts for workers, cards and the entire User Plane. Therefore, the coordinator can
support calculating any rate that can be represented as a set of counts by utilizing
the same algorithm to transfer these counts. The packet processing rate is the main
focus of our analysis to discuss efficiency of tracking counters.

Extensions

The metrics described above are monitored with sets of frequencies and counts as
explained in each corresponding section. An efficient functional monitoring algo-
rithm aims to allow the coordinator to continuously track these values and provide
approximations at any given time. Accordingly, EPGTOP can support monitoring
of more metrics if these metrics can be reduced to be represented as a set of fre-

29

3. Distributed Monitoring of EPG

quencies and counts. Given that our focus is to mainly evaluate communication
efficiency of monitoring, we focus on the amount of updates sent to the coordinator
for the metrics defined in this section only.

3.3 Implementation
Due to architecture-specific details of EPG, both the coordinator and monitoring
services are single-threaded applications. An event loop is a set of steps executed
either by the coordinator or monitoring services to compute statistics based on a
monitoring algorithm, update internal data structures and transfer monitoring data
if required. The details of the event loops are described in this section.

3.3.1 The system

Figure 3.4: EPGTOP Architecture.

EPGTOP is a monitoring service for a distributed system that contains three
main entities: the coordinator, the monitoring services and workers/observers. EPG-
TOP facilities the local monitoring corresponding to each worker to be transferred
to the coordinator and displayed continuously in real-time. The coordinator is a
dedicated process initialized first and runs as part of RP. The coordinator’s respon-
sibility is to process the updates received from monitoring services and continuously
display system statistics. At any given time, the coordinator can be queried to
retrieve statistics for metrics described in 3.2.2. Each monitoring service is run as

30

3. Distributed Monitoring of EPG

part of a card’s control process and is responsible for reviewing internal statistics
corresponding to workers, making monitoring computations and deciding for each
worker whether to send updates to the coordinator.

Figure 3.4 provides an overview of the architecture. A monitoring service can
be configured to run in two different modes: basic and approximate. The basic mode
uses a simple periodic polling algorithm which requires each monitoring service to
send updates at the end of all monitoring periods. The approximate mode requires
each monitoring service to maintain error thresholds for monitoring statistics cor-
responding to each worker and a monitoring service sends updates when the error
threshold cannot be maintained due to recent local fetches updating the tracked
counters and frequencies. Therefore, the coordinator is able to provide approxi-
mations for the counts and frequencies of events corresponding to any worker and
these approximations are only valid for the recent window whose size is configured
by the coordinator when it initializes and shared with monitoring services during
handshakes. The approximate mode reduces the amount of monitoring data that
must be sent to the coordinator by trading off accuracy for efficiency. The error
parameter is also shared during a handshake which will be explained later in this
section.

3.3.2 Communication

Figure 3.5: EPGTOP message.

In order to facilitate the communication between the monitoring services and
the coordinator, we devised a simple communication protocol with the goal of min-
imizing the overhead for transferring monitoring data. Generally, there exists two
categories of messages: monitoring messages which are sent from monitoring services
to a coordinator and control messages that are mostly sent in the opposite direction.
Figure 3.5 describes the structure of a message. All messages start with a message
type which dictates in what manner the message should be decoded. The payload of
a message may contain more messages. Broadly, there exists two types of monitoring
messages: counts and frequencies. An update for a count has the form 〈tag, value〉
where the tag identities the worker this update corresponds to. Frequency updates
have the form 〈tag, item, value〉 where the item number identifies the specific event.
Frequency updates have significantly larger overheads than count updates due to
this simple scheme of identifying specific events from updates. All message are sent
with established TCP connections.

31

3. Distributed Monitoring of EPG

Figure 3.6: A monitoring service’s event loop.

3.3.3 Monitoring service and observers
As mentioned above, an instance of our implementation of a monitoring service runs
on each one of the User Plane cards. Specifically, a monitoring service is a single-
threaded process that is launched and executed by a dedicated control process in each
card and is tasked with handling monitoring data for workers. Figure 3.6 shows
a visualization of the event loop of our monitoring service. In this subsection, we
discuss the implementation in more detail, explain the initialization phase, the data
acquisition process, the manner the service handles control data and mechanisms
that were used to send updates to a coordinator.

Initialization

The monitoring service is launched automatically when a card boots by the control
process. The address of the coordinator is retrieved with core system functions.
Once the service is launched, it attempts to set up a connection with the coordina-
tor and acquire the parameters of the monitoring algorithm it is executing. In order
to establish the connection, the monitoring service sends a discover message to the
coordinator which is always listening at a predefined port. The coordinator responds
with an acknowledgement message that contains algorithm parameters such as the
length of the monitoring window, the error parameters, etc. The handshake can be
seen in Figure 3.7. The handshake is done over an established TCP connection.
The monitoring service is configured to retry initiating a connection if the coordi-
nator is not reachable. As soon as the the connection has been established, the
monitoring service goes through an initialization phase, sets up the required data
structures based on the mode it is running in for each worker and starts continuous

32

3. Distributed Monitoring of EPG

Figure 3.7: Initialization Handshake.

monitoring.

The event loop

Once the initialization process has been completed, the monitoring service enters
its event loop which can be seen in Figure 3.6. The loop consists of three phases.
In the data acquisition phase, the monitoring service retrieves monitoring data cor-
responding to each worker and processes the data. In the serialization and send
phase, the internal data structures are reviewed to make monitoring decisions and
if necessary, updates are sent to the coordinator. Lastly, in the control data phase,
the service receives control data (if any) from the coordinator and applies the re-
quested changes. The following subsections provide more details about each of the
aforementioned phases.

Data acquisition phase

EPGTOP considers each worker process as a standalone observer with its own stream
of updates and monitoring statistics. Due to the architecture of EPG, a worker
process does not interact with the coordinator directly. A monitoring service that
runs as part of the control process for a card acts on the behalf of each worker on
that card to execute a monitoring algorithm. In order to collect monitoring data
corresponding to each worker, a monitoring service loops over the list of worker
processes and polls them with system functions to retrieve the data.

In section 3.2.1, we described the time-line seen by a monitoring service. A mon-
itoring window consists of monitoring periods and each period consists of polling
periods. Monitoring windows are sliding windows defined in time units and are
maintained to report the recent value of a monitored statistics such as processor
utilization. The number of times a monitoring service retrieves and updates its
internally stored monitoring data for each worker is determined by the configured

33

3. Distributed Monitoring of EPG

polling frequency. A monitoring service sleeps after polling of all workers is com-
plete and is awaken by the control process. A monitoring period ends when the
number of polls in that period is equal to the polling frequency. Once a monitoring
period ends, the monitoring service slides the monitoring window and executes a
monitoring algorithm. The use of more complex methods to retrieve data on a card
was considered but deemed as not necessary, since the control process can access
the data structures in shared memory to acquire the data with minimal costs. This
adjustment does not affect the monitoring algorithms that are executed since the
amount of updates sent for all workers on a card in total is equivalent to having a
dedicated monitoring service for each worker. Dedicated monitoring services would
have consumed significantly more resources and executing them as part of the work-
ers would have affected the performance of workers. The performance of workers is
critical in this system and having an external process to perform monitoring is to
not disrupt the processing of packets by the workers.

In section 3.3.1, we briefly described two modes a monitoring service can be run
in: basic and approximate. Acquiring of local data is the same for both modes but
the manner monitoring windows are maintained and the coordinator is updated is
different. Additionally, all monitoring related actions such as execution of monitor-
ing algorithms and maintaining the sliding windows is performed by a monitoring
service. More precisely, the coordinator is only aware of the mode a monitoring
service is configured to run and does not know the details of the algorithm it is exe-
cuting. The data structure utilized by the coordinator to store the aggregate counts
and frequencies corresponding to the current sliding window for each worker is the
same for both modes. Division of responsibilities allows supporting monitoring al-
gorithms that do not require a global state to be shared, thus making modifications
to or replacement of an algorithm a service is executing to be performed without
affecting the implementation of a coordinator.

Basic Mode In basic mode, a monitoring service maintains a sliding window for
each monitored statistics such as processor utilization for a worker which corresponds
to the following data structure:

Listing 3.1: The data structure for current window.
struct data {

uint64_t packet_count ;
uint64_t cpu_uti l [1 0 0] ;
// i n t e r n a l f i e l d s not shown . . .

}

In 3.2.2, we described the mapping of frequencies and counts in this data struc-
ture to metrics. Consider that the monitoring window size is five and the current
recent window contains items {4, 20, 34, 10, 2} which correspond to the number of
packets processed in each monitoring period. Accordingly, the value of packet_count
in the data structure will be 4 + 20 + 34 + 10 + 2. As explained in the preceding
section, the last poll in a monitoring period ends that period and the monitoring
service slides the window by dropping the first item, 4 in this case, and adding the
arriving item. A coordinator will also maintain this exact data structure for each

34

3. Distributed Monitoring of EPG

worker, but its data structure is only modified based on updates received from a
monitoring service.

It is evident that the method described above requires storing all items for the
current window to be able to drop and add items. The internal data structures to
store each unit in a window is not shown for simplification. Consequently, main-
taining all items in a recent window of size n requires O(n) words of memory, where
n is the number of items. However, a single item in EPGTOP can contain several
fields such as counts and frequencies.

When a monitoring window slides, the monitoring service compares the values
of the fields in the data structure above to the values sent last time. Whenever a
difference is found, the field is flagged. This is a small optimization over sending all
items at the end of all monitoring periods. In “serialize and send” phase, the service
packages all flagged items into a monitoring message and tags each value to enable
the coordinator to distinguish updates corresponding to specific counts, frequencies
and workers.

Approximate Mode In the approximate mode, we do not store all items in
a recent window. Instead, we use an exponential histogram described in [13] to
approximate the current counts and frequencies for the window. The histogram is
more space efficient and requires O(1

ε
(log n+ log r)(log n)) bits of memory where r

is the range of elements of an item such as a count or frequency. The histogram’s
efficiency is evident when large window sizes are used. The approximation parameter
is retrieved from the coordinator during the handshake. In both the basic and
approximate mode, we use the same data structure in 3.1 to store the aggregate
data for the current window for each worker. As in basic mode, the coordinator
maintains the same data structure for each worker when monitoring services are
configured to run the approximate mode.

To reduce the number of updates sent, the approximate mode runs the “up/down
algorithm” described in 2.5. An error threshold is maintained for each monitored
count and frequency. When a monitoring period ends, the monitoring service inserts
the data corresponding to that period into associated histograms. Histograms inter-
nally maintain a sliding window and report the current value of a monitored count
or frequencies for that window. The monitoring service uses the inequalities from
the algorithm to compare the current values with the values sent to the coordinator
last time to determine whether omitting to send an update for a count or frequency
to the coordinator will result in the corresponding reported value by the coordinator
having an error exceeding the threshold. Such counts and frequencies are flagged
to be sent in the “serialize and send” phase. Hence, in the approximate mode, the
service can skip sending updates for some of the counts and frequencies to reduce the
number of monitoring updates sent. An important detail to consider is that the error
threshold is set by the coordinator and the monitoring services must guarantee that
this threshold is maintained. When presenting our results, accuracy of the reported
values by the coordinator will be considered to determine if monitoring services are
able to maintain the error thresholds. The thresholds dictate the correctness of
this mode, since without the guarantees, the monitoring services would be able to
avoid sending updates altogether, thus providing better communication efficiency,

35

3. Distributed Monitoring of EPG

but resulting in values by reported by the coordinator being severely outdated.

Serialize and Send Phase

During the serialize and send phase, a monitoring service checks the data structure
shown in 3.1 for each worker to find flagged fields. A monitoring message is created
that contains updated values of the flagged items. The updated values are tagged
to associate each update with a specific count, frequency or worker. The monitoring
service packages updates of all workers into a single message to avoid TCP overhead
of sending multiple messages for each worker.

Control Data Phase

During the control data phase, the monitoring service checks to see if there has been
any control messages received from the coordinator. The control messages dictate
the actions must be executed. These actions can be state changes such as terminate,
restart etc. or updates to the algorithm parameters such as the monitoring window
size, polling frequency etc.

3.3.4 Coordinator

A coordinator is a stand-alone process running in RP. The aim of the coordinator
is to process updates from monitoring services and display monitoring statistics
for the entire system, cards and workers continuously. The coordinator is initiated
with setting up internal data structures to handle connections and binding to a
predefined port. The coordinator is also run in either basic or approximate mode.
There is no difference in handling of requests for two modes, but the mode determines
the parameters the coordinator needs to provide during the handshake, since the
coordinator does not execute any monitoring algorithm and merely processes the
updates received. The coordinator requires all monitoring services to run in the same
mode, thus rejecting connections from services started with a different configuration.

Initialization

A coordinator is initiated with a configuration object that defines the parameters of
the mode the monitoring services must be run in. The coordinator is always listen-
ing at a predefined port and its address is discovered with system functions since the
process is part of RP. Figure 3.7 depicts the manner a handshake is performed. Af-
ter the coordinator binds to the port, a monitoring service can initiate a handshake.
The coordinator will include parameters of the mode the monitoring services are
configured to run in the acknowledgement message. After the handshake, internal
data structures are constructed and the service is added a list the coordinator uses
to detect new messages with epoll. The coordinator enters its event loop after its
initialization is complete.

36

3. Distributed Monitoring of EPG

The event loop

As mentioned in the previous sections, the coordinator is also a single-threaded
service. After the initialization, the coordinator runs the event loop shown in Figure
3.8. The events are detected by checking an epoll instance. An event can either be
a new connection, an update from a monitoring service or a command received from
the public interface. The public interface allows the coordinator to be configured
dynamically with a command line tool.

Figure 3.8: The Coordinator’s Event Loop.

Data Acquisition and Processing Phase

A coordinator in this phase processes the messages that have been sent to its socket
related to monitoring. A message can either be a connection message from a monitor-
ing service or an update from an already connected monitoring service. A connection
message retrieved from a monitoring service is handled with running the initializa-
tion step for that service. After initiation, the service can choose to send updates
to the coordinator at any time. The coordinator is responsible to maintain its own
data structures for each worker in the entire system consistent with the same data
structure stored in the corresponding monitoring service. An eventual consistency
is achieved with processing updates received from the monitoring services.

In addition to connection messages, monitoring messages are handled in this
phase as well. Regardless of the mode a monitoring service is running in, each
monitoring message is decoded by the coordinator and the updates in the message
are applied to the corresponding internal data structures in the same manner. The

37

3. Distributed Monitoring of EPG

coordinator neither executes a monitoring algorithm nor maintains a sliding window
for workers, since all algorithm related operations are performed by the monitoring
services. The data retained by the coordinator for each worker corresponds to the
aggregate data for the current sliding window for that worker. In fact, with some
implementation related differences, the coordinator maintains the same data struc-
ture shown in 3.1 for each worker. Therefore, the monitoring services are responsible
to send monitoring messages to update the counts and frequencies maintained by
the coordinator.

The parameters of the mode the monitoring services are configured to run dic-
tates the frequency of the monitoring messages that will be received but the co-
ordinator never interferes with the method a monitoring service is using to send
monitoring messages. In the basic mode, monitoring updates will be retrieved from
each monitoring service for each modified count and frequency at the end of a mon-
itoring period. In the approximate mode, some services may choose to not send
monitoring messages even if the locally maintained counts and frequencies were
modified at the end of that period. The error parameter supplied to the coordinator
as part of its configuration affects the accuracy of results and frequencies of updates
sent by monitoring services running in this mode.

Control Phase

A command to configure the coordinator can be received from a command-line tool
only. During the data acquisition and processing phase, if a command is retrieved,
then the coordinator enters the control phase, where it encodes and sends a control
message to all monitoring services in the system. The coordinator does not wait to
receive acknowledgements regarding control messages. Any error detected during
the event loop forces the coordinator to terminate connection to the corresponding
monitoring service and destroy all the associated internal data structures.

Display Phase

The display phase actually does not have a direct mapping in our implementation.
At any point in time, the coordinator has access to data structures containing counts
and frequencies of events corresponding to each worker. Therefore, the coordinator
can be configured to display monitoring statistics in any manner. For each connected
monitoring service, the coordinator keeps specific data structures to be able to dy-
namically extract monitoring statistics. As an example, average CPU utilization for
a worker, a card or the system is retrieved through this data structure. Updates to a
count or frequency forces all the associated internal data handlers to also flush and
recalculate monitoring statistics that depend on that count or frequency. Section
3.2.2 explained possible extensions to support more measurements. These exten-
sions are supported with this exact data structure that is responsible for computing
monitoring statistics from sets of counts and frequencies. It is important to mention
that, if the monitoring services are running in the approximate mode, then the val-
ues returned by handlers are merely approximations of the actual system statistics
constrained to be accurate up to the configured error threshold. The following code
contains examples of simplified interface methods to retrieve processor utilization:

38

3. Distributed Monitoring of EPG

Listing 3.2: Example methods in the interface to extract monitoring statistics.
double av e r a g eP r o c e s s o rU t i l i z a t i o n (int card , int worker) ;
double ave rageProce s s o rUt i l i z a t i onCard (int card) ;
double ave rageProce s so rUt i l i z a t i onSys t em () ;

3.4 Limitations
The implementation’s limitations are mainly attributed to real-time and complex
behavior of distributed systems. Unlike in the theoretical models, we can not assume
that the connections and transfer of messages are instantaneous. Network delays
are difficult to predict and out of the scope of this thesis project to account for.
Therefore, the reported values by the coordinator are eventually consistent. We
assume that monitoring messages sent to the coordinator at the end of a monitoring
period are processed by the coordinator before the next monitoring period ends since
the coordinator will report a stale value until a monitoring update is processed.
Inserting time-stamps into monitoring messages to allow the coordinator handle
messages arriving late due to network delays would have required globally syncing
all monitoring services and is complex to implement for monitoring purposes.

The theoretical algorithms assume that observers are able to act instantly when
an event is generated. Although possible from an implementation perspective, this
would have significantly increased the computation costs of monitoring, making it
linear to the number of packets received. The exponential histogram we have im-
plemented has a substantial cost for insertions when compared to the simple sliding
window maintained in the basic mode. Executing a monitoring algorithm, inserting
items to histograms, and evaluating inequalities for each processed packet would
have had significant effects on the performance of workers if monitoring was per-
formed per packet basis. To maintain the same service level agreements of an EPG
system after addition of a monitoring service such as response time, either the moni-
toring service would have needed to be run on dedicated processors or the number of
workers increased if monitoring was incorporated into worker processes. Therefore,
we relaxed the requirement and allowed the monitoring service to poll workers to
retrieve and aggregate the generated observations occurred since the last poll. As
explained previously, both the polling frequency and the length of a monitoring pe-
riod are configurable implementation parameters. Also, neither the implementation
nor our analysis take into account delays in processing of the data. Both serial-
ization and de-serialization operations can induce significant delays in processing of
large amounts of data. Our approach to alleviate computation related processing
delays is to use a monitoring period large enough to make these costs insignificant
but also small enough not to significantly reduce the accuracy of reported values
by the coordinator. Consequently, with larger polling frequencies, more monitoring
data can be retrieved but monitoring will require more computations. With smaller
monitoring periods in size, the monitoring services make more monitoring decisions
and are bound to send more monitoring messages. Accordingly, in our analysis of
monitoring services, accuracy will simply correspond to the level of accuracy guar-
anteed by the monitoring services and whether these guarantees are maintained

39

3. Distributed Monitoring of EPG

throughout the execution. Parameters such as polling frequency will be set to fixed
values for both modes for evaluation purposes.

Additionally, the system architecture of EPGTOP is based on the architectures
discussed in chapter 2. Both EPGTOP and systems described in that chapter as-
sume that a single coordinator as a sink node is capable of processing monitoring
messages received from all observers. Such an assumption simplifies the analysis
of the algorithms, since the number of coordinators affects neither the number of
observations nor the number of monitoring messages transmitted. An EPG system
running in production can have thousands of workers and hundreds of other sys-
tem parameters may need to be monitored for such a system. A single-threaded
coordinator will not have the capacity to handle monitoring data corresponding to
all these workers. Given that the emphasis of our discussions is on the efficiency
of monitoring algorithms by considering the number of monitoring messages sent,
more robust implementations such as running a set of coordinators on dedicated
processors to handle the monitoring data was considered as too complicated for the
purpose of our evaluations due to those implementations requiring us to modify core
components of RP. Moreover, running more complex configurations for the coordi-
nator would not have affected the number of messages transmitted but the accuracy
of results due to processing delays, since monitoring algorithms are only executed
by monitoring services and number of workers and maintained statistics are the only
contributors to the total number of messages sent.

Finally, EPGTOP itself is not fault tolerant and cannot handle a failed coordi-
nator. However, fault tolerance of any component is already provided in EPG. The
coordinator is able to detect basic communication errors and monitoring services
that are sending messages with incorrect headers and it is configured to terminate
communication channels to such monitoring services and perform clean-up of its own
data structures. Nevertheless, EPGTOP cannot recover from system failures and a
monitoring service on a failed card reconnecting after a reboot will be considered as
a different monitoring service.

40

4
Results

EPGTOP makes use of core functions provided by EPG to retrieve local system
statistics that are subsequently used to execute monitoring algorithms to make mon-
itoring decisions and send updates to the coordinator. Evaluations and assessments
are necessary to determine whether monitoring services are capable of maintaining
the configured error bounds on reported values and the amount of efficiency achieved
with various configurations. The chapter starts with a description of an EPG sys-
tem and monitoring configurations used to generate the results and subsequently
provides graphs and our discussions of the results.

4.1 Configuration
The empirical evaluation of the algorithms incorporated into EPGTOP were per-
formed on an EPG system configured with two cards containing 146 workers in
total. Accordingly, the system has a single coordinator and 146 workers/observers
generating observations. A stability test provided by the team working on EPG
was used to generate and inject packets into the system. The test generates actual
packets and consists of two main stages: increasing load and stable load. In the
increasing load stage, the number of packets injected into the system is increased
over time until a 20-minute time mark. After the 20-minute time mark, the stable
load stage starts executing. In this stage, the test stabilizes and the number of pack-
ets injected remains the same. The total number of packets sent to the system with
this test is deterministic but behaviour of sub-components of a running EPG system
to route, assign and handle packets is not. The implication of this is that during
multiple runs, any set of selected workers can be assigned different work-loads due
to internal and inter-card load balancing logic. Therefore, we are primarily focus-
ing on evaluating and comparing aggregate system monitoring functions for various
configurations since only the aggregate behaviour of the entire system will remain
about the same between runs.

Due to variances in this system’s behaviour during multiple runs, monitoring ser-
vices were extended to run both the basic and approximate mode concurrently. The
coordinator utilizes a message tag added to each monitoring message to differentiate
updates corresponding to each mode and maintains monitoring statistics separately.
In essence, the extension allows inspection of the system behavior to directly com-
pare results of a single configuration for the approximate mode to the basic mode
for that run. A fixed window size of ten seconds was used for all configurations
for evaluation purposes. Due to the approximate mode sending updates depending

41

4. Results

on the amount of change to each monitored parameter, larger window sizes have
an effect that the approximate mode sends far less messages than the basic mode,
particularly in the stable load stage, since as the window size grows, the amount of
change required to necessitate sending of a monitoring message also increases. The
approximate mode was run with three different error thresholds: ε = 5%, ε = 10%
and ε = 20%. Each simulation was run for 35 minutes in total and the timings are
normalized in our graphs to a fixed time point starting at “00:00” to make compar-
isons easier. 35 minute simulations contain the increasing load stage which takes
approximately 20 minutes to execute and the first 15 minutes of the stable load
stage. Simulations longer than 35 minutes were considered and run during testing
but given that the behaviour of the entire system in the stable load phase remains
the same, the results corresponding to monitoring data after the 35-minute mark do
not provide any new findings.

During booting of the cards when the monitoring services have still not connected
and when the script is initializing, the coordinator reports zeroes for all counts
and frequencies. These data points were removed from the generated data for our
evaluation of all configurations. The observers were configured with a monitoring
period of 1 second and polling frequency of 1000. These parameters indicate that a
monitoring service makes 1000 local fetches for each worker per second and makes
a monitoring decision after the last fetch. We used a polling frequency of 1000 since
the system functions used for local fetches have a granularity of 1ms. Therefore,
we are able to record monitoring statistics for the entire duration of the monitoring
periods for evaluation purposes.

In order to compare results corresponding to basic and approximate mode, we
considered two main system statistics: processor utilization and packet processing
rate. The main goal of these simulations is to determine whether monitoring services
running in approximate mode are more communication efficient than the services
running in basic mode while maintaining the error bounds on reported values. Ad-
ditionally, we are interested in determining the amount of difference in the number
of monitoring messages transmitted when larger error thresholds are used. Note
that due to the coordinator computing the average processor utilization and packet
processing rate from a set of counts and frequencies, we do not provide graphs for
additional monitoring functions such as min, max, and standard deviation since
the monitoring function is only computed and reported by the coordinator and the
choice of a monitoring function does not have an effect on the number of monitoring
messages sent for a particular system parameter such as processor utilization.

4.2 Results

4.2.1 Processor utilization
Average processor utilization is computed from a set of frequencies as explained in
3.2.2. Figure 4.1, Figure 4.2 and Figure 4.3 present the average system processor
utilization reported by the coordinator for both of the modes for various configura-
tions. In each run of the simulation, monitoring services execute computations and
algorithms for the basic mode and a single configuration of the approximate mode.

42

4. Results

The approximate mode was run with three different error thresholds: 5%, 10% and
20%. All simulations were run with a monitoring window of ten seconds and the re-
ported utilization is the average utilization computed over this window. The graphs
show that all configurations of the approximate mode have similar trends as the
basic mode in terms of increase in processor utilization over time. The processor
utilization of the system for all configurations does not demonstrate any rapid in-
creases nor decreases throughout the runs and remains approximately the same in
the stable load stage.

Figure 4.1: Average system processor utilization: ε = 5%.

Figure 4.2: Average system processor utilization: ε = 10%.

Evidently, graphs indicate that the difference in reported values corresponding to
the basic and the approximate mode do not differ significantly when larger ε values

43

4. Results

Figure 4.3: Average system processor utilization: ε = 20%.

are used. During the increasing load stage, the changes are significant enough to
require all configurations regardless of the error threshold used to send monitoring
updates to the coordinator. A limitation of monitoring services is that proces-
sor utilization is represented as a set of frequencies to enable executing continuous
monitoring algorithms for monotonic functions to track both the system and worker
processor utilization. Therefore, changes to each frequency is tracked individually
and requires monitoring updates to be sent even in the stable load stage irrespec-
tive of these changes’ effects on the computed utilization for the system, which is
performed by the coordinator. Consequently, a monitoring service when tracking
a large set of frequencies for an individual worker will under-perform in terms of
communication-efficiency compared to tracking a single count.

Figure 4.5 shows the running average relative error for system processor utiliza-
tion computed over the last 5 minutes. As the graphs demonstrate, the configured
error guarantee is maintained throughout the runs for ε = 10 and ε = 20 configu-
rations, but the relative error exceeds the threshold for ε = 5 configuration at few
time points in the first few minutes of the corresponding run. Even though calcu-
lations are performed with floating-point numbers when executing the algorithms,
conversions to integers are done when sending monitoring updates to the coordi-
nator, which results in rounding errors. These data points are difficult to interpret
from the previous graphs due to the absolute error being less than 0.4 in the first few
minutes. Additionally, the difference in the relative error corresponding to different
configurations at many time points is quite small in terms of value. Maintaining
the processor utilization using frequencies is requiring the monitoring services to
send monitoring messages frequently even in the stable load stage, thus making the
configurations demonstrate similar behaviour throughout the runs. Next, we need
to consider the amount of monitoring messages sent to track processor utilization
for each configuration to compare for communication-efficiency.

Monitoring services package multiple updates corresponding to monitored pa-

44

4. Results

Figure 4.4: Running average relative error for system processor utilization.

rameters for each worker into a single message to avoid TCP overhead of transmit-
ting multiple messages. The structure of monitoring messages was explained in 3.3.2.
Therefore, a single message may contain from few to hundreds of updates. The num-
ber of updates in a message directly determines the size of the message. EPGTOP
represents monitoring updates for counts and frequencies differently. Nonetheless,
the size of a monitoring update is fixed and depends on its type.

Figure 4.5: Amount of monitoring data for processor utilization: ε = 5%.

Figure 4.5, Figure 4.6 and Figure 4.7 present the total number of bytes of
data sent for various configurations. The total number of bytes sent corresponds
to the communication-efficiency of a specific configuration. In our implementation,
each monitoring update for processor utilization is a tuple of three items and has

45

4. Results

Figure 4.6: Amount of monitoring data processor utilization: ε = 10%.

Figure 4.7: Amount of monitoring data for processor utilization: ε = 20%.

a fixed size. Seemingly, the approximate mode sends far less messages than the
basic mode in all of the runs. An important consideration from graphs is that there
exists a small variance in the total number of bytes sent when executing the basic
mode during multiple runs. Due to the complex nature of EPG, controlling load
assignment and handling of packets for evaluation purposes is not possible without
significant changes to EPG. Nevertheless, the results showcase that the total number
of bytes sent significantly decreases as larger ε are used. In terms of communication-
efficiency, ε = 20%-configuration performs the best and sends the least amount of
messages.

In all simulations, the total number of bytes sent when executing the basic mode
increases almost linearly and the slope does not change significantly over time. In

46

4. Results

comparison, after the 15-min mark, the slopes corresponding to the configurations of
the approximate mode starts to become smaller as larger ε are used. The stable load
stage of the simulations starts after the 20-min mark and the approximate mode is
expected to be less affected by changes in this stage. The graphs demonstrate that
the amount of data sent per monitoring period decreases gradually over time as the
system stabilizes when running in the approximate mode.

Figure 4.8: Processor utilization, average update count: ε = 5%.

Figure 4.9: Processor utilization, average update count: ε = 10%.

Figure 4.8, Figure 4.9 and Figure 4.10 present the running average number
of monitoring updates sent for each configuration for the last 5 minutes. The graphs
demonstrate that the rate of the number of monitoring updates sent in the increas-
ing load stage reduces as larger ε are used. When the system load increases over

47

4. Results

Figure 4.10: Processor utilization, average update count: ε = 20%.

time in this stage, the processor utilization of individual workers will correspond-
ingly increase, thus resulting in monitoring services sending monitoring updates for
all workers. Larger ε-thresholds require larger changes to monitored parameters
to necessitate an update to be sent, hence the running averages decrease as larger
thresholds are used. All graphs demonstrate that after the stable load stage starts,
the running averages for all configurations remains roughly the same. The previ-
ous graphs for the average system processor utilization showed that the system’s
utilization even in this stage varies slightly over time, indicating that monitoring
updates will still need to be sent in this stage. Consider Figure 4.11 and Fig-
ure 4.12, which provide histograms to view the frequency of the number of updates
sent per monitoring period in the last 15 minutes of the simulation for the basic and
ε = 5%-configuration.

The frequencies in the histograms indicate that in the stable load stage, the basic
mode sends monitoring messages that contain far more updates than the approx-
imate mode. Due to the fact that even when the load in the system remains the
same, routing and assigning of packets to workers can cause small fluctuations in
the processor utilization of workers. The small differences in the fetched local values
causes monitoring updates to be sent in the basic mode regardless of the amount of
change. In comparison, the approximate mode with a ε = 5%-configuration is less
affected by small changes to utilization values and at a given monitoring period, the
differences in local frequencies become large enough to send monitoring messages
for only a small set of workers, accordingly resulting in monitoring messages smaller
in size to be sent.

Finally, Figure 4.13 and Figure 4.14 provide plots to analyze the mean and
standard deviation of the number of updates per monitoring period for processor
utilization for the entire duration of the simulations. The yellow lines in these box
plots are the mean values and the vertical lines in the bar plots show the standard
deviation. Graphs for all configurations show high variability in the number of

48

4. Results

Figure 4.11: Processor utilization, frequency of updates (last 15 mins).

Figure 4.12: Processor utilization, frequency of updates (last 15 mins).

updates sent per monitoring period and this is mainly attributed to the increasing
load stage of the test when the system load is gradually increasing and forcing all
configurations to send updates. In spite of the variance in these graphs for the basic
mode during multiple runs, the standard deviation of the basic mode is much larger
than the standard deviation of the corresponding approximate mode. The box plots
also contain many data points that are far away from the mean for the basic mode.
In contrast, the behaviour of the approximate mode is much more consistent, since
the approximate mode is more resilient to small differences in reported local values
of frequencies for processor utilization.

49

4. Results

Figure 4.13: Processor utilization, update count per period: w = 10 sec.

Figure 4.14: Processor utilization, update count per period: w = 10 sec.

Worker Processor utilization

The coordinator calculates the average system processor utilization continuously
from the utilization of individual workers. EPG internally uses complex load-
balancing logic to route traffic to workers. Therefore, it is not possible to compare
processor utilization of workers in a set of runs, since the same worker may get
assigned different amount of load during multiple runs. To evaluate both modes of

50

4. Results

EPGTOP for individual workers, we consider the fastest and slowest workers deter-
mined by summing per period processor utilization in addition to the mean processor
utilization of all workers. Note that the mean processor utilization is equivalent to
the system processor utilization.

Figure 4.15: Processor utilization of workers.

Figure 4.16: Running average relative error for worker processor utilization.

Figure 4.15 and Figure 4.16 show the processor utilization of the fastest and
slowest workers in the entire system for the basic and approximate mode and the
corresponding running average relative error. The graphs indicate that there exists
a significant difference in the processor utilization of the slowest and fastest workers.
Additionally, unlike the mean system processor utilization, utilization of individual
workers contain far more frequent spikes. The graphs also show that at many time

51

4. Results

points, when the load of the fastest worker is increasing, the load of the slowest
worker is decreasing. Due to the complexity of EPG, without explicitly pinning
traffic to specific workers, it is not possible to determine whether this behaviour is
indeed related to the load-balancing logic. The running average relative error for
the workers is very similar to the relative error of the system processor utilization.
Except the few time points in the first few minutes of the corresponding run, the
error threshold is maintained for ε = 5% configuration for the most of the duration
for both of the workers.

4.2.2 Packet Processing Rate
Packet processing rate is determined with tracking a counter continuously as ex-
plained in 3.2.2. Figure 4.17, Figure 4.18 and Figure 4.19 present the system
packet processing rate reported by the coordinator for both of the modes for various
configurations. In each run of the simulation, monitoring services execute compu-
tations and algorithms for the basic mode and a single configuration of the approx-
imate mode. The approximate mode was run with three different error thresholds:
5%, 10% and 20%. All simulations were run with a monitoring window of ten sec-
onds and the reported processing rate is the number of packets processed over this
window.

Figure 4.17: System packet processing rate: ε = 5%.

The graphs for the basic mode depict that unlike the processor utilization, the
packet processing rate varies over time in the stable load stage with frequent “ups”
and “downs”. Regardless of the amount of traffic sent to the system in this stage,
EPG contains numerous components in addition to workers and assignment of pack-
ets to workers is not predictable. Monitoring packet processing rate with larger ε
values results in the approximate mode being more forgiving to changes when com-
pared to the processor utilization. Considering that there exists a single counter per
worker to track the rate, the reported corresponding processing rate by the coordina-

52

4. Results

Figure 4.18: System packet processing rate: ε = 10%.

Figure 4.19: System packet processing rate: ε = 20%.

tor is only affected by this counter and as the graphs indicate, ε = 20%-configuration
deviates the most from the results of the basic mode. Additionally, all configura-
tions exhibit similar trends in the increasing load stage in terms of increase in the
reported packet processing rate. Due to the number of packets injected into the sys-
tem increasing consistently in this stage, monitoring services for all configurations
will be required to transmit monitoring messages to update the coordinator.

Figure 4.20 shows the running average relative error for system packet pro-
cessing rate computed over the last 5 minutes. As the graphs demonstrate, the
configured error guarantee is maintained throughout the runs for all configurations
of the approximate mode. In comparison to the processor utilization, the difference
in the relative error corresponding to various configurations is much larger in value

53

4. Results

Figure 4.20: Running average relative error for system packet processing rate.

at most time points. Due to the packet processing rate for a worker being computed
from a single counter, a monitoring decision to send an update is only affected by
changes to this counter. Therefore, the system packet processing rate is affected by
a much smaller set of counts than the system processor utilization and changes to
individual worker packet processing rates are tolerated by monitoring services more
effectively.

Figure 4.21: Amount of monitoring data for packet processing: ε = 5%.

Figure 4.21, Figure 4.22 and Figure 4.23 present the total number of bytes of
data sent for various configurations. A monitoring update corresponding to packet
processing rate is of fixed size and similar to processor utilization, updates are
packaged into a single monitoring message before being sent to the coordinator.

54

4. Results

Figure 4.22: Amount of monitoring data packet processing: ε = 10%.

Figure 4.23: Amount of monitoring data for packet processing: ε = 20%.

Regardless of the slight variance in the number of bytes sent for the basic mode
during multiple runs, the approximate mode considerably reduces the amount of
monitoring data that must be transmitted. The graphs for the approximate mode
have much smaller slopes and unlike the basic mode, the total number of bytes sent
does not increase consistently over time. Configuring the approximate mode with
larger ε values mainly affect the rate in the increasing load stage, in particular,
ε = 10% and ε = 20% configurations display minimal increase in the number of
bytes sent in the stable load stage. Similar to the processor utilization, monitoring
services in the stable load stage react far less frequently to changes as larger ε are
used, since the amount of change needed to send a monitoring update becomes larger
as the value of ε increases.

55

4. Results

Figure 4.24: Packet Processing rate, average update count: ε = 5%.

Figure 4.25: Packet processing rate, average update count: ε = 10%.

Figure 4.24, Figure 4.25 and Figure 4.26 present the running average num-
ber of monitoring updates sent for each configuration for the last 5 minutes. The
graphs demonstrate that the rate of the number of monitoring updates sent in the
increasing load stage increases rapidly in the first 5 minutes and subsequently, starts
to slowly decrease over time. In the stable load stage, the running averages remain
roughly the same for all configurations with larger ε-configurations approaching near
zero values. Larger ε-thresholds mainly affect the running average in the increasing
load stage. Gradual decrease in running averages over time is most likely attributed
to the fact that as the system stabilizes over time, the difference in the number of
assigned packets to a worker per monitoring period compared to the previous mon-
itoring period will decline over time, thus requiring less monitoring messages to be

56

4. Results

Figure 4.26: Packet processing rate, average update count: ε = 20%.

sent. Consider Figure 4.27 and Figure 4.28, which provide histograms to view
the frequency of the number of updates sent per monitoring period in the last 15
minutes of the simulation for the basic and ε = 5%-configuration.

Figure 4.27: Packet processing rate, frequency of updates (last 15 mins).

The histogram for the basic mode is consistent with the graph for the running
average, since in the last 15 minutes of the simulation, the running average for the
basic mode remains constant. The histogram contains a single frequency which is
close to the number of workers on a single card. The coordinator is able to process
updates from a single monitoring service at a time, thus the histogram demonstrates
that the basic mode sends updates for almost half of the workers in the system per
monitoring period in the stable load stage. The histogram for the approximate

57

4. Results

Figure 4.28: Packet processing rate, frequency of updates (last 15 mins).

mode contains more data points on the left side, where the number of updates
reaches almost zero. Therefore, in the stable load stage, the approximate mode is
near unaffected by small variances in the processing rate of individual workers and
transmits far less monitoring updates.

Figure 4.29: Packet processing rate, update count per period.

Finally, Figure 4.29 and Figure 4.30 provide plots to analyze the mean and
standard deviation of the number of updates per monitoring period for packet pro-
cessing rate for the entire duration of the simulations. The yellow lines in these box
plots are the mean values and the vertical lines in the bar plots show the standard

58

4. Results

Figure 4.30: Packet processing rate, update count per period.

deviation. Unlike the processor utilization, the graphs for the basic mode demon-
strate that there exists marginal variance in the number of monitoring updates sent
per monitoring period. Consequently, when monitoring services are running in the
basic mode, monitoring updates for almost all of the workers must be sent. How-
ever, the approximate mode demonstrates significant variance due to the number of
monitoring updates sent in the stable load stage becoming considerably small. The
standard deviation plots also display the large variance for the configurations of
the approximate mode. Nevertheless, larger ε-values results in smaller means when
compared to the basic mode.

Worker Packet Processing Rate

Packet processing rate of workers cannot be compared among multiple runs due
to the load assigned to workers being in-deterministic. Therefore, we consider the
fastest and slowest workers determined by summing per period packet processing
rates for basic mode and the approximate mode with an error threshold of ε = 5%.
Note that the system’s packet processing rate is not included in the graphs to make
them easier to analyze, since this rate is significantly larger than the individual
worker rates.

Figure 4.31 and Figure 4.32 demonstrate the packet processing rate of the
fastest and slowest workers in the entire system for the basic and approximate mode.
Due to the graph for the entire simulation containing many data points, Figure 4.32
is included to depict the behaviour in the last 15 minutes only. Similar to the
processor utilization, the graphs indicate that there exists a significant difference
in the packet processing rate of the slowest and fastest workers. Additionally, the
graphs corresponding to the approximate mode contain many flat lines. These lines

59

4. Results

Figure 4.31: Packet processing rate of workers.

Figure 4.32: Packet processing rate of workers (last 15 mins).

indicate time points which monitoring services do not transmit monitoring updates
due to the error guarantees still being valid. As Figure 4.33 demonstrate, the
approximate mode is capable of maintaining the error guarantees for these workers
for ε = 5% configuration in addition to the system packet processing rate.

4.3 Discussion
EPGTOP when running in approximate mode, provides significantly better com-
munication efficiency for continuously monitoring distributed systems compared to
the basic mode. The error threshold is adjustable and set by the coordinator and

60

4. Results

Figure 4.33: Running average relative error for worker packet processing rate.

the graphs in the previous sections demonstrated that larger error thresholds con-
siderably improve the efficiency of monitoring over the basic mode and provide a
trade-off between efficiency and accuracy. Most importantly, monitoring services
are capable of maintaining the error thresholds configured for individual and aggre-
gate system metrics. The graphs in the previous sections demonstrated that the
difference between these two modes becomes significant when the load in the system
remains stable. Small fluctuations to monitored parameters require the basic mode
to send monitoring updates regardless of the difference. The approximate mode is
more resilient to changes to monitored parameters and its configured error threshold
can enhance this resilience, albeit at the cost of reduced accuracy.

System parameters such as packet processing rate which involves monitoring a
single counter can be tracked far more efficiently than parameters such as proces-
sor utilization due to the monitoring function being affected by changes to a single
parameter only. Processor utilization is represented as a set of frequencies to en-
able continuous monitoring algorithms to be used, since individual frequencies are
monotonic parameters. An advantage of this conversion is that monitoring ser-
vices are capable of transmitting the entire monitoring data to the coordinator and
monitoring functions such as average, min, max, etc. can be computed on-demand
without making changes to monitoring services. The analysis of the approximate
mode showcased that the approximate mode is capable of transmitting frequencies
to the coordinator far more efficiently than the basic mode. However, a limita-
tion of the approach is that as the number of frequencies to monitor increase to
track a particular system parameter, the number of monitoring updates to send
will potentially increase as well. Therefore, for a small set of monitoring functions,
making monitoring calculations such as average processor utilization for each worker
locally and transmitting the results of these monitoring functions continuously with
flooding may produce better efficiency than tracking individual frequencies with the
approximate mode. Nevertheless, if the number of monitoring functions to compute

61

4. Results

5% 10% 20%
Processor utilization average savings 0.75254 0.54917 0.36613
Processor utilization average error 1.73851 1.62584 1.98326
Packet processing rate average savings 0.23464 0.12592 0.06757
Packet processing rate average error (%) 0.35383 0.81516 1.67170

Table 4.1: Comparison of configurations.

is large and performed on-demand, the approximate mode will be able to provide
the entire monitoring data efficiently and accurately with respect to the configured
error threshold.

Table 4.1 presents a table that compares average savings and average relative
errors for system processor utilization and packet processing rates. Average savings
are computed from averaging per period savings by dividing the number of bytes
sent for the approximate mode with the basic mode. As the table shows, increasing
the error threshold provides significantly better communication efficiency for packet
processing rate than processor utilization. Evidently, the choice of a ε is more
important for the rate which affects both the average savings and the relative error.
The effectiveness of a choice of an error threshold is also dependent on the behaviour
of a monitored system parameter. In essence, if changes to a monitored parameter
in each monitoring period are large enough to require even configurations with large
ε to send monitoring updates, adjusting the threshold to smaller values will not
significantly affect the efficiency.

The results gathered from runs with multiple configurations indicate that EPG-
TOP’s approximate mode is more communication efficient than the basic mode when
tracking counters and frequencies while ensuring that its configured error thresholds
are maintained. The efficiency is particularly prevalent when monitoring moderately
stable system parameters, since the basic mode that sends updates periodically is af-
fected by even minor changes to monitored parameters, thus transmitting numerous
monitoring updates when monitoring these parameters.

62

5
Conclusion

Continuous distributed monitoring has been studied extensively in the context of
various distributed systems and settings. EPGTOP is based on a combination of
system models and is designed to be integrated into an EPG system to monitor
worker processes, cards and the entire system. The simple monitoring algorithms
such as polling and flooding are too communication-intensive for most distributed
systems. To efficiently monitor distributed systems, the number of monitoring mes-
sages sent is reduced by introducing an error parameter and sending monitoring
messages only when error thresholds are exceeded. EPGTOP is incorporated with
two modes: basic and approximate. The basic mode sends updates to the coor-
dinator at the end of each monitoring period for any system parameter that was
modified. In contrast, the approximate mode is more resilient to fluctuations in
values of monitored parameters since this mode can be configured to tolerate up
to a certain amount of error. Consequently, the approximate mode sends far less
monitoring messages and its communication efficiency is dependent on the choice of
the error threshold.

The theoretical models and algorithms make assumptions such as absence of
communication and processing delays which do not have a direct implementation
support in EPG. An EPG system running in production is a performance critical
distributed system and making monitoring calculations upon every single event hap-
pening in the system is significantly computation intensive for monitoring purposes.
EPGTOP provides techniques and data structures to alleviate these differences by
supporting configuration parameters that can be tuned to alter the frequency of
data retrievals and behaviour of the monitoring algorithms. EPGTOP consists of
two main components: monitoring services and a coordinator. Monitoring is pro-
vided in the form of monitoring services that run on cards and these services collect
the local monitoring data and execute monitoring algorithms. Therefore, more al-
gorithms can be supported by extending the monitoring services. Correspondingly,
the coordinator contains data handlers to compute monitoring functions on-demand
and display the results continuously. Additional monitoring functions can be added
to the coordinator without requiring changes to monitoring services.

The results presented in the previous chapter demonstrated that monitoring costs
can be reduced significantly by utilizing approximate monitoring algorithms. EPG-
TOP represents system statistics such as processor utilization and processing rate
as a set of counts and frequencies and provides methods to track and monitor these
values. EPGTOP’s approximate mode allows monitoring system parameters such
as packet processing rate represented as counters significantly more efficiently than
simple approaches described above. Representing parameters with a set of frequen-

63

5. Conclusion

cies reduces the effectiveness of EPGTOP due to more than a single value affecting
monitoring decisions. Nevertheless, EPGTOP’s approximate mode is capable of
maintaining its configured error thresholds for both the individual worker statistics
and the aggregate system statistics while reducing the amount of the monitoring
data transmitted.

EPGTOP and its system architecture demonstrate methods to implement and
integrate efficient monitoring algorithms into a production distributed system and
provide system statistics for inspection and monitoring continuously over time. The
analysis of EPGTOP establishes that communication efficiency of monitoring algo-
rithms for distributed systems can be improved considerably with continuous mon-
itoring algorithms. Effects of adjustments required to integrate these algorithms
into EPG do not substantially impact the efficiency and reductions in the number
of monitoring data transmitted makes EPGTOP and the incorporated algorithms
viable for monitoring this system with minimal impact on performance.

64

Bibliography

[1] M. Olsson and C. Mulligan, EPC and 4G packet networks: driving the mobile
broadband revolution. Academic Press, 2012.

[2] 3GPP, “Network architecture,” Technical Specification (TS) 23.002, 3rd Gen-
eration Partnership Project (3GPP), 04 1999. Version 14.1.0.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and
research challenges,” Journal of internet services and applications, vol. 1, no. 1,
pp. 7–18, 2010.

[4] D. E. C. Matthew L. Massiea, Brent N. Chunb, “The ganglia distributed mon-
itoring system: design, implementation, and experience,” Parallel Computing,
vol. 30, pp. 817–840, 2004.

[5] M. B. P. S. M. P. D. B. S. J. C. S. Benjamin H. Sigelman, Luiz Andre Bar-
roso, “Dapper, a large-scale distributed systems tracing infrastructure,” Google
Research, 2010.

[6] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: Online mod-
elling and performance-aware systems.,” in HotOS, pp. 85–90, 2003.

[7] G. Cormode, “The continuous distributed monitoring model,” ACM SIGMOD
Record, vol. 42, no. 1, pp. 5–14, 2013.

[8] K. Y. Graham Cormode, S. Muthukrishnan, “Algorithms for distributed func-
tional monitoring,” ACM Transactions on Algorithms (TALG), vol. 7, 2011.

[9] K. Y. Graham Cormode, “Tracking distributed aggregates over time-based
sliding windows,” PODC ’11 Proceedings of the 30th annual ACM SIGACT-
SIGOPS symposium on Principles of distributed computing, pp. 213–214, 2011.

[10] K. Y. Q. Z. Graham Cormode, S. Muthukrishnan, “Optimal sampling from dis-
tributed streams,” PODS ’10 Proceedings of the twenty-ninth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pp. 77–86,
2010.

[11] D. K. Izchak Sharfman, Assaf Schuster, “A geometric approach to monitor-
ing threshold functions over distributed data streams,” ACM Transactions on
Database Systems (TODS), vol. 32, no. 23, 2007.

[12] L.-K. L. H.-F. T. Ho-Leung Chan, Tak-Wah Lam, “Continuous monitoring of
distributed data streams over a time-based sliding window,” Proceedings of the
ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, vol. 62, 2012.

[13] P. I. R. M. Mayur Datar, Aristides Gionis, “Maintaining stream statistics over
sliding windows,” SIAM Journal on Computing, vol. 31, pp. 1794–1813, 2002.

65

Bibliography

[14] Y. T. Mingwang Tang, Feifei Li, “Distributed online tracking,” SIGMOD ’15
Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data, vol. 42, pp. 2047–2061, 2015.

[15] C. O. Brian Babcock, “Distributed top-k monitoring,” SIGMOD ’03 Proceed-
ings of the 2003 ACM SIGMOD international conference on Management of
data, pp. 28–39, 2003.

[16] J. R. Ram Keralapura, Graham Cormode, “Communication-efficient dis-
tributed monitoring of thresholded counts,” SIGMOD ’06 Proceedings of the
2006 ACM SIGMOD international conference on Management of data, pp. 289–
300, 2006.

[17] M. V. Zhenming Liu, Bozidar Radunović, “Continuous distributed count-
ing for non-monotonic streams,” PODS ’12 Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems,
vol. 42, pp. 307–3018, 2012.

[18] D. W. Piotr Indyk, “Optimal approximations of the frequency moments of data
streams,” STOC ’05 Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, pp. 202–208, 2005.

[19] A. C. Chrisil Arackaparambil, Joshua Brody, “Functional monitoring without
monotonicity,” International Colloquium on Automata, Languages, and Pro-
gramming, pp. 95–106, 2009.

[20] M. S. Noga Alon, Yossi Matias, “The space complexity of approximating the fre-
quency moments,” Journal of Computer and System Sciences, vol. 58, pp. 137–
147, 1999.

[21] Q. Z. Ke Yi, “Optimal tracking of distributed heavy hitters and quantiles,”
Algorithmica, vol. 65, p. 206–223, 2013.

[22] M. H. Graham Cormode, “Finding frequent items in data streams,” Proceedings
of the VLDB Endowment, vol. 1, pp. 1530–1541, 2008.

[23] W. S. L. Joong Hyuk Chang, “Finding recent frequent itemsets adaptively
over online data streams,” KDD ’03 Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 487–492,
2003.

[24] K. D. C. O. A. Manjhi, V. Shkapenyuk, “Finding (recently) frequent items in
distributed data streams,” ICDE 2005 21st International Conference on Data
Engineering, 2005.

[25] A. E. A. Ahmed Metwally, Divyakant Agrawal, “An integrated efficient solution
for computing frequent and top-k elements in data streams,” ACM Transactions
on Database Systems (TODS), vol. 31, pp. 1095–1133, 2006.

[26] S. M. R. R. Graham Cormode, Minos Garofalakis, “Holistic aggregates in a
networked world: distributed tracking of approximate quantiles,” SIGMOD ’05
Proceedings of the 2005 ACM SIGMOD international conference on Manage-
ment of data, pp. 25–36, 2005.

[27] G. S. M. Arvind Arasu, “Approximate counts and quantiles over sliding win-
dows,” PODS ’04 Proceedings of the twenty-third ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pp. 286–296, 2004.

66

List of Figures

1.1 A simplified view of EPC architecture [2]. 1

2.1 The Continuous Distributed Monitoring Model [7] 9
2.2 The Data Streaming Model [12] . 11
2.3 An example system for Distributed Online Tracking [14] 13

3.1 A simplified overview of EPG architecture. 23
3.2 A simplified overview of User Plane SSC. 24
3.3 Periods for fetching and making monitoring decisions. 26
3.4 EPGTOP Architecture. 30
3.5 EPGTOP message. 31
3.6 A monitoring service’s event loop. 32
3.7 Initialization Handshake. 33
3.8 The Coordinator’s Event Loop. 37

4.1 Average system processor utilization: ε = 5%. 43
4.2 Average system processor utilization: ε = 10%. 43
4.3 Average system processor utilization: ε = 20%. 44
4.4 Running average relative error for system processor utilization. . . . 45
4.5 Amount of monitoring data for processor utilization: ε = 5%. 45
4.6 Amount of monitoring data processor utilization: ε = 10%. 46
4.7 Amount of monitoring data for processor utilization: ε = 20%. . . . 46
4.8 Processor utilization, average update count: ε = 5%. 47
4.9 Processor utilization, average update count: ε = 10%. 47
4.10 Processor utilization, average update count: ε = 20%. 48
4.11 Processor utilization, frequency of updates (last 15 mins). 49
4.12 Processor utilization, frequency of updates (last 15 mins). 49
4.13 Processor utilization, update count per period: w = 10 sec. 50
4.14 Processor utilization, update count per period: w = 10 sec. 50
4.15 Processor utilization of workers. 51
4.16 Running average relative error for worker processor utilization. . . . 51
4.17 System packet processing rate: ε = 5%. 52
4.18 System packet processing rate: ε = 10%. 53
4.19 System packet processing rate: ε = 20%. 53
4.20 Running average relative error for system packet processing rate. . . 54
4.21 Amount of monitoring data for packet processing: ε = 5%. 54
4.22 Amount of monitoring data packet processing: ε = 10%. 55

67

List of Figures

4.23 Amount of monitoring data for packet processing: ε = 20%. 55
4.24 Packet Processing rate, average update count: ε = 5%. 56
4.25 Packet processing rate, average update count: ε = 10%. 56
4.26 Packet processing rate, average update count: ε = 20%. 57
4.27 Packet processing rate, frequency of updates (last 15 mins). 57
4.28 Packet processing rate, frequency of updates (last 15 mins). 58
4.29 Packet processing rate, update count per period. 58
4.30 Packet processing rate, update count per period. 59
4.31 Packet processing rate of workers. 60
4.32 Packet processing rate of workers (last 15 mins). 60
4.33 Running average relative error for worker packet processing rate. . . 61

68

List of Tables

4.1 Comparison of configurations. 62

69

	Introduction
	Background
	Motivation
	Problem Description
	EPGTOP
	Report Structure

	Distributed Monitoring
	Approaches for distributed monitoring
	Simple algorithms for distributed monitoring
	Models for Distributed Monitoring
	The Continuous Distributed Monitoring Model
	The Data Stream Model
	Distributed Online Tracking

	Monitoring problems
	Forms of monitoring
	Functional monitoring problems

	Algorithms for Distributed Monitoring
	Countdown and frequency moments
	Basic counting
	Approximate counting, heavy hitters and quantiles

	Distributed Monitoring of EPG
	EPG Architecture
	Monitoring of EPG
	Definitions
	Measurements

	Implementation
	The system
	Communication
	Monitoring service and observers
	Coordinator

	Limitations

	Results
	Configuration
	Results
	Processor utilization
	Packet Processing Rate

	Discussion

	Conclusion
	Bibliography
	List of Figures
	List of Tables

