" CHALMERS

UNIVERSITY OF TECHNOLOGY

Network Implementation in an FPGA

Master’s thesis in Engineering Physics

ANDERS FURUFORS

Department of Physics
Chalmers University of Technology
Gothenburg, Sweden 2019

Network Implementation
in an FPGA

ANDERS FURUFORS

Department of Physics

Division of Subatomic and Plasma Physics
Chalmers University of Technology
Gothenburg, Sweden, 2019

Network Implementation in an FPGA
Anders Furufors

(©Anders Furufors, 2019

Examiner: Andreas Heinz
Supervisor: Hakan T. Johansson

Master’s Thesis 2019: Department of Physics
Division of Subatomic and Plasma Physics
Chalmers University of Technology

SE 412-96 Goteborg

Sweden

Chalmers ReproserviceTypeset in KTEX
Gothenburg, Sweden 2019

Network Implementation in an FPGA
Anders Furufors

Department of Physics

Division of Subatomic and Plasma Physics
Chalmers University of Technology

Abstract

A limited network stack is implemented on an FPGA for use in nuclear
physics experiments to transfer data directly from front-end electronics to
a PC over Ethernet. This is done using an FPGA board equipped with a
connector attached to a PHY chip. Code was written for this FPGA to
handle the physical and most of the link layer. Higher layers of network
communication were implemented in the FPGA, using a hardware design
called Fakernet. Fakernet handles the rest of the link layer as well as network
and transport layer protocols.

This results in a design that sufficiently handles protocols needed for estab-
lishing a connection between nodes on a network (ICMP, ARP) and to be
configured using a UDP interface. It is able to send data to a PC using TCP,
reaching line speed with the PHY chip’s 100 Mb/s interface while at the same
time having low resource usage, occupying less than 2 per cent of the LUTs
of an FPGA used in the type of experiment the design is considered for. This
design was tested for various situations and restrictions and it is concluded
that it has potential for being used in real experiments in the future even
though Fakernet is not yet fully developed.

Keywords: Data Acquisition, Network Stack, Ethernet, FPGA, Hardware
Description, Data Transport, Nuclear Physics, Nuclear Physics Experiments

I

Acknowledgements

I am most grateful for the support I have received in my efforts to write
this thesis. I would like to thank Hakan T. Johansson for teaching me more
than I knew I wanted to know, for always helping me no matter how often
I got stuck and for constantly knowing what to do next. I wish to thank
Andreas Heinz for checking in on me daily, making sure the work progressed
and that I had everything I needed. Furthermore I would like to thank Bjorn
Jonsson and Thomas Nilsson for giving me the opportunity to visit CERN
and participate in a real nuclear physics experiment. Thanks also to Giovanni
Bruni who shared his office with me and guided me at CERN. Lastly I wish
to thank everyone else at the department for makig my time there enjoyable.

II

Contents
[Abstractl

[Acknowledgements|

xlossar

(1 Introduction|

[2 Background|

[3 Scope of Thesis Project|

[3.1

Scope of Fakernet|o

[3.1.1 Limitations of the TCP Implementation|

4 Method

[4.1.1 Development Board: Arty A7 351].
4.1.2 Network Equipment|
[4.1.3 Language: C|
[4.1.4 Language: VHDL|
I4,l,5i ! i&a!lszl
[4.1.6 Wireshark, Ping and Netcat|
[4.1.7 UART Component|

2

Development and Test Setup|.

[4.2.1 General Setup|.
[4.2.2 Setup for writing the dual-ported RAM|.
[4.2.3 Setup for testing the PHY chip|

IT1

II

[4.2.4 Setup for testing Fakernet| 21

6 Resultsl 22
b.1 Packet Size Fffects on TCP Transfer Ratel 22
(5.2 Round-Trip Time Measurements Using Ping| 23
.3 Effect of Window Size Restrictionsl 26
0.4 Bandwidth Decrease in a Saturated Networkl 29

6 Discussionl 31
6.1 Window Scaling for a Gigabit Interfacel 31

6.2 Comparison With Situation at R°B| 31
6.3 Comparison With Other FPGA |

| Network Stack Implementations| 33
6.4 Outlookl 33
[6.4.1 Further Development| 34

6.5 Conclusion|. 35
[Referencesl 37
[A Code Examples| 39
(A.1 Process Examplel 000000 39
[A.2 Component Example|, 41

vV

Glossary

ADC - Analog to Digital Converter

ARP - Address Resolution Protocol, network layer

Bandwidth - Transfer rate of information

BDP - Bandwidth-Delay Product

Bit, b - Smallest unit of information with only two possible values

Bitstream File - Firmware File loaded onto the FPGA, defining its behav-
ior

BRAM - Block RAM, memory structure in FPGAs

Bottleneck - Network component with smallest bandwidth, limiting the
whole network’s data transfer rate

Byte, B - Smallest chunk of addressable memory; an octet of bits when used
in this text

C - A general purpose programming language

CPU - Central Processing Unit

DPRAM - Dual ported RAM

Ethernet - Computer network technology, link layer

Fakernet - Partial network stack in VHDL written by Hakan T. Johansson
Firmware - Software that determines the hardware behavior at a low level
Flip-flop - Electronics component that stores data between clock cycles
FPGA - Field Programmable Gate Array

HDL - Hardware Description Language

Hub - Hardware unit that forwards packets to all its ports on a network (c.f.
switch)

ICMP - Internet Control Message Protocol, network layer
IP - Internet Protocol, network layer
LED - Light Emitting Diode

LUT - Lookup Table, an electronics component

\Y

MAC Address - Media Access Control Address, 6 octets, for example (hex-
adecimal notation) 01:12:ab:2£:78:99

Netcat, nc - Software used to establish, read from and write to a TCP to a
connection from the command line

Network Stack - Software implementation of a family of communication
protocols

Nibble - Chunk of data, smaller than a byte. 4 bits in this project.
Octet - Eight bits of information

Overhead - Data of a protocol that contains information about the commu-
nication rather than the message

Packet - Collection of information defined by protocols, with a beginning
and end

Payload - The part of a packet that is the message and not overhead
PHY - Physical layer chip
Ping - Software used to measure RTT and packet loss

Place and Route - Design stage that consists of placing and interconnecting
logic elements on the FPGA

RAM - Random Access Memory

Receive Window - Amount of data that the sender in a TCP connection
is allowed to send before receiving acknowledgments

RJ45 - Standard jack for Ethernet

RTT - Round-Trip Time, time between sending a packet to and receiving
the answer from another node

Store-and-Forward - Mode on some network switches that makes it receive
the whole packet before forwarding it

Switch - Hardware unit that forwards packets to the port associated with
the destination on a network (c.f. hub)

Synthesis - The process of realizing a HDL algorithm in terms of logic gates.
Similar to compilation

TCP - Transmission Control Protocol, transport layer

VI

UART - Universal Asynchronous Reciever and Transmitter
UDP - User Datagram Protocol, transport layer
USB - Universal Serial Bus

VHDL - Very High Speed Integrated Circuit Hardware Description Lan-
guage
Vivado - Software used for compiling HDL to a bitstream file, used in Xilinx
chips

Wireshark - Software used to monitor and analyze network traffic

VII

1 Introduction

In experimental setups, such as the R3B setup at GSI [1], there may be over
ten detectors, many of them with thousands of electronic channels, with ac-
companying ADCs, making up the front end electronics [2]. In such setups,
the use of custom protocols and custom-designed hardware is a problem be-
cause they are, due to their limited use, both costly and prone to bugs [3].
The purpose of this project is to reduce the need for those by implementing
a limited but sufficient network stack (software implementation of commu-
nication protocol layers) on a Field Programmable Gate Array (FPGA) in
order to transport the data to the PC over Ethernet.

Using Ethernet has several advantages. It is a standardized technology, of
which there is plenty of documentation available. It is also tested and well-
developed after many years of use. One important factor due to the large
number of detectors in these kinds of experiments is the price, and using
Ethernet allows for using readily available, well-developed and affordable
commercial equipment rather than using custom-designed hardware and pro-
tocols. Such a design would allow for a standard system that is usable for
all front-end electronics. Furthermore, having fewer bugs would decrease
downtime during experiments, which wastes valuable beam time.

In modern nuclear physics experiments, the data acquisition is done in multi-
ple steps. The goal is to record data, which allows for studying the reactions
of the experiment. These reactions are studied indirectly by measuring prop-
erties of their resulting reaction products. Their properies are measured by
detectors that generate electronic signals. The signals are digitized in analog-
to-digital converters (ADCs) and from there transported to a PC, or other
type of computer, and stored in permanent memory. See figure|ll The trans-
port of data from the ADC to the computer is the main interest of this work.
It can be done in different ways, but most often involves an FPGA to control
the ADC (a CPU being to slow, see section and to do on-board signal
processing, which then through hardware and protocols sends the data to a

PC.

Detector Analog ADC
Signal

d Jad

Digital
Signal

Particle Memory PC I

Figure 1: Schematic overview of an event. Some particle hits a detector,
induces a voltage that is digitized and saved in some memory of a PC. The
red cloud encloses the main concern of this report, the path between the
ADC and the PC, both hardware and protocols.

The general idea of this work is to use an FPGA board, capable of receiving
and transmitting signals over Ethernet, to implement a limited but sufficient
network stack called Fakernet. It should be able to allow for connections to
be established with other nodes on the network and communicate with them
using data transfer protocols. This is to be used in sending data from an
FPGA that controls an ADC, to a PC connected to the network, which is
then able to receive and store the data. This design should be made suitable
for use in, for example, nuclear physics experiments, handling the transport
of digital signals.

2 Background

In the following chapters, a few topics that are relevant to the project are
discussed, to give the reader some ground to stand on for the following chap-
ters.

2.1 Nuclear Physics Measurement Techniques

Nuclear physics experiments can be complex, in part due to the scales in-
volved (small sizes, high speeds, short time intervals and high reaction rates).
One common way of studying nuclei is to induce reactions by a beam of par-
ticles hitting a target. These reactions can cause the emission of photons
and massive particles that in turn we detect. One can gain knowledge of the
reaction by analyzing their properties, thereby learning about the physics
behind the processes.

The experimental setups used in these kinds of experiment often involve
many instruments. There are particle accelerators of different kinds (linear,
cyclotrons and synchrotrons), vacuum pumps, magnets, detectors of different
kinds, ADCs and data acquisition systems.

Data acquisition is very important for this project. Generally when particles
from the reactions hit detectors, they deposit energy and the material in the
detector is excited or ionized, so that a voltage difference can be measured.
These signals are converted from analog to digital signals using ADCs that are
most often controlled by FPGAs. Eventually this data will end up in a PC, or
another type of computer, where it is written to some file in permanent, non-
volatile memory, to later be analyzed. See figure (1] for a schematic overview
of the data acquisition. The data acquisition is triggered upon an event, that
is a signal from a detector, saving data for a period of time. During this time,
more particles may be detected, increasing the multiplicity of the event. In
this way coincidences can also be measured. There are also methods of zero
supression to reduce the amount of data transported and saved [3].

2.2 FPGA

Of the mentioned electronics, the FPGA is the main focus of this thesis. A
field-programmable gate array (FPGA) is a reconfigurable integrated circuit

that is configured by the user to perform the desired calculations [4] [5]. It
differs from a central processing unit (CPU) found in regular PCs in that the
CPU can execute arbitrarily ordered instructions. This means that different
programs can be run on the CPU; an FPGA on the other hand is limited
to the task determined by its configuration. This means an FPGA is not as
versatile, but what we lose in versatility, we gain in speed. While a regular
CPU only performs a few operations during each clock cycle, the FPGA can
perform a very large number of operations (limited only by the number of
components on the chip). So when speed or short response time are desired
for a set of parallel tasks, an FPGA may be preferable to a regular CPU [5].

In accelerator-based nuclear physics experiments, FPGAs are useful due to
the requirement of fast measurements. To allow for high event rates, the
logic controlling various components (such as ADCs) must be fast, making
FPGAs a suitable technology.

When designing code for an FPGA, it may be useful to use a development
board. These are equipped with tools that make debugging easier, such as
indicator lights, switches and IO pins. The reason for this is that debugging
is much harder because of the lack of, for example, standard console output
that we are used to. The indicator lights can be used for showing in what
state a program is, or represent the value of certain signals, while the switches
can be used to interact with the program. Schematics of a develpment board
are shown in figure [4]

An FPGA consists of a large number of electronic components that allow for
storing logic values and performing simple operations on the signals such as
the logic and or the logic or. Lookup tables (LUTs), flip-flops, Block RAM
(BRAM), global buffers and Phase Locked Loops (PLLs) are some of the
most important components. FPGAs are most often configured by writing
a program in a hardware description language (HDL) such as VHDL (see
section and appendix [A] for details and code examples, respectively).
Synthesis software will then translate the code into a design for the electronic
components to perform the desired tasks [4]. The number of components
inside an FPGA is not unlimited, however, so there is a limit as to how large
the program can be [5].

5 8 ns
1 2 |

— > — _“,VW
2 ns 2 ns 2ns 5T ns

1ns

12 ns
rr T

MWWV

Clock 2 ns {Zns {Zns'{Zns'(Znsl —» 1ns
Signal
. - Period = 10 ns

Figure 2: Schematic example of two blocks of logic elements, rectangles with
cut corners, between flip-flops, rectangles enumerated 1 to 3. The operations
of sampling input (upper left of flip-flop) and setting output (right of flip-
flop) of the flip-flops take 1 ns each. These operations are triggered (lower
left of flip-flop) by a clock signal with a period of 10 ns. The logic elements
compare two signals (left side) and set the output (right side) to the result;
the operation takes 2 ns. The signal path from flip-flop 1 to 2 leaves the flip-
flop, passes through three logic elements and is sampled in flip-flop 2. This
adds up to 8 ns, which is less than the clock period of 10 ns. This means the
signal (enclosed in the green cloud) that is set as the output of flip-flop 2 is
stable and has the value intended by the code. The lower path, flip-flop 1 to
3, on the other hand has more logic elements, making the propagation time
add up to 12 ns, which is more than the clock period of 10 ns. This means
the signal (enclosed in the red cloud) that is set as the output of flip-flop 3
does not necessarily have the value that is described in the code.

A key aspect of any FPGA program design is that of timing. In an FPGA,
signal values are stored in single-bit registers, often called flip-flops (this can
be compared to how variables are stored on a PC, with different levels of
CPU cache and RAM). Flip-flops work by having an input signal and an
output signal and also a trigger input. It will sample its input signal upon
triggering and possibly change and then keep its output at that new value
until the next trigger. The trigger input is usually a clock signal that is
generated by an on-board oscillator. Because of the interdependency of the
signals, the goal is that all flip-flops trigger at the same time, and the number

5

of logic elements between successive layers of them is low enough that the
new signal has time to properly propagate and can be stably (in the sense
that it has to the value intended by the code and is not oscillating) sampled
at the next flip-flop the following clock cycle. Therefore there is a limit for
the number of operations, which can be performed on a signal between the
flip-flops, thus limiting how much can be done per clock cycle. The way
programs are executed on a regular CPU differs from FPGA programs in
that the operations are performed sequentially, meaning the variables are not
dependent on each other at every cycle. This means writing HDL code for
an FPGA involves the additional challenge of timing to be considered while
writing higher level code for a CPU does not. See figure [2| for a schematic
example of timing issues.

2.3 Network Communication

Connecting electronic systems into networks is a technology which allows for
information sharing between units. It is not trivial to implement, however.
Information transport requires media, such as metal cables, optic fibre cables
or electromagnetic waves. These allow for information to be transferred
between two endpoints, for example cable jacks or antennae.

Between electronic units, the most common information transfer is that of
binary values, resulting in a stream of bits (information units with only two
possible values). On the physical level, this can be implemented as, for ex-
ample, voltage differences. To send data like this, a message, called payload,
must be broken into individual bits that are transmitted sequentially. Every
unit connected to this kind of network therefore needs some common method
for doing this, and, naturally, also be able to reassemble an incoming stream
of bits into larger data words. This receiving and transmitting of bits is
referred to as the physical layer of digital network communication.

To be able to communicate properly between many connected units, there
need to be rules that are common for all units. These are defined in so-called
protocols, which define what kind of message it is, how the data is sent, from
where and to where. The protocol that defines how information packets are
transported between nodes on a network is called the link layer. To further
define how the packet is transported between nodes that are not necessarily
adjacent, protocols called network layer protocols are used. The process of

data transfer itself is defined in the transport layer protocols, which define
things such as what happens when a message is not received. This picture is
called the layer model of network communication.

There is another concern, namely that of data transfer rate. For the protocols
to even matter, the sender and receiver must agree on what rate is to be used
in data transmission. This is most often done by letting the units negotiate
this speed. Faster units are usually able to also work at a slower rate, meaning
units can negotiate a common rate of transmission; it is most often the lowest
of the two units’ maximum transfer rates.

24 UART

Universal Asynchronous Reciever and Transmitter (UART) is a technology
for sending and receiving data using asynchronous serial communication.
This type of communication is very simple, having the packet’s start and
end defined by so-called start and stop bits, respectively, and sending the
payload of an octet (eight-bit word of information) in between. Its simplicity
makes it useful in some situations, being very easy to implement, but its
large overhead (20 per cent) and slow transfer rates make it less useful in
other situations.

2.5 Ethernet

Ethernet is a standardized technology used in computer networking, defin-
ing the link layer protocol. First introduced in 1980, Ethernet has become
ubiquitous and is found in most homes, schools and workplaces [6].

Ethernet signals are usually transferred on twisted pair cables or optical fibres
between nodes such as network cards on PCs, Ethernet switches and routers
that are equipped with RJ45 jacks. On such a network, each unit that is
the final recipient or original sender of packets will have a Media Access
Control Address (MAC address). Data transmission over these networks
consists of packets of data, whose structure is defined by the protocols in
use. The data that make up the original message, disregarding the method
of communication, is called payload. The packet will consist of more than
the payload. For example we need to define the first and the last bit of the

payload and the address of the packet source and destination. This non-
payload data is organized in various headers. An ethernet packet consists of
a data sequence to declare the start of a packet (preamble and start frame
delimiter, SFD), followed by MAC addresses for the destination and source as
well as information about its kind of payload (ethertype). Thereafter follows
the payload, and after it, a checksum and finally a data gap of a minimum
length before the next packet can start. The mentioned payload is not the
true payload (in the sense that true payload would be the actual data to
transmit between the nodes), but instead an inner layer data packet (network
layer) with its own overhead and payload, defined by the ethertype. This way
we can regard the data transmission as layers of overhead information that
the true payload is wrapped in. See figure |3| for a schematic depiction of a
Transmission Control Protocol (TCP) packet Ethernet frame [6].

Preamble
SFD
Destination MAC Interpacket
Source MAC Gap
‘ |Ethertype Checksuml
Ethernet Payload
IP Header Payload
TCP Header Payload

Payload | Actual Payload

Figure 3: Format of an ethernet frame, containing the preamble, SFD, desti-
nation and source MAC addresses, ethertype, payload and a checksum. This
frame is followed by a interpacket gap before next packet. The payload of
this Ethernet frame makes up the IP frame, with a header and a payload.
This payload in turn makes up the TCP frame with its own header and pay-
load. This way, we can regard the actual payload as wrapped in transport,
network and link layers, each with their own overhead.

This may seem like a complicated way of transferring data, but it gives
flexibility and the handling of various layers can be cleanly separated in
several hardware and software layers. Ethernet has been used and developed
for a long time, and as a consequence the needed hardware is well-developed,
commercially available and cheap. Current equipment can transfer data at
rates in the order of hundreds of Gb/s with rates of 1 Th/s being expected
soon [6]. These data transfer rates along with its availability and low price
make Ethernet a technology whose potential for nuclear physics experiments
has not yet been fully utilised.

2.6 Network Protocols and Layers

In this report, the four outermost layers are of concern. These are the physical
layer, the link layer, the network layer and the transport layer.

The physical layer defines how the information is transferred in general, with-
out regard to anything more than how the raw bits are being sent, transported
and received. On the FPGA board used in this project (see section [4.1.1),
this is implemented by voltage signals in a physical layer chip (PHY chip)
that receives and transmits small data words, nibbles, of four bits each.

The link layer defines how the packets are transported between network
nodes. In this project, Ethernet is used exclusively for this. The payload
of the ethernet package is the network layer and its payload is in turn the
transport layer. For these two, some different protocols are of interest.

2.6.1 ARP, ICMP and IP

The Address Resolution Protocol (ARP) and Internet Control Message Pro-
tocol (ICMP) are two basic network layer protocols. ARP is used to gain
knowledge of the MAC address of a unit on a network by sending a request
which translates to the question 'who is at this IP address?’; this prompts
the unit with that address to answer, replying that it has a certain MAC
address.

ICMP is used to send control messages. An important control message is
the echo request message, that is used to provoke the recipient to send a
corresponding echo reply message, which measures the round-trip time (RTT)

between the nodes and the loss of packets in the process. A typical RTT
within a single 1 Gb/s network segment is in the 100-300 us range. Since
ICMP works with IP addresses, successful operation requires also ARP to
be functional, making it useful as a first-level debug tool. To be able to
communicate with other units on a network, the FPGA, in this case, must
be able to handle these protocols.

The Internet Protocol (IP) is the main protocol for communicating between
different networks, making it the foundation of Internet traffic. IP is the
most common network layer protocol used in data transfer in combination
with the transport layer protocols TCP and UDP.

2.6.2 TCP and UDP

The Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP) are transport layer protocols used for data transfer, and are most
commonly used together with IP. UDP is an unreliable form of data transfer,
being often jokingly referred to as Unreliable Datagram Protocol. The sender
sends the packets and does not expect a confirmation if they were received.
This can be useful if such a confirmation is not very important. Reliable
communication can still be built upon UDP if a user application handles the
confirmation and retransmission of packets.

TCP on the other hand aims to be a protocol that guarantees that every byte
arrives correctly and in order. It does so by demanding acknowledgements
from the recipient. For a large set of data to be sent, it is divided into
smaller segments that make up the payload of the TCP packets. These
have different sequence numbers that tell how much data has already been
sent. The TCP connection starts by a so called three-way handshake, which
consists of the two nodes sending their initial sequence number and then
acknowledging that they have received the sequence number of the other.
After this, the data transfer begins and the sender will send some packets
onto the network and wait for acknowledgements for these packets, sending
more as the acknowledgements arrive.

There is a limit to how much data the receiver is configured to have directed

at it for any given moment which is called the receiver window. This means
that the data transfer rate can be capped by this window if it is smaller

10

than the bandwidth times the time of transfer, called the bandwidth delay
product (BDP). This window limit is usually 65 535 octets (8-bit words), but
can be made larger by using an option in TCP called window scaling. This is
especially useful if the network has a large round trip time to allow for larger
bandwidths. As an example: at 1 Gb/s (125 MB/s) transfer bandwidth, a
64 kiB receiver window allows a maximum RTT of 524 us.

11

3 Scope of Thesis Project

The aim of this work is to implement and test a limited network stack, called
Fakernet, on an FPGA and to test it. To do this, code is written to handle
the receiving of data from the PHY chip, that is the physical layer, and then
process this data to implement a part of the link layer. The data is received
as four bit nibbles, which is used to find the start of ethernet frames and
forward the incoming packets as 16-bit words to the Fakernet component,
which handles everything from there. The packets that Fakernet generates
are divided into four bit nibbles and transmitted onto the network through
the PHY chip.

To see if the design is fit for use in nuclear physics experiments, it is tested
under various conditions. These tests serve to measure under what circum-
stances the round trip time and data transfer rate are sufficient for this
purpose. Furthermore its behavior in a saturated network and the effects of
receiver window size are tested.

3.1 Scope of Fakernet

The way an FPGA works puts some constraints on what can be programmed.
As mentioned above (see section [2.2)), the FPGA has a limited amount of re-
sources and furthermore, the timing constraints of the signals in the FPGA
must be fulfilled. With this in consideration it is an objective to write pro-
grams so they use as few components as possible on the FPGA, maximizing
available resources for other tasks like ADC control and on-board data pro-
cessing, and to have ample timing headroom (see section . This is the
main reason why a full network stack is not implemented, satisfying all the
standards, but rather as little as necessary to make this specific form of com-
munication work. Because of this, the implemented program is not as useful
in other circumstances than for sending data in a streaming fashion from e.g.
from an ADC to a PC.

3.1.1 Limitations of the TCP Implementation

Not implementing a full network stack, but rather only what is necessary,
puts some restrictions on what it can be used for. These are some of the
restrictions for the TCP implementation:

12

Data is only transmitted, never received (except for acknowledgements).
Control communication, to allow for on-line configuration of other as-
pects of the firmware is performed via UDP.

The payload is handled in units of 16 bit words instead of 8. This is
not a disadvantage in nuclear physics experiments where the building
blocks often are 16 or 32 bit words [3].

No options for IP or TCP are implemented, for example window scaling
(see section [2.6.2)), which can make the window size a limiting factor
of the data transfer rate for large delay distances. The FPGA is to be
used on a small network, both in size and in nodes, with only one or
two switches between it and the PC.

The retransmission and bandwidth back-off, that is lowering and find-
ing new transfer rate when the network is saturated, are simplified.
This means the FPGA will only work efficiently on networks without
limiting bottlenecks, minimizing packet loss.

13

4 Method

4.1 Tools

These are the hardware, software and languages that were used in develop-
ment and testing.

4.1.1 Development Board: Arty A7 35T

The development board Arty A7 35T from the company Digilent is a board
with an FPGA, various connectors, switches and indicators; see figure |4 for
schematics of the relevant components. It has a Xilinx Artix 35T FPGA,
with 20 800 LUTs and 41 600 flip-flops, that can be configured by connecting
to a PC over Universal Serial Bus (USB) and load a bitstream file. This
USB connection also serves as a connector for serial communication using
an on-board USB-serial bridge. For simple debugging, it has four switches,
four light emitting diodes (LED) and four multicolored LEDs [7]. One key
feature for this project is the RJ45 jack with a physical layer chip (PHY
chip) of type Texas Instruments DP83848j. This chip serves as the interface
between the network and the FPGA, handing over recieved data as four bit
nibbles, along with other information such as data validity and clock signal,
and sending data as four bit nibbles from the FPGA with at most 100 Mb/s
transfer rate [§.

14

USB-Serial Bridge

'USB Connector

PHY Chip

Switches
LEDs L

Figure 4: Schematics of the development board used in this project, showing
the most relevant parts. The switches are input signals to the FPGA and
the LEDs are controlled by output signals from it. The PHY chip and the
serial interface are used for both input and output signals.

4.1.2 Network Equipment

All ethernet traffic is transmitted over twisted pair cables of lengths that
make the travel time insignificant for the tests in this report (the signal speed
is somewhere around 60 to 70 per cent of light speed in the cables, and their
lengths are not more than a few meters, meaning the cable transport times
are in the order of ns) [3]. The network switches used are Netgear GS105
with 1 Gb/s capabilities as well as store and forward mode, meaning that
the packets are fully received before they are sent. The two hubs are Netgear
DS104 and Netgear EN104 with 100 Mb/s and 10 Mb/s maximum data rate,
respectively. These hubs do not have store and forward mode. Finally, the
test PC has a 1 Gb/s interface and the FPGA board has a PHY chip with 100
Mb/s. All units with higher capabilities have the ability to negotiate a lower
data rate when needed [9][10][11]. These properties make the switches and

15

hubs useful for different things. The hubs are used to force units to negotiate
a lower transfer rate, and the switches are used for increasing round-trip
times, such as they are used in the setups in figure [7}

4.1.3 Language: C

The C programming language is a general purpose programming language
that has been in use since 1972 [12]. C is here used to write programs
for communication between the FPGA and a PC, using a Universal Asyn-
chronous Receiver/Transmitter (UART) interface. This is a simple serial
interface that allows for sending data to the FPGA, which can then answer
by sending data back. Furthermore, C-programs are used to interpret the
data that is retrieved from the FPGA. The reason for using C for these tasks
is simply that it was the language of choice for the author, while at the
same time having already-written libraries for certain tasks, such as UART
communication.

4.1.4 Language: VHDL

The Very High Speed Integrated Circuit Hardware Descritpion Language
(VHDL) is a programming language that has been around since 1983 and
is a common language for programming FPGAs. As a hardware description
language, its code defines the structure and behavior of an electronic circuit
4[]

Because of the design of FPGAs, they perform instructions simultaneously,
with the logic defined by the program. This means VHDL has to be written
with this in mind, making the code very different from code for systems that
perform instructions sequentially. The variables used in VHDL are most often
logic signals and arrays of these, called logic vectors. In the programs written
for this project, some design choices are recurring, such as the state machine,
the process, counters and components. A state machine gives the program
some structure, allowing it to progress between different states, in which
different tasks are performed. A process in VHDL is a way of organizing
a task by having a trigger (usually a clock signal) that makes the FPGA
execute a block of code (still simultaneously). Counters are the main way of
keeping track of clock cycles or iterations, increasing the value for each time
a certain thing happens, and resetting under certain circumstances; counters

16

are also the main way of measuring time. Finally, components are a method
of abstraction, somewhat similar to functions in usual procedural languages
such as C. They have a defined interface, with input and output signals, so
that they can be regarded as black boxes, performing some task. To have
components work together with the top level design (which is similar to a
main function in procedural languages such as C) or each other, common
clock signals are usually forwarded between them. See section [A] for two
code examples that demonstrate some of these designs. They are slightly
simplified versions of some code used in this project.

To use a design, the VHDL code is synthesized (translated to a hardware
design) and compiled into a bitstream file (similar to an executable program),
which is loaded onto the FPGA. The reason for using VHDL is that it is
a widely used language with many available learning resources, in form of
books, websites and demo programs, and that Fakernet (the network stack
implmentation) was also being written in VHDL, simultaneously.

4.1.5 Vivado

The software used for synthesizing (see section and implementing the
VHDL code was Vivado by Xilinx. Vivado translates the VHDL code into
a hardware design and then tries to find a way to place that design on the
FPGA’s resources, given a chosen FPGA. If the design does not use more
resources than the FPGA has and there are no issues with timing then the
design is compiled int,0 a bitstream file. If not, Vivado provides error logs
that can be used for debugging. The bitstream file can then be used in
Vivado to program a connected FPGA.

4.1.6 Wireshark, Ping and Netcat

To observe ethernet traffic on the PC side, the software Wireshark was used
[13]. Tt allows for observing and analyzing incoming and outgoing packets,
thus enabling the user to check if the packets sent from the FPGA arrive,
are correct and, in the case of faulty packets, find out what is wrong. This
also allows for easily reading debug data that is sent in the payloads.

Ping is a program that sends ICMP packets of the type echo request. These
are, in case things work, answered by echo reply packets from the other end.

17

This is a method of checking if units are connected to a network and if so,
it also measures how long the round trip time is, that is time from sending
of an echo request to arrival of the echo reply. There is an option in ping to
change the size of the ICMP packets, allowing for studying the behavior of
different packet sizes.

To test the TCP functionality, a program called Netcat (nc) was used. It
is designed for reading and writing to network connections using TCP and
UDP. In this project it is used in the PC to read TCP packets from the
FPGA, also measuring the data transfer rate.

4.1.7 UART Component

A receiver and transmitter component for an asynchronous serial interface
(UART) was written in VHDL to communicate between the FPGA and the
PC. This was used to read the information saved in the dual ported random
access memory (DPRAM) of the FPGA, using the serial bridge of the board.
This way, the data could be saved in a text file in the PC for analysis and
debugging.

4.1.8 Dual Ported RAM Component

A DPRAM component was written in VHDL with the abilities to change
address as well as to read and write data. This was mainly used to record
traces of signals, of the PHY chip or to debug signals from Fakernet by saving
the signal values for each iteration. This allowed them to be read over a serial
interface to a PC for further analysis and debugging.

4.1.9 Fakernet

Fakernet is a software VHDL component written by Hakan T. Johansson.
It serves as an interpreter of incoming packets and generator of outgoing
packets. The idea is not to implement a full network stack, but rather the
minimum required for our purpose, that is transferring data from the FPGA
to a PC. Fakernet is able to answer ARP requests and certain ICMP mes-
sages, establishing its connection as a node on the network. Furthermore, it
implements a limited form of TCP, allowing it to establish a connection to
a PC and sending data through TCP packets. A control interface via regis-

18

ters, setting and retrieving control settings is also implemented using UDP
packets.

Fakernet works only on link level and inwards, so to use the component, it
takes input in the form of 16-bit words along with a clock signal and a few
more signals, such as when a word starts. The output from Fakernet is also
16-bit words that are to be transmitted using the PHY chip. So by using
this input and output interface, it functions as a limited network stack. It is
in this way Fakernet is used in the design of this project.

4.2 Development and Test Setup

The process of getting Fakernet to work on the FPGA can be split into some
substeps, outlining a general plan of the project:

1. Write UART receiver and transmitter components for the FPGA and
establish a connection between the PC and the FPGA using this serial
interface.

2. Design a DPRAM component on the FPGA and use the serial interface
to switch addresses, as well as read and write its contents from the PC.

3. Record traces of signals of the PHY chip into the DPRAM.

4. Dump the raw signals of received packets, decode them and verify that
they are valid packets.

5. Generate and analyze predefined packets to more closely study the
behavior of the PHY chip.

6. Implement the Fakernet component, with send and receive interfaces.

7. Test Fakernet under different conditions.

4.2.1 General Setup

The main setup for developing and testing the FPGA design consists of two
PCs, the FPGA and a network hub or switch. One of the PCs, henceforth
called the development PC, is used to write the programs and for communi-
cating with the FPGA using UART. This is connected with a USB cable to

19

the FPGA, used both to program it and for the serial interface. The FPGA
is also connected to a network hub or switch, thereby connecting it to the
other PC, called the test PC, and at the same time to the department’s lo-
cal network. This way, the FPGA can communicate with the test PC using
Ethernet. See figure 5| for a schematic overview of the general experimental
setup.

Local Network Ethernet

Ethernet
Test PC HUb/ Deve|0p_
Wireshark .
$nc Switch ment PC
$ping Ethernet Vivado
Ethernet

FPGA USB

Figure 5: General setup for developing and testing programs for the FPGA.
All other setups are, in essence, subsets of this general setup, in that they
may be constructed by disconnecting one of the four ethernet connections.
During testing, multiple hubs and switches were also connected in series to
produce a delay effect.

4.2.2 Setup for writing the dual-ported RAM

The dual-ported RAM (DPRAM) was written in VHDL, together with re-
ceiver and transmitter for the serial interface, on the development PC, using
vivado to generate a bitstream file. This was loaded onto the FPGA using a
USB cable. To write, read and switch memory addresses of the DPRAM, a
UART interface was used. Firstly this was done in a primitive way, manu-
ally sending and receiving octets in the development PC using the program
Screen, but later on, C programs were written to send and receive on the PC

20

side. At this point, nothing was connected to the RJ45 of the FPGA board.

4.2.3 Setup for testing the PHY chip

To test the PHY chip, broadcast packets anyhow present on the department’s
local network were used, not caring about the specific contents of the packets.
These packets came via a network hub (EN104, 10 Mb/s) that was connected
to the local network and thus forwarded to the FPGA board. The PHY chip’s
data valid pin signaled when a valid packet was received, and this was used to
trigger a loop in the FPGA, saving the trace of the packets in the DPRAM,
with a recording of the PHY chip signals each clock cycle. This trace was
later read by the PC using the UART interface and decoded by some C
programs that were written for this task.

There is a difference in using this network hub and, for example, one of the
switches. The main difference is that this hub has a 10 Mb/s interface while
the switch has a 1 Gb/s interface [11][9]. This means using the hub forces
the PHY chip to negotiate a slower transmission rate, making this initial
investigation of the PHY chip simpler.

4.2.4 Setup for testing Fakernet

The test PC was used to generate packets for the FPGA to answer. These
were sent from it to the ethernet switch and then to the FPGA. This com-
munication is bi-directional, allowing the test PC to observe and analyze
the packets using Wireshark. In addition, debugging was also performed
using traces recorded by the DPRAM with additional debug signals from
Fakernet.

Eventually, as TCP was implemented, it was tested by using Netcat on the
test PC, reading TCP packets from the FPGA and measuring data transfer
rates. At this stage, virtually all debugging was done using Wireshark on the
test PC. As the TCP implementation grew more mature, its performance was
tested by changing the software and hardware, observing the data transfer
rate and round-trip time. By modifying the source code, it is possible to
apply restrictions such as payload size of TCP packets or the receive window.
Furthermore, the setup can be modified by changing the path between the
FPGA and the test PC, for example by adding network switches.

21

5 Results

5.1 Packet Size Effects on TCP Transfer Rate

To test how the TCP implementation of Fakernet behaves with different
packet sizes, its source code was changed to only permit payloads of certain
lengths. Note that the overhead is constantly 78 octets, 38 from ethernet
overhead and 20 each for TCP and IP overheads. The data transfer rate, Ryq,
should equal the bandwidth of the connection, R., multiplied by the fraction
of the payload, D, and the packet size which is payload plus overhead, D,:

Dy

=D+ D, R. . (1)
With a constant connection speed (100 Mb/s) and constant overhead (78
octets), the data transfer rate, Rq of equation , is a function of one non-
negative integer variable, D,,. This function is zero for a zero payload, which
is not surprising since there would be no data to send. Furthermore, as D,
approaches infinity, the function approaches R.. Ethernet frames only permit
(assuming jumbo frames that allow for larger packets are not implemented)
payload lengths of 1500 octets, but the TCP and IP overhead (40 out of
the 78 octets) are not included, such that in this case the payload is further
reduced to 1460 octets. Using netcat, taking 100 second averages, the data
transfer rates were measured. The measurements show good agreement with
equation for payload sizes larger than or equal to 6 octets (84 octets total
packet length), and very poor agreement for smaller payloads (mean rates
of 4 and 2 octets payload were lower than the predicted value by factors
53 and 2422 respectively and they were remeasured ten times each, showing
insignificant relative variances of lower than 0.01). See figure |§] for a plot
comparing measurements to the predicted values.

Rq

22

K

\
\

®

Transfer Rate (MB/s)
=

WYX
% X X Measured Rate

— Predicted Rate

200 400 600 800 1000 1200 1400 1600
Packet Size (octets)

Figure 6: Measured values of data transfer rates (red crosses) and the pre-
dicted value (blue curve) plotted against the total size of the packets for a
connection speed of 100 Mb/s. The zoomed in inset contains measurements
for 2, 4, 6 and 8 octets payload, highlighting the significantly lower transfer
rate for payloads smaller than 6 octets compared to the predicted value.

The speeds for very small payloads being much smaller than the predicted
values leads to the conclusion that Fakernet fails to communicate these pack-
ets at the expected rate.

5.2 Round-Trip Time Measurements Using Ping

Using Ping, it is possible to test the round-trip time (RTT) between the test
PC and the FPGA. Furthermore, Ping has the option of varying the size of
the packets that are sent in both directions. Tests were performed, measuring
the lowest RTT for five different setups, named I through V, using different
sizes of packets (see figure [7)).

23

PL|S F IV

PII1S 1S —F |V

P = PC, F = FPGA
S = Switch, H = Hub
— 100 Mb/s—1 Gb/s
Figure 7: Schematic view of the five different setups for measuring the round-

trip time. Note the distinction between connections of 100 Mb/s and 1 Gb/s
transfer rate.

This way, the added time to the RTT by changing the setup, for exam-
ple adding a network switch, was measured for different packet sizes. The
switches in the setups are using store-and-forward mode, meaning that they
receive the entire packet before forwarding it |11]. The FPGA can also be
regarded the same way, needing to receive an entire echo request before be-
ginning to send its echo reply. This means that these units add a minimum
of At = R.D, where R. is the data transfer rate and D is the length of the
packet. For a 100 Mb/s interface, this means 0.01 ps/b and 0.001 us/b for
1 Gb/s. The times added by network hubs are uncertain, since they start
forwarding data as soon as they start receiving a packet [10][9]. Further-
more, it should be noted that the RTT also depends on the PC, since the
time that is measured is at the application level, meaning the packets have
to go through the kernel and not only the network card, adding some time
that will always be needed, regardless of the setup. Finally, the cables used

24

are short enough to not affect the RT'T any significant amount (1m of cable
amounts to a delay of &~ 5 ns and the total cable length was never larger
than a few meters, see section 4.1.2)).

With these assumptions, the round trip time, Trr, is an affine function that
depends on a constant, Cy (with dimension time), and a coefficient, C; (with
dimension time per data), multiplied by the packet size, D:

TRT = CO + ClD . <2>

By measuring this for different values of D, a system of linear equations
is produced. From these, one can fit linear curves. Writing this in matrix
notation, Ax = b, it is solved with minimal error using the method of least
squares: [14]

ATAz = ATh 5 o = (ATA)'ATh (3)

Superscript 7' denoting transpose of matrix (A]; = Aj;). Testing these setups
for some packet sizes and using this method, the measurements resulted in
affine functions, with a slope that corresponds to time added per bit and
their value at D = 0 corresponding to the time constant from equation ([2)
(see figure [§] for these measurements and fits for three different setups).

25

250 ¢ ¢ V, Measured

“““““““““““ V, Fit

x x JII, Measured -
200 I1L. Fi &
i y lt
g e o], Measured
& 150 I, Fit —
£
5]
= 10 B e
g o M‘ ““““ T e o
é e

5 ek o
“““““““ -
100 200 300 400 500 600

Packet Size (Octets)

Figure 8: Measured RTTs for three different setups for different packet
sizes (markers) and the corresponding fits (non solid lines). See figure [7]
for schematics of the setups used.

See table|l| for a comparison of the measured time addition and the predicted
minimum between the setups. Comparing these slopes to the predicted min-
ima of time added per bit of the five setups, it can be concluded that none
of the measurements showed a smaller time increase than expected and that

every fit’s slope was close to the minimum time that the network switches
should add.

5.3 Effect of Window Size Restrictions

Variation of the TCP receive window changes how much data can be sent
before acknowledgement, i.e. be in-flight on the network at the same time.
If this value is smaller than the BDP, it will be a bottleneck, limiting the
data transfer rate because the sender would be able to send data but is not
allowed to do so. By limiting the receive window in the Fakernet source code,
it is possible to test this effect (it would be possible, but more complicated

26

Table 1: Measured fit and predicted minimum time added per bit for different
setups. See figure m for schematic view of the setups.

Setup | Measured, (' | Predicted minimum
ns/b ns/b
I 11.317 10
II 11.254 10
11 21.035 20
v 12.157 11
\Y 12.449 12

to change window size on the test PC side). We have for a window size,
W, a bandwidth, R, with maximum, R,.., for an otherwise unconstricted
connection and a RTT, Tir:

R = { Rmax if w Z BmaXTRT

. . 4
% if W < BuaxTrr (4)

For a constant packet size, the RTT is constant and B, is constant and
known. This means that by measuring the bandwidth decrease with decreas-
ing window size, it is possible to find at what window size the bandwidth,
R is limited, i.e. the point W = B..T. Finding this window size yields the
round-trip time. This was measured for four different packet sizes for a TCP
stream, using Netcat to measure bandwidth (correcting data transfer rate
for overhead). The setup was identical to setup III from the Ping RTT mea-
surements (see figure [7| for schematic view of the setup). To approximately
find the point W = By, the method used was to take the window size for
the measurement where the bandwidth had decreased to 95 per cent of its
maximum (see figure [9).

27

1
. S A — SO S SO S — «
]
=)
3
=
o]
‘§ *
wn
=
St
= x
x x x Measured
L S O R S S S S Max Rate
K
A e cut
£

10000 20000 30000 40000 50000 60000 70000
Max Window Size (octets)

Figure 9: Data transfer rates (directly proportional to bandwidth) measure-
ments (red crosses) for constant packet size (1538 octets and 64 octets ac-
knowledgment) varying the maximally allowed receive window size along with
the maximum data transfer rate (blue dashed line, calculated from known
bandwidth and overhead-to-data ratio) and the cut (black dotted line) to
find W = BpaxT.

For these measurements, it can be concluded that the RTTs are so small
that the window scaling option is not needed for full usage of bandwidth in
TCP communication within this small network. To test the validity of this
method of measuring the RTT, it can be compared to the RTTs that were
measured using ping for the same setup. See figure

28

40

x x Measured from Window
350 | ... Fit from Window
® o NMeasured from Ping

)

[
S
=]

“““““““““““ Fit from Ping

[]
[SA]

[
S

[a—y
(Al

Round Trip Time (us

[y
S

()
=

200 400 600 800 1000 1200 1400 1600 1800
Packet Size (Octets)

Figure 10: Round trip times determined from receiver window constraints
(red crosses) for different packet sizes along with a least squares fit to a line
(red dashed line) compared to the Ping RTT measurements (black circles)
with their fitted line (black dotted line) for the same setup.

5.4 Bandwidth Decrease in a Saturated Network

Because of the way retransmissions are implemented in Fakernet, data trans-
fer over TCP is more limited when facing a saturated situation on a network
than a standard TCP implementation. Standatd TCP implementations tend
to stabilize their transfer rates such that they share the bandwidth roughly
equally. This is optimal in the sense that it maximizes the lowest transfer rate
on the network. This situation was tested by using netcat, having a PC on
the local network send one or more streams of TCP, with standard implemen-
tation, at the same time as the FPGA transmits data to the test PC, where
the transfer rate was measured. To create a bottleneck, the network card of
the PC was set to only negotiate 100 Mb/s with the network switch that all
this data went through. By measuring the data transfer rate, the percent-
age of the maximum data transfer rate was calculated. These measurements

29

show that Fakernet is severely limited when faced with a bottleneck. Fak-
ernet behaves a little bit better on a saturated network if it competes with
other identical boards that also run fakernet. This was measured in a similar
fashion, connecting two and three boards to the same switch and sending
data to the PC. See figure [1I] All these measurements were conducted ten
times each, measuring an average over 100 seconds. None of the variances
were larger than one per cent of the maximum bandwidth.

oL Equal Share
¢ ¢ With Identical Boards

8 x x With standard TCP
=
g
2
E
< 6
/m
Qe
S | T
840 e
&} ¢ e
T
g L

ol —

x
x X x

.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Extra TCP Streams

Figure 11: The measured bandwidth percentage of the TCP traffic from an
FPGA board with the Fakernet implementation. In the case of different
number of extra TCP streams from PCs (standard TCP implementations),
it is shown in blue crosses. The black diamonds are for the measurement
with other, identically configured boards running Fakernet. Also depicted is
the equal share (that is the function 11%, red dashed curve) that represents

the value if the FPGA had shared the bandwidth equally with the other TCP
streams.

30

6 Discussion

6.1 Window Scaling for a Gigabit Interface

One point of interest is how this design would behave with a 1 Gb/s interface
instead of one of 100 Mb/s. The design does not implement TCP options
and therefore there is no window scaling. This means the maximum allowed
receive window is 64 kiB. Remembering equation , the maximum allowed
RTT for a bandwidth of 1 Gb/s is 524 us if the window size is not to be a lim-
iting factor. The question that should be asked is under what circumstances
this would be achievable.

Measuring the RTT between two computers on the department’s local net-
work, connected with 1 Gb/s bandwidth and with one network switch be-
tween, Ping reports a time of around 130 us. Testing also for a longer dis-
tance, pinging www.chalmers.se, multiple switches and routers away, gives
a time of around 290 ps. This means that a receive window size of 64 kiB
will not limit the data transfer rate in these situations. Comparing this to
a reasonable setup in which this design would be used, consisting of a small
network with only one or two network switches between the FPGA and the
PC [3], it can be concluded that the window scaling option is not needed.
Therefore, Fakernet’s inability to handle window scaling is not a disadvan-
tage, justifying the choice of not implementing it.

6.2 Comparison With Situation at R’°B

The experimental setup at R3B at GSI in Germany is what originally sparked
interest in the idea of transferring the ADC data directly over Ethernet.
Upstream from the experimental setup, a stable beam hits the production
target of the GSI fragment separator (FRS), producing different nuclides.
These are separated in a set of four dipole magnets, causing only certain
nuclides to pass, before reaching the R®B setup. Recent experiments at this
setup have an average data output in the order of a few 10 of MB/s, recording
a few kHz of events [3]. Implementing the design of this project would mean
to use it on around 300 boards [2], each capable of more than 10 MB/s (using
only 100 Mb/s). This results in a capability of about 3 GB/s, well above the
requirement for average bandwidth, assuming an equal data rate from each
front-end board. If, instead of 100 Mb/s, boards with 1 Gb/s interface are

31

used, the total capability is higher by a factor ten. Using gigabit ethernet
requires a more careful design of the VHDL interface to the PHY chip, but
the internal processing speeds required are already fully supported in the
Fakernet component.

A more interesting comparison would be to the detectors with the highest
output rates. These are in the central focal plane of the FRS, before the
magnets have separated most ions. If we assume an event rate at these de-
tectors of around 100 MHz during experiment and that every event produces
ten bytes (including some overhead) from the ADC, it would require a band-
width of 1000 MB/s, above the capabilities of this design. There is, however,
a solution for this, in that most of these events are uninteresting since they
represent nuclides that will not fully pass through the FRS magnets. If a
detector after the magnet (which has fewer events, in the order of 100 kHz
[3]) detects a hit, it can send a trigger signal to the earlier detector, vali-
dating hits in certain time periods, while the rest is discarded. That way,
the amount of data to send can be reduced significantly, allowing for this
design to be used with one 1 Gb/s interface. Note that detection rates of 100
MHz would require the involved detectors to be segmented, such that the
rate is spread over many strips. This would likely imply the use of multiple
front-end boards, so that even 100 Mb/s interfaces may suffice.

An alternative trigger scheme, the free-running method of data acquisition,
is used by the CALIFA detector at R®B. This means that the electronics is
not put in dead time for each accepted trigger, allowing for more statistics
to possibly be collected in a shorter time, thus making better use of beam
time. This is in contrast to the currently used trigger scheme that forces
the electronics into dead time during conversion each single event. When
the PC has received the data of the previous event, the next trigger can
be accepted. One event can be converted during readout of previous event,
allowing some parallelism but the method still means less efficient use of beam
time. Formerly trigger-based schemes were used due to their more efficient
use of bandwidth and disk space, but using current network technology, that
is not a concern in the experiments of today. Triggered single-event readout
requires the readout to have low latencies, for fast dead time release. Fakernet
is not suited for this because of the relatively long RTTs. It is, however, well
suited for the streaming nature of the data transfer used in free-running
schemes.

32

6.3 Comparison With Other FPGA
Network Stack Implementations

It has been mentioned several times in this report that the network stack
should be limited so that it saves resources for other tasks on the FPGA. It
can be compared to other designs that have been implemented, which are
more complete network stacks with functionality that allows for more TCP
connections, more standard implemented bandwidth back-off and retrans-
mission, and TCP options such as window scaling. While these designs have
much more functionality than Fakernet, the question is at what cost? Com-
pared to more complete network stack implementations in FPGAs, Fakernet
uses less FPGA resources. Table [2] compares Fakernet with several other
finished designs that all would have the capability to be used instead of Fak-
ernet. It illustrates the considerable amounts of FPGA resources which can
be saved by not implementing a full network stack but rather one that is
limited to what is necessary for the purpose.

Table 2: Comparison of different designs that implement networks stacks
with TCP functionality, showing their FPGA resource utilization and speed
and supported number of connections. fThe resource usage is for the full
design, the Fakernet component itself only occupies 1 614 LUTs, 944 flip-
flops and 12 BRAM units. *Fakernet is only tested for 100 Mb/s but the
code allows for 1 Gb/s. TData is not provided in the respective references.

Design LUTs | Flip-flops | BRAM | Speed | Connections
Units Units Units | Mb/s

Fakernet! 1 966 1241 13 1000* 1

Alt 1 [15] | 67 938 83 829 323 2 000 10 000
Alt 2 [16] | ~16 300 | ~16 300 134 800 >3

Alt 3 [17]) | 22 468 24 744 353 10 000 10 000
Alt 4 [1§] B B B 425 1

Alt 5 [19] i i T 25 000 4096

6.4 Outlook

Ethernet is a promising technology for several reasons (see section [1]). The
implementation and testing of a limited network stack on an FPGA shows

33

that it is possible to achieve a functioning unit that is capable of connecting
to other nodes on a network and transfer data using TCP. Furthermore,
the results show that it, despite its limitations (see section , manages
to transfer data at expected rates and that it also handles retransmission of
packets in a way that makes sending data to a PC work, even under saturated
conditions. Finally, testing reveals that the RTT for a small network is
sufficiently low for BDP to not exceed the 64 kiB window limit, even at an
increased bandwidth of 1 Gb/s. With these results in mind, it is reasonable
to believe that this implementation could be successfully used in a large-scale
experimental setup such as R®B.

An experimental setup that uses this design would most likely consist of
many FPGAs that are programmed to control ADCs and do on-board data
processing, as well as having a Fakernet implementation. On the particular
FPGA used in this project, (see section the Fakernet implementation
uses less than a fourth of any of the available components (lookup tables
(9.45 %), flip-flops (2.98), block RAM (24 %), global buffers (3 %) and phase-
locked loops (20 %)), leaving plenty of room for the other tasks. Comparing
it instead to the kind of FPGAs used in R*B, ECP3-150, these FPGAs have
more than seven times as many LUTS, so the design leaves even more room.
These FPGAs would be connected to a PC with one or two network switches

in between, allowing them to send data from the experiment to the PC using
TCP over Ethernet.

Fakernet is under development, with bugs that need fixing, see next section.
Hakan T. Johansson wrote the Fakernet code at the same time as this project,
and at the same department. The version used for testing has continuously
been updated. Even though it is not yet entirely bug free, the current version
of Fakernet has the functionality to act as the desired network stack.

Viewing the design of this project as a form of proof of concept, its feasability
as a replacement for the methods of today is proven. It will be interesting to
see the first results from its use in actual experiments.

6.4.1 Further Development

There are several ways of improving and testing this design that implements
Fakernet that have not been done:

34

e The design has never been tested in a situation where there is actual
data from a real ADC to be sent to the PC. It is not clear if this would
pose any additional difficulties.

e Fakernet has a problem with sending very small packets (see section
5.1), severely limiting its data transfer rate. This is not that big of an
issue because packets that small are rare.

e Fakernet requires the FPGA to be reprogrammed every time it needs
to open a new TCP connection, that is having a bitstream file loaded
onto it. The reprogramming would preferably be done by a remote
user, using a control register over UDP.

e The control register, intended for configuring Fakernet, is untested.

e Retransmission of packets is done in a way that makes packet losses
due to, for example, bottlenecks cause more slowing-down than needed.
See section [5.4]

e The design is not tested at all for 1 Gb/s bandwidth.

6.5 Conclusion

This project started out with a goal of implementing a limited network stack
on an FPGA in order to communicate over Ethernet, to eventually transfer
data to a PC using TCP. The purpose for that is to replace current systems
for data transfer from ADCs to PCs in nuclear physics experiments, using
the advantages of Ethernet.

In the end there is a completed design that implements this network stack.
It uses an FPGA together with an on-board PHY chip to interpret incoming
Ethernet packets, finding their start and building 16-bit words of the data,
the incoming network traffic is forwarded to the Fakernet component. This
component functions as a network stack that handles necessary protocols
to establish connections and transfer data. When Fakernet has generated a
packet, be it as an echo reply or a TCP packet, its output is sent through
the PHY chip onto the network. Thus the original goal has been achieved.

The results from testing this design shows that it has capabilities that make
it suitable as a replacement for the data transport systems of today at real

35

nuclear physics experimental setups. The TCP implementation works and
utilizes the entire bandwidth, the round trip time is low on the kinds of
networks it is intended to be used on, the design uses few of the FPGA
components and there are no issues with timing. Considering the R3B setup,
this design has the necessary capabilities to be implemented.

36

References

[1] A. Heinz, private communication, Feb. 2019.

[2] Alexandre Charpy, Andreas Heinz, Hakan T. Johansson et al., “Techni-
cal Report for the Design of the NUSTAR Data AcQuisition System,”
2018,
https://edms.cern.ch/ui/file/2024803/1/TDR,__NUSTAR__DAQ_ public.pdf.

[3] H. T. Johansson, private communication, Feb. 2019.
[4] A. Rushton, VHDL for Logic Synthesis, Third ed. Wiley.
[5] S. Sjoholm and L. Lindh, VHDL for konstruktion, Fifth ed. Studentlit-

teratur.

6] IEEE Computer Society, “IEEE standard for ethernet,” 2015,
https://ieeexplore.ieee.org/stamp /stamp.jsp?tp=&arnumber=7428776.

[7] Reference manual, Arty A7 35T,
https:/ /reference.digilentinc.com/ media/reference/
programmable-logic/arty /arty__rm.pdf, Digilent, Jun. 2017.

[8] Pysical layer chip datasheet, dp83848;j,
http://www.ti.com/lit/ds/symlink /dp83848c.pdf, Texas Instruments,
Mar. 2015.

9] Network hub manual, EN104,
http://www.downloads.netgear.com/files/en104ig.pdf, Netgear, 2000.

[10] Network hub manual, DS104,
http://www.downloads.netgear.com/files/GDC/
DS116/DS100series datasheet.pdf, Netgear, 2000.

[11] Network switch datasheet, GS105,
https://www.netgear.com/images/datasheet/
switches/GS105v5_GS108v4_GS116v2.pdf, Netgear, Jul. 2017.

[12] B. Kernighan and D. Ritchie, The C' Programming Language, Second
ed. Prentice Hall.

[13] https://www.wireshark.org/, Feb. 2019.

[14] 1. Gustafsson and K. Holméker, Linjir algebra och numerisk analys.
2013.

37

[15]

[16]

[19]

David Sidler, Gustavo Alonso, “Scalable 10 G TCP/IP Stack Architec-
ture for Reconfigurable Hardware,” 2015,
http://www.fccm.org/past/2015/pdfs/M2_ P1.pdf.

Shen-Ming Chung, Chun-Yi Li, Hsiao-Hui Lee, Jeng-Han Li, Yau-Chung
Tsai, Chi-Chun, “Design and implementation of the high speed TCP /TP
Offload Engine,” 2007,

https://ieeexplore.ieee.org/abstract /document /4392084 /metrics.

David Sidler, Zsolt Istvan, Gustavo Alonso, “Low-Latency TCP/IP
Stack for Data Center Applications,” 2016,
http://davidsidler.ch/files/fpl16-lowlatencytcpip.pdf.

Satish Narayanaswamy, “High Performance TCP/IP on Xilinx FPGA
Devices Using the Treck Embedded TCP/IP Stack,” 2004,
https://www.xilinx.com /support/documentation /

application_ notes/xapp546.pdf.

Enyx, “40G/25G/10G/1G TCP/IP + MAC IP Cores for FPGAs and
SoCs,” 2018,

http://www.enyx.com/files/Enyx%20FPGA %20
[P%20Cores%20-%20TCP%20UDP %20MAC.pdf.

38

A Code Examples

These code examples are meant to show the general idea of writing pro-
grams in VHDL. One thing to keep in mind is that the code is executed
simultaneously. Sometimes it seems as though signals are assigned two times
simultaneously, which is not possible, but that is because VHDL treat if
statements differently. A signal may be assigned in a process (giving it a
default value), then reassigned in a subsequent if statement without ambi-
guity. Note also the use of buffered variables. These are used to compare a
signal to its value the previous cycle by each cycle setting it to the new value.
Comments are written with double dashes, '——’, and assignments are done
with arrows, '<=’, instead of equality signs, '=’, as in C. Logic signals, such
as those used in these examples, have two values, 1’ and ’0’, also referred to
as high and low or true and false, respectively. These are sometimes grouped
in arrays called logic vectors, commonly used to represent integers in a bi-
nary representation. Both sections of code are used in the final design of the
project. They are slightly changed to make them more readable in isolation
from the rest of the program, and commented to make the intentions of each
step clear.

A.1 Process Example

This code example shows a VHDL process that saves a trace of Fakernet
output (16-bit words) into a DPRAM. To begin with, the interface for the
DPRAM component has input signals ’data’, 'write_to__mem’ and ’address’.
These represent the data to be written, a signal to the memory, saying it is
time to write, and an address to write to. The information to write is in the
interface for Fakernet component, 'word_ready’ and 'word’, which represent
if an output word is ready and its contents, respectively. Using these signals,
the process checks if a word is ready, and if that is the case, it writes it to
memory and changes the address for the next word. In addition, we need to
check if the memory is full.

— Code Example: Trace Saving Process

— Save the output of Fakernet into DPRAMs
— Fakernet gives a signal, 'word ready’, when it is

39

M)
-

|— ready to send a word

— called ’word’.
— This should trigger the memory to write it
— and advance the address.

— To write to memory, the ’write to _mem’ signal
— mneeds to be high.

sjl— It needs data to be written in the signal ’data’.

b

— It needs to have the signal ’“address’ to know where

— in memory to write.

|— These three are inputs to the DPRAM component.

— signals:
— 16 bit address represented as a logic vector

o|— initialized as zeros:

signal address_ counter : std logic_vector (15 downto 0)
;= (others = '07);

— constant logic vector that represent the max address

— of the DPRAM:

2| constant signal max_address : std_logic_vector (15
downto 0) := (others => ’'17);

s5l— signal that represents if the memory is full

o|— initialized as zero:

o7l signal memory_full : std_logic := '07;

28

wltrace_saving process : process (CLK)

3(

31

32

33

34

38

39

40

41

— trigger process each time the clock signal changes
begin
— only execute if clock signal went from low to high
if (rising edge(CLK)) then
— in general, we dont want to write to memory
write to mem <= ’'07;
— set write address to our counter value
address <= address_counter;
— We want to write and advance address counter iff
— we have word ready
— and the memory is not yet full.
if (word ready = '1’ and memory full /= '1’) then

40

if (address_counter < max_address) then

— advance the address counter
— is not max yet

address

address counter <= address_ counter + 1;

else

— otherwise , set memory filled
memory_ full <= "17;

end if;

— set write data to Fakernet output

data <= word;
— set the memory to write
write_to_mem <= ’'17;
end if;
end if;
end process;

A.2 Component Example

This code example shows how a whole component can look. This component
takes input from the top level component (like a main function in C) in the
form of a clock signal as well as a signal that represents the clock of the PHY
chip that runs at 25 MHz (0.25 times the speed of the board clock). It also
takes input in form of data from the PHY chip that represents the nibble
and the data valid pin. These inputs are used to interpret incoming data,
find the start of a packet (the SFD) and from there build 16-bit words to
later be used in the Fakernet component. These words are used as output,
along with ancillary information: when the packet starts, ends and when a
new valid word is ready. Note the use of keywords in and out in the interface
port map of the component, signaling if the signals are inputs or outputs.

— Code example

— Word building component used for building the

sl— 16 bit words as well as finding the packet

— for use in Fakernet implementation.

entity word builder is

41

start

— define the interface port map
port (
— clock from board
clk : in std_logic;
— rising edge of the PHY chip clock which
— is slower than the board by a factor 4
rx_rising_ edge : in std_logic;
— data valid pin from PHY chip
valid : in std_logic;
— data nibble from PHY chip
data : in std_logic_vector (3 downto 0);

— 16 bit word output

word : out std_logic_vector (15 downto 0);
— signal that is high if word is ready
word_ready : out std_ logic;

— high if first word in packet
packet_start : out std_logic;

— high for one cycle if packet ended
packet _end : out std_logic;

) ;

»lend word_builder;

architecture behavioral of word builder is
— here the code that is run is written

— variables

— the start frame delimiter

constant signal SFD : std_logic_vector (15 downto 0)
= "0101010101011101";

— signal telling if start is found

signal start_ found : std logic = ’'07;

— buffered signal from last cycle

signal last_start_found : std_logic;

— used to keep track of which nibble we

— are at, initialized at 1

signal word_counter : std_logic_vector(l downto 0)
"01";

42

46

48

49

50

51

— maximum counter value is 4
constant signal word counter max : std_logic_vector (1
downto 0) := "11";

— buffered value for comparison to last cycle
signal last_valid : std_logic;

begin

word__building process : process (clk)
— process to build 16 bit words of 4 bit nibbles
— and find start of frame
begin
if (rising edge(clk)) then
— default values
word_ready <= '07;
packet start <= 07,
— buffer wvariable
last start found <= start found;

— first we find the start
if (valid = ’1’ and rx_rising edge = ’'1’) then
— this advances the current 16 bit words
— and takes away the oldest nibble and
— appends the new nibble
word <= word (11 downto 0) & data;
if (word = SFD) then
— SED found
start found <= ’'17;
if (last_start_found = ’0’) then
— make sure it is not an SFD
— inside a packet
packet start <= '17;
end if;
end if;

— mnext we want to advance word counter
if (start_found = ’'17) then

43

81 if (word counter = word counter max) then

82 — a word is finished

83 — reset counter

84 word__counter <= (others = '07);
85 — we have a word ready

86 word_ready <= "17;

87 else

88 — advance counter

89 word_counter <= word_counter + 1;
90 end lf,

91 else

92 — start not found, reset counter to initial
93 I value, 1

94 word_counter <= "01";

95 end if;

96 elsif (valid /= ’1’) then

o7 — invalid data, reset all by saying start

08 — not found

99 start found <= '07;
100 end if;

101 end if X

02| end process;

103

i end_finding process : process (clk)
105 — process to find end of packet
106 begin

107 if (rising edge(clk)) then

108 — default value

109 packet _end <= '07;
110 — buffer variable
111 last_valid <= valid;

112 if (last_valid /= valid and valid = '0’) then
113 — we have data invalid and it was

114 — valid the cycle before meaning

115 — we have found the end of a packet

116 packet end <= '17;

117 end if;

118 end lf,

44

9| end process;
120

ziiend behavioral;

45

	Abstract
	Acknowledgements
	Glossary
	Introduction
	Background
	Nuclear Physics Measurement Techniques
	FPGA
	Network Communication
	UART
	Ethernet
	Network Protocols and Layers
	ARP, ICMP and IP
	TCP and UDP

	Scope of Thesis Project
	Scope of Fakernet
	Limitations of the TCP Implementation

	Method
	Tools
	Development Board: Arty A7 35T
	Network Equipment
	Language: C
	Language: VHDL
	Vivado
	Wireshark, Ping and Netcat
	UART Component
	Dual Ported RAM Component
	Fakernet

	Development and Test Setup
	General Setup
	Setup for writing the dual-ported RAM
	Setup for testing the PHY chip
	Setup for testing Fakernet

	Results
	Packet Size Effects on TCP Transfer Rate
	Round-Trip Time Measurements Using Ping
	Effect of Window Size Restrictions
	Bandwidth Decrease in a Saturated Network

	Discussion
	Window Scaling for a Gigabit Interface
	Comparison With Situation at R3B
	Comparison With Other FPGA Network Stack Implementations
	Outlook
	Further Development

	Conclusion

	References
	Code Examples
	Process Example
	Component Example

