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Convolutional Neural Networks for Sequence-Aware Recommender Systems
Tim Kerschbaumer
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Recommender systems are prominent components of many of today’s web applica-
tions. Historically, the most successful recommender systems have been based on a
matrix completion formulation. However, in some domains having sequence-aware
recommender systems, i.e systems that take data’s sequential nature into account,
may be beneficial to capture user’s short-term interests as well as long-term se-
quential patterns. The most successful methods for sequence-aware recommender
systems have been based on recurrent neural networks. Recurrent neural networks,
however, are often hard to train and suffer from several disadvantages in regard to
speed and memory requirements. Several recent papers have suggested that convo-
lutional neural networks can be used to process sequential data more efficiently and
sometimes with better results than recurrent networks. In this thesis, we propose the
use of convolutional neural networks for the task of sequence-aware recommenda-
tions. We present a two-stage deep learning approach to recommendations, where
convolutional neural networks are used for sequence-aware candidate generation.
Our results show that convolutional neural networks can achieve predictive perfor-
mance comparable to state-of-the-art for sequence-aware recommendation tasks.

Keywords: Computer science, deep learning, machine learning, neural networks,
recommender systems, sequence-aware, convolutional neural networks
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1
Introduction

This chapter introduces the topic of recommender systems as well as the background,
problem statement, and delimitations of the thesis.

1.1 Background

Recommender systems are systems that suggest items that may be of interest to
users. Such systems are prominent components of many of today’s modern web
applications, for example in e-commerce to personalise visitors’ user experience by
providing recommendations of items the customer will most likely buy. Recom-
mender systems are and have been an important research area since the appearance
of the first papers on collaborative filtering in the 1990s. Over the last two decades,
there has been much work in both industry and academia to develop new approaches
to recommender systems. The interest still remains high because it constitutes a
problem-rich research area and because of the abundance of practical applications
that help users deal with information overload and provide personalised recommen-
dations, content, and services to them [2].

Historical data used to build recommender systems can be of two kinds, either
explicit feedback, where users give items explicit scores that can be either positive
or negative, or implicit feedback, where user behaviours such as clicks or dwell times
are used as data. Historically, the vast majority of literature has focused on recom-
mender systems for explicit feedback [3], although several methods to adapt explicit
feedback systems to handle implicit data have been proposed, for instance [3] [4]
[5]. Academic research on both explicit and implicit feedback recommender systems
has historically often been based on a matrix completion problem formulation where
each interaction, i.e user-item pair, is considered separately [6]. However, in many
application domains, user-item interactions can be recorded over time. In analogy
with [6], recommender systems that use user-item interactions recorded over time
are called sequence-aware recommender systems. A number of recent works have
shown that taking sequential data into account can yield richer recommendations
and discover additional behavioural patterns [6]. Sequential interaction logs often
contain useful information on both short-term user interests as well as long-term
sequential patterns that can be central to the success of a recommender system
[6]. To preserve data’s sequential nature, approaches other than matrix completion
must be used. Some of the most successful approaches for sequence-aware recom-
mendations are based on recurrent neural networks, first introduced in the domain
of recommendations by [7], and later improved on by [8].
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1. Introduction

Deep learning, a class of machine learning algorithms and techniques, has in
recent years revolutionised several artificial intelligence tasks such as image anal-
ysis and natural language processing. Applying these techniques to recommender
systems has also become an increasingly popular research area with no sign of stag-
nating [9]. Many of deep learning’s successes have been based on two types of neural
networks, recurrent neural networks and convolutional neural networks. Recurrent
networks have been most successful in sequence modelling tasks, for example in
natural language processing, while convolutional networks have been very successful
in computer vision tasks, such as image classification. However, in recent years,
specialised convolutional networks have been shown to also be successful and effi-
cient in sequence modelling tasks [1] [10]. In some domains, convolutional networks
have even exceeded the predictive performance of recurrent networks [11]. Apart
from predictive performance, since convolutional networks do not have recurrent
connections they allow more parallelisation and are thus often faster than recurrent
networks, especially when input sequences are long [1].

1.2 Problem statement

Sellhelp AB (from this point forward referred to as Sellpy) is a company that re-sells
items for people who have things to sell but would like to avoid the hassle of listing
items, interacting with buyers, handle payments and delivery. Items that customers
wish to sell are picked up by Sellpy at the customers’ doorstep. Sellpy then handles
the process from describing and photographing the items, to listing, selling, and
shipping. All the customer has to do is order a bag and fill it with items. The
items are listed on Sellpy’s e-commerce platform, Sellpy market, where customers
can browse for and buy items. With a growing number of items, navigating the
product catalogue as a buyer is getting increasingly difficult. A recommender system
displaying items that may be of interest to users as they browse Sellpy market would
thus be beneficial both for the users and for the company by increasing sales.

Browsing on an e-commerce site, such as Sellpy market, is naturally a sequential
task, therefore using a matrix completion formulation would neglect the sequential
nature of the data. As user tastes on e-commerce sites can be both short-term, for
example looking for a specific type of item during the current session, and long-
term, the general taste of a user, using a sequence-aware recommender system could
potentially increase capturing the short-term taste of a user. Using sequential user
interactions is especially important when there are many new or anonymous users
as no long-term historical data about the general tastes of these users is available.

Although convolutional neural networks have shown good results in sequence
modelling tasks in other domains, investigating their usage in sequence-aware rec-
ommender systems remains an open topic of research. The main research question
of this thesis is thus formulated as:

How can convolutional neural networks be used in sequence-aware
recommender systems?

A natural sub-question is how such a system performs in comparison with other

2



1. Introduction

techniques, so the first sub research question is:

How does the predictive performance of sequence-aware recommender
systems based on convolutional neural networks differ from other

sequence-aware models?

Further, since production recommender systems are rarely based on a single source
of data, investigating how sequence-aware recommender systems can take additional
sources of data into account is thus the second sub research question:

How can sequence-aware recommender systems account for more
information than user-item interactions, such as content features and

other sources of information?

1.3 Delimitations

The main research question emphasises the investigation of recommender systems
that are sequence-aware. As most sequential data is on the form of implicit feedback,
this thesis is limited from exploring recommender system for explicit feedback.

Recommender systems can act in several domains, such as news recommenda-
tions or friend recommendations. In this thesis, the domain is limited to items. Item
recommender systems are common within e-commerce, where the goal of a system
is to recommend items or products, to users browsing a large product catalogue.

1.4 Approach

To answer the research questions, a system that produces recommendations in two
stages is presented. The first stage uses a convolutional neural network to make
sequence-aware predictions of the next item a user will interact with, based on
historical item interactions. The top-n items a user is most likely to interact with is
then used as input in a second stage. In the second stage, a ranking neural network
is used to find the best ordering of a user’s top-n items. The ranking network
incorporates item content information and other data sources on long-term user
preferences to distinguish between the top-n items.

1.5 Contribution

The main contribution of this thesis is showing that convolutional neural networks
can be successfully applied as the underlying model in sequence-aware recommender
systems. The presented convolutional neural network outperforms several baselines
as well as the best recurrent neural network proposed in [7], whose general architec-
ture has been used to reach state-of-the-art results for session-based recommenda-
tions.

3



1. Introduction

Further, the thesis shows how sequence-aware models can be used as candidate
generation components in a two-stage approach. This two-stage approach can make
use of convolutional neural networks or other sequence-aware models to account for
collaborative information in a hybrid recommender system.

1.6 Outline
In the following chapter, a theoretical introduction to recommender systems and
machine learning models later used in our approach or as baselines are presented.
The theory chapter ends with a section on related work in the field.

Using concepts from the theory chapter, the next chapter introduces a sequence-
aware two-stage recommender system. Beginning with a general overview of the two-
stage approach to recommendations, the chapter continues by presenting the first
stage of the recommender system, candidate generation based on a convolutional
neural network. Finally, the second stage of the recommender system, a ranking
network is presented.

The chapter on experimental setup introduces the Sellpy market dataset, bench-
mark datasets, baseline models, and evaluation metrics. Finally, details about the
implementation are presented.

In the results chapter, experimental results on our model are introduced and
compared to baseline results.

In the final chapters, discussion and conclusion, our findings are discussed and
conclusions about our approach are drawn. The thesis is ended by discussing po-
tential future work.

4



2
Theory

The theory chapter begins by presenting basic recommender system goals and types.
Next, machine learning models used to achieve these goals, later used in our ap-
proach or as baseline models, are presented. Finally, related work in the field of
recommender systems in general and deep recommender models in particular is pre-
sented.

2.1 Recommender Systems

Practical applications of recommender system vary from, for example, friend rec-
ommendations on Facebook to advertisement placement on Google search [12]. Al-
though there are many practical applications, recommender systems are often based
on the same fundamental methods.

The problem a recommender system tries to solve can be of two primary kinds
[12]. The goal of the first, known as a prediction problem, is to predict a rating for a
user-item pair or the next item a user will interact with given his history. However,
in some domains, predicting the item ratings of users or predicting the most likely
next item is not necessary to make recommendations. Instead, it makes more sense
to view the problem as a ranking problem where recommending the top-k items for
a specific user is considered.

Recommender systems are often designed for a specific type of data. Two gen-
eral classes of data categorise recommender systems. Explicit feedback is data where
users have given explicit ratings to items, both positive and negative. Not all do-
mains enjoy this convenient setting and there has been much research in adapting
recommender systems for domains where feedback is implicit. In such settings, user
behaviour is observed and implicit feedback is created indirectly. Implicit feedback
can be, for example, purchase history, browsing history, search patterns or mouse
movements [3]. Typically, it is easier to build well-performing recommender systems
for the more expressive explicit feedback but the data collection process is typi-
cally much more expensive, whereas log data, from which implicit feedback can be
extracted, is one of the most ubiquitous forms of data available.

In the coming subsections, some commonly used recommender system methods
are presented. These methods are general and variations of them can be applied to
both prediction and ranking problems as well as with explicit or implicit feedback.

5



2. Theory

2.1.1 Collaborative filtering
One of the most successful types of recommender systems is collaborative filtering.
The idea behind collaborative filtering is to identify pairs of items that tend to be
rated or interacted with similarly, or like-minded users with a similar history of
interacting, to deduce unknown relationships between users and items. A common
way to concertise collaborative filtering problems is to use a matrix completion
formulation. Assuming that data indicating user preferences for a subset of items
is available, for m users and n items, the problem can be viewed as an incomplete
m×n matrix R, where observed values are used to infer the unobserved values [12].

There are two main types of collaborative filtering, user-based and item-based.
In user-based collaborative filtering similarities between users are considered. For
each user, historical interactions are used to find like-minded users and recommend
ratings or interactions by computing some weighted average of the interactions or
ratings in this group. Similar users are found by computing a similarity function
over rows in the matrix R [12]. In contrast, the idea in item-based collaborative
filtering is to consider similarities between items. To make a prediction of a rating
or likelihood of interaction of some item I for some user, a set of items similar to
I is computed and used to do inference. Similar items are found by computing a
similarity function over columns in the matrix R [12].

2.1.2 Content-based filtering
Differently from collaborative filtering that uses correlations in user patterns, content-
based filtering uses item and/or user attributes to make predictions. The basic idea
is that if a user likes an item with certain attributes, there is a good chance he
may like items with similar attributes. The main components of a content-based
recommender system can be grouped as follows [13]:

• Preprocessing and feature extraction: As content-based filtering can op-
erate in a variety of domains, item attributes can take many forms. Often
features must be extracted from raw data and transformed to vector-space
representations before learning can take place.

• Content-based learning: A content-based model is specific to a certain user,
thus a model based on previous user interactions and item features is learnt to
predict user interest in other items. The resulting model relates user feedback
to item features.

• Recommendations: At this stage, the learnt model is given an input of a
user and an item and predicts, for example, a rating or if an item is selected.

2.1.3 Hybrid recommender systems
Both collaborative and content-based methods have some drawbacks. Collaborative
filtering often suffers from cold-start problems, an unrated item can never be rec-
ommended to a user since it has no interactions. In contrast, content-based filtering
often suffers from poor diversity in recommendations, a user may only be recom-
mended items in the same genre as items he has previously rated highly or interacted

6



2. Theory

much with. For these reasons, production recommender systems are seldom based
on a single approach.

Hybrid recommender systems combine two or more different recommender meth-
ods to gain better performance by overcoming some of the individual method’s lim-
itations. Hybrid systems can be classified into different categories as follows [14]:

• Weighted: The scores of a recommended item is computed from several dif-
ferent recommender systems.

• Switching: The system switches between recommendation techniques with
some criterion.

• Mixed: In mixed recommender systems, recommendations from several dif-
ferent systems are presented at the same time.

• Feature combination: Features from different data sources are combined
and used in one recommender system.

• Cascade: In a cascade hybrid, the output of one recommender system is the
input to another. The second method refines the results of the first.

• Feature augmentation: The output of one recommender system is used to
create input features for another one.

• Meta level: In a meta-level hybrid, the model generated by one recommender
system is used as input to another. This differs from feature augmentation by
considering models instead of features.

2.2 Latent factor models
Latent factor models are a set of models that relate observable variables to latent
variables. The most successful latent factor models within recommender systems
are matrix factorisation techniques [15]. Differently from the similarity based col-
laborative filtering models, called neighbourhood models, presented in section 2.1.1,
matrix factorisation takes a learning approach to collaborative filtering. Although
the neighbourhood models have several advantages related to their simplicity, they
are often impractical in large-scale settings [16]. Matrix factorisation uses optimi-
sation to train a machine learning model, the model is then used to predict missing
values in a matrix of interactions or ratings [12].

As there are many algorithms for doing matrix factorisation, the focus here is
on basic techniques, first for explicit feedback before the model is adapted to also
handle implicit feedback.

2.2.1 Explicit feedback matrix factorisation
In matrix factorisation for explicit feedback, m users and n items are described by
an m × n ratings matrix R. The matrix contains ratings for a subset of user-item
pairs rij, for example rij ∈ [1, 5]. R is factorised approximately into an m×k matrix
U and an n× k matrix V as

R ≈ UV T . (2.1)

Each column in U and V is referred to as a latent component, whereas each row in
either matrix is referred to as a latent factor. The number of latent components,
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2. Theory

k, is a hyperparameter that needs to be determined by the practitioner. Row i in
matrix U is the k-dimensional latent factor describing user i whereas row j in matrix
V is the k-dimensional latent factor describing item j. A latent factor is often not
semantically interpretable, however it does represent a correlation pattern in the
ratings matrix [17]. As the matrix R is incomplete, the objective function cannot be
directly defined but must be formulated in terms of the observed entries. For a set
of observed user-item pairs S = {(i, j) : rij observed}, the following unconstrained
optimisation problem can be defined

min 1
2

∑
(i,j)∈S

(rij −
k∑

s=1
uisvjs)2. (2.2)

Note that the objective function is defined only over observed values, but the entire
matrix can be reconstructed as UV T . Minimising the sum of squared errors objective
function in equation 2.2 with respect to the unknowns uis and vjs can be achieved
with standard gradient descent methods [17].

2.2.2 Implicit feedback matrix factorisation
For explicit feedback it natural to see the unknown values as missing and exclude
them from optimisation. For implicit feedback however, if the unknown values are
treated as missing there is only positive feedback in the matrix. Following the work
presented in [3], another matrix factorisation model is presented to handle this issue.

Following the notation from the previous section 2.2.1, let rij ∈ [0, k] where 0
indicates no interaction and higher values indicate more or stronger interactions.
Let a set of binary variables over user-item pairs ij be defined as

pij =

1, if rij > 0.
0, otherwise.

(2.3)

In other words, if a user interacts with an item then that is an indication that the
user likes that item and pij = 1. If a user does not interact with an item, then no
preference is believed and pij = 0. These preferences are associated with a confidence
value. For instance, setting pij = 0 should have a low confidence value since it is
unknown whether a user does not like an item or simply has not observed it. In
general, for larger rij, the confidence should be higher. A possible choice for the
confidence of a user-item pair is

cij = 1 + αrij (2.4)

where the rate of increase, α, is a hyperparameter.
Similar to explicit feedback matrix factorisation, the goal is to find the latent

matrices U and V that factorise user preferences. The preference of a user-item pair
is thus assumed to be the product of a latent user vector ui and a latent item vector
vj such that

pij = uT
i vj =

k∑
s=1

uisvjs. (2.5)
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The optimisation objective function can now be formulated as

min1
2

∑
(i,j)∈U×V

cij(pij −
k∑

s=1
uisvjs)2. (2.6)

The objective function has several similarities with the explicit feedback matrix fac-
torisation objective function in equation 2.2, with two important differences. First,
varying confidence levels are accounted for by multiplying with cij. Second, optimi-
sation is over all user-item pairs rater than just the observed interactions.

Optimising over all user-item pairs leads to a huge number of terms which pre-
vents most direct optimisation techniques such as stochastic gradient descent, used
for many explicit feedback datasets. Thus other optimisation techniques, such as
the alternating least squares method presented in [3], must be used.

2.3 Neural networks
Neural networks are dynamic machine learning models that come in various forms
and flavours. Because of their dynamic nature, these models can be constructed to
solve a wide variety of tasks, including collaborative or content-based recommenda-
tions. In this section, we first give an introduction to the simplest possible neural
network, a linear model. We then describe the quintessential model known as the
feedforward neural network before we continue to present recurrent neural networks,
convolutional neural networks, and more specialised operations.

2.3.1 Linear models
The linear model is one of the simpler machine learning models that can be applied
to a variety of tasks in both classification, predicting one out of k classes, and
regression, predicting real-valued outputs. Given one input sample and its vector
of input features, i.e values describing it, x = (x1, x2, ..., xm), the true output y is
approximated via the model

ŷ = w0 +
m∑

j=1
xjwj (2.7)

or equivalently in matrix form, where the bias term w0 is included in w and a
constant 1 is included in x, commonly known as the bias trick [18]

ŷ = xT w. (2.8)

This dot product can be seen as a simple neural network with inputs x = (x1, x2, x3, x4)
in figure 2.1. As seen in the figure, each input is connected to the sole output ŷ
which is computed with equation 2.8 or equivalently 2.7 with m = 4.

The goal of learning is to set the parameters w, known as the weights, in an opti-
mal way given a collection of input-output pairs (x1, y1), (x2, y2), ..., (xn, yn) known
as the training data. To find optimal weights w, some performance measure that
describes how well the model is estimating the data must be used. This measure is
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x1Input 1

x2Input 2

x3Input 3

x4Input 4

1Bias

ŷ Output

Input
layer

Weights
w

Output
layer

Figure 2.1: Linear neural network with 4 inputs, a bias, and 1 output unit.

usually called the loss function or objective function. One common loss function for
regression tasks is the mean squared error loss, defined over all samples as

RSS(w) = (y−Xw)T (y−Xw) (2.9)

where y ∈ Rn is the vector of true outputs, i.e targets, and X ∈ Rn×m is the
matrix of m-dimensional inputs in the training set. The problem now becomes an
optimisation problem where the task is to find the weights that minimise the loss
function. In this case, the normal equations which can be solved analytically are
obtained by differentiating the loss w.r.t. w [19]

XT (y−Xw) = 0 =⇒ w = (XT X)−1XT y. (2.10)

2.3.2 Feedforward neural networks
The linear model presented in the previous section 2.3.1 defines the simplest neural
network architecture that can be constructed. Problematically, the linear model
can only represent linear dependencies between inputs and outputs. To represent
non-linear dependencies, basis functions φ(x) that do non-linear transformations
of inputs can be used. The transformed inputs are then used as inputs to a lin-
ear model, thus retaining the linearity with respect to the weights w. Although
this approach allows the learning algorithm to learn non-linear relationships, the
question of how to choose the transformation φ arises. Prior to deep neural net-
works, manually engineering φ was a popular approach [20]. Another approach is
to choose a very generic φ, for example an infinite dimensional mapping, such as
radial basis functions. The strategy used by neural networks is instead to learn the
transformation [20].

The term network in feedforward neural network gets its name from the chaining
of many different functions [20]. A network is formed from the fact that the input
to next function is the output from the previous one. For example, a chain of 3
layers forming a network are defined as f(x) = f3(f2(f1(x))). The final layer f3
is referred to as the output layer and the others, f2 and f1, as hidden layers. A

10
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feedforward neural network with one hidden layer predicts outputs via the following
computation

ŷ = φ(x,W)T w. (2.11)

There are two weight matrices in this network, W which is used to learn φ and
w that maps φ(x,W) to the desired output. Here, φ is defined as a hidden layer.
This architecture with 4 inputs and 5 hidden units can be seen in figure 2.2. The
model can easily be extended to have more hidden layers by further chaining more
functions of x, the more of these functions the deeper the network becomes.

x1Input 1

x2Input 2

x3Input 3

x4Input 4

φ

φ

φ

φ

φ

ŷ Output

Hidden
layer

Input
layer

Output
layer

Weights
W

Weights
w

Figure 2.2: Neural network with 4 inputs, one hidden layer of 5 units, and an
output layer with 1 unit. Bias units are omitted for clarity.

2.3.2.1 Activation functions

Consider a neural network with one hidden layer, this network can be described
by two functions chained together f(x) = f 2(f 1(x)). Let h = f 1(x) and thus
f 2(h) = hT w. If h = WT x the neural network naturally becomes a linear model
since can simply set w′ = Ww. Thus, to allow a neural network to learn non-linear
relationships, activation functions must be applied. If we instead take h = g(WT x)
where g is a non-linear activation function, the network no longer reduces to a linear
model.

In modern neural networks, and especially in networks with many hidden layers,
a common choice is to use rectified linear units, ReLU, defined element-wise as [20]

g(z) = max{0, z}. (2.12)

Other choices include squashing functions such as the sigmoid

g(z) = 1
1 + e−z

(2.13)

or tanh,

g(z) = ez − e−z

ez + e−z
. (2.14)
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−2 −1 0 1 2

−1.0

−0.5

0.0

0.5
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1.5

2.0

2.5 ReLU
Tanh
Sigmoid

Figure 2.3: Activation functions on the interval [−2.5, 2.5]

The loss functions in equations 2.12, 2.13, and 2.14 on the interval [−2.5, 2.5] can
be seen in figure 2.3.

The universal approximation theorem states that a neural network with at least
one hidden layer and any squashing activation function can approximate any con-
tinuous function arbitrarily well given that there are enough hidden units [20]. Al-
though any function can be approximated with only one hidden layer, deep neural
networks, with many hidden layers, have been shown to generalise much better to
unseen data than wide networks, networks with many units but few hidden layers
[20]. Squashing functions have also become less popular in favour of ReLU-like ac-
tivation functions in deep networks. One reason for this is the saturation of the
squashing functions, they saturate to a high value when the input is very positive
and a low value when it is negative. This makes gradient-based learning difficult
when inputs are not close to zero [20]. ReLU functions on the other hand have large
and consistent gradients as long as a unit remains active, i.e is above zero [20].

2.3.2.2 Network outputs

A big difference between neural networks in general and the simple linear model
presented in section 2.3.1 is that the non-linearity from introducing activation func-
tions causes most loss functions to become non-convex [20]. The implication of
non-convexity is that a closed form solution can no longer be derived, nor can con-
vex optimisation techniques that guarantee global convergence be used [20]. Thus,
neural networks are often trained by different forms of iterative gradient-based op-
timisers, from simple stochastic gradient descent [21] to more advanced techniques
such as Adam [22]. The loss function that is optimised can take a variety of forms
depending on what problem is solved, often the choice of the loss function is closely
related to the choice of output layer.

When regression problems are considered, the output units are often taken as
linear units without activation functions. Common loss functions include the mean
absolute error, equation 2.15, or mean squared error, equation 2.16, of the prediction
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ŷ and the target y of dimensionality m.
m∑

j=1
|ŷj − yj| (2.15)

m∑
j=1

(ŷj − yj)2 (2.16)

When considering classification tasks with k classes, the k output units are often
taken through a softmax function to represent a probability distribution over the
different classes as

exp(ŷi)∑k
j=1 exp(ŷj)

. (2.17)

The loss function to optimise, cross-entropy loss, is then taken as the negative log-
arithm of the softmax function.

Another common loss function in classification is the hinge loss defined as
k∑

j=1∧j 6=t

max(1− (ŷt − ŷj), 0) (2.18)

where ŷt is output of the unit that represents the correct class and ŷj is the output
of every other unit.

2.3.3 Recurrent neural networks
Recurrent neural networks, RNNs, are a family of neural networks that are spe-
cialised in processing sequential data. In these networks, information is persisted by
using self-loops. A wide variety of recurrent network architectures can be designed
but the focus here is on architectures that produce an output at each time step and
have recurrent connections between hidden units, as described in [20]. As seen in
figure 2.4, for input at time t, the network computes output ŷt. The loop in the
hidden unit ht allows information to be passed from one time step of the network
to the next. A recurrent neural network can be seen as multiple copies of the same
neural network, each passing a value to its successor. Unrolling the loop in figure
2.4 for four time steps produces the unrolled network in figure 2.5.

Importantly, each input at a time step shares weights with all other time steps
[20]. In the architecture described here, there are three weight matrices parameter-
ising the neural network. Input-to-hidden connections by a matrix U, hidden-to-
hidden connections by a matrix W, and hidden-to-output connections by a matrix
V [20]. In this architecture, the loss is computed for each time step as can be seen
in figure 2.6, where L is some loss function that takes target yt and prediction ŷt at
time t as input.

To compute the output of a recurrent neural network with the described archi-
tecture, the hidden state at time zero, h0, is first initialised. Then, for each discrete
time step t = 1, t = 2, . . . t = τ the update equations are applied as [20]

at = b + Wht−1 + Uxt

ht = g(at)
ŷt = c + Vht

(2.19)
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xt

ht

ŷt

Figure 2.4: A recurrent neural network taking input xt with hidden unit ht pro-
ducing output ŷt.
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ŷ1

x2
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ŷ3

x4
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Figure 2.5: Recurrent neural network with unrolled self-loop for 4 inputs.

xt
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ŷt

L
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Figure 2.6: Loss computation of a recurrent neural network.

where b and c are the bias vectors and g is an activation function, for instance tanh.
The total loss given a sequence of inputs x paired with a sequence of outputs y,
would then be the sum of all losses over all time steps [20].

The most effective recurrent neural networks for sequence modelling are called
gated RNNs [20]. These models include long short-term memory (LSTM) [23] and
gated recurrent units (GRU) [24]. A problem with traditional RNNs is that of
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learning long-term information through time, usually the gradient vanishes when
propagated over many states [20]. Gated RNNs allow networks to accumulate in-
formation over a long period of time whilst also allowing networks to decide when
the accumulated information is used and then forget it [20]. On a high level, these
models follow the architecture presented in this section but use custom layers and
functions in the hidden units.

2.3.4 Convolutional neural networks
Feedforward neural networks use matrix multiplication with weights to describe
the connection between layers, this implies that every output interacts with every
input, hence the network is fully connected. Convolutional neural networks, CNNs,
on the other hand, have local connectivity meaning that every output unit does
not necessarily interact with every input unit. Unlike feedforward neural networks,
convolutional networks have units arranged in several dimensions. For simplicity
the 1-dimensional convolution is introduced here, but the convolution operation can
be applied through more dimensions. The 1-dimensional convolutional model has
two dimensions: length and depth. An example of such an input is a sequence with
a length, that is every time step, and a depth, that is the values describing each
entity. Each layer in a convolutional network consist of a set of learnable kernels,
these are the weights of the convolutional network. These kernels are usually small
spatially (in this case length), but extends through the full depth of the input. To
compute an output, each kernel is convolved over the input. This is done by sliding
each kernel across the spatial dimension and computing dot products between the
kernel and the inputs at any position. For each convolved kernel, a 1-dimensional
activation map is produced. The full output is then produced by stacking each
activation map along the depth dimension.

The size of the output from a convolutional layer is controlled with three pa-
rameters. The first is the depth of the output which is equivalent to the number
of kernels used. The second is the stride with which the kernel is slid over the
spatial dimensions. For example, when the stride is 2, the kernels are moved two
steps in the spatial dimension at a time. Having larger strides produces spatially
smaller outputs. The third parameter is the amount of padding used around the
border of the inputs. Padding allows control of the spatial size of the outputs. Most
commonly zero padding is used. An example showing how different strides produce
different spatial outputs is shown in figure 2.7.
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0 1 2 -1 1 -3 0

-2 2 1 2 1

0 1 2 -1 1 -3 0

-2 1 1

1 0 -1

Figure 2.7: Example of spatial arrangement in one dimension. A kernel with size
3, grey, is convolved over inputs, green, to compute outputs, red. Zero padding is
taken as 1. Stride is taken as 1 in the left network and as 2 in the right network.

2.3.4.1 Causal convolutions

Consider a sequence modelling task that given an input sequence x0, . . . xt, the task
is to predict corresponding outputs y0, . . . , yt at each time step. For each output
yi, we are constrained to only use inputs that have been observed at that point
in time: x0, . . . xi. Formally the sequence modelling task is to learn a function
f : X t+1 → Y t+1 that produces a mapping

ŷ0, . . . ŷt = f(x0, . . . , xt) (2.20)

with the constraint that ŷi depends only on x0, . . . , xi. With a convolutional network
that takes an input sequence x0, . . . , xt, this function can be approximated by using
an output layer which is simply the input layer shifted by one time step [11]. A
causal convolution is a convolutional layer where the next layer has the same length
and we enforce that an output at time i is only convolved with elements from time
i and earlier [11]. This is illustrated in figure 2.8.

Input layer

Hidden layer

Hidden layer

Hidden layer

Output layer

Figure 2.8: Illustration of causal convolutions where outputs only depend on inputs
that occurred earlier in time. Adapted from [1].

2.3.4.2 Dilated convolutions

Apart from padding, stride, and kernel size, another hyperparameter that can be
introduced on the convolution operation is known as a dilation. Differently from the
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convolutions discussed previously, a dilated convolution has spaces between each cell
in the kernel, called dilations. For example, for a kernel w of size 3, a 1-dilation on
input x would compute

x0w0 + x1w1 + x2w2 (2.21)

whereas a 2-dilation would compute

x0w0 + x2w1 + x4w2. (2.22)

The difference between equation 2.21 and 2.22 is that there is a gap between applica-
tions of the convolution in the second. Formally, for a 1-dimensional input sequence
x ∈ Rn and a kernel w : {0, . . . , k − 1} → R, the dilated convolution on an element
s of the sequence is defined as

F (s) = (x ∗d w)(s) =
k−1∑
i=0

w(i)xs−di (2.23)

where d is the dilation factor and k is the size of the kernel. s − di accounts for
the direction of the past [11]. Taking d = 1 yields a standard convolution. Thus
dilations allow merging of spatial information across inputs more aggressively and
with fewer layers than regular convolutions. The effective receptive field can increase
exponentially with exponentially increasing dilation factors for each layer, whilst the
number of parameters still grows linearly [25]. The effective receptive field at a layer
i can be computed with

fi = fi−1 + (w − 1) · di (2.24)

where f0 = 1. For the example network seen in figure 2.9, with kernel size w = 2
and dilation factors di increasing with a power of two, the effective receptive field
at each layer is computed as

f0 = 1
f1 = f0 + 1 = 2
f2 = f1 + 2 = 4
f3 = f2 + 4 = 8
f4 = f3 + 8 = 16

(2.25)
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Input, d = 1

Hidden, d = 2

Hidden, d = 4

Hidden, d = 8

Output, d = 16

Figure 2.9: Illustration of exponentially increasing dilation factors. Adapted from
[1].

2.3.5 Embedding layers
The idea of embeddings is similar to the latent factor models presented in section
2.2. There, each item and user is mapped to a latent factor of some predefined
dimensionality k, here called the embedding dimensionality. This idea of mapping
entities to some vector space can be reframed to a neural network setting by con-
sidering embedding layers. Like with latent factor models, for a vocabulary of n
entities, we decide on an embedding dimensionality k and define a mapping from
each entity to a latent vector with dimensionality k. Let an entity in a vocabulary
be defined in one-hot encoded form, v ∈ {0, 1}n, the weights of an embedding layer
is then a matrix W ∈ Rn×k, and an embedding is produced by taking the matrix
product vT W ∈ Rk. This matrix multiplication can be seen as a fully connected
layer in a neural network, as seen in figure 2.10. Thus embeddings can be learnt
jointly with other model parameters when optimising neural networks.

0 1 0 0 0 0 0

R R R R R

W

Figure 2.10: Illustration of an embeddding layer that maps entities in a vocabulary
of |v| = 7 entities, seen in green, to embeddings with dimensionality k = 5, seen in
red.

2.4 Related work
In 2006, the company Netflix announced a public competition to improve their
film recommender system. The first team that could improve the performance of
the Netflix algorithm by at least 10 per cent would win a $1 million prise. The
contest created a buzz within the area of recommender systems in general and within
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collaborative filtering in particular, since the released dataset was magnitudes larger
than other publicly available datasets at that time. The most successful models
in the competition, as well as the winning team which reached the 10 per cent
improvement in 2009, used variants of the matrix factorisation methods presented
in section 2.2. Since then, matrix factorisation models have remained state-of-the-
art in many recommendation domains [15].

Even though many matrix factorisation techniques were designed for explicit
feedback in datasets like the Netflix prize, they can be used on implicit feedback
with some modifications as presented by [3] and seen in section 2.2.2. The goal of
implicit feedback is often not to produce a single value but a ranked list, however
[3] does not directly optimise the model parameters for ranking. In 2009, a generic
optimisation criterion for personalised ranking as well as a generic learning algorithm
to optimise the criterion was presented in [5]. This generic method can be used
to optimise implicit feedback matrix factorisation models directly on ranking. The
main idea to optimise for ranking is to sample implicitly negative items and compute
the loss pairwise between positive and sampled items, an idea that has been further
researched and expanded on in [26] [27].

In recent years, deep learning has revolutionised several artificial intelligence
tasks such as image analysis and natural language processing. Applying these tech-
niques to recommender systems has become an increasingly popular research area
with no sign of stagnating [9]. Recent recommender systems based on deep learning
techniques have gotten significant attention by outperforming several conventional
models, often based on matrix factorisation techniques. Deep models are able to
capture complex non-linear relationships between users and items, something tradi-
tional models often struggle with [9]. Due to the recent advances in deep learning
in general, many companies have resorted to deep learning for further enhancing
the quality of their recommendations. Following is a summary of work within deep
learning related to ours. For a more comprehensive review of deep learning in rec-
ommender systems we refer to [9].

A notable deep learning hybrid model for video recommendations on YouTube
is [28]. In their model, implicit feedback is used to train a recommender system
in two stages. The first stage, which is made up of a deep feedforward neural
network reassembles a more complex non-linear matrix factorisation technique. The
second stage, which is also based on a deep feedforward neural network incorporates
content information as well. In their approach, the first stage serves as a candidate-
generation network aimed at finding a set of candidate items in a large item corpus.
The second stage is aimed at ranking the produced candidates. As the system takes
both collaborative and content information into account it is essentially a hybrid
recommender system based on deep learning.

The work of [7] investigates recommendations on sequential data, more specifi-
cally session-based recommendations. The task they are looking to solve is to predict
the next item a user will click or buy in a session. Their approach is based on recur-
rent neural networks for next-item predictions. The follow-up work in [8] proposed
several ideas to further improve the model and reach state-of-the-art predictive per-
formance.

A different approach to make recommendations on sequential data is presented
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in [29], where convolutional neural networks are used for the task of sequence-aware
recommendations. [29] uses a 3-dimensional convolutional network aimed at inte-
grating content features. Their network architecture does not use causal or dilated
convolutions but instead treats the problem as a classification task where a fully
connected layer is taken as the last layer before a softmax function is applied to get
class scores. They further constrain their experiments to relatively short sequences
of maximum 7 clicks.

On the general task of sequence modelling with neural networks, [11] compares
recurrent neural networks with convolutional neural networks on a wide range of se-
quence modelling tasks. They present a general convolutional neural network called
temporal convolutional network (TCN). Their results show that the TCN model,
based on causal dilated convolutions, can outperform recurrent neural networks,
which have widely been considered the go-to models for sequence modelling tasks.
TCN has several similarities with other convolutional neural networks used in se-
quence modelling tasks. One example of a similar network architecture is WaveNet
[1], a deep neural network for generating raw audio.
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Two-stage sequence-aware

recommender system

This chapter begins by giving a general overview of a two-stage approach to sequence-
aware recommendations. The two stages are then presented in detail, first a candi-
date generation network and then a ranking network.

3.1 Approach
The amount of different methods and algorithms available for solving recommen-
dation problems is huge. Since the problem domain here is to do sequence-aware
recommendations from implicit feedback, the ultimate goal of such a recommender
system is to provide a user with a ranked list of items he or she will most likely be
interested in. To achieve this goal, our choice of recommender system architecture
is based on a two-stage approach similar to [28]. Such a two-stage approach has
been shown successful in implicit feedback domains with large item corpora, and it
enables the capture of both short-term as well as long-term user preferences. The
first stage is candidate generation, where the task is to find a general set of likely
candidates a user may be interested in. The second stage is ranking, where the task
is to take the candidates from the first stage and use a more precise machine learning
model to rank them. As there are much fewer items in the second stage, additional
sources of information about items and users can be used.

To solve the candidate-generation problem, a candidate generation network that
is sequence-aware and based purely on collaborative information, user-item inter-
actions, is considered. In this stage, a convolutional neural network is used as the
underlying model. The items produced by the candidate generation network then
form inputs to a ranking network that takes content features and additional sources
of information into account. The underlying ranking model is based on a deep
feedforward neural network. This two-stage approach forms a hybrid recommender
system based on a cascade approach. The architecture can be seen in figure 3.1.
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Figure 3.1: Two-stage recommender system architecture. Orange diamonds rep-
resent neural network models, taking inputs described in green rectangles.

3.2 Candidate generation stage

Solving a ranking problem directly on a large number of items imposes a problem:
the computational complexity during training and prediction increases linearly with
the number of items in the corpus. For the task of item recommendations, the
number of items to rank is often synonyms with the number of available items and
can thus be several hundreds of thousands. In order to reduce the number of items
to rank, the use of a candidate generation network that extracts a subset of items
from an item corpus can be used. The candidate generation network’s task is to
produce a set of item candidates given sequences of user interactions as input.

3.2.1 Learning setting

To do efficient candidate generation over many items, only collaborative informa-
tion is considered in this stage. That is, the input is only based on a set of inter-
actions made by a user. The interactions are viewed sequentially, taking the time
of the interaction into account. Given the historical item interactions of a user
U = {v1, v2, . . . , vt}, the learning task in the candidate generation stage is to predict
the next item vt+1 a user will interact with.

Each item, represented by an id, is mapped to a latent representation using
an embedding layer with dimensionality d, νi ∈ Rd. These latent representations,
or embeddings, are jointly optimised with model parameters during training, thus
allowing the model to learn similarities and relations between items. The task of
the model is to learn an output embedding µt ∈ Rd at time t as a function of user
history such that the embedding can be used to discriminate among items.
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3.2.2 Network architecture
The general neural network architecture can be seen in figure 3.2. The basis of the
architecture is several layers of 1-dimensional causal dilated convolutions. Consider-
ing a sequence with t interactions, the first step taken by the network is to convert
each of the items in the t interactions to their corresponding embedding by taking
them through an embedding layer. For embeddings of dimensionality d, the input to
the first convolutional layer is of shape t× d. Stride is taken as 1 and padding is set
so that the spatial output dimensionality is also t. d kernels are applied in each layer
to produce d stacked activation maps, making the final output of each convolutional
layer t × d. By using causal convolutions and retaining the spatial dimensionality,
the final convolutional layer produces a d-dimensional output embedding for each
time step in the sequence, µ1, . . . , µt. The output embedding used to make a pre-
diction over the whole sequence is thus in the last slice t, where all interactions
have been seen by the network. Each hidden layer increases the dilations with a
factor of 2 to exponentially increase the receptive field of the network. Residual
connections, introduced in [30], are used between each layer. If a layer computes
the function f(x), then with a residual connection the effective output of the layer
is f(x) + x. Using residual connections allow layers to learn modifications to the
identity mapping instead of learning the full transformation [11]. These connections
have repeatedly been shown to benefit deep networks by making optimisation easier
[30].

v1 v2 v3 v4 ... vt−1 vt

ν1 ν2 ν3 ν4 ... νt−1 νt

...

...

µ1 µ2 µ3 µ4 ... µt−1 µt

..

.

User interaction sequence

Output embeddings

Causal dilated
convolutions

Embeddings

Figure 3.2: Candidate generation neural network taking a sequence of t interactions
as input. Residual connections are showed with dashed green lines.
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3.2.3 Efficient training
To compute a score for each item during training, the dot products between the
output embedding and every item embedding in the corpus must be computed.
When there are several thousands of items in the corpus this becomes very expensive
to compute, therefore an adaptive hinge loss is used to handle this issue. First, the
dot product between the output embedding and the embedding of the target item
is computed to get a positive prediction. Second, a set of implicitly negative items,
N , is sampled, that is, items that a user has not interacted with. Next, the dot
products between the output embedding and the item embeddings of the negative
samples are computed. The negative item that has the highest score is then taken
through a regular hinge loss, see 2.18. This loss does not only speed up the loss
computation but it has also been shown that sampling implicitly negative items is
a good way to train implicit feedback recommender systems, see [5]. Formally the
loss function Li at time i is defined as

pi = νT
i+1µi

ni = maxj∈N (νT
j µi)

Li(pi, ni) = max(1− (pi − ni), 0)
(3.1)

where pi is the positive prediction, i.e dot product between target item embedding
and output embedding, and ni is the maximum negative prediction among the sam-
pled items, i.e the negative prediction violating the implicit rank the most.

To increase the size of a dataset of sequences, every sub-sequence of a sequence
could be used as an input to the network and then simply padded with zeros when
it is shorter than the desired sequence length. Although, since the presented ar-
chitecture is fully convolutional, it computes an output for every time step. Thus
instead of using every sub-sequence, the outputs can be used to compute the loss
over all sub-sequences. This effectively resembles increasing the sample size without
requiring additional computing power and memory to convert and process the new
samples. Formally, equation 3.1 is computed for the output embedding at each time
step and then averaged as

L = 1
t

t∑
i=1

Li(pi, ni). (3.2)

3.2.4 Efficient predictions
The adaptive hinge loss described in the previous section 3.2.3 solves the problem
of efficiently training the candidate generation network, but it does not speed up
the prediction phase. Since the ultimate task is to select the k best candidates,
computing dot products between the output embedding and every item embedding
in the corpus would still be required during prediction. Instead, a nearest neighbour
index, shown successful in [28], can be used in the prediction phase. After training,
every learnt item embedding together with its corresponding id is added to an index.
Thus during serving, instead of computing every dot product, the output embedding
is used to query the index for the approximate k nearest neighbours in embedding
space.
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3.3 Ranking stage
With candidates from the candidate generation stage available, the next step is to
learn another model to rank them. With much fewer items in this stage, the model
can incorporate item metadata and other user interactions in addition to the user-
item interactions used in the previous stage. Ranking is considered directly in the
domain of item features, such that each item is described by a vector of features.

3.3.1 Learning setting
The task of learning to rank is to find an unknown scoring function for a joint feature
map of inputs f(x,y). Here x are input features that describe context such as user
history and y are item features of a candidate. The output of the function can be
used as a ranking system S by simply sorting results of each item candidate y in
the candidate set Y as

S(x, Y ) = argsorty∈Y {f(x,y)}. (3.3)

Let rank(y|S(x, Y )) be the position of y in the ranking S(x, Y ). Since rank is a
discontinuous step-function and thus can not be differentiated, the rank function is
upper bounded with the hinge loss [31]

rank(yi|S(xi, Yi))− 1 =
∑

y∈Yi∧y 6=yi

I(f(xi,y)− f(xi,yi) > 0)

≤
∑

y∈Yi∧y 6=yi

max(1− (f(xi,yi)− f(xi,y)), 0)
(3.4)

applying a monotonically increasing function λ on both sides, the inequality still
holds and the function upper bounds the average rank of the system S for n samples

1
n

n∑
i=1

λ(1 +
∑

y∈Yi∧y 6=yi

max(1− (f(xi,yi)− f(xi,y)), 0)). (3.5)

One monotonically increasing function that could be used as λ is the discounted
cumulative gain

λ(r) = −1
log(1 + r) (3.6)

or simply the average rank
λ(r) = r. (3.7)

3.3.2 Network architecture
The task of the neural network is to approximate the scoring function f(x,y) used by
the ranking system S in equation 3.3. The network architecture used to approximate
the scoring function is seen in figure 3.3 where NN(φ(x,y)) represents the real-
valued scalar output of the neural network and φ(x,y) is a joint feature map of
context x and candidate item y. All layers are feedforward and the network follows
a common tower pattern where the input layer is the widest and following layers
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3. Two-stage sequence-aware recommender system

decrease in width. ReLU activation functions are applied in all but the last layer.
In equation 3.5, f(x,y) is replaced with the network output NN(φ(x,y)) to get the
loss function with respect to the network parameters as

1
n

n∑
i=1

λ(1 +
∑

y∈Yi∧y 6=yi

max(1− (NN(φ(xi,yi))−NN(φ(xi,y)), 0)). (3.8)

...

...

..

.

...

φ(x,y)

NN(φ(x,y))

Figure 3.3: Feedforward neural network architecture with a variable number of
hidden layers. The input consists of a joint feature map of the context and a candi-
date item φ(x,y), the produced output is a scalar NN(φ(x,y)).

3.3.3 Training strategy
Differently from standard neural network training, the loss function does not de-
compose into a sum over input-output pairs (xi,yi) and the non-linear function λ is
thus problematic. As proposed in [31], training is considered not in the domain of
input-output pairs, but over interaction instances. An interaction instance consists
of a context xi and a set of candidates Yi.

To train over interaction instances, the neural network loss computation scheme
proposed by [31] is used. The accumulated forward pass for an interaction instance
consists of several forward passes through the neural network, once for each can-
didate y ∈ Yi. After each candidate has been fed through the neural network,
the accumulated loss is computed by combining outputs with a pairwise hinge loss
between the target item and every other candidate item. The resulting loss with
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|Yi| = m candidate items and yt as the target item is thus computed as

L(h) = λ(1 +
m−1∑
j=1

hj)

hj = max(1− (NN(φ(xi,yt))−NN(φ(xi,yj))), 0)
(3.9)

where hj is the pairwise hinge loss between the target yt and a candidate yj. The
process of computing the accumulated loss is illustrated in figure 3.4.

NN(φ(x,yt))

NN(φ(x,y1))

NN(φ(x,y2))

NN(φ(x,ym−1))

h1

h2

hm−1

L

...

...

Figure 3.4: Accumulated loss computation scheme for an interaction instance
where yt is the target item and y1 . . .ym−1 are the other candidate items. The
pairwise hinge loss between the target’s output and every other candidate’s output
is first computed. Then, the pairwise hinge losses serve as input in L, equation 3.9.
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4
Experimental setup

In this chapter, the datasets used for experiments are first presented. Then, baselines
and evaluation metrics used in experiments are introduced before the implementation
is discussed.

4.1 Sellpy market dataset
The main dataset used to evaluate the two-stage recommender system was the Sellpy
market dataset. The dataset is comprised of items viewed by users. These views
were converted to sequences by sorting the interactions of each user by time. The
user-item views were split into a train set 90% and a test set 10%. The split is
time-based, meaning that any interaction in the test set is at least as late as the
latest interaction in the train set. The advantage of this split is that it reassembles a
more realistic setting than randomly splitting user-item views which would break the
sequential nature of the data. Further, sequences of length less than 2 were removed
from the dataset since predictions can not be made from empty sequences. From
the nature of collaborative filtering, items that were in the test set but not in the
training set were also removed. Since the Sellpy market dataset has many items in
contrast to the number of interactions, two datasets with a reduced number of items
were also considered. In the clustered dataset, items are clustered into groups based
on their category, size, type, and brand. In the reduced dataset, items are clustered
into groups based only on their category and size. These datasets were preprocessed
in the same way as the regular, full, dataset. The datasets after preprocessing are
summarised in table 4.1.

Table 4.1: Sellpy market datasets summary.

Dataset Type Users Items/Clusters Interactions

Full Train 9602 232,997 897,691
Full Test 2941 37,326 69,441
Clustered Train 9587 20,066 882,597
Clustered Test 3287 9381 96,269
Reduced Train 9587 200 882,597
Reduced Test 3297 197 97,493
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4.1.1 Item features
In the ranking phase, features of user-item interactions are considered as inputs.
Every item on Sellpy market is described by a set of categorical and numerical
attributes, summarised in table 4.2. To make features that can be used as inputs in
a ranking model, the item attributes were fed through a pipeline of preprocessing
steps as follows:

• Vectorisation: This step converts all categorical attributes into sparse one-
hot encoded features.

• Scaling: This step scales features to the range [0, 1].
• Variance clipping: Features that have the same value in more than 99.9%

of the samples are removed.
• Normalisation: Features are normalised to have unit variance.
• Dimensionality reduction: Features are transformed to another lower di-

mensional space where 90% of the original variance is retained.

Table 4.2: Item attributes available in the Sellpy market dataset.

Name Type Description

Category Categorical Primary category of item
Subcategory Categorical Subcategory of item
Subsubcategory Categorical Subsubcategory of item
Current value Float Current value
Estimate bid Float Estimated likelihood of bid
Condition Categorical Item condition
Colour Categorical Item colour
Brand Categorical Item brand
Size Categorical Size of item
Material Categorical Item material
Defect Categorical Item defect
Original price Float Purchase price

4.1.2 Other sources
As described in section 3.1, the ranking network can also take additional sources of
information. To capture long-term user tastes, order information was taken as an
additional source of information in the ranking stage. This was done by considering,
for each sequence of interactions, the latest items ordered by that user at that point
in time. The items in these orders were converted to features, following the same
pipeline described above in section 4.1.1. Finally, the order features were averaged
to make an additional input signal in the ranking network.
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4.2 Benchmark datasets

Two benchmark datasets were considered for evaluation and comparisons.
The first benchmark dataset is RecSys Challenge 2015 [32] which consists of

sessions of click-streams from an e-commerce site that sometimes end in purchase
events. Only the provided training set was used and no difference was made if a
sequence of interactions ended with a purchase. The dataset was split into a train
set and a test set with the same procedure described in [7]. The test set is made
up of sessions of the subsequent day. The dataset was split so that a session is
either completely in the train set or test set. Any sessions containing items that
are in the test set but not in the train set were filtered out. The minimum session
length was taken as 2, removing sessions with only one interaction. Due to memory
requirements, sessions longer than 80 interactions were also filtered out. Filtering
out the long sequences left the test set unaffected but removed around 1000 sessions
from the train set, a small amount considering the size of the dataset. Sequences
with fewer than 80 interactions were padded with zeros. A summary of this dataset
can be seen in table 4.3.

Table 4.3: RecSys dataset summary.

Type Sessions Items Interactions

Train 7,965,295 37,483 31,532,116
Test 15,324 6751 71,222

The second benchmark dataset is the Movielens dataset [33]. This dataset con-
sists of user-movie ratings that were converted to sequences of implicit feedback
by, for each user, sorting the times of movie ratings and then only considering the
movie, not the actual rating. The dataset was split into a train set 80%, and a
test set 20%. Any items that were only in the test set were removed. A time-split
was employed such that interactions in the test set are always at least as late as
the latest interaction in the train set. The minimum session length was taken as
2, filtering out users that have only interacted with one item. A summary of this
dataset can be seen in table 4.4.

Table 4.4: Movielens dataset summary.

Type Users Items Interactions

Train 5400 3662 799,998
Test 1739 3467 199,844

31



4. Experimental setup

4.3 Baseline models
A set of baseline models were considered for comparison with our models. Different
baselines were used on different datasets and models, following is a summary of all
baseline models used in the experiments.

• POP: A simple popularity model, always recommending the most popular
items.

• MF: Standard matrix factorisation for implicit feedback, trained under rank-
ing loss. See [5].

• POOL: A neural network that is similar to the candidate generation net-
work, but instead of using convolutions, averages item embeddings over each
sequence to compute the output embedding. See [28].

• LSTM: A neural network that is similar to the candidate generation network,
but computes the output embedding with a long short-term memory recurrent
neural network instead of with a convolutional network. See [23].

• RNN: A recurrent neural network for session-based sequence prediction pre-
sented in [7].

4.4 Evaluation metrics
For evaluation of the candidate and ranking networks as well as for the baseline
models, the three metrics summarised below were considered. The term entity is
used to denote either a specific item or a cluster class. All metrics are defined for k
samples and rank(i) denotes the rank of entity i.

• Prec@n ∈ [0,1]: Percent of correct next entity in the top n. Formally defined
in equation 4.1. Higher value is better.

• AvgRank ∈ [1,m]: The average rank of the correct entities among a corpus
of m entities. Formally defined in equation 4.2. Lower value is better.

• MRR@n ∈ [0,1]: The mean reciprocal rank at n. Formally defined in equa-
tion 4.3. Higher value is better.

Prec@n = 1
k

k∑
i=1

1, rank(i) ≤ n.

0, otherwise.
(4.1)

AvgRank = 1
k

k∑
i=1

rank(i) (4.2)

MRR@n = 1
k

k∑
i=1


1

rank(i) , rank(i) ≤ n.

0, otherwise.
(4.3)

4.5 Implementation
All implementation was done in Python 3.6.5. Python was selected as programming
language due to it being fast to prototype machine learning models with. The main
data processing was made with Numpy, Scipy, and Pandas libraries, due to their
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efficient C implementations of numerical calculations and matrix operations. Pre-
processing was performed with methods from the general machine learning library
scikit-learn.

The neural networks were implemented in PyTorch, a Deep learning framework
for Python. PyTorch was preferred ahead of other Deep learning frameworks such
as TensorFlow or Theano due to its flexibility from dynamically building the neural
network structure. For the candidate generation stage, Spotlight, a library built
on top of PyTorch was used due to its implementations of sequence models with
embeddings [34].

The use of PyTorch enables the machine learning models to be run on GPU
rather than CPU. Since neural networks are essentially matrix products, their op-
erations can be parallelised. Generally, GPUs have many more cores than CPUs
which enables more parallelisation, which in turn makes neural network training
faster. Thus an Nvidia Tesla K80 GPU with 12GB of RAM was used to run the
experiments.
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5
Results

In this chapter, results on baseline models and our recommender system are pre-
sented. Results are presented for two types of experiments, the first is experiments
focusing only on convolutional neural networks for sequence-aware recommendations.
The second is experiments on the two-stage recommender system.

5.1 CNN for sequence-aware recommendations
For experiments on convolutional neural networks used directly for sequence-aware
recommendations, the two benchmark datasets were considered to quickly run ex-
periments and easily compare results with other models.

5.1.1 Varying hyperparameters
To investigate hyperparameter effects of convolutional neural networks for sequence
prediction tasks, the Movielens dataset was used. Since it is a relatively small
and general dataset, experiments could be run quickly. For all experiments on this
dataset, if nothing else is mentioned, we trained the networks for 15 epochs with
the gradient-based optimiser Adam, see [22], using initial learning rate 1 · 10−3,
embedding dimensionality 64, batch size 1024, L2-regularisation 1 · 10−6. ReLU
was taken as the activation function for the convolutional neural networks. The
maximum sequence length was set to 30. Longer sequences were split into several
sequences and shorter sequences were padded with zeros.

First, we ran experiments with 6 convolutional neural networks: CNN1...CNN6.
The networks share all hyperparameters except network depth and dilation factor.
The first network, CNN1, comprises one layer with dilation factor 1, i.e a standard
convolutional network with a single layer. For each network with increasing index,
one more hidden layer was added with dilation factor times two. So CNN2 has
dilation factors 1, 2 and CNN3 has 1, 2, 4, and so forth. Each CNN was trained on
sequences of interactions with maximum length varying from 10 to 50, increasing
by 10. By setting a higher maximum sequence length, the number of samples is
decreased but each sample is more expressive as the model receives a longer history
to base its predictions on. The CNN results were compared with two baseline models,
POOL and LSTM, that were trained with the same hyperparameters. Results on
the Movielens test set are shown in figure 5.1.

In figure 5.1a and 5.1b we note that the precision is generally better for shorter
sequence lengths. We can also note that as depth and dilation factors increase, the
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(a) Comparison of Prec@100 between
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(b) Heat plot of Prec@100 for varying
sequence lengths, 10 to 50, and net-
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CNN1 to CNN6.
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Figure 5.1: Prec@100 for varying maximum sequence lengths on the Movielens
dataset.

performance on Prec@100 also increases in almost all cases. We note from figure
5.1c that CNN4 with dilation factors 1, 2, 4, 8 outperforms both the POOL and
the LSTM model for this dataset and parameter setting. We also see that as the
maximum sequence length increases, implying that the number of samples decreases,
the predictive performance goes down. From the figures we also see that different
models decay in performance at different rates. Deep CNN models decay at a lower
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rate than shallow CNN models as well as POOL and LSTM models.
We also experimented with embedding dimensionality, keeping all other param-

eters fixed and varying the dimensionality from 16 to 256 increasing by a factor
of 2. Both the POOL and CNN4 models were tested, as seen in figure 5.2. We
note that varying the embedding dimensionality has a large effect on the predictive
performance of both models.
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Figure 5.2: Comparison of Prec@100 between POOL and CNN4 models when
embedding dimensionality increases on the Movielens dataset.

Finally, keeping all other parameters fixed, we experimented with kernel size and
dilation factor, thus seeing the effect of changing the receptive field of the network
in two ways. We varied kernel size for k ∈ {2, 3, 5, 7}, and layers by both increasing
dilation factors with powers of two and without increasing dilation factors. The
results can be seen in figure 5.3. From the figures we see that increasing the receptive
field, by either using wider kernels or higher dilation factors, has a large effect on
the network’s predictive performance up to the point where the whole sequence is
covered.
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Figure 5.3: Prec@100 for different kernel sizes and changing dilation factors.

5.1.2 Comparing with state-of-the-art
To compare the convolutional neural network for sequence prediction with state-of-
the-art, the RecSys dataset was considered. As this dataset was used in [7] with
recurrent neural networks, we can easily compare our model to their models and
baselines.

We ran a hyperparameter search over POOL and CNN models by randomly
selecting combinations of hyperparameters from a predefined sampling space. The
sampling space was defined over learning rates (LR), L2-regularisation strength (L2-
Reg), activation function (AF), as well as network depth and dilation factors for
the CNN network. The batch size was fixed at 1024 if the network depth was
smaller than 6 layers and 512 otherwise due to memory constraints. The embedding
dimensionality was kept fixed at 64 for memory requirements. Kernel size was
taken as 3, thus only increasing the receptive field by having more layers and larger
dilation factors. Adam [22] was used for optimisation. The hyperparameters of the
best performing model on a portion of the training set not used for training, the
validation set, were selected and a new model was trained on the full training set.
Results on the test set compared to baseline models are summarised in table 5.1.

As seen in table 5.1, the CNN model outperforms POOL in all four metrics.
Interestingly, the CNN model also outperforms the RNN model from [7] by a small
margin on Prec@20 as well as on MRR@20.
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Table 5.1: Baseline results from [7], and in bold results from our experiments on
the RecSys dataset.

Model Prec@20 MRR@20 Prec@100 LR L2-Reg AF Dilations

POP 0.005 0.0012 - - - - -
MF 0.2574 0.0618 - - - - -
RNN 0.6322 0.2693 - - - - -
POOL 0.5070 0.2138 0.7389 5 · 10−4 1 · 10−6 - -
CNN 0.6505 0.3089 0.8211 5 · 10−4 1 · 10−7 tanh 1,2,4,8,16,32

5.2 Two-stage recommender system
For evaluation of the two-stage recommender system, the Sellpy market datasets
were the only datasets considered. For the ranking stage, only the full Sellpy market
dataset was used as it was the only dataset that had content information, required
in the ranking stage.

5.2.1 Candidate generation stage
To select the best performing candidate generation network we ran a hyperparameter
search over POOL and CNN models on all Sellpy market datasets by randomly
sampling combinations of hyperparameters from a predefined space. We fixed the
maximum sequence length to 30, splitting longer sequences and padding shorter
sequences with zeros. The sampling space was defined over learning rates (LR), L2-
regularisation strength (L2-Reg), embedding dimensionality (ED), as well as network
depth, dilation factors, and activation functions (AF) for the CNN. Kernel size was
taken as 3. Batch size was taken as 2048 and Adam [22] was used as the optimiser.
The best performing models on a portion of the training set not used for training,
the validation set, were selected. The results of the best models on the test set are
shown in table 5.2, their associated parameters are summarised in table 5.3.

As seen in table 5.2, the predictive performance is significantly increased for
both models when using the clustered dataset. POOL outperforms CNN by a large
margin on the full Sellpy market dataset but the gap becomes smaller when the
number of entities is smaller. In the reduced dataset, CNN outperforms POOL on
both metrics.
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Table 5.2: Candidate generation results for a POOL baseline and a CNN model
on the Sellpy market datasets. Ratio is the number of interactions divided by the
number of items or clusters, i.e the average number of interactions for each item or
cluster.

Dataset Model Prec@100 Prec@20 Prec@5 Prec@1 Ratio

Full POOL 0.3138 0.2249 - - ≈ 3.85
Full CNN 0.1824 0.1384 - - ≈ 3.85
Clustered POOL 0.5881 0.4047 - - ≈ 44
Clustered CNN 0.5429 0.3533 - - ≈ 44
Reduced POOL - - 0.7188 0.3802 ≈ 4412
Reduced CNN - - 0.7457 0.4139 ≈ 4412

Table 5.3: Model parameters on the Sellpy market datasets.

Dataset Model LR L2-Reg ED AF Dilations

Full POOL 1 · 10−2 1 · 10−7 128 - -
Full CNN 5 · 10−3 1 · 10−7 64 ReLU 1,2,4,8
Clustered POOL 1 · 10−2 1 · 10−7 128 - -
Clustered CNN 5 · 10−3 1 · 10−7 64 ReLU 1,2,4,8
Reduced POOL 5 · 10−3 1 · 10−7 64 - -
Reduced CNN 1 · 10−2 1 · 10−7 128 tanh 1,2,4,8,16,32

5.2.2 Ranking stage
In the ranking stage, we only considered the full Sellpy market dataset as clusters
have no metadata. The input to the ranking stage of the recommender system was
based on two sources of data. Recall section 3.3 where the input to the network is
defined as the joint feature map of context x and candidate y. Here we define the
context as the average of the item features of the 29 latest item views (the 30th item
is the target item), concatenated with the average of the 10 latest item orders at the
time of each view. y is the item features of the candidate item. We make the joint
feature map φ(x,y) by concatenating x and y. The dataset was produced by, for
each sub-sequence of interactions, retrieving a candidate set of 100 items from the
nearest neighbour index of the best candidate generation model, which was shown to
be a POOL model. Target items that were not part of the 100 generated candidates
were added to the candidate set.

The ranking network was tuned by running a hyperparameter search in a prede-
fined space. Parameters that were varied was network depth and hidden layer sizes
as well as learning rate (LR) and L2-regularisation strength (L2-Reg). Batch size
was kept fixed at 2048. Discounted cumulative gain was applied as λ on the hinge
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loss function, see section 3.3. The best performing model was selected on a portion
of the training set not used for training, the validation set. The results on the test
set for the best model found during hyperparameter search is summarised in table
5.4.

Table 5.4: Results of the best performing ranking network on the full Sellpy market
dataset.

Model AvgRank LR L2-Reg Hidden layers

Ranking network 26.25/100 5 · 10−3 1 · 10−6 512,256,128

The best ranking network was compared directly with the candidate generation
network. By only considering the ≈ 31% of interactions in the test set where the
target item was included in the 100 candidates, we could compare the average rank
of the candidate generation network with the ranking network. To produce a rank-
ing with the candidate generation network, the network’s output scores of the 100
candidates were sorted. The average rank comparison on the subset of the test set
can be seen in table 5.5.

Table 5.5: Average rank comparison between candidate and ranking networks for
a subset of the test set.

Model AvgRank

Candidate network 19.04/100
Ranking network 26.76/100
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6
Discussion

This chapter discusses the experimental results presented in the previous chapter.

6.1 CNN for sequence-aware recommendations

Experiments on the Movielens dataset empirically show how predictive performance
of CNN models is affected by varying hyperparameters. As seen in figure 5.1a
and 5.1b, very shallow networks that are not able to cover the full input sequence
perform considerably worse than deeper models with dilations. However, increasing
depth and dilation factors only yields an increase in precision to a certain point,
an expected result since larger expressiveness increases the likelihood of overfitting.
The comparison between CNN4, POOL, and LSTM for varying sequence lengths,
figure 5.1c, shows that CNN4 outperforms the other models for all sequence lengths
on this dataset. That the POOL model performs worst is expected since it ignores
the sequential nature of the data and simply averages the sequences. Thus, as
the size of the dataset decreases, the predictive performance of the POOL model
drops rapidly. CNN4s predictive performance decays at a slower rate than the other
models, suggesting that the network is good at learning from long sequences. That
LSTM is also outperformed by CNN4 on all sequence lengths is more surprising and
may indicate that the LSTM requires a larger dataset than CNN4. It is also possible
that the LSTM parameters could be tuned to reach performance comparable with
the CNN.

Experiments on embedding dimensionality, figure 5.2, suggest that increasing
the dimensionality yields higher predictive performance for both POOL and CNN
models. As higher embedding dimensionality allows models to describe items with
more parameters, these results are expected. It should however be noted that higher
embedding dimensionality significantly increases training time as well as memory re-
quirements. Since each item is mapped to a vector in the embedding dimensionality,
the memory requirement is a product of the number of items in the corpus and the
embedding dimensionality. Further, since the embedding dimension is the depth
dimension in all convolutional layers, the number of kernels in each layer is also the
same as the embedding dimensionality.

The receptive field of the CNN is changed with two parameters in figure 5.3.
The impact of using dilation factors to rapidly increase the receptive field without
adding more layers, especially for smaller kernels, can be empirically seen in the
predictive performance. Differently from recurrent neural networks where memory
is built up as the sequence evolves, this design allows control of how much memory
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the model is taking up and adds flexibility to control the size of the receptive field
which can be beneficial in several settings [11].

Experiments on the RecSys dataset, table 5.1, shows that convolutional neu-
ral networks can reach comparable results with state-of-the-art for sequence-aware
recommendations. The convolutional network reached better performance than the
best recurrent neural network from [7] in both metrics. As convolutional neural
networks based on causal dilated convolutions have been shown successful in other
sequence-modelling tasks [11], this result further strengthens the use of convolu-
tional neural networks as an alternative to recurrent neural networks for sequence
modelling and shows that they can be successfully applied as sequence-aware rec-
ommender systems as well.

6.2 Two-stage recommender system
Experiments in the candidate generation phase on the Sellpy market datasets, table
5.2, reveal that the CNN performs worse than the POOL baseline on the full as well
as the clustered dataset, directly contradicting the results found on the benchmark
datasets. Only for the reduced dataset does CNN achieve better performance than
POOL. The poor performance of the CNN model may be explained by the large
item vocabulary of the Sellpy market dataset. On the full dataset, the number
of interactions in the training set is only ≈ 800, 000 whilst the number of items is
≈ 200, 000. For the clustered dataset the number of entities to choose from is reduced
to ≈ 20, 000, which is still relatively high with respect to the number of interactions.
When the number of entities to choose from is reduced, the performance gap between
POOL and CNN models also decreases, which may suggest that the CNN model
requires more data than the POOL model to learn good representations.

The ranking network was compared with the candidate generation network by
considering the implicit rank of sequences where the target was included in the 100
predicted candidates, table 5.5. The implicit rank computed with the candidate
generation network beat the ranking network with almost 8 positions on average.
These results are surprising since the ranking network is trained to rank between a
much smaller set of items than the candidate generation network. A possible expla-
nation is that the item features are not descriptive enough for the ranking network
to distinguish between similar candidates. The candidate generation network does
not suffer from this problem since the embeddings describing the items are learnt
during training. To avoid this issue, the embeddings from the candidate generation
step could be added as features.

The ranking network is harder to evaluate than the candidate generation network
since all that is known is that the rank of the clicked item should be highest. The
ranks of all other items do not contribute to the evaluation since users preferences
on them are unknown. As the typical task is to display the top-n ranked items to a
user, online A/B testing would give a better estimate of the model’s performance.
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7
Conclusion

Based on the results and the discussion in the previous chapter, this chapter relates
back to the research questions and draws conclusions about the findings. Finally,
suggestions for potential future work are discussed.

7.1 Research questions
To answer the research questions, a two-stage recommender system was designed,
built, and tested. The model provides recommendations in two stages, in the first
with a convolutional neural network for sequence-awareness, and in the second with
a feedforward neural network for candidate ranking.

The thesis is concluded by reflecting back to the research questions. The main
research question was

How can convolutional neural networks be used in sequence-aware
recommender systems?

With our two-stage approach, we showed how convolutional neural networks can
be used to incorporate sequential data in recommender systems. Although used for
candidate generation in the two-stage approach, the results indicate that convolu-
tional networks can perform well as stand-alone recommender systems as well, for
instance in session-based recommendations.

The first sub research question was

How does the predictive performance of sequence-aware recommender
systems based on convolutional neural networks differ from other

sequence-aware models?

The predictive performance of convolutional neural networks was compared to two
other models on the Movielens dataset, namely POOL and LSTM. The convolutional
neural network was shown to outperform both models for varying sequence lengths
on this dataset, suggesting that for some datasets, convolutional neural networks can
outperform sequence-aware models based on feedforward or recurrent architectures.

The predictive performance of convolutional neural networks was also compared
with a custom recurrent neural network for the task of session-based recommen-
dations on the RecSys dataset. These experiments showed that the convolutional
neural network outperformed the recurrent neural network, which architecture has
shown state-of-the-art results for session-based recommendations. Thus concluding
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that convolutional neural networks can achieve results comparable to state-of-the-art
for sequence-aware recommender system tasks.

For domains with very large item corpora, such as in the full Sellpy market
dataset, convolutional neural networks showed worse performance than the POOL
baseline. The performance of the CNN increased and eventually exceeded the POOL
baseline as the number of entities to predict decreased. For sequence-aware recom-
mendations in domains with very large item corpora with respect to the size of
the dataset, convolutional neural networks may not be the best approach unless
preprocessing such as clustering is applied to reduce the number of entities in the
corpus.

Our second sub research question was

How can sequence-aware recommender systems account for more
information than user-item interactions, such as content features and

other sources of information?

Using a two-stage approach, our architecture showed that content features, as well as
additional information, can be incorporated easily in sequence-aware recommender
systems by using a second ranking stage. However, the results from the experiments
with the ranking network were mixed since the ranking network was not able to
outperform the implicit ranking created with the candidate generation network.

7.2 Future work
The convolutional neural network architecture used in this thesis is relatively simple.
It could be further extended on by including more advanced deep learning techniques
such as dropout and weight normalisation, shown successful in other sequence mod-
elling domains [11]. Adding more advanced techniques could further improve the
predictive performance of the network.

Whilst the current candidate generation network only considers collaborative
information, the network could also be extended to incorporate item features di-
rectly by having embeddings for metadata as in [35]. Using such an architecture
would reduce the need for a second ranking network. On the negative side, using
such an architecture would also increase the model complexity as well as memory
requirements and running time.

In order for a ranking network to produce good results in a production recom-
mender system, a different optimisation objective or dataset than the one used in
this thesis would possibly need to be used. As the network’s task is to rank while
incorporating long-term relationships, a possibility would be to optimise for next
buy instead of next item view.

Although theory suggests that convolutional networks are faster than recurrent
networks, empirically evaluating the time performance for sequence-aware recom-
mendations during both training and prediction would be an interesting study and
could further motivate the use of convolutional networks instead of recurrent net-
works in time-critical domains such as recommender systems.
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