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Abstract

The most prominent factor behind traffic accidents today is human errors. There
are many ways, in which problematic behaviors such as inattention can be mitigated.
One of the tools used for this purpose is warning systems. These warning systems
needs to give warnings both at a time where the driver needs it as well as give the
driver a sufficient window to react. In order to achieve these goals information of
the state of the driver can be vital to know how curtain situations should be handled.

A prediction of future events could be used in order to increase the amount of
time between the warning and the dangerous event. This report explores possibili-
ties of using recurrent neural networks with long short-term memory for prediction
of eight different driver actions inside of a vehicle, such as glancing and reaching
inside of the vehicle among others.

Other studies in the domain of predictions of driver actions have had the focus
on car movements such as breaking and lane changing, while this study concen-
trates on the state of the driver. There is potential for these predictions to improve
a warning system and give a driver more time to react to a given situation. The
predictions are based on sequences of actions, which are generated from sequences
of images with a convolutional neural network.

A dataset consisting of sequences of images used in the report was gathered
at RISE Viktoria AB. The hyperparameters of the recurrent neural network, such
as the number of hidden units and amount of layers, was chosen with Bayesian
optimization. An addition of a parallel input of optical flow created from the input
images was found to improve the performance of the convolutional neural network.
The complete network achieved an average prediction accuracy of 80% for the next
frame predictions and 62% after 20 frames. A comparison where the predictions
were set to the last element in the input achieved an accuracy of 79% for one frame
ahead and 49% after 20 frames.
Keywords: Machine learning, LSTM, RNN, Optical flow
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Table 1: Abbreviations used in the report

CNN Convolutional neural network
RNN Recurrent neural network

LSTM Recurrent neural network with long short-term memory
MSE Mean squared error
GPS Global Positioning System
CAN Controller Area Network
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1 Introduction

Traffic accidents are a large problem today with many casualties worldwide
every year. In the vast majority of the cases, human errors play a large role
in creating the situations leading up to the accidents [2]. Hence there is a
great potential benefit to traffic safety by finding ways to erase or mitigate
this source of traffic accidents. Among current technology used for this
purpose is forward collision warnings, which are designed to detect and
inform the driver of a danger and thus giving the driver an opportunity
to take an appropriate action. For this purpose, a sophisticated system
is required to detect danger in situations where it is needed but not to
excessively alert the driver of situations where there is little or no danger
present. If the system does warn the driver to frequently it can affect the
driving experience for the worse and even lead to the driver not responding
to a warning as it is assumed to be a false positive.

There are several ways to detect and assess dangers such as using cam-
eras or radars to canvass the area and detect the surrounding traffic as well
as pedestrians. Other options could be to instead direct the focus inside
the car and consider the state of the driver. Based on the driver’s posture,
gaze, and several other factors the focus of the driver can be estimated as
well as whether the driver is able to respond to current traffic conditions or
not. An indication of danger can potentially be detected by comparing the
posture and actions of the driver to other scenarios and draw conclusions
based on thier outcomes. There are cases when a good understanding of
the surroundings of the car is needed to warn the driver effectively. This
study on the other hand deals with another important factor in creating
a good warning system and that is the driver. Depending on the state of
the driver the system needs to adapt to make relevant warnings ahead of
time. As an example the same warning can to an alert driver or a dis-
tracted driver be a nuisance or lifesaving respectively. Therefore, to create
an effective system the state of the driver needs to be understood to handle
a specific situation.

1.1 Aim

The intention of this report is to explore the possibilities of training recur-
rent neural networks with long short-term memories to predict the actions
of a driver based on sequences of images. One goal was to implement net-
works to classify and predict driver actions based on images. Another goal

1



was to evaluate the networks on a data set.

1.2 Limitations

The dataset used in this report was collected with eight different partic-
ipants and one car. For generality, it could be beneficial to use a larger
dataset with more participants in different driving environments.

In this study, the number of actions of the driver used for classification
and prediction is limited to eight. These actions are all a part of a sequence
of picking up an object. For practical use, more of these actions would
probably be required in order to cover all driving scenarios, in addition to
other settings, such as time of day. However, a single case is used in this
study to show proof of concept.

1.3 Related work

There are cases of when recurrent neural networks with long short-term
memory (LSTM) have been used in order to predict actions in traffic sit-
uations. In [3] a LSTM was used to predict driver actions such as lane
change and turns. The predictions were based on among other informa-
tion from the face and head orientation. Also, other types of sensors were
used where one camera was directed forward on the road as well as GPS
data and data collected by the car in addition to the information of the
driver’s head. This type of sensory fusion could be beneficial as a future
prospect for this thesis as well. Even though these types of predictions
could provide a great benefit for among other warning systems there are
other factors that could further improve this type of technology. It could
also be out of interest to more in-depth study of the driver’s behaviour
inside of the car. A warning system could be designed to both make use
of predictions of what is happening outside of the car and its surround-
ings but also consider what is happening on the inside. For that purpose
this thesis instead considers information from the full body posture of the
driver to make predictions of the drivers actions and distractions.

The images of the drivers face and head orientation used in [3] was pro-
cessed by detecting and following specific parts of the images with faces.
Another possible way of processing the images could be to use convolu-
tional neural networks (CNN). There are many examples of when these
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types of networks have performed well in the domain of image classifi-
cation. A competition named ImageNet Large Scale Visual Recognition
Challenge, has had many candidates using CNNs performing well in the
classification of images. One example of a CNN that have won the chal-
lenge is GoogLeNet [4]. A CNN can both produce complete classifications
of images or by removing the last parts of the network, create features.

The classification of images can be further improved with the use of opti-
cal flow. In [5] optical flow images were created by methods such as optical
flow stacking and trajectory stacking. The optical flow images and the orig-
inal images were then processed separately. The network consisted of five
convolutional layers, three max-pooling layers, two fully connected layers
and one softmax layer. Using optical flow in combination with the original
images can be benefical as CNNs commonly do not consider changes in
between images. There are several situations where it can be beneficial
to also use information that is stored in a sequence of images rather than
just in single images. In the case of a driver, it can as an example, be
important to know in which direction the driver is moving, which can be
hard to gather from a still image.

In another article by [6] there is an approach of using a sensory fusion
with among other information from a facial camera in the input. There
were also other types of sensors used as well, such as the GPS similarly to
the previous case. Also data gathered from the car, CAN bus data and so
on was used among other sensors. In this case the LSTM used was instead
a bidirectional LSTM. As in [3] the focus was on predictions of movements
of the car such as breaking and lane changes. For the case of predictions
of driver actions inside of the car the use of bidirectional LSTMs is an
interesting choice and has been used in this thesis.

A model of how drivers behave, which also used sensory fusion was pre-
sented in [7]. The behaviours was whether the driver was aggressive or not
in three different surroundings. To make these identifications a combina-
tion of different input data was used, with a focus on the CAN-bus and
GPS. This method allowed for an identification that could be performed
with cheap and easily accessible equipment. One of the downsides on the
other hand was a time requirement for the process to adapt, affecting the
results for the first few seconds. With a CNN-based classification the time
frame needed can potentially be reduced as a CNN can be created with
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only input from a few time points back.

In the domain of predicting driver actions [8] used head orientation to
create long time predictions of lane changing maneuvers. The predictions
were based on glances as a way to detect intentions of lane changing at a
time well before the action is taken. This resonates well with the concept
of this thesis, which assumes that there are signs, such as glances, leading
up to certain actions of the driver. The classifications were made based on
a model, that compared the angle and position of the drivers head com-
pared to where the gaze was directed. The classes used were several areas
inside of the car, such as windows and mirrors. Based on the training
data, normal distributions of the classes were created as a function of the
orientation of the head. This meant, on the other hand, that even though
some choices of angles had a more favored class there was an overlap be-
tween the different classes. That type of classification might lose accuracy
when a range of angles can not be directly associated with a specific class.
There is a potential to further improve the classifications by using machine
learning instead of using a model of assuming a normal distribution of the
classes. Using the orientation of the head can provide valuable informa-
tion to understand what coming actions a driver is about to take but it
can be considered as a part of using the full body posture. Therefore, it
could be of interest to expand the input to full body posture to gain more
information of the driver. Another approach for long time predictions of
driving behaviour was explored in [9], based on GPS coordinates. The data
used was recorded with 30 second intervals, over long periods of time. A
LSTM was used to perform the analysis of the data and determine changes
in behaviour. As these predictions are on a larger scale time-wise it can
potentially be hard to draw conclusions from shorter sequences of actions
of the driver inside of the car, which is explored in this thesis.

Others have instead of concentrating on the actions of a driver looked
further into awareness. In [10] a method similar to machine learning, in
the sense that it was trained to achieve a gathered experience of previous
scenarios, was used. It did on the other hand not cover predictions of future
events.

This study proposes a method using a combination of a CNN and a
LSTM to classify and predict future actions of the driver based on se-
quences of images with the drivers full body posture. No other study using
this type of method on images of full body posture to predict actions of
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the driver, rather than movements of the car, have been found.
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2 Proposed model

The network that has been proposed in this study could be divided into
several components and is shown in Figure 1. The inputs to the system
were sequences of images, which were downsampled to reduce size and
also annotated to create a ground truth, which can be considered labels
to the images. The smaller downsampled images were then converted into
grayscale. Once the preprocessing was done optical flow vector fields was
calculated. One of the two major components in the network was a CNN
which took as an input the grayscale images, the optical flow vector fields
and the ground truth. The CNN makes classifications of the images, which
could be compared to the ground truth to see how correct they were. These
classifications were then sent to the second major part of the system namely
the LSTM. In this component the sequences of classifications was extrap-
olated in time to create predictions of future classes. The ground truth
could then once again be compared to the created predictions to find out
how well the LSTM performed. Alternatively the LSTM was tested on the
output labels from the CNN. The ground truth was also used in order to
train both the CNN and LSTM.
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Figure 1: A schematic overview of the network proposed in this thesis.
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3 Classification

This section will start by giving a brief explanation of convolutional neural
networks, CNNs, and then go through the CNN used in this report.

3.1 Convolutional neural networks

Convolutional neural networks usually consist of several different types of
components, which performs a certain task. A common form of input to
a CNN is an image. The components used are in general built out of a
set of nodes where the value in each node is calculated based on parts of
the elements from the input or in the case of when these components are
stacked after each other the values from the previous component. Due to
how these components are lined up after each other and that their elements
in many cases are in the same shape as the input they are for CNNs called
layers and the nodes are sometimes called neurons in an analogy to the
brain [11]. Three different types of layers will be explained further and
these are convolutional layers, pooling layers, and dense layers.

3.1.1 Convolutional layers

In CNNs features are extracted using convolutional layers. A visualization
of a convolutional layer can be seen in Figure 2. In the case of this figure
layer 2 is the convulotional layer and the circles are the elements or nodes
of that layer. The square represents a window, which is applied to the
previous layer i.e. the input to the convolutional layer. This window has
a height h and width w that determines how many elements the window
covers. In the case of three dimensional input the window can also be
considered to have a depth. The lines are connections between the layers
also know as weights.

As explained by [11] every element in the convolutional layer is con-
nected through the weights of the window to several elements in the layer
before it. A weight in the case of CNNs refers to a variable of the net-
work, which can be changed when training the network to improve the
performance. The output of these neurons are merged as an element-wise
product [11]. It is then further explained that the next element is calcu-
lated by moving the window one or several steps, this process is repeated
for every element in the case of movements of one step. This type of layer is
shown in Figure 2 where the window covers two elements in both directions.
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h

w
Layer 1

Layer 2

Figure 2: A convolutional layer in a neural network which has a window that covers two
elements in both directions. Here Layer 2 is the convolutional layer. The circles represent the
nodes and the lines are the connections between the layers with their individual weights. For
the sake of a clearer visualization the connections from all neurons have not been drawn.

3.1.2 Pooling layers

The pooling operation, performed by a pooling layer, consists of applying a
function to a window, which is moved over the nodes of the input. The ma-
jor properties of a pooling layer are width and height of the window as well
as the stride and the type of the pooling layer. Depending on the stride,
the window is moved a different amount of pixels in every step. Examples
of these types of layers are max as well as average pooling. These types
affect the window function. Max-pooling extracts only the value from the
node within the window with the highest value, i.e. out of all the node val-
ues in the current window only the highest is chosen. Average pooling, on
the other hand, computes the average of all node values in the window [12].

As illustrated in Figure 3, when using max-pooling the resulting layer
will be smaller than the previous layer, given a large enough stride. In this
example, the pooling is over two elements in both the lateral and vertical
direction. This is not always the case and can vary depending on the use.
In this scenario, on the other hand, this will result in 16 elements in the
first layer transforms into four in the second layer thus reducing the num-
ber of elements by a factor of four. Notice that there is no overlap between
the windows in this case, which contrasts the example of the convolutional
layer.
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Layer 1

Layer 2

Figure 3: Layer 2 depicts a maxpooling layer, which covers two elements in both directions.
Circles represents neurons and the lines shows which elements are used to create the element
in Layer 2. From the four corresponding elements in Layer 1 the highest value is given to the
element in Layer 2.

3.1.3 Dense layers

A dense layer, also called fully connected layer, is a layer where every node
is connected to every node in the previous layer. The connection consists
of a weight, which is multiplied by the value of the connected node in the
previous layer. The value of the element in the dense layer is then calcu-
lated by summation of all these weights and previous node values as well as
the addition of a bias [11]. An example is shown in Figure 4 where Layer
2 is a dense layer with four units, which are all connected to the previous
layer, which also contains four units.
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Layer 1

Layer 2

Figure 4: Here Layer 2 is a dense layer. The circles represent the units and the lines the
connections between the layers with their respective weight. Dense in this case refers to how all
the elements are connected to all the elements in the previous layer.

3.2 Convolutional neural network model

To do the initial classification of the images, a CNN has been used which
can be seen in Figure 5. It consisted of four different types of layers; con-
volution, max-pool, dense and dropout. The input image was connected
to a convolutional layer, which extracted features. This layer, in turn, was
connected to a max-pooling layer where the size of the layers was reduced.
The combination of a convolutional and max-pooling layer was repeated
four times. After the last max-pooling layer was a dense layer, which was
created by flattening out the output from the max-pooling layer. This
dense layer was in turn connected to a dropout layer. In the same manner,
as before the combination of dense and dropout layers were repeated three
times.

11



Image Convolution
Maxpool

Convolution
Maxpool

Dense Dense

Figure 5: The input from an image is processed through a convolutional layer and then max-
pooled. This process is repeated four times. After the last max-pooling follows three dense
layers.

When working with images there are several important factors in or-
der to recognize and classify objects or scenes. To start with, there is the
overview of the image with rough shapes. This overview in turn is built
up out of small fragments of the image that can vary from whole objects
to simple shapes. By using several of these fragments together more inter-
esting things can be detected. The convolutional layers can be trained to
detect different types of these fragments [13].

In a small image, there can be several thousand pixels so with only one
layer where every element is connected to a few pixels with one weight and
bias in every connection it is easy to realize that there is a need for a large
number of weights and biases resulting in many computations and large
capacity for storage. In networks with many layers it can be beneficial to
reduce the size of the layers to make it less computationally heavy. There-
fore, pooling layers can be beneficial [11].

Because two synchronized cameras were used during data collection the
dataset contains two images for each time point. The images from both
cameras could have been separately classified but that on the other hand
would result in problems when sending the information to the RNN and
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process it there. Instead, both images were processed with this type of
pipeline with convolutional, pooling and dense layers as shown in Figure 6.
In the later dense layers, they were concatenated resulting in the last dense
layers being shared. This meant that both the images could have features
extracted from them and gradually reduced in size while still being able to
affect the classification. This setup did on the other hand demand more
computational power and memory usage compared to only using one image.

The measurement of the performance of the CNN used in this study was
accuracy. Where the accuracy, for the purpose of this thesis was defined
as the amount of correctly classified images on the test set divided by the
total amount of classifications made on the test set. This gave an average
of how successful the classification was.

3.3 Optical flow

When working with sequences of images there is not only information in
the images themselves but also in the changes in the sequence. Due to
this, it can be of interest to, instead of training the network based on pixel
values, use the gradient values in time. In order to achieve this, optical flow
can be used. As described in [14], optical flow is based on the movements
between separate frames and can be based on two assumptions. The first
is that the pixel values in one image to the other might be rearranged but
not removed. This is of course not always the case and can cause issues
but does also in many cases work well even though it might not completely
hold. The second assumption is that nearby pixels have a similar rate of
change. This is in many cases true, for example when an object moves it is
likely that all the pixels inside a small area representing parts of the object
are moving at a similar phase. On the other hand, in the transition between
objects and the background, this might not be the case. Depending on the
method used there are ways to mitigate these issues, such as separation of
objects and background. It is not likely to be able to find solutions which
can completely fulfill these assumptions and therefore rather than solving
this problem it is formulated as a minimization problem to optimize.
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Figure 6: The input from an image is processed through a convolutional layer and then max-
pooled. This process was repeated four times. After the last max-pooling followed a dense layer.
This sequence of layers were done for both input images in parallel. Then both the dense layers
were concatenated into one. Lastly, there were three dense layers.

In a similar way to how the original CNN model was created, a net-
work which also used optical flow in an attempt to improve the network’s
performance has been implemented. The program used to create optical
flow vector fields was created by [15] and [16]. Two input images were
first used to calculate the optical flow between the previous image and the
current. This was done to implement a sense of time in the CNN. When
using optical flow the network had information about time as it creates
gradients between the two frames used. The method used in this report
used two images as input. Convolutional layers were then used on both
images in parallel and then connected them to the dense layers. The same
thing could be done with optical flow fields. A dense vector field of optical
flow from a 2D image can be considered as a 2D image with two channels
one for the vectors in the x-axis and one for the y-axis. The resulting
vector field was then passed through a pipeline of convolutional, pooling
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and dense layers and concatenated to the dense layers corresponding to the
original image. By calculating the optical flow between the last two frames
and applying convolutional layers to it in parallel to the input from the
original images, a system with four different inputs could be created. The
resulting system does not only consider the current state of the images but
also an approximation of their motion.
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4 Prediction

In this chapter, a brief introduction to recurrent neural networks and long-
short term memory cells is given. There is also a description of the LSTM
used in this project.

4.1 Recurrent neural networks

There are networks which are focused around sequences rather than fixed
time points, such as the recurrent neural network (RNN). Such a network
uses information from previous time steps of an input sequence. This gives
an advantage while processing data where the sequence is of importance,
such as videos. What separates RNNs from other types of neural networks
such as CNN is that the output is calculated using a memory, which is
based on the calculation of the previous element in the sequence. This
element in turn is also based on the previous elements [17].

The introduction of the memory components has a drawback, which is
usually called vanishing and exploding gradients. This is due to a prob-
lem where components corresponding to long-term memory are affected by
weights from every step of the sequence. If these weights are large enough
a small change in the long-term components can completely change the
current components. For small weights, the opposite can be true where
there is close to no contribution at all from the long-term components [17].

4.1.1 Mathematical description

As explained in [3] a RNN can be described as follows. Call the input xt

where the use of bold text is to show that it is a vector and the t that it is
for a time t in the sequence. With the output for time t as ht the equation
can be written as

ht = σ(Wxt + Hht−1 + b) (1)

where all capital letters represent variables which are determined during
training [3]. There is also a bias added called b which is determined through
training as well. The σ is a function used to determine whether there is an
activation or not and is set before calculation. In the case of classification,
the output can, in turn, be used to calculate the probabilities, yt, of the
specific classes at a time t. It is further explained in [3] that this can be
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done by using a softmax function after further weighting and addition of a
bias

yt = softmax(Wyht + by) (2)

4.2 Recurrent neural networks with long short-term memories

The exploding and vanishing gradient problem for RNNs can be handled
in different ways. One of these is to use a modification to the RNN called
LSTM, where the memory unit has been changed. One of the main com-
ponents of a LSTM is the memory cell, which stores the information while
the gates are used to control what information should be inserted or ex-
tracted from the memory cell. The first of the gates is the forget gate, as
the name suggests, it is used to decide what information in the memory
cell should be discarded. The second gate is the input gate that takes care
of how much of the input should be stored in memory. Lastly, the output
gate affects the hidden state based on the memory cell [3].

4.2.1 Mathematical description

It is also described in [3] how an LSTM work in a mathematical sense. Let
the hidden state be called ht where t as before symbolizes that it is the
hidden state for a time t and call the memory cell ct. Further, let the input
be called xt and the input gate can then be written as

it = σ(Wixt + Uiht−1 + Vict−1 + bi) (3)

Here the σ is an activation function, W,U, V, b are variables that are given
values through training [3]. To be more specific b is a bias. In the same
manner according to [3] the forget gate can be calculates as

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf) (4)

It is further explained in [3] that the calculation of what will be forgotten
and what will be learned can be written as

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht + bc) (5)

where ◦ is the multiplication of every element seperately. The update on
what is forgotten from the previous time step is calculated by the term
ft ◦ ct−1 and the new information to learn from the term it ◦ tanh(Wcxt +
Ucht + bc) where the right hand of the ◦ is the information, which can be
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learned [3]. In [3] it is also described that with the calculated memory cell
the output gate to the next time iteration can be calculated as

ot = σ(Woxt + Uoht−1 + Voct + bo) (6)

and finally the hidden state as

ht = ot ◦ tanh(ct) (7)

A LSTM cell is illustrated in Figure 7. In this figure, the cell state Ct−1

is the top-left input and the cell state Ct the top-right output. In the same
way, the bottom left input is the hidden state ht−1 and the bottom right
output the hidden state ht.

Figure 7: Long Short-Term Memory.svg. From [1], CC BY-SA 4.0.

4.2.2 Bidirectional LSTM

A LSTM processes the input from one side to the other meaning that it
only processes the sequence in one time direction. A bidirectional LSTM,
on the other hand, creates two LSTMs where one has the original input
and the other the reversed input. The results from the two cells are then
combined, creating one output [18].

The use of bidirectional RNNs and LSTMs are easy to motivate in the
case of text recognition as grammar is in many cases not only depend on
the past but also on the coming words. An example of this would be the
use of a and an, which also depends on what the following words in the
sentence are. Bidirectional RNNs and LSTMs are useful when there is a
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need for context in order to make a good prediction. It could be argued in
the case of driver action prediction that usually an action such as reaching
for an object has to happen to some degree in a specific order and thus
later events affect previous ones. For example, a driver can not grab an
object without first removing at least one hand from the steering wheel.

4.3 Prediction model

An interesting subject in neural networks is sequence prediction. This
where RNNs shine as they can keep information about previous states in
memory giving them a better understanding of sequences. There are sev-
eral different ways in which RNNs can be used in order to make a prediction
based on sequence data.

The method used in this study is based on using a bidirectional LSTM
which used a sequence of classifications of images as input. The bidirec-
tional LSTM will be referred to as a LSTM for short. This LSTM predicted
the next element in the sequence. The newly predicted element could then
be appended to the previous input and the element representing the ear-
liest timepoint was removed. This created sequence was the same as, if
the prediction was correct, the input sequence to the LSTM one frame af-
ter the current frame. Therefore by sending this created sequence to the
LSTM a prediction of two frames ahead could be achieved. This process
could be repeated indefinitely, giving a prediction an arbitrary amount of
frames ahead. One problem with this method was the assumption that
the predictions were accurate, which is an assumption that rarely holds
indefinitely. If one prediction were to be inaccurate then the input to the
LSTM used to predict the next frame would not be accurate meaning that
future predictions are affected by the previous ones. The measurement of
how well the LSTM performed in this study was accuracy, which has been
defined as the number of correct predictions on the test set at a specific
time point divided by the total amount of predictions on the test set made
at that time point on the test set.

4.4 Choice of model

The intended inputs to the complete system are sequences of images of
drivers in a car. Images are not easy to handle as a sequence in a RNN,
at least not when predicting sequences by concatenating the predictions
to the input sequence to calculate further predictions. If every prediction
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at this point would be an image, that would mean that the prediction of
the next time step would have to be another image, which in turn can
be used for further predictions. There are methods for video prediction
such as PredNet presented in [19]. This type of network does on the other
hand work mostly with one frame predictions. There are also examples
of predictions made several frames forward with some fine-tuning. These
predictions perform well but do suffer from an increasing amount of blur-
riness with further predictions. It is reasonable for the blurriness to occur
when errors in one image propagate forward, which in turn leads to errors
in subsequent images. When making predictions further ahead in time
then it could be beneficial with a method which is less affected by errors
made in previous predictions. Therefore, the method in this study is based
on sequences of numbers rather than images with the hypothesis that the
lowered dimensionality would also lower the number of errors introduced
in every prediction step.

4.5 Implementation

In order to implement the neural networks created in this thesis, the pro-
gramming language Python has been used. The reason for this is that
Python has a library called Tensorflow, which provides many functionali-
ties in the subject of machine learning.

The code for the implementation of the CNN has been based on the
tutorial by [20]. The implementation of the LSTM network has been based
on the tutorial by [21].
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5 Training

This section covers other aspects of the networks used in this report such
as the dataset used, the choice of optimization method and optimization
of hyperparameters.

5.1 Dataset

Training the network requires a dataset where the images already have
been classified. This project specifically requires a dataset with sequences
of images of drivers performing actions inside of a car. As datasets are
often costly and time-consuming to produce in addition to the constraints
due to the privacy of the participants, most companies do not publish their
datasets.

Among the few public datasets that could be used is the dataset cre-
ated by Y. Abouelnaga, H. Eraqi, and M. Moustafa [22]. It contains around
13000 training images and around 4300 test images. There are ten differ-
ent classifications in this dataset: Drive Safe, Talk Passenger, Text Right,
Drink, Talk left, Text Left, talk Right, Adjust Radio, Hair & Makeup and
Reach Behind. The dataset was originally used to classify the driver’s ac-
tions based on single images and therefore is not focused on sequences.
The classifications are that of people who are distracted in different ways,
while this project requires classifications of actions leading up to the point
where the driver is distracted. Therefore this dataset cannot be used for
this project.

Another possibility was to create a new dataset. This required resources
both in the form of equipment as well as participants. The upside was that
the dataset could be tailored to the needs of the project, which made it
possible to create a dataset where the focus is on the time before and the
process of when the action is taken.

The collection of the dataset used in this report was performed at RISE
Viktoria. It consists of video films of people sitting in the front seat of a
car performing several tasks. There were a total of eight different people
and one car used. Due to safety reasons, the car was parked while the
data was gathered. There were 13 tasks, which each of the participants
performed. The first two tasks were to start off by driving normally and
then in an as natural way as possible pick up a mobile phone or a water
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bottle. There were then three tasks where the driver was to go from driving
safely to remove a hand from the steering wheel, glancing or leaning into
the car respectively and then going back to driving safely. The last eight
tasks consisted of going from driving safely to either picking up a bottle or
a mobile phone but performing it in a specific sequence for example: drive
safe, glance, lean, remove hands, pick up the bottle. Each task was per-
formed five times by each participant and lasted for around five seconds.
For the first six participants, the data was collected at 30 fps and the last
two at 25 fps due to technical problems. A total of nearly 90000 frames
was collected. In order to get clearer data, the participants were told to
neither move to fast or excessively slowly.

During annotation, eight different classes were chosen: Drive safe, glance,
lean, remove hands from the steering wheel, reach, grab, retract and hold-
ing an object. It is worth mentioning at this point that every frame where
only given one classification i.e. that one frame could as an example not
both be classified as glance and lean. In practice, it is not uncommon that
more than one of these actions were performed simultaneously. This was
a problem during annotation and was solved by implementing a priority
system. In this system among the classes drive safe, lean, glance and re-
move hands from the steering wheel the action that was taken last was
chosen as the current class. Also lean had priority over glance as they very
often appeared together. The classes reach, grab, retract, hold object had
priority over drive safe, glance, lean and remove hands from steering wheel.

During the training and evaluation processes of the networks, the dataset
was divided into 2 parts; one for training and one for testing. The reason
for this is that the data used for testing should be new to the model. If the
test data has been used for training as well the network will already have
adapted to this data and likely performs better than it would in a scenario
when used in practice.

5.2 Backpropagation and gradient descent

The intention of training neural networks is to update the weights and
biases of the network in every training iteration to better mimic the be-
haviours ingrained in the inputs. One method to perform this training step
is to use some form of optimizer such as gradient descent with backprop-
agation. This method uses a cost function, which gives an indication of
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how close the given output is to the targeted output. It is common to use
a mean squared error (MSE) based type of cost function [23].

Consider Figure 8, which depicts three dense layers where the last is
the output of the network. Given a target output, a cost function and a
received output from the network the cost can be calculated. With this
in mind, the cost could then in many cases be reduced by changing the
output. In the case of a MSE cost function, the cost can be reduced if
the output from the network becomes closer to the targeted output. The
question which arises from this, on the other hand, is how the output could
be changed.

Layer 1 Layer 2 Output

Figure 8: A simplified neural network which only shows three dense layers where the last is
the output. The circles are the neurons and the lines the connections between the neurons with
their individual weights.

As mentioned before an optimizer such as gradient descent is used to
perform the training. This is done by optimizing the cost function with an
iterative update to the weights. The thought behind gradient descent is
to move along the opposite direction of the gradient for the function [24].
Backpropagation is used to calculate said gradients and works by moving
backwards through the network and describing the gradient of the cost
function in each step as a function of a specific weight [23].

It is explained in [25] that when the number of weights grows large and
there is a need to save computational power, another type of gradient de-
scent called stochastic gradient descent can be used. In this method, the
update rule is changed to update with one partial gradient. With this up-
date rule, only one partial gradient needs to be calculated before iterating.
On the other hand, there is no guarantee that the weights will completely
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reach their minimum, not even a local minimum.

Another similar method is Adam. One of the main differences is that
this method does not only use the gradients but creates a momentum. This
algorithm was proposed in [26]. The momentum is created by also taking
into account previous iterations.

5.3 Activation function

Gradient descent depends on the weights and biases of the network, it can
also depend on activation functions of the network. The activation func-
tion is meant to separate low-intensity inputs from high-intensity inputs.
One function that can do this is a step function, which makes a binary
separation i.e. all values below a certain threshold value will not result in
an activation and all above will give an activation [27].

For gradient descent to work there needs to be gradients of the cost
function. In turn, this requires gradients of the weights and activation
functions. Therefore the intuitive choice of a step function as activation
function does not work. Other options that are similar but have gradients
are the sigmoid, tanh and ReLU functions [27].

5.4 Regularization

Due to training data being a finite resource, there is a risk of overfitting
when using larger networks with many hidden units. Hence there is too
much room for the weights to adapt to the specific case of the training
data. Therefore, the network can perform well on the test data but when
it is subjected to new test sets the lack of generality results in a poor per-
formance [28]. In order to mitigate the effects of overfitting, a dropout
layer for every dense layer has been used in the CNN. This type of layer
randomly chooses neurons from the previous layer and set their output to
zero. This process is repeated for every training step, resulting in different
nodes being temporarily disconnected. The dropout is only used during
training as it could have a negative effect if used while testing.
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5.5 Bayesian optimization

Bayesian optimization is a method which can be used to make optimiza-
tions of black box functions. Rather than making an optimization of the
function itself, a model of the function is made. This model can be cre-
ated in different ways but the one used in this report is based on Gaussian
processes. This means that the model is not a perfect replica of the black
box function but is meant to give a representation of likely values for the
function to take. At first, a few points of the function is evaluated, po-
tentially randomly chosen. Then the areas between the known points are
estimated as a Gaussian process. The next step is to choose an acquisition
function, which is used to calculate the point on the model that is the best
to evaluate next. Whether the point is the best or not is a balancing be-
tween giving more information by evaluating at a point close to previous
optimum or unexplored areas [29].

5.6 Hyperparameters

When creating or training a neural network, there are some parameters that
unlike the weights and biases has to be set rather than learned. These pa-
rameters are usually referred to as hyperparameters and consists of among
others the structural parameters such as the number of hidden units and
layers or training parameters [29].

The hyperparameters of the LSTM that have been optimized in this
thesis are the learning rate, amount of units in each layer and the number
of layers. Where the learning rate determines how large steps, for each
iteration, the optimizing algorithm will take during training. Larger learn-
ing rates result in larger step sizes, which makes the algorithm reach a
minimum faster. If the learning rate is too large there is a risk that the
algorithm will not converge to a minimum value instead it moves around
the minimum point [24].

The amount of hidden units in the LSTM determines how many weights
there will be and thus increases the complexity. This increase leads to
more ways for the network to adapt to the training data as mentioned in
[28]. One downside, on the other hand, is that the network will have a
higher risk of overfitting. The amount of layers in the LSTM also affects
the complexity of the network. This is due to how each layer gives more
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possibilities to store data as well as processing previous data [30].

5.7 Preprocessing

Due to restrictions on memory usage, it was not preferable to perform an
extensive optimization of the training process of the actual full-size training
data. Therefore, the size of the input images was converted into grayscale
and down-sampled. The network was then trained and tested on the down-
sampled data. The original images from the dataset are 1240x720 pixels
in size. After down-sampling, the size was set to 512x256 pixels. This is
not the exact ratio between width and height as the original image. The
max-pooling layers divide the number of elements from the input to the
output by four therefore for every max-pooling layer the total amount of
pixels from the input image will be divided by four. Problems can arise
when the number of pixels can not be evenly divided and thus it is prefer-
able to have sizes, which are powers of two.
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6 Results

The CNN was tested for a fixed set of hyperparameters both for the basic
CNN as well as the one with the addition of optical flow. The RNN with
LSTM was tested for a variety of hyperparameters and the ones giving the
best results were then tested again with a longer training period. Where
tested means that the network was trained on a data set and evaluated
on the corresponding test set. Additionally, the RNN with LSTM was
tested on the ground truth data for comparison. Different lengths on the
predictions were also tested.

6.1 Performance: classification

The classification was first tested with the model described in the method,
which consisted of convolutional, max pooling, dense and dropout layers.
The model with the addition of optical flow vector fields was then tested
as well. The dataset was divided into a training and a testing set. The
testing set was created out of the first ten out of 65 sequences from each
person. These sequences corresponded to the tasks where the participants
were told to start by driving safely and then in a way that felt most natural
to them pick up the object and bring it to them. These sequences were
made to create scenarios where the sequence was supposed to be closer to
the way it would be performed in a real-life case.

6.1.1 Plain model

The best performance for the first model achieved an accuracy of 69% after
two epochs of training out of a total of ten. Where an epoch is a training
iteration for the network. In Figure 9, the y-axis represents the accuracy
of the CNN and the x-axis the number of epochs trained. The hyperpa-
rameters used can be seen in Table 2. The sizes of the convolutional layers
were inspired by AlexNet [31]. As can be seen in the figure, there is very
little improvement after ten epochs of training.
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Table 2: The hyperparameters used when computing Figure 9. The first column is the hyper-
parameters the second column are the used values.

Parameter Used
Learning rate 0.01

Convolutional layers 4
Dense layers 3

Size of dense layers 1000
Dropout 0.5

Filters 5, 10, 20, 20
Filter size 11, 5, 3, 3

Figure 9: The performance of the CNN. The y-axis is the accuracy of the classifications and
the x-axis is the number of epochs of training. Hyperparameters used for the CNN can be found
in 2

6.1.2 Optical flow model

The second model which used optical flow, as well as the images, managed
to get an accuracy of 80% after twelve out of 30 epochs of training. The
performance can be seen in Figure 10, where the y-axis represents the ac-
curacy and the x-axis the number of epochs trained. The hyperparameters
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were the same as for the first model and can be seen in Figure 2.

Figure 10: The performance of the CNN with the addition of parallel optical flow input. The
y-axis represents the accuracy of the classifications and the x-axis the number of epochs of
training.

6.2 Performance: Prediction

The CNN model using optical flow performed better than the plain model
and was thus the one used in the testing of the LSTM. This LSTM was
trained on the same ground truth data that the CNN was and then tested
on the classifications of the test images generated by the CNN.

6.2.1 Prediction with CNN data

To see the performance of the whole network from image to predictions, the
network was trained on the same ground truth data as the CNN and then
tested on the labeled data from the CNN. The results from the respective
best epochs of three sets of hyperparameters are shown in Figure 11. Where
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the y-axis is the accuracy and the x-axis the amount frames ahead of time
the prediction is. Bayesian optimization was used with four random sets
of hyperparameters and then six optimization steps. Each optimization
consisted of five epochs. The best performance in the sense of highest
average accuracy on the interval 1 to 20 frames prediction was with the
hyperparameters shown in Table 3.

Table 3: The hyperparameters used when computing Figure 11. Parameters is the hyperpa-
rameters. Set:1 to 3 are the hyperparameters in that respective set in 11. Min is the lowest
values possible in the optimization and max are the highest possible values in the optimization.

Parameter Set:1 Set:2 Set:3 Min Max
Hidden units 79 50 150 50 150

Layers 2 1 1 1 2
Learningrate 0.02 0.00001 0.00001 0.00001 0.02

Figure 11: The performance of the LSTM network for different sets of hyperparameters. The
y-axis is the accuracy of the predictions and the x-axis is the predicted amount of frames ahead
of time. The network was trained on the same ground truth data as the CNN and then tested on
the output classifications from the CNN. The three sets of hyperparamters show in the firgure,
which include the best performing set, as well as the range can be found in Table 3
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6.2.2 Extended training

The best set of hyperparameters were then trained for 20 epochs and Figure
12 shows intermediate results, where the y-axis is the accuracy of predic-
tions and the x-axis the number of frames predicted. There are in total four
functions, the straight line is for comparison and represents the case if the
predictions would be to set the same as the previous value in the sequence.
The other three lines represent 7, 10 and 14 epochs of training where 14
was the maximum. As can be seen in Figure 12 the best performance was
from seven epochs of training with an accuracy after one frame of 80% and
62% after 20 frames. The LSTM network does better than the comparison
case for every frame and the margin grows for longer time predictions.

Figure 12: The performance of the LSTM network. The y-axis is the accuracy of the predictions
and the x-axis is the predicted amount of frames ahead of time. In this case, the hyperparameters
are not set for each of the predicted sequences. Instead, the figure represents the predicted
sequences for three different amounts of epochs of training between 1 and 14. Also, the straight
line represents the case where the predictions would have been set to the last value of the input
sequence. The performance is for input data from the classifications from the CNN.
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6.2.3 Prediction with ground truth data

For comparison purposes, the LSTM was also tested with the ground truth
data. In this test, Bayesian optimization was used to optimize the hyper-
parameters and four random combinations were calculated followed by six
optimization steps. The results can be found in Figure 13. The accuracy in
this case compared to the previous one is significantly higher for predictions
of earlier frames but rather similar for long time predictions. The hyperpa-
rameters giving the best result for average accuracy can be seen in Table 4.

Figure 13: The performance of the LSTM network. The y-axis is the accuracy of the best
performing epoch for each of the three sets of hyperparameters used for the predictions and
the x-axis is the predicted amount of frames ahead of time. The different lines represent dif-
ferent sets of hyperparameters. The performance is for input data from the ground truth. The
hyperparameters used for these three results as well as the range can be found in Table 4.
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Table 4: The hyperparameters used when computing Figure 13. Parameters is the hyperparam-
eters. Set:1 to 3 are the hyperparameters in that respective set in Figure 11. Min is the lowest
values possible in the optimization and max are the highest possible values in the optimization.

Parameter Set:1 Set:2 Set:3 Min Max
Hidden units 50 144 149 50 150

Layers 1 2 1 1 2
Learningrate 0.00001 0.00839 0.00700 0.00001 0.02

6.2.4 Extended training with ground truth data

The best performing set of hyperparameters for the LSTM tested on ground
truth data was also trained for 20 epochs and the results can be seen in
Figure 14. In this figure, the y-axis is the accuracy and the x-axis the
number of frames predicted ahead of time. The straight line as before
represents the case when the predictions are set to the last class of the
input sequence. The other lines are the networks performance for 10, 15
and 20 epochs of training, where 15 epochs of training yielded the best
result. The best performance was an accuracy of around 87% for one frame
predictions and 65% at 20 frames, with an average of 76% over all frames.
In this case, the comparison performs better for the very first frames but
significantly worse for later predictions.
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Figure 14: The performance of the LSTM network. The y-axis is the accuracy of the predictions
at each specific time frame and the x-axis is the predicted amount of frames ahead of time. In
this case, the hyperparameters are not set for each of the predicted sequences. Instead, the figure
represents the predicted sequences for 10, 15 and 20 epochs of training as well as a straight line
representing the case where the prediction is set to the last element in the input sequence. The
performance is for input data of the ground truth, not the CNN.

6.2.5 Variations of output lengths

The LSTM was also tested with three different lengths of the output,
namely 10, 20 and 30 frames ahead of time and is illustrated in Figure
15. The best performing hyperparameters in Table 4 was used and each of
the networks were trained for ten epochs. The results are that of the best
performing epoch of training. The y-axis represents the accuracy and the
x-axis the number of frames predicted. Observations made during training
seemed to suggest that the oscillatory pattern occurred due to an insuffi-
cient amount of training epochs.
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Figure 15: The performance of the LSTM network. The y-axis is the accuracy of the predictions
and the x-axis is the predicted amount of frames ahead of time. The lines represent the best
performance for three different cases of lengths of outputs namely 10, 20 and 30 frames predicted
ahead of time. These results are that of the best epochs during ten epochs of training on the
best performing hyperparameters in Table 4.

6.3 Confusion matrices

In order to study the interaction between different classes of the LSTM
three confusion matrices were created. The rows in these confusion matri-
ces represents different predictions for the LSTM, while different columns
represent the same classes for the ground truth. Each element in the ma-
trix thus belongs to a class for the prediction and a class for the ground
truth. Each element represents the number of times that given class of the
ground truth has been predicted as the class from the prediction. Both
the ground truth and the prediction starts with the class drive safe then
glance and so on meaning that the diagonal of the matrix represents the
cases where the prediction is correct. A perfect performance of the network
would be illustrated with a value of 100 in every element of the diagonal.
The matrices used here are normalized along the column direction. Each
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of the confusion matrices in Tables 5, 7 and 8 were generated from the best
performing epoch of the LSTM used in Figure 14. The number of labels
for each class used when calculating the confusion matrices can be found
in Table 6.

The first matrix is shown in Table 5 was created by comparing the results
of the prediction with the ground truth for one time frames prediction.
For many of the different classes, the diagonal is the majority with the
exception of grab. Most of the predictions are either correct or in an
adjacent class. The best performing classes are drive safe and reach, while
grab and retract performed worst.

Ground truth

Drive safe Glance Lean Remove hand Reach Grab Retract Hold

P
re

d
ic

te
d

Drive safe 0.98 0.09 0.07 0.12 0.0 0.01 0.01 0.37

Glance 0.0 0.84 0.0 0.05 0.0 0.0 0.0 0.0

Lean 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0

Remove hand 0.0 0.02 0.13 0.8 0.02 0.01 0.0 0.0

Reach 0.0 0.05 0.0 0.02 0.97 0.25 0.0 0.0

Grab 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.0

Retract 0.0 0.0 0.0 0.0 0.0 0.48 0.6 0.01

Hold 0.02 0.0 0.0 0.0 0.0 0.0 0.39 0.62

Table 5: A confusion matrix over the predictions after one time frame. The elements in the
off-diagonal represents the wrong classifications of a class as the class of the corresponding row.
Each column represents another class for the ground truth and each row another class for the
prediction. The predictions are from the best performing epoch in Figure 14.

The second matrix, which can be seen in Table 7, from predictions ten
time frames ahead. The values are now starting to shift away from the
diagonal with the exception of drive save and reach. Glance, Lean, retract
and remove hand now performs significantly worse.

Table 6: The amounts of labels for each class when determining the confusion matrices.

Drive safe Glance Lean Remove hand Reach Grab Retract Hold
4904 265 15 332 1782 186 536 1180
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Ground truth

Drive safe Glance Lean Remove hand Reach Grab Retract Hold

P
re

d
ic

te
d

Drive safe 0.97 0.68 0.7 0.6 0.1 0.0 0.04 0.36

Glance 0.01 0.26 0.3 0.15 0.05 0.0 0.0 0.0

Lean 0.0 0.01 0.0 0.0 0.01 0.0 0.01 0.0

Remove hand 0.0 0.04 0.0 0.21 0.1 0.02 0.03 0.0

Reach 0.0 0.0 0.0 0.02 0.74 0.96 0.47 0.02

Grab 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Retract 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0

Hold 0.02 0.0 0.0 0.03 0.0 0.02 0.43 0.61

Table 7: A confusion matrix over the predictions after ten time frames. Each column represents
another class for the ground truth and each row another class for the prediction. The predictions
are from the best performing epoch in Figure 14.

The third matrix in Table 8 was created from predictions 20 time steps
ahead. Only drive safe and reach remains with a majority in the diagonal
while hold is slightly below. The performance of the other five classes is at
this point very low or 0.

Ground truth

Drive safe Glance Lean Remove hand Reach Grab Retract Hold

P
re

d
ic

te
d

Drive safe 0.96 0.87 0.43 0.82 0.32 0.0 0.0 0.4

Glance 0.01 0.05 0.57 0.04 0.09 0.01 0.0 0.0

Lean 0.0 0.01 0.0 0.0 0.01 0.0 0.0 0.0

Remove hand 0.0 0.06 0.0 0.11 0.07 0.03 0.02 0.0

Reach 0.01 0.0 0.0 0.02 0.51 0.97 0.87 0.19

Grab 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Retract 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Hold 0.02 0.0 0.0 0.02 0.0 0.0 0.11 0.41

Table 8: A confusion matrix over the predictions after 20 time frames. Each column represents
another class for the ground truth and each row another class for the prediction. The predictions
are from the best performing epoch in Figure 14.
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7 Discussion

The following section gives a deeper explanation of the different factors
affecting the results, such as the dataset. Also, some possible areas of
future work, which potentially could improve the networks used in this
report, are presented.

7.1 Dataset

As can be seen in the results the network struggles to maintain a high ac-
curacy for longer time predictions. One possible way to improve this is to
instead of using the structure of priority, in the dataset, to use additional
classes. These extra classes could cover combinations of the classes used.
The solution does have its advantages. As an example, it could likely make
the CNN network perform better as the CNN merely looks at frames and
not sequences of actions, which makes it hard to determine what action
has been taken last. By creating hybrid classes and abandoning the pri-
ority system, the CNN would therefore likely perform better. With more
classes, on the other hand, the complexity of the LSTM increases. This
increase in complexity could be a good thing as more classes give rise to
more different combinations of sequences for the network to learn, giving it
more information to make better decisions. Therefore, it could potentially
increase the performance of the whole system (both CNN and LSTM). An
extreme example of this would be to consider a case where there are only
two classes; drive safe and distracted. Given this little information, the
system will likely consider the transfer from drive safe to distracted as ran-
dom unless the drivers are very periodic in the way they are distracted.
With this in mind, it is easy to see that with an increase in the number of
classes used, there are more and more patterns arising. These patterns, in
turn, can be of use for the LSTM to improve the accuracy of the predic-
tions. The downside on the other hand with this increase in complexity is
that there is a greater need for training data for the network to perform
well. The problem also arises that the classes would become more similar
to each other and thus harder to separate.

By making another extreme example, if there would be an almost ”in-
finite” amount of classes there would with limited training data come se-
quences of classes, which has been in very few of the training examples.
These sequences will be almost unknown to the system. As there were lim-
ited amounts of public datasets with sequences of drivers, the amount of
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data used in this project was limited and therefore the priority system was
used rather than a hybrid class system as it was expected to give better
performance with a small dataset. It can also be mentioned that the more
classes used, the less likely it is to make a correct classification or prediction
as there are more classes to chose from. This can be problematic for the
predictions since they, as mentioned before, are susceptible to a cumulative
error where one wrong prediction can lead to further predictions also being
wrong.

7.2 Hyperparameters

There are more hyperparameters in addition to those already mentioned
which have not been optimized. Some of these are batch size and the type
of optimizer. The batch size could potentially change the performance of
the network but was chosen to be a set value due to how it greatly affects
the memory usage while training.

The hyperparameters used to get the best performing LSTM networks
in Figure 7 and Figure 13 were in the first case close to the largest possible
values for the number of units. Due to this, there might be a possibility
to further increase the performance by testing more units and layers. This
increase will on the other hand also increase the memory usage, which
might lead to the reduction of other parameters to compensate such as
batch size. On the other hand, a decrease in batch size could also affect
performance. In the second case the performance was very similar for
different sets of hyperparameters.

7.3 Performance: CNN

It was clearly demonstrated that the first model of the CNN which did
not use optical flow was, in this case, inferior to the model utilizing opti-
cal flow. A plausible explanation for this is that the dataset was created
with functionality for sequences in mind, not classifications. The use of
optical flow, in this case, gives information to the CNN of movements, i.e.
the CNN is also working in the dimension of time. It could, therefore, be
possible that it is easier to detect which action has been taken last when
using optical flow.

It was mentioned before that the CNN performs poorly with this type
of dataset, which is created for sequences rather than classification. One
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reason for this could be due to how hard it can be to distinguish between
a reaching person and a retracting person from a still image. In the case
of optical flow, on the other hand, these scenarios are close to opposites
making them easy to separate. This extension of the model does based on
the results in Figure 9 and Figure 10, enhance the classification accuracy
of the CNN.

There was also the problem arising from a dataset of sequences captured
with a moderate or high fps that there comes a point in almost every
transition from one classification to another where two almost identical
images are given different classes. Due to this, it is not only hard for the
network to make correct classifications but also for the human who labels
the ground truth data.

7.4 Performance: LSTM

The accuracy of the predictions, as can be seen in Figure 14, was as ex-
pected almost dropping for every frame, which represents a lowered ac-
curacy for longer time predictions. As mentioned before, this decrease in
accuracy was probably due to a cumulative error where one incorrect pre-
diction gave the following predictions an input, which deviated from the
true input and thus increased the risk of further incorrect predictions.

The difference in performance between the LSTM tested on ground truth
data and the one tested on the labels from the CNN was larger for shorter
predictions and diminished with time. The large difference for shorter pre-
dictions might be due to earlier predictions being more influenced by the
accuracy of the last elements of the input sequence.

From Figure 15 it is hard to draw any conclusions but the performance
of the model using an output length of 10 appeared to perform best. This
could possibly be due to either faster training or better performing ini-
tialization of weights. The performance with longer output sizes might be
improved with more training epochs as an increase in the output size also
increases the complexity of the network.

The result shown in Tables 5, 7, 8 indicate a trend of deteriorating per-
formance for all classes in longer predictions. Some of these classes became
more incorrect faster than others and some go as low as 0% accuracy. The
three classes that performed the best drive safe, reach and hold were the
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ones appearing with the highest frequency in the dataset. One possibil-
ity for why the other classes tended to be predicted as one of these three
classes could be that the over-representation led to a bias in the prediction.
This bias, in turn, increased the possibility of a prediction to become one
of those three classes for each prediction. Therefore the underrepresented
classes would gradually be predicted as the over-represented classes. This,
in turn, led to an increase in the bias.

In order to solve this problem potentially, the bias could be corrected
but this will also lead to problems. The reason for the bias is that some
of the classes are more likely to appear than others. By removing it the
underrepresented classes might perform better over time but it is also likely
that the performance overall will be worse. With a more even spread of
predictions over the classes the accuracy of the classes that perform well
might become worse and as those are the classes with the largest impact
it can have a negative effect overall.

7.5 Future work

In this section, some possible future work is discussed for the CNN, LSTM
as well as for the complete network.

7.5.1 CNN

The CNN network used to classify the images could probably be improved
by implementing some of the features of the networks in ImageNet Large
Scale Visual Recognition Challenge. GoogLeNet introduced a structure of
parallel layers with different structures. These layers were ordered so that
there was convolutional layers of size one, three and five parallel to each
other and one combination of a pooling layer and a convolutional layer.
These blocks of layers followed after each other with softmax layers in be-
tween. These blocks are called inception modules. There were other types
of blocks as well in GoogLeNet such as larger ones where the convolution
layers forked out into two more. Within the inception module, there was
also a convolutional layer of size one in each of the parallel layers. The
addition of the one size convolutional layers was to reduce the number of
filters in each layer among others [32]. This type of structure has proven
to be very useful as it won the ImageNet competition in 2015 [4].

Another source of potential improvement is to further process the input

41



images. This study has used downsampling and conversion to grayscale but
could also use processing methods such as normalization and whitening.
Using these types of tools could increase the performance of the feature
extraction [33].

7.5.2 LSTM

The LSTM network could possibly be improved with the combination of
different models of networks. One example is to combine several networks,
which have varying frame rate. It could be argued that there are benefits
in reducing the frame rate as it provides fewer prediction steps resulting
in fewer opportunities for errors to occur. The combination could be per-
formed before the softmax. In that case, either the model’s probabilities
for the different classes could be added together or the highest one across
all models could be chosen.

7.5.3 Extensions of the networks

One future prospect would be to in a similar fashion as in [3], [6] not only
use video data but also make use of other types of information such as cam-
eras directed forward out on the road. In the source articles, it was used
to predict major movements of the car such as the driver changing lane or
breaking but these types of information can also be useful when trying to
predict what is happening inside of the car. One example of when it could
be useful is for example that the information gained could help understand
why a driver is distracted.
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8 Conclusion

A LSTM has been tested for the use of prediction of driver actions inside
of a vehicle. The network uses sequences of previous actions in order to
predict future ones. The previous actions are generated by a CNN, which
takes as an input images of the driver. The input images are from sequences
from two different cameras located inside of the vehicle. The images from
these two cameras are processed in parallel convolution layers and then
concatenated in the dense layers. The dataset used was divided into two
parts a training and testing set.

Also, another model of CNN has been tested, which uses optical flow.
From the input images, the flow between two images is calculated. The
optical flow input is also processed in parallel convolution layers resulting
in a total of four parallel sets of convolutional layers, which are concate-
nated before the dense layers.

The LSTM network was trained on the same training set as the CNN’s
were and then tested both using the classifications generated by the CNN’s
and also on the ground truth. For comparison, the accuracy of a network,
which would predict every frame as the last element of the input sequence
were also calculated.

The performance of the CNN that used optical flow compared to the
model without performed significantly better. Where the first model reached
an accuracy of 69% and the one with optical flow 80%. The LSTM net-
work outperformed the comparison network for all frames predicted in the
case of input data from the CNN. With accuracies of 80% and 62% for one
and 20 frame predictions respectively. In the case where the LSTM was
tested on the ground truth data, the accuracies were 87% and 65%, which
outperformed the comparison for longer time predictions.

One possible improvement of the CNN could be to test some of the
structures of large classification networks such as AlexNet and GoogleNet.
The overall prediction accuracy could also potentially be improved by uti-
lizing more types of input data from the vehicle or using combinations of
different models.
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