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Abstract
The next decade of searches in the field of dark matter will focus on the detection of
gamma rays from dark matter annihilation in dwarf spheroidal galaxies. This dark
matter-induced gamma ray flux crucially depends on a quantity known as the J-
factor. In current research, the J-factor calculations does not include self-interaction
between the dark matter particles, but there are indications on galactic scales that
dark matter is self-interacting. The purpose of this thesis is to introduce a thorough
generalisation of the J-factor to include a self-interacting effect and to compute
the factor for 20 dwarf spheroidal galaxies orbiting the Milky Way. We thoroughly
study the fundamental theory needed to compute the J-factor, based on Newtonian
dynamics and non-relativistic quantum mechanics. A maximum likelihood formal-
ism is applied to velocity data from dwarf spheroidal galaxies, assuming a Gaussian
distribution for the line of sight velocity data. From this we extract galactic length
and density scale parameters. The acquired parameters are then used to compute
the J-factor. Using a binning approach, we present an error estimate in J . The used
method is compared to previously published results, by neglecting self-interaction.
We perform the first fully rigorous calculation for the J-factor, properly taking into
account the dark matter velocity distribution. We can deduce that a previously
used approximation of the self-interaction overestimates the J-factor by 1.5 orders
of magnitude. Furthermore, we confirm that our method produces three to four
orders of magnitudes larger values compared to J-factors without self-interaction.

Keywords: dark matter, J-factor, self-interacting, WIMP, annihilation.
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Sammanfattning
Det kommande decenniets forskning om mörk materia kommer att fokusera på de-
tektionen av gammastrålning från annihilation av mörk materia i sfäriska dvärg-
galaxer. Flödet av gammastrålning som uppkommer vid mörk materia-annihilation
har ett centralt beroende av en kvantitet som kallas J-faktorn. I nuvarande forskn-
ing inkluderas inte självinteraktion mellan mörk materia-partiklarna vid beräkningar
av J-faktorn. Det finns dock indikationer på galaktisk skala att mörk materia är
självinteragerande. Syftet med den här rapporten är att introducera den första rig-
orösa generaliseringen av J-faktorn, där effekten av självinteraktion behandlas, och
beräkna faktorn för 20 sfäriska dvärggalaxer kring Vintergatan. Vi studerar nog-
grant den grundläggande teorin som krävs för att beräkna J-faktorer, baserat på
Newtonsk dynamik och icke-relativistisk kvantmekanik. En maximum likelihood-
skattning används på data från dvärggalaxer, under antagandet att hastigheten för
stjärnorna följer en Gaussisk distribution. Från detta extraheras parametrar för
längd- och densitetsskalan hos galaxen. De erhållna parametrarna används sedan
för att beräkna J-faktorn. Genom att använda en sållningsmetod beräknas en felup-
pskattning i J . Maximum likelihood-metoden tillämpas på fallet utan självinterak-
tion för att jämföra med tidigare studier. Vi utför en utförlig beräkning av J-faktorn
där hänsyn tas till den mörka materians hastighetsdistribution. Slutsatsen dras att
en tidigare använd uppskattning överskattar J-faktorn med 1.5 storleksordningar.
Dessutom kan vi bekräfta att vår metod ger tre till fyra storleksordningar större
värde för J-faktorn jämfört med utan självinteraktion.

Nyckelord: mörk materia, J-faktor, självinteraktion, WIMP, annihilation.
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1
Introduction

For a long time dark matter has been an elusive concept. The idea of some un-
perceivable cosmic object has fascinated humans ever since the time of the ancient
Greeks. Up until the end of the twentieth century it was believed we could not
observe the dark matter, thought to be made of faint stars, because of our lack of
technology. Today, we know that dark matter does not emit radiation at all [2].

Dark matter is extensively studied since it explains a wide variety of astronomical
phenomena from galactic to cosmological scales [2]. One example is the discrepancies
in galactic rotation curves of disc galaxies. Assuming a dark matter halo explains
this discrepancy [3]. It should be noted that this problem also can be solved with
an adjustment of the theory of gravity, known as Modified Newtonian Dynamics [4].
However, for many other phenomena, dark matter is the only plausible explanation.
Examples of such are the collision of galaxies in the Bullet cluster and the large-scale
structure of the universe [5, 6].

Dark matter is assumed to consist of a new hypothetical particle outside the stan-
dard model. Apart from its’ gravitational interaction, this particle interacts at most
weakly with ordinary matter. One of the most promising candidates for dark matter
today is the Weakly Interacting Massive Particle (WIMP) (see [7] or [8]). Further-
more, non-relativistic WIMPs have the strongest scientific support [2].

The annihilation, or decay, of WIMPs is assumed to generate gamma ray photons,
among other standard model particles. This is the principle for indirect detection of
dark matter. The photon flux from WIMP annihilation in dwarf spheroidal galaxies
(dSph) and the galactic centre can be measured, and a key part of this flux is called
the J-factor. This J-factor has been computed for the Milky ways’ dwarf satellite
galaxies in previous research [9].

Even though cold WIMPs are the most promising candidate for dark matter, it can
not explain all phenomena. One of the most significant is the “Cuspy problem” [10].
This can be solved by introducing the property of self-interaction for WIMPs. Such
an interaction alters the annihilation rate of WIMPs and in turn the J-factor.

The aim of this thesis is to generalise the J-factor to include self-interacting WIMPs.
The self-interaction will be introduced as a Yukawa potential [11]. The theoretical
formalism will be based on Newtonian dynamics and non-relativistic quantum me-
chanics. A likelihood estimation of the generalised J-factor will be done for 20 dSphs
of the Milky Way. An error estimate to the J-factor will also be included.
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2
Background

In this chapter we present the theoretical background for both dark matter and
the presumed dark matter particles. Also, this chapter includes a brief review of
the current research on dark matter, especially J-factors. The last section is an
introduction to some astrophysical concepts needed for the derivations in chapter 3.

2.1 Evidence for dark matter

Today, it is believed that 26% of the universe consist of dark matter, compared to
5% ordinary matter [6]. It should also be mentioned that the rest is another concept
called dark energy, which has been introduced to explain the accelerating expansion
of the universe. Dark energy does not have matter properties and should not be
confused with dark matter, even though they share a similar name.

The evidence for dark matter is today compelling. To begin with, the dynamics
of galaxy clusters would simply fall apart without the additional gravity from dark
matter. It is also needed to explain the velocity dispersion in galaxy clusters. In
the first half of the twentieth century the astronomer Fritz Zwicky, one of the great
pioneers in the field of dark matter, calculated that the velocity dispersion of the
galaxies in the Coma Cluster without some form of invisible matter would be 10
times smaller than the observed dispersion [2]. Another piece of evidence for dark
matter is the shape of the galactic rotation curves, where the velocities for the
stars remain constant as distance from the galaxy’s centre increases. In theories
without dark matter, the velocities should behave precisely as in our own solar
neighbourhood where the orbital velocity of the planets decrease with distance from
the sun [3]. This indicates a smoother mass distribution than the one for the visible
mass which is clearly larger at the galactic centre. A halo of dark matter would
explain the constant velocities.

An additional example is the collision between two galaxies in the Bullet Cluster
[5]. Astronomers who worked on the Hubble Space Telescope observed the colli-
sion where the galaxies’ centres merged. When comparing data based on optical
observations with data based on gravitational lensing they found an inconsistency.
Dark matter could explain this inconsistency, since it only influences ordinary mat-
ter gravitationally but very rarely collides with it. The ordinary matter will bounce
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2. Background

in the collision, whereas the dark matter slips through smoothly. Also, dark matter
explains the extent of gravitational lensing observed.

Dark matter is also needed to explain the formation of the universe. The Cosmic
Microwave Background (CMB) is electromagnetic radiation remaining from the re-
combination, when the first atoms formed and light could propagate through the
universe. This radiation is almost isotropic, but shows faint patterns, which were
established when gravity pulling in and photon pressure pushing out caused oscil-
lations. Dark matter changes this pattern dramatically, since it is only affected
gravitationally and not by the photon pressure [6]. Without dark matter these
oscillations would prevent the formation of any lumps, and the large structure for-
mation we observe today in the universe would not have been possible. Instead, the
dark matter gets a head start when it comes to forming dense regions, and such
simulations matches the distribution of galaxies and clusters we observe today.

Even though the evidence for dark matter is well established, there are a number of
theories about what dark matter actually is. One of the best candidates as of today
is the weakly interacting massive particle (WIMP), although many other candidates
exists. This particle might also fit the hypothesis of self-interaction very well, and
is the main focus of this study.

2.2 Why self-interacting WIMPs?

There are several reasons for considering the WIMP as a dark matter candidate.
First of all, if dark matter has a particle nature it could explain the observed grav-
itational effects. Also, the observed flux of photons from many galaxies is today
higher than the expected flux from the luminous matter. Annihilating dark matter
particles would explain this.

The reason for considering massive dark matter particles is because their mass has
to match the desired gravitational potential, without being numerous enough to
annihilate into other kinds of particles or energy. The particles need to be weakly
interacting with normal matter because the effects of dark matter has yet only been
seen in terms of gravitational effects and not by any other kind of interaction. If
dark matter particles interacts through any other SM force with ordinary matter,
this interaction must be by the weak force.

Furthermore, it has been found that dark matter consisting of WIMPs moving with
non-relativistic velocities, often denoted as cold particles, most accurately agree
with simulations of the formation of the early universe [2]. In the early universe
the temperature was a lot higher, and consequently the energy sufficient for the
WIMPs to both annihilate into and form from lighter particles. When the universe
cooled, the thermal energy of the lighter particles were no longer high enough to
form WIMPs through annihilation. The amount of WIMPs decreased exponentially,
since they could still annihilate into lighter particles, until the number density were
low enough for the annihilation to cease at large. The number of WIMPs today
is therefore approximately constant [7]. The low velocities will make the WIMPs
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2. Background

clump together in clouds, since they can not overcome their mutual gravitational
force.

A particle with larger cross section (i.e. the probability for the annihilation to occur)
will in this model end up with a smaller number density, because it will annihilate
for a longer time. For dark matter, a cross section about the size of the weak nuclear
force would match the amount of WIMPs left in the Universe. A weakly interacting
particle with that annihilation cross section and a mass around 100 GeV is suggested
by the supersymmetric extension of the standard model. This coincidence is often
referred to as the ”WIMP miracle”

The WIMP is assumed to be its own antiparticle and one WIMP can therefore an-
nihilate with any other WIMP. The high-energy photons (and other SM particles)
produced in such an annihilation can be detected on Earth. However, even if annihi-
lating WIMPs and luminous matter is considered, the observed flux of photons from
galaxies will be higher than the calculated amount [12]. Introducing self-interacting
WIMPs might equalise this relation, since it would increase the annihilation rate
and in turn the flux of photons from the galaxies.

There is a variety of different models deciding both the WIMPs mass and the mass
of the mediator particle for the self-interaction. The strength of the interaction de-
pends on the mass of the mediator particle. The current limit of the self-interaction
cross section is σ/m < 2.23 · 10−24 cm2/GeV [13]. The dark matter mass is in the
range 1 GeV - 100 TeV. In this thesis we use a model which assumes that dark matter
annihilations is the origin of the whole discrepancy between observed and theoret-
ically calculated flux of particles, which actually can originate from other sources.
The WIMP is thought to have a mass around 500-800 GeV and the mediator particle
of the self-interaction a mass of 1 GeV [8]. The WIMP is then heavier than the SM
particles, and therefore one can get a various number of different particles from the
annihilation.

Introducing self-interaction might also solve other cosmological problems. One of
the most impactful unsolved problems is known as the “Cuspy problem”. This
problem addresses a discrepancy between observed dark matter densities and sim-
ulations. Simulations proposes cusped density profiles that diverges for small radii,
in contrast to the observed ones that flatten out; so called cored profiles [14, 15].
When simulations of the mass of the dSphs are compared to observations, it is found
that the dSphs around the Milky Way should be more massive than observed. This
is known as the “Too big to fail problem” and is also solver with self-interacting
WIMPs.

Another problem is that the number of satellite galaxies is a lot lower than the
expected amount given from simulations, which is called the “Satellite problem”.
All these problems can be solved by introducing self-interacting dark matter [10].
With a self-interaction the WIMPs will not be able to clump together as much, since
then they would annihilate more efficiently. This will change the halo density and
make it smoother. As an effect, the mass for the simulated dSphs will decrease and
also the number of substructures.
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2. Background

Hence, there is a clear support of dark matter consisting of self-interacting WIMPs.
The reasons mentioned in this section are also the reasons for this study to perform
calculations based on self-interacting dark matter.

2.3 Current research and J-factors

Current research in astroparticle physics primarily focuses on detecting dark matter
particles from the cosmos and understanding their nature. Experiments search for
photons, charged antimatter or neutrinos produced in dark matter annihilation or
decay. The search is performed in dark matter dominated astrophysical objects,
such as dSphs or the galactic centre. Detection strategies can be divides into two
complementary approaches, known as direct and indirect detection. Direct detection
experiments search for nuclear recoil events induced by the scattering of Milky Way
dark matter particles in low-temperature detectors.

Indirect detection is based on the annihilation between dark matter particles. As
mentioned before, such annihilation produces standard model particles which can be
observed, particularly photons. To draw conclusions of the particle nature of dark
matter, one can compare the measured production of gamma rays in some region
in space with the theoretical value based on the number of stars emitting light in
that region. This thesis will contribute to the calculations of the flux of photons
originated from this dark matter particle annihilation.

The indirect dark matter searches are mostly based on observations of dSphs orbiting
the Milky way. The reason for this is the high proportion of dark matter relative
to ordinary matter in these galaxies and their symmetric near spherical shape. It is
for these reasons that star velocity data from a number of dSphs is the basis for our
calculations.

In order to perform indirect searches, one must know the flux of particles originating
from dark matter particle annihilation. The flux, Γ, of a certain particle is propor-
tional to the annihilation rate of dark matter. Γ is often expressed as a differential
rate over energies:

dΓ
dE ∝

∫
∆Ω

∫
l.o.s.
〈σv〉ρ2

DM ds dΩ, (2.1)

where 〈σv〉 is the mean velocity cross section, ρDM is the dark matter density and
∆Ω is the solid angle subtended by the stellar region, in our case a small galaxy
orbiting the Milky Way (a dSph), as seen from the Earth. For a full description
of the flux, the branching ratio (a particle physics factor) should be included in
equation (2.1), but a proper description of that is outside the scope of this thesis
(consider instead Ferrer et al. [16]).

If the velocity averaged cross section, 〈σv〉, is constant throughout the galaxy, it
can be taken out of the integral. This is the case when the product σv is velocity
independent, which it is for the s-wave annihilation of self-interacting dark matter
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2. Background

particles [17]. We denote the constant velocity averaged cross section by 〈σ0v〉. Then
one retrieves the so called J-factor for the galaxy, defined as

J =
∫

∆Ω

∫
l.o.s.

ρ2
DM ds dΩ. (2.2)

By introducing a J-factor, the annihilation rate in eq. (2.1) can be fully separated
in an astrophysics and a particle physics part, corresponding to the J-factor and
〈σ0v〉 respectively. Thus, calculating the J-factor for different dSphs is relatively
straightforward. It can be done using a maximum likelihood estimation as proposed
by Chiappo et al. 2016 [9], which also will outline the approach in this thesis with
some minor modifications.

Self-interaction between particles is introduced by adding a potential to the Schrö-
dinger equation describing the particle annihilation. Most commonly, this is done
with a Yukawa potential, which will be discussed later. This will introduce a velocity
dependence in the product σv and as a result 〈σv〉 becomes non-constant through-
out the galaxy. The simplification leading up to equation (2.2) is then no longer
possible. However, this velocity dependence can be encapsulated in what is called
a Sommerfeld enhancement factor, S(v), where 〈σv〉 = 〈S(v)σ0v〉. This will be de-
scribed in more detail in section 3.5. The factor σ0v is now actually independent of
velocity, and thus also of position in the galaxy and can be factored out of both the
average and the integral in the same fashion as the simplification leading to (2.2).
The new J-factor accounting for self-interaction will now include both astrophysics
and particle physics. In this thesis we define this as:

J` =
∫

∆Ω

∫
l.o.s.

ρ2
DM 〈S(v)〉 ds dΩ. (2.3)

Note that for non self-interacting dark matter the Sommerfeld factor is unity, so
the expression in (2.3) can be taken as a general expression valid in either case. We
denote this new factor J`, where ` = s, p, d, ... is the spectroscopic notation for the
value of the orbital angular momentum quantum number ` used when solving the
Schrödinger equation describing the annihilation.

2.4 Astrophysics

In order to present the necessary theoretical framework for this report, a review
of some basic astrophysics must be done. In this section we present important
definitions and concepts and discuss some of the approximations that are made.

We define a galaxy to be an isolated stellar system. That is, the galaxy is bound by its
own gravitational force, the stars in the galaxy experience no notable gravitational
pull from other galaxies and collisions between galaxies are extremely rare.

The dynamics inside galaxies, as large systems consisting of many individual parti-
cles (stars), can generally be described using statistical mechanics even though the

6



2. Background

galaxy is far from a gas. This approach is very useful, and often necessary, as it
would be impossible to fully describe systems of millions of stars using only New-
ton’s equations. However, this must not be interpreted as stars generally behaving
in the same way as, for example, gas molecules. In a gas, the particles do not over
long range at all, but instead interact strongly as they come close to each other.
This is known as collisions and causes rapid acceleration of particles. In contrast,
consider a star in a galaxy. The gravitational force from surrounding stars indeed
decreases with the distance as r−2 as per Newton’s law of gravitation. But, the
amount of stars extorting gravitational pull on the very same star increases with
distance as r2, cancelling the decrease in gravitational strength. This is illustrated
in figure 2.1. As such, in galaxies the long range interaction are also of importance.
This implies that the motion of stars are dictated by the structure of the galaxy as
a whole, rather than locally. One say that the dynamics in a galaxy is determined
by the large-scale gradient in the star density.

r1

r2

dr

dr

dΩ

Figure 2.1: The stars in each of the grey segments, at radius r1 and r2, acts with
the same net force on a star located where the lines intersect if the density of stars
is uniform. This can be understood by comparing the gravitational force which
decreases as r−2 with the amount of stars in the segments which in three dimensions
is proportional to r2. These two contributions cancel out which results in the same
net force.

However, it is not always enough to consider the large-scale gradient in the star
density. Consider a star travelling through a galaxy. If the star encounters another
star very close on, its course will be somewhat perturbed from the description given
by the large-scale gradient in the star density. That is because the motion resulting
from the encounter is highly dependent on the exact positions of the two stars. If
the perturbation is small compared to the unperturbed velocity, one can define the
relaxation time, τrelax, as the time it takes for the total perturbation in the star’s
velocity from multiple encounters to be of the same order as the velocity would have
been without the perturbation [18]. This perturbation of a star’s velocity during
one crossing of the galaxy depends on how many stars it encounters.

7
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For a galaxy younger than the time it takes for a star to cross the galaxy, or a larger
galaxy with less stars, the stars has not been significantly perturbed. The system
can then be considered a collisionless system, in which a star move under a mean
potential generated by all the other stars. The dSphs around the Milky Way are
young enough to be collisionless. In an old or high number density galaxy, as the
Milky Way itself, the stars have been perturbed so many times that they do not
follow the large-scale gradient, and are not to be considered collisionless.

The luminous density for the stars in a galaxy can as a basic model be given by

ν?(r) = ρ?

(
r

r?

)−γ(
1 +

(
r

r?

)α)−β−γ
α

, (2.4)

where r is the radius, ρ? and r? are galaxy scale parameters and α, β and γ depends
on the chosen density profile. This is a very commonly used expression in dark
matter research. The most common profiles are the Plummer (α, β, γ) = (2, 5, 0),
Plummer-like (2, 5, 0.1) and the non-Plummer (2, 5, 1). These profiles are obtained
by an Abel transform (see eq. (3.52) and (3.53)) of eq. (2.4) [9].

The analogous expression for the dark matter density ρDM (also from [9]) is

ρDM(r) = ρ0

(
r

r0

)−γ′(
1 +

(
r

r0

)α′)−β′−γ′
α′

. (2.5)

The dark matter density profile can either be cuspy (α′, β′, γ′) = (1, 3, 1) or cored
(1, 3, 0), where a cuspy profile diverge near the galactic center and the cored flattens
out.
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3
Theory

The first part of this chapter contains the definition of the J`-factor, together with a
presentation of the necessary quantities for the calculation of J`. The next part will
describe the underlying theory required to connect the J` to an observable. More
specifically, the relation between the dark matter density and the velocity dispersion
of the stars in a galaxy is derived. Finally, derivations and calculations of F (v) and
S(v) will be presented to fully understand the framework.

3.1 Constituents of the J-factor

As presented in the end of the introduction, the J-factor for a dSph with self-
interacting dark matter will look like eq. (2.1). In this study, the Schrödinger
equation with a Yukawa potential will be solved for angular momentum quantum
number l = 0, and thus we consider Js:

Js =
∫

∆Ω

∫
l.o.s.

ρ2
DM〈S(v)〉 ds dΩ. (3.1)

Here, ρDM is the dark matter mass distribution and S(v) is the Sommerfeld en-
hancement factor. The factor 〈S(v)〉 can be expressed as

∫
F (v)S(v)d3v, with F (v)

as the dark matter velocity distribution;

Js =
∫

∆Ω

∫
l.o.s.

ρ2
DM

∫
F (v)S(v) d3v ds dΩ (3.2)

To be able to calculate Js, models of the components ρDM, F (v) and S(v) are
required.

The Sommerfeld enhancement factor, S(v), is based on particle physics and will be
approached theoretically. More specifically, a derivation of S(v) under the assump-
tion of a Yukawa potential in the Schrödinger equation describing the annihilation
will be done in section 3.5.

The determination of F (v) is an astrophysical problem. For a galaxy which is
spherically symmetric with respect to its gravitational potential and isotropic with
respect to its velocity distribution, F (v) can be uniquely determined from ρDM [18].

9



3. Theory

In this study we will perform the calculations on the dSphs based on these two
assumptions. The problem of determining F (v) is therefore reduced to deriving the
relation between ρDM and F (v). This is shown in section 3.4.

The remaining problem is to determine ρDM , the dark matter mass distribution. It
can not be observed directly. Instead, a theoretical connection must be established
between ρDM and some directly observable quantity. In this thesis we have chosen
the velocity dispersion of the stars in the dSph. This theoretical connection will be
derived in the following two sections, 3.2 and 3.3. The result is seen in the method
section 4.3 in eq. (4.12).

3.2 Relation to observable data

In a spectrum from a galaxy far away one actually sees the superposition of many
stellar spectra, with a Doppler shift depending on the stars’ motion. This is because
the galaxy is seen as just a disc and not a 3-dimensional object. By integrating the
spectrum of the whole galaxy one gets a spectrum with broader absorption lines as
a result of the motions of the stars. From this the velocity dispersion of the stars,
σl.o.s. is determined.

The velocity dispersion along the line of sight, σ2
l.o.s., is given by

σ2
l.o.s. = 1

N

N∑
j=1

(vl.o.s.
j − vl.o.s.)2, (3.3)

where vl.o.s.
j is the l.o.s velocity for star j and N is the number of stars in a cylinder of

volume dA · dl. The latter can be calculated by integrating over the spatial density,
ν(r);

dN = dA
∫

∆l
dl ν(r). (3.4)

The integration variables dA and dl can be visualised as an infinitesimal cylinder
along the line of sight in fig. 3.1. The following change of variable can be explained
by the figure: dr = dl cosα, where cosα =

√
r2−R2

r
. The limits comes from an

integration from 0 to ∞ with the approximation of the galaxy being infinitely far
away from the observer. This is then equivalent to an integration from R to ∞
multiplied by 2 and results in the following expression;

dN = dA 2
∫ ∞
R

dr
r√

r2 −R2
ν(r). (3.5)
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vr

vθ

l.o.s.
r

R
α

Figure 3.1: A model where the circle represents the galaxy, l.o.s. is the line of
sight, r is the galaxy’s radius, α is the angle between the radius and the l.o.s. and
R is the orthogonal distance from the centre of the galaxy to the l.o.s. vr and vθ are
the radial and angular velocities.

It is not possible to measure ν(r), but the luminosity density ν∗(r) is an observable.
Therefore, the surface brightness I(R) id defined as N

dA [18]. I(R) is then

I(R) = 2
∫ ∞
R

dr
r√

r2 −R2
ν∗(r). (3.6)

vl.o.s. in eq.(3.3) is defined by

vl.o.s. = 1
N

N∑
j=1

vl.o.s.
j . (3.7)

In this expression vl.o.s.
j for a single star can not be predicted, but one can predict an

average over the entire sample of stars, 〈vl.o.s.j 〉. This quantity can, with help from
fig. 3.1, be written as 〈vl.o.s.j 〉 = 〈vr〉 cosα−〈vθ〉 sinα, where vr and vθ are the radial
and angular velocities respectively. Making the approximation of a static galaxy
gives that 〈vr〉 and 〈vθ〉 are both zero. This makes vl.o.s. approximately zero. In eq.
(3.3) only the term (vl.o.s.

j )2 remains in the sum for σ2
l.o.s.. With 〈vrvθ〉 = 0 due to

the spherical symmetry this gives

(vl.o.s.
j )2 ≈ 〈(vl.o.s.j )2〉 = 〈v2

r〉 cos2 α− 〈v2
θ〉 sin2 α. (3.8)

Again from fig. 3.1, cos2 α = r2−R2

r2 and sin2 α = R2

r2 . Putting this in the above
equation and simplifying by introducing β = 1− 〈v2

θ〉/〈v2
r〉 gives

〈(vl.o.s.
j )2〉 = 〈v2

r〉
(

1− R2

r2 β(r)
)
. (3.9)
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β is a velocity anisotropy parameter for the galaxy that describes the relation be-
tween the radial and tangential velocity dispersions, see eq. (3.33). Summation of
〈(vl.o.s.

j )2〉 over the stars j in the differential volume dAdl yields

∑
j

〈(vl.o.s.j )2〉 = dA dl ν∗(r) 〈v2
r〉
(

1− R2

r2 β(r)
)
. (3.10)

Dividing by I(R), integrating along the l.o.s. and with the same change of variable
as in eq.(3.5), results in

σ2
l.o.s. = 2

I(R)

∫ ∞
R

dr ν?(r) 〈v2
r〉
(

1− R2

r2 β(r)
)

r√
r2 −R2

. (3.11)

The quantity ν∗(r) 〈v2
r〉 is obtained in section 3.3 through Jeans equations.

3.3 Jeans equations

This section is dedicated to derive the theoretical connection between the average
radial velocity of stars squared, 〈v2

r〉, and the density of a galaxy. This leads to
a relation between our line-of-sight velocity dispersion data and the dark matter
density, if one assumes that most of the galaxy’s mass consist of DM.

3.3.1 Collisionless Boltzmann Equation

Given the assumptions made above, one can describe a galaxy by the collisionless
Boltzmann equation. This can be shown by a simple line of reasoning, as follows.

Consider a galaxy young enough to be considered collisionless with a distribution
function (DF) f(x,v, t). Now, we can describe the coordinates by a 6-dimensional
vector in phase-space, so that

(x,v) = w ≡ (w1, ..., w6). (3.12)

As stars move inside the galaxy, the points in phase-space changes. If the stars in
the galaxy experience a smooth gravitational potential, Φ(x, t) the velocity of the
flow of coordinates is

ẇ = (ẋ, v̇) = (v,−∇xΦ). (3.13)

Given knowledge of w for every star in the galaxy at some initial time, say t0, would
by Newtons laws allow us to extract w at any later time t. Since the stars move
smoothly through the galaxy, the flow ẇ satisfies the continuity equation, with the
density f(w, t), given by∫

V

∂f(w, t)
∂t

d3x = −
∫
∂V
f(w, t)ẇ · d2S. (3.14)
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In the rest of this section we will omit the arguments of f . Now, using the divergence
theorem on the right hand side and moving it to the left hand side yields

∫
V

[
∂f

∂t
+∇w · fẇ

]
d3x = 0. (3.15)

Note that the divergence operator is now acting in all 6 phase-space coordinates.
Since this must hold for all volumes, we can remove the integral. Expanding the
divergence operator gives

∂f

∂t
+ f∇w · ẇ︸ ︷︷ ︸

=0

+ẇ · ∇wf = 0 (3.16)

The property that∇w ·ẇ = 0 follows from vi and xi being independent phase-space
variables and that the force, −∇xΦ, is velocity independent so that

∂vi
∂xi

= 0

∂v̇i
∂vi

= ∂

∂vi
(−∇xΦ) = 0

(3.17)

and we arrive at the collisionless Boltzmann equation

∂f

∂t
+ ẇ · ∇wf = 0. (3.18)

In Cartesian coordinates, this is

∂f

∂t
+ v · ∇xf −∇xΦ · ∂f

∂v
= 0. (3.19)

3.3.2 The Jeans equations

Solving the collisionless Boltzmann equation is extremely hard, as f is a function
of seven variables. One can however extract valuable information regarding the
solution, by taking moments of the equation. This will lead to Jeans equations,
which provide an important connection between the mean radial velocity squared
and the mass of the galaxy.

First, we define the spatial density, ν, and the mean velocity, 〈v〉 = (〈v1〉, 〈v2〉, 〈v3〉),
of the stars as

ν ≡
∫
f d3v

〈vi〉 ≡
1
ν

∫
fvi d3v.

(3.20)
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We can now study the zeroth moment of equation (3.19) by integrating over all
velocities. Adopting the summation convention and writing the equation component
wise then yields

∫ ∂f

∂t
d3v +

∫
vi
∂f

∂xi
d3v−

∫ ∂Φ
∂xi

∂f

∂vi
d3v = 0. (3.21)

From the first two terms, we can take the time derivative and the spatial derivatives
outside the integrals, as they do not depend on velocity. The third term vanishes,
by application of the divergence theorem and knowing that no stars move infinitely
fast, that is f → 0 as |v| → ∞. We thus arrive at

∂

∂t

∫
f d3v︸ ︷︷ ︸
=ν

+ ∂

∂xi

∫
vif d3v︸ ︷︷ ︸
=ν〈vi〉

− ∂Φ
∂xi

∫
|v|=∞

f d2v︸ ︷︷ ︸
=0

= 0

⇐⇒ ∂ν

∂t
+ ∂(ν〈vi〉)

∂xi
= 0

(3.22)

This is a continuity equation in ν and more commonly known as the first Jean
equation.

We proceed our analysis by taking the first moment of equation (3.19), which is
done by multiplying with vj and integrating over all velocities.

∫
vj
∂f

∂t
d3v +

∫
vjvi

∂f

∂xi
d3v−

∫
vj
∂Φ
∂xi

∂f

∂vi
d3v = 0. (3.23)

Again, we can take time and spatial derivatives outside the integrals, as well as the
gravitational potential Φ. The equation simplifies to

∂

∂t
ν〈vj〉+ ∂

∂xi
ν〈vjvi〉 −

∂Φ
∂xi

∫
vj
∂f

∂vi
= 0 (3.24)

where we have defined
〈vjvi〉 = 1

ν

∫
vjvif d3v. (3.25)

The third term of equation (3.24) can be simplified, integrating once by parts, in
the following fashion

∂Φ
∂xi

∫
vj
∂f

∂vi
= ∂Φ
∂xi

∫ ∂vj
∂vi

f d3v = ∂Φ
∂xi

δjiν = ν
∂Φ
∂xj

(3.26)

and we arrive at
∂

∂t
ν〈vj〉+ ∂

∂xi
ν〈vjvi〉 − ν

∂Φ
∂xj

= 0 (3.27)

which is the second Jean equation. Now, define the velocity dispersion tensor
σ2
ij = 〈vivj〉 − 〈vi〉〈vj〉, expand the first and second term in equation (3.27) by the

product rule and subtract by equation (3.22) multiplied by 〈vj〉. This yields
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ν
∂〈vj〉
∂t

+
�
�
�
�

〈vj〉
∂ν

∂t
+ ∂

∂xi

(
νσ2

ij

)
+

��
����

〈vj〉
∂ν〈vi〉
∂xi

+ ν〈vi〉
∂〈vj〉
∂xi

− ν ∂Φ
∂xj

−
�
�
�
�

〈vj〉
∂ν

∂t
−

���
���

〈vj〉
∂ν〈vi〉
∂xi

= 0.
(3.28)

Rearranging the terms gives the final result

ν
∂〈vj〉
∂t

+ ν〈vi〉
∂〈vj〉
∂xi

= −ν ∂Φ
∂xj
− ∂

∂xi

(
νσ2

ij

)
(3.29)

known as the third Jean equation.

3.3.3 Spherical case

While there exists a general set of Jeans equations in spherical coordinates, we will
not go through those derivations. Instead, we will make assumptions relevant for
the dSphs we will look at, in order to extract the expression for 〈v2

r〉.

First of all, we consider only stationary galaxies. This implies that all derivatives
with respect to time is zero and that 〈vr〉 = 0; if the radial velocities do not cancel in
mean value, our galaxy would be expanding or shrinking. Furthermore, we assume
spherical symmetry. This leads to a gravitational potential only dependent on the
radius, r, and that 〈vθ〉 = 〈vφ〉 = 0.

With the assumptions above, the left hand side of equation (3.29) vanishes. Fur-
thermore, we get

− ν ∂Φ
∂xj

= −ν ∂Φ
∂r

r̂ = −νGM(r)
r2 r̂ (3.30)

where G is Newton’s gravitational constant and M(r) =
∫ r

0 ρ(s) ds is the enclosed
galaxy mass at radius r for a spatial density ρ(s). We note here that for dSphs, the
dark matter density is much larger than the density of ordinary matter, and thereof
ρ(s) can be replaced by the dark matter density, ρDM . Thus, this expression yields
the desired connection to ρDM. Now, equation (3.29) simplifies to

∂

∂xi

(
νσ2

ij

)
= −νGM(r)

r2 r̂ (3.31)

The left hand side of this equation is a tensor divergence term. In it most gen-
eral form, this a tedious expression i spherical coordinates. But as can be seen
in equation (3.30) we are only interested in the radial component of this expres-
sion. Furthermore, due to the spherical symmetry all mixed terms in the velocity
dispersion tensor are zero. This simplifies the spherical tensor divergence to

∂νσ2
rr

∂r
+ 2νσ

2
rr

r
− 1
r

(νσ2
θθ + νσ2

φφ) = −νGM(r)
r2 . (3.32)
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Since σ2
ii = 〈v2

i 〉 we get a differential equation in ν〈v2
r〉

∂ν〈v2
r〉

∂r
+ 2βν〈v

2
r〉
r

= −νGM(r)
r2 ,

β ≡ 1−
〈v2
θ〉+ 〈v2

φ〉
2〈v2

r〉

(3.33)

where β is a velocity anisotropy parameter for the galaxy. While the general solution
to equation (3.33) is straightforward, we are only concerned with galaxies assumed
to be isotropic, i.e. 〈v2

θ〉 = 〈v2
φ〉. Consequently, β = 0 and the solution to the

differential equation in this case is

ν〈v2
r〉(r) = −

∫ ν(r)GM(r)
r2 dr + C. (3.34)

To obtain the solution as a definite integral, we note that the quantity ν〈v2
r〉 → 0

as r →∞ and thus we can set C = 0 and write the solution as

ν〈v2
r〉(r) =

∫ ∞
r

ν(s)GM(s)
s2 ds . (3.35)

As mentioned in section 3.2 the spatial density ν is not an observable, but the
luminosity density ν? is. With them being proportional, and the relation hidden in
the luminosity profile (eq. (2.4)), eq. (3.35) becomes

ν?〈v2
r〉(r) =

∫ ∞
r

ν?(s)GM(s)
s2 ds . (3.36)

3.4 Dark matter relative velocity distribution

By regarding two particles at a time in the annihilation process it is possible to use
the reference frame for one of them. In this section we will expand this argument
and develop an expression for the relative velocity distribution, in terms of the mass
distribution using Eddington’s inversion formula.

3.4.1 Relative velocity distribution

As we will argue in 3.5 only two particles will be taken into account during the
annihilation. The probability for an annihilation of two particles will depend on
both their velocities, due to that the velocities are used in the Sommerfeld enhance-
ment. Therefore the annihilation rate will be proportional to both particles velocity
distributions as described in

Js ∝
∫

d3v1d3v2Fx(v1)Fx(v2)S(v). (3.37)

S(v) is the Sommerfeld enhancement which is discussed below, in section 3.5, and
Fx(v) is the velocity distribution of one particle at position x.
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By using the relative velocity in the center of mass frame one can simplify the
expression. The probability of the particles having center of mass velocity vcm =
(v1 + v2)/2 and relative velocity vrel = v1 − v2 must be equal to the probability of
them having velocities v1 and v2. Noting that d3v1d3v2 = d3vcmd3vrel, the change
of variables give

Fx(v1)Fx(v2)d3v1d3v2 = Fx(vcm + vrel/2)Fx(vcm − vrel/2)d3vcmd3vrel. (3.38)

Js depends only on the relative velocity, since the centre of mass velocity does not
describe how the particles move closer together and annihilation is local, see below
in section 3.5.2. Therefore the above expression can be integrated over vcm to obtain
the relative velocity distribution,

Fx,rel(vrel) d3vrel =
∫
Fx(vcm + vrel/2)Fx(vcm − vrel/2)d3vcm d3vrel. (3.39)

To make further simplifications the properties of the distribution Fx(v) need to be
developed.

At a point x in the halo the dark matter velocity distribution, Fx(v), can by defini-
tion be written as

Fx(v)d3v ≡ f(x,v)
ρ(x) d3v, (3.40)

where f(x,v) is the phase-space density and ρ(x) is the dark matter mass distribu-
tion, which can be defined as ρ(x) ≡

∫
f(x,v)d3v [16]. We make the assumptions

that the mass distribution is spherically symmetric, i.e. ρ(x) = ρ(r), and that the
velocity is isotropic. As a result the phase space density only depends on the radii,
r, and the magnitude of the velocity, f(x,v) = f(r, v). Therefore the the veloc-
ity distribution is independent of direction, i.e. Fx(v)d3v = Fr(v) dv and the two
directions can be integrated out:

Fr(v) dv = 4πv2f(r, v)
ρ(r) dv . (3.41)

With this we can rewrite equation (3.39) as

Fr(vrel) dvrel = 4πv2
rel

∫ f(r, |vcm + vrel/2|)f(r, |vcm − vrel/2|)
ρ2(r) d3vcmdvrel. (3.42)

The argument |vcm ± vrel/2| is independent of one angle, thus 2π can be integrated
out. The other angle is between vcm and vrel and therefore |vcm ± vrel/2| = vcmz ±
vrel/2, z ∈ [−1, 1]. Then the relative velocity distribution is

Fr(vrel) dvrel = 8π2v2
rel

∫ ∞
0

v2
cm

∫ 1

−1

f(r, vcmz + vrel/2)f(r, vcmz − vrel/2)
ρ2(r) dz dvcm dvrel,

(3.43)
where the subscript r in Fr(vrel) indicates that this velocity distribution is for one
specific radii. f is the phase space distribution and ρ is the mass distribution.
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3.4.2 Application of Jeans theorem

As mentioned above (section 3.3.2) the collisionless Boltzmann equation almost
impossible to solve, since it is a function of seven variables. To obtain exact solutions
one can regard only a subset of all possible stellar dynamical equilibria at a time.
This will be done for steady-state dSphs, in order to obtain Eddington’s formula in
the next section.

We base the derivation on the Jeans theorem (Binney and Tremaine, p. 200, [18]):

Any steady-state solution to the collisionless Boltzmann equation depends on the
phase-space coordinates only through integrals of motion in the galactic potential,
and any function of the integrals yields a steady-state solution of the collisionless
Boltzmann equation.

Assuming a steady-state spherically symmetric system, the distribution function
(DF) is a function of the energy, E, and the angular momentum, L. E is an integral
of motion in any static potential and L is in an spherical potential constituted by
three integrals of motion. An integral of motion is any function of (x,v) that is
constant along any orbit. By the Jeans theorem, any non-negative function of the
mentioned integrals can be the DF of a spherical stellar system. Due to the spherical
symmetry the function will only depend on the magnitude of L. With f as the DF,
and for a stellar system that itself provides the potential Φ, one has

∇2Φ = 4πGρ = 4πG
∫
f d3v . (3.44)

The same equation after exploiting spherical symmetry (Φ depends only on r) is
called the fundamental equation of spherical equilibrium stellar systems, and is
defined by

1
r2

d
dr

(
r2 dΦ

dr

)
= 4πG

∫
f
(1

2 |v|
2 + Φ|r× v|

)
d3v . (3.45)

To simplify future calculations, the relative potential Ψ and the relative energy E
are defined as

Ψ = −Φ + Φ0 (3.46)
and

E = −E + Φ0 = Ψ− 1
2v

2, (3.47)

with Φ0 chosen to satisfy f > 0 for E > 0 and f = 0 for E 6 0. The relative
potential then satisfies Poisson’s equation through ∇2Ψ = −4πGρ, where Ψ → Φ0
as x→∞.

For a system with isotropic velocity-dispersion tensor the DF will depend only on E
and not L. Eq. (3.45) then becomes (in spherical coordinates)

1
r2

d
dr

(
r2 dΦ

dr

)
= −4πG

∫ √2Ψ

0
f(E)4πv2dv = −16π2G

∫ √2Ψ

0
f
(
Ψ− 1

2v
2
)
v2 dv ,

(3.48)

18



3. Theory

where the upper limit is decided by f 6= 0 for E = Ψ − 1
2v

2 > 0. A change of
variable from v to E in eq. (3.48), with dE = −vdv and limits v = 0→ E = Ψ and
v =
√

2Ψ→ E = 0, results in

1
r2

d
dr

(
r2 dΦ

dr

)
= −16π2G

∫ Ψ

0
f(E)

√
2(Ψ(r)− E) dE . (3.49)

3.4.3 Eddington inversion formula

With the Eddington inversion formula one can derive the DF f(E) for any given
mass density ρ(r). f(E) will then be used to compose a velocity distribution, which
will take part in eq.(3.43). The theory from the former section is used.

To achieve this formula for the density, notice that Ψ is an monotonic function of r,
due to the spherical symmetry, and use the same change of variable as in eq.(3.49):

ρ(r) =
∫
fd3v = 4π

∫
v2f

(
Ψ− 1

2v
2
)
dv = 4π

∫ Ψ

0
f(E)

√
2(Ψ(r)− E)dE (3.50)

The above equation is then differentiated with respect to Ψ, resulting in

1√
8π

dρ
dΨ =

∫ Ψ

0

f(E)√
Ψ(r)− E

dE . (3.51)

This is an Abel integral on the form

f(x) =
∫ x

0

g(t)dt
(x− t)α , 0 < α < 1 (3.52)

which has the solution [18]

g(t) = sin(πα)
π

∫ t

0

f(x)dx
(t− x)1−α . (3.53)

The above formula for solving the Abel integral gives the following solution to
eq.(3.51)

f(E) = 1√
8π2

d
dE

∫ E
0

dΨ√
E −Ψ(r)

dρ
dΨ . (3.54)

Since f(E) > 0 everywhere, the function
∫ E
0

dΨ√
E−Ψ(r)

has to be an increasing function
of E . Otherwise, the solution is unphysical. Applying Leibniz integral rule on
eq.(3.54) gives the alternative form, which is called Eddington’s formula;

f(E) = 1√
8π2

 ∫ E
0

dΨ√
E −Ψ(r)

d2ρ

dΨ2 + 1√
E

(
dρ

dΨ

)
Ψ=0

. (3.55)
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This expression is rewritten with help from the chain rule, since ρ is not usually
given as a function of Ψ:

d2ρ

dΨ2 =
(dΨ

dr

)−2 d2ρ

dr2 + d2r

dΨ2
dρ
dr and d2r

dΨ2 = −d2Ψ
dr2

(dΨ
dr

)−3
(3.56)

gives
d2ρ

dΨ2 =
(dΨ

dr

)−2(d2ρ

dr2 −
(dΨ

dr

)−1 d2Ψ
dr2

dρ
dr

)
. (3.57)

From a numerical point of view it is easier to change the variable to the radius
of the spherical system, r, according to dΨ = dΨ

dr dr. Assuming only dark matter
contributes to the gravitational potential and the density, eq. (3.55) becomes

f(E) = 1√
8π2

∫ ∞
Ψ−1
DM (E)

1√
E −ΨDM(r)

×

dρDM
dr

d2ΨDM

dr2

(
dΨDM

dr

)−2
− d2ρDM

dr2

(
dΨDM

dr

)−1
dr. (3.58)

From this DF f(E) one can reach a velocity distribution by making use of the
relation in eq. (3.47), namely E = Ψ(r) − 1

2v
2. f(E) then becomes f(Ψ(r) − 1

2v
2).

This f(Ψ(r) − 1
2v

2) is identified as the f(r, v) from eq.(3.43) in section 3.4.1, with
v = vcmz ± vrel/2, namely

Fr(vrel) dvrel = 8π2v2
rel×∫ ∞

0
v2

cm

∫ 1

−1

f(r, vcmz + vrel/2)f(r, vcmz − vrel/2)
ρ2(r)DM

dz dvcm dvrel.
(3.59)

Noticing that the integrand is symmetric in z, giving a factor 2 when integrating
from 0 to 1 instead, and using that v2 = v2

cm/2 + v2
rel/8 ± vcmvrelz/2, the relative

velocity distribution becomes

Fr(vrel) dvrel = 16π2v2
rel

ρ2
DM(r)

∫ ∞
0

v2
cm

∫ 1

0
f
(

Ψ(r)− v2
cm
2 −

v2
rel
8 −

vcmvrelz

2

)
×

f
(

Ψ(r)− v2
cm
2 −

v2
rel
8 + vcmvrelz

2

)
dz dvcm dvrel.

(3.60)

Combining these two equations gives further limitations to the integration bound-
aries in eq. (3.60), since f(E) = 0 for E 6 0 (as discussed after eq. (3.47)). E > 0
gives Ψ(r)− 1

2v
2 > 0 → v2 6 2Ψ(r) and the maximum v2 = v2

cm + v2
rel/4 + vcmvrelz

gives
2Ψ > v2

cm + v2
rel
4 ± vcmvrelz ⇐⇒ z 6

8Ψ− 4v2
cm − vrel

4vcmvrel
. (3.61)

Combining v2 6 2Ψ(r) with 0 6 z 6 1 results in the following inequalities, the first
for z = 1

v2
cm + v2

rel
4 + vcmvrel =

(
vcm + vrel

2
)2

6 2Ψ ⇐⇒ vcm 6
√

2Ψ− vrel

2 (3.62)
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and the second for z = 0

v2
cm + v2

rel
4 6 2Ψ ⇐⇒ vcm 6

√
8Ψ− v2

rel

2 . (3.63)

These integration limits give the final expression for relative velocity distribution:

Fr(vrel) dvrel = 16π2v2
rel

ρ2(r)DM
×

∫ √2Ψ− vrel
2

0
v2

cm

∫ 1

0
A dz dvcm +

∫ √8Ψ−v2
rel

2
√

2Ψ− vrel
2

v2
cm

∫ 8Ψ−4v2
cm−vrel

4vcmvrel

0
A dz dvcm


where

A = f
(

Ψ(r)− v2
cm
2 −

v2
rel
8 −

vcmvrelz

2

)
f
(

Ψ(r)− v2
cm
2 −

v2
rel
8 + vcmvrelz

2

)
.

(3.64)

3.5 Sommerfeld enhancement

One of the most important physical quantities in nuclear and particle physics is the
cross section. Classically, this is the area transverse to the relative motion of two
particles within which a scattering process, a particle collision, can occur. However,
a scattering process is intrinsically stochastic: even if the particles meet within
the cross section area, the particle collision might still not occur [19]. The more
rigorous formulation of the cross section therefore relies on quantum mechanics.
Given a probability density current, the cross section times this equals the number
of scattered particles. The cross section is thus proportional to the probability of
collision between two particles. Since annihilation of two particles is nothing more
than a particle collision resulting in a transformation of the particles, the importance
of the cross section for an annihilation process is indisputable.

If there exists a long-range potential between the particles, the cross section will
change due to some form of force between the particles. If the force is attractive the
cross section will be greater and if it is repulsive it will be smaller. When a poten-
tial between the particles is accounted for it is called a Sommerfeld enhancement.
It is also important to note that the Sommerfeld enhancement is usually referred
to in non-relativistic quantum mechanics. The new cross section due to the poten-
tial is always proportional to the old one not accounting for the same. Thus the
Sommerfeld enhancement can be expressed as a Sommerfeld enhancement factor:

σ = S(v)σ0 (3.65)

where σ0 is the old cross section, σ the new one and S the Sommerfeld enhancement
factor with a dependence on the relative velocity v. In the two next paragraphs, a
description of the Yukawa potential and a derivation of the enhancement factor S
follows.
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3.5.1 Yukawa potential

In particle physics, a force between two particles can be described as an exchange
of a force mediator particle. The properties of this exchange particle affects the
properties of the force [11]. The Yukawa potential describes one such force and has
the form;

VY ukawa(r) = α
e−mφr

r
(3.66)

where α is the strength of the potential, r the radial coordinate and mφ the mass
of the mediator particle. The Coulomb potential is a special case of the Yukawa
potential where the force exchange particle, the photon, has zero mass. The Yukawa
potential corresponds to a long-range force which can describe the self-interaction
between dark matter particles. Thus, it can lead to a Sommerfeld enhancement.
Nonetheless, it is very simple in its form. It is for these reasons it has been chosen
as the subject potential for this study.

3.5.2 Sommerfeld enhancement for an annihilation process

To fully derive the Sommerfeld enhancement, one must refer to quantum field theory.
This is beyond the scope of this report. Instead, we will derive an expression of how
an elastic scattering process is enhanced by introducing a long range potential. Then
we will argue that the same result also applies to an annihilation process.

Imagine two particles, both travelling with a non-relativistic velocity and a local
interaction, an interaction in a point, between the two in the form of a Hamiltonian
Ĥlocal. This two-body-system can always be simplified to a single-body-system in
which one particle is seen as stationary and the other travelling with a velocity equal
to the relative velocity with a mass equal to the reduced mass. We will now derive
the cross section for this system. First, we will do this without any self-interaction
between the particles. Then, we will do the same for a Yukawa self-interaction and
compare the results to identify the Sommerfeld enhancement factor.

The total Hamiltonian of the system without self-interaction can be written as

Ĥ = Ĥ0 + Ĥlocal = p̂2

2µ + Ĥlocal (3.67)

where µ is the reduced mass of the two particles. The solution of the Hamiltonian Ĥ0
is the plane-wave free particle solution, |φ〉 = eik·x, exhibiting a continuous energy
spectra for the time independent Schrödinger equation:

Ĥ0|φ〉 = E|φ〉 (3.68)

If we assume that the scattering process preserves energy, an elastic scattering pro-
cess, the same energy eigenvalues goes with Ĥ. The time independent formulation
of the scattering process can then be expressed as:

Ĥ|ψ〉 = (Ĥ0 + Ĥlocal)|ψ〉 = E|ψ〉 (3.69)
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We wish to find the solution |ψ〉 to this equation. It is apparent that as Ĥlocal → 0
the solution |ψ〉 → |φ〉. Thus it is reasonable to expect the solution |ψ〉 to depend
on |φ〉. One can then deduce an implicit expression for the solution to (3.69):

|ψ〉 = |φ〉+ (E − Ĥ0)−1Ĥlocal|ψ〉 ≡ |φ〉+ 1
E − Ĥ0

Ĥlocal|ψ〉 (3.70)

The reader can check this by applying E − Ĥ0 to (3.70), yielding equation (3.69).
However, to avoid problems arising with a singular operator as 1

E−Ĥ0
, one usually

makes E slightly complex, leading to the Lippman-Schwinger equation [20]:

|ψ(±)〉 = |φ〉+ 1
E − Ĥ0 ± iε

Ĥlocal|ψ(±)〉 (3.71)

By multiplying with 〈x| from the left and using the resolution of identity; 1 =∫
d3x′〈x′|x′〉, one yield the implicit solution in the position basis:

〈x|ψ(±)〉 = 〈x|φ〉+
∫
d3x′〈x| 1

E − Ĥ0 ± iε
|x′〉〈x′|Ĥlocal|ψ(±)〉 (3.72)

This is an integral equation, more precisely an inhomogenous Fredholm equation of
the second kind. The kernel of the integral equation is:

K±(x, x′) ≡ ~2

2µ〈x|
1

E − Ĥ0 ± iε
|x′〉 (3.73)

It can be shown by using the resolution of identity again, but now in the momentum
basis, and the method of residues, that

K±(x, x′) = − e±ik|x−x′|

4π|x− x′|
(3.74)

if E is expressed as ~2k2/2µ where k is the modulus of the wave vector (remember
that E is the same as in the case of a plane-wave). The locality of Ĥlocal can be
expressed as:

〈x′|Ĥlocal|x′′〉 = Hlocal(x′)δ3(x′ − x′′). (3.75)
One can also use the fact that Hlocal(x′) = Ulocalδ(x′), where Ulocal is a constant.
Altogether, this yields:

〈x|ψ(±)〉 = 〈x|φ〉 − µ

~2

∫
d3x′

e±ik|x−x′|

4π|x− x′|
Hlocal(x′)〈x′|ψ(±)〉

= 〈x|φ〉 − µUlocal
2π~2 ψ(±)(0)︸ ︷︷ ︸

A

e±ik|x|

|x|

≡ 〈x|φ〉 − Ae
±ikr

r
.

(3.76)

Here A is an amplitude factor with a linear dependence on ψ(±)(0).

23



3. Theory

The physical interpretation of this solution can be clarified by analysing each term
separately. The first term is a plane wave representing the incoming particle. The
second term is a spherical wave representing the scattered end products of the an-
nihilation, at least for the + solution. The − solution is an incoming spherical wave
and such a system is not physically realisable in this situation.

The cross section is simply a scattering probability. Therefore, if we imagine a large
number of particles prepared identically according to the described situation, the
probability of finding a scattered particle going through a small area da far away
from the scattering centre is:

dσ = number of particles scattered into da per unit time
number of incident particles crossing unit area per unit time (3.77)

We can relate this to the probability currents, j, associated with the wave functions
of the incoming and outgoing stream of particles respectively:

dσ = r2dΩ|jscat|
|jinc|

(3.78)

where dΩ is the usual differential solid angle and r is the radial coordinate sufficiently
far away from the scattering centre. With the interpretation of equation (3.76) one
yields:

dσ =
r2dΩ|A eikr

r
|2

|eik·x|2
= |A|2dΩ. (3.79)

The total cross section is the solid angle integral of this differential probability.
From the definition of A, we can conclude that the cross section is always propor-
tional to the squared modulus of the wave function at zero ; |ψ(0)|2. This makes
intuitive sense since the squared modulus of the wave function at zero represents
the probability of finding a particle at the origin, where the local interaction takes
place. As a reminder, this wavefunction is the solution to the Schrödinger equation
with the Hamiltonian in equation (3.67). Since we do not know this wavefunction,
the cross section is also unknown. In this situation, one usually makes the Born-
approximation. That is, we assume that this wavefunction differs only little from
our original plane-wave solution. One can then substitute |ψ〉 with |φ〉 in equation
(3.76) under the integral. Thus,

σ0 ≈
∫
all solid angles

dσ = 4π
∣∣∣∣µUlocal2π~2 φ(0)

∣∣∣∣2 ∝ ∣∣∣∣φ(0)
∣∣∣∣2. (3.80)

Now, if one does the same for a Yukawa self-interaction, the solution looks very
much the same. The only difference is that a Yukawa potential is included in Ĥ0.
As a result, the usual plane-wave solution, φ(0), is perturbed. The new cross section
accounting for the Yukawa potential is thus proportional to the squared modulus
of another perturbed wave function at zero. This wave function corresponds to the
Schrödinger equation:

( p̂2

2µ + V̂Y ukawa)Ψ = ~2k2

2µ Ψ. (3.81)

24



3. Theory

Thus the Sommerfeld enhancement in equation (3.65) is given by:

S(v) = σY ukawa
σ0

= |Ψ(0)|2
|φ(0)|2 = |Ψ(0)|2 (3.82)

where the plane-wave is again taken as normalised to 1. The determination of
the Sommerfeld factor for the Yukawa potential is thus reduced to determining
the modulus of the wave function in equation (3.81) at zero given the boundary
condition:

Ψ→ eik·x + A
eikr

r
as r →∞. (3.83)

This boundary condition describes a plane wave and spherical wave as r goes to
infinity.

This very same result also applies for an annihilation process [21]. The difference
between a scattering process and annihilation is that the latter is not an elastic
process since the ingoing particles are different from the outgoing. However, the
probability of annihilation is also proportional to the probability of finding the
fictious particle at the origin [21]. The Sommerfeld enhancement for an annihilation
process must then be precisely the squared modulus of the wave function in eq.
(3.82).

3.5.3 The relation between the Sommerfeld enhancement
and the radial wave function’s asymptotic behaviour

The purpose of this section is to derive the explicit expression for the Sommerfeld
enhancement that later will be used in this study. In short terms the derivation
involves a symmetry argument, a statement that only the radial wave function is of
importance, a change of variables and an analysis of the asymptotic behaviour of
this radial wave function.

The Schrödinger equation in equation (3.81) with the explicit expression for the
Yukawa potential is:

(− ~2

2µ∂
2
r + αe−mφr

r
)Ψp(r) = p2

2µΨp(r) (3.84)

where the index p has been introduced to illustrate the momentum dependence of
the solution Ψ. Since the Yukawa potential is spherically symmetric, the solution
is rotationally symmetric about the axis of propagation of the wave function. The
solution can then be decomposed in partial waves [21, 22]:

Ψp(r) = (2π)3/2

4πp

∞∑
l=0

il(2l + 1)eδlRp,l(r)Pl(cos θ). (3.85)

Here, Pl are the Legendre polynomials, δl a scattering phase shift and Rp,l is the
radial part satisfying the radial Schrödinger equation:

( d
2

dr2 + 2
r

d

dr
− l(l + 1)

r2 + p2

~2 + 2µαe−mφr
~2r

)Rp,l(r) = 0, (3.86)
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normalised as ∫ ∞
0

r2Rp,l(r)Rp′,l(r)dr = δ(p− p′), (3.87)

with completeness relation∫ ∞
0

Rp,l(r)Rp,l(r′)dp = 1
r2 δ(p− p

′). (3.88)

One can show that the resulting square of the wave function, and thus the Sommer-
feld enhancement, satisfies:

|Ψp(0)|2 =
∣∣∣∣√π2 (2l + 1)!!

l!
1
p

dl

drl
Rp,l(r)

∣∣∣
r=0

∣∣∣∣2 (3.89)

This quite tedious derivation will not be included in this report (consider instead
R. Iengo [21]). Thus for our purposes, the problem is reduced to determining the
behaviour of the radial part Rp,l(r) at the origin.

The normalisation in equation (3.87) corresponds to an asymptotic behaviour [22]

Rp,l(r)→
√

2
π

sin
(
pr − lπ

2 + δl
)

r
as r →∞. (3.90)

Let us define pr = x. If the radial function is expressed as
Rp,l(r) = NpxlΦl(x), (3.91)

one finds that the differential equation in (3.86) is simplified by the loss of one term:

Φ′′l + 2(l + 1)
x

Φ′l + (2µαe−
mφ
p
x

~2px
+ 1

~2 )Φl = 0. (3.92)

The corresponding asymptotic behaviour for Φ is

xl+1Φl(x)→ C sin
(
x− lπ

2 + δl

)
as x→∞. (3.93)

Comparison with equation (3.90), using equation (3.91), gives: N =
√

2
π

1
C
. By

combining this relation and the two identities (3.89) and (3.91) one yields:

S(v) =
((2l + 1)!!

C

)2
(3.94)

The determination of the Sommerfeld enhancement is thus simply determined by
the asymptotic behaviour of the solution Φ to equation (3.92).

Furthermore, the initial conditions for this equation cannot be arbitrary if the solu-
tion is to be regular. For our purposes the following initial conditions are useful;

Φl(0) = 1 Φ′l(0) = − µα

p(l + 1) , (3.95)

since then the behaviour of the differential equation at x = 0 is handled. The choice
Φl(0) = 1 is of course somewhat arbitrary but the second condition must always
adjust to the value of the first condition to handle the behaviour at x = 0. The
choice Φl(0) = 1 has however no impact on the final result. This can be understood
if one considers the fact that only the asymptotic behaviour of the solution is of
importance as seen in (3.93) and (3.94).
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As described in the previous chapter, the dark matter mass distribution, ρDM , the
Sommerfeld enhancement factor, S(v), and the dark matter velocity distribution
F (v) are needed to calculate the desired Js-factor. The expression for the Js-factor
is repeated here for clarity:

Js =
∫

∆Ω

∫
l.o.s.

ρ2
DM

∫
F (v)S(v) d3v ds dΩ . (4.1)

When these three components have been calculated, the three integrals can be per-
formed to yield the Js-factor. ρDM will be estimated using a maximum likelihood
estimation outgoing from the l.o.s. velocity data for the stars in 20 dSphs (with the
same data as in [9]). This estimation will be described in section 4.3. The calculation
of the Sommerfeld enhancement factor and the dark matter velocity distribution is
done numerically. In all calculations, Mathematica has been chosen as the numerical
tool, while any scientific computation language should suffice. Our code is submit-
ted in Appendix A. In section 4.6 a validation of our method is described as well
as an approximate calculation of Js-factors accounting for self-interaction used in
previous research.

4.1 Numerical calculation of the Sommerfeld en-
hancement

The differential equation in (3.92) was solved numerically with l = 0, p = 2µv and
~ = 1:

Φ′′0 + 2
x

Φ′0 + (αe
−
mφ
2v x

vx
+ 1)Φ0 = 0, (4.2)

and the boundary conditions

Φ0(0) = 1 Φ′0(0) = − α

mv
. (4.3)

The value of α was set to 1/100 and the mediator particle mass mφ to 1 GeV/c2 as
in [8, 17]. Eq. (4.2) was solved parametrically in the relative velocity v and particle
mass m.

27



4. Methods

The Sommerfeld enhancement was then acquired by:

S(v) =
( 1
C

)2
, (4.4)

where the C is given by the asymptotic sinusoidal behaviour of the solution to (4.2)-
(4.3):

xΦ0(x)→ C sin(x+ δ0) as x→∞. (4.5)

Expressed in Φ0(x), the Sommerfeld enhancement is calculated by:

S(v) = lim
x→∞

1(
xΦ0(x)

)2
+
(
(x− π/2)Φ0(x− π/2)

)2 , (4.6)

Numerically, the expression in (4.6) was evaluated until the value did not change
within the desired margin of error. A value of x = 50 was enough for our purposes,
which yielded an accuracy of six digits.

4.2 Numerical calculation of the dark matter ve-
locity distribution

Computing the dark matter velocity distribution includes many extensive computa-
tional steps, and therefore a simplifying numerical approach was used.

The main methodology used was to write all expressions dimensionless when pos-
sible, to simplify calculations. Furthermore, the amount of dependent parameters
was reduced by applying certain scalings. We used r0 and ρ0 as length and density
scales, respectively. This takes immediate effect in Ψ and ρ as

x = r

r0

Ψ(r) = Gρ0r
2
0 × Ψ̃(x)

ρDM(r) = ρ0 × ˜ρDM(x)

(4.7)

where ~ indicates a dimensionless function. This change of length variable will cause
every derivative in r to yield a factor of r−1

0 , as per the chain rule. Numerically,
this shows up when computing the distribution function f(E) from equation (3.58).
Thus, we arrived at the following quantities:

E ′ = 1
Gρ0r2

0
× E

f(E) = r0

r3
0G
√
Gρ0r2

0

× f̃(E ′) = r−3
0 G−

3
2ρ
− 1

2
0 × f̃(E ′)

(4.8)

Here it should be noted that E ′ is not strictly dimensionless, as a consequence of the
definition of E in equation (3.47), but instead has dimension M−1. This is accounted
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for in f̃(Ẽ) however. Following the already presented theory, we then extracted the
velocity distribution from this result. Given the energy scale set in equation (4.8)
we constructed the velocity scale as

ṽ = 1√
Gρ0r2

0

× v. (4.9)

From this, we arrived at our final expression, now reduced to just depend on relative
velocity, vrel and the parameter x as follows:

Fx(vrel) = 1√
Gρ0r2

0

× F̃x(ṽrel). (4.10)

4.3 Likelihood estimation of the dark matter
mass distribution

For this estimation, we assumed a Gaussian distribution for the l.o.s. stellar velocity
data in the different dSphs. The resulting likelihood function, L, takes the form:

L = − logL = 1
2

N?∑
i=1

[(vi − u)2

σ2
i

+ log
(
2πσ2

i

)]
(4.11)

The index i goes over the N? stars in the sample, vi is the particular l.o.s. velocity
of one star and u is the mean of the l.o.s velocities in the data sample. The expected
velocity dispersion squared, σ2

i , is taken as the squared sum of the theoretical model
of the velocity dispersion, σlos(Ri), and the measurement uncertainty, εi, in the
velocity of a particular star: σ2

i = σ2
los(Ri) + ε2i . Here, Ri, is the projected radial

distance of the star from the galactic centre.

We assumed the spherical Jeans equations described in section 3.3, which is standard
in the field [9]. Also, we assumed an isotropic velocity dispersion, which corresponds
to an anisotropy factor, β, equal to zero. Then, the theoretical velocity dispersion
σlos(Ri) could be determined from the dark matter mass distribution. This connec-
tion is established by combining the equation for the l.o.s velocity dispersion derived
in the previous chapter (eq. (3.11)) with the expression for ν?〈v2

r〉 in eq. (3.36) to
arrive at

σ2
l.o.s.(R) = 2

I(R)

∫ ∞
R

r√
r2 −R2

dr
∫ ∞
r

ν?(s)GM(s)
s2 ds (4.12)

For ν?, the Plummer profile was used, where (α, β, γ) = (2, 5, 0) [23]. For ρDM,
the NFW profile was used, where (α′, β′, γ′) = (1, 3, 1) [24, 25]. These values are
standard in the field and were chosen to be able to compare the results with another
study when validating our method [9].
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From the above, the likelihood depends on the parameters in ν? and ρDM. These
are r? and r0, ρ0 respectively. The likelihood does not depend on ρ? since the ρ? in
I(R) and ν? cancel out in σlos(R). Since the dark matter mass distribution was of
primary interest, the parameter r? was treated as a nuisance parameter. For each
pair of r0 and ρ0, the nuisance parameter was chosen to maximise the likelihood
function.

The likelihood L in eq. (4.11) was then maximised with respect to the parameters
r0 and ρ0. The resulting two parameters were used with eq. (2.5) to yield the most
likely dark matter mass distribution with respect to the data sample.

4.3.1 Reduction of parameters and singularity handling

The numerical computation of the l.o.s. velcoity dispersion was approached in the
same fashion as in section 4.2. Thus to begin with, any quantity containing the
three parameters r0, r? and R was simplified with a dependence on just two ratios:
Rx = R/r0 and x? = r?/r0. This was extremely helpful in numerical calculations,
as it was then sufficient to create tables of data values in 2 instead of 3 parameters.

Numerically computing the velocity dispersion, σ2
l.o.s., as given by equation (4.12),

also includes a singularity when r = R, which complicates the numerics. This were
solved with a fairly simple change of variables. First, the ratio were expressed in
the dimensionless quantities as

r√
r2 −R2

= r0√
r2

0

r√
r2 −R2

= x√
x2 −R2

x
(4.13)

and then make the change of variables u2 = x2 −R2
x so that

x =
√
u2 +R2

x

dx = u√
u2 +R2

x

du

=⇒ x√
x2 −R2

x

dx = du

(4.14)

4.4 Perfoming the integrals to calculate the Js-
factor

The integrand in the Js-factor depends on the radial distance from the galactic centre
and the relative velocity. The relative velocity is already an integration variable so
this was left as it was. The radial distance r however was parametrised in the line
of sight and solid angle integration variables by using the law of cosines illustrated
in figure 4.1:

r(s, cosα) =
√
s2 +D2 − 2s cosα. (4.15)
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r

D θmax
α

s

Figure 4.1: The galaxy seen from a distance D to it’s centre, with the radial
distance r from the galactic centre and the l.o.s. distance to the concerned star s
in the galaxy. α is the angle between D and s and θmax is the upper limit for the
angular integration.

The integration in the line of sight variable s was then taken from 0 to ∞. In the
solid angle integral, the variable γ = cosα was integrated from cos θmax to 1 and a
factor of 2π was extracted from the azimuthal angular part. The upper integration
limit for the angle, θmax, was taken to be 0.5 ◦. This angle covers approximately
half of the luminosity in most of the dSphs [9]. It is appropriate to calculate the
J-factor within this region, since the Jeans equations are most valid there [26, 27].
The integral parametrisation yielded the final numerical expression for Js:

Js = 2π
∫ 1

cos θmax

∫ ∞
0

ρ2
DM(r(s, γ))

∫ 10v0

0
Fr(s,γ)(vrel)S(vrel) dvrel ds dγ (4.16)

where the upper integration limit in dvrel has been taken as

10v0 = 10
√
Gρ0r2

0 /
√

8Ψ̃(x)
√
Gρ0r2

0 (4.17)

which should suffice, considering the constraints on vrel discussed in section 3.4.3.

4.5 Calculation of confidence intervals for the Js-
factor

A grid in the two variables ρ0 and r0 was created and the likelihood function was
calculated in every point. Each pair of ρ0 and r0 corresponds to one Js in eq. (4.16).
The likelihood and Js for these pairs was plotted in a diagram. Data binning was
used to select certain values of Js: The range of Js was divided in small intervals
and in each interval the Js with the maximum likelihood was chosen. This binning
process allowed for a one-to-one relationship between the likelihood function L and
the chosen Js. From this, a test statistics was formed according to:

TS(Js) = −2 log L(Js)
Lmax

, (4.18)
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where Lmax is the value of the absolute maximum likelihood for any pair ρ0 and r0.
The confidence levels were then calculated using the chi-squared distribution with
one degree of freedom.

4.6 Validation of method and complementary cal-
culations

The validation of our likelihood estimation of Js was made by calculating an like-
lihood estimation of the J-factor without self-interaction using the same likelihood
estimation technique and comparing this to Chiappo et. al [9]. The J-factor with-
out self-interaction was computed by setting the Sommerfeld enhancement to unity,
making the velocity integral equal to 1 in 4.16.

To validate that the calculations of the Sommerfeld enhancement factor S(v) and
the dark matter velocity distribution F (v) are correct, the results was compared to
other studies [16, 17]. Also, as a sanity check, the integral of F (v) was evaluated
for each radial distance from the galactic centre to compare how close this value is
to 1.

For further analysis, Js was calculated for constant Sommerfeld enhancement, S(v∗).
This is a standard calculation for J-factors accounting self-interaction, for example in
[28]. The enhancement becomes constant when considering only the mean velocity
of the stars in the galaxy, i.e. no consideration of the distribution of velocities.
Typical values for v∗ in dSphs are 10−5 in units of c [21].
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We start by presenting the comparisons with previously published articles. The com-
putation of Js-factors includes contribution of a Sommerfeld enhancement weighted
with a velocity distribution. The validity of these two functions will be evaluated
in the second section. In the third section we present the Js-factor for the dSphs
around the Milky Way.

5.1 Validation of statistical method

A likelihood-based method to determine J-factors without self-interaction has been
used in Chiappo et al. [9]. Their method differs only by our use of r? (the scale
radius of the luminosity profile) alone as nuisance parameter instead of both r? and
r0 (the scale radius of the dark matter profile). To evaluate our statistical method
we compare our J -factors with S(v) = 1 to their result. log10(J) is denoted with J
and the likelihood with L, and thereby log(L) with L.
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Figure 5.1: The left figure shows all likelihood values less than 5 relative to the
minimum value. The variable r0 range from 0.05 to 20 kpc and ρ0 from 105 to 109

M�kpc−3. In the right figure a data binning method has been applied to select the
points with the lowest likelihood. The minimum likelihood is found J of 18.77.
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Table 5.1 shows the discrepancy with Chiappo et al. for 20 dSph. The seven galaxies
above the dashed line has a J that lies within the 1-σ from the J in Chiappo et al.
Our J for Draco differs with 4% and Segue 1 differs with 18% [9]. For four of the
galaxies below the dashed line, the 1-σ intervals overlap. These are Coma Berenices,
Canes Venatici II, Bootes II and Ursa Major II. For some of the galaxies one of the
1-σ interval limits are not existing due to lack of data points.

Table 5.1: Table comparing J-factors with Chiappo et al. [9]. Galaxies above the
dashed line have a J which include the J from [9] within 1-σ. Missing 1-σ-levels
are indicated with “-”. The difference is given as ∆J , the log10 of the ratio between
our and the referred J-factors. The last three columns are the optimised values for
r?, r0 and ρ0.

J ∆J r∗ r0 ρ0

Galaxy [GeV2 cm−5] [kpc] [kpc] [M�kpc−3]
Draco 18.77+0.16

−0.19 −0.02 0.21 14.95 1.79 · 106

Leo I 17.70+0.18
−0.18 −0.03 0.37 9.90 1.79 · 106

Ursa Major I 17.94+0.64
−0.91 −0.09 0.48 0.21 2.26 · 108

Leo IV 16.54+0.82
−1.33 −0.19 0.24 0.21 7.39 · 107

Willman 1 19.60+0.37
−0.33 −0.26 0.029 17.98 2.60 · 106

Leo T 16.38+1.21
−0.72 −0.55 1.86 0.21 1.71 · 108

Segue 1 18.67+0.82
−2.37 −0.75 0.085 0.21 1.29 · 108

Sculptor 18.87+0.14
− 0.17 0.11 0.61 1.18 · 108

Coma Berenices 19.42+0.22
−0.21 0.37 0.0033 1.82 2.92 · 107

Carina 17.52+0.23
−0.27 −0.39 0.52 20 3.35 · 105

Canes Venatici II 18.37+0.32
−0.27 0.54 0.016 13.13 1.96 · 106

Sagittarius 20.34 −
−0.13 0.57 0.079 1.01 1.18 · 108

Bootes II 19.22+0.40
−3.33 0.58 0.026 17.78 1.79 · 106

Ursa Major II 19.89+0.24
−0.30 0.63 0.0033 2.83 2.42 · 107

Canes Venatici I 18.08 −
−0.23 0.75 0.037 0.21 6.28 · 108

Ursa Minor 19.48 −
−0.37 0.84 0.024 0.21 9.11 · 108

Fornax 17.09+0.10
−0.04 −0.95 1.97 9.50 6.43 · 105

Sextans 18.77+0.08
− 1.01 0.05 0.21 5.21 · 108

Bootes I 17.93+0.40
−0.45 1.11 0.0044 2.83 4.13 · 106

Hercules 18.50+0.16
−0.17 1.17 0.036 20 1.35 · 106

A further investigation of the likelihood on the parameter space {r0, ρ0}, as in figure
5.2, shows a long flat valley for the likelihood. However, the J -factors in fig. 5.1
have a similar structure. J gets a well defined maximum likelihood value as seen in
the right of fig. 5.1.

Some error estimations for the galaxies in table 5.1 gives unevaluated 1-σ levels.
One such galaxy is Canes Venatici I, seen in fig. 5.3. The left plot is a contour plot
over r0 and ρ0, showing the 1,2,3-σ error estimations and J -values. The right plot
is the likelihood and J , both calculated in the {r0, ρ0}-space.

34



5. Results

17

0 5 10 15 20

5

6

7

8

9

r0 [kpc]

lo
g
1
0
(
0
)
[M

�

k
p
c
-
3
]

Figure 5.2: Dashed contours specifying J values in the r0 and ρ0 plane. The grey
boundaries defines confidence intervals from darker to lighter: 1-σ, 2-σ and 3-σ. The
confidence intervals are constructed from calculation on Draco but the principle of
a long flat valley is characteristic.
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Figure 5.3: The left plot shows the likelihood error estimation 1,2,3-σ from darker
to lighter shades of grey with the minimum showed by a red dot. Js values are
showed with dashed lines. The right hand plot shows the likelihood versus the J
value and gives the error estimations in levels of 1,2,3-σ. Both plots are for data
from Canes Venatici I, giving an example for a galaxy with an inconsistent error
estimation.
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5.2 Validation of the Sommerfeld enhancement
and the velocity distribution

The Sommerfeld enhancement is dependent of two parameters, the particle mass
and velocity, and thus two figures are presented for evaluation of its validness. First
fig. 5.4 shows the dependence of the particle’s mass. This can be compared with the
results in Robertson and Zentner [17]. A comparison shows a similar behaviour in
the particle mass parameter, for example both have a resonance peak at 650 GeV/c2

with an enhancement of 2 · 105.

Relative Velocity

10-5 c

10-4 c

10-3 c

10-2 c

500 600 700 800 900

10

100

1000

104

105

Particle Mass [GeV/c2]

S(v)

Figure 5.4: Sommerfeld enhancement factor for four different velocities as a func-
tion of particle mass. Here α = 1

100 and mφ = 1 GeV/c2. The resonance peak around
650 GeV/c2 is very dominant for low velocities, but vanishes for velocities over 10−3

c.

The Sommerfeld enhancement’s velocity dependence for different masses is described
in the fig. 5.5. Velocities above 0.001 c gives the same enhancement and for small
velocities the enhancement becomes constant. For the yellow line, which represents
a mass of 650 GeV/c2, the enhancement is almost 105. This is consistent with
Robertson and Zentner [17].

The velocity distribution shall by construction integrate to 1 for a given radius, and
fig. 5.6 states that our distribution satisfies this to four digits. The distribution is
higher and more narrow for smaller velocities and agrees with Ferrer and Hunter
[16].
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Figure 5.5: Sommerfeld enhancement factor for five different masses as a func-
tion of relative velocity. Here α = 1

100 and mφ = 1 GeV/c2. For all masses, the
enhancements approach a constant value for low velocites.
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Figure 5.6: Velocity distribution calculated from Eddington inversion formula,
using typical values of r0 = 0.6 and ρ0 = 3.6 · 105, with emphasis on that the
feature but not scale is preserved when considering different parameters. For smaller
radii the distribution becomes more narrow and higher, giving more weight to lower
velocities. The integral for each curve is specified in the graph and is equal to unity.
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5.3 Js-factors for dSphs including self-interaction

The computation of Js is compared with J S(v∗)
s (where the Sommerfeld enhancement

is constant) in table 5.2. For Draco JS(v∗)
s is about 17 times larger than Js. The

table also states J-factors without Sommerfeld enhancement for comparison.

Table 5.2: Calculated J , Js and J S(v∗)
s , and in the last column ∆J for Js and

J S(v∗)
s . The galaxies have the same order as in table 5.1 and “-” are indicating

missing 1-σ-levels.

Galaxy J Js J S(v∗)
s Js − J S(v*)

s
Draco 18.77 22.26+0.29

−0.13 23.50 -1.24
Leo I 17.70 21.13+0.31

−0.16 22.43 -1.30
Ursa Major I 17.94 22.13+0.44

−0.91 22.67 -0.54
Leo IV 16.54 21.00+0.59

−1.39 21.27 -0.27
Willman 1 19.60 23.08+0.32

−0.21 24.33 -1.25
Leo T 16.38 20.69+0.82

−1.04 21.11 -0.42
Segue 1 18.67 23.00+0.57

−2.12 23.40 -0.40
Sculptor 18.87 22.62+0.15

− 23.60 -0.98
Coma Berenices 19.42 23.05+0.10

−0.17 24.15 -1.10
Carina 17.52 21.38+0.23

−0.18 22.26 -0.87
Canes Venatici II 18.37 21.72+0.24

−0.19 23.10 -1.37
Sagittarius 20.34 23.89 −−0.10 25.07 -1.18
Bootes II 19.22 22.80+0.38

−2.36 23.95 -1.15
Ursa Major II 19.89 23.43+0.22

−0.17 24.62 -1.19
Canes Venatici I 18.08 22.00 −−0.26 22.81 -0.81

Ursa Minor 19.48 23.27 −−0.74 24.21 -0.94
Fornax 17.09 20.94+0.09

−0.08 21.82 -0.88
Sextans 18.77 22.73+0.05

− 23.50 -0.77
Bootes I 17.93 21.89+0.24

−0.39 22.66 -0.77
Hercules 18.50 21.82+0.10

−0.11 23.23 -1.41

Fig. 5.7 for Js shows a great similarity with fig. 5.2 and 5.1 (for the J-factor without
Sommerfeld enhancement). The difference is larger J values. All mentioned figures
has data from Draco.

In table 5.2 there is an overestimation for all galaxies when using a constant velocity
for the Sommerfeld enhancement, J S(v∗)

s , compared with the calculation encounter-
ing for the velocity distribution, Js. For Draco we made a more extensive investiga-
tion by using dark matter particle masses between 500 and 800 GeV/c2, as suggested
in our chosen model [8]. By using the best fitted parameters r0 = 14.95 kpc and
ρ0 = 1.79 ·106 M� kpc−3, the difference is shown in fig. 5.8. Depending on different
masses we get an enhancement up to 1.5 orders of magnitudes larger for J S(v∗)

s .
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Figure 5.7: The left plot shows the likelihood error estimation 1, 2, 3 − σ from
darker to lighter shades of grey with the minimum showed by a red dot. Js values
are showed with dashed lines. The right hand plot shows the likelihood versus the
Js value and indicates the error estimations in levels of 1, 2, 3 − σ. Both plots are
for data from Draco.

S(v)

S(v*)

500 550 600 650 700 750 800

20.5

21.0

21.5

22.0

22.5

23.0

23.5

m [GeV/c2]

[G
e
v
2
c
m

-
5
]

Figure 5.8: A comparison of J values when using a constant velocity or the veloc-
ity distribution for the Sommerfeld enhancement for Draco. Constant Sommerfeld
enhancement, using (v∗ = 10−5c), is shown with the orange line, and accounting for
the velocity distribution, is shown with the blue line.
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We divide the discussion into two parts, one for the validation of our method and
one where we discuss the differences between the J-factors.

6.1 Comparison with previous results

In the results we compare J with previously published results from Chiappo et al.
in table 5.1. We notice that 16 of Chiappo’s J-factors lies within our 2-σ-levels for
the respective Js with S(v) = 1. For 11 of these, our 1-σ-intervals overlap with
theirs. This verifies that the maximum likelihood estimation used in our calculation
of the Js-factors is reasonable.

As mentioned before, we use one nuisance parameter, r?, while Chiappo et al. uses
two, r? and r0. With our method, the maximisation of the likelihood is more con-
strained since Chiappo eliminates two parameters before this process and we only
eliminate one. Due to this, the likelihood valley is much shallower than Chiappo’s.
This is also seen in the comparison as our confidence intervals are generally larger.

As for the likelihood estimation, a Gaussian distribution for the l.o.s. stellar velocity
data was assumed. The true stellar velocity dispersion in some dSphs, for example
ultra-faint dwarfs, is similar to the measurement uncertainty [9]. Thus the expected
velocity dispersion highly depends on Gaussian measurement uncertainty and the
assumption must at least be a good approximation. In future research other velocity
distributions other than Gaussian might be of interest.

The 1-σ-levels marked with “-” in table 5.1 are not well-defined for the grid in
parameter space used in our analysis. As such, these 1-σ-levels could not be retrieved
by the used method. One could however calculate these using a different grid in
parameter space from {r0, ρ0}, more centred around the region of importance. This
would allow for extraction of more relevant data points so that the binning process
produces a continuous likelihood curve of J .

In table 5.1 there is a wide range in the galactic parameters, r?, r0 and ρ0. As shown
in fig. 5.2 the J-factors are not affected much when following likelihood contours, i.e.
changing the parameters while maintaining constant J . The same is true for the Js-
factors as shown in fig. 5.7. Furthermore, there is a lack of published research that
determines the constraints on galactic parameters for dSphs, both in specific galaxies
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and generally. Such research could be of interest, especially for those galaxies with
unidentified 1-σ levels. These constraints can be used to focus the analysis on a
certain parameter range and increase the amount of likelihood estimations around
the maximum likelihood in the data in fig. 5.3. The data binning will then be more
compatible with a 1-σ level determination.

6.2 The impact of a proper velocity distribution

We have studied the generalised J-factor in different situations. The classical ap-
proach without self-interaction has been extensively covered in the last section with
comparisons to previous research. Here, we compare the rigorous Js-factor to the
previously used approximation of a constant Sommerfeld enhancement factor to
evaluate the differences from when one uses a proper velocity distribution [28].

As shown in table 5.2 there is a significant increase of 3 to 4 orders of magnitude
(depending on which galaxy) in the J-factor when introducing self-interaction. An
increase in the factor is of course expected as the Sommerfeld enhancement factor for
an attractive potential is always 1 or larger, but this fact does not fully explain the
difference of 3 to 4 orders of magnitude. It can however be explained by the chosen
dark matter particle mass used in the analysis. We have assumed a particle mass of
650 GeV/c2 which, as can be seen in fig. 5.4, corresponds to a resonance peak with
significantly higher Sommerfeld enhancement values. This resonance peak could
be a factor of great importance in future indirect dark matter searches, as a very
high observed gamma ray flux could indicate dark matter masses in the region of
a resonance peak. On the other hand, outside the resonance peaks the Sommerfeld
enhancements for different masses quickly reaches fairly similar values, and as such,
determining a hypothetical dark matter mass in those regions might be significantly
harder.

Whether one should include the velocity distribution or not when calculating Js
is due to two aspects, namely which particle mass and which galactic parameters
(r0 and ρ0) that is of interest. Particle masses in a resonance peak gives a large
overestimation of J S(v∗)

s as shown in fig. 5.8. However, one can see in the same
figure that if particle masses far away from resonance peaks are of interest the
two calculations are almost equal. Furthermore, in fig. 5.5 one can see that the
Sommerfeld enhancement becomes constant for low speeds, from 10−4 c to 10−5 c
dependent on particle mass. So if no higher speeds are of consideration there will be
no need to perform the Js with the velocity distribution. This is the case for small
galaxy radii, where the velocity is lower, as seen in fig. 5.6.
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7
Conclusion

In this thesis we present an ab initio approach to calculate a more general J-factor
for dwarf spheroidal galaxies. This generalisation takes self-interaction between dark
matter particles into account in a more rigorous manner than before.

We can conclude that if dark matter particles has the properties of self-interaction,
the J-factors significantly increases from 1017−1020 to 1021−1024 for dwarf spheroidal
galaxies. Furthermore, we conclude that the standard approximative calculation,
using a constant Sommerfeld enhancement, overestimated the Js-factor of up to 1.5
orders of magnitude.

We verify that the maximum likelihood estimation used in our calculation of the
Js-factors is reasonable. By comparison with calculations of J-factors without self-
interaction, the confidence intervals are larger. This is due to the inevitable con-
straints appearing in the parameter space when considering self-interaction.

During the completion of this thesis another report with a similar purpose was
uploaded on arXiv.org, [29]. An important difference between our studies lies in the
solution of the Schrödinger equation including a Yukawa potential. They use an
approximation allowing an analytical solution of the Schrödinger equation. We use
a numerical approach to solve the full Schrödinger equation. Our method introduces
numerical difficulties but gives more accurate results.
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A
Mathematica code

Here we present the Mathematica code used in the project.

I



σlos
2  Interpolated Function
ClearAll["Global`*"]

Constants
points = 700;

pi = 3.141593; (*giving π in floating form to speed up computation*)

(*Galactic parameters*)

αBrightness = 2.;

βBrightness = 5.;

γBrightness = 0.;

αDM = 1.;

βDM = 3.;

γDM = 1.;

(*Parameter space of interest*)

RMin = 10-4;

RMax = 6;

r0Min = 5. * 10-3;

r0Max = 20.;

rStarMin = 10-3;

rStarMax = 2.;

timeOnePoint = 0.3  3600;(*hours*)

time = 12(*hour*)

n = N
time

timeOnePoint

1/2



Equations
All lengths in units of r0;
x =

r

r0

Rx =
R

r0

x

x2-Rx2
= r/r0

rr02-Rr02
= r

r2-R2

losProjection[x_, Rx_] :=
x

x2. - Rx2.
;

generallDensityFunction[r_, r0_, ρ0_, α_, β_, γ_] := ρ0 
r

r0

-γ

1. + 
r

r0

α


-

β-γ

α

ρDM(r)=ρ0 rhoDM
r

r0
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A. Mathematica code

A.1 Interpolated velocity dispersion function

II



rhoDM[x_] = generallDensityFunction[x, 1., 1., αDM, βDM, γDM];

ν(r, rStar) = ν0 nuStar r
r0

, rStar
r0



x =
r

r0

rStarDividedr0 =
rStar

r0

nuStar[x_, rStarDividedr0_] = generallDensityFunction[

x, rStarDividedr0, 1., αBrightness, βBrightness, γBrightness];

I(R,rStar)=ν0 * r0 surfaceBrightness R
r0
, rStar

r0


Rx =
Rx

r0

rStarDividedr0 =
rStar

r0

surfaceBrightness[Rx_, rStarDividedr0_] = FullSimplify[

2. * Integrate[nuStar[x, rStarDividedr0] * losProjection[x, Rx], {x, Rx, ∞}]

, Rx > 0 && rStarDividedr0 > 0];

M(s)=G ρ0 * r03 massintegral s
r0
, 

sx =
s

r0

massIntegral[sx_] = FullSimplify

4. * pi * IntegraterhoDM[x] * x2, {x, 0., sx}

, sx > 0;

σlos
2 (R,rStar)=  1

ν0 r0
 *ν0*G ρ0 r03 1

r02  * r0*r0 2 σLosSquared[ R
r0

, rStar
r0

]=

2 G ρ0 r02σLosSquared[ R
r0

, rStar
r0

]

x =
s

r0

x2 =
r

r0

Rx =
R

r0

rStarDividedr0 =
rStar

r0

x22 = u2 + Rx2 -> dx2 =
u

x22+Rx2

σLosSquared2Parameter[Rx_, rStarDividedr0_] :=

1

surfaceBrightness[Rx, rStarDividedr0]
* NIntegrate

1

x2
nuStar[x, rStarDividedr0] * massIntegral[x],

u, 10-5, ∞, x, u2 + Rx2 , ∞, Method →

{"GlobalAdaptive", "SymbolicProcessing" → 0, "SingularityDepth" → 1 000 000 000},

MinRecursion → 20, MaxRecursion → 100, AccuracyGoal → 6, PrecisionGoal → ∞

Table and Export
σlos

2 =2 ρ0 G r02 σLosSquared2ParameterIP[Rx,rStarDividedr0], Notice that the exported function 

is only near to the correct σlos
2 .

R ∈ 2*10-4,5.5]

rStar ∈ 5*10-2,1]

2     Sigma (1).nb
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r0 ∈ 5*10-2,10]

points = 700;

RxMin =
RMin

r0Max
;

RxMax =
RMax

r0Min
;

rStarDividedr0Min =
rStarMin

r0Max
;

rStarDividedr0Max =
rStarMax

r0Min
;

stepSizeRx =
RxMax1/10 - RxMin1/10

points - 1
;

stepSizerStarDividedr0 =
rStarDividedr0Max1/10 - rStarDividedr0Min1/10

points - 1
;

σTableNFW =

ParallelTable

Rx10, rStarDividedr010, σLosSquared2ParameterRx10, rStarDividedr010,

Rx, RxMin1/10, RxMax1/10, stepSizeRx,

rStarDividedr0, rStarDividedr0Min1/10,

rStarDividedr0Max1/10, stepSizerStarDividedr0;

SetDirectory[NotebookDirectory[]];

Flatten[σTableNFW, 1] >> "σTableNFW_700"

Sigma (1).nb     3
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ClearAll["Global`*"]

galaxyArray = {"booI", "booII", "com", "cvnI", "cvnII", "dra", "her", "leoIV", "leoT",

"seg1", "umaI", "umaII", "umi", "wil1", "car", "for", "leoI", "scl", "sex", "sgr"};

(*"car","for","leoI","scl","sex","sgr", samtliga av dessa kan

komma att inte fungera och ligger därför sist*)

pi = 3.1415926536;

G = 4.2994 * 10-6;

αDM = 1;

βDM = 3;

γDM = 1;

θMax =
0.5

180
pi;

(* kpc, distance to galaxy *)

cmPerKpc = 3.08567758 * 10^21;

kgPerSunmass = 1.989 * 10^30;

JoulePerKg = 2.99792458 * 10^8^2;

geVPerJoule = 6.24150913 * 10^9;

geVPerSunmass = kgPerSunmass * JoulePerKg * geVPerJoule;

losProjection[r_, R_] :=
r

r2 - R2
;

generalDensityFunction[r_, r0_, ρ0_, α_, β_, γ_] := ρ0 
r

r0

-γ

1 + 
r

r0

α


-

β-γ

α

;

rhoDM[r_, r0_, ρ0_] = generalDensityFunction[r, r0, ρ0, αDM, βDM, γDM];

RMin = 10-4;

RMax = 6;

r0Min = 5. * 10-3;

r0Max = 20.;

rStarMin = 10-3;

rStarMax = 2.;

ρ0Min = 105;

ρ0Max = 109;

SetDirectory[NotebookDirectory[]];

imported700 = << "σTableNFW_700";

σ2fun[Rx_, rStarDividedr0_] =

Interpolation[imported700, InterpolationOrder → 3][Rx, rStarDividedr0];

σLosSquaredFullIP[R_, r0_, rStar_, ρ0_] = 2 G * ρ0 * r02 σ2fun
R

r0
,
rStar

r0
;

logspace[increments_, start_?Positive, end_?Positive] :=

Exp@RangeLog@start, Log@end, Logend  start  increments;

(*Looping over all Galaxies*)

Printed by Wolfram Mathematica Student Edition
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A.2 Maximum likelihood estimation for galactic
parameters

V



Fori = 1, i ≤ Length[galaxyArray], i++,

ClearAll[galaxy, distance, tableGalaxie, σLosSquaredRList,

r0rStarρ0MinimizeFunction, r0rStarρ0MinimizeFunctionConst,

minimizerStar, tableρ0r0WithTime, time, tableρ0r0, tableJ];

galaxy = galaxyArray[[i]];

SetDirectory[NotebookDirectory[]];

SetDirectory["allVelocites"];

tableGalaxy = Import[ToString@StringForm["velocities_``.dat", galaxy], "Table"];

vLosR = Abs[tableGalaxy[[All, 2]]];

vLosRMean = Mean[vLosR];

σLosSquaredRList[r0_, rStar_, ρ0_] =

tableGalaxy[[All, 3]]2
+ σLosSquaredFullIP[tableGalaxy[[All, 1]], r0, rStar, ρ0];

r0rStarρ0MinimizeFunction[r0_, rStar_, ρ0_] = Total

(vLosR - vLosRMean)2

σLosSquaredRList[r0, rStar, ρ0]
+ Log[2. pi * σLosSquaredRList[r0, rStar, ρ0]];

r0rStarρ0MinimizeFunctionConst[r0_?NumericQ, rStar_?NumericQ, ρ0_?NumericQ] =

Piecewise

10.10., rStar ≤ rStarMin, galaxy = "scl";

{r0rStarρ0MinimizeFunction[r0, rStar, ρ0], rStar ≥ rStarMin && rStar ≤ rStarMax},

10.10., rStar ≥ rStarMax

;

minimizerStar[r0_?NumericQ, ρ0_?NumericQ] :=

FindMinimum[r0rStarρ0MinimizeFunctionConst[r0, rStar, ρ0],

{rStar, 0.1, 0.1 + 0.01}, Method → "PrincipalAxis", WorkingPrecision → 10];

r0Points = 7;

ρ0Points = 7;

r0Range = N@Ranger0Min, r0Max, r0Max - r0Min  r0Points;

ρ0Range = N@logspace[ρ0Points, ρ0Min, ρ0Max];

r0ρ0rStarL = Table[{{r0, ρ0, rStar /. minimizerStar[r0, ρ0][[2]]},

minimizerStar[r0, ρ0][[1]]}, {r0, r0Range}, {ρ0, ρ0Range}];

refinedr0ρ0rStarL = Select[

Flatten[r0ρ0rStarL, 1],

rStarMin + 0.001 < #[[1]][[3]] < rStarMax - 0.001 &

];

SetDirectory[NotebookDirectory[]]

Put[refinedr0ρ0rStarL, ToString[galaxy] <> "_r0ρ0rStarL"]



2     liklihood.nb
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Old J 
ClearAll["Global`*"]

Profile constants
αDM = 1;

βDM = 3;

γDM = 1;

Units constants & constants
(* kpc, distance to galaxy *)

cmPerKpc = 3.08567758 * 10^21.;

kgPerSunmass = 1.989 * 10^30.;

JoulePerKg = 2.99792458 * 10^8^2.;

geVPerJoule = 6.24150913 * 10^9.;

geVPerSunmass = kgPerSunmass * JoulePerKg * geVPerJoule;

pi = 3.14159265;

particelMass = 600;

G = 4.2994 * 10-6;

Calculating J for a galaxy

Defining galaxy
galaxyArray = {"booI", "booII", "com", "cvnI", "cvnII", "dra", "her", "leoIV", "leoT",

"seg1", "umaI", "umaII", "umi", "wil1", "car", "for", "leoI", "scl", "sex", "sgr"};

(*"car","for","leoI","scl","sex","sgr", samtliga av dessa kan

komma att inte fungera och ligger därför sist*)
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A. Mathematica code

A.3 Calculate J-factors

VII



Defining J

generalDensityFunction[r_, r0_, ρ0_, α_, β_, γ_] := ρ0 
r

r0

-γ

1. + 
r

r0

α


-

β-γ

α

;

rhoDM[r_, r0_, ρ0_] = generalDensityFunction[r, r0, ρ0, αDM, βDM, γDM];

θMax =
0.5

180.
pi;

◼ Get and interpolate p[vrel,x] and S[vrel]
Fori = 1, i ≤ Length[galaxyArray], i++,

ClearALL[galaxy, distance, radiusFunction, r0ρ0rStarL, r0ρ0, JOld, Jold];

galaxy = galaxyArray[[i]];

SetDirectory[NotebookDirectory[]];

SetDirectory["Params"];

distance = Import[ToString@StringForm["params_``.dat", galaxy], "Table"][[2]][[1]];

radiusFunction[s_, x_] = distance^2. + s^2. - 2. s distance x ;

JOld[r0_, ρ0_] := Log10

geVPerSunmass^2. * cmPerKpc^-5. *

2. pi *

NIntegrate

rhoDM[radiusFunction[s, x], r0, ρ0]2,

{s, 0, ∞}, {x, Cos[θMax], 1}



;

SetDirectory[NotebookDirectory[]];

SetDirectory["Minimasation"];

r0ρ0rStarL = Get[ToString@galaxy <> "_r0ρ0rStarL"];

r0ρ0 = Transpose[{r0ρ0rStarL[[All, 1]][[All, 1]], r0ρ0rStarL[[All, 1]][[All, 2]]}];

Jold = Parallelize[JOld @@@ r0ρ0];

SetDirectory[NotebookDirectory[]];

Put[Jold, ToString@galaxy <> "_Jold"]



2     J_old.nb
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Eddington Inversion

ClearAll["Global`*"]

pi = 3.141593;

αDM = 1.;

βDM = 3.;

γDM = 1.;

generalDensityFunction[r_, r0_, ρ0_, α_, β_, γ_] := ρ0 
r

r0

-γ

1 + 
r

r0

α


-

β-γ

α

rhoDM[x_] = generalDensityFunction[x, 1., 1., αDM, βDM, γDM];

(*ρ0*)

psi[x_] = 4. * pi * FullSimplify

1

x
* Integrates2 * rhoDM[s], {s, 0., x} + Integrate[s * rhoDM[s], {s, x, ∞}]

, x ≥ 0;

epsilonMax = Limit[psi[x], x → 0];

(*G ρ0 r02*)

Sqrt[8 * Limit[psi[x], x → 0]]

10.0265

rhoDMD[x] = FullSimplify[

D[rhoDM[x], x]

];

(*
1

r0
ρ0*)

rhoDMD2[x] = FullSimplify[

D[rhoDM[x], {x, 2}]

];

(*
1

r02
ρ0*)

psiD[x] = FullSimplify[

D[psi[x], x]

];

(*G ρ0 r0*)

psiD2[x] = FullSimplify[

D[psi[x], {x, 2}]

];

(*G ρ0*)

integrandEpsilonDistributionFunction[ϵ_?NumericQ, x_?NumericQ] =

rhoDMD[x] * psiD2[x] * psiD[x]-2 - rhoDMD2[x] * psiD[x]-1

Sqrt[ϵ - psi[x]]
;

(*"
1

r0
ρ0*G ρ0*

1

G ρ0 r02
-

1

r02
ρ0*

1

G ρ0 r0

G ρ0 r02
"*)

(*
1

r03G G ρ0 r02
*)
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A.4 Dark matter velocity distribution in dSphs

IX



Clear[epsilonDistributionFunction]

epsilonDistributionFunction[ϵ_?NumericQ] :=

ReleaseHold

ReplaceAll[

Evaluate[

Flatten@NSolve[psi[xmin] ⩵ ϵ && xmin ≥ 0, xmin]

]

]

Hold

1

8. pi2
* NIntegrate[integrandEpsilonDistributionFunction[ϵ, x], {x, xmin, ∞},

Method → {"GlobalAdaptive", "SymbolicProcessing" → 0, "SingularityDepth" →

10 000, MinRecursion → 10 000, MaxRecursion → 100 000}, AccuracyGoal → 5]





;

(*" 1

r03G G ρ0 r02
*r0"*)

(*
1

r02G Gρ0r02
*)

epsilonDistributionFunctionTable1 = Tableϵ10., epsilonDistributionFunctionϵ10.
,

ϵ, 10.-6.
1./10.

, 1.1./10.,
1.1./10. - 10.-6.1./10.

100.
 // Timing

epsilonDistributionFunctionTable2 = Table{ϵ, epsilonDistributionFunction[ϵ]},

ϵ, 1., 10., 10.  100.

epsilonDistributionFunctionTable3 = Table{ϵ, epsilonDistributionFunction[ϵ]},

ϵ, 10., epsilonMax - 1.  2.,
epsilonMax - 10.-2. - 10.

100.


epsilonDistributionFunctionTable4 = Table{ϵ, epsilonDistributionFunction[ϵ]},

ϵ, epsilonMax - 1.  2., epsilonMax - 10.-7.,

epsilonMax - 10.-7. - epsilonMax - 1.  2.

7000.


epsilonDistributionFunctionTable =

Join[epsilonDistributionFunctionTable1, epsilonDistributionFunctionTable2,

epsilonDistributionFunctionTable3, epsilonDistributionFunctionTable4];

SetDirectory[NotebookDirectory[]];

epsilonDistributionFunctionTable >> "f(ϵ)Table";

SetDirectory[NotebookDirectory[]];

epsilonDistributionFunctionTable = DeleteDuplicates[Get["fofepsilon"]];

epsilonDistributionFunctionIP = Interpolation[Re[epsilonDistributionFunctionTable]]

(*control f(ϵ)*)

Plot[Log[epsilonDistributionFunctionIP[ϵ]], {ϵ, 0, epsilonMax}]

2     edington complited.nb
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RelativVelocety Distribution

◼ Limits

(*[v]= Gρ0r02 *)

(*[psi[x]]= Gρ0r02 *)

upperLimitVelocityIntegral1[vRel_, x_] := 2. psi[x] -
vRel

2.
;

lowerLimitVelocityIntegral1 = 0.;

upperLimitZIntegral1 = 1.;

lowerLimitZIntegral1 = 0.;

upperLimitVelocityIntegral2[vRel_, x_] :=
8. psi[x] - vRel2.

2.
;

lowerLimitVelocityIntegral2[vRel_, x_] := upperLimitVelocityIntegral1[vRel, x];

upperLimitZIntegral2[vRel_, vCM_?NumericQ, x_] =
8. psi[x] - vRel2. - 4. * vCM2.

4. * vCM * vRel
;

lowerLimitZIntegral2 = 0.;

relativeVelocityϵNegative[vRel_?NumericQ, x_?NumericQ, vCM_?NumericQ, z_?NumericQ] =

psi[x] -
vCM2.

2.
-
vRel2.

8.
-
vCM * vRel * z

2.
;

relativeVelocityϵPositive[vRel_?NumericQ, x_?NumericQ, vCM_?NumericQ, z_?NumericQ] =

psi[x] -
vCM2.

2.
-
vRel2.

8.
+
vCM * vRel * z

2.
;

edington complited.nb     3
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Clear[relativeVelocityDistribution]

relativeVelocityDistribution[vRel_?NumericQ, x_?NumericQ] := 16. pi2. *
vRel2.

rhoDM[x]2.


NIntegrate

vCM2. * epsilonDistributionFunctionIP[

relativeVelocityϵNegative[vRel, x, vCM, z]

] *

epsilonDistributionFunctionIP[

relativeVelocityϵPositive[vRel, x, vCM, z]

],

{vCM, lowerLimitVelocityIntegral1, upperLimitVelocityIntegral1[vRel, x]},

{z, lowerLimitZIntegral1, upperLimitZIntegral1},

Method →

{"GlobalAdaptive", "SingularityDepth" → 1 000 000, "SymbolicProcessing" → 0},

MinRecursion → 10, MaxRecursion → 20, AccuracyGoal → 5



+

NIntegrate

vCM2. * epsilonDistributionFunctionIP[

relativeVelocityϵNegative[vRel, x, vCM, z]

] *

epsilonDistributionFunctionIP[

relativeVelocityϵPositive[vRel, x, vCM, z]

],

{vCM, lowerLimitVelocityIntegral2[vRel, x],

upperLimitVelocityIntegral2[vRel, x]},

{z, lowerLimitZIntegral2, upperLimitZIntegral2[vRel, vCM, x]},

Method →

{"GlobalAdaptive", "SingularityDepth" → 1 000 000, "SymbolicProcessing" → 0},

MinRecursion → 10, MaxRecursion → 20, AccuracyGoal → 5



;

(*"F[ϵ]" 1

r02G Gρ0r02

2

*

"vCM" Gρ0r02
2

* "vRel" Gρ0r02
2

"ρDM"ρ02
"Intgral" Gρ0r02 "?*)

(*
Gρ0r02* Gρ0r02

G2r04ρ02
=

Gρ0r02

Gρ0r02
*)

(*
1

Gρ0r02
*)

Clear[relativeVelocityDistributionPadded]

relativeVelocityDistributionPadded[vRel_?NumericQ, x_?NumericQ] :=

PiecewiserelativeVelocityDistribution[vRel, x], vRel ≤ 8. * psi[x] ,

0, vRel > 8. * psi[x] 

4     edington complited.nb
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logspace[a_, b_, n_] := 10.0^RangeLog10[a], Log10[b], Log10[b] - Log10[a]  n - 1;

vRelRange = logspace10-5, 8. * epsilonMax , 50;

xRange = logspace[0.0001, 10, 50];

relativeVelocityDistributionPaddedTable =

Table[{{vRel, x}, relativeVelocityDistributionPadded[vRel, x]},

{vRel, vRelRange}, {x, xRange}];

SetDirectory[NotebookDirectory[]]

relativeVelocityDistributionPaddedTable1 >> "PvrelNFW_50"

/chalmers/users/michog/Desktop/kandidat

SetDirectory[NotebookDirectory[]]

relativeVelocityDistributionPaddedTable = << "PvrelNFW_50";

/chalmers/users/michog/Desktop/kandidat

p[vRel_, x_] = Interpolation[Flatten[relativeVelocityDistributionPaddedTable, 1],

InterpolationOrder → 0][vRel, x]

edington complited.nb     5
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Computation of Sommerfeld 

Enhancement

Declare Variables
ClearAll["Global`*"]

xmin = 10-100;

mPhi = 1; (*GeVc^2*)

alpha = 1  100;

b[v_, M_] := mPhi  (v * M);

a[v_] := alpha  v  2;

stopEvaluate = 50;

logspace[increments_, start_?Positive, end_?Positive] :=

Exp@RangeLog@start, Log@end, Logend  start  increments;

Solve S.E. and compute quantities
ClearAll[v, M, sol];

sol = ParametricNDSolve

y''[x] + 2  x * y'[x] + 1 + 2 * a[v] / x * Exp[-b[v, M] * x] * y[x] ⩵ 0,

y[xmin] ⩵ 1, y'[xmin] ⩵ -a[v],

y,

{x, xmin, stopEvaluate}, {v, M}, MaxSteps → Infinity



ϕ[v_, M_, x_] = x * y[v, M][x] /. sol;

CSquaredNoLimit[v_, M_, x_] = ϕ[v, M, x]2
+ ϕv, M, x -

π

2

2
;

CSquared[v_, M_] = CSquaredNoLimit[v, M, stopEvaluate];

Sommerfeld[v_, M_] =
1

CSquared[v, M]
;

◼ Plot ψ, ϕ and C2 
Ploty10-4, 700[x] /. sol, {x, 0, stopEvaluate}, AxesLabel → Automatic

Plotϕ10-4, 700, x, {x, 0, stopEvaluate}, AxesLabel → Automatic

Plot CSquaredNoLimit10-4, 700, x ,

x, π  2, 50, AxesLabel → Automatic, AxesOrigin → {0, 0}

CSquaredNoLimit10-4, 650, 50  CSquaredNoLimit10-4, 650, 6
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◼ Plot Sommerfeld for different masses
LogLogPlot

Evaluate[

Table[

Sommerfeld[v, i],

{i, {600, 650, 700, 750, 800}}

]

], v,
1

9
10-5, 0.1,

PlotLegends → LineLegend{600, 650, 700, 750, 800}, LegendFunction →

Framed[#1, FrameMargins -> 0] & , LegendLabel → "DM Mass (GeV/c2)",

AxesLabel → {"Velocity (c)", "Sommerfeld"}, ImageSize → 500,

Frame → True, FrameStyle → Directive[Black, 16],

FrameLabel → {Style["Relative velocity [c]", 16], Style["S(v)", 16]},

RotateLabel → False



◼ Plot Sommerfeld for different velocities
LogPlot

Evaluate

Table

Sommerfeld10i, m,

{i, -5, -2, 1}



, {m, 500, 900},

PlotLegends → LineLegend10-5 c, 10-4 c, 10-3 c, 10-2 c, LegendFunction →

Framed[#1, FrameMargins -> 0] & , LegendLabel → "Relative Velocity",

AxesLabel → {"Velocity (c)", "Sommerfeld"}, AxesOrigin → {500, -10},

ImageSize → 500, Frame → True, FrameStyle → Directive[Black, 16],

FrameLabel → Style"Particle Mass [GeV/c2]", 16, Style["S(v)", 16],

RotateLabel → False



Check location of the resonance peak in DM Mass.

FindMaximumSommerfeld10-5, m, {m, 700, 710}

Refine data and construct table
vRange = logspace1000, 10-8, 0.1;

M = 750;

SommerfeldTable =

Table[{v, Sommerfeld[v, M]}, {v, vRange}] // Timing;

SetDirectory[NotebookDirectory[]];

SommerfeldTable[[2]] >> "sommerfeldTable10_3_750";

SommerfeldTable[[1]]

3.23438

2     Sommerfeld_650_real (1).nb
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SetDirectory[NotebookDirectory[]];

SommerfeldValues = << "sommerfeldTable10_3_750";

vRange = logspace1000, 10-8, 0.1;

SommerfeldMass = Interpolation[SommerfeldValues];

TSommerfeldValues = Transpose[SommerfeldValues];

PlotLog10@SommerfeldMass10v, {v, -8, -1}

vPad = logspace10, 10-8, 0.9 * 10-6;

TSommerfeldValuesDropped =

Map[

Drop[

#,

Position[#, Max[#[[All, 2]]]][[1]][[1]]

] &,

TSommerfeldValues,

1

];

TSommerfeldValuesPadded =

Map[

PadLeft[

#,

{1010},

Table[

{

{Flatten[{vPad, vRange}][[i]], #[[1, 1, 2]]},

#[[1, 2]]

},

{i, 1, Length[Flatten@{vPad, vRange}]}

]

] &,

TSommerfeldValuesDropped,

1

];

(*Generate the sommerfeld tabel giving the interpolated function*)

TSommerfeldValuesPadded >> "SommerfeldTableComplete_750"

SommerfeldFunction = Interpolation[SommerfeldValues, InterpolationOrder → 1]

PlotLog10@SommerfeldFunction10v, {v, -8, -1}

Sommerfeld_650_real (1).nb     3
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(*Galaxy constants*)

αDM = 1;

βDM = 3;

γDM = 1;

(*Units constants*)

cmPerKpc = 3.08567758 * 10^21.;

kgPerSunmass = 1.989 * 10^30.;

JoulePerKg = 2.99792458 * 10^8^2.;

geVPerJoule = 6.24150913 * 10^9.;

geVPerSunmass = kgPerSunmass * JoulePerKg * geVPerJoule;

pi = 3.14159265;

particelMass = 600;

G = 4.2994 * 10-6;

Off[NIntegrate::slwcon];

Off[NIntegrate::ncvb];

Fori = 1, i ≤ Length[galaxyArray], i++,

ClearAll[distance, radiusFunction, r0ρ0, galaxy, radiusFunction, JNew, Jnew];

galaxy = galaxyArray1[[i]];

SetDirectory[NotebookDirectory[]];

SetDirectory["data"];

SetDirectory["params"];

distance =

Import[ToString@StringForm["params_``.dat", galaxy], "Table"][[2]][[1]];

radiusFunction[s_, cosθ_] = distance^2. + s^2. - 2. s distance cosθ ;

JNew[r0_, ρ0_] := Log10

geVPerSunmass^2. * cmPerKpc^-5.

* 2. pi *

1.

v0[r0, ρ0]
*

NIntegrate

rhoDM[radiusFunction[s, x], r0, ρ0]2.
*

gammav0[r0, ρ0], radiusFunction[s, x]  r0,

{s, 0., ∞}, {x, Cos[θMax], 1.},

Method → {"GlobalAdaptive", "SymbolicProcessing" → 0,

"SingularityDepth" → 10000 000, "MaxErrorIncreases" → 3000}, MaxRecursion → 20



;

SetDirectory[NotebookDirectory[]];

SetDirectory["Completed"];

SetDirectory["Data"];

SetDirectory["Minimasation"];

r0ρ0 = Map[Drop[#, -1] &, Get[ToString[galaxy] <> "_r0ρ0rStarL"][[All, 1]]];

Jnew = Apply[JNew, r0ρ0, {1}];

Put[Jnew, ToString[galaxy] <> "_J_new"];

;
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