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Department of Physics
Chalmers University of Technology

Abstract
Most of the matter in the Universe is unidentified and invisible, i.e. dark. Detecting dark mat-
ter particles from the Cosmos is arguably one of the most pressing research questions in science
today. In the standard paradigm of modern cosmology, dark matter is assumed to consist of
weakly interacting massive particles, which may annihilate in pairs into gamma photons. Such
annihilations give rise to a measurable gamma ray flux, the amplitude of which is proportional to
a so-called J-factor. Current J-factor calculations usually neglect dark matter self-interactions.
However, dark matter self-interactions are compatible with current astrophysical observations,
and can potentially solve long-standing problems regarding the formation and evolution of galax-
ies. The purpose of this thesis is to perform the first self-consistent J-factor calculation which
includes dark matter self-interactions. This calculation is based upon the combined use of non-
relativistic quantum mechanics and Newtonian galactic dynamics. The formalism developed in
this thesis has been applied to a sample of 20 dwarf spheroidal galaxies, which are known to be
dark matter dominated astrophysical objects. For each galaxy in the sample, a likelihood analy-
sis based on actual stellar velocity data has been performed in order to extract the distribution
of dark matter in the galaxy, and estimate the induced error on the associated J-factor. We have
found that the J-factors for self-interacting dark matter can be larger than standard J-factors
by several orders of magnitude. Previous attempts to include dark matter self-interactions in
the J-factor calculation neglect the details of the dark matter distribution in dwarf spheroidal
galaxies. We have shown that this approximation leads to relative errors on the J-factors as
large as two orders of magnitude. A paper illustrating these results is currently in preparation
and is to be submitted to JCAP (impact factor 5.634).

Keywords: dark matter, self-interaction, J-factor, dwarf spheroidal galaxies, Sommerfeld en-
hancement, likelihood.
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Sammandrag
Den största andelen materia i universum är oidentifierad och osynlig, d.v.s. mörk. Detektion
av mörk materia-partiklar från universum kan i skrivande stund anses vara en av de viktigaste
frågorna inom forskarvärlden. I standardparadigmen för modern kosmologi antas det att mörk
materia består av svagt interagerande massiva partiklar, som kan annihilera parvis till gammafo-
toner. Dessa annihilationer ger upphov till ett mätbart fotonflöde, vars amplitud är proportionell
mot den så kallade J-faktorn. Nuvarande beräkningar av J-faktorer tar generellt inte hänsyn
till självinteraktioner. Det har visat sig att självinteragerande mörk materia överensstämmer
med astrofysiska observationer och har potential att lösa problem gällande galaxers rörelser
och uppkomst. Syftet med denna rapport är att utföra den första konsekventa uträkningen av
J-faktorer som inkluderar självinteragerande mörk materia. Dessa beräkningar är baserade på
den kombinerade användningen av icke-relativistisk kvantmekanik och Newtonsk galaxdynamik.
Formalismen som utvecklas i denna rapport har tillämpats på 20 sfäriska dvärggalaxer, vilka
är kända att vara objekt dominerade av mörk materia. För varje galax i denna undersökning
används en likelihoodanalys baserad på stjärnhastighetsdata för att därigenom extrahera distri-
butionen av mörk materia i galaxen. Utifrån detta kan det inducerade felet på den aktuella J-
faktorn uppskattas. Tidigare försök att inkludera självinteagerande mörk materia i beräkningen
av J-faktorer tar inte full hänsyn till detaljerna kring distributionen för mörk materia i sfäriska
dvärggalaxer. Vi har visat att denna approximation leder till relativa fel i beräkningarna så stora
som två storleksordningar. En forskningsartikel som visar dessa resultat är under konstruktion
och ska bli framlagd till JCAP (Impact factor 5.634).

Nyckelord: mörk materia, självinteraktion, J-faktor, sfäriska dvärggalaxer, Sommerfeldförstärkn-
ing, likelihood.
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Svensk sammanfattning

I modellerandet av galaxers födelse och evolution uppträder en skiljaktighet mellan mängden
materia som är nödvändig för att förklara observationer teoretiskt och mängden materia som
optiskt har observeras. För att dessa ska överensstämma har det uppskattats att det behövs
ungefär 6 gånger mer massa i universum än vad som har observerats. Den mest accepterade
förklaringen till detta är att universum består av, förutom baryonisk materia, en osynlig ’mörk’
materia (MM).

Den dominerande modellen för MM grundar sig på att MM består av svagt interagerande
massiva partiklar (WIMPs). Interaktionen mellan dessa sker, utöver gravitation, genom svag
växelverkan och/eller möjligen en för standardmodellen okänd kraft. Interaktion mellan två
MM-partiklar kan resultera i annihilation av partiklarna följt av emission av två gammafotoner.
Detta fotonflöde beskrivs traditionellt som

Φγ = Nγσvrel
4πm2

χ

J

där Nγ är antalet fotoner producerade vid varje annihilation, σvrel är annihileringstvärsnittet
multiplicerat med MM-partiklarnas relativa hastighet medelvärdesbildat över hastighetsdistri-
butionen, mχ är MM-partiklarnas massa och

J =
∫

∆Ω
dΩ
∫

l.o.s.
dsρχ(s,Ω)2

är den så kallade J-faktorn. Här är Ω är galaxens rymdvinkel sett från jorden, den inre integralen
tas längs en siktlinje, line of sight (l.o.s.), och ρχ är masstätheten för MM.

Hastigheten av partiklarna i en dvärggalax antas ofta vara konstant, vilket även gör termen
σvrel konstant. Däremot vore ett mer generellt antagande att hastigheten följer en hastighets-
distribution. Vi har i detta arbete visat att ett sådant antagande har stora konsekvenser för
beräkningen av J-faktorn.

Syftet med detta arbete är att ta fram en motsvarande J-faktor för självinteragernade MM
och bestämma denna för 20 sfäriska dvärggalaxer. Sfäriska dvärggalaxer är optimala objekt för
detektion av MM, då de har visat sig bestå nästan uteslutande av MM.

Antydningar till annihilationsprodukter har observerats av bland annat teleskopet AMS-02,
vilket har detekterat ett överflöd av positroner, som också är möjliga annihilationsprodukter,
med okänt ursprung. Om annihilerande MM antas ligga bakom dessa skulle ett interaktion-
stvärsnitt uppskattningsvis 100 gånger större än vad som är möjligt för växelverkan via svaga
kraften vara nödvändigt. Som en lösning på detta föreslogs den kvantmekaniska mekanismen
Sommerfeldförstärkning. Ett Sommerfeldförstärkt tvärsnitt tar hänsyn till interaktionspoten-
tialen mellan två partiklar. Ett analogt exempel är en asteroid som rör sig i närheten av en
stjärna. Den attraktiva gravitationspotentialen förstärker avsevärt sannolikheten för kollision,
och därmed effektivt tvärsnittet. Sommerfeldförstärkning betecknad S beror på de ingående
partiklarnas relativa hastigheter, och har visat sig vara större för låga farter.

Om Sommerfeldförstärkningen faktoriseras ut ur tvärsnittet fås att σvrel = S(vrel)σ0vrel =
S(vrel)σ0vrel där σ0 är det oförstärkta tvärsnittet och till god approximation kan antas bero
som 1/vrel, varför produkten σ0vrel är konstant och kan tas utanför integralen. Den kvar-
varande S(vrel) är dock hastighetsberoende, dvs. beroende på kinematiken hos den studerade
dvärggalaxen. För att inkludera allt objektspecifikt beroende kan nu J-faktorn på ett naturligt
sätt omdefinieras till

JS =
∫

∆Ω
dΩ
∫

l.o.s.
ds
∫

d3vrelPr,rel(vrel)S(vrel)ρ2
χ(s,Ω).
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där vrel är den relativa hastigheten mellan ett par MM-partiklar, Pr,rel(vrel) en sannolikhets-
fördelning över den relativa hastigheten, och ρχ(s,Ω) densiteten av MM.

För att kunna beräkna den Sommerfeldförstärkta JS-faktorn behöver de ingående termerna
i uttrycket ovan utvärderas. Inledningsvis betraktas Sommerfeldfaktorn. Genom att anta att
annihilationen sker i en punkt, säg origo, så är systemets motsvarande Hamiltonian en delta-
funktion med H = Vannδ. Det följer då att sannolikheten för annihilation är proportionell mot
sannolikheten att MM-partikeln är lokaliserad vid origo |ψk(0)|2, så att förstärkningsfaktorn kan
skrivas som

S = |ψ(0)|2

|ψ(0)(0)|2
= |ψ(0)|2,

där ψ(0)
k (0) är den normaliserade vågfunktionen med Vann = 0. Då det har visats troligt att

MM-partiklar interagerar genom en Yukawapotential används denna för att bestämma S med
hjälp av Schrödingerekvationen. Yukawapotentialen är definierad som

VY (r) = ±α

r
e−mφr,

där α är kopplingsstyrkan och mφ massan av den kraftbärande partikeln mellan de interagerande
MM-partiklarna. Motsvarande radiella Schrödingerekvation kan då skrivas

Φ′′ + 2
x

Φ′ +
(

1 + 2a
x
e−bx

)
Φ = 0,

där x är proportionell mot r, a = α/2vrel, och b = mφ/mχvrel där vrel betecknar partiklarnas
relativa hastighet. Med hjälp av Schrödingerekvationen ovan kan förstärkningsfaktorn med
lämpliga begynnelsevillkor bestämmas till

S = 1
limx→∞

[
x2Φ(x)2 +

(
x− π/2

)2 Φ
(
x− π/2

)2] .
Vi fortsätter utvärderingen av J-faktorn med en undersökning av den relativa hastighets-

distributionen Pr,rel(vrel). Då de sfäriska dvärggalaxerna har svaga gravitationsfält kommer
MM-partiklarna röra sig med ickerelativistiska hastigheter, vilket gör att de kan beskrivas med
en Newtonsk distributionsfunktion (DF) f i det 6-dimensionella fasrummet. Massdensiteten
av MM-partiklarna kan definieras som ρχ ≡

∫
d3vf(r,v), vilket leder till en normaliserad

hastighetsdistribution på formen

Pr(v) = f(r,v)
ρχ(r) .

Med ett koordinatsystem centrerat i masscentrum kan uttrycket förenklas och den eftersökta
relativa hastighetsdistributionen erhålls genom integration över hastigheten vcm enligt

Pr,rel(vrel) =
∫
Pr,pair(vcm,vrel) d3vcm.

Det är därmed möjligt att beräkna Pr,rel(vrel) om DF kan bestämmas. Detta förenklas genom
att anta sfärisk symmetri, vilket är en god approximation för de aktuella galaxerna. Sfärisk
symmetri ger nämligen att DF kan skrivas om som en funktion av systemets Hamiltonian enligt

f(r, v) = f(−Φ(r) − v2/2).

där Φ(r) är systemets gravitationspotential och v en MM-partikels hastighet i systemet. An-
vändning av Eddingtons formel leder vidare till ett allmänt uttryck för DF som funktion av
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Φ(r) och massdensitetsdistributionen ρ(r). Detta uttryck kan sedan användas för att härleda
ett uttryck för den relativa hastighetsdistributionen,

Pr,rel(vrel) = 16π2v2
rel

ρ2
χ(r)

∫ ∞

0
dvcmv

2
cm

∫ 1

0
dz f

(
r, v2

cm + v2
rel
4 − vcmvrelz

)

×f
(
r, v2

cm + v2
rel
4 + vcmvrelz

)
.

För att kunna räkna ut J-faktorn saknas nu bara densitetsprofilen ρχ(r). En vanlig grupp av
densitetsprofiler ges av den så kallade generaliserade Hernquistprofilen

ρ(r) = ρ0(r/r0)−γ(1 + (r/r0)α)(γ−β)/α,

där r är avståndet från galaxens centrum och ρ0, r0 är galaxspecifika parametrar som beskriver
kurvans form. För MM används vanligen (α, β, γ) = (1, 3, 1), vilken även går under namnet
Navarro Frenk & White (NFW) efter de som först föreslog den. Den är divergent i r = 0, vilket
innebär att en stor del av massan är koncentrerad nära galaxens centrum. Observationer tyder
dock på att sfäriska dvärggalaxer har en betydligt flackare massdistribution nära sina mittpunk-
ter, varför vi väljer att även använda den planare profilen (α, β, γ) = (1, 3, 0), även kallad cored
Zhao. För den statistiska metoden kommer även densiteten av stjärnor behövas. Den kan i en
sfärisk dvärggalax modelleras med den generaliserade Hernquistprofilen och (α, β, γ) = (2, 5, 0),
även kallad Plummers profil.

Då alla mätningar av praktiska skäl måste ske från vår observationspunkt jorden blir det prob-
lematiskt att mäta långa avstånd. Däremot kan vinklar mätas med hög noggrannhet, vilket kan
användas för att få en rimlig uppskattning av avståndet, vinkelrätt mot vår siktlinje, mellan
stjärnor inom en galax. Avståndet R från centrum av galaxen till siktlinjen samt hastigheten
längs siktlinjen vl.o.s. för enskilda stjärnor har uppmätts för flera sfäriska dvärggalaxer, vilka
beräkningarna ska utföras på. Det är önskvärt att relatera dessa observabler med densitets-
fördelningen av MM för att skapa en statistisk passform över densitetsparametrarna och utifrån
detta beräkna J-faktorn.

Det är dock inte möjligt att förutsäga enskilda stjärnors rörelse relativt galaxens masscen-
trums rörelse på grund av antagandet om hastighetsisotropi. Däremot kan variansen σ2

l.o.s. av
medelhastigheten längs siktlinjen baserat på densitetsfördelningen och luminositetsfördelningen
förutsägas som

σ2
l.o.s.(R) = 2

I(R)

∫ ∞

R
dr r√

r2 −R2

∫ ∞

r
dsν(s)GM(s)

s2 ,

där G är gravitationskonstanten, ν(r) är luminositetsdensiteten, I(R) =
∫

l.o.s. ν(s) ds är ljusin-
tensiteten och M massan innanför en given radie. Denna ekvation kan beräknas med ett givet
val av densitetsprofilerna ρχ(r) och ν(r).

För att bestämma parametrarna används en likelihoodanpassning och de numeriska värden
som korresponderar bäst mellan teori och observerade resultat erhålls. Detta val av parametrar
är dock svårhanterliga för en likelihoodanpassning, vilket löses genom att det är möjligt att
substituera ρ0 → v0 = r0

√
Gρ0 och likelihoodanpassningen görs därmed i termer av r0, v0 och

r?. Utgående från denna anpassning erhålls konfidensregioner för parametrarna v0, r0 för varje
sfärisk dvärggalax, som sedan kan omvandlas till en grupperad likelihoodfunction för J-faktorn
genom att räkna ut denna för varje punkt i r0, v0-regionerna, dela in de resulterande värdena
i intervall och för varje delintervall välja den punkt har störst likelihood. Utifrån detta kan
konfidensintervall för J-faktorerna beräknas.

I beräkningarna av den slutgiltiga J faktorerna används Arkani-Hamedparametrarna α =
0.01 och mφ = 1 GeV/c2 med mχ = 650 GeV/c2. Där notationen J = log10(J) används med
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J i enheten GeV2cm−5. De beräknade J ,JS och JS(v∗) faktorerna för både NFW- och cored
Zhao-profilerna kan ses i tabell i. Som ses i tabellen är JS ofta upp till fyra gånger större än J ,
medan JS(v∗) ger en överskattning av JS en till två storleksordningar för de flesta galaxer.

Sammanfattningsvis har vi i denna rapport konstruerat en modell för och extraherat Som-
merfeldförstärkta J-faktorer för 20 sfäriska dvärggalaxer. Detta gjordes utifrån Newtonsk galax-
dynamik, icke-relativistisk kvantmekanik samt en likelihoodbaserad analysmetod.

Table i: Beräknade J -, JS- och JS(v∗)-faktorer för varje studerad dSph för både NFW- och
cored Zhao-profilerna. Beräkningarna av de Sommerfeldförstärkta J-faktorerna använder sig
av Arkani-Hamed parametrarna α = 0.01 och mφ = 1 GeV/c2 med mχ = 650 GeV/c2. En
typisk relativ hastighet av v∗ = 10−5c används för JS(v∗)-faktorberäkningarna. N är antalet
stjärnor i datamängden. Det kan noteras att osäkerheten i den beräknade faktorerna tenderar
att minska för ökande N vilket förväntas av en statistisk metod. Det finns också en tydlig
skillnad i storleksordning mellan olika familjer av J-faktorer för både NFW- och cored Zhao-
profilerna. Speciellt är JS ofta fyra storleksordningar större än den ursprungliga J , medan JS(v∗)
ger en överskattning av den mer riktiga JS av en till två storleksordning för de flesta galaxer. I
tabellen är JS och JS(v∗) i enheter av log10 GeV2cm−5.

NFW Cored Zhao
Dwarf N J JS(v∗) JS J JS(v∗) JS

Bootes I 14 17.92+0.62
−0.75 22.65 21.79+0.49

−0.36 19.34+0.44
−2.07 24.07 21.86+0.42

−0.48
Leo IV 17 16.90+0.89

−0.94 21.63 21.31+0.65
−0.85 16.58+1.64

−0.73 21.31 20.87+0.55
−0.56

Leo T 19 17.44+0.49
−0.90 22.17 21.37+0.34

−0.85 17.45+0.48
−0.96 22.18 21.27+0.29

−0.82
Bootes II 20 18.81+1.39

−1.03 23.54 23.05+1.16
−1.07 18.82+1.44

−1.10 23.55 23.01+0.90
−0.89

Ursa Major II 20 19.84+0.33
−0.35 24.57 23.22+0.61

−0.31 20.29+0.52
−0.81 25.02 23.10+0.47

−0.47
Canes Venatici II 25 18.47+0.34

−0.68 23.20 21.74+0.28
−0.30 18.53+0.38

−0.79 23.26 21.73+0.38
−0.42

Hercules 30 18.12+0.28
−0.35 22.85 22.16+0.30

−0.32 18.00+0.34
−0.29 22.73 21.94+0.27

−0.24
Ursa Major I 39 18.24+0.97

−0.67 22.97 22.40+0.63
−0.84 17.84+0.75

−0.35 22.57 21.88+0.47
−0.41

Willman 1 45 19.64+0.45
−0.58 24.37 22.95+0.60

−0.22 19.40+1.23
−0.45 24.13 23.14+0.34

−0.16
Coma Berenices 59 19.39+0.36

−0.45 24.12 22.89+0.27
−0.35 19.89+0.82

−0.87 24.62 23.00+0.17
−0.30

Segue 1 66 19.26+0.57
−0.46 23.99 23.58+0.40

−0.46 19.10+0.47
−0.30 23.83 23.22+0.29

−0.20
Ursa Minor 196 19.62+0.04

−0.25 24.35 23.41+0.00
−0.31 19.47+0.22

−1.07 24.20 23.14+0.19
−1.48

Canes Venatici I 214 18.01+0.25
−0.29 22.74 21.86+0.29

−0.33 17.87+0.22
−0.99 22.60 21.61+0.19

−1.09
Leo I 328 17.66+0.27

−0.13 22.39 21.11+0.45
−0.17 17.53+0.22

−0.10 22.26 21.06+0.29
−0.04

Draco 353 18.74+0.26
−0.28 23.47 22.10+0.51

−0.19 18.58+0.24
−0.15 23.31 21.92+0.38

−0.12
Sextans 424 18.74+0.20

−0.20 23.47 22.64+0.20
−0.20 18.52+0.20

−0.30 23.24 22.31+0.19
−0.30

Carina 758 17.68+0.87
−0.06 22.41 21.46+1.03

−0.08 17.68+0.44
−0.07 22.41 21.47+0.49

−0.05
Sculptor 1352 18.91+0.12

−0.13 23.64 22.63+0.12
−0.15 18.68+0.15

−0.21 23.41 22.28+0.16
−0.24

Sagittarius 1373 20.22+0.14
−0.12 24.95 23.68+0.11

−0.08 19.78+0.16
−0.17 24.51 23.04+0.16

−0.17
Fornax 2409 18.96+0.10

−0.14 23.69 22.59+0.09
−0.13 18.69+0.14

−0.22 23.42 22.19+0.12
−0.19
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Chapter 1
Introduction
When describing the formation and evolution of galaxies, a discrepancy arises between the
amount of matter that is needed to explain observations theoretically and the amount of matter
that is actually observed. A notable example is the rotational velocities of outer stars in spiral
galaxies which are, by current understanding, far too large for the stars to be kept in orbit by
only the visible matter of the galaxy [2]. Current estimates suggest that there would need to
be as much as about six times more mass in the universe than can be observed, in order for
current theories to be consistent with observations [3]. To account for this, several explanations
have been proposed, the most widely accepted being the the existence of some invisible “dark”
matter making up the bulk of the mass in the universe [2].

The nature of dark matter (DM) is still largely unknown. The only known macroscopic
property of DM is that it does not interact through the electromagnetic force [3], unlike baryonic
matter. At the time of writing the most accepted hypothesis is that DM is made up of weakly
interacting massive particles (WIMPs) [4], although several other models are still considered
likely. Apart from gravity, WIMPs only interact through the weak force, and/or possibly through
a new force not described in the standard model (SM).

This thesis focuses on DM self-interactions and on their impact on DM astrophysics, an
area that have recently attracted a great deal of attention especially in the context of galaxy
formation and evolution. The theory in this thesis will be used to study DM annihilation in a
sample of 20 dwarf spheroidal galaxies (dSphs). Self-interactions allow DM particles to transfer
energy across a galaxy, which have several interesting physical consequences that may resolve
conflicts between theoretical predictions and observations. A special kind of self-interaction is
the annihilation of two DM particles, which may lead to the production of gamma rays in the
order of a few GeV. The Fermi Large Area Telescope (LAT) and ground based imaging air
Cherenkov telescopes [5] are currently searching for signals of DM annihilations in a variety of
astrophysical targets.

The photon flux originated from WIMP annihilation can be described analytically, and de-
pends on the so-called J-factor

J =
∫

∆Ω

∫
l.o.s.

ds dΩ ρ2
χ(s,Ω), (1.1)

where l.o.s. indicates integration along the line of sight and ρχ(s,Ω) is the DM density at line
of sight distance s and solid angle Ω as seen from the Earth. The purpose of this thesis is to
modify eq. (1.1) to the case of self-interacting DM, and perform an ab initio calculation of
the modified J-factor based upon non-relativistic quantum mechanics and Newtonian galactic
dynamics. Dwarf galaxies are known to be optimal targets for detecting gamma rays from DM
annihilations, since they are DM dominated and their mass-to-light ratio is generally much larger
than those of bright galaxies.

For each galaxy in the sample, calculations will be performed for a representative set of
particle physics parameters for the interaction, for two different DM density profiles and one
luminosity density profile. The dSphs will be assumed to be spherically symmetric and to have
isotropic velocity distributions. The optimum values of the J-factors will be extracted using
a likelihood estimation based on star velocity data calculated in [6–8] from measured Doppler
shift.
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1. Introduction

The structure of the report is as follows. We present a summary of DM evidences together
with an overview of WIMPs and their annihilation process in chapter 2. Chapter 3 aims to
give a qualitative understanding of the J-factor; where it arises and a concise expression for it.
The following chapters 4 to 6 describe each of the included terms in the J-factor expression.
Chapter 4 describes the impact of a self-interaction potential on the annihilation cross section.
In chapter 5 DM velocity distribution in galaxies is explained. Lastly, the density distribution
of DM in a dSph is evaluated in chapter 6. In chapther 7 the theoretical tools nessecary for a
likelihood estimation and numerical calculation is introduced. In chapter 8 the constituent parts
of the numerical calculations are cross-checked against earlier results, after which the calculated
J-factors are presented in chapter 9. The final chapter 10 contains a discussion that concludes
our work and results.
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Chapter 2

Dark matter evidence and the
physical impact of self-interactions
Many reports [9–12] have reviewed the large amount of evidence for DM, whose existence today
is considered well-established. Without any attempt to make a full review, in this chapter we
present some of the main reasons to consider DM as a real entity for the sake of completeness.

The perhaps most well-known motivation for DM comes from galactic rotation curves. That
is, a graph of circular velocities of stars and gas as a function of their distance to the correspond-
ing galactic centre. Common for all observed rotation curves is that they exhibit a characteristic
flat behaviour at large distances [13], i.e. the velocity of the outer regions of the galaxy is close
to constant. This is illustrated in fig. 2.1, where the rotation curve of the galaxy NGC 6503
is plotted together with its mass constituents. The shape of the observed rotation curves from
other galaxies are mostly very similar to the one of NGC 6503 in fig. 2.1. Apart from the visible
gas and disk matter contributors, there is a theoretical DM halo which is needed to add up to
the appearance of the rotation curve. The circular velocity of matter around galactic cores, in
Newtonian dynamics, is expected to be

vc(r) =

√
GM(r)

r
, (2.1)

where G is the gravitational constant, M(r) = 4π
∫
ρ(r)r2 dr is the mass of the system and ρ(r)

the mass density profile. According to this formula, the circular velocity should be decreasing as
1/

√
r as the distance from the optical disk increases. The fact that the observed circular velocity

becomes approximately constant with increasing distance implies the existence of a halo with
mass M(r) ∝ r and ρ ∝ 1/r2 [10], thus resembling an isothermal sphere.

Low Surface Brightness (LSB) galaxies also exhibit flat rotation curves but have, as their
name suggest, small stellar populations and thus very limited amounts of visible matter. Taken
together, the flat rotation curves and small amount of visible matter implies that the LSBs have
a DM halo larger than the one of brighter galaxies, thus making them interesting targets to DM
searches.

Another important piece of evidence is gravitational lensing. General relativity predicts that
mass bends, or lenses, light. The effect can be used to gravitationally ascertain the existence
of mass even if an object emits no light. Gravitational lensing is most easily observed in the
strong lensing regime, that is, when space-time is so warped that light can travel along multiple
paths around the lens, and still be deflected back towards the observer. If a bright source is
placed directly behind a circular lens, its light can travel around any side of it, and will appear
as a so-called Einstein ring. The radius of the Einstein ring r is related to the mass M of the
gravitational lens through r ∝

√
M [15]. If the bright source behind the lens is slightly offset,

or if the lens has a more complex shape, the light from the source can still appear in multiple
locations, viewed from slightly different angles. The DM evidence lies in the proportionality
between the Einstein radius, or its equivalent, and the mass of the lens. The radii are always
found much larger than the visible matter could account for, which implies the existence of some
”dark” matter.
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2. Dark matter evidence and the physical impact of self-interactions

Figure 2.1: Rotation curve of the galaxy NGC 6503 (solid line), and the contributions from
the galaxy’s different mass components; gas (dotted) and disk (dashed). The rotation curve
cannot consist of only the gas and disk components. The dotted-dashed line is theoretical, but
is estimated to be the missing mass contribution to explain the shape of the rotation curve. This
is the thought contribution of a DM halo. Graph from [14].

Evidence for DM has also been gathered through the observations of stars in galaxies and
galaxies in galaxy clusters. For example, measurements of the line of sight (l.o.s.) velocity
dispersion of stars and galaxies have been found to be much larger than expected. Since the
velocity of an astronomical object can be determined using red- and blue shifts, the velocity
dispersion makes for a natural observable. The l.o.s. velocity dispersion is related to the mass of
the corresponding object, and similar to the case of gravitational lensing, the measured values of
the l.o.s. velocity dispersion have been significantly higher than what the corresponding visible
mass of the object could account for [16]. L.o.s. velocity dispersion is discussed more thoroughly
in chapter 7.

Measurements of the Cosmic Microwave Background (CMB) implies that the preponderance
of the mass in the universe consists of an unknown DM component. The CMB is the remnant
radiation from the hot early days of the universe, when photons first decoupled from matter
very shortly after the Big Bang. Anisotropies in the CMB carry information about the total
energy content in the universe. The constituents of the total energy content can also be mea-
sured, and have estimated baryonic matter to contribute with 5%, and DM with 23%, to the
total energy content of the universe [17]. Predictions of the quantity of helium, deuterium and
lithium produced in an early era of the universe, called the primordial nucleosynthesis, exactly
match contemporary data of the measured elements under the assumption that baryonic matter
constitutes 5% of the total energy content [18].

Although the particle nature of DM has not yet been confirmed, intriguing hints have been
detected by different experiments. Discussed more thoroughly in the next section 2.2, annihi-
lation between two DM particles are thought to produce especially gamma rays and positron-
electron pairs. Surprisingly, experiments such as the Energetic Gamma-Ray Experiment Tele-
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2. Dark matter evidence and the physical impact of self-interactions

scope (EGRET) have reported detections of excesses of gamma rays in the energy range of 10-50
GeV from the galactic centre [19, 20]. However, such gamma rays might be a result of inverse
Compton scattering. In 2009 excess photons in the range of a few GeV was also detected by
the Fermi LAT instrument [21, 22]. The energy range is what is expected of photons from DM
annihilations, although in 2016 it was argued that DM annihilations could not have been the
origin of the Fermi measurements, since the photons were not smoothly distributed as would
also be expected [23, 24].

Other experiments, such as the Alpha Magnetic Spectrometer 02 (AMS-02), has detected
a large positron fraction e+/(e− + e+) up to energies of 350 GeV [25]. The result confirms
positron excesses in previous experiments, such as AMS-01 [26] and HEAT [27, 28]. However, as
in the case of the gamma-rays, the origin of these excesses have been debated. DM annihilations
into e+ and e− could explain this, although the interaction would require a large annihilation
cross section [29]. The Wilkinson Microwave Anisotropy Probe (WMAP) reported microwave
emission from the galactic core that are not spatially correlated with any known galactic emission
mechanism [30, 31]. A possible explanation would be synchrotron radiation from positrons and
electrons produced in the galactic centre.

The detected excess gamma-rays, positrons and electrons are at the time of writing not
considered authentic proof for DM annihilation. The excesses may have individual astrophysical
explanations, such as pulsar wind and supernovae. This means that the nature of DM remains
unknown. The existence of DM itself, however, is established. The main reason for this is that
DM solves many problems on all physical scales, and alternative explanations does not. For
example, attempts to modify gravity does successfully explain rotation curves, but fail on larger
physical scales [32]. In conclusion, the evidence for DM is that it alone solves many problems
arising from some seemingly missing mass on every physical scale in the universe.

2.1 Weakly interacting massive particles

There is an enormous amount of possible DM candidates. The basic fact that the extra matter is
unknown, or ”dark”, does not supply much information. A common categorization is baryonic
and non-baryonic DM candidates. Massive Compact Halo Objects (MACHOs) is the most
common example of baryonic DM. They might take the form of dark stars, stellar remnants, or
primordial black holes. However, it has been suggested that there cannot be enough of them to
resolve the question as a result of observational constraints [33, 34]. It is generally concluded that
MACHOs can only contribute with a fraction of the mass in DM halos. WIMPs and axions1 are
the most popular non-baryonic candidates. Ordinary massive neutrinos are too light and thus
have too high velocities to be affected by gravitational wells, which makes them inappropriate
as DM candidates from the perspective of large-scale structure formation. On the other hand,
sterile neutrinos remain a possibility.

WIMPs are favoured primarily because of what is called the “WIMP miracle”. As mentioned
previously, data on the CMB have been used to derive the present cosmological density of both
baryonic matter and the unknown DM component. The Planck telescope has found the present
cosmological density of DM to be Ωχh

2 = 0.1120 ± 0.0056 [18]. For comparison, in the case of
WIMPs, the cosmological density has been derived [36, 37] to be

Ωχh
2 ≈ 3 · 10−27 cm3/s

σ0vrel
, (2.2)

1Axions are hypothetical scalar particles with neutral charge and mass between 10−5 − 10−3 eV/c2. They are
postulated in the Peccei-Quinn solution [35] to the strong CP problem in quantum chromodynamics.
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where h is related to the Hubble constant via H0 = 100h kms−1Mpc−1, and σ0vrel is the
velocity averaged value of the annihilation cross section σ0 times the particle relative velocity
vrel. Combining eq. (2.2) and the Planck inferred value yield a DM annihilation cross section of
σ0vrel ≈ 3 · 10−26 cm3/s. This cross section is close to that of weak interaction strength (WIMP
miracle), which makes WIMPs suitable candidates for DM.

However, studies of a galaxy cluster known as the Bullet cluster puts new restrains on the
annihilation cross section. Results from X-rays, gravitational lensing and optical observations
estimates the cross section per unit mass as σ/mχ = 2.23 · 10−33cm2c2/eV [38, 39].

2.2 Self-interacting dark matter

Before the suggestion of self-interacting DM, the so-called collisionless cold DM model (CCDM)
was the most used one. No collisions between DM particles means that the cross-section of
DM-DM scattering is zero. The term ’cold’ is referring to that the DM particles moves slowly
compared to the speed of light c, which is still mostly assumed today as well. Cosmological
models with a mixture of roughly 35% CCDM and 65% vacuum energy match observations
of the cosmic microwave background and large-scale structures on extra-galactic scales with
very high accuracy [40, 41]. However, several discrepancies between observations and numerical
simulations on subgalactic scales led to scepticism of the CCDM model, and there after the
suggested solution of self-interaction.

One of these discrepancies is the one between simulated and observed DM halo density
profiles. Remarkably, simulations of CCDM halos of all sizes consistently show cuspy halos
similar to the generalised Navarro-Frenk-White (NFW) profile [42, 43]

ρ(r) = ρ0
(r/rs)α(1 + r/rs)3−α

, (2.3)

where ρ0 is the central halo density, rs is a scale radius, and α is a free parameter. The scale
radius is the characteristic radius at which the density profile is equivalent to the isothermal
profile ρ(r) ∝ r−2. The density profile diverges as r−α as r → 0. The exact value of α from
numerical simulations has been a subject of debate. Originally NFW suggested α ' 1 [42], but
later, more high resolution findings found steeper divergences as α ' 1.4 [44].

Observations of gravitational lensing in clusters and the presence of disks in galactic halos
make it possible to determine their density profiles. By observing low surface brightness galaxies
(LSBG) and dwarf galaxies, chosen for their small light-to-mass ratio, their density profiles has
been found to indicate cores of galactic halos with shallow density profiles [44]. Rotation curves
of LSBs indicate almost flat density profiles ρ ∝ r0 in the r → 0 limit, with parameter values as
low as α = 0.2 [45], which is not as divergent as the NFW profiles of CCDM [41]. The existence
of stable galactic bars in high surface brightness galaxies (HSBG), such as the one in the centre
of the Milky Way, also implies low-density cores [46]. This discrepancy between the density
profiles of CCDM and the observed ones are referred to as the Cuspy halo problem, or core-cusp
problem, where the simulations indicate a cusp density profile in the galactic centre and the
observations show a flat core.

Another important puzzle is the excess of galactic substructures in simulated DM halos com-
pared to the number of observed satellite galaxies in Milky Way-like systems. The excess of
substructures, or small matter clumps in galactic halos, is one of the most clear differences be-
tween CCDM simulations and observations. This second simulation-observation discrepancy is
referred to as the missing satellite problem.

Naturally these discrepancies may be caused by problems with the current simulations, or
the quality of observational data. However, since they persist, they might be an indication that
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2. Dark matter evidence and the physical impact of self-interactions

the DM is not collisionless. Furthermore, arguments have been put forth that self-interaction of
DM particles console the discrepancies mentioned above [47, 48].

2.2.1 The physical impact of self-interaction

In a CCDM halo, the substructures sink into the larger halo, and their outer, hotter parts
are left behind due to the tidal forces. If the cold centres of the substructures survive their
journey, they join the cold gravitational cusp centre. The lack of two-particle interactions means
there is no heat transport into the cusp. This implies that gravitationally stable systems with
CCDM is not in thermal equilibrium. However, when the particles interact, the second law of
thermodynamics requires that the heat must be transported to the cold cusp core in order to
reach thermal equilibrium. The interactions increase the mean particle velocity and reshape the
cusp halo to a smoother core. As the cooler material from the outer parts mix with the warmer
inner parts the halo eventually becomes isothermal. Accretion to substructures will provide
heat to the halo, but at the same time two-particle interactions will eject particles, leading to
heat loss. As mentioned previously, the close to isothermal density profile is what is required to
explain the flat behaviour of the rotation curves at large distances from the galactic core.

2.2.2 Possible interactions

Indirect detection of DM refers to the detection of end products from DM annihilation, unlike
direct detection, which search for signals from DM scattering on SM nuclei. Dark matter annihi-
lation models predicts three different types of end products; gamma rays, particle- anti-particle
pairs, or neutrinos. That is, the most common annihilation channels are [49]

χχ → γγ, γZ, γH, and χχ → qq,W−W+, ZZ.

which in turn, generate gamma rays, particle- anti-particle pairs, or neutrinos through decay.
For example the products of the second annihilation channel might decay into differently charged
pions [50], which in turn decays through

π0 → γγ, π+ → νµµ
+ → νµe

+νeνµ, π− → νµµ
− → νµe

−νµνe.

In this paper the end-products are assumed to be gamma photons by the simple reason
that they are the easiest to detect. Produced charged particles are deflected in interstellar
magnetic fields, thus loosing the information about their origin. The charge neutrality of gamma
rays and neutrinos instead points to the source where they were produced. Since neutrinos
interacts extremely weakly with other matter, they practically travel unaffected from the source
of production. This does not apply to gamma rays, which can be absorbed in the interstellar
medium. The reason for not considering neutrinos instead lies in the fact that, because of their
extremely weak interactions, they are difficult enough to detect as to make gamma rays the
favourable option for detection. A simple diagram of the gamma ray producing annihilation
process is shown in fig. 2.2b.

As have been seen from the previous subsection, self-interactions might resolve several simu-
lation observation discrepancies. In the early days of modelling and simulating self-interacting
DM in galaxies, the interaction cross section was assumed to be constant. Although simulations
with a constant interaction cross section did create the wanted core-like density profiles, the
model fell out of favour because of several discrepancies;

i) Gravitational lensing and X-ray data indicated that the cores of clusters are dense and
ellipsoidal, where the ’constant cross section’ simulations predicted them to be shallow
and spherical [51, 52].

7



2. Dark matter evidence and the physical impact of self-interactions

φ

χ

χ

χ

χ

(a) Interaction between
two DM particles χ
through the mediator
particle φ.

χ

χ

γ

γ

(b) Annihilation
process χχ → γγ
through unknown
process (blob).

Figure 2.2: Two different interactions between DM particles. Fig. 2.2a illustrates self-
interaction through the force carrier φ. In fig. 2.2b a DM particle- anti-particle pair is an-
nihilated through some unknown process into two gamma photons.

ii) Dwarf galaxies close to a larger host galaxy would be expected to evaporate when inter-
acting with the higher velocity DM particles in the host halo [53].

iii) The required constant cross section was suggested to be incompatible with popular WIMP
models.

In fact, results from simulations show that only a small window opens for a constant cross
section model to work as a distinct alternative to the CCDM model [54]. Therefore, a velocity
dependent cross section was introduced to solve the problem. The possibility that the WIMPs
might interact through dark forces, or forces unknown to the SM, arose as a means to address
other anomalies [55]. If one assumes DM annihilations to be the source of the observed gamma
ray and electronic excesses, some requirements for the dark forces may be extracted. One of
them is a large annihilation cross section. Studies of the AMS-02 signals seem to support a cross
section much larger than what is allowed by the estimated thermal relic abundance of DM. The
expected cross section for a thermal WIMP would need boost factors of order 100 to explain the
positron excesses [56].

Another requirement is that the cross section must be large for leptons, but small for hadrons.
Hadrons consists of baryons and mesons, which in their turn consists of three quarks, and a
quark- anti-quark pair, respectively. The detected electronic excesses are an example of hard,
or high energetic, leptons. Leptons are often created by a hadronic shower, that is, when hard
leptons interact with other matter and produces a cascade of soft (i.e. low energy) leptons. How-
ever, observations suggest large cross sections for leptons, and small cross sections for hadrons,
which is opposite of the common SM annihilation and decay sequences. Typical annihilations
via Z-bosons produce very few hard leptons. The W boson produce hard leptons, but many
more soft leptons trough the hadronic shower. Heavy quarks and Higgs bosons produce a even
softer spectrum of leptons, all of which seem to fit the data poorly.

With the DM interpretation of the AMS-02 observed positron fraction, it is a challenge to
construct ways in which DM annihilations produce leptons directly with the known SM bosons.
This suggest that either the leptons are being produced from another annihilation channel, or
that the DM annihilation interpretation is invalid.

However, a new interaction between DM particles can arise naturally in a variety of physics
beyond the SM theories, and is considered well motivated from a theoretical point of view [55].
Even though there are strict constraint of the self-interaction cross section to form the observed
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2. Dark matter evidence and the physical impact of self-interactions

cluster- and substructures, the presence of some new force carrier φ should be expected. See
fig. 2.2a. The mediator of the force φ could be either a scalar or a vector, since magnetic-like
interactions are negligible. The force could couple to SM fields through kinetic mixing with the
photon, or through mass mixing with the Higgs boson [57].

An important modification that can arise with a DM force carrier of mass mφ ' a few GeV/c2

is an enhancement of the annihilation cross section via a mechanism called the Sommerfeld en-
hancement [55]. This mechanism is discussed in section 4. The enhancement of the annihilation
cross section could give rise to the needed large boost factors required to explain the positron
excesses. However, a massless force carrier is disfavoured by the agreement between Big Bang
nucleosynthesis and measurements of the primordial light, i.e. the CMB radiation. This leaves
the conclusion that the force carrier φ must have mass, and scattering through a massive medi-
ator is equivalent to having a Yukawa potential. It was proposed [57] that a Yukawa potential
would not only produce core density profiles in dSphs, it would also avoid all the constraints of
the constant cross section model.
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Chapter 3
Photon flux from annihilating dark
matter
Having motivated our focus on photons as DM annihilation end products in the previous section,
we now turn our attention to the photon flux. We start the discussion on photon flux by
considering the DM annihilation rate for general product particles. The probability per unit
time that a pair of DM particles χ annihilate into a final state of SM particles, can be expressed
as [58]

d2Γ = dσ · Φχ. (3.1)

Here dσ is the differential annihilation cross-section, and Φχ is the flux from either initial particle
at the position of the other one. It is defined as the product of the number density nχ and the
relative velocity vrel of the DM particles, that is

Φχ = vrelnχ = vrel
ρχ

mχ
, (3.2)

where ρχ is the DM density and mχ the mass of the initial particle.
The velocity vrel can be rewritten in a frame where the annihilating DM particles have four

momenta Pi = (Ei,pi), where i = 1, 2 denotes each particle, so that

vrel =

√
(p1p2)2 −m2

χ

E1E2
. (3.3)

In the center of mass (CM) frame, p1 = −p2 = p and eq. (3.3) reduces to vrel =
∣∣∣ p

E1
− −p

E2

∣∣∣ =
|v1 − v2|. If the two initial particles are identical, then E1 = E2 and vrel reduces to vrel = 2|v|.

In a galaxy, the number density nχ will depend on the position in the halo. The differential
cross-section dσ depends on the momenta of the initial and final particles, and on the particle
physics model but not on spatial coordinates, if we neglect screening effects1. Then the rate of
particles of type j that are generated in a volume element dV at a position r in the system,
containing nχ(r) dV DM particles, can be written as

d2Γ
dE dV = nχ(r)

∑
i

Bi
dNj,i

dE (σi · Φχ)r, (3.4)

where Bi is the so-called branching ratio for the reaction i that produces an average of dNi,j

type j particles with energies E within the range E+dE. The notation (.)r denotes the average
over all possible initial kinematics configurations of the DM particles. The branching ratio is
defined as the ratio of the number of particles decaying by a specific decay mode ki to the total
number of decaying particles k = k1 + k2 + k3 + ..., that is, Bi = ki/k.

Now, let Pr,rel(vrel) be a probabilistic density function for the relative velocity of two DM
particles colliding at a position r in the dSph, such that Pr,rel(vrel) d3vrel is the probability that

1Screening effects refers to effects effectively reducing the force attraction between two particles. For example,
many electrons between a positively charged nucleus and the valence electrons are said to shield, or screen the
nucleus from the perspective of the valence electrons, thus slightly reducing the electromagnetic attraction between
the two.
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3. Photon flux from annihilating dark matter

the two particles have a velocity in the range [vrel,vrel +d3vrel]. Using this, the average of initial
kinematic configurations can be written as (σvrel)r =

∫
Pr,rel(vrel)σ(vrel)vrel d3vrel, giving

d2Γ
dE dV = n2

χ(r)
∑

i

Bi
dNj,i

dE

∫
d3vrelPr,rel(vrel)σivrel. (3.5)

Because of Lorentz invariance, the annihilation does not depend on the orientation of the relative
velocity. Thus only the magnitude of the relative velocity is needed, so that Φχ = nχvrel as in
eq. (3.5) above.

We are now ready to consider the DM induced photon flux. For simplicity we assume that
photons of all energies are of interest, and that the cross-section does not depend on the energy
of the photon end products. With particle type j being a photon, we set j = γ, so that

dΓ
dV = n2

χ(r)Nγ

∫
d3vrelPr,rel(vrel)σvrel = n2

χ(r)Nγ · σvrel

= Nγ

m2
χ

· σvrelρ
2
χ.

(3.6)

Where Nγ is the number of photons resulting from each annihilation, and Bi has been set equal
to 1.

The differential flux along a direction specified by the spherical angles θ and φ is [58]

dΦγ = ds Nγ

4πm2
χ

· σvrelρ
2
χ. (3.7)

To evaluate the total flux, one must integrate along the line of sight s over a solid ange ∆Ω, so
that the total flux from a galaxy is

Φγ = Nγ

4πm2
χ

∫
∆Ω

∫
l.o.s.

dΩ ds σvrelρ
2
χ. (3.8)

The so-called J-factor, central to our study, is the integral expression in eq. (3.8) above;

J =
∫

∆Ω

∫
l.o.s.

dΩ ds σvrelρ
2
χ =

∫
∆Ω

dΩ
∫

l.o.s.
ds
∫

d3vrelPr,rel(vrel)σvrelρ
2
χ. (3.9)

The ’classical’ J-factor in eq. (1.1) usually does not include the annihilation cross section
times the relative velocity, i.e. the term σvrel. Generally, the annihilation cross section is velocity
dependent. Since the particles are moving at non-relativistic speeds, the annihilation rate factor
σvrel can be written [37]

σvrel = a+ bv2
rel + ..., (3.10)

where a and b are constants. Thus for low velocities, the term σvrel is approximately constant
≈ a. Therefore, it is possible to take the term σvrel outside the integral. Excluding the term
σvrel, the J-factor is defined as in section 1, by

J =
∫

∆Ω
dΩ
∫

l.o.s.
ds
∫

d3vrelPr,rel(vrel)ρ2
χ(s,Ω) =

∫
∆Ω

dΩ
∫

l.o.s.
ds ρ2

χ(s,Ω),

since the velocity distribution is normalized according to
∫

d3vrelPr = 1. Assuming the DM par-
ticles self-interact through an attractive Yukawa potential, their cross section will be enhanced
via a mechanism called Sommerfeld enhancement, which will be discussed in the next section.
The enhancement adds to the unenhanced annihilation cross section as a factor S, which unlike
the annihilation rate factor, is velocity dependent. Thus, we redefine the annihilation cross
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3. Photon flux from annihilating dark matter

r
D

α A
2β

s

Figure 3.1: An observer located at A studies some properties of the galaxy at the galactic
radius r. The point being studied lies at a distance s and the centre of galaxy at a distance D
from A. The angle β represents the angle of cone tangent the locus of points a distance from
the centre of the galaxy.

section as σ = σ0S(vrel), where σ0vrel ≈ a denotes the unenhanced cross section and fulfills
eq. (3.10). As a result, σ0vrel can be taken outside the integral and the Sommerfeld enhanced
J-factor JS can be defined as

JS =
∫

∆Ω
dΩ
∫

l.o.s.
ds
∫

d3vrelPr,rel(vrel)S(vrel)ρ2
χ(s,Ω), (3.11)

where we have introduced a subscript S for Sommerfeld.
It is the evaluation of this JS for 20 different dSphs that is the purpose of this thesis. In order

to get closer to achieving this we now turn our attention to the constituents of the equation,
starting with a closer examination of the geometry of the integral itself.

An approximate picture of the geometry of the problem is given in figure 3.1, where an ob-
server studies a dSph located at a distance D from earth. The J-factor consists of an integration
over the dSph’s solid angle as seen from earth and over the line of sight, while we assume the
dSph to be isotropic. Looking at figure 3.1 it is apparent that the distance r from the centre of
the dSph to a point p can be expressed in terms of D, the distance s from earth and the angle
α between the centre of the dSph and p through the cosine formula as

r(s, α,D) =
√
D2 + s2 − 2Ds cosα. (3.12)

Using this and noting that the integrand is symmetric around the cone with equal α, allows us
to express the Js-factor as

Js = 2π
∫ 1

cos β
d cosα

∫ ∞

0
ds
∫

d3vrelPr(s,α,D),rel(vrel)S(vrel)ρ2
χ(r(s, α,D)), (3.13)

where β is the maximum angle from the centre of the dSph from which DM annihilations are
considered. A common practice [59, 60] is to set β = 0.5◦ for all dSph satellites of the Milky
Way, and that is also what will be used in this thesis.
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Chapter 4
Annihilation cross section
The first term evaluated in eq. (3.11) will be the annihilation cross-section σ(vrel). Since we
assume self-interaction and that the majority of DM particles travels at non-relativistic velocities,
one must consider the important effect of Sommerfeld enhancement. It will be clear later on
that the enhancement plays a very important role for two slowly moving interacting particles
close to each other, and will thus be highly relevant for the annihilation cross-section.

The Sommerfeld enhancement is an elementary effect in non-relativistic quantum mechanics
proposed by Arnold Sommerfeld in 1931. The enhancement accounts for the effect of an inter-
action potential on the cross section of colliding DM particles. A simple example is an asteroid
on collision course with a star. There is a probability of the asteroid colliding with the star,
and the likelihood can be quantified with a cross section. If one ignores the stars gravitational
pull on the asteroid, this cross section is equal to the area of the star facing the asteroid. Of
course the gravitation cannot be neglected, its effect largely enhances the probability, and thus
effectively the cross-section, of the asteroid colliding with the star. This enhancing effect is what
is called Sommerfeld enhancement.

Another similar example is that of electron-positron annihilation. The cross-section of an-
nihilation between a positron and an electron enhances if one accounts for the electromagnetic
attraction between the particles. In the same way the cross-section is reduced by the repulsive
Coulomb force between two particles of the same charge.

To generalise this, the effective cross-section of an interaction can be written

σ = σ0S, (4.1)

where σ0 is the cross section neglecting any interaction potentials, and S the Sommerfeld en-
hancement factor accounting for potentials. Assuming that the annihilation is localised at the
origin, the corresponding interaction Hamiltonian takes the form H = Vannδ

3(r), where Vann

is assumed to be constant. It follows that the probability of annihilation is proportional the
probability of the particle being located at the origin |ψk(0)|2. Hence, our enhancement factor
can be written simply as

S = |ψ(0)|2

|ψ(0)(0)|2
= |ψ(0)|2, (4.2)

where ψ(0)(0) is the unit-normalised wave function with Vann = 0. In this chapter we will develop
the framework to evaluate |ψ(0)|.

Although σvrel does not appear in our definition of the J-factor, eq. (3.11), for completeness
we will review its denotation in Appendix A.
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4. Annihilation cross section

4.1 Brief introduction to non-relativistic scattering theory
In order to evaluate the expression in eq. (4.2), some knowledge of general scattering theory is
required.

We start by consider an incident particle travelling along the z-axis. Let its wave function
represent a plane wave, such that

ψ(r) = eik·r. (4.3)

where k is the wave vector at distance r from the origin. In our case the origin represent the
site of collision, followed by annihilation, between two incident DM particles. Assuming time-
independent, energy conserving scattering, in which the Hamiltionian of the system is written
H = H0 +V (r) = − ~2

2m∇2 +V (r), the Schrödinger equation (SE) of the scattering problem can
be written (

− ~2

2m∇2 + V

)
ψ = Eψ. (4.4)

The V is the scattering potential. The wave function is subject to the boundary condition
ψ → ψ0 as V → 0. This equation can be rewritten as

(∇2 + k2)ψ = 2m
~2 V ψ. (4.5)

In order to solve it, it is useful to note its striking resemblance to the Helmholtz equation;

(∇2 + k2)u(r) = ρ(r), (4.6)

whose solution is well-known and can be written as

u(r) = u0(r) −
∫

eik
∣∣r−r′

∣∣
4π|r − r′|

ρ(r′) d3r′. (4.7)

Here the function u0(r) is the solution to the homogeneous equation (∇2 + k2)u0(r) = 0. With
this information, eq. (4.5) can be solved, and gives together with the boundary condition ψ → ψ0
as V → 0, the solution

ψ(r) = ψ0(r) − 2m
~2

∫
eik
∣∣r−r′

∣∣
4π|r − r′|

V (r′)ψ(r′) d3r′. (4.8)

If we turn to areas at long distances from the scattering region r � r′, then
∣∣r − r′∣∣ can be

approximated by r− r̂ · r′ to first order in r′/r. The unit vector r̂/r points from the scattering
region to the observation point. It can be helpful to define k′ = kr̂, which is the wave vector
for the outgoing particles from the collision with the same energy as the incoming particles
(k′ = k), and propagates from the scattering region to the observation point. Then u(r) can be
approximated as

ψ(r) ≈ eik·r + f(k,k′)e
ikr

r
, where f(k,k′) = − m

2π~2

∫
eik′·r′

V (r′)ψ(r′) d3r′. (4.9)

The term eik·r represent the incident plane wave, and the second term eikr/r an outgoing
spherical wave with amplitude f(k,k′).

One can assume without loss of generality that the wave function of an incident particle is
characterised by a wave vector k which is aligned parallel to the z-axis. The scattered wave
function is characterised by a wave vector k′ which has the same magnitude as k, but generally
points in a different direction. The wave vector k′ is specified by the polar and azimuthal angles
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4. Annihilation cross section

θ and ϕ respectively. For a spherically symmetric potential, that is V (r) = V (r), the amplitude
f can be written simply as a function of θ. It follows that neither the incident wave function
ψ0(r) nor the long range total wave function ψ(r) depends on the azimuthal angle ϕ. This
enables us to simplify their expressions, so that

ψ0(r) = eikz = eikr cos θ, and ψ(r) = eikr cos θ + eikrf(θ)
r

. (4.10)

Without a scattering potential, or outside the range of one, both ψ0 and ψ satisfy the free SE(
∇2 + k2

)
ψ = 0. (4.11)

A general solution in spherical coordinates, which does not depend on ϕ, is

ψ(r, θ) =
∞∑

l=0
Rl(r)Pl(cos θ), (4.12)

where the Pl are the Legendre polynomials dependent on the azimuthal quantum number l
associated with the angular momentum. Since the Legendre polynomials are related to the
spherical harmonics by

Pl(cos θ) =
√

4π
2l + 1Yl,m=0(θ, φ),

combining eq. (4.11) and eq. (4.12) gives the homogeneous radial SE

d2

dr2Rl + 2
r

d
drRl +

(
k2 − l(l + 1)

r2

)
Rl = 0. (4.13)

The two independent solutions to this equation are the spherical Bessel functions, jl(kr) and
yl(kr), where jl(kr) = (kr)l

(
− 1

kr
d

d(kr)

)l sin(kr)
kr ,

yl(kr) = −(kr)l
(
− 1

kr
d

d(kr)

)l cos(kr)
kr .

(4.14)

Note that yl(kr) is not well-behaved when r → 0, that is, they become singular. In contrast
jl(kr) are well-behaved because they will approach zero regularly as rl. More precisely, in the
r → 0 limit, they behave as

jl(kr) −→
r→0

2ll!
(2l + 1)!(kr)

l, and yl(kr) −→
r→0

−(2l)!
2ll! (kr)−(l+1). (4.15)

This is also the reason why only jl(kr) is included in a partial wave expansion of eikr cos θ, which
can be written [61]

eikr cos θ =
∞∑

l=0
ali

ljl(kr)Pl(cos θ), (4.16)

where al is a constant. The factor il ensures that jl(kr) is real. This can be seen by taking the
complex conjugate of eq. (4.16) and at the same time let cos θ → − cos θ, which leaves eikr cos θ

intact. The term ilP (cos θ) changes into

(−i)lPl(− cos θ) = ilP (cos θ), since Pl(cos θ) = 1
2ll!

(
d

d cos θ

)l (
cos2 θ − 1

)l
,

15



4. Annihilation cross section

so that jl(kr) must be real. By recalling the orthogonality relation for Legendre polynomials,

1
2

∫ 1

−1
dxPl(x)Pl′(x) = δll′

2l + 1 , (4.17)

we note that jl(kr) is given explicitly by the integral

ali
ljl(kr) = 2l + 1

2

∫ 1

−1
dζPl(ζ)eikrζ , (4.18)

where ζ = cos θ. In order for the expression of jl(kr) in eq. (4.18) to equal that of eq. (4.14),
the constant al is determined to al = 2l + 1.

In the following section, waves at long distances will be of interest. In order to expand eq.
(4.16) for waves at long distances, it is practical to study the asymptotic behaviour of iljl(x)
for x = kr � 1. We do that by performing the integration of the defined expression of iljl(x)
followed by a large x approximation. That is,

iljl(x) = 1
2

∫ 1

−1
dζPl(ζ)

d
dζ
eixζ

ix

= 1
2

[
Pl(1)e

ix

ix
− Pl(−1)e

−ix

ix

]
− 1

2

∫ 1

−1
dζ e

ixζ

ix

d
dζ Pl(ζ)

' 1
2ix

[
eix − (−1)le−ix

]
= il

1
2ix

(
i−l − ile−ix

)
,

or more simply

jl(x) '
sin(x− πl

2 )
x

. (4.19)

By the same method, the asymptotic behaviour of yl(kr) is given by yl(x) ' − cos(x− πl
2 )

x . In
conclusion, the asymptotic expansion of the plane wave eikz = eikr cos θ in terms of Legendre’s
polynomials is

ψ0(r) = eikr cos θ '
∑

l

(2l + 1)il
sin(kr − πl

2 )
kr

Pl(cos θ), for large r’s. (4.20)

The most general expression for the total wave function outside the scattering region is

ψ(r) =
∑

l

[
Aljl(kr) −Blyl(kr)

]
Pl(cos θ), (4.21)

where Al and Bl are constants, and the yl(kr)’s are allowed to appear if the region of validity is
changed to not include the origin. As shown previously the total wave function for large r’s is
reduced to

ψ(r) '
∑

l

Al
sin(kr − πl

2 )
kr

−Bl
cos(kr − πl

2 )
kr

Pl(cos θ). (4.22)

By combining the sine and cosine expressions, one can form a resulting phase shifted sine func-
tion, so an equivalent expression to eq. (4.22) is given by

ψ(r) '
∑

l

Cl
sin(kr − πl

2 + δl)
kr

Pl(cos θ). (4.23)
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The phase-shift is given by δl, which is also called the scattering phase, and the constants Al and
Bl can be written as Al = Cl cos δl and Bl = −Cl sin δl. Eq. (4.23) contains both the incoming
and outgoing waves. By considering eq. (4.10), the outgoing wave is

ψ − ψ0 = eikr

r
f(θ), (4.24)

which implies that the coefficents for the incoming spherical waves at the large r-expansions
must be the same. Evaluating (4.24) with the expressions of ψ and ψ0 in eq. (4.23) and eq.
(4.20) respectively yields the coefficient Cl, as

Cl = (2l + 1)ileδl . (4.25)

Thus, the total wave function at large r’s is given by

ψ(r) '
∑

l

(2l + 1)ileδl
sin(kr − πl

2 + δl)
kr

Pl(cos θ). (4.26)

In the next subsection the behaviour of scattered particles at long distances from the collision
site will be used as boundary conditions, which in turn will be used in the determination of a
general Sommerfeld enhancement factor for arbitrary potentials.

4.2 General Sommerfeld enhancement factor
In order to evaluate the enhancement in eq. (4.2) analytically, an explicit expression for the wave
function ψ(r) at the annihilation point must be determined. Consider a central potential V (r),
either attracting or repelling an initial particle to another one, causing the interacting cross-
section to increase or decrease, respectively. The potential V (r) might be treated perturbatively,
but at small velocities the potential may not be a small pertubation, and could therefore distort
the wave function significantly. Because of this reason we choose not to use perturbation in our
derivation.

The sought for wave function with an arbitrary potential V is determined in the traditional
sense by the solution of the SE (

− 1
2m∇2 + V (r)

)
ψ = k2

2mψ, (4.27)

with the boundary condition that the annihilation can only produce spherically symmetric out-
going waves,

ψ→e
ikz + f(θ)e

ikr

r
, r → ∞. (4.28)

in the large r limit as discussed in the previous section. Here m denotes the reduced mass of the
two body system of DM particles, and k its relative momentum. It is known that any solution
of the SE with rotational invariance around an axis can be expanded as

ψ =
∑

l

AlPl(cosθ)Rkl(r), (4.29)

where the Al’s are normalizing coefficients, Rkl are radial functions and Pl are Legendre poly-
nomials. The radial SE is rewritten for later convenience, as

− 1
2m

(
d2

dr2Rkl + 2
r

d
drRkl

)
+
(
l(l + 1)
r2 + V (r)

)
Rkl = k2

2mRkl. (4.30)
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4. Annihilation cross section

As seen in the previous section, when r → ∞ the radial Bessel functions jl and yl look like plane
waves. Even though the radial functions Rkl does not solve the homogeneous SE like the Bessel
functions, the asymptotic behaviour at the large r limit is the same. We choose a normalized
version of Rkl for large r’s as

Rkl(r) −→
r→∞

1
r

sin
(
kr − 1

2πl + δl

)
, (4.31)

where the scattering phase-shift δl ≥ kr, as r → ∞. Using the asymptotic expansion of eikz,
that is

eikz → 1
2ikr

∑
l

(2l + 1)Pl(cosθ)
(
eikr − (−1)le−ikr

)
, (4.32)

as shown previously, the coefficients Al can be chosen to ensure the boundary condition of eq.
(4.28), and thus the partial wave expansion of ψ can be determined to

ψ = 1
k

∑
l

il(2l + 1)eiδlPl(cosθ)Rkl(r). (4.33)

Note that this result is equivalent to eq. (4.26) in the large r limit as upon a slightly different
choice of normalization of Rkl. In order to obtain a sensible physical result, we have to require
that the radial function Rkl have a so-called regularly varying behaviour for r → 0. That is, if
the potential does not vary faster than r−1 at the origin, Rkl must scale regularly as ∼ rl as
r → 0. At the origin r = 0, which we will set as the site of annihilation, it applies that Rkl = 0
for all l 6= 0. As we are not interested in the solution Rkl = 0, we must have a s-wave (l = 0)
annihilation cross-section with the enhancement factor

S =
∣∣ψ(r = 0)

∣∣2
l=0 =

∣∣∣∣∣Rk,l=0(r = 0)
k

∣∣∣∣∣
2

. (4.34)

By making the standard substitution Rk,l=0 = χ/r, the SE in eq. (4.30) turns into the one-
dimensional problem (

− 1
2m

d2

dr2 + V (r)
)
χ = k2

2mχ, (4.35)

with the transformed boundary conditions

χ(r) → sin(kr + δ), as r → ∞. (4.36)

Note that the phase-shift δ is equal to the previously defined δl with l = 0. Since Rk,l=0 goes to
a constant as r → 0, we must have that χ = rRkl(r) → 0 as r → 0. This regular behaviour can
also be written [55]

χ(r) → r
dχ
dr (0), for r → 0, (4.37)

where the correct value of χ′(0) = dχ(0)/d is determined with the requirement that χ must
have unit amplitude, as in the BC of eq. (4.36).

To sum up, the enhancement can now be written as

S =

∣∣∣∣∣∣
dχ
dr (0)
k

∣∣∣∣∣∣
2

, (4.38)

where χ is the solution to the 1D SE in eq. (4.35), satisfying the boundary conditions in eq.
(4.36) and (4.37). We can verify that this expression is correct with a vanishing potential. With
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4. Annihilation cross section

V (r) = 0, the solution to eq. (4.35) is χ(r) = c sin(kr), with the complex constant c. Matching
this with eq. (4.36) forces the constant to c = 1. Then the derivative χ′(0) = k and we get
S = 1, that is, no enhancement, as it should be.

With the boundary condition χ ∝ eikr as r → ∞ instead of the ones in eq. (4.36) and (4.37),
the Sommerfeld factor can be equally written as

Sk =
∣∣∣∣∣χ(∞)
χ(0)

∣∣∣∣∣
2

. (4.39)

In order to see the equivalence, we note that since eq. (4.35) is a second order differential
equation, it must have two independent solutions. The first one, let us call it χ1, solves (4.35)
with the boundary conditions χ1(r → ∞) → sin(kr + δ) and χ′

1(0) = 0. Let χ2 denote the
second, so far unknown, linearly independent solution with boundary condition χ2(r → ∞) →
cos(kr + δ) and define C = χ′

2(0). The two solutions can be compared with the two different
Bessel function solutions jl and yl in the previous section. In general, for a nth order linear
differential equation, if n − 1 solutions are known, the last one can be determined using the
so-called Wronskian. Generally, for n real or complex functions f1, f2, ..., fn, which are n − 1
times differentiable, the Wronskian is defined as

W (f1, ..., fn)(x) =

∣∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fn(x)
f ′

1(x) f ′
2(x) · · · f ′

n(x)
...

... . . . ...
f

(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣
(4.40)

for x ∈ I. That is, a determinant of a matrix constructed by setting the functions on the first
row, followed by the derivatives of those functions in increasing order.

Now returning to our problem. Using the Wronskian to find our second solution χ2, we have
that

W = χ1(r)χ′
2(r) − χ′

1(r)χ2(r). (4.41)
One verifies easily that W ′ = 0 because there are no χ′ terms in the SE (4.35) above. But by
comparing the boundary values of χ1 and χ2 at r → ∞ and r → 0, the conserved Wronskian is

W (∞) = −k(sin2(kr + δ) + cos2(kr + δ)) = −k = W (0) = −Cχ′
1(0), (4.42)

since χ1(0) = 0. It becomes clear that
∣∣χ′

1(0)
∣∣ = k/|C| and the new expression for the Sommerfeld

enhancement, using χ1, is simply

Sk =
∣∣∣∣∣χ′

1(0)
k

∣∣∣∣∣
2

= 1
|C|2

. (4.43)

We evaluate eq. (4.39) by first noting the boundary conditions χ′(r) → ikχ(r) in the large r
limit since χ(r) ∝ eikr as r → ∞, and χ(0) = 1. Now we are ready to form χ by the linear
combination χ = A(χ2 + iχ1) as a consequence of the asymptotic behaviour at large r. Then it
must apply that χ(0) = AC = 1 and thus S = |A|2 = 1/|C|2 as derived previously. Thereby eq.
(4.38) and eq. (4.39) are equivalent general expressions for the Sommerfeld enhancement factor.

4.3 Case of attractive Yukawa potential
As mentioned in section 2, it has been shown [57] that DM particles interacting through a
Yukawa potential could naturally explain the core structures in dSphs. The Yukawa potential
can be written

VY (r) = ±α

r
e−mφr, (4.44)
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4. Annihilation cross section

where α is the coupling strenght and mφ is the mass of the force mediator particle φ between the
interacting DM particles. As the DM particles, the mediator particles φ are not known members
of the SM. Note that the Coulomb potential of electromagnetism is a special case of the Yukawa
potential, with the photon γ as mediator particle, and mγ = 0.

In order to evaluate the expression in eq. 4.43, we evaluate the SE for χ eq. 4.35 with a
Yukawa potential, that is, with l = 0 as before

− 1
2mχ′′ +

(
α

r
e−mφr − k2

2m

)
χ = 0. (4.45)

The boundary conditions for χ are equivalent to those of Rkl discussed previously, gathered
below as χ(r) → (kr)l+1 =

l=0
kr as r → 0,

χ(r) → Csin(kr + δ), as r → ∞.
(4.46)

To make it easier to evaluate the first boundary condition above, we can put x = kr, and
Rkl = kΦ. Thus the redefined radial SE in written

− 1
2m

1
r2

d
dr

(
r2 d

drkΦ
)

+
(
α

r
e−mφr − k2

2m

)
kΦ = 0. (4.47)

In order to write the SE in terms of DM particle massmχ, the reduced massm = m2
χ/2mχ = mχ/2

is used to define the relative velocity by vrel = k/mχ, a = α/2vrel and b = mφ/mχvrel. This gives
us

Φ′′ + 2
x

Φ′ +
(

1 + 2a
x
e−bx

)
Φ = 0. (4.48)

Note that with the defined x = kr, we have that Rkl = χ/r = kχ/x = Φ/x. Using Φ instead of
χ provides us with the easier boundary conditions [62]

Φ(0) = 1, and Φ′(0) = −a. (4.49)

Together with the usual asymptotic behaviour

xΦ(x) → Csin(x+ δ), as x → ∞, (4.50)

the amplitude C can be determined by

C2 = lim
x→∞

[
x2Φ(x)2 +

(
x− π/2

)2 Φ
(
x− π/2

)2]
. (4.51)

Thus, the Sommerfeld enhancement for a Yukawa potential is given by

S = 1
C2 = 1

limx→∞
[
x2Φ(x)2 +

(
x− π/2

)2 Φ
(
x− π/2

)2] . (4.52)

Concrete values of this factor are obtained by solving the SE (4.48) numerically, since it cannot
be done analytically, using the boundary conditions in eq. (4.49). In the x → ∞ limit, the
constant C2 will stabilize at a value, which naturally depends on the parameter choice of a and
b. This is shown in section 8.1, where the solution Φ(x) to eq. (4.49) and the corresponding
Sommerfeld enhancement are computed numerically.

20



Chapter 5

Velocity distribution
Having evaluated the Sommerfeld enhanced cross section term in (3.11), we now turn our at-
tention to the relative velocity distribution term, Pr,rel(vrel). The relative velocity distribution
is a probability distribution for the relative velocity vrel ≡ v1 − v2 of two DM particles with
velocities v1 and v2 at a position r. To find an expression for this, we must first consider the
motion of individual DM particles.

Considering dark matter in systems in weak gravitational fields, for example dSphs, most of
DM particles will move at non-relativistic speeds v around 10−5c to 10−4c [63], the exception
being the region close to a black hole. Because of this, the annihilating DM particles can be
described by a Newtonian distribution function (DF) f in the so called phase space, which
is a 6-dimensional space w = (r,v), representing a particles 3-dimensional position r and 3-
dimensional momentum v. The DF f(r,v, t) d3r d3v is the probability that a particle has
phase-space coordinates in the range [(r,v), (r + d3r,v + d3v)] at time t. Note that we use
the velocity v instead of momentum p as standard notation, thus redefining the DF so that it
corresponds to the mass density in phase-space. Using the concept of phase-space, the mass
density of DM particles ρχ can be defined as

ρχ ≡
∫

d3vf(r,v). (5.1)

This way the DM particles at position r follow a normalised velocity distribution of the form

Pr(v) = f(r,v)
ρχ(r) . (5.2)

In the CM frame, this expression can be further simplified. In this frame, the pair of DM particles
travels with the centre of mass velocity vcm = v1+v2

2 and relative velocity vrel = v1 − v2. That
is

Pr(v1)Pr(v2) d3v1 d3v2 = Pr(vcm + vrel/2)Pr(vcm − vrel/2) d3vcm d3vrel

≡ Pr,pair(vcm,vrel) d3vcm d3vrel.
(5.3)

From this it is possible to construct the sought-after relative velocity distribution through inte-
gration over vcm, as

Pr,rel(vrel) =
∫
Pr,pair(vcm,vrel) d3vcm. (5.4)

This gives a feasible way of evaluating Pr,rel(vrel) once the DF is determined. In general
this can in itself be a very difficult task, but the complexity is greatly reduced by assuming
that the system is spherically symmetric in both r- and v-space. Luckily, this is a rather good
approximation for a dSph [64].

In order to determine the DF, we begin this chapter by deriving the so-called Eddington’s
formula, which is a generic expression for the DF of an isotropic system. After that, an evaluation
of Pr,rel in an isotropic system will be made. These will, when put together, give an expression for
Pr,rel(vrel) that can be directly calculated once the DM mass density ρ(r) and the gravitational
potential Φ(r) have been determined.
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5.1 Eddington’s formula
Eddington’s formula is a commonly used formula that expresses the DF of a spherical, isotropic
system as a function of the gravitational potential Φ(r) and mass density distribution ρ(r) of
the system. To derive it, we begin by restating that the density of matter in a system can be
expressed as

ρ(r) ≡
∫

d3v f(r,v),

where f(r,v) is the DF of the system. In a spherical, isotropic system this DF is dependent only
on the magnitude of the r and v vectors, making the integral spherically symmetric in both r
and v space, yielding

ρ(r) = 4π
∫

dv v2f(r, v). (5.5)

In an isotropic system with a known gravitational potential Φ(r) it is possible to derive a
unique DF that only depends on the phase-space coordinates through the Hamiltonian [65]

H(r, v) = Φ(r) − v2

2 . (5.6)

It is now convenient to define the relative potential and the relative energy of a particle to be

Ψ(r) ≡ −Φ(r) + Φ0, and E ≡ −H + Φ0 = Ψ(r) − v2

2 , (5.7)

for some constant Φ0. For an isolated system extending to infinity Φ0 is typically set to 0 so
that Ψ(r) = −Φ(r) and f = 0 for E ≤ 0. If the DF can be described as a function of H, then it
can also be described as a function of E , since they differ only by a constant. This means that
(5.5) can be expressed as

ρ = 4π
∫

dv v2f

(
Ψ − v2

2

)
= 4π

∫ Ψ

0
dE f(E)

√
2(Ψ − E). (5.8)

Derivation of both sides with respect to Ψ yields

dρ
dΨ = 4π√

2

∫ Ψ

0

f(E)√
Ψ − E

dE . (5.9)

This expression can be recognised as a so-called Abel integral equation, and by using the Abel
transform [66]

p(x) =
∫ x

0

g(t)√
x− t

dt ⇔ g(t) = 1
π

d
dt

∫ t

0

p(x)√
t− x

dx, (5.10)

one can write the DF as a function of the relative energy E that relates to the density profile.
Thus yielding Eddington’s formula that relates the velocity distribution function f(E) to the
density profile ρ(r) by

f(E) = 1√
8π2

d
dE

∫ E

0

dρ
dΨ

dΨ√
E − Ψ

= 1√
8π2

∫ E

0

d2ρ

dΨ2
dΨ√
E − Ψ

+ 1√
E

(
dρ
dΨ

)
Ψ=0

 . (5.11)

This expression can be rather difficult to evaluate, however, since ρ is rarely given as a function
of Ψ. Noting that the integrand can be rewritten by the chain rule

d2ρ

dΨ2 =
(

dΨ
dr

)−2 d2ρ

dr2 + d2r

dΨ2
dρ
dr
, (5.12)
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and the differentiation rule for inverse functions

d2r

dΨ2 = −dΨ2

dr2

(
dΨ
dr

)−3

, (5.13)

which combines into

d2ρ

dΨ2 =
(

dΨ
dr

)−2
d2ρ

dr2 −
(

dΨ
dr

)−1 d2Ψ
dr2

dρ
dr

 , (5.14)

it is desirable to perform a change of integration variable according to dΨ = dΨ
dr dr. This gives

a more readily calculable version of the Eddington formula as

f(E) = 1√
8π2

∫ ∞

Ψ−1(E)

dr√
E − Ψ(r)

dρ
dr

d2Ψ
dr2

(
dΨ
dr

)−2

− d2ρ

dr2

(
dΨ
dr

)−1
 . (5.15)

From this, the DF f(r, v) can be calculated for a given r and v by

f(r, v) = f

(
Ψ(r) − v2

2

)
= f(E). (5.16)

5.2 Relative velocity distribution of an isotropic system
Before attacking the relative velocity distribution, which is our main interest, we take a look
at the absolute velocity distribution given by (5.2). In a system that is isotropic in r and v,
f(r,v) and ρ(r) are only dependent on the magnitudes r and v of r and v. It is thus possible
to integrate over angles in both r- and v-space, giving an absolute velocity distribution

Pr(v) = (4π)2r2v2f(r, v)
4πr2ρ(r) = 4πv2 f(r, v)

ρ(r) . (5.17)

Turning our attention to the distribution Pr,pair defined by (5.3), we note that this is a
function of Pr(v), with v = vcm ± vrel/2. The spherical symmetry means that we are free to
define the z-axis in v-space to be along the direction of vrel, giving in spherical coordinates with
z = cos θ ∣∣∣∣vcm ± vrel

2

∣∣∣∣2 = v2
cm + v2

rel
4 ± vcm · vrel = v2

cm + v2
rel
4 ± vcmvrelz. (5.18)

This turns (5.3) into

Pr,pair(vrel,vcm) d3vcm d3vrel =Pr

(
v2

cm + v2
rel
4 − vcmvrelz

)

×Pr

(
v2

cm + v2
rel
4 + vcmvrelz

)
v2

cm dvcm dz dφcm d3vrel,

(5.19)

where we have expanded d3vcm into d3vcm = v2
cm sin θ dvcm dφ dθ = v2

cm dvcm dφ dz. Inserting
this in (5.4) and integrating over φcm and θcm, results in

Pr,rel(vrel) = 2π
∫ ∞

0
dvcmv

2
cm

∫ 1

−1
dz Pr

(
v2

cm + v2
rel
4 − vcmvrelz

)

×Pr

(
v2

cm + v2
rel
4 + vcmvrelz

)
.

(5.20)
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Noting that the integrand is by construction independent on the direction of vrel, an integration
can be performed over angles in vrel-space, giving a factor of 4πv2

rel. It is also evident that the
integrand is symmetric in z, meaning that the integral over z from −1 to 1 can be taken as two
times the integral over z from 0 to 1, giving

Pr,rel(vrel) = 16π2v2
rel

∫ ∞

0
dvcmv

2
cm

∫ 1

0
dz Pr

(
v2

cm + v2
rel
4 − vcmvrelz

)

×Pr

(
v2

cm + v2
rel
4 + vcmvrelz

)
.

(5.21)

Finally, using the relation Pr = f(r, v)/ρ(r), gives

Pr,rel(vrel) = 16π2v2
rel

ρ2(r)

∫ ∞

0
dvcmv

2
cm

∫ 1

0
dz f

(
r, v2

cm + v2
rel
4 − vcmvrelz

)

×f
(
r, v2

cm + v2
rel
4 + vcmvrelz

)
.

(5.22)

Now, assuming that this f(r, v) correspond to the Eddington formula (5.15), the limits of
integration can be further shortened by looking at the behaviour of f(E). Since we assume
the system to be bound, f(E) = 0 for E < 0, which is the same as stating that f(E) = 0 for
v >

√
2Ψ(r). This means that the integral is only non-zero when one of the conditions

(1) v2
cm + v2

rel
4 + vcmvrelz ≤ 2Ψ(r) ⇒ z ≤ 2Ψ − v2

cm − v2
rel/4

vcmvrel
,

(2) Ψ ≥
(
vcm + vrelz

2

)2
+ v2

rel
4 (1 − z) ≥

(
vcm + vrel

2

)2
⇒ vcm ≤

√
2Ψ − vrel

2 ,

(5.23)

is satisfied. Further noting the integral is zero for

0 > 2Ψ + v2
cm + vrel

4 ⇒ vcm >

√
8π − vrel

2 , (5.24)

the full region of integration for vcm and z can be rewritten, avoiding overlap, as

{
0 ≤ vcm ≤

√
2Ψ − vrel

2 ,
0 ≤ z ≤ 1

}
∪


√

2Ψ − vrel
2 ≤ vcm ≤

√
8Ψ−v2

rel
2 ,

0 ≤ z ≤ 8Ψ−v2
rel−4v2

cm
4vcmvrel

 . (5.25)

In conclusion, in order to evaluate the relative velocity distribution Pr,rel(vrel), the expression
in eq. (5.22) is integrated over the range given in eq. (5.25) above. The one thing missing from
obtaining numbers, is an expression for the DM gravitational potential Φ(r) = −Ψ(r) in a dSph.
The gravitational potential can be obtained from specific DM density distributions, which is the
subject of the next chapter.
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Chapter 6

Density profiles
As mentioned in section 2, galaxies and clusters are thought to have a DM halo that encloses
galactic discs and extends well beyond the edge of visible matter. In this chapter the DM halo
distribution is discussed. The density profiles are needed directly in the expression for the J-
factor in eq. (3.11) as well as to find an expression for the DM gravitational potential, which is
included in the expression for the relative velocity distribution.

The shapes of DM halos need to be simulated or fitted by empirical formulae. For sim-
plicity the shape of the system is assumed to be spherically symmetric, as in previous chap-
ters. Mentioned in section 2, the general flat behaviour of rotation curves indicates a close
to isothermal DM density profile. A non-singular isothermal density profile can be written
ρ(r) = ρ0(1 + (r/r0)2)−1, where ρ0 is the density of the central region in the system and r0 is
a scale radius. However, this model is not a very accurate for most galaxies. A more realistic
and very general density profile is given by the so-called αβγ-profile, or sometimes generalised
Hernquist profile

ρχ(r) = ρ0(
r
r0

)γ(
1 +

(
r
r0

)α)β−γ
α

. (6.1)

Here r is the distance from the centre of the galaxy, and the parameters ρ0 and r0 will be galaxy
specific. The density of stars, ν, in a galaxy also follow a αβγ-profile, but with other scale
parameters ρ? and r?, as well as different values of (α, β, γ).

The density function as a function of r can generally be divided into an inner and outer
slope. This is because matter density tends to be higher, especially for stellar distributions, in
the centre of a galaxy, thus giving rise to a distinct central slope. This inner slope is parametrised
by γ where ρ ∝ r−γ , the outer slope by β where ρ ∝ r−β. The parameter α determines the
sharpness of the transition between the two slopes.

For the DM density profile it is common to use the parameter choice of (α, β, γ) = (1, 3, 1) or
(1, 3, 0), which is known as a cusped and cored Zhao profile [67], respectively. A cusped profile
refers to a density distribution with a higher bulge around the central regions r = 0, which
corresponds to γ = 1. The cored (γ = 0) profile, which from now on will be referred as cored
Zhao, has a flat behaviour in the same region. The cusped (1, 3, 1) profile is also known as the
NFW-profile mentioned in section 2, which were derived from the CCDM simulations. Even
though a CCDM density profile is known for not matching too well with observations, it is still
somewhat traditional to use it in newer research for comparisons with previous results. This
will, at least partly, also be the case in this report in order to compare our outcome with that
of [59].

The star profiles are usually taken to be (α, β, γ) = (2, 5, 0), (2, 5, 0.1) or (2, 5, 1). The
obtained profiles are called Plummer [68] (P), Plummer-like (PL), or non-Plummer (NP), re-
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6. Density profiles

spectively;

ν?,P(r) = ρ?(
1 + ( r

r?
)2
) 5

2
, (6.2)

ν?,PL(r) = ρ?(
r
r?

)0.1 (
1 + ( r

r?
)2
) 4,9

2
, (6.3)

ν?,NP(r) = ρ?(
r
r?

) (
1 + ( r

r?
)2
)2 . (6.4)

As in the case of the NFW-profile of DM, the Plummer profile is the most frequently used
one in literature. In order to compare our results with other published sources, the Plummer
star density profile will be used in this thesis as well. With the density profiles defined, the
gravitational potential is now ready to be approached.

6.1 Gravitational potential in a spherical system
Adopting a general discussion, the gravitational potential Φ(r) can be derived for a given ρ(r)
using Gauss’ gravitational law [4]∫

∂V
dS · ∇Φ(r) = 4πG

∫
V

dV ρ(r), (6.5)

where ∂V is the surface of a volume V and G is the gravitational constant. For a system with
spherical symmetry it applies that ∇Φ(r) = ∂rΦ(r)r̂. Taking V to be a sphere of radius r
centred at r′ = 0 then results in dS = r2 sin θ dθ dφ r̂ and dV = r′2 sin θ dr dθ dφ, giving

r2∂rΦ(r)
∫ 2π

0
dφ
∫ π

0
dθ sin θ = 4πG

∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ r

0
dr′ r′2ρ(r′). (6.6)

Integration over the angles then gives us

r2∂rΦ(r) = 4πG
∫ r

0
dr′ r′2ρ(r′). (6.7)

The mass M enclosed by the sphere is given by

M = 4π
∫ r

0
dr′ r′2ρ(r′), (6.8)

which results in that
∂rΦ(r) = GM

r2 . (6.9)

Since the gravitational force acting on an object in this potential is proportional to the gravita-
tional field g = −∇Φ = −∂rΦr̂, then a particle travelling in a spherically symmetric field only
feels gravitational attraction from the particles at smaller distances from the centre than itself.
From this, it is also evident that the force experienced for such a particle is exactly the same as
it would have been if all of the mass at smaller distances from the centre had been concentrated
in a single point at the origin.

Now consider the gravitational potential of a spherical shell of radius a. According to the
discussion above the potential from the shell needs to be the same as that of a point mass.
Assuming M to be independent of r and integrating (6.9) gives

Φ(r) = −GM

r
, r > a. (6.10)
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6. Density profiles

Accordingly, inside the shell the particle can feel no net force, giving ∂rΦ(r) = 0. Thus the
potential inside the shell must be equal to the potential at the border, giving

Φ(r) = −GM

a
, r < a. (6.11)

The gravitational potential of a generic spherically symmetric system can now be calculated by
summing up the contributions of an infinite series of shells at radii r′ and with masses dM(r′)
giving

Φ(r) = −G
[

1
r

∫ r

0
dM(r′) +

∫ ∞

r

dM(r′)
r′

]
. (6.12)

The mass of a shell at radius r′ can be given in terms of ρ(r′) as M(r′) = 4πr′2ρ(r′), giving a
final expression for the gravitational potential of a spherical system as

Φ(r) = −4πG
[1
r

∫ r

0
dr′ r′2ρ(r′) +

∫ ∞

r
dr′ r′ρ(r′)

]
. (6.13)

6.2 Dark matter gravitational potential of a dwarf spheroidal
galaxy

Having derived an equation for the gravitational potential Φ(r) of a general non-relativistic
spherical system, all that is needed in order to determine Φ(r) for a dSph is to decide upon a
density profile that can be fitted to model the dSph. Since the dSphs are thought to be largely
dominated by DM, one can assume that the DM density distribution is a good model of the
density distribution as a whole. As previously noted, the cored Zhao profile

ρcore(r) = ρ0(
1 + r

r0

)3 , (6.14)

is a cored density profile which has, as previously noted, proven a good fit for the observed density
of dark matter in dSphs. Substituting this ρ(r) in (6.13) gives an expression for the gravitational
potential that can be evaluated analytically with the help of partial fraction expansion, yielding

Φcore(r) = −4πGρ0r
2
0

 log
(
1 + r

r0

)
r/r0

− 1
2
(
1 + r

r0

)
 , (6.15)

for the gravitational potential from a core dSph.
Since many previous calculations have been done using the cuspy NFW DM density profile,

the gravitational potential from an NFW dSph will need to be evaluated as well, in order to
allow for comparison with previous results. The NFW profile, corresponding to an cusped Zhao
profile, is given by

ρcusp(r) = ρ0

r
r0

(
1 + r

r0

)2 . (6.16)

This profile is also spherical, meaning that the gravitational potential can be calculated in the
same manner as the cored Zhao profile by inserting (6.16) in (6.13). The resulting expression
can then be evaluated analytically, giving

Φcusp(r) = −4πGρ0r
2
0

log
(

r
r0

+ 1
)

r/r0
. (6.17)

Thus, the relative velocity distribution for DM can be evaluated by either using a cusped or
cored gravitational potential.
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Chapter 7

Statistical methods
In chapters 3–5 a method of evaluating the J-factor for an isotropic dSph, based on a known DM
density distribution has been developed. In chapter 6 the density profiles used for the analysis
were introduced. Still lacking however, is a way to determine the scale factors in the density
profiles, with corresponding uncertainties, from observational data of the selected dSph.

In this chapter we will take a look at, in order, the observational data used, what our model
predicts for this data, and a statistical model in the form of a likelihood function that can be
used to determine the scale parameters for each galaxy and density profile.

7.1 Astronomical observations

When performing astronomical observations there exists a major constraint on the data that
can be retrieved; namely that we are confined to a comparatively minuscule region of space to
perform the observations from. When looking at distant objects such as the dSph satellites of the
Milky Way we are for all practical purposes confined to a single point in space, meaning that it is
difficult to triangulate the distance from the earth to a star in a distant cluster with an accuracy
that is sufficient to determine their relative positions in space. The angular distance between
stars as seen from earth can, however, be measured to great accuracy. Combining this with a
more rough measurement of the distance to the stars then gives a rather good measurement of
the distances between stars in a cluster, projected to the plane perpendicular to the line of sight.
For our analysis, the distance R from the centre of the dSph to the line of sight will suffice as
observable, since we assume spherical symmetry of the dSph.

The other observable that will be of use is the line of sight velocities vl.o.s. of individual
stars. This is measured by matching the spectroscopic fingerprints of common elements with
the spectra from the stars in order to measure the Doppler shift that results from our relative
velocities. Both R and vl.o.s. have been collected for some of the dSph satellites of the Milky
Way in [6–8]. Thus, if a connection can be made between the R and vl.o.s. of the stars in a dSph
and the DM density distribution, a statistical fit of the DM density parameters can be made.
From this, it is rather straightforward to calculate both J and Js.

7.2 Line of sight velocity dispersion

Having noted that the line of sight velocity of individual stars in a dSph makes for a good
observable, we now seek a relation between that and our DM density distribution. To simplify
our analysis we want to assume spherical symmetry and that there is no net rotation of the
system. These assumptions make it impossible to predict the motions of individual stars relative
to the motion of the galaxy centre of mass. What can be predicted, though, is the deviations
from the mean l.o.s. velocity, or the line of sight velocity dispersion σ2

l.o.s. = v2
l.o.s. − vl.o.s.

2 for a
population of stars, based on the density distribution ρ(r) and the luminosity distribution ν(r)
of the dSph.

We will further assume that the mass content of a dSph is DM dominated enough that the
baryonic matter can be safely ignored in the density distribution, such that ρ(r) = ρχ(r), where
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7. Statistical methods

ρχ(r) is the DM density. Finally, all stars are taken to have equal luminosity so that ν(r) is
equivalent to a star number density.

The radius r in above expressions is the distance from centre of the dSph. As previously
noted, this is not an entity that is easily observed. Accurate measurements can however be
made of the projected distance R on the plane perpendicular to the l.o.s. from the centre of the
dSph. The relation between these entities, assuming that the observer is positioned at infinite
distance, can be seen in figure 7.1.

R

z =
√
r2 −R2

r

α

vθ vr

A

Figure 7.1: An observer located at A studies some properties of the galaxy at the galactic
radius r. The observables are along the line of sight distance R from the centre. vθ and vr are
the velocity components at radius r of the galaxy. In the figure only the positive z is shown.

As will be clear in a moment, one can derive an expression for the l.o.s. star velocity dispersion
σ2

l.o.s.(r) at a given point r in the dSph from the DM density distribution ρχ(r). However, when
doing observations one must also take into account that the position of an observed star along
the line of sight is unknown, meaning that a relation between the l.o.s. star velocity dispersion
at a single point σ2

l.o.s.(r) and the velocity dispersion along the l.o.s., σ2
l.o.s.(R) is needed. This

can readily be constructed by integrating along the l.o.s. at a given R, σ2(r) multiplied by the
probability that a star found along the l.o.s. is at a distance r from the centre of the dSph. This
probability is easily found from the luminosity density to be

P?,R(r) = ν(r)
/∫ ∞

−∞
dsν(r(z,R)) = ν(r)

I(R) , (7.1)

where s is the distance along the line of sight as seen in figure 7.1, and we have introduced I(R)
as the intensity at a projected point R. This immediately gives the l.o.s. velocity dispersion as

σ2
l.o.s.(R) =

∫ ∞

−∞
P?,R(r)σ2

l.o.s.(r) ds = 1
I(R)

∫ ∞

−∞
dzν(r)σ2

l.o.s.(r). (7.2)

There are now two integrals over z of a function of r in the expression. From the relation
z = ±

√
r2 −R2 one can derive the identity

dz = ± r dr√
r2 −R2

, (7.3)

which allows for a change of integration variable to r. Because of the spherical symmetry both
integrals are symmetric around z = 0, meaning that they can be taken as twice their value on
z ∈ [0,∞). This gives

I(R) = 2
∫ ∞

R

dr rν(r)√
r2 −R2

(7.4)

for the intensity and

σ2
l.o.s.(R) = 2

I(R)

∫ ∞

R

dr rν(r)σ2
l.o.s.(r)√

r2 −R2
(7.5)
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for the l.o.s. velocity dispersion.
Remaining is now to evaluate σ2

l.o.s.(r) itself. Assuming no net rotation of the dSph gives that
the mean l.o.s. velocity of stars at a given R is everywhere equal to the mean l.o.s. velocity of the
dSph itself. Thus, the analysis can be simplified by setting vl.o.s. = 0, giving σ2

l.o.s.(r) = v2
l.o.s.(r).

Again, noting from figure 7.1 that vl.o.s. = vr cosα− vθ sinα gives us

σ2
l.o.s.(r) = v2

l.o.s.(r) = (vr cosα− vθ sinα)2

= v2
r cos2 α+ v2

θ sin2 α =
(

1 − β
R2

r2

)
v2

r ,
(7.6)

where the third step follows from vrvθ = 0, which is a result of spherical symmetry. In the last
step, the anisotropy parameter

β ≡ 1 −
v2

θ

v2
r

(7.7)

has been introduced. Insertion in (7.8) then yields

σ2
l.o.s.(R) = 2

I(R)

∫ ∞

R

(
1 − β

R2

r2

)
rv2

rν(r)√
r2 −R2

dr. (7.8)

The final piece is now the evaluation of v2
r . An expression for v2

rν can be derived through
modelling the motion of stars in the dSph as a collisionless Newtonian system. This model is
studied in detail in appendix C and leads to a series of equations of motion called the Jeans
equations. The equation for motion in the radial direction of a spherical system is given in
(C.24), and becomes with ρ = ν,

1
ν

d(νv2
r )

dr + 2βv
2
r

r
= −GM(r)

r2 , (7.9)

where G is the gravitational constant and M(r) = 4π
∫ r

0 dr′ r′2ρχ(r′) is the total mass enclosed
within a radius r.

Since we are only interested in isotropic systems, we now set the anisotropy parameter β to
0 and integrate, giving

νv2
r = −

∫
drνGM(r)

r2 . (7.10)

Using the fundamental theorem of calculus this can turned into a definite integral by

∫ ∞

r
dsνGM(s)

s2 =
∫
νGM(s)

s2 ds

∣∣∣∣∣∣
s=∞

−
∫
νGM(s)

s2 ds

∣∣∣∣∣∣
s=r

= −
∫
νGM(r)

r2 dr. (7.11)

From this, (7.8) with β = 0 can be written as

σ2
l.o.s.(R) = 2

I(R)

∫ ∞

R
dr r√

r2 −R2

∫ ∞

r
dsν(s)GM(s)

s2 . (7.12)

This is an equation where, once the density profiles ρχ(r) and ν(r) have been chosen, all con-
stituent parts are known and a calculation can be readily performed. As discussed in chapter
6, we will in this thesis assume a Plummer density profile for ν(r) and will consider both an
NFW and and a cored (1, 3, 0) profile separately for ρχ(r). The Plummer profile is given by
ν(r) = ρ?[1 + (r/r?)2]−5/2, and looking at (7.12) it is apparent that the ρ? can be taken outside
the integral of both the main integral and of I(R), rendering σ2

l.o.s.(R) independent of ρ?. The r?

30



7. Statistical methods

of the Plummer profile and the r0 and ρ0 that are part of both DM profiles are still contributing
to the velocity dispersion, however. In the case of the DM parameters this is a good thing, since
it is necessary in order to be able to determine the DM density profile from velocity data in this
manner, but the r? is not of interest more than as a reality check and will thus be treated as a
so-called nuisance parameter in the likelihood analysis.

7.3 Maximum likelihood estimation of parameters

A likelihood-based analysis is used to determine the parameters of the DM and luminosity
distributions that give the best correspondence between theory and observation. Until this
point, when discussing the DM density distribution, it has been in terms of the parameters ρ0
and r0. This choice of parameters space proves to be unwieldy when performing a likelihood
fitting; the physical constraints of ρ0 in particular are largely unknown and there is almost a
degeneracy between ρ0 and r0 where an increase in one can be counteracted by a decrease in the
other, giving almost no net change to the system. Instead, ρ0 can be replaced by the parameter
v0 = r0

√
Gρ0, which is just the escape velocity from the centre of a dSph divided by a constant.

This v0 is much more constrained and removes the degeneracy to a large extent. Thus, the
likelihood fitting will be made in terms of parameters r0, v0 and r?.

Although the reality is more complex, for this purpose we are going to assume the probability
density for star velocities along a line of sight to be normally distributed, giving the line of sight
velocity of each of the N stars of a dSph a probability density of the form

fi(vi, Ri) = 1√
2πσ2

i (Ri)
exp

[
−(vi − ui)2

2σ2
i

]
, (7.13)

where vi is the l.o.s. velocity, Ri the perpendicular distance from the l.o.s. of the star to the
centre of the dSph, ui is the expected velocity and σ2

i is the velocity variance for star i. The
variance σ2

i can be assumed to be the squared sum of a measurement error εi and the velocity
dispersion σ2

l.o.s.(Ri) calculated in the previous section; σ2
i (Ri) = ε2i + σ2

l.o.s.(Ri). The assumed
ergodicity also makes all ui approximately equal to the mean velocity of the stars, u. We can now
construct a joint distribution function for all N stars through multiplication of the individual
distributions yielding, with xi = (vi, Ri, εi),

f(x1,x2, ...xN ) =
N∏

i=1
fi(xi) =

N∏
i=1

1√
2πσ2

i (Ri, εi)
exp

[
− (vi − u)2

2σ2
i (Ri, εi)

]
. (7.14)

Having determined a set of xi for stars in the dSph this distribution can be regarded as
a function of σ2

l.o.s., or rather, the parameters v0, r0, r?, in which case we have constructed a
likelihood function

L(v0, r0, r?|X) ≡ f(x1,x2, ...xN |v0, r0, r?), (7.15)

where X = (x1,x2, ...,xN ) is a matrix of velocity and position data for a dSph. Since the X
here correspond to measured values of stars in a dSph, the true joint density function will have
a maximum near these values, given that the sample is large enough. We can thus retrieve the
most probable values of the parameters by maximising L. Because this L involves a product
of many individual distributions, it is convenient to instead maximise the value of L = logL,
which becomes

L(v0, r0, r?|X) = 1
2

N∑
i=1

[
− log 2πσ2

i − (vi − u)2

σ2
i

]
. (7.16)
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The only parameters of interest for the calculation of the J-factor is the DM-related v0 and
r0, leaving r? as a so-called nuisance parameter. When performing the fit, a grid of possible
values for v0 and r0 will be made. For each point in this grid, L(v0, r0|r?, X) is maximised over
the nuisance parameter r?. The values where L is at its peak will then be taken as the maximum
likelihood estimate (MLE) for the parameters v0, r0.

In order to retrieve the uncertainty in the MLE the so-called test statistic TS can be used,
which is defined as

TS = −1
2(L − LMLE), (7.17)

where LMLE is the value of L at the MLE, follows [69] a χ2
n distribution for a likelihood function

with n parameters. This means that, to get a 100α % confidence region of the parameters of L
one must first solve the equation

α =
∫ ∆χ

0
χ2

n(x) dx (7.18)

for ∆χ. The TS then follows
P (TS < ∆χ) = α. (7.19)

From this it is simple to construct confidence regions for the parameters v0, r0 for each dSph,
in which case n = 2. In order to obtain confidence intervals for the J factors themselves,
these will be calculated for each point in (r0, v0)-space, along with the corresponding likelihood.
The resulting points will then be binned according to their J value, or rather, according to their
J = log10J . For each bin, the point with maximum L is selected. The resulting points then form
a binned likelihood function L(J ), whose TS, defined as above, then follow a χ2

1 distribution.
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Chapter 8

Validation of numerical
implementation
Preparatory to the numerical results, the validity of some included parts in the J-factor expres-
sion are checked separately with reference literature. The parts are the Sommerfeld enhance-
ment factor, the relative velocity distribution, and some ’classical’ J-factors without Sommerfeld
enhancement. Established results of these evaluated components are found in literature, and
provides good verification for our final results presented in the next chapter. The code corre-
sponding to each part of the calculations can be found in appendix E.

8.1 Sommerfeld enhancement

The wave function and the Sommerfeld enhancement factor for the Yukawa potential are com-
puted by solving (4.48), with the boundary conditions in (4.49), numerically. As to avoid the
singularity at x = 0 in the differential equation, the boundary condition is shifted a small amount
from zero for the numerical calculation. For the Sommerfeld enhancement calculation we use the
Arkani-Hamed et. al. parameter profile with coupling constant α = 0.01 and exchange particle
mass mφ = 1 GeV/c2 [55]. However, another popular parameter profile is that of Lattanzi-Silk
[70], with α = 1/30 and mφ = 90 GeV/c2. As to provide additional validation both of these
profiles are used in this section. The solution of the Schrödinger equation for the Yukawa po-
tential using the Arkani-Hamed parameters with mχ = 650 GeV/c2 (also suggested by [55]) and
velocity v = 10−4c can be seen in fig. 8.1 as well as the C2 factor computed over the same range.
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Figure 8.1: Numerical computation of the wave function for the Yukawa potential using the
Arkani-Hamed parameters α = 0.01, mφ = 1 GeV/c2, with a DM particle mass of mχ = 650
GeV/c2 and a relative velocity of vrel = 10−4c. The left graph shows the radial wave function
while the right one the C2 value. It can be seen that C2 is about constant with a value of
C2 = 0.96083 ± 0.00004 in the entire range.
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(a) Sommerfeld factor S, using the Arkani-
Hamed parameters, as a function of DM par-
ticle masses mχ given a set of relative veloc-
ities.
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Figure 8.2: Sommerfeld enhancement factor varied over DM particle masses mχ and their
relative velocities vrel with Arkani-Hamed parameters α = 0.01, mφ = 1 GeV/c2. In (a) the
enhancement factor for mχ = 650 GeV/c2 is close to a resonance peak and hence is significantly
higher than the other three displayed masses at low relative velocities. In (b) it is clear that the
enhancement factor gets larger with lower relative velocities of the DM particles.
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(a) Sommerfeld factor S, using the Lattanzi-
Silk parameters, as a function of DM particle
masses mχ given a set of relative velocities.
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Figure 8.3: Sommerfeld enhancement factor varied over DM particle masses mχ and their
relative velocities vrel with Lattanzi-Silk parameters α = 0.03, mφ = 90 GeV/c2. In (a) the
enhancement factor is shown to have clear resonance behaviour depending on DM mass mχ. In
(b) it is clear that the enhancement factor gets larger with lower relative velocities of the DM
particles, although with a different dependence than with Arkani-Hamed parameters. Note that
S with mχ = 4.5 TeV/c2 is large because of a resonance peak at that mass.

Regarding the BC at long distances, since the C2 factor is about constant as seen in the figure,
it is not necessary to let x → ∞ to compute the Sommerfeld enhancement factor. Instead r = 30
is determined to be large enough, as to compute the Sommerfeld enhancement factor with a large
margin, and is hence chosen in future computations.

The enhancement factor as a function of the mass of the DM particle, using the Arkani-
Hamed parameters, can be seen in fig. 8.2a for four different relative velocities. From the figure
it can be seen that enhancement factor have clear resonance peak at a specific mass regardless
of the relative velocity. The enhancement factor, using the Arkani-Hamed parameters, is also
plotted as a function of the relative velocity of the colliding DM particles, which is illustrated in
fig. 8.2b for four different mχ. As seen in the figure the enhancement factor is larger for small
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relative velocities. Both fig. 8.2a and fig. 8.2b are identical to those found in literature [63],
thus validating the implementation.

Instead using the Lattanzi-Silk parameters, fig. 8.3a shows the Sommerfeld enhancement as
a function of mass of the DM particle for four different relative velocities. From the figure it
can be seen that enhancement factor have clear resonance peaks at certain masses regardless of
the relative velocity. In fig. 8.3b the Sommerfeld enhancement is shown as a function of relative
velocity for four different masses of the DM particle. As seen in the figure the enhancement
factor is larger for small relative velocities. Both fig. 8.3a and fig. 8.3b agree with results found
in literature [63, 71] further validating the implementation.

8.2 Relative velocity distribution
The calculations of the relative velocity distribution in can be significantly simplified using the
dimensionless quantities x = r/r0, ṽ = v/v0 for lengths and velocities respectively. Here, r0 is
the length scale parameter of the density profile and v0 = r0

√
ρ0G, where ρ0 is the density scale

parameter of the density profile and G is the gravitational constant. A detailed derivation of
the results of applying these length and velocity scales is found in appendix B and gives

Pr,rel(vrel) = 2 v2
rel

π2 v3
0 ρ̃

2(x)

∫ ∞

0
dṽcmṽ

2
cm

∫ 1

0
dz f̃

(
x, ṽ2

cm + ṽ2
rel
4 − ṽcmṽrelz

)

×f̃
(
x, ṽ2

cm + ṽ2
rel
4 + ṽcmṽrelz

)
,

where ρ̃(x) and f̃(Ẽ) denotes the dimensionless counterparts of ρ(r) and f(E). The phase-space
density f(E) is calculated through Eddington’s formula eq. (5.15), which in its dimensionless
form becomes

f̃(Ẽ) =
∫ ∞

Ψ̃−1(Ẽ)

dx√
Ẽ − Ψ̃(x)

dρ̃
dx

d2Ψ̃
dx2

(
dΨ̃
dx

)−2

− d2ρ̃

dx2

(
dΨ̃
dx

)−1
 ,

and is shown in figure 8.4a for a cuspy NFW and a cored (1, 3, 0) Zhao density profile respectively.
This result corresponds well to the results in [58] where a variation of the same function was
calculated.

The relative velocity dispersion Pr,rel(vrel) for a generic NFW dSph and its cored equivalent
(α, β, γ) = (1, 3, 0) dSph, with ρ0 = 1.3 × 108 M�kpc−3 is shown at three different radii in fig.
8.4b and 8.4c. The calculated distributions agree with the results of similar calculations in [58].
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Figure 8.4: Shown in the (a) is a numerical calculation of the dimensionless phase-space density
f̃(Ẽ) from the dimensionless Eddington formula, assuming a cuspy NFW (solid line) and a cored
Zhao (1, 3, 0) density profile (dashed line) respectively. Note the divergence for both profiles at
the maximum value, corresponding to Ẽ = Ψ̃(0). The relative velocity distribution Prel(vrel) is
shown in (b) and (c) at different radii for a generic dSph with an NFW and a cored Zhao DM
density profile respectively, with parameters ρ0 = 1.3 × 108 M�kpc−3 and r0 = 0.62.

8.3 Maximisation of likelihood function and calculation of J-
factors

The likelihood function was calculated for 20 dSphs according to eq. (7.15) over a large range of
parameters r0, v0. In order to compare with literature, the mass M300 enclosed within 300 pc of
the dSph centre and the classical J-factor without Sommerfeld enhancement have been calculated
for the MLE point. These values are shown for an NFW and a cored Zhao DM density profile
respectively, together with data from previous studies in table 8.1. Both evaluations use the
Plummer profile for the luminosity density ν(r). Evident from the table is that our MLE:s have
a good correspondence to previous results in M300 and largely agrees with previous calculations
of J , although maybe less so than expected.

The 1σ, 2σ, 3σ confidence regions of the likelihood function in the r0, v0 parameter space are
shown for three dSphs in fig. 9.2, together with contour lines of the unenhanced J-factor and the
MLE point. The shapes of the contours largely agrees with what was found by [60], indicating
that the likelihood function is largely credible despite the disagreements mentioned above.
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Figure 8.5: The likelihood function for different dSphs using the NFW DM density profile and
a Plummer profile for the surface brightness. The minimum is marked by a dot and the coloured
regions corresponds to deviations 1σ, 2σ and 3σ respectively. The dashed lines corresponds to
constant J factors.

Table 8.1: Shown are central masses M = log10M300 in log10M� and J-factors J = log10 J
without Sommerfeld enhancement in log10(GeV2cm−5) for 20 dSphs. The central masses in
column one are obtained from previous studies [6–8] of dSph kinematics while the second column
contain J-factors with 1σ error levels as calculated by [59] using an NFW profile. The middle
two columns contain M as calculated from the MLE obtained in this study using an NFW
profile and the connected J-factor with 1σ error levels. The last two columns show the same for
a cored Zhao profile. Note that the MLE central masses all come within the expected range.
Notable is also that 15 of the NFW MLE J-factors of this study have 1σ confidence regions that
overlap the 1σ region given by [59]. Five of them have not, but only Fornax and Sextans differ
by an order of magnitude or more.

Previous results NFW MLE Cored Zhao MLE
Dwarf M J NFW M J NFW M J core

Bootes I 6.0–8.0 16.82+0.55
−0.74 6.76 17.92+0.62

−0.75 7.09 19.34+0.44
−2.07

Leo IV 6.0–8.0 16.73+1.15
−0.60 6.43 16.90+0.89

−0.94 6.52 16.58+1.64
−0.73

Leo T 6.0–8.0 16.93+1.34
−0.76 7.23 17.44+0.49

−0.90 7.23 17.45+0.48
−0.96

Bootes II 6.0–8.0 18.64+0.75
−0.47 6.74 18.81+1.39

−1.03 6.63 18.82+1.44
−1.10

Ursa Major II 6.0–8.0 19.26+0.41
−0.38 7.52 19.84+0.33

−0.35 7.73 20.29+0.52
−0.81

Canes Venatici II 6.0–8.0 17.83+0.36
−0.63 7.26 18.47+0.34

−0.68 7.24 18.53+0.38
−0.79

Hercules 6.0–8.0 17.33+0.35
−0.66 7.08 18.12+0.28

−0.35 7.08 18.00+0.34
−0.29

Ursa Major I 6.0–8.0 18.03+0.34
−0.24 6.89 18.24+0.97

−0.67 6.93 17.84+0.75
−0.35

Willman 1 6.0–8.0 19.86+0.36
−0.74 7.47 19.64+0.45

−0.58 7.32 19.40+1.23
−0.45

Coma Berenices 6.0–8.0 19.05+0.28
−0.49 7.39 19.39+0.36

−0.45 7.64 19.89+0.82
−0.87

Segue 1 6.0–8.0 19.42+0.26
−0.39 6.55 19.26+0.57

−0.46 6.83 19.10+0.47
−0.30

Ursa Minor 6.0–8.0 18.64+0.08
−0.22 7.42 19.62+0.04

−0.25 7.41 19.47+0.22
−1.07

Canes Venatici I 6.0–8.0 17.33+0.16
−0.32 7.31 18.01+0.25

−0.29 7.31 17.87+0.22
−0.99

Leo I 6.0–8.0 17.73+0.17
−0.08 7.03 17.66+0.27

−0.13 7.03 17.53+0.22
−0.10

Draco 6.7–7.5 18.79+0.09
−0.16 7.19 18.74+0.26

−0.28 7.01 18.58+0.24
−0.15

Sextans 6.0–8.0 17.76+0.08
−0.06 7.25 18.74+0.20

−0.20 7.23 18.52+0.20
−0.30

Carina 6.5–7.5 17.91+0.08
−0.05 6.69 17.68+0.87

−0.06 6.69 17.68+0.44
−0.07

Sculptor 6.5–7.4 18.70+0.03
−0.04 7.40 18.91+0.12

−0.13 7.33 18.68+0.15
−0.21

Sagittarius 6.0–8.0 19.77+0.08
−0.07 7.64 20.22+0.14

−0.12 7.47 19.78+0.16
−0.17

Fornax 6.6–7.4 18.04+0.03
−0.04 7.60 18.96+0.10

−0.14 7.56 18.69+0.14
−0.22
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Chapter 9
Numerical results
The calculated Sommerfeld enhanced JS-factors and unenhanced J-factors of 20 different dSphs
are presented in table 9.1, with the notation JS = log10(JS) and JS in units of GeV2cm−5.
In all calculations the used particle physics parameters are the ones of Arkani-Hamed et al.,
i.e. α = 0.01 and mφ = 1 GeV/c2, with the DM particle mass set to the suggested value
of mχ = 650 GeV/c2. The evaluations make use of the NFW and cored Zhao DM density
profiles. Notably, the Sommerfeld enhanced JS-factors are often four orders of magnitude larger
than their unenhanced counterparts while the JS(v∗)-factors are about one to two orders of
magnitude greater than the JS(v∗)-factors.

Earlier research [72] have approximated the JS factors by simply multiplying J with the
Sommerfeld enhancement factor at typical speeds. In order to evaluate the impact of including
the Sommerfeld enhancement factor explicitly, as opposed to using a constant reference value,
we present results with this approximation denoted JS(v∗) = log10(S(v∗)J) as well. The values
of JS(v∗) are found in table 9.1. For this calculation the typical relative velocity of v∗ = 10−5c is
used. As seen in the table there is a clear difference in magnitude of the JS and JS(v∗) values for
both the NFW and cored Zhao profiles, although this may be an artifact of the specific chosen
DM mass. In the table it is also clear that the uncertainty in the JS and JS(v∗) values tend to
decrease for galaxies with a larger number of stars in the data set, for both the NFW and cored
Zhao profile, as expected of a statistical method.

Focusing on one of the larger dSphs, the Sculptur galaxy, the modified mass ratio εφ =
mφ/(αmχ)’s impact on JS and JS(v∗) are studied in more detail. Fig. 9.1 displays a comparison
between the JS- and JS(v∗)-factors over a range of εφ from 10−3 to 100. As seen in the figure,
the main difference between the values of JS and JS(v∗) for both NFW and cored Zhao, is an
increase in the amplitude of the oscillations for the JS-factor. However, the main difference
between the NFW and cored Zhao profiles is a vertical shift while the overall shape and the
behaviour of the oscillations are close to identical. It should be noted that the oscillations found
in JS and JS(v∗) imply that a different choice of DM mass in the calculations presented in table
9.1 may significantly change the presented JS and JS(v∗).

The likelihood function with confidence levels around the minimum in the r0, v0 parameter
space for the dwarf Sculptor, using cuspy and cored density profiles, can be seen in fig. 9.2. The
figure also show the binned likelihood − log

(
L/Lmax

)
over J and JS with confidence intervals.

From the figure it can be seen that Sculptor have a closed 1σ curve, in the r0, v0 plane, which is
a desirable property for the analysis. The likelihood over the J - and JS-factors have, as seen in
the figure, a closed 1σ levels over a small interval. The Sculptor dwarf is a pleasant example of
our likelihood analysis for all 20 dSphs. Plots of the other 19 dSphs can be found in appendix
D.
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9. Numerical results

Table 9.1: Computed J , JS , and JS(v∗) factors for each of the considered dSph for both the
NFW and the cored Zhao profiles. The calculations of the Sommerfeld enhanced J-factors make
use of the Arkani-Hamed parameters α = 0.01 and mφ = 1 GeV/c2 with mχ = 650 GeV/c2.
A typical relative velocity of v∗ = 10−5c is used for the JS(v∗) factor calculations. N is the
number of stars in the data set. As seen the uncertainty the computed factors tend to decrease
with increasing N as is expected with a statistical method. There is also a clear difference in
magnitude between the different flavours of J-factors for both the NFW and the cored Zhao
profile. Specifically, JS is often four orders of magnitude larger than the original J , while JS(v∗)
seem to give an overestimation compared to JS of one to two orders of magnitude for most
galaxies. As shown here, JS and JS(v∗) are in units of log10 GeV2cm−5.

NFW Cored Zhao
Dwarf N J JS(v∗) JS J JS(v∗) JS

Bootes I 14 17.92+0.62
−0.75 22.65 21.79+0.49

−0.36 19.34+0.44
−2.07 24.07 21.86+0.42

−0.48
Leo IV 17 16.90+0.89

−0.94 21.63 21.31+0.65
−0.85 16.58+1.64

−0.73 21.31 20.87+0.55
−0.56

Leo T 19 17.44+0.49
−0.90 22.17 21.37+0.34

−0.85 17.45+0.48
−0.96 22.18 21.27+0.29

−0.82
Bootes II 20 18.81+1.39

−1.03 23.54 23.05+1.16
−1.07 18.82+1.44

−1.10 23.55 23.01+0.90
−0.89

Ursa Major II 20 19.84+0.33
−0.35 24.57 23.22+0.61

−0.31 20.29+0.52
−0.81 25.02 23.10+0.47

−0.47
Canes Venatici II 25 18.47+0.34

−0.68 23.20 21.74+0.28
−0.30 18.53+0.38

−0.79 23.26 21.73+0.38
−0.42

Hercules 30 18.12+0.28
−0.35 22.85 22.16+0.30

−0.32 18.00+0.34
−0.29 22.73 21.94+0.27

−0.24
Ursa Major I 39 18.24+0.97

−0.67 22.97 22.40+0.63
−0.84 17.84+0.75

−0.35 22.57 21.88+0.47
−0.41

Willman 1 45 19.64+0.45
−0.58 24.37 22.95+0.60

−0.22 19.40+1.23
−0.45 24.13 23.14+0.34

−0.16
Coma Berenices 59 19.39+0.36

−0.45 24.12 22.89+0.27
−0.35 19.89+0.82

−0.87 24.62 23.00+0.17
−0.30

Segue 1 66 19.26+0.57
−0.46 23.99 23.58+0.40

−0.46 19.10+0.47
−0.30 23.83 23.22+0.29

−0.20
Ursa Minor 196 19.62+0.04

−0.25 24.35 23.41+0.00
−0.31 19.47+0.22

−1.07 24.20 23.14+0.19
−1.48

Canes Venatici I 214 18.01+0.25
−0.29 22.74 21.86+0.29

−0.33 17.87+0.22
−0.99 22.60 21.61+0.19

−1.09
Leo I 328 17.66+0.27

−0.13 22.39 21.11+0.45
−0.17 17.53+0.22

−0.10 22.26 21.06+0.29
−0.04

Draco 353 18.74+0.26
−0.28 23.47 22.10+0.51

−0.19 18.58+0.24
−0.15 23.31 21.92+0.38

−0.12
Sextans 424 18.74+0.20

−0.20 23.47 22.64+0.20
−0.20 18.52+0.20

−0.30 23.24 22.31+0.19
−0.30

Carina 758 17.68+0.87
−0.06 22.41 21.46+1.03

−0.08 17.68+0.44
−0.07 22.41 21.47+0.49

−0.05
Sculptor 1352 18.91+0.12

−0.13 23.64 22.63+0.12
−0.15 18.68+0.15

−0.21 23.41 22.28+0.16
−0.24

Sagittarius 1373 20.22+0.14
−0.12 24.95 23.68+0.11

−0.08 19.78+0.16
−0.17 24.51 23.04+0.16

−0.17
Fornax 2409 18.96+0.10

−0.14 23.69 22.59+0.09
−0.13 18.69+0.14

−0.22 23.42 22.19+0.12
−0.19
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9. Numerical results
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Figure 9.1: JS-factors for the Sculptor galaxy over a range of εφ from 10−3 to 100. The
JS factors are compared against JS(v∗) = log10(S(v∗)J) for the typical relative velocity of
v∗ = 10−5c. Fig. (a) uses the NFW density profile while fig. (b) uses the cored Zhao profile. A
clear difference between the calculated JS value and that of JS(v∗), for both the NFW and cored
Zhao density profiles, is the amplitude of the oscillations are greater for JS . Meanwhile the main
difference between the NWF and the cored Zhao profile are in a constant vertical shift while the
overall shape and the behaviour of the oscillations remain largely the same. The calculations
uses α = 0.01 and mφ = 1 GeV/c2 as in the Arkani-Hamed et al. parameter profile [55].
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Figure 9.2: All figures show calculated likelihood functions for the Sculptor dSph. In the left
column a cuspy NFW DM distribution have been used to model the dSph, while in the right
column a cored Zhao profile have been used. Shown in (a) and (b) is the likelihood function in the
r0, v0 parameter space, with the MLE marked with a plus sign. The coloured regions correspond
to evaluated 1σ, 2σ and 3σ confidence levels respectively and the dotted lines correspond to
contours of constant JS . The binned likelihood − log

(
L/LMLE

)
with corresponding standard

deviations is plotted in (c) and (d) for J and in (e) and (f) for JS .
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Chapter 10

Conclusion
In this thesis we have constructed a model for and successfully extracted Sommerfeld enhanced
J-factors for 20 dSphs using theoretical concepts from Newtonian galactic dynamics and non-
relativistic quantum mechanics as well as a frequentist analysis of star velocity data. The
J-factor has been evaluated with a model of DM phase space distributions and gravitational
potentials assuming spherically symmetric systems with isotropic velocity distributions. The
input particle physics parameters in the Sommerfeld enhancement is taken to be that of the
commonly used Arkani-Hamed et al. profile. The likelihood estimation has been performed
assuming a gaussian, radially dependent, velocity dispersion of the dSphs.

The main difference compared to previous research is the inclusion of a velocity-dependent
Sommerfeld enhancement with a suitable velocity distribution. This provides us with higher
precision J-factors in relation to self-interactions than previously calculated, and may have
important implications to indirect DM searches. Previous research has also tended to focus
mostly on the cuspy NFW profile, even though it has generally been proven a bad fit for real
DM distributions in dSphs. However, in order to allow for comparison with previous results,
we chose to perform J-factor calculations with an NFW profile in addition to the more realistic
cored Zhao profile.

In order to enable the inclusion of the Sommerfeld enhancement in the J-factor, a modification
to the statistical method used in [59] was needed. A consequence of including Sommerfeld
enhancement was that it was no longer possible to express the likelihood function directly in
terms of J, since doing so would create a circular dependence. Instead a binned likelihood
function was constructed by first calculating J over a grid in the r0, v0 parameter space. The
points were then divided into bins of equal size over the range of the calculated J-factors, for each
bin selecting only the point with maximum likelihood. The application of the binned likelihood
method was largely successful, although it induced a difficult compromise between grid density
and computing power. This can be seen in some of the binned likelihood plots in appendix D.2,
where the grid has clearly been too sparse to give a continuous likelihood function.

As noted in the results chapter we have shown that the inclusion of the Sommerfeld enhance-
ment into the J-factor boosts the value of the dSph J-factors with up to four orders of magnitude
for the selected DM particle parameters. Our results also indicate a difference of about an order
of magnitude between using a constant reference value of the Sommerfeld enhancement S as
opposed to including S explicitly by letting S depend on the relative velocity. This stresses the
importance of including the Sommerfeld enhancement explicitly.

The Sommerfeld enhancement has been observed to oscillate heavily with the DM mass.
These oscillations make the values of the J-factors very specific to the chosen DM mass. The
overall shape of the JS-factors over the range of the modified mass ratio εφ agrees with that of
[60], providing verification of the results.

As noted in chapter 8, our J-factors had a 1σ overlap with earlier research [59] for 75% of the
galaxies, indicating that our statistical method is valid. Our confidence intervals are, however,
slightly larger than the ones of [59], which might to be a consequence of the modification in the
statistical method required to incorporate Sommerfeld enhancement.

In February this year, a report covering similar topics to the ones discussed in this thesis
appeared on arXiv [60]. This article proved a valuable resource to compare our results with.
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10. Conclusion

However, while the article calculates Sommerfeld enhanced J-factors, there are several important
differences. The primary difference is that an exact Sommerfeld enhancement factor is used in
this thesis, while they use an analytic approximation. Furthermore, a different statistical method
is used, as well as a different set of galaxies, and we use a cored profile in addition to the NFW
one.

Topics for future study would include investigating the larger confidence intervals found
with our modified statistical method in more detail. Another important improvement could
result from a more careful consideration of the used r0, v0 and r? parameter limits, since these
has proven to significantly impact the constructed likelihood and resulting confidence regions
in J considerably. In addition, there is a plethora of directions to explore in relation to the
determination of J-factors. Including, for example, opening up the parameters of the density
profiles as nuisance parameters for the likelihood function, assuming non-spherical or anisotropic
systems, or investigating other DM particle parameters.

Hopefully, this thesis has provided an interesting insight into several aspects of the ongoing
search for DM. This project brought us to the edge of current indirect detection DM research
over the course of a semester, and has been a truly rewarding journey.
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Appendix A

The unenhanced cross section
To complete the analysis on the annihilation cross section σ = σ0S(vrel), the unenhanced cross
section σ0 is determined by using the derived formula for thermal relic abundance (2.2) in
section 1, and matching this with the WMAP-7 inferred result. The 7-year data from WMAP
have estimated the thermal relic abundance of DM to a mean value of Ωχh

2 = 0.1120 ± 0.0056
[18]. Thus eq. (2.2), repeated here for convenience, is equal to

Ωχh
2 ≈ 3 · 10−27 cm3/sec

σ0vrel
= 0.1120 ± 0.0056, (A.1)

which gives us the thermally averaged annihilation rate factor σ0vrel ≈ 3 · 10−26 cm3/sec. The
formula of eq. (A.1) can be derived using the Boltzmanns equation for the DM number density
and some approximations as in [37], which we will review below.

In the thermal equilibrium of the early universe, the number density of DM particles χ is

neq
χ = g

(2π)2

∫
f(ε) dε, (A.2)

where g is the degeneracy, or the number of internal degrees of freedom, of the particle χ and
f(p) is the familiar Fermi-Dirac or Bose-Einstein distribution depending of the particle type.
At high temperatures kBT � mc2, or T � m in natural units ~ = c = kB = 1, then the
number density is proportional to T via neq

χ ∝ T 3. At low temperatures kBT � mc2 then the
number density will be Boltzmann repressed as neq

χ ' g(mχT/2π)3/2e−mχ/T . As mentioned in
section 2, if the expansion of the universe was isothermal, or so slow that thermal equilibrium
was always maintained, the number of DM particles would decrease exponentially, leaving them
extinct today.

During the early thermal equilibrium at high temperatures, DM particles χ annihilated into
lighter baryonic ones b through χχ ↔ bb and vice versa. Shortly after the thermal energy
drops below the rest energy of the particle, or T � m, the number density begins to drop
exponentially. The rate of annihilation Γ = σ0vrelnχ, same as the one used in section 3, drops
below the expansion rate of the universe causing the χ’s to cease to annihilate. When the
annihilation reaction χχ ↔ bb ceases, the DM particles χ are said to fall out of equilibrium,
leaving a cosmological relic abundance that can be measured today. This simple picture can
be modelled by the Boltzmann equation, to describe the time evolution of the number density
nχ(t);

dnχ

dt + 3Hnχ = −σ0vrel
[
(nχ)2 − (neq

χ )2
]
, (A.3)

where H is the Hubble expansion rate. The term 3Hnχ accounts for the expansion of the
universe. No closed-form solution analytic solution exist to eq. (A.3), although there exist a
fairly simple approximation.

The early universe was very radiation dominated, and the Hubble expansion rate falls with
temperature as

H(T ) =
1.66√

g∗T
2

mP I
, (A.4)

II



A. The unenhanced cross section

where g∗ is the effective number of relative degrees of freedom, and mP I ' 1019 GeV is the
Planck mass. At early times when T � mχ then H ∝ T 2, since nχ ∝ T 3, the expansion rate
decreases slower than the annihilation rate. In fact, at very early times, the Hubble expansion
term 3Hnχ is neglieble in eq. (A.3). Although at late times, the right-hand side in eq. (A.3)
becomes neglieble, and the DM number energy becomes constant. Tending to the entropy
changes in the universe at this time, we have that the number density nχ in terms of the
entropy density s = 0.4g∗T

3 is constant, that is, nχ/s will remain constant. Since the entropy
per comoving volume1 does not change with time, then (nχ/s)0 = (nχ/s)f where subscript 0
denotes the present entropy density of the universe and f the corresponding value at freezeout.
The temperature Tf at freezeout is Tf ' mχ/20, which is obtained by solving Γ(Tf ) = H(Tf )
with typical weak scale interaction numbers.

By using eq. (A.4) and the rate freezeout condition Γ = nχσ0vrel = H, we have that(
nχ

s

)
0

=
(
nχ

s

)
f

' 100
mχmP I

√
g∗ · σ0vrel

(A.5)

' 10−8

(mχ/GeV)(σ0vrel/10−27cm3s−1) . (A.6)

Since the current entropy density has a value of s0 = 4000 cm−3 and the critical density ρc =
3H2

0/8πG ' 10−5h2 GeV/cm3, the present mass density in units of the critical density Ωχ =
ρχ/ρc is

Ωh2 ' 3 · 10−27 cm3s−1

σ0vrel
. (A.7)

Taken together with the computed value of Ωh2 = 0.1120±0.0056 from WMAP data, the approx-
imate velocity average annihilation rate factor without Sommerfeld enhancement is 3 · 10−26 cm3/s.
More precise analyses have been made, resulting in maximum cross sections of 5.2 · 10−26 cm3/s
or 2.2 · 10−26 cm3/s, depending on estimated DM particle mass scale [73]. Since the relative
velocity distribution Pr,rel(vrel) is normalized and the annihilation rate factor σ0vrel should be
constant as motivated in late section 3, it must apply that σ0vrel = σ0vrel. Thus, the value of
the terms σvrel is

σvrel = σ0vrelS(vrel) ≈ 3 · 10−26 cm3/s · S(vrel). (A.8)

In section 3 it was also motivated to exclude the constant term of σ0vrel from our defined J-factor
expression (eq. (3.11)) in order to make comparisons with other research which did not include
Sommerfeld enhancement.

1Comoving volume (or distance) is volume (distance) that factors out the expansion of the universe, giving a
volume (distance) that does not change in time due to the expansion of space.
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Appendix B
Dimensionless relative velocity
distribution
Looking at the expression for the relative velocity distribution in eq. (5.22), as well as its
constituent parts – the DF from the Eddington formula (5.15), the density distribution (6.14),
and the gravitational potential (6.15), it seems that a numerical evaluation might be made
simpler if it is done in terms of dimensionless quantities.

From (6.14) and (6.15) it is evident that a very natural way to do so is by setting the length
scale to r0 and the density scale to ρ0 giving the dimensionless entities, in the case of a cored
Zhao density profile

x = r

r0
, and ρ̃(x) = ρ(r0x)

ρ0
= 1

(1 + x)3 . (B.1)

Inserting this in (6.15) then gives a dimensionless gravitational potential

Φ̃(x) = Φ(r0x)
Gρ0r2

0
= −4π

(
log(x+ 1)

x
− 1

2(x+ 1)

)
. (B.2)

Eddingtons formula eq. (5.15) is, however, stated in terms of the relative gravitational
potential Ψ(r) = −Φ(r) + Φ0. Taking Φ0 = 0 gives a dimensionless version of Ψ as

Ψ̃(x) = −Φ̃(x) = 4π
(

log(x+ 1)
x

− 1
2(x+ 1)

)
. (B.3)

It is easily seen that the ρ and Φ of an NFW DM density profile can be rendered dimensionless
in the same manner. For simplicity we now introduce the relative energy scale Ψ0 = Gρ0r

2
0,

giving Ψ(r) = Ψ0Ψ̃(x). The relative energy E = Ψ(r) − v2/2 can now be made dimensionless
through

E = Ψ0Ẽ ⇔ Ẽ = Ψ̃(x) − ṽ2

2 , (B.4)

where we have introduced the dimensionless velocity ṽ = v/v0, with v0 =
√

Ψ0 = r0
√
Gρ0.

The next step is to perform a change of variables from r to x in the Eddington formula, for
which the relations dr = r0 dx, and

d
dr = d

dx
dx
dr = 1

r0

d
dx, (B.5)

will be needed. Breaking down eq. (5.15) by parts gives

dr√
E − Ψ(r)

= r0√
Ψ0

dx√
Ẽ − Ψ̃(x)

(B.6)

dρ
dr

d2Ψ
dr2

(
dΨ
dr

)−2

= ρ0 dρ̃
r0 dx

Ψ0 d2Ψ̃
r2

0 dx2

(
Ψ0 dΨ̃
r0 dx

)−2

= ρ0
r0Ψ0

dρ̃
dx

d2Ψ̃
dx2

(
dΨ̃
dx

)−2

(B.7)
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and
d2ρ

dr2

(
dΨ
dr

)−1

= ρ0 d2ρ̃

r2
0 dx2

(
Ψ0 dΨ̃
r0 dx

)−1

= ρ0
r0Ψ0

d2ρ̃

dx2

(
dΨ̃
dx

)−1

. (B.8)

Noting that

r = Ψ−1(E) ⇔ x = Ψ̃−1(Ẽ), and r → ∞ ⇔ x → ∞, (B.9)

the full Eddington formula turns into

f(E) = ρ0√
8π2Ψ3/2

0

∫ ∞

Ψ̃−1(Ẽ)

dx√
Ẽ − Ψ̃(x)

dρ̃
dx

d2Ψ̃
dx2

(
dΨ̃
dx

)−2

− d2ρ̃

dx2

(
dΨ̃
dx

)−1
 . (B.10)

Taking the integral as f̃(Ẽ) and substituting v0 =
√

Ψ0 gives

f(E) = ρ0√
8π2v3

0
f̃(Ẽ) = f0f̃(Ẽ). (B.11)

Finally, this expression can be inserted in eq. (5.22), giving, with ṽcm = vcm/v0, dvcm = v0 dṽcm
and ṽrel = vrel/v0

Pr,rel(vrel) = 16π2v2
relf

2
0

ρ2(r)

∫ ∞

0
dṽcmv

3
0 ṽ

2
cm

∫ 1

0
dz f̃

(
r

r0
, ṽ2

cm + ṽ2
rel
4 − ṽcmṽrelz

)

×f̃
(
r

r0
, ṽ2

cm + ṽ2
rel
4 + ṽcmṽrelz

)
.

(B.12)

This simplifies to

Pr,rel(vrel) = 2 v2
rel

π2 v3
0 ρ̃

2(x)

∫ ∞

0
dṽcmṽ

2
cm

∫ 1

0
dz f̃

(
x, ṽ2

cm + ṽ2
rel
4 − ṽcmṽrelz

)

×f̃
(
x, ṽ2

cm + ṽ2
rel
4 + ṽcmṽrelz

)
,

(B.13)

giving an expression for the relative velocity distribution in terms of dimensionless entities.
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Appendix C
The Jeans equations
Galaxies are often viewed as a system of particles in six dimensional phase space, where the stars
are seen as particles in a gas. The galaxy is then instantaneously described as a distribution
function f(r,v, t) over the phase space. We can define a 6-dimensional phase space vector,
w = (r, v), and the velocity of the flow in phase space is then ẇ = (ṙ, v̇) = (v,−∇Φ). In the
absence of collisions between stars, and under the assumption that they are neither created nor
destroyed in the system, the flow in phase space must conserve mass.

Consider an ordinary fluid in an arbitrary closed volume V bounded by a surface S. The
mass of the fluid inside of V is

M(t) =
∫

V
ρ(r, t) d3r, and dM

dt =
∫

V

dρ
dt d3r.

The mass flowing out of the volume through an area element d2S per unit time is familiarly
given by ρv d2S, where d2S is an outward pointing vector normal to the surface S. Thus, the
flow rate can be rewritten as

dM
dt = −

∫
S
ρv d2S, or

∫
V

dρ
dt d3r = −

∫
S
ρv d2S.

Using the divergence theorem, we obtain∫
V

(
∂ρ

∂t
+ ∇ · (ρv)

)
d3r = 0.

Since this must be true for all volumes V , we obtain the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0.

Similarly this applies to our six dimensional phase space flow, which is given by

∂f

∂t
+ ∇ · (fẇ) = 0. (C.1)

This is called the Liouville equation or the collisionless Boltzmann equation (CBE). This equa-
tion can be simplified. Starting with writing out the second term,

∇ · (fẇ) =
6∑

i=1

∂(fẇi)
∂wi

= f
3∑

i=1

(
∂vi

∂ri
+ ∂v̇i

∂vi

)
+

3∑
i=1

(
vi
∂f

∂ri
+ v̇i

∂f

∂vi

)
.

Since ri and vi are independent phase space coordinates, it implies that ∂vi/∂ri = 0. The
gradient of a potential does neither depends on velocities, so that ∂v̇i/∂vi = ∂

∂vi
(−∂Φ

∂xi
) = 0. The

CBE can now be rewritten so that
∂f

∂t
+ vi

∂f

∂ri
− ∂Φ
∂ri

∂f

∂vi
= 0.

Now turning to the left term i eq. C.1, since f = f(r,v, t), we have by the chain rule that

df = ∂f

∂t
dt+ ∂f

∂ri
dri + ∂f

∂vi
dvi,
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and thus
df
dt = ∂f

∂t
+ ∂f

∂ri
vi − ∂Φ

∂ri

∂f

∂vi
.

We see that this is the same result as for the right hand side term, and we conclude that the
CBE can be written in the more compact form of

df
dt = 0. (C.2)

The physical interpretation of this equation is that the phase space density f around the phase
point of a given star always remain the same. Although eq. C.2 looks very simple, solving it for
f is effectively impossible, it is more practical to consider moment equations.

We start by considering moment equations related to vl
iv

m
j v

n
k where the indices (i, j, k) refer

to generalised coordinates, and (l,m, n) are integers. By recalling that

ρ =
∫
f d3v, and ρvl

iv
m
j v

n
k =

∫
vl

iv
m
j v

n
k f d3v, (C.3)

the (l +m+ n)th moment equation of the CBE is∫
vl

iv
m
j v

n
k

∂f

∂t
d3v +

∫
vl

iv
m
j v

n
k va

∂f

∂xa
d3v −

∫
vl

iv
m
j v

n
k

∂Φ
∂xa

∂f

∂va
d3v = 0.

Since the integration range does not depend on t the term ∂/∂t can be taken outside the integral.
Neither of the terms ∂/∂xi and ∂Φ/∂xi depend on vi, and they can therefore be moved outside
their corresponding integrals as well, yielding

∂

∂t

∫
vl

iv
m
j v

n
k f d3v + ∂

∂xi

∫
vl

iv
m
j v

n
k vaf d3v − ∂Φ

∂xa

∫
vl

iv
m
j v

n
k

∂f

∂va
d3v = 0.

Using the relations in eq. (C.3) allows us to rewrite the moment equations as

∂

∂t

(
ρvl

iv
m
j v

n
k

)
+ ∂

∂xi

(
ρvl

iv
m
j v

n
k

)
− ∂Φ
∂xa

∫
vl

iv
m
j v

n
k

∂f

∂va
d3v = 0. (C.4)

The 0th moment (l = m = n = 0) can now be easily evaluated, we obtain

∂ρ

∂t
+ ∂ρvi

∂xi
− ∂Φ
∂xi

∫
∂f

∂vi
d3v = 0. (C.5)

Using the divergence theorem, one can write∫
∂f

∂vi
d3v =

∫
f d2S = 0,

where the last equality follows from that f → 0 as |v| → ∞ which is required from that the
phase-space density must go to zero at infinity. Hence, the 0th moment of the CBE reduces to
the continuity equation

∂ρ

∂t
+ ∂(ρvi)

∂xi
= 0, (C.6)

which is identical of that of fluid dynamics.
Next we consider the first-order moment equation where (l,m, n) = (1, 0, 0) or (0, 1, 0) or (0, 0, 1).

In this case eq. (C.4) reduces to
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∫
vj
∂f

∂t
d3v +

∫
vivj

∂f

∂xi
d3v −

∫
vj
∂Φ
∂xi

∂f

∂vi
d3v = 0

⇔ ∂(ρvj)
∂t

+ ∂(ρvivj)
∂xi

− ∂Φ
∂xi

∫
vj
∂f

∂vi
d3v = 0.

(C.7)

Using integration by parts one can write∫
vj
∂f

∂vi
d3v =

∫
∂(vjf)
∂vi

d3v −
∫
∂vj

∂vi
f d3v

=
∫
vjf d2S −

∫
δijf d3v

= −δijρ,

which gives us
∂(ρvj)
∂t

+ ∂(ρvivj)
∂xi

+ ρ
∂Φ
∂xj

= 0. (C.8)

Note that this represent a set of three moment equations for j = (1, 2, 3) and that a summa-
tion over i is implied. The so-called Jeans equations are obtained by subtracting vj times the
continuity equation from the 1sr-order momentum equations:

vj
∂ρ

∂t
+ vj

∂(ρvi)
∂xi

= 0

⇔ ∂(ρvj)
∂t

− ρ
∂vj

∂t
+ ∂(ρvivj)

∂xi
− ρvi

∂vj

∂xi
= 0

Subtracting this from the first-order moment equations (C.8) yields

∂(ρvivj)
∂xi

+ ρ
∂Φ
∂xj

+ ρ
∂vj

∂t
− ∂(ρvivj)

∂xi
+ ρvi

∂vj

∂xi
= 0.

If we define σ2
ij = vivj − v̄iv̄j , we obtain

ρ
∂vj

∂t
+ ρvi

∂vj

∂xi
= −ρ ∂Φ

∂xj
−
∂(ρσ2

ij)
∂xi

. (C.9)

Once again, this represent a set of three equations for j = (1, 2, 3) and the implied summation
over i remains. These are called the Jeans equations.

Using spherical coordinates, that is j = (r, θ, φ), equation C.2 becomes

df
dt = ∂f

∂t
+ ṙ

∂f

∂r
+ φ̇

∂f

∂φ
+ θ̇

∂f

∂θ
+ v̇r

∂f

∂vθ
+ v̇φ

∂f

∂vφ
+ v̇θ

∂f

∂vθ
= 0. (C.10)

Deriving the velocity components

ṙ = vr, θ̇ = vθ

r
, φ̇ = vφ

r sin θ , (C.11)

gives
v̇r = r̈, v̇θ = rθ̈ + ṙθ̇, v̇φ = sin θṙφ̇+ r sin θφ̈+ rφ̇θ̇ cos θ. (C.12)

Matching the acceleration given by

a = −∇Φ = −∂Φ
∂r
r̂ − 1

r

∂Φ
∂θ

θ̂ − 1
r sin θ

∂Φ
∂φ

φ̂, (C.13)
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to the acceleration in spherical coordinates

a = (r̈−rθ̇2+rφ̇2 sin2 θ)r̂+(rθ̈+2ṙθ̇−rφ̇2 sin θ cos θ)θ̂+(rφ̈ sin θ+2ṙφ̇ sin θ+2rθ̇φ̇ cos θ)φ̂, (C.14)

yields the identities

v̇r = −∂Φ
∂r

+ rθ̇2 − rφ̇2 sin2 θ = −∂Φ
∂r

+
v2

θ + v2
φ

r
,

v̇θ = −1
r

∂Φ
∂θ

− ṙθ̇ + rφ̇2 sin θ cos θ = −1
r

∂Φ
∂θ

+
v2

φ cot θ − vrvθ

r
,

v̇φ = − 1
r sin θ

∂Φ
∂φ

− ṙφ̇ sin θ − rθ̇φ̇ cos θ = − 1
r sin θ

∂Φ
∂φ

− vφvr + vφvθ cot θ
r

.

(C.15)

Hence the collisionless Boltzmann equation in spherical coordinates can be written

0 = ∂f

∂t
+ vr

∂f

∂r
+ vθ

r

∂f

∂θ
+ vφ

r sin θ
∂f

∂φ
+

v2
θ + v2

φ

r
− ∂Φ
∂r

 ∂f

∂vr

+ 1
r

(
v2

φ cot θ − vrvθ − ∂Φ
∂θ

)
∂f

∂vr
− 1
r

(
vφ(vr + vθ cot θ) + 1

sin θ
∂Φ
∂θ

)
∂f

∂vθ
. (C.16)

Assuming a spherically symmetric system in a steady state, and that the galaxy have spherical
symmetry with respect to velocity, and gravitational potential Φ, it can be assumed that

∂f

∂θ
= ∂f

∂φ
= 0, and ∂Φ

∂θ
= ∂Φ
∂φ

= 0 since Φ = −GM(r)
r

, (C.17)

leaving the equation

∂f

∂t
+ vr

∂f

∂r
+

v2
θ + v2

φ

r
− ∂Φ
∂r

 ∂f

∂vr
+ 1
r

(
v2

φ cot θ − vrvθ

) ∂f
∂vθ

− 1
r

(
vφ(vr + vθ cot θ)

) ∂f

∂vφ
= 0.

(C.18)
By multiplying this equation with vi and integrate over v-space, we derive the 1st moment
equations in spherical coordinates. For each term in eq. (C.18), we get∫

vi
∂f

∂t
d3v = ∂

∂t

∫
vif d3v = ∂(ρvi)

∂t
,∫

vivr
∂f

∂r
d3v = ∂

∂r

∫
vivrf d3v = ∂(ρvivr)

∂r
,∫

vi

v2
θ + v2

φ

r

∂f

∂vr
d3v = 1

r

[∫
∂(vi(v2

θ + v2
φ)f)

∂vr
d3v −

∫
∂(vi(v2

θ + v2
φ))

∂vr
f d3v

]
= −ρ

r
(v2

θ + v2
φ)δir

−
∫
vi
∂Φ
∂r

∂f

∂vr
d3v = −∂Φ

∂r

[∫
∂(vif)
∂vr

d3v −
∫

∂vi

∂vr
f d3v

]
= ρ

∂Φ
∂r

δir∫
vi

v2
φ cot θ
r

∂f

∂vθ
d3v = cot θ

r

[∫
∂(viv

2
φf)

∂vθ
d3v −

∫
∂viv

2
φ

∂vθ
f d3v

]
= −

ρv2
φ cot θ
r

δiθ

−
∫
vi
vrvθ

r

∂f

∂vθ
d3v = −1

r

[∫ (vivrvθf)
∂vθ

d3v −
∫
∂(vivrvθ)
∂vθ

f d3v

]
= ρvivr

r
(1 + δiθ),

−
∫
vi
vφvr

r

∂f

∂vφ
d3v = −1

r

[∫
∂(vivφvrf)

∂vφ
d3v −

∫
∂(vivφvr)
∂vφ

f d3v

]
= ρvivr

r
(1 + δiφ),

−
∫
vi
vφvθ cot θ

r

∂f

∂vφ
d3v = −cot θ

r

[∫
∂(vivφvθf)

∂vφ
d3v −

∫
∂(vivφvθ)
∂vφ

f d3v

]
= ρvivθ cot θ

r
(1 + δiφ).

(C.19)
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Evaluating the moment equations for all velocities vi, where i = (r, θ, φ), the 1st moment equa-
tions can be written separately for every coordinate as

∂(ρvr)
∂t

+ ∂(ρv2
r )

∂r
+ ρ

r

(
2v2

r − v2
θ − v2

φ + vrvθ cot θ
)

+ ρ
∂Φ
∂r

= 0,

∂(ρvθ)
∂t

+ ∂(ρvrvθ)
∂r

+ ρ

r

(
3vrvθ + (v2

θ − v2
φ)cotθ

)
= 0,

∂(ρvφ)
∂t

+ ∂(ρvrvφ)
∂r

+ ρ

r

(
3vrvφ + 2vθvφcotθ

)
= 0.

(C.20)

Assuming a spherically symmetric system in a steady state, and that the galaxy have spherical
symmetry with respect to velocity, there can be no streaming motions and all mixed second-order
terms vanish. Consequently we have that

∂(ρvi)
∂t

= 0, vr = vθ = vφ = vrvθ = vrvθ = vθvφ = 0, and v2
θ = v2

φ. (C.21)

Under these assumptions, only the radial Jeans equation remains

d(ρv2
r )

dr
+ 2ρ

r

[
v2

r − v2
θ

]
= −ρdΦ

dr . (C.22)

Defining the so-called anisotropy parameter of the velocity distribution;

β ≡ 1 −
v2

θ

v2
r

, (C.23)

and writing out the potential, the radial Jeans equation can be written

1
ρ

d(ρv2
r )

dr + 2βv
2
r

r
= −dΦ

dr = −GM(r)
r2 . (C.24)
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Appendix D
Additional Results
For the sake of completeness, and in case it may be useful for future studies, this chapter is
devoted to showing the parameter region and binned likelihood plots from the restults section
for all 20 dSphs investigated.

D.1 Parameter regions
The 1σ, 2σ, 3σ confidence levels in the parameter space r0, v0 for 20 dSphs are plotted together
with contour lines of the Sommerfeld enhanced J-factor in figs. D.1 to D.5.

D.2 Binned Likelihood Functions
The binned likelihood function L(JS) for 20 dSphs is plotted for 20 dSphs each modeled both
by an NFW and a cored Zhao DM profile in figs. D.6 to D.10.

XI



D. Additional Results

++

19. 20.2 21.4

22.6

23.825. 26.2

3σ

2σ

1σ

0 5 10 15 20 25 30

0

1

2

3

4

5

6

v0 (km/s)

r 0
(k
pc
)

(a) Bootes I, NFW

++

18.1

19.

19.9
20.8

21.7

22.6
22.6

22.6

22.6
22.6

22.6

23.5
23.5

24.4 25.3

3σ

2σ

1σ

0 5 10 15 20 25 30

0

2

4

6

8

10

v0 (km/s)

r 0
(k
pc
)

(b) Bootes II, NFW

++

20. 20.5 21. 21.5

22.

22.5

23.

23.524. 24.5 25.

3σ

2σ

1σ

5 10 15 20 25 30

0

2

4

6

8

10

v0 (km/s)

r 0
(k
pc
)

(c) Carina, NFW

++

16.617.919.2 20.5

21.8

23.1

24.4

3σ

2σ

1σ

0 20 40 60 80 100

0

2

4

6

8

10

v0 (km/s)

r 0
(k
pc
)

(d) Bootes I, core

++

17.818.619.4 20.2 21.

21.8

22.6

23.4

24.2 25.

3σ

2σ

1σ

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v0 (km/s)

r 0
(k
pc
)

(e) Bootes II, core

++

19.6 19.9 20.2 20.5 20.8

21.1

21.4

21.7

22.

22.3 22.6
22.9 23.2

3σ

2σ

1σ

10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

v0 (km/s)

r 0
(k
pc
)

(f) Carina, core

++

20.220.8 21.4 22. 22.6

23.2

23.8

24.425. 25.6 26.2

3σ

2σ

1σ

10 20 30 40 50

0

2

4

6

8

10

v0 (km/s)

r 0
(k
pc
)

(g) Coma Berenices, NFW

++

20.20.521. 21.5 22.
22.5

23.

23.5

24.
24.5 25.

3σ

2σ

1σ

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

v0 (km/s)

r 0
(k
pc
)

(h) Coma Berenices, core

Figure D.1: Evaluated likelihood function and JS for Bootes I and II, Carina and Coma
Berenices, modelled with NFW and cored Zhao DM profiles respectively. The coloured regions
correspond to 1σ, 2σ, 3σ confidence levels and the dotted lines are contour lines for JS .
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Figure D.2: Evaluated likelihood function and JS for Canes Venatici I and II, Draco and
Fornax, modelled with NFW and cored Zhao DM profiles respectively. The coloured regions
correspond to 1σ, 2σ, 3σ confidence levels and the dotted lines are contour lines for JS .
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Figure D.3: Evaluated likelihood function and JS for Hercules, Leo I, Leo IV and Leo T,
modelled with NFW and cored Zhao DM profiles respectively. The coloured regions correspond
to 1σ, 2σ, 3σ confidence levels and the dotted lines are contour lines for JS .
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Figure D.4: Evaluated likelihood function and JS for Sculptor, Segue 1, Sextans and Sagit-
tarius, modelled with NFW and cored Zhao DM profiles respectively. The coloured regions
correspond to 1σ, 2σ, 3σ confidence levels and the dotted lines are contour lines for JS .
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Figure D.5: Evaluated likelihood function and JS for Ursa Major I and II, Ursa Minor and
Willman 1, modelled with NFW and cored Zhao DM profiles respectively. The coloured regions
correspond to 1σ, 2σ, 3σ confidence levels and the dotted lines are contour lines for JS .
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Figure D.6: Binned likelihood as a function of JS for Bootes I and II, Carina and Coma
Berenices, modelled with NFW and cored Zhao DM profiles respectively. The grey triangle
marks the MLE and the horizontal lines correspond to 1σ, 2σ, 3σ confidence levels.
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Figure D.7: Binned likelihood as a function of JS for Canes Venatici I and II, Draco and
Fornax, modelled with NFW and cored Zhao DM profiles respectively. The grey triangle marks
the MLE and the horizontal lines correspond to 1σ, 2σ, 3σ confidence levels.
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Figure D.8: Binned likelihood as a function of JS for Hercules, Leo I, Leo IV and Leo T,
modelled with NFW and cored Zhao DM profiles respectively. The grey triangle marks the
MLE and the horizontal lines correspond to 1σ, 2σ, 3σ confidence levels.
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Figure D.9: Binned likelihood as a function of JS for Sculptor, Segue 1, Sextans and Sagit-
tarius, modelled with NFW and cored Zhao DM profiles respectively. The grey triangle marks
the MLE and the horizontal lines correspond to 1σ, 2σ, 3σ confidence levels.
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Figure D.10: Binned likelihood as a function of JS for Ursa Major I and II, Ursa Minor and
Willman 1, modelled with NFW and cored Zhao DM profiles respectively. The grey triangle
marks the MLE and the horizontal lines correspond to 1σ, 2σ, 3σ confidence levels.
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Appendix E
Mathematica code
Almost all numerical calculations in this project have been done using Wolfram Mathematica,
and because of the nature of the individual calculations and the amount of data in the analysis,
a quite significant code base have been developed. In order to supply a greater transparency as
to what calculations were actually performed, the most significant parts of the code is included
in this chapter. On the off-chance that someone might be interested in performing similar
calculations, these code snippets might provide a good starting point and maybe help that
someone avoid the most time consuming pit falls.

Included in this chapter is code for, in order:
(i) The dimensionless version of the Eddington formula f(E) from section 5.1,
(ii) The dimensionless version of the relative velocity distribution Pr,rel(vrel) from section 5.2,
(iii) The Sommerfeld enhancement S(vrel) from chapter 4,
(iv) The dimensionless version of the line of sight velocity dispersion from section 7.2.
(v) The integral Γ(x) =

∫
dvrelS(vrel)Px,rel(vrel), which is part of the JS-factor.

(vi) The different flavours of J-factors that have been evaluated – the original J which doesn’t
take Sommerfeld enhancement into account, S(v∗)J which does so, but assumes Px,rel =
δ(v − v∗) and JS , which is the one derived in this thesis.

(vii) The negative log likelihood function −L for parameter space r0, v0, as defined in section
7.3.

(viii) The minimization of this −L used to find the maximum likelihood estimate.
(ix) The calculation of a grid of L, J and JS over a parameter space in r0, v0 for a chosen

galaxy.
(x) The construction of a binned likelihood function L(J) or L(JS) from such a grid.

The code has been edited and significantly reduced before publishing, meaning that some minor
errors may have trickled in. Nevertheless, most of the code supplied in this chapter correspond
more or less exactly to the code that was run for this thesis.
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E.1 Eddington Formula

ClearAll["Global‘*"];
G = 4.30227*10^(-6);(*kpc/solarmass * (km/s)^2 *)

(*NFW density distribution*)
rho[x_] := 1/(x (1+x)^2);
Drho[x_]= D[rho[x],x];
DDrho[x_]= D[rho[x],{x, 2}];

(*Dimless gravitational potential for an NFW dSph*)
Psi[x_] := Piecewise[ {{4Pi Log[1+x]/x, x>1*^-7}, {4Pi(1-x/2),x<=1*^-7}}];
DPsi[x_] = D[Psi[x],x];
DDPsi[x_] = D[Psi[x],{x, 2}];

(* The integrand in the Eddington formula *)
f[x_, eps_] :=( Drho[x] DDPsi[x]/DPsi[x]^2-DDrho[x]/DPsi[x])/Sqrt[Abs[eps-

Psi[x]]];

(*Finds the lower limit of integration xmin for a given relative energy eps
*)

xmin[eps_ ?NumericQ] := x/. Assuming[x >0,
FindRoot[

SetPrecision[Psi[x] - eps + 1*^-40, 64],
{x, 1/eps},
WorkingPrecision->64,
PrecisionGoal->50,
AccuracyGoal->Infinity

]
];

(* Evaluates the Eddington formula *)
FF[eps_ ?NumericQ] := Re[NIntegrate[

f[x, eps],
{x, xmin[eps], Infinity},
MaxRecursion->250,
WorkingPrecision->64,
Exclusions->xmin[eps]==x,
Method->{

"GlobalAdaptive",
"SingularityDepth"->10000,
"SymbolicProcessing"->0

}
]];

(*
Spacing function for points to be interpolated over.
We want many points in the end of the spectrum, because of the

singularity in the integrand
*)
EpsN[n_, NN_] := (4Pi-1*^-20) 1/(1+Exp[(NN/4-n)/(NN/42)]);

(*A rudimentary attempt to remove the singularity in eps -> Psi[0]*)
EE[eps_] := 1/(4Pi-eps)^(9999/10000);

(*
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Checks if Machine Precision is sufficient to separate most densely
spaced points in interpolation

*)
EpsNWorks[NN_]:=N[12+N[EpsN[NN,NN]-EpsN[NN-1,NN] , 40], MachinePrecision

]-12!=0
t0 ={{0,0}};
t1 = ParallelTable[{N[EpsN[n]], N[FF[EpsN[n]]/EE[EpsN[n]]]}, {n, 0,N}];
t =Join[t0, t1];
Export["interp/F_Eddington_cusp.csv", t];
SetDirectory[NotebookDirectory[]];
(*Slight cheat in not including imaginary part *)
Export["interp/F_Eddington_cusp", Re[t], "CSV"];
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E.2 Relative Velocity Distribution

ClearAll["Global‘*"];

G = 4.30227*10^(-6);(*kpc/solarmass * (km/s)^2 *)

(*A rudimentary attempt to remove the singularity in eps\[Rule]Psi[0]*)
EE[eps_] := 1/(4Pi-eps)^(9999/10000);

SetDirectory[NotebookDirectory[]];
TT=Import["interp/F_Eddington_cusp", "CSV"];
Fint = Interpolation[TT, InterpolationOrder->1];

(*Now, EE[eps] must be multiplied back in*)
F[eps_] = Fint2[eps]*EE[eps];

(* Prel integral *)
Pintegral[x_ ?NumericQ, vrel_?NumericQ] := (

(* relative potential and density for NFW distribution*)
psix = 4Pi Log[1+x]/x;
rhox = 1/(x (1+x)^2) ;

(*Epsilon in vcm and vrel*)
Epsrel[vcm_, z_] := Epsrel[vcm,z] = psix-vcm^2/2 -vrel^2/8 + vcm vrel z

/2;
NEpsrel[vcm_, z_] := NEpsrel[vcm,z] = psix-vcm^2/2 -vrel^2/8 - vcm vrel

z/2;

(*Limits of integration*)
skew = 10^(-30);
vcmMin1 = 0 + skew;
vcmMin2 = Sqrt[2psix] - vrel/2 + skew;
vcmMax1 = Sqrt[2psix] - vrel/2;
vcmMax2 = Sqrt[8psix - vrel^2]/2;

zMax2[vcm_] := (8psix - vrel^2 - 4 vcm^2)/(4 vrel vcm);
(*The integral itself*)
vrel^2/rhox^2 NIntegrate[

vcm^2
F[NEpsrel[vcm, z]]
F[Epsrel[vcm, z]],
{vcm, vcmMin1, vcmMax1},
{z, 0, 1},
AccuracyGoal->6,
PrecisionGoal->6,
Exclusions->{Epsrel[vcm,z]==4Pi,NEpsrel[vcm,z]==4Pi},
Method->{"InterpolationPointsSubdivision"}

] + NIntegrate[
vcm^2
F[NEpsrel[vcm, z]]
F[Epsrel[vcm, z]],
{vcm, vcmMin2, vcmMax2},
{z, 0, zMax2[vcm]},
AccuracyGoal->6,
PrecisionGoal->6,
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Exclusions->{Epsrel[vcm,z]==4Pi,NEpsrel[vcm,z]==4Pi},
Method->{"InterpolationPointsSubdivision"}

]
);

(*Compile the integral for slightly faster calculations*)
cPintegral = Compile[{x,vrel}, Evaluate[Pintegral[x,vrel]]];
(*Limits of vrel*)
vrelMax[x_] = 2Sqrt[2Psi[x]];
vrelMax0 = Limit[vrelMax[x],x->0];
(* Construct and export table over Prel *)
PintT = Table[

{
x^10,
vrel^4,
Piecewise[{

{cPintegral[x^10,vrel^4], vrel^4<= vrelMax[x^10]},
{0, vrel^4 >vrelMax[x^10]}}

]
},
{x,1*^-7^(1/10), 50^(1/10), 0.02},
{vrel, 0, vrelMax0^(1/4), 0.02}

];
fPintT = Flatten[PintT, 1];
SetDirectory[NotebookDirectory[]];
Export["interp/P_rel_cusp", fPintT, "CSV"];
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E.3 Sommerfeld Enhancement factor

ClearAll["Global‘*"]
epsilon = 1*^-100;
alpha = 1/100;
vmin = 10^(-7); (*only lower limit of vel dist we want*)
vmax = 0.1;
(*mphi is mediator particle mass, m is DM particle mass, mphidivm = mphi/m

*)

(*limits for mphidivm *)
mmin = 3*^-7;
mmax = 11/3;

(* a = alpha/v/2 comes from that we don’t use reduced mass for m *)
a[v_] = alpha/v/2;

b[mphidivm_, v_] = mphidivm/v;

(*Solve the reduced SE and return the sommerfeld enhancement as S(vrel,
mphi/m) *)

S = ParametricNDSolveValue[
{

y’’[x] + (2/x) y’[x] + (1 + 2/x*a[v] Exp[-x b[mphidivm, v]]) (y[x])
== 0,

y[epsilon] == 1, y’[epsilon] == -a[v]
},
(1/((30*y[30])^2 + ((30 - 0.5 Pi)*y[30 - 0.5 Pi])^2)),
{x, epsilon, 30},
{v, mphidivm},
MaxSteps -> Infinity

];

LogLogPlot[S[v, 1/650], {v, vmin, vmax}]
points = 1000000;
vpoints = 500;
mpoints = points/vpoints;
deltav = (Log10[vmax] - Log10[vmin])/vpoints;
deltam = (Log10[mmax] - Log10[mmin])/mpoints;
vt = RandomReal[{1*^-7, 1*^-6}]; mt = RandomReal[{3*^-7, 1*^-5}];

(*create interpolating function*)
tab = Flatten[

ParallelTable[
{10^v, 10^mpdivm, S[10^v, 10^mpdivm]},
{v,Log10[vmin], Log10[vmax], deltav},
{mpdivm, Log10[mmin],Log10[mmax], deltam}

], 1];
sommer = Interpolation[tab, InterpolationOrder -> 1]

(* Store interpolating function *)
SetDirectory[NotebookDirectory[]];
sommer = Interpolation[tab, InterpolationOrder -> 1]
DumpSave["interp/Sommermint1div30.mx", sommer]
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E.4 Line of Sight Velocity Dispersion

(*
This interpolates velocity dispersion sigma2 without a factor
v0^2 infront.
The variables used for interpolation are
x = r/r0
Rdivr0 = R/r0
r0divrstar = r0/rstar

*)
ClearAll["Global‘*"]

(*Luminosity profile, Plummer or gen. Hernquist (2,5,0)*)

nu[x_] := (1 + x^2)^(-5/2);

(*Id2 = I(R)/2*)
Id2[Rdivrstar_] = Assuming[RR > 0,

Integrate[nu[r]*r/Sqrt[r^2 - RR^2], {r, RR, Infinity}]
] /. RR -> Rdivrstar

Hernquist[alpha_, beta_, gamma_, x_] :=
x^-gamma (1 + x^alpha)^(-((beta - gamma)/alpha));

(*Hernquist[1,3,1,x] for NFW, Hernquist[1,3,0,x] for core *)

rho[x_] := Hernquist[1, 3, 1, x];

(*reduced mass within reduced radius x*)

m[x_] = Assuming[x > 0 , 4 Pi Integrate[s^2 rho[s], {s, 0, x}]]

exp = r/Sqrt[r^2 - Rdivr0^2]*nu[s*r0divrstar]/s^2*m[s]

(*change of variable r to r^2+Rdivr0 to remove singularity*)

sigmared[Rdivr0_, r0divrstar_] := r0divrstar/Id2[Rdivr0*r0divrstar]
NIntegrate[
( 2 (Rdivr0 + r^2) m[s] nu[r0divrstar s]) / (s^2 Sqrt[2 Rdivr0 + r^2]),
{r, 0, Infinity},
{s, r^2 + Rdivr0, Infinity},
AccuracyGoal -> 6,
PrecisionGoal -> 6,
MaxRecursion -> 250,
MinRecursion -> 50

];

sigma2tab = Flatten[ParallelTable[
{Rdivr0^10, r0divrstar^10, sigmared[Rdivr0^10, r0divrstar^10]},
{Rdivr0, 10^(-5/10), 500^(1/10), 0.0025},
{r0divrstar, 10^(-2/10), 1000^(1/10), 0.0025}

], 1];
(*Here it would probably have been better to use InterpolationOrder->1*)
sigma2i = Interpolation[sigma2tab];
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E.5 Integral over relative velocity

(*
Creates an interpolation of Gamma[x, v0], excluding the constant before

Prel.
Both a v0-dependent single-mass and a mass-dependent single-v0

interpolation is created.
*)
ClearAll["Global‘*"]
SetDirectory[NotebookDirectory[]]
c = 299792.458; (*km/s*)
(* Setup Prel(vrel) file according to desired profile *)
profile = "cusp";
PrelFile = If[profile == "core", "interp/P_rel_core", "interp/P_rel_cusp"];

(*load sommerfeld for single mass*)
<< "interp/Sommer1div100single.mx";
(*

rename sommer to sommersinglem since the mass-dependent
sommerfeld interpolation has the same variable name

*)
sommersinglem = sommer;
(* Extends sommerfeld function to lower speeds *)
Sommer[x_] := Sommer[x] = Piecewise[{

{sommersinglem[1*^-7], x < 1*^-7},
{sommersinglem[x], 1*^-7 <= x < 0.1},
{0, x > 0.1}

}];

(*load mass dependent sommerfeld*)
<< "interp/Sommermint1div100.mx"
sommer
Sommerm[v_, m_] := Sommerm[v, m] = Piecewise[{{sommer[1*^-7, m], v <

1*^-7}, {sommer[v, m],1*^-7 <= v < 0.1}, {0, v > 0.1}}];

(* Load Prel(vrel) *)
PrelTab = SetPrecision[Import[PrelFile, "CSV"], MachinePrecision];
vrelmaxDimless = Max[PrelTab[[All, 2]]];
vrelmax[v0_] := v0 vrelmaxDimless;

(* highest x-value in Prel data *)
xmax = Max[PrelTab[[All, 1]]];
PrelInterp = Interpolation[PrelTab, InterpolationOrder -> 1];

(* Rudimentary extension beyond limits of Prel interpolation *)
PrelDimless[x_, vrel_] := PrelDimless[x, vrel] =

Piecewise[{
{

PrelInterp[x, vrel],
5*^-6 < x <= xmax && 0 < vrel <= vrelmaxDimless

},
{0, x > xmax || x < 0},
{

PrelInterp[5*^-6, vrel],
0 <= x <= 5*^-6 && 0 <= vrel <= vrelmaxDimless

}
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}];

(* defines gamma for single-mass and massdependent Sommerfeld *)
gamma[x_, v0_] := NIntegrate[

PrelDimless[x, vrel/v0] Sommer[vrel/c],
{vrel, 0, vrelmax[v0]} ,
Method -> {"GlobalAdaptive", "SymbolicProcessing" -> 0},
AccuracyGoal -> 6,
PrecisionGoal -> 6,
MaxRecursion -> 20

];
gammam[x_, v0_, m_] := NIntegrate[

PrelDimless[x, vrel/v0] Sommerm[vrel/c, m],
{vrel, 0, vrelmax[v0]},
Method -> {"GlobalAdaptive", "SymbolicProcessing" -> 0},
AccuracyGoal -> 6,
PrecisionGoal -> 6,
MaxRecursion -> 20

];

(*
Creates a table for single-mass Gamma

*)
points = 20000;
xmin = 0;
xmax = 50;
v0min = 1;
v0max = 80;
deltax = N[(xmax^(1/6) - xmin^(1/6))/Sqrt[points]]
deltav0 = N[(v0max - v0min)/Sqrt[points]]

ptable = ParallelTable[
{x^6, v0, gamma[x^6, v0]},
{x, xmin^(1/6), xmax^(1/6), deltax},
{v0, v0min, v0max, deltav0}

];
Export["interp/gamma_" <> profile <> ".csv", Flatten[ptable, 1]];

(* Creates a table for massdependent Gamma at Sculptor’s MLE *)
xmin = 0;
xmax = 50;
v00 = 13.160371122115722;
v0min = 1;
v0max = 80;
mmin = 5*^-6;
mmax = 1.1;
deltax = N[(xmax^(1/6) - xmin^(1/6))/180]
deltam = N[(Log10[mmax] - Log10[mmin])/300]

ptable = ParallelTable[
{x^6, 10^m, gammam[x^6, v00, 10^m]},
{x, xmin^(1/6), xmax^(1/6), deltax},
{m, Log10[mmin], Log10[mmax],deltam}

];
Export["interp/gammam_" <> profile <> ".csv", Flatten[ptable, 1]];
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E.6 J-factors

Clear[Js]
SetDirectory[NotebookDirectory[]];
G = 4.30227*10^(-6);(*kpc/solarmass * (km/s)^2 *)

<< "interp/Sommer1div100single.mx"
Hernquist[alpha_,beta_, gamma_, x_]:= x^-gamma (1+x^alpha)^(-((beta-gamma)/

alpha));

(* set up rho for core and cusp DM *)
rhoCore[x_] = Hernquist[1,3,0,x];
rhoCusp[x_] = Hernquist[1,3,1,x];

(* Import Gamma interpolation for core and cusp *)
gammaCoretab = Import["interp/gamma_core.csv"];
gammaCoreInt = Interpolation[gammaCoretab, InterpolationOrder->1];
gammaCore[x_, v0_] :=gammaCore[x, v0] = gammaCoreInt[x,v0];
gammaCusptab = Import["interp/gamma_cusp.csv"];
gammaCuspInt = Interpolation[gammaCusptab, InterpolationOrder->1];
gammaCusp[x_, v0_] :=gammaCusp[x, v0] = gammaCuspInt[x,v0];
xmaxCore = Max[gammaCoretab[[All, 1]]];(* highest x-value in Prel data *)
xmaxCusp = Max[gammaCusptab[[All, 1]]];(* highest x-value in Prel data *)

(* *)
r[s_, d_, cosalpha_] := Sqrt[d^2 + s^2 - 2d s cosalpha];

(* Sommerfeld-enhanced J factor, with Pr(vrel) derived from Eddington *)
Js[r00_ ?NumericQ, v00_ ?NumericQ, dd_ ?NumericQ, prof_] := Module[

{r0 = r00, v0=v00, d=dd, profile=prof},
If[profile=="core",

rho = rhoCore;
gamma = gammaCore;
xmax = xmaxCore;
,
rho = rhoCusp;
gamma = gammaCusp;
xmax = xmaxCusp

];

(*
unitfactor is for conversion from astronomical units to GeV/cm^5

*)
unitfactor = 4.4476653533889630255052795‘6.648848047656568*^6;
(*

The constant is
2/(pi^2v0) from Prel, times
(v0^2/(G r0^2))^2 from rho, times
2pi from cylindrical symmetry of J

*)
smin =N[d-xmax r0];
smax =N[d+xmax r0];
Log10[unitfactor NIntegrate[

4/pi v0^3/(G^2 r0^4) rho[r[s, d, cosalpha]/r0]^2
gamma[r[s, d, cosalpha]/r0,v0],
{s,smin, smax},
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{cosalpha, Cos[0.5Degree], 1},
MaxRecursion->200,
Method -> {

"GlobalAdaptive",
"SymbolicProcessing" -> 0,
"SingularityDepth" -> 10000,
"MaxErrorIncreases" -> 3000

},
AccuracyGoal->4,
PrecisionGoal->4

]]
];

(* Sommerfeld enhanced J-factor using characteristic velocity *)
SJ[r00_ ?NumericQ, v00_ ?NumericQ, dd_ ?NumericQ, prof_] := Module[

{r0 = r00, v0=v00, d=dd, profile=prof},
If[profile=="core",

rho = rhoCore;
gamma = gammaCore;
xmax = xmaxCore;
,
rho = rhoCusp;
gamma = gammaCusp;
xmax = xmaxCusp

];

(*
unitfactor is for conversion from astronomical units to GeV/cm^5
*)
unitfactor = 4.4476653533889630255052795‘6.648848047656568*^6;
(*

The constant is
(v0^2/(G r0^2))^2 from rho, times
2pi from cylindrical symmetry of J

*)
smin =N[d-xmax r0];
smax = N[d+xmax r0];
Log10[unitfactor sommer[1*^-5] NIntegrate[

2 Pi v0^4/(G^2 r0^4) rho[r[s, d, cosalpha]/r0]^2,
{s,smin, smax},
{cosalpha, Cos[0.5Degree], 1},
MaxRecursion->200,
Method -> {

"GlobalAdaptive",
"SymbolicProcessing"->0

},
AccuracyGoal->4,
PrecisionGoal->4

]]
];

(* J factor for cold dark matter - no sommerfeld enhancement *)
Jorig[r00_ ?NumericQ, v00_ ?NumericQ, dd_ ?NumericQ, prof_] := Module[

{r0 = r00, v0=v00, d=dd, profile=prof},
If[profile=="core",

rho = rhoCore;
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gamma = gammaCore;
xmax = xmaxCore;
,
rho = rhoCusp;
gamma = gammaCusp;
xmax = xmaxCusp

];

(*
unitfactor is for conversion from astronomical units to GeV/cm^5
*)
unitfactor = 4.4476653533889630255052795‘6.648848047656568*^6;
(*

The constant is
(v0^2/(G r0^2))^2 from rho, times
2pi from cylindrical symmetry of J

*)
smin =N[d-xmax r0];
smax = N[d+xmax r0];
Log10[unitfactor NIntegrate[

2 Pi v0^4/(G^2 r0^4) rho[r[s, d, cosalpha]/r0]^2,
{s,smin, smax},
{cosalpha, Cos[0.5Degree], 1},
MaxRecursion->200,
Method->{

"GlobalAdaptive",
"SymbolicProcessing"->0,
"SingularityDepth"->10000

},
AccuracyGoal->4,
PrecisionGoal->4

]]
];
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E.7 Log Likelihood function

(*
Assuming variables galaxyName and profile have been set,
this piece of code imports velocity data for the selected galaxy
and declares one LogLikelihood function Likely[r0,rstar,v0] over three

parameters,
and one Likel[r0, v0], which is the three-parameter version minimized

over rstar
*)

Clear[Likely, Likel]
SetDirectory[NotebookDirectory[]];

(*
The naming convention we used in this work
cusp => no suffix, core => suffixed by _core

*)
file=galaxyName<>"_"<>profile;
If[profile!="core", profile=""; file = galaxyName];

(* Import params, and veldata *)
params = Import["data/params/params_"<>galaxyName<>".dat"];
veldata = Import["data/velocities/velocities_"<>galaxyName<>".dat"];
(* Import the limits on r0, v0 which are defined in a separate file *)
limits = Import["limits/limits_"<>file<>".dat"];

(* Import the velocity dispersion interpolation, according to DM profile *)
If[profile=="core", <<"interp/sigmacorenew.mx", <<"interp/sigmacuspnew.mx"

];
G=4.30227*10^(-6);

(* half light radius *)
rhalf = params[[3, 1]];
(*mean velocity of stars in galaxy *)
meanvel = Part[Mean[veldata],2];

(* measured velocity dispersion vector for galaxy *)
v2 = (veldata[[All, 2]]-meanvel)^2;

(* Setup DM and baryonic density profiles *)
dmHernquist =If[profile=="core", {1,3,0}, {1,3,1}];
Hernquist[alpha_,beta_, gamma_, x_]:= x^-gamma (1+x^alpha)^(-((beta-gamma)/

alpha));

rho[x_] := Hernquist[dmHernquist[[1]],dmHernquist[[2]],dmHernquist[[3]],x];
nu[x_] := Hernquist[2,5,0,x];

(* construct theoretical sigma2 function from interpolated one *)
sigma2[R_, r0_ , rstar_ , v0_] :=v0^2 sigma2i[R/r0,r0/rstar];

(*
Here is the likelihood function.
The If statement excludes for values that are considered too

implausible
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*)
Likely [r0_ ,rstar_ ,v0_ ] := (

If[rstar < 10^-6 || rstar > 3rhalf
|| v0 < 0 || r0 < 10^-6 || r0/rstar < 0.001 || r0/rstar > 1000,
10^10,
(

sigma2tot = sigma2[velformat[[All,1]],r0,rstar,v0] + velformat
[[All,3]]^2;

1/2 Total[v2/sigma2tot + Log[2\[Pi] sigma2tot]]
)]

);

(*
This is the function that is mainly used to calculate Likelihood

*)
Likel[r0_, v0_] := Flatten[

{#[[1]], rstar/.#[[2]]} &/@ {
Flatten[FindMinimum[

{Likely[r0, rstar, v0]},
{rstar, 0.1rhalf, 0.2rhalf},
Method->"PrincipalAxis"

]]
}

];

XXXV



E. Mathematica code

E.8 Maximum Likelihood Estimate

(* Finds the MLE in r0,rstar,v0 space *)
minpoint = NMinimize[{

Likely[r0, rstar, v0],
v0min<v0<v0max && r0min<r0<r0max && 0.0001<rstar<2rhalf

},
{r0, rstar, v0},
Method->"DifferentialEvolution",
MaxIterations->80,
AccuracyGoal->10

];

(* Exports the found MLE to file *)
r00 = minpoint[[2,1,2]];
rstarr = minpoint[[2,2,2]];
v00 = minpoint[[2,3,2]];
Jmle = J[r00, v00, DD];
SetDirectory[NotebookDirectory[]];
Export["likely/"<>file<>"_minpoint.csv", {minpoint[[1]],r00, rstarr, v00,

Jmle}];

E.9 Tabulation of Likelihood and J-factors

galaxyName = "scl";
profile = "cusp";
file = If[profile == "core", galaxyName<>"_"<>profile, galaxyName]
(* Imports likelihood function *)
<<"likely.m"
(* Imports J functions *)
<<"Js.m"

(* Creates table of r0, v0, L, rstar, J, Js *)
tab = Flatten[Table[

Flatten[
{

r0,
v0,
Likel[r0, v0],
Jorig[r0,v0,DD, profile],
Js[r0,v0,DD, profile]

}
],
{r0,r0min,r0max, deltar0},
{v0,v0min, v0max, deltav0}

],1];
Export["likely/"<>file<>"_Jslikely.csv", tab]
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E.10 Construction of confidence levels

(* Creates a Latex table of dSph J-factors and 1sigma errors from tabulated
data*)

ClearAll["Global‘*"]
SetDirectory[NotebookDirectory[]];
(* Finds all dSphs for which there is velocity data *)
galaxies = StringReplace[FileNames["*.dat",NotebookDirectory[]<>"data/

params/"],{NotebookDirectory[]<>"data/params/params_"->"",".dat"->"" }];

(* Counts the number of stars in a dSph for which there is velocity data *)
NStars[galaxy_]:= Length[Import["data/velocities/velocities_"<>galaxy<>".

dat"]];

(* Represent a confidence level with n degrees of freedom *)
confidence[n_,p_] :=1/2 Quantile[ChiSquareDistribution[n], p];
(* 1sigma confidence level *)
sigma = confidence[1,0.683];
(* Imports a list of galaxy names *)
GalaxyNames = Import["data/galaxies.dat", "CSV"];
(* Gets the name of a galaxy from its short name *)
Name[galaxy_] := SelectFirst[GalaxyNames, #[[1]]==galaxy&][[2]];

galaxies = SortBy[galaxies, NStars]
(* Import J functions *)
<<"Js.m"

(* Constructs a binned likelihood function from the given table, for the
given J factor type *)

BinnedLikelihood[T_, Lmin_, JFactor_]:= (
Jindex = If[JFactor == "Js", 6,5];
JT = {#[[Jindex]],#[[3]]-Lmin}&/@T;

minJ = Min[JT[[All,1]]];
maxJ = Max[JT[[All,1]]];
(* Each bin should have around 40 data points *)
binwidth = 40(maxJ-minJ)/Length[JT];
(* No need to go beyond 0.01 in precision *)
binwidth = If[binwidth < 0.01, 0.01, binwidth];
T2 =Flatten[BinLists[

JT,
{minJ, maxJ,binwidth},
{0, confidence[1,0.999],confidence[1,0.999]}

],1];
T2 = Replace[T2,x_List:>DeleteCases[x,{}],{0,Infinity}];
Second[x_]:=x[[2]];
Minvals =Flatten[MinimalBy[#, Second]&/@T2 ,1]

);

(* Finds the 1sigma constraints on the JFactor given as argument, for the
given table T *)

Binned1sigma[T_,Lmin_, JFactor_]:= (
lik = Select[BinnedLikelihood[T, Lmin, JFactor], #[[2]] < sigma &];
{

MinimalBy[lik, #[[1]]&][[1,1]],
MaximalBy[lik, #[[1]]&][[1,1]]

}

XXXVII



E. Mathematica code

);

(*
J calculates and returns the MLE with 1sigma error bars for a given

profile and Jfactor type.
The return is formatted as LaTeX.

*)
Options[J]= {Profile->"cusp", JFactor->"Js"};
J[galaxy_, OptionsPattern[]]:= (

file=If[OptionValue[Profile]=="cusp", galaxy, galaxy<>"_core"];
mle = Import["likely/"<>file <>"_minpoint.csv"];
params = Import["data/params/params_"<>galaxy<>".dat"];
limits = Import["limits/limits_"<>file<>".dat"];
T = Import["likely/"<>file<>"_Jslikely.csv"];
r0max = limits[[3,1]];
r0min = limits[[2,1]];
v0max = limits[[5,1]];
v0min = limits[[4,1]];
(* Remove points outside of limits *)
T = Select[T, r0min <=#[[1]]<=r0max && v0min <= #[[2]] <= v0max &];

(* Find the MLE in the grid *)
minT = MinimalBy[T, #[[3]]&][[1]];

(* Sometimes the points in the grid are lower than the free MLE, choose
the one that is lowest *)

If[mle[[1,1]]< minT[[3]]
&& v0min < mle[[4,1]] < v0max
&& r0min < mle[[2,1]] < r0max,
Lmin = mle[[1,1]];
v0mle = mle[[4,1]];
r0mle = mle[[2,1]];,
Lmin = minT[[3]];
v0mle = minT[[2]];
r0mle = minT[[1]];

];

d = params[[2,1]];
(* Sets which J function to use *)
Jfun = If[OptionValue[JFactor]=="Js",

Js,
If[OptionValue[JFactor]=="J",

Jorig,
SJ

]
];

Jmle = Jfun[r0mle,v0mle, d, OptionValue[Profile]];
If[OptionValue[JFactor]=="SJ",

"$"<>ToString[NumberForm[Jmle, {Infinity,2}]]<>"$",
pm= Binned1sigma[T, Lmin, OptionValue[JFactor]]-Jmle;
"$"<>ToString[NumberForm[Jmle, {Infinity,2}]]
<>"_{"<>ToString[NumberForm[pm[[1]],{Infinity,2}]]
<>"}^{+"<>ToString[NumberForm[pm[[2]],{Infinity,2}]]
<>"}$"

]
);
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(* Constructs a table row containing all J factors for a galaxy *)
Jrow[galaxy_] := ToString[Row[

{
Name[galaxy],ToString[NStars[galaxy]],
J[galaxy, Profile->"cusp", JFactor->"J"],
J[galaxy, Profile->"cusp", JFactor->"SJ"],
J[galaxy, Profile->"cusp", JFactor->"Js"],
J[galaxy, Profile->"core", JFactor->"J"],
J[galaxy, Profile->"core", JFactor->"SJ"],
J[galaxy, Profile->"core", JFactor->"Js"]

},
" & "

]]<>"\\\\\n";

(* Goes through all galaxies and constructs a table *)
tab = "";
Do[tab = tab<>Jrow[galaxies[[i]]];,{i, 1, Length[galaxies]}];
(* Export the table *)
Export["Jtable.txt", tab]
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