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Deployment Planning for Artillery Hunting Radar Systems Using High-Resolution
Geospatial Data
KEVIN LARSSON
Department of Space, Earth and Environment
Chalmers University of Technology

Abstract

In military mission planning for radar units, good quality geospatial data is of
importance as a basis for successful missions. Terrain data with a resolution of
0.5m, in contrast to often used data with a resolution of 30m, has recently become
available. This comes with opportunities in the form of enabling better quality
of planning, and limitations due to increasing execution times. In this thesis, an
analysis of methods for utilising high-resolution data in deployment planning for
the ARTHUR radar system has been performed. Deployment schedules that are
generated should be such that they enable radar units to successfully monitor a
defined area of interest, and so that it is difficult for the enemy to localise and
attack the units. In addition to an initial analysis, an implementation of the most
promising method has been performed for demonstration and further testing.

Three main aspects have been covered: how to evaluate the quality of obtained
deployment schedules, how to transport units between successive deployment sites
(that are given as input to the system), and how to optimise a series of success-
ive deployment sites that constitute the deployment schedules for single units. In
order to evaluate schedules, a modelled probability of a successful mission is taken
as objective function. A method that determines which points are traversable in
the terrain, and that vectorises the resulting raster by a presented skeletonisation
method, is presented for finding routes for transportation between deployment sites.
For optimising schedules, a genetic algorithm is used.

Results show that the proposed method is working reasonably well under the given
circumstances and that it is flexible and can handle adjustments of the objective
function. Part of the input data has however been synthetic, and better data should
be used for further analysis, which is required if the method should be utilised in
a real-life setting. A number of simplifications have been made during the project,
and possible alterations to account for these are proposed and discussed, as well as
other improvements and alternative approaches.

Keywords: military mission planning, genetic algorithm, route planning, skeleton-
isation

v





Acknowledgements

I would like to thank everyone that have made my studies in general, and this
project, possible and enjoyable. This involves everyone at Saab Surveillance in
Gothenburg that has contributed to making this project happen, and my supervisor
Håkan Warston in particular. Furthermore, I want to thank Vricon in Linköping and
Saab Bofors Dynamics in Karlskoga that are part of the collaboration which includes
this project. Particularly, I would like to thank Joachim Wickman at Saab Bofors
Dynamics for taking the time and providing useful insights. Also, my supervisor
at Chalmers, Claes Andersson, should be mentioned for his contributions and the
valuable discussions we have had.

All the friends I have made during the last five years deserve a lot of credit for all
the fun times we have had. I will never forget the warm reception and togetherness
I have felt at the university since that moment I first walked up to Götaplatsen
in 2013. A special thank you goes out to everyone involved in the associations I
have been a part of, and to everyone partaking in our late-night studying sessions in
Nästet. Last, but not least, I would like to thank my family for their unconditional
support.

Kevin Larsson, Gothenburg, November 2018

vii





Contents

List of Abbreviations xi

List of Algorithms xiii

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and Theory 5
2.1 Saab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 ARTHUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Vricon data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Earlier work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 OpenStreetMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Geographic Coordinate Systems . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 WGS 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 UTM and MGRS . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Dilation and erosion . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Opening and closing . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Morphological skeleton . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Shortest-Path Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Dijkstra’s algorithm . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 A* algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Objective Function Modelling 15
3.1 Modelling Survival Probability . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Localisation by ESM . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Visual detection on-site . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Visual detection during transport . . . . . . . . . . . . . . . . 18

3.2 Modelling Full Coverage Probability . . . . . . . . . . . . . . . . . . . 18
3.3 Prioritisation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ix



Contents

4 Proposed Optimisation Method 21
4.1 Input Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Terrain data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Road network data . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Deployment site data . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Route Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Vricon data processing . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Graph creation from raster data . . . . . . . . . . . . . . . . . 24
4.2.3 OpenStreetMap data processing . . . . . . . . . . . . . . . . . 28
4.2.4 Data merging . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.5 Route searching . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.6 Postprocessing routes . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Schedule Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 Initialising a population . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 Genetic operators . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.4 Main genetic algorithm loop . . . . . . . . . . . . . . . . . . . 33

5 Implementation 35
5.1 Optimisation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Terrain data parsing . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Road data parsing . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.3 Route generation and serialisation . . . . . . . . . . . . . . . . 36
5.1.4 Schedule optimisation . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Schedule Visualisation GUI . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Discussion 43
6.1 Obtained Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Route Finding Improvement . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Flexibility and robustness . . . . . . . . . . . . . . . . . . . . 44
6.2.2 Speed variations . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.3 Identifying road network in classification data . . . . . . . . . 45
6.2.4 Other improvements . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Schedule Optimisation Improvement . . . . . . . . . . . . . . . . . . 46
6.3.1 Genetic algorithm variation . . . . . . . . . . . . . . . . . . . 46
6.3.2 Extension to several units per DA . . . . . . . . . . . . . . . . 47

6.4 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4.1 Route searching alternatives . . . . . . . . . . . . . . . . . . . 48
6.4.2 Schedule optimisation alternatives . . . . . . . . . . . . . . . . 48

6.5 Schedule Quality Evaluation . . . . . . . . . . . . . . . . . . . . . . . 49
6.5.1 Choice of objective function . . . . . . . . . . . . . . . . . . . 49
6.5.2 Additional aspects . . . . . . . . . . . . . . . . . . . . . . . . 50

6.6 Limiting Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.7 User Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Conclusion 53

Bibliography 55

x



List of Abbreviations

ACO ant colony optimisation

DA deployment area

DSM digital surface model

ELINT electronic intelligence

ESM electronic support measures

GA genetic algorithm

GPS Global Positioning System

GUI graphical user interface

MGRS Military Grid Reference System

OpenCV Open Source Computer Vision Library

OSM OpenStreetMap

TAI target area of interest

UAV unmanned aerial vehicle

UPS Universal Polar Stereographic

UTM Universal Transverse Mercator

WGS 84 World Geodetic System 1984

xi



List of Abbreviations

xii



List of Algorithms

4.1 Skeletonisation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Overview of the schedule optimisation genetic algorithm. . . . . . . . 34

xiii



List of Algorithms

xiv



List of Figures

2.1 An ARTHUR unit mounted on a track-based vehicle. . . . . . . . . . 6
2.2 Examples of applying dilation and erosion to a binary map. . . . . . . 10
2.3 Examples of applying morphological opening and closing to a binary

map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 An example of the morphological skeleton of a binary map. . . . . . . 12

4.1 Examples of skeletonisation that show the effect of traversability map
modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Illustration of angles between possible movements in a grid. . . . . . . 29
4.3 An illustration of postprocessing a vehicle route. . . . . . . . . . . . . 31
4.4 Example of performing a crossover between two schedules. . . . . . . 33

5.1 A screenshot of the optimisation GUI. . . . . . . . . . . . . . . . . . 38
5.2 A screenshot of the schedule visualisation GUI. . . . . . . . . . . . . 40

6.1 Illustration of how to combine schedules for several units into one
chromosome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xv



List of Figures

xvi



List of Tables

2.1 Different classes in Vricon’s current data, corresponding to identified
objects and terrain types at the surface. . . . . . . . . . . . . . . . . 7

5.1 Comparison of results for running the schedule optimisation genetic
algorithm in different prioritisation modes. . . . . . . . . . . . . . . . 42

xvii



List of Tables

xviii



1
Introduction

At Saab Surveillance in Gothenburg, a variety of radar systems are developed. The
purposes of systems vary, but include weapon location and fire control. At the
business unit Surface Radar Systems, the product range consists of radar systems
for land and naval usage. One of the products is the land-based system ARTHUR,
an abbreviation for Artillery Hunting Radar, whose primary capability is to detect
firings from hostile artillery and track the identified projectiles’ trajectories.
When planning a military operation that includes land-based radar units such as
ARTHUR, it is common that a number of tactical restrictions are given beforehand.
The mission is usually to monitor a certain area where the enemy is likely to be
operating, called target area of interest (TAI). Furthermore, a deployment area (DA)
where the radar units are constrained to operate themselves is generally defined
in advance. In order to successfully complete a mission, radar units should be
positioned in the DA so that it has a good view over the TAI. Essentially, a unit
should have a free line of sight to as large a proportion of the airspace just above
the TAI as possible, so that there is no terrain, vegetation, building or other object
obstructing the view.
Apart from choosing deployment sites where TAI coverage is good, the enemy’s
ability to track the position of the unit must be considered. An enemy can typically
gain a substantial advantage in combat if it can reduce one’s surveillance capability
by tracking and taking out radar units. As any operating radar transmits signals
into the open air, the probability that enemy electronic intelligence (ELINT) or
electronic support measures (ESM) will intercept and locate the signal source is
high. In order to ensure the survivability of a unit, it can therefore typically only
operate at a single site for a limited amount of time; with that time being determined
by the enemy’s assumed ability to locate and attack the position.
During a mission, a unit thus typically operates at a site during a given amount
of time, and then moves to a new position from where the process is repeated. In
order to have continuous monitoring of a TAI during a mission, one must then use
several units such that a new unit starts operating from a new location as soon as
the current unit ceases operation. Challenges when planning a mission thus includes
coordinating times of operation for each unit, determining what deployment sites
to use and when to use them, as well as deciding how to transport units between
subsequent deployment sites.
To successfully plan a mission, one must then have access to all needed informa-
tion concerning the areas of interest and the mission. An important part of this
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1. Introduction

information is high-quality geospatial data such as elevation and types of terrain
at different locations. Until recently, the data available for planning applications
has had a resolution of at best 30 m between data points, as in the case with the
often used DTED level 2 data.[2] However, Vricon (that is co-owned by Saab and
DigitalGlobe)[3] can now provide data on terrain elevation and classification where
there are only 0.5m between data points. This means that the existence of obstacles
such as trees, smaller buildings and trenches can now be known during the planning
stage of a mission.
Utilisation of such high-resolution data can possibly improve the quality of planning
application output, since fewer surprises should appear in-field when the available
information is more detailed from the beginning. Usage of data with higher res-
olution comes with a few problems however, since execution times in applications
typically increase with the amount of data that is processed. It is therefore import-
ant to analyse how high-resolution geospatial data can be implemented in future
planning applications while maintaining reasonable execution times, which is the
topic of this thesis.

1.1 Aim

The primary objective of this project is to investigate how high-resolution geospatial
data can be utilised to plan a surveillance mission for the ARTHUR system.
Apart from analysing different methods that are based on such data, creating a
proof-of-concept Java application that implements the most promising methods from
the analysis has been considered the primary product of the project. Furthermore,
that application is desired from Saab’s perspective as it will serve as a possible basis
for a future implementation in their systems.

1.2 Limitations

During the project, deployment planning has only been performed for one unit at
a time, which is motivated in the third and fourth paragraphs of Chapter 4. Fur-
thermore, the units’ possible speeds are set to constant, with one value for traversal
of the terrain and one (larger) value for traversal of roads. Discussion on how to
remove these limitations is provided in Sections 6.2.2 and 6.3.2.
The need for communication with own troops and allies has also been neglected, as
well as the need for refuelling. These simplifications are discussed in Section 6.6.

1.3 Report outline

In Chapter 2, some background to the project is given. Sections of Chapter 2 that
covers concepts which the reader has prior knowledge about can be skipped, and
referenced when needed.

2



1. Introduction

Next comes Chapter 3 about modelling a scalar-valued objective function to use
for evaluating obtained deployment schedules. Chapter 4 describes the proposed
method that is the outcome of the performed analysis on methods to use.
Further on, Chapter 5 describes the Java implementation that has been done as a
proof-of-concept for the proposed method of Chapter 4. Chapter 6 then elaborates
on possible further development of the project, other approaches that can be taken
to solve the problem, and the possibility of utilising the developed concepts in future
versions of planning applications. Lastly, Chapter 7 wraps up the discussion and
concludes the most important aspects of the project.

3
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2
Background and Theory

In this chapter, some central concepts will be presented in order to give the reader a
solid background before continuing to subsequent chapters that describes what has
been accomplished during the project. Some background about Saab and relevant
components that stems from Saab is presented in the first section. Then there
are two sections about map data before continuing with theoretical sections about
techniques that have been used in the project.

2.1 Saab

Saab is a Swedish company that develops and manufactures products and services
for the defence and security markets. One of Saab’s six business areas is Saab
Surveillance that develops a number of land-based, naval and airborne radar systems,
as well as military command and control systems. Out of these products, the land-
based radar system ARTHUR is of interest for this thesis and will be described in
the next section. Additionally, the resources that are provided through Saab and
the background to the thesis project from Saab’s point of view will be described.

2.1.1 ARTHUR

The primary capability of the radar system ARTHUR is to detect artillery fire in the
airspace in two operational modes: weapon location and fire control. As artillery fire
is detected, it can follow the trajectory of the projectile and calculate where it was
fired from (point of origin) and where it will hit (point of impact). In that way, the
location of the enemy’s weapon can be found (weapon location mode). Additionally,
ARTHUR can follow own troops’ artillery projectiles and follow up on whether they
hit the desired point of impact (fire control mode).
In order to detect artillery fire as early after firing as possible, ARTHUR scans the
horizon and monitors the area just above it. When a projectile is detected, the
system can quickly track its ballistic trajectory and estimate the point of origin and
point of impact early, in order to take action within seconds.
When arriving at a site, ARTHUR takes some time to deploy before it can start
monitoring the airspace. In the same manner, some time is required before the unit
can start moving again after operation is ceased.

5



2. Background and Theory

The ARTHUR unit is contained in a standard type of shelter, meaning it can be
transported by a variety of vehicles with a large enough payload. Therefore, the
ability with which the system can be transported is largely dependent on the trans-
porting vehicle. Possible types are regular trucks that can move efficiently on roads
as well as tracked vehicles that can move efficiently in more complicated terrain. A
typical configuration with a track-based vehicle can be seen in Fig. 2.1.

Figure 2.1: An ARTHUR unit mounted on a track-based vehicle where the radar
system’s shelter can be observed on the rear part, hitched to the pulling band-
wagon.[1]

2.1.2 Vricon data

Vricon has developed a digital surface model (DSM), containing high-resolution
height data for the terrain in the area it covers.[4] Contrary to many other height
data models, it includes permanent objects above ground, such as trees and build-
ings, in addition to the height of the ground itself. It consists of data points in a grid
with a resolution of 0.5m between data points, allowing for inclusion of relatively
small objects. The detail of this model is to be put in contrast to the DTED level
2 data[2] that is often utilised, where the resolution is at best 30m between data
points and where vegetation and buildings are not accounted for.
Additionally, there is classification data with the same resolution as in the DSM
available, indicating types of terrain. The data classifies the terrain into seven differ-
ent classes, as presented in Table 2.1. However, it is expected that this classification
will be extended and improved in the near future. Nevertheless, the currently avail-
able classification data in combination with the DSM do constitute higher quality
geospatial data than has previously been available.

2.1.3 Earlier work

This Master’s thesis is one of four thesis projects that are part of a larger pro-
ject, concerning utilisation of high-resolution geospatial data. The full project is a
collaboration between Saab Surveillance in Gothenburg and Halden, Saab Bofors
Dynamics in Karlskoga and Vricon in Linköping.

6



2. Background and Theory

Table 2.1: Different classes in Vricon’s current data, corresponding to identified
objects and terrain types at the surface.

Classification Description
Uncertain
Ground Grass, dirt etc.
Low vegetation 0.5-2m
Medium vegetation 2-5m
High vegetation > 5 m
Man-made structures Buildings etc.
Water
Paved surface Roads, parking lots etc.

The first thesis project took place during the spring term of 2018; Fredrik Aas Isak-
sen and Kim Nilsen Brusevold wrote the thesis for their Bachelor’s degree from
Østfold University College at Saab Surveillance in Halden.[5] They examined differ-
ent algorithms for computing viewsheds from points in a given DA. Furthermore,
they wrote partially completed Java code for finding good deployment sites in a
given DA, with respect to a specific TAI. Parts of the code they produced have been
taken as a starting point in this project.

2.2 OpenStreetMap

OpenStreetMap (OSM) is a map database that relies on user-contributed data. It
is supported by the non-profit OpenStreetMap Foundation that maintains servers
with data and raises funds for the project. The data content of OSM can be accessed
through several APIs for usage in different applications, as well as directly through
the OSM website1.

In the database, there are three types of elements: nodes, ways and relations. Nodes
represent single spatially defined points, whereas ways connects several nodes to
represent one-dimensional structures such as roads or boundaries of areas. Relations
establish a relationship between data elements that can be nodes, ways or other
relations.

All three element types can have tags that convey information of what the elements
represent. A tag consists of a key and a value, that in combination represent some
information related to the object the tag belongs to. A typical tag on a way that
represents a road in an urban area is ‘highway=residential’, where ‘highway’ is the
key and ‘residential’ is the value.

1https://www.openstreetmap.org/
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2. Background and Theory

2.3 Geographic Coordinate Systems

To represent locations on earth, there are several systems that use different types
of coordinates to indicate positions. The typical way to uniquely specify a location
on the surface of the earth is to give its latitude and longitude in degrees.[6] The
latitude specifies the north-south position so that it takes the value 90° at the poles
and 0° at the equator, with the suffix N or S denoting if the location belongs to the
northern or the southern hemisphere. Similarly, the longitude specifies the west-east
position from 0° in Greenwich, England to 180° at the opposite side of the earth, in
the Pacific ocean. Whether the point lies in the western or eastern hemisphere is
specified by a suffixW or E. For computational purposes, the latitude is often defined
as negative in the southern hemisphere and the longitude is defined as negative in
the western hemisphere, allowing omittance of the suffixes.

2.3.1 WGS 84

Since the shape of the earth is irregular and not a perfect sphere, the altitude at a
position given by its longitude and latitude is not trivial to calculate. Throughout
history, several standards that define altitude have been used. A commonly used
system that was created in an attempt to standardise the modelling of the earth
is World Geodetic System 1984 (WGS 84).[7] It approximates the surface of the
earth as an ellipsoid and measures altitude as the height above the ellipsoid. Given
longitude, latitude and altitude as defined by WGS 84, locations on the earth can
be uniquely defined.
WGS 84 has become a popular standard and is used in the widespread Global
Positioning System (GPS) among many other applications. More importantly, the
data from Vricon and OSM are defined using WGS 84.

2.3.2 UTM and MGRS

A problem with specifying coordinates in the latitude-longitude representation is
that length is not a simple linear function of latitude and longitude. In other words,
the length of one longitudinal degree is dependent on the latitude so that it is
maximal at the equator and zero at the poles. The same goes for the latitude itself,
since the shape of the earth is badly represented by a sphere. If the observed area
is far from the poles and rather small compared to the size of the earth, lengths
in north-south and west-east direction can be approximated as linear functions of
latitude and longitude. However, another coordinate representation system is useful
if one wants to represent several areas from different parts of the world equivalently,
with equal coordinate scaling independent of where the area is positioned.
Several alternative coordinate representations that are suitable for different scales
of operation exist. A popular such system is the Universal Transverse Mercator
(UTM) coordinate system that is based on the WGS 84 ellipsoid and the Mercator
projection.[8] It divides the world along every sixth meridian (longitudinal degree)

8



2. Background and Theory

into sixty zones, labelled as zone 1 through 60. In each zone, coordinates are given
as an easting (x-coordinate) and a northing (y-coordinate). The easting specifies
the distance in meters along the west-east direction to the central meridian of the
zone, and the northing specifies the north-south distance to the equator in meters.
In order to avoid negative values, the easting is defined as 500,000m at a zone’s
central meridian. The northing at the equator is defined as 0m when observing
points in the northern hemisphere and 10,000,000m when observing points in the
southern hemisphere. This contributes with the need to specify which hemisphere
is observed to uniquely specify a point.
Since the Mercator projection gets more distorted the closer to the pole you are,
UTM is only defined between 80 °S and 84 °N. In the polar regions, the Universal
Polar Stereographic (UPS) coordinate system is used in order to completely cover
the earth in conjunction with UTM.[8] An extension of UTM and UPS is the Mil-
itary Grid Reference System (MGRS)[9] that further divides the UTM zones along
every eighth parallel (latitudinal degree), into 20 zones from 80 °S to 84 °N where
the last zone extends a further four degrees north. These zones are enumerated
alphabetically from ‘C’ to ‘X’, omitting ‘I’ and ‘O’ due to the letters being similar
to numbers.
Along with the UTM zone division, the earth is thus divided into 60 × 20 = 1200
zones when excluding the polar regions. Each zone is then defined as the zone
number followed by a letter. For example, the zone that covers the largest part of
southern Sweden is ‘33V’. UTM and MGRS are often used interchangeably, so that
a coordinate in UTM is specified by its corresponding MGRS zone instead of its
UTM zone and hemisphere.

2.4 Image Processing

In order to process map data in raster format, knowledge of some image processing
techniques is required. The methods that are presented in this section operate
exclusively on binary images. Except for the last part of this section that concerns
connected components of binary images, the presented methods are morphological
operations.[10]
A binary image I is a function I : (i, j) → {0, 1} where (i, j) are the indices of
the pixels in the image, with i representing the i:th column of the image and j
representing the j:th row of the image. Thus i can take values in {1, 2, . . . ,m} and
j can take values in {1, 2, . . . , n} if the image is m pixels wide and n pixels high. A
pixel taking the value 1 represents the Boolean true value, while a pixel taking the
value 0 represents the Boolean false value. Areas taking the value 1 are commonly
called foreground, with areas taking value 0 being called background.

2.4.1 Dilation and erosion

Two basic morphological operations are those of dilation and erosion. Dilation and
erosion of the foreground area A of a binary image I are performed with a structural
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2. Background and Theory

element S of the same dimensionality as A.
By using the structural element S on an area A, dilation (denoted A⊕ S) enlarges
A, while erosion (denoted A	S) shrinks A. It does so by centring S at every single
point of A, marking the corresponding pixel in the dilated or eroded image according
to the image values at all points that are covered by the structural element. In the
case of dilation, the centred pixel is marked as true in the dilated image as long as
any pixel inside the structural element is true. Similarly, all pixels that are covered
by the structural element must be true for the centred pixel to be true in the eroded
image. Examples of dilation and erosion with a structural element S can be seen in
Fig. 2.2.

(a) Input binary map. (b) Shape of the struc-
tural element.

(c) Eroded binary map. (d) Dilated binary map.

Figure 2.2: Examples of applying erosion and dilation on a binary map where
white pixels correspond to foreground and black pixels correspond to background.
It can be observed that the foreground is larger after dilation and smaller after
erosion, and that the shapes of edges in the resulting maps resemble the shape of
the structural element.

2.4.2 Opening and closing

Utilising the definitions of erosion and dilation, morphological opening and closing
can be defined. Opening an area A with a structural element S is equivalent to
first eroding A with S and then dilating the resulting area with the same structural
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element S. By taking the erosion and dilation operators in the opposite order, the
closing of the area is instead obtained. Specifically, opening (◦) and closing (•) are
defined by the erosion and dilation operators as

A ◦ S = (A	 S)⊕ S,
A • S = (A⊕ S)	 S.

(2.1)

Using the opening operator on the foreground of a binary image typically results
in small foreground areas becoming background. The opposite generally holds for
closing, so that small background areas are incorporated into the foreground, and
so that nearby foreground areas become connected. Also, the shape of the resulting
areas most often resembles the shape of the structural element as well as the original
area. Examples of opening and closing of a binary image is given in Fig. 2.3.

(a) Opened binary map. (b) Closed binary map.

Figure 2.3: Examples of applying the opening and closing operators to the same
binary input map, and with the same structural element, as in Fig. 2.2. White pixels
represent foreground while black pixels represent background. It can be observed
that edges are a bit smoother and that the smallest foreground area has disappeared
in the opened image. In the closed image, it can be seen that two nearby foreground
areas have been merged into a larger area.

2.4.3 Morphological skeleton

A morphological skeleton of a binary image is a thinned-out version of the binary
image, such that it consists of one-pixel wide strokes. However, the topology of the
original binary image should be preserved to an as large extent as possible, meaning
the skeleton should ‘span’ the entire original image. There is not a uniquely defined
way to obtain a morphological skeleton, but rather a plethora of algorithms that
can be used to generate skeletons.[11]–[14] In Fig. 2.4, the skeleton of a binary map
can be observed, where Matlab’s built-in skeletonisation algorithm has been used.
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(a) Input binary map. (b) Resulting skeleton.

Figure 2.4: An example of a morphological skeleton of a binary map, where white
pixels correspond to foreground and black pixels correspond to background. Mat-
lab’s built-in skeletonisation algorithm has been used to generate the skeleton.

2.5 Shortest-Path Algorithms

When searching for shortest paths between points on the earth’s surface, we observe
the terrain as an undirected graph. Mathematically, an undirected graph G = (V , E)
is defined by a set of nodes V and a set of edges E , where the edges connect nodes
pairwise. Enumerating the sets as V = {v1, . . . , vm} and E = {e1, . . . , en}, all edges
can be defined by a tuple (vi, vj) and a length lk for i, j ∈ {1, . . . , n}, i 6= j and
k ∈ {1, . . . ,m}.
A straight-forward way of defining a graph is from a grid. In a grid where some
pixels are traversable and some are not, traversable pixels are defined as nodes, and
edges are added between any pair of neighbouring traversable pixels.
Another common basis for defining a transportation graph is a road network. In
that case, all junctions or road endings are defined as nodes and connected with
edges according to where there are actual road segments.
Seeking the shortest path between two nodes va, vb in either type of graph is then
equal to the problem of minimising the edge length sum of a set of edges that
connects va and vb. Worth noting is that the lengths lk in a graph might correspond
to other metrics than distance. In this thesis, we will typically seek to minimise the
travel time between nodes, and edge lengths are in that case measured in units of
time.

2.5.1 Dijkstra’s algorithm

Probably the most famous algorithm for finding shortest paths in graphs is Dijkstra’s
algorithm[15] that utilises a breadth-first search algorithm. Given a graph G =
(V , E), Dijkstra’s algorithm calculates the shortest paths from a given source node
vs ∈ V to all other nodes in V .
Starting at vs, it visits one node at a time and adds it to a set of visited nodes. In
every step, it adds the yet unvisited node that has the shortest path from the source
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node. It does so by keeping a list of all nodes that are joined by an edge to a node
in the visited set, but are not in the visited set itself. By storing the path lengths
to all nodes in the visited set, and adding the length of the edge leading to a node
outside the set, the node with shortest such metric can be added in every iteration.
The shortest path to all nodes in the graph will thus be found and stored when the
algorithm terminates. In the case that only a single path between a source node vs
and a target node vt is desired, the algorithm can be terminated as soon as vt is
encountered.

2.5.2 A* algorithm

In searching for a single path between a source node and a target node, Dijkstra’s
algorithm can often be refined into the A* algorithm[16] to improve execution speed.
The A* algorithm is dependent on the availability of a heuristic, a lower bound on the
path length from any node to the target node. Equivalently to Dijkstra’s algorithm,
one can then add nodes to the visited set in the order of growing heuristics, rather
than growing path length from the source node. This will typically favour nodes
in the direction of the target node and avoid exploration of nodes in the wrong
direction.
If the nodes in a graph are spatially defined and the distance between nodes is
of interest, a lower bound on the distance between two points is the straight-line
distance. For minimising travel time, the lower bound can instead be taken as the
straight-line distance divided by the maximum possible speed of traversal.

2.6 Genetic Algorithms

The underlying idea of genetic algorithms (GAs) relies on the concept of natural
selection, as described by Charles Darwin.[17]–[19] In a GA implementation, the set
of variables that should be set to maximise fitness (an objective function) is encoded
as a ‘chromosome’. The chromosome typically takes the form of a data array with
entries of a data type that is suitable for the problem. Two usual entry types are
Booleans (true/false) and integers confined to some problem-specific interval.
Given a set of chromosomes, called a population, one then applies some genetic
operators on the population in order to create a new generation of the population.
Common operators are crossover and mutation, whose equivalences in nature are
mating and mutations. New generations are then created iteratively by the means
of the genetic operators, in hope that the overall fitness will increase.
In creating a new generation, chromosomes are randomly chosen in pairs, such that
the probability of selection increases with fitness. Crossover is then performed on
the two chosen chromosomes by combining them into two new chromosomes. The
resulting chromosomes are then mutated independently by randomly altering some
elements of the chromosome. After mutation, the new chromosomes are inserted into
the new generation and the process of selection, mutation and crossover is repeated
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until the new generation consists of as many chromosomes as the old generation, a
number usually called the population size.
The details on how crossover and mutation are performed can vary a lot between
different GAs, and additional types of genetic operators might be utilised as well.
Depending on the type of problem and the encoding of chromosomes, operators have
to be adjusted to yield valid chromosomes and interpretable results. Also, even if
the chromosomes generated by the operators are valid, they might not yield good
results. For most operators, there are also a number of parameters that need to
be set by the user. Depending on the problem, there might be a lot of tweaking of
those parameters needed for a GA to be successful.

2.7 Software

The software that has been used during the project is primarily Matlab[20] and
Java.[21] During the first half of the project, Matlab was utilised to test out different
methods and observe available data. During the second part of the project, Java
was used to build the test implementation described in Chapter 5 and for further
testing.
Additionally, Open Source Computer Vision Library (OpenCV)[22] has been used
for the test implementation. It is a software library written in C++ with an ex-
tensive set of image processing functions. It relies on its basic data format Mat
that represents single- or multi-layered images, or two-dimensional arrays. It offers
interfaces allowing it to be used from a number of different programming languages,
including a Java interface that supports most of the functionality that is contained
in the native C++ version.
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3
Objective Function Modelling

Given that a surveillance mission plan has numerous desired properties, it is ne-
cessary to examine in detail how one should weigh the different properties against
each other. When it comes to optimisation, this equals finding a way to formulate
a scalar-valued objective function to be minimised or maximised.
The ultimate goal for the surveillance mission is to successfully monitor and detect
all threats in a TAI during the time frame of the mission, while no unit is success-
fully tracked and taken down by the enemy. Therefore, the probability psuccess of a
successful mission can be written as the product

psuccess = psurvival × pcoverage, (3.1)

where psurvival is the probability to survive the full duration of the mission, and
pcoverage is the probability to successfully detect all enemy threats while completing
the mission.
Using this knowledge, a natural choice of objective function for the optimisation is
psuccess. Since neither the true value of psurvival, nor the true value of pcoverage, is known
during the planning stage of a mission, models that estimates these probabilities
reasonably have to be defined in order to be able to evaluate obtained schedules.
Definitions of the probability models that have been developed in the project are
presented in the following sections.

3.1 Modelling Survival Probability

The probability to survive for the whole duration of a mission can be seen as a
product of the probabilities to survive during each step of the mission. Each time
that a unit is deployed at a site, and each movement of a unit in-between such sites
will be considered steps of the mission in this context. The number of deployments
of a unit is denoted with N in this context, yielding N−1 routes to be taken between
deployment sites.
Unless the mission planning has been leaked to the enemy beforehand, future actions
taken by a unit cannot affect the probability of survival in earlier steps. Therefore,
the probability of survival during a step of the mission will be considered independent
of all subsequent steps. However, dependence on preceding steps should be taken
into account and should naturally influence the survival probability.
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The three identified ways that a unit can be located by the enemy is by the usage
of ESM when a unit is operating at a deployment site, by visual detection when
standing on a deployment site and by visual detection during transportation of a
unit. The respective models for the probabilities pESM, pvis, ptr of avoiding the three
types of localisation during the whole mission is presented in the following parts of
this section. When obtained, they can be combined to form the total probability of
survival as

psurvival = pESM × pvis × ptr. (3.2)

3.1.1 Localisation by ESM

The enemy’s ability to operate ESM equipment should greatly influence the modelled
risk of being localised by such a system. However, knowing the details of an enemy’s
all capabilities would be considered an exception, even though it can be expected
that most enemies operate some kind of ESM system. Nevertheless, an example of a
factor that can be estimated is the visibility of one’s deployment site from sites where
an ESM system can possibly be placed by the enemy. A complicating circumstance
for the enemy is that two ESM systems in separate locations are generally required
to locate a transmitting radar, since it is only the direction of transmitted signals
that can be obtained by a single ESM unit. Therefore, cross-bearing is utilised
to locate the transmitting radar when the direction towards the radar from two
separate ESM units are found.
Using the available knowledge about the enemy’s general capabilities for using ESM,
the risk rESMi of being spotted at a site i when staying there indefinitely or returning
there repeatedly can be estimated. The probability pESMi of avoiding localisation by
ESM at site i can then be modelled as

pESMi = (1− rESMi ) + rESMi × fESM, (3.3)

where fESM → [0, 1] is a function of how the unit operates.
In modelling fESM, information about how the unit has operated throughout the
mission thus far should be taken into account, notably concerning earlier visits to
the same or nearby deployment sites. It should also be dependent on the time τ sendi

that the unit operates at the site. Denoting the number of earlier visits to the
same site with ni, the two required properties given in the definition of rESMi can be
written as

lim
τ send

i →∞
fESM = 0 and lim

ni→∞
fESM = 0. (3.4)

Apart from being dependent of τ sendi and ni, fESM is implemented with two additional
properties influencing its value. If the relevant site has been visited earlier in the
schedule, fESM takes smaller values the shorter the time is since the previous visit to
the site. Also, fESM is implemented so that it decreases with long repeated patterns
in the schedule. This is since movement patterns should not be predictable for the
enemy. For example, if the unit always moves to site ‘B’ after each visit to site ‘A’,
there is a risk that the enemy will realise this, and site B will be attacked with a
larger probability.
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As probabilities for all visits to different deployment sites i during a mission are ob-
tained, the probabilities can be multiplied to obtain the total probability of avoiding
detection by ESM during the mission as

pESM =
N∏
i=1

pESMi . (3.5)

3.1.2 Visual detection on-site

The risk of being detected visually by the enemy on a deployment site is influenced
primarily by the visibility of the deployment site from different positions. On one
hand, visual detection by the naked eye must be considered, possibly aided by
binoculars or other equipment. On the other hand, recording equipment can be
used, possibly mounted on an unmanned aerial vehicle (UAV) or other types of
vehicles. Similarly to the case of detection by ESM as described in the previous
section, it is only the enemy’s general capabilities for visual detection that can be
estimated. Therefore, the probability pvisi of not being visually detected at site i is
modelled as

pvisi = (1− rvisi ) + rvisi × fvis. (3.6)

Here, rvisi is equivalent to rESMi in the previous section, and corresponds to the risk
of being localised visually if staying at a site indefinitely. Also, fvis is a function of
how the unit operates that takes values in [0, 1]. Except for different parameters
that models the differences between ESM and visual detection, the main difference
to the ESM case is that fvis is dependent on the time τi spent on-site rather than
the sending time τ sendi as for ESM. Equivalently to the case of ESM and (3.4), this
means that the requirements

lim
τi→∞

fvis = 0 and lim
ni→∞

fvis = 0. (3.7)

must hold. Also, fvis is implemented to decrease with shorter times between visits
to the site, and with longer repeated sequences of deployment site visits.

Just as in the case of localisation by ESM, the total probability of avoiding visual
detection on-site during a mission is then obtained as a product

pvis =
N∏
i=1

pvisi . (3.8)

Additionally, the model could be enhanced by knowledge of the general visibility of
deployment sites. For example, a site on an open plain is generally visible from a
large set of points, both from the ground and the air, while a site in a narrow valley
that is covered in woods is generally not visible from as many points. Such data is
however not available and even though it can possibly be estimated using the DSM
data, it has been considered outside the scope of this project.
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3.1.3 Visual detection during transport

In addition to the risk of being detected while standing on a deployment site, the
risk of being detected during transport in-between sites has to be considered. In
this case, the units are not transmitting any radar signals and the risk of detection
by ESM does not have to be accounted for.
Modelling this risk is intricate, since every single point on the routes travelled
between sites should be taken into account. Different points along the routes might
have different properties affecting the risk of detection. As it comes to repeating
patterns and not wanting to traverse a point over and over again, the fact that sev-
eral routes might intersect have been considered. This is so that traversing a road
segment or junction more times than necessary is avoided.
The suggested model of the probability ptrj of avoiding detection during transporta-
tion along a route between two deployment sites is

ptrj = (1− rtrj ) + rtrj ftr, (3.9)

similar to the models for detection on-site. The model has been chosen so that it is
not too complicated to evaluate, while using as much information as possible.
Once again, rtrj is the probability of not being detected when travelling on the route
indefinitely and ftr is a function of the route and earlier traversals that takes values
in [0, 1]. However, ftr should not only take earlier traversals of the exact same route
into account, but also intersections with other routes that have been traversed.
A complete evaluation including all points that are travelled over would require in-
tegration over all travelled routes and could very quickly become computationally
heavy. Therefore, when observing routes in a defined transportation graph, inter-
sections of routes can be accounted for by looking at common edges and nodes along
said routes. This will yield an approximation, but since numerical integration is an
approximation as well, it can be justified by a transportation graph that is not too
coarse.
Factors that have an impact on the value of ftr are the elapsed time since the previous
visit to each node in the route, the number of earlier visits to each node, and how
exposed each node’s location is to the enemy. An average of these three factors is
then used in evaluating fESM.
As the probabilities of avoiding detection are obtained for all routes, the total prob-
ability of avoiding visual detection during transport for the whole mission can be
calculated as

ptr =
N−1∏
j=1

ptrj . (3.10)

3.2 Modelling Full Coverage Probability

When monitoring a defined TAI from a given deployment site, there is a certain
probability that a threat (enemy firing) will occur during the time that the monit-
oring is ongoing. Since it is difficult to determine beforehand when an enemy will
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fire a weapon from the TAI, the time distribution of enemy firings is modelled by an
exponential distribution.[23] Under that assumption, it is only necessary to estimate
the mean interval between enemy firings to know the probability of the enemy firing
inside a given time interval, since the exponential distribution is memoryless.
If it is further assumed that all points in the TAI are equally probable spots for
the enemy to fire from, the probability pcoveragei of detecting all enemy firings from
the TAI during a given time frame scales with the proportion qcovi of the TAI that
is covered. If it is then assumed that a proportion pfind of the enemy firings from
locations that is said to be monitored are truly detected, it is straight-forward to
define a model for the probability that we detect all enemy firings from the TAI
during a time slot of length τi. Carrying out the calculations, we obtain

pcoveragei = exp
(
− τi
τ0

)
+
(

1− exp
(
− τi
τ0

))
× pfind × qcovi , (3.11)

where τi � τ0 is assumed. The first term in this expression equals the probability
that the enemy does not fire during the time frame. Consequently, the first factor
of the second term corresponds to the probability of the enemy firing at least once.
When the unit is deployed N times in total during the mission, the total probability
of detecting all threats during its time of operation becomes

pcoverage =
N∏
i=1

pcoveragei . (3.12)

3.3 Prioritisation Modes

Depending on the situation, surveillance missions might have different desired prop-
erties. In some cases, survival of units might be more important than other times. In
other cases, surveillance capacity might be so important that larger risks concerning
survival can be taken.
Therefore, a modification that will be called prioritisation mode is added, that
rebalances the relation between survival and full coverage probability. Instead of
taking Eq. (3.1) as objective function, one takes the same expression but with either
psurvival or pcoverage exponentiated with a scalar value α > 1. The optimisation will be
said to be in survival prioritisation mode when exponentiating psurvival, and coverage
prioritisation mode when exponentiating pcoverage. If the objective function is then
denoted with fobj, it will be defined as

fobj = (psurvival)α × pcoverage and
fobj = psurvival × (pcoverage)α

(3.13)

in survival and coverage prioritisation mode, respectively.
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4
Proposed Optimisation Method

In the proposed method contained in this chapter, the problem of optimising radar
unit routes is divided into three parts. The first part is preprocessing the data
needed as input to the optimisation, which is not a major concern in this thesis
project. The tasks that have to be fulfilled during the preprocessing are however
described in the first section of this chapter, since some knowledge of the data that
is obtained from preprocessing is necessary.
Finding traversable routes between deployment sites constitutes the second part
of optimisation, and is a vital part of this project. More will be described in the
second section of the chapter. Lastly, the main task of finding optimised sequences
of deployment sites to utilise is described in the third section.
A number of assumptions have been made when developing the method. It has
been assumed that all units involved in a mission are given separate deployment
areas, disjoint from all other involved units’ deployment areas. It has further been
assumed that all units are operating at their respective deployment sites during τ
time units at a time, before moving to the next site.
These assumptions allow deployment planning for units to be done individually,
since all units can be allowed a fixed time for moving between deployment sites. If
the mission starts at time t, the idea is that the first unit starts sending at its first
deployment site at that time, the second unit at time t + τ , the third unit at time
t + 2τ and so on. At time t + nunitsτ , the first unit will then start operating at its
second site, having been allowed (nunits − 1)τ time units since ceasing operation at
its first site at time t + τ , when the second unit took over. In this way, there is
always a unit that is operating from some site, and units’ schedules can be planned
individually. Therefore, the schedule for a single unit will be considered from here
on.

4.1 Input Interface

This section describes the input data that is used for the project. How the input
data should be obtained is not a topic of this project and is only covered briefly.
It is however of importance to clarify what input is needed to complete subsequent
parts of the project, and how the interface to obtain that data looks.
Mainly, the data needed can be divided into three groups: terrain data, road network
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data and deployment site data. What is included in these groups will be further
described in the respective subsequent parts of the section.

4.1.1 Terrain data

In order to determine the traversability of the terrain in the deployment area, there
has to be data available about the terrain in all points of interest. For the scope of
this project, this data consists of Vricon’s DSM and classification data. The data is
provided as a raster with a resolution of 0.5m which offers good precision for the
task at hand.
However, one would ideally want more details in this data than is currently available.
For example, the terrain data provides no details with regard to the bearing capacity
of the ground and some of the classes in the classification data could be further
divided to provide more detail. Also, some measure of the exposure to enemies at
all points in the DA could enhance the resulting application.

4.1.2 Road network data

In Vricon’s terrain data, there is only the ‘paved surface’ class that indicates the
existence of a road. This omits all roads that are not paved, meaning that the
data from Vricon is not sufficient when it comes to representing the road network.
Therefore, data from OSM (see Section 2.2) has been included as the primary source
for road data. It is however expected (as mentioned in Section 2.1.2) that the quality
of classification data will be better in the near future, in which case there might not
be a need for using OSM data. How the method can be modified to account for this
will be discussed further in Section 6.2.3.

4.1.3 Deployment site data

Suggested deployment sites are assumed to be given from a preceding analysis step.
The data that is needed about deployment sites is primarily its spatial position and
attributes relating to its ability to monitor the given TAI.
When given the spatial position, the available map data is able to supplement with
additional data and enable the application to calculate ways of entry and exit to the
site. Ideally, information could be supplemented by data about the site’s visibility
(exposure to enemies). This property should in that case typically have a higher
value in places when the unit can easily be spotted, such as open plains or hillsides,
while it should take a lower value in places where the unit is harder to spot.
As it comes to the ability to monitor a TAI from a specific site, there are a number of
relevant properties. In Section 3.2, the proportion qcov of the TAI that is covered was
cared about. Since the airspace above the TAI should be monitored, free line-of-sight
to the ground is not necessary. Free line-of-sight to an as low height above ground
as possible is however desirable. Therefore, qcov is defined as the proportion of an
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imaginary surface above the TAI, on a fixed vertical distance hmax above the ground,
to which there is a free line-of-sight. The height hmax should be set depending on
the requirements on the mission.

4.2 Route Optimisation

To find optimal or near-optimal routes between pairs of deployment sites, an al-
gorithm that processes the input data in several stages is utilised. As both raster
data provided by Vricon and vector data from OpenStreetMap should be integrated,
an algorithm that combines and takes advantage of both data sources is deployed.
The foundation for this approach is the method described in an article by Benton,
Iyengar, Deng et al.[24], where raster data is vectorised with the aid of a morpho-
logical skeleton. Using a modified version of this method, which will be called the
skeletonisation method, with the Vricon data, the output is combined with data
from OSM. Further details about these procedures will be described in the following
sections.
In the context of this chapter, we will consider the route that takes the least time to
travel between two points as the optimal route between said points. There remains
a possibility to look at other optimality criteria as the whole project is concerned.
For instance, a route that is less visible from an enemy’s perspective, but takes
longer time than the fastest route, might be a better alternative in some cases. The
prospect of searching for such routes will however not be considered here.
In order to avoid confusion, the spatial curve to be taken between two nodes con-
nected by an edge is called a path. Thus, when a transportation graph is defined,
paths will be properties of edges in the graph. We will further denote a sequence of
one or more edges and their corresponding paths as routes. In the context of this
project, the routes of interest are those between pairs of deployment sites.
The proposed method has been chosen since it efficiently transforms a large raster
with a lot of information into a graph that can be more easily processed. The
relevant information from the raster is concentrated to enable an efficient method
that can still take advantage of the high resolution in the original data. For a
discussion about alternative approaches to solving the problem of route finding, see
Section 6.4.1.

4.2.1 Vricon data processing

The primary aim with processing the DSM and classification data is to obtain data
points that indicate how well a given vehicle can traverse the corresponding points
in the terrain. With such a traversability map available, the skeletonisation method
(see Section 4.2.2) is deployed to create a transportation graph out of the raster
data.
The traversability maps have been restricted to be binary, since it simplifies sub-
sequent steps in the overall application. Namely, the resulting map has the same
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resolution as the DSM and classification data, and marks every point as either tra-
versable or non-traversable.
To create such a map, the classes in the classification data has been determined
as either traversable or non-traversable, with the traversable classes being ground,
low vegetation and paved surface (see Table 2.1). Furthermore, the height data has
been used to determine the slope in all points of the map so that all points with a
slope exceeding a certain threshold are marked as non-traversable. The map is then
generated so that all points belonging to a traversable class, with a slope below the
threshold, are marked as traversable. All other points are marked as non-traversable,
since they fail to fulfil at least one of the two traversability criteria.
As a vehicle cannot traverse too narrow passages, the traversability map is addition-
ally processed to account for the required width of passages. This is done by eroding
the image (see Section 2.4.1), with a circular structural element whose diameter is
equal to the required width for passage by the relevant vehicle.

4.2.2 Graph creation from raster data

In order to create a transportation graph from the binary traversability map, the
basics of the technique described by Benton, Iyengar, Deng et al.[24] is used. In the
article, the authors create a morphological skeleton (see Section 2.4.3) out of the
traversable areas of a map and then use this skeleton to define a graph. The basic
idea to define a graph out of the skeleton is to create nodes at all ends and junctions
of the skeleton, and edges between nodes that are connected by the skeleton. The
steps of this process are described in the following four sections, starting with a
modification of the traversability map that yields a more versatile skeleton.

4.2.2.1 Traversability map modification

To avoid a too extensive skeleton, small connected components of non-traversable
pixels are removed from the traversability map before the skeletonisation procedure
is applied. There is for example no point in extending the skeleton due to individual
stones or other small obstacles. Connected components of non-traversable pixels
that do not exceed a size threshold are therefore removed.
In order to generate a skeleton that is more versatile in open areas however, the
traversability map is subsequently modified further to avoid having only a single
segment of the skeleton go through large areas of open terrain. In large areas
where all points are traversable, non-traversable points are added in order to extend
the resulting skeleton and allow for larger freedom of movement in the resulting
transportation graph. The modification is performed by dividing the traversability
map into squares with fixed side lengths and checking if there are any non-traversable
points inside that square. If there are no non-traversable points inside the square,
four non-traversable points are added at the middle of the square’s sides, making a
diamond pattern. An example of the result of such a modification can be observed
in Fig. 4.1 where it can be seen that the resulting skeleton is more extensive when
this modification has been performed.
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(a) Traversability map before modifica-
tion.

(b) Traversability map after modification.

Figure 4.1: Examples of skeletonisation that show the effect of traversability map
modification. To the left is the resulting skeleton for a part of a binary map that is
skeletonised without prior modification for extending the skeleton to large travers-
able areas. To the right is the resulting skeleton for the same binary map, but with
prior modifications. The red pixels are part of the skeleton that results from the
white-coloured foreground area and the black-coloured background. In the picture
on the right, some barely visible non-traversable points are circled with blud for
clarity.
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4.2.2.2 Skeletonisation

As described in Section 2.4.3, a morphological skeleton can be obtained using a
number of techniques. For usage in this project, the iterative approach in an article
by Bataineh[11] has been taken. The underlying idea is to repeatedly remove (‘peel’)
the contour pixels of the skeleton until the skeleton consists solely of one-pixel wide
strokes.

The skeletonisation algorithm contains of a main loop whose body includes a pre-
processing step and a peeling step. This is executed repeatedly until the binary map
does not change anymore between iterations. After the main loop, postprocessing
is performed on the image before the final skeleton is obtained.

The preprocessing step of the main loop marks pixels on the boundary of the tra-
versable areas (true areas of the binary map) as contour pixels; a procedure that
includes adjustment for irregular (‘noisy’) edges. The second step of the main loop
is then to peel off contour pixels that satisfy certain conditions. First of all, strokes
that are one pixel wide are marked as finished so that they are kept as they are
for all subsequent iterations. Then all other contour pixels are removed, given that
they satisfy conditions ensuring that the topology of the skeleton is preserved.

After the main loop, a second loop that postprocesses the image is executed to take
care of strokes that are two pixels wide and reduce them to one-pixel width. Again,
this is repeated until no further changes are made to the skeleton.

After terminating the loop, so-called stairs in the image are removed in a single
pass. Stairs in this context are diagonal strokes where every pixel has one other
pixel connected horizontally and one pixel connected vertically. An overview of the
full skeletonisation algorithm can be obtained in Algorithm 4.1 and an example of a
completed skeletonisation procedure using this algorithm can be viewed in Fig. 4.1.

Algorithm 4.1 Skeletonisation algorithm
while Image changes do

Preprocessing procedure
– Mark pixels as contour
– Remove noisy edges

Peeling procedure
– Mark one-pixel wide strokes as finished
– Remove contour pixels given conditions on neighbours

end while
while Image changes do

Two-pixel wide strokes removal
end while
One-pass stairs removal
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4.2.2.3 Graph definition

When a skeleton has been obtained, a graph is created by following the pixels of the
skeleton. The algorithm employed for this purpose scans all pixels of the skeletonised
image and marks every observed pixel that is not part of the skeleton as processed.
As soon as it finds a pixel that is part of the skeleton, it traverses the skeleton
starting from that pixel. The traversal is performed by looking at the current pixel’s
8-neighbourhood (the eight surrounding pixels) in every step, and then moving along
the skeleton to a yet unvisited foreground pixel in the neighbourhood.

It starts by traversing the skeleton until it finds a pixel that represents a node. Such
a pixel should have any number but two of the pixels in its 8-neighbourhood marked
as true. If the number of skeleton neighbours is less than two, the pixel is the end
of the skeleton and should thus define a node. On the other hand, if the number of
skeleton neighbours is larger than or equal to three, the pixel represents a junction
of the skeleton and should also define a node. Other skeleton pixels have exactly
two skeleton neighbours and are part of a link between two pixels that define nodes.

When a first pixel representing a node is encountered, the algorithm creates a node
in that position and restarts traversal of the skeleton from there. The algorithm
maintains a list of ‘outgoing’ pixels that have exactly two true pixels in its 8-
neighbourhood and is located adjacent to a pixel contained in a node. In every
entry of this list, the node adjacent to the outgoing pixel is stored as well.

One-by-one the algorithm then processes the outgoing pixels by following the skel-
eton from that pixel until it finds another pixel that satisfies one of two conditions;
it should either be part of the list of outgoing nodes, or it should have a number of
true pixels in its 8-neighbourhood implying that a new node should be created at
the location. In the case that a node in the list of outgoing pixels is encountered,
a new edge is added between the associated node of the found outgoing pixel and
the associated node of the outgoing pixel from which the traversal started. In the
other case that a found pixel fulfils the criterion for defining a new node, such a
node is created in that position and an edge is defined between the new node and
the associated node of the outgoing pixel that the traversal started from. In this
case, the algorithm additionally looks for new outgoing pixels from the new node
and adds them to the list of outgoing pixels if they are present. In both cases, all
traversed pixels are marked as processed and the outgoing pixels that have been
covered are removed from the list.

Iterating until there are no more outgoing nodes left in the list, this algorithm
will have created a graph of the connected component of the skeleton that was
encountered. As all pixels that are traversed is marked as observed, the algorithm
can check for more connected components of skeleton without processing the same
connected component more than one time. It does so by traversing the remaining
pixels of the image that are not yet marked as processed, until no such pixels exist
anymore.
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4.2.2.4 Local path finding

After a graph with edges and nodes has been defined, the minimal time it takes to
transport the relevant vehicle between all pairs of nodes that are linked by an edge
should be found. This is done by finding the shortest path in the original binary
traversability map. The speed at which the terrain can be traversed is taken as
constant over the whole traversable area of the map, and therefore it is equivalent
to minimise the travelled distance and the travelled time.
To find the shortest path between two nodes, a check is first performed to see if a
straight line between the nodes intersects any non-traversable area. The check is
performed by checking every pixel that is marked by the Bresenham algorithm.[25]
If all checked pixels are traversable, the shortest path is the straight line and it is
stored, with the traversal time of the path (and edge) taken as the straight line
distance divided by the terrain traversal speed.
If instead any encountered pixel during the straight line checking is non-traversable,
an implementation of the A* algorithm (see Section 2.5.2) is deployed for finding
the shortest path between the two nodes. The straight-line distance to the target
pixel divided by the maximum terrain traversal speed, plus the actual traversal time
from the source node, is taken as heuristic for the implementation.
To increase the flexibility of movement compared to only allowing steps to the eight
neighbouring pixels during execution of the algorithm, movement is allowed directly
to any of the other 24 pixels in the 5-by-5 pixels square that is centred on the current
pixel. This movement without checking if pixels in-between are traversable when
moving to the outer pixels of the 5-by-5 square is justified by the fact that the binary
traversability map was eroded in an earlier stage (see Section 4.2.1). This means
that there cannot be any one-pixel wide non-traversable strokes in the traversability
map, and thus the algorithm cannot jump over any non-traversable areas.
Allowing movement in only eight directions when traversing a grid as in this case
can possibly yield a 7.97% longer path compared to the straight-line path, due to
it being 45° between possible directions to move in. With allowing movement to 24
neighbouring pixels as described, there is at most 26.56° between possible directions,
which yields a maximum error of 2.33%. This is illustrated in Fig. 4.2.

4.2.3 OpenStreetMap data processing

Since the OSM data is conveniently defined by nodes and edges (that are called
ways in connection with OSM), the required processing for storing it in the same
format as the resulting graph from the Vricon data is not very extensive. All OSM
data (nodes and ways) that correspond to roads are extracted, and all other data is
discarded. The OSM ways we are interested in have a tag with key ‘highway’ and
they are converted to edges in the same format as is used for edges in the graph
from the Vricon data. Ways without the highway tag, as well as nodes that are not
connected by ways with the highway tag, are omitted. The relevant nodes are then
also converted to the same format as the nodes obtained from the Vricon data.
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α=45°

(a) Possible 8-neighbourhood move-
ments.

α=26.5°

β=18.5°

(b) Possible movements to the 16 pixels
surrounding the 8-neighbourhood.

Figure 4.2: Illustration of angles between possible movements for the cases of only
allowing movement to the 8-neighbourhood and allowing movement also to the 16
surrounding pixels.

The travel time of each edge, which can be traversed in a straight line between
two nodes due to the nature of the OpenStreetMap data, is taken as the distance
between the nodes, divided by the pre-set road speed. This road speed is typically
larger than the terrain traversal speed (see Section 4.2.2.4), as is realistically the
case when travelling in field.
To improve the subsequent merging of the resulting graphs from Vricon and OSM
data that will be described in the following section, edges corresponding to long
straight road sections are divided into several edges. It is performed by defining
intermediate nodes on edges that corresponds to road sections longer than a given
threshold, such that the distances between neighbouring resulting nodes does not
exceed that same threshold. The original edge is then removed and new edges are
added between neighbouring nodes.

4.2.4 Data merging

After processing the Vricon data and the OSM data separately, there are two disjoint
sets of nodes, with corresponding edges, that all have a well-defined spatial position.
In order to link the two disjoint graphs, an algorithm adds edges between every OSM
node and its nearby neighbours from the set of Vricon nodes. For each OSM node,
the whole set of Vricon nodes is observed, and an edge is defined to each of a pre-
determined number of Vricon nodes that are the closest and inside a given maximum
range, with respect to the OSM node. Additionally, if no node is added within a
quadrant as seen from the OSM node, an edge to the closest node in that quadrant
is added if such a node exists within the given maximum range. This is done so that
there is a spread in directions to move in from the node.
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The paths and traversal times of the added edges that link nodes from the two data
sources are then calculated in the same way as for edges from the Vricon data (see
Section 4.2.2.4).
As the Vricon and OSM data have been merged to form a single graph, nodes
representing the deployment sites are added to the graph as well. It is done in
the same way as just described for each OSM node, with the difference that the
deployment site nodes can be linked to all types of nodes. As this is completed, a
full transportation graph is obtained, with all the needed information to search for
optimal routes between pairs of deployment sites.

4.2.5 Route searching

As the transportation graph is complete with components from the Vricon data, the
OSM data and deployment sites, the traversal times of all edges in the graph are
known. Since the nodes of the graph have a well-defined spatial location, it is easy
to calculate a lower bound on the travel time between all pairs of nodes, given that
the maximum speed a vehicle can travel with is known. Then an A* algorithm for
finding the shortest (least time-consuming) routes between all pairs of deployment
sites is implemented. The heuristic for each node is taken as the travelled time from
the source node (deployment site), plus the straight-line distance to the target node
(deployment site) divided by the maximum speed.
Under the restriction of movement in the transportation graph, this will yield the
optimal route between all deployment sites. However, since the freedom of movement
is not truly restricted to the exact paths of the transportation graph, the true optimal
routes might differ from the found ones using the transportation graph. In order to
address this non-optimality, an iterative postprocessing routine is deployed on the
parts of routes that go through terrain.

4.2.6 Postprocessing routes

The main idea of the postprocessing is to add new nodes midway between the
original nodes and then add new edges between the midway nodes. Then old nodes
are omitted, except the source and target nodes, and new edges are added between
the remaining neighbouring nodes. The first and last midway nodes are omitted
completely so that the first and last new edges correspond to one and a half old
edges each. An illustration of the process is presented in Fig. 4.3 where the path is
clearly smoother after postprocessing.
This processing is done only for route segments in the terrain. If road nodes are
present in the route, they will be considered source or target nodes in the postpro-
cessing procedure if they are connected to a non-road node. In a typical case, a
route consists of a terrain segment, followed by a road segment, followed by another
terrain segment. In that case, the first terrain segment will be postprocessed with
the first road node seen as the target node. Equivalently, the second terrain segment
will be postprocessed with the last road node seen as source node.
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A

B

(a) Route before postprocessing.
A

B

(b) Route after postprocessing.

Figure 4.3: An illustration of the postprocessing of a route between a source node
A and a target node B. The smoother turns can be observed in the postprocessed
route, where the midpoints of all edges, except the first and the last, have been
taken as new nodes.

If routes are really edgy, the postprocessing procedure can be iterated several times
to obtain smoother routes. Postprocessing can however be rather costly, so there is
a trade-off between further processing of the route and execution time, especially if
paths between nodes far apart have to be searched for with the A* algorithm.

4.3 Schedule Optimisation

Once routes between deployment sites are found, optimising a deployment schedule
is done by a genetic algorithm. In order to do this, the possible deployment sites are
enumerated with indices from 1 to m, given there are m deployment sites in total.
In the eyes of the genetic algorithm, the schedule is represented solely by a list of
length N , containing the ordered set of deployment site indices. How a population
is initialised, how selection works, how the genetic operators (crossover, mutation,
elitism) is implemented and how the main loop combining these elements work is
described in the following sections.
Other approaches for optimising schedules can possibly be taken, with ant colony
optimisation methods[26], [27] and simulated annealing[28], [29] having been tested
at the beginning of the project. They do not preserve good sequences of sites in a
schedule as efficiently as a genetic algorithm and therefore tend to not yield as good
results. Further discussion on possible alternatives is given in Section 6.4.2.

4.3.1 Initialising a population

In order to initialise a new population, schedules (chromosomes) are generated ran-
domly and independently until the population has been filled to the desired pop-
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ulation size. The first deployment site of every schedule is chosen randomly, with
equal probability, among the m available ones. Then subsequent deployment sites
are chosen randomly among all deployment sites that satisfies requirements with
respect to the previous site; those requirements being that the site can be reached
in the given maximum transportation time and that it is outside the required safety
distance from the preceding site. This procedure is then repeated until N sites have
been chosen, making up a valid schedule. Further on, more random schedules are
created until the population is full.

4.3.2 Selection

Selection of individuals to use when creating the next generation is done via tour-
nament selection. The procedure starts with choosing nt of the schedules in the
current population with equal probability (and replacement). Among the nt chosen
schedules, the one with best fitness (largest success probability) is returned with a
probability pt, typically with pt > 0.5.
If the schedule with best fitness is not returned, it is removed from the set of chosen
schedules and the same process is repeated with the remaining set of schedules.
That is, the second best schedule from the originally chosen set is returned with
probability pt. This is repeated until a schedule is returned or until the set of
schedules consists of only one schedule, in which case that schedule is returned.

4.3.3 Genetic operators

When creating a new generation of a population, two or three genetic operators are
used. These operators are crossover which is used on pairs of schedules, mutation
that are used on individual schedules, and elitism that is used on the population as
a whole. How they are implemented is described in the following three sections.

4.3.3.1 Crossover

A general crossover operator takes two schedules and exchanges parts of their se-
quences of deployment sites with one another. In this implementation, a two-point
crossover that takes a randomly chosen segment of the first schedule and exchanges
it with an equally long segment of the second schedule is utilised.
The schedules of length N can be ‘cut’ in-between deployment sites as well as at the
end points, yielding N + 1 possible cutting points. The cutting points for the first
schedule in the crossover is chosen randomly with equal probability for all cutting
points, which yields a schedule segment with n entries between the cutting points,
where n is between 0 and N . As this is done, the first cutting point in the second
chromosome is chosen randomly from the first N − n available cutting points. A
restriction on these cutting points ensures that a connected segment of the second
chromosome is chosen for the crossover, since the segment from the second schedule
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must also be n entries long. Therefore, the second cutting point of the second
schedule is implicitly given after the first cutting point is obtained.
The chosen segments are then exchanged with each other, creating new schedules.
An illustration of this procedure can be seen in Fig. 4.4. An exception is if any
of the new schedules would yield a deployment site following itself in the schedule.
If that would happen, the crossover is omitted and the original chromosomes are
returned instead.

5 7 2 3 8 1 6 4 3 1

3 6 4 7 5 8 2 1 4 7
x1 x2

y1 y2

(a) Before crossover.
5 7 2 3 8 4 7 5 8 1

3 6 1 6 4 3 2 1 4 7
x1 x2

y1 y2

(b) After crossover.

Figure 4.4: Example of performing a crossover between two schedules of length
10. In the left picture are two chromosomes before crossover, where x1 and x2 have
been chosen randomly as cutting points for the first chromosome. The first cutting
point y1 of the second chromosome has also been chosen randomly, while y2 is given
so that the segment between y1 and y2 has equal length to the segment between x1
and x2. The segments in-between cutting points are then swapped, and the result
can be seen in the right picture.

4.3.3.2 Mutation

Mutation is executed on individual schedules by iterating through the schedule and
independently replacing deployment sites with a probability pm. If a site is mutated,
it will be replaced by a new deployment site. That new site is chosen with equal
probability among all sites that are not in the previous or following place in the
schedule.

4.3.3.3 Elitism

The elitism operator is used in order to forcibly keep the schedule with the highest
fitness in each generation into the following generation. It is performed by copying
the best schedule from the previous generation into the first position of the new
generation. This is performed after the new generation has been generated by the
selection, crossover and mutation procedures, and implies that the first generated
schedule of the new population is overwritten.

4.3.4 Main genetic algorithm loop

The above described procedures are executed iteratively in the main loop of the
algorithm, where each iteration of the loop represents a generation of the popula-
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tion. In order to create a new generation, two schedules at a time are chosen by
tournament selection.
With a probability pc, a crossover between the two selected schedules is performed.
Whether or not crossover takes place, both schedules are mutated and inserted into
the new population. This is repeated until the new population has been filled.
Lastly, the elitism operator is used to include the current best schedule into the new
population if it is activated.
The newly constructed population is then evaluated and subsequent generations are
created until either a pre-set number of generations have been generated or until a
satisfying result has been obtained. Before terminating, the best obtained schedule
is returned. In Algorithm 4.2, an overview of the whole optimisation procedure can
be observed.

Algorithm 4.2 Overview of the schedule optimisation genetic algorithm.
Randomly initialise a new population of schedules
while Termination condition is not fulfilled do

Create empty new population
while New population is not filled do

Choose a schedule ‘A’ with tournament selection
Choose a schedule ‘B’ with tournament selection
if x ∼ unif[0, 1] < pc then

Perform crossover between schedule A and B
end if
Mutate schedule A
Mutate schedule B
Insert schedule A and B into new population

end while
if Elitism is activated then

Insert best schedule from current population into new population
end if
Replace current population with new population

end while

34



5
Implementation

The implementation described in this chapter is done to demonstrate the project’s
proposed methods for route finding and schedule optimisation. How the proposed
method of Chapter 4 has been implemented to create a schedule optimisation ap-
plication is described in the first section of the chapter.
A graphical user interface (GUI) that visualises the outcome of the optimisation
procedure has been created and is presented in the second section. Such a GUI is
important for a user to be able to comprehend the outcome of the schedule optim-
isation application. Furthermore, the third and last section of the chapter displays
and explains some results of running the algorithm on a set of test cases.

5.1 Optimisation Method

This section describes how the proposed method of Chapter 4 has been implemented
in Java code. The most important libraries and classes of the implementation are
described in addition to the overall structure of the code project.

5.1.1 Terrain data parsing

The obtained geospatial data from Vricon (DSM and classification) is delivered in
the GeoTIFF format.[30] In order to read the data and convert it to a Java format,
the open source library GeoTools[31] has been used. Specifically, the GeoTIFFReader
class is used to load data into the Java WritableRaster format.
The data is delivered in several files with at most 8192 × 8192 data points, corres-
ponding to an area of about 16 km2 with a resolution of 0.5m. Since the application
must handle several such tiles to cover larger areas, several tiles (resulting in several
instances of WritableRaster) are imported separately.
To generate a complete traversability map according to Section 4.2.1, the first steps
of determining if the slope and class both indicate a traversable point are performed
separately for the imported tiles of map data. Then the resulting traversability maps
are concatenated with each other and the final step of eroding the traversability map
is performed on the concatenated map.
For large areas, keeping data in a single WritableRaster object is not possible,
due to the format being backed internally by a one-dimensional array. Such arrays
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can hold no more data entries than the maximum value of a Java integer, which is
231 − 1. With the given data resolution, this means it is only possible to store data
for areas of up to about 500 km2. Therefore, OpenCV (see Section 2.7) has been
used for managing raster data in the project. Consequently, the binary maps are
converted to Mat objects, the basic data format of OpenCV, before concatenation.
This structure is two-dimensional by nature and represents maps efficiently.

Following the procedure described in Section 4.2.1, a morphological skeleton is cre-
ated from the binary traversability data. Instances of the custom Node and Edge
classes are then created according to the procedure described in Section 4.2.2.3. As
this is done, the shortest paths are added as properties of the edges according to
Section 4.2.2.4.

5.1.2 Road data parsing

The OSM data utilised in the application is obtained from Geofabrik[32] that provides
OSM data free of charge from all over the world. The data is downloaded in the com-
pressed .pbf format, which can be parsed by the Osmosis[33] library. The primary
class of interest in this library is OsmosisReader that creates Java objects of the
Osmosis classes Node and Way from the loaded data.

Since these classes do not have all desired properties needed for the project, they
are converted to the project’s custom-made Node and Edge classes. An important
aspect of this is converting the latitude-longitude coordinate representation of the
Osmosis classes to the desired UTM coordinate representation. Furthermore, the
processing steps of calculating traversal times and dividing long edges are performed
according to Section 4.2.3.

5.1.3 Route generation and serialisation

Before finding routes, road and terrain data are merged according to Section 4.2.4.
Namely, edges are added between nodes obtained from the OSM data and nodes
obtained from the skeletonisation procedure. Additionally, deployment sites can
then be added at this stage as well, also according to Section 4.2.4. As the full
network with deployment sites and merged OSM and Vricon data is created, the A*
algorithm is utilised to find routes between all pairs of deployment sites, according
to Section 4.2.5.

At any time after creating the original graph from the Vricon and DSM data, the
main object GraphController, which holds the full graph, traversability raster and
all relevant properties, can be serialised (saved). It is done by making sure that
the classes of all contained objects of the GraphController implement the Java
interface Serializable. Since the Mat class from OpenCV does not implement this
interface, it is wrapped in a container class that stores the data in an array of arrays
before serialisation. The original data structure is then restored upon loading of the
wrapper object.
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An alternative to serialisation is to proceed immediately to the schedule optim-
isation. But since adding deployment sites take relatively short time in compar-
ison to creating the full graph from raw input data, it is convenient to preprocess
and serialise data before knowing the positions of deployment sites to use. The
GraphController can then be loaded from memory when needed, deployment sites
can be added, and routes can be found in relatively short time before continuing to
the schedule optimisation.

5.1.4 Schedule optimisation

For storing deployment schedules, the class Schedule has been created. It contains
data about all deployment sites and routes between them. A new Schedule instance
is evaluated by the objective function (3.1) upon creation.
A main class GAOptimizer that holds the main genetic algorithm loop (see Sec-
tion 4.3.4) has been created. An instance of this class is created with all parameters
set, both concerning the desired schedule and the parameters of the genetic algorithm
itself. A population of Schedule instances based on a given GraphController is
created upon calling an initialisation method of GAOptimizer. The optimisation
procedure is then controlled by the method iterate that iterates the population of
schedules through a given number of generations. This method can be called any
number of times, and in-between calls there are other methods available to obtain
the currently best schedule, the overall best schedule found during all generations,
and the success, survival and full coverage probabilities of said schedules.
To observe and control the optimisation procedure, an optimisation GUI has been
created, in which the success, survival and full coverage probabilities of the best
schedule in the population can be observed over time. Before initialising a popula-
tion, the user can set a number of parameters in a panel on the right hand side of the
GUI window. Then the user can choose to iterate the population through a given
number of iterations, or to continuously iterate the population until the user presses
a stop button. Additionally, the user can open the schedule visualisation GUI, that
will be described in Section 5.2, by clicking a button. Furthermore, it is possible
to open several tabs in the window, allowing several optimisation procedures to run
simultaneously where each tab corresponds to one GAOptimizer. A screen capture
of the GUI can be seen in Fig. 5.1.
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Figure 5.1: A screenshot of the optimisation GUI. In the main panel on the
left hand side of the GUI window is a graph displaying the success, survival and
full coverage probabilities in red, green and blue, respectively, as a function of the
generation of the genetic algorithm. To the right is a control panel through which the
user can set schedule and GA properties before initialisation of the population. With
the buttons in the same panel, the optimisation procedure can then be controlled,
and the user can choose to open the schedule visualisation GUI (see Section 5.2).
By adding more tabs with the button at the top of the window, several optimisation
procedures can be opened and run in different tabs of the window simultaneously.
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5.2 Schedule Visualisation GUI

An important aspect when creating an optimising application, as described earlier
in this chapter, is the ability to display information about the resulting schedule to
a user. Therefore, a prototype GUI for visualising schedules has been created with
the purpose to display an obtained deployment schedule to a user.
The main part of the GUI consists of a map displaying the utilised deployment
sites and routes in-between them. When the GUI is opened, the route between the
first and second deployment site in the schedule is shown on the map, and the user
can then step between different routes with buttons in the GUI. The route that is
currently selected is displayed in red and earlier routes in the schedule are shown in
a less prominent green colour.
In addition to the map, there is an information panel on the right side of the GUI
that displays information about the deployment sites that are connected by the
currently selected route. The information is gathered in a table for each deployment
site that shows the site’s position, altitude and TAI coverage proportion among
other things. There is additionally a table with data concerning the full schedule in
the same information panel, such as the estimated success, survival and full coverage
probabilities.
Below the information panel, there is another smaller map showing the DA in rela-
tion to the TAI. A screen capture of the full GUI can be seen in Fig. 5.2.
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5. Implementation

5.3 Results

The obtained results for optimisation can be observed to be heavily dependent on
parameter settings. The results of running the full algorithm on a synthetic test
case are considered. In this test case, the planning for one unit has been performed
in a deployment area that is roughly 6 km× 3 km. In the area, 31 deployment sites,
that all have a TAI coverage proportion qcov between 0.7 and 1, have been placed.
To generate the transportation graph with this area takes roughly 6 minutes on the
computer that has been used1. To load the transportation graph from file then takes
about 35 seconds and to add the 31 deployment sites to the graph and search for
the

(
31
2

)
= 465 routes between them takes about 80 seconds. Postprocessing the

found routes takes about 2 minutes for one iteration. Creating a GA population
with 100 individuals and evolving it for 10,000 generations take approximately 30
seconds, where the time for initialisation is negligible. These execution times should
however be considered with care since there are a lot of factors that can influence
them. They do, however,´provide an idea of how running times relate to each other.
Results for this test case can be observed in Table 5.1, where 100 runs have been
made for each of the three modes (normal mode, survival prioritisation mode and
coverage prioritisation mode). It can be observed that normal mode yields best
results for the success probability, survival prioritisation mode yields best results for
survival probability and that coverage prioritisation mode yields best results for full
coverage probability. These results are expected, and it can be further noted that
the differences between modes for all four displayed values exceed the corresponding
standard deviations.

1Quad-core 2.7 GHz CPU (Intel Core i7-6820HQ), 16 GB RAM, Windows 7 64-bit.
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Table 5.1: Comparison of results for running the schedule optimisation genetic
algorithm in different prioritisation modes for a fixed parameter setting. 100 runs
were made for each mode, where each run consisted of initialising a population and
evolving it for 100,000 generations. The number of successive sites in the schedule
was 30, and there were 31 deployment sites with different properties to choose from
in total. The first three columns represent the average success, survival and full
coverage probabilities over the 100 runs, with the respective standard deviations in
parentheses and the best average results for each of the three probabilities marked
with green background. The last column indicates how many of the available 31
sites that was used for the schedule, with fewer used sites meaning there was a larger
degree of re-use of the utilised sites. In the prioritisation modes, the exponent was
set to α = 10 for both cases. See Section 3.3 for a full description of the different
modes and Sections 3.1 and 3.1 for descriptions of the probabilities.

Mode psuccess psurvival pcoverage # used sites

Normal 0.804
(0.023)

0.913
(0.014)

0.880
(0.019)

13.48
(0.99)

Survival prioritisation 0.759
(0.031)

0.968
(0.001)

0.783
(0.032)

16.99
(0.84)

Coverage prioritisation 0.659
(0.047)

0.719
(0.048)

0.916
(0.016)

10.47
(0.85)
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This chapter aims to provide a discussion of different aspects of the project. A num-
ber of improvements for the proposed method are suggested, and some alternative
approaches that could possibly replace parts of the proposed method are presen-
ted. The first section of the chapter synoptically discusses the obtained results, and
preceding sections illuminate different parts of the project.

6.1 Obtained Results

The implemented method can be concluded to work well under the given circum-
stances. However, further analysis is required before implementing the method in a
real planning application. An important aspect of such further analysis would be to
make sure realistic input data is available. It is, for example, difficult to determine
how realistic the synthetic deployment site data is, why deployment sites obtained
from rigorous analysis should be utilised in further testing of the method.

By observing the results of testing different evaluation modes (see Table 5.1), it is
clear that the two prioritisation modes can successfully steer the obtained schedules
in the desired directions; that is, under the assumption that the modelled probabil-
ities used in the objective function are reasonable. The most easily observed result
that indicates that the prioritisation modes work are the re-usage of deployment
sites; from the last column of the table, it can be seen that survival prioritisation
mode results in more utilised deployment sites on average than normal mode, while
the opposite holds for coverage prioritisation mode. Since it is easy to understand
that re-using sites many times yield a higher risk of being located and attacked by
the enemy, this is a clear indication of reasonability in the obtained results.

Most importantly when it comes to the results, however, is the performed analysis
and the presented method itself. Since it cannot be stated as a fact that a certain
obtained schedule is better than another, it is hard to estimate how good an obtained
schedule really is. In any case, the presented method can be concluded to offer
flexibility in that resulting schedules fulfil different properties depending on the
input (such as choice of prioritisation mode).
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6.2 Route Finding Improvement

In this section, a number of ways to improve the current route finding algorithm
are presented. At first, some suggested extensions that provide robustness and
additional flexibility are given. Then a way to account for differing traversal speeds
in terrain and on roads is presented, before a description of how OSM data can be
replaced by improved terrain classification data. Lastly, a couple of modifications
that can possibly improve route finding are discussed.

6.2.1 Flexibility and robustness

A modification with potential to improve the overall quality of the full schedule
optimisation application is to add the possibility to search for several routes between
every pair of deployment sites. In that case, the subsequent schedule optimisation
could choose between several routes to take between sites. This could potentially
mean that the resulting schedules are more diversified and that traversals of busy
road segments are better prioritised.
Several alternative routes can possibly be achieved by searching for one route at
a time, where no edges can be shared among routes. Essentially, the traversed
edges would be removed after each found route, and subsequent routes would be
searched for among the remaining edges. In that way, the routes would be completely
independent which is positive from a robustness perspective, so that other routes
would still be present if one route is blocked.
An alternative could be to allow re-use of edges corresponding to terrain segments,
but not allowing re-use of edges corresponding to road segments. This can be jus-
tified by the fact that road segments are typically where units are most exposed,
and that they therefore should not be traversed too frequently. An example of how
this can be done in either approach (allowing re-use of terrain segments or allowing
no re-use of edges) is to search for more routes as long as the traversal time of said
routes do not exceed the upper bound that is given by the mission properties.
External factors that might influence the possibility to travel a given route are
(possibly dynamic) obstacles that are not known at the initial planning stage, with
a typical example being other vehicles travelling on roads. On some narrow roads it
might not be possible to meet with other vehicles and in extreme cases roads might
be congested. Other external factors could be events such as fallen trees obstructing
the way, or destroyed bridges or other passages. A strength of the taken approach,
in the event of discovered obstacles, is that new routes can be recalculated quickly.
A user can simply be enabled to remove edges of the graph that corresponds to
destroyed passages or passages with obstacles, before routes are recalculated.

6.2.2 Speed variations

One major simplification during route finding is that the maximum speed for a
vehicle is set to be constant. In reality, this is not the case since properties of the
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terrain might influence the speed greatly. The speed of traversal might be much
lower on a rough but traversable surface, compared to a flat open field such as an
empty parking lot or a sport field. Due to the high resolution of the DSM data,
there exists a possibility to estimate the maximum speed of traversal by observing
height variations over short distances. Such a simple thing as the average slope over
small areas might give an idea of how fast a unit can travel in that area.
A strength with the route finding approach is that it can be deployed even in a case
where the possible traversal speed differs. In that case, a binary traversability map
can still be used to create a transportation graph (see Section 4.2.2), before varying
traversal speeds are taken into account in the local path search. A difference to the
current approach (see Section 4.2.2.4) would be that travelling between two points
in a straight line is not necessarily optimal. Therefore, all local paths would have
to be determined by the A* algorithm, even if the straight-line path is possible.
Varying speeds on roads might also represent reality in a better way than is currently
the case. Possible traversal speeds are in reality higher on large highways than
on smaller dirt roads, which is why differing maximum traversal speeds should be
allowed. A simple improvement might be to diversify the road network from OSM
by utilising the values of the ‘highway’ tags (see Section 2.2). Additionally, height
differences between connected nodes can be obtained from the DSM data and used
to estimate the slope of road segments, which can influence possible traversal speeds.

6.2.3 Identifying road network in classification data

Ideally, one would not want to rely on OSM at all, since one can never be sure
whether all roads in an area have been added to the database. If OSM is not to be
used, road network data would have to obtained from Vricon’s data, if other data
sources are not to be used. Even though the quality of Vricon’s data in this aspect is
not sufficient at the moment, it is plausible to think that better quality classification
data will be available in the near future. If that is the case, so that one or several
reliable road classes are available in the data, a binary map of areas that consists
of road segments could be created. Such a binary map could then be skeletonised,
and the same graph defining procedure as used for the terrain (see Section 4.2.2.3)
could be used to create a road network graph. That road network graph could then
be merged with the terrain traversal graph, just as the OSM road network graph is
merged with the terrain traversal graph.

6.2.4 Other improvements

One thing that is not accounted for is the time delays caused by vehicle manoeuv-
ring. Turns and varying terrain means vehicles typically cannot maintain a constant
speed, but must brake and accelerate regularly. While it remains a possibility to
deploy more sophisticated algorithms to account for this problem, it should most
often not be a problem that it is not explicitly handled. One should rather use an
estimated maximum average speed for a certain type of terrain or road to account for
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manoeuvring delays. Since movement is generally not time-critical except that units
must reach its destination within a given maximum time, a slight underestimation
of traversal speed instead of taking explicit care of turns and terrain shifts should
not influence the performance of the application too much. To ensure a robust sys-
tem, such an underestimation has to be done anyway since we cannot account for
all external factors that influence traversal of routes.
The skeletonisation algorithm used in the project seems to produce rather strange
results at occasions. It looks as if straight lines are often preferred over curves
in the output skeletons, which means that the topology of binary maps are not
preserved as well as desired. Using a different skeletonisation algorithm in a future
implementation could therefore possibly improve the resulting routes.
In order to improve execution speed, there are two identified possible alterations to
the A* algorithm that can be used. First, there is the possibility to implement a
bidirectional A* algorithm.[34] This means to start two A* searches at once, one
forward search from the search node towards the target node, and one backward
search in the opposite direction. Then the algorithm can be terminated when a node
is visited by both the forward and the backward search, since the concatenation of
the route to that node from the source node and from the target node is then the
shortest route between the source and the target node.

6.3 Schedule Optimisation Improvement

Improvements and extensions to the schedule optimisation genetic algorithm are
the topics of this section, which consists of two parts. The first part concerns im-
provements and alterations that could possibly enhance performance of the genetic
algorithm. The second part presents how the genetic algorithm can be modified to
account for the case of several units being deployed in the same deployment area.

6.3.1 Genetic algorithm variation

There are a number of possible alterations to try and improve the schedule optim-
isation genetic algorithm. One possibility is to examine the effects of parameters
for the GA in further detail. Given some test cases, different parameter settings
could be iterated through, in order to try and find good choices.[35] Chances are
however that the optimal choice of parameters varies depending on other inputs to
the problem, such as desired schedule lengths and objective function parameters.
To avoid the risk of determining falsely optimal parameters for all problems, one
would have to test different settings for a large number of test cases with varying
properties.
A common problem with genetic algorithms is that they tend to get stuck in local
minima. There are a number of possible improvements to try and prevent that.
One common method is to change the mutation probability depending on how the
population evolves. Such an implementation would typically mean to increase the
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mutation probability when the algorithm has not found a new best schedule in a
given number of iterations.[36] The mutation probability can then be further in-
creased if no better solutions are found, or restored to the original value if better
solutions are indeed found.
Another possible solution to avoid getting stuck in local minima is to evolve sev-
eral populations independently at first. Then one could mix these populations to
generate new populations after a number of iterations. Blending populations like
that would mean less homogeneous populations after mixing, which could benefit
performance of the GA.
Utilising a local search algorithm at the end of the optimisation procedure is another
addition that has potential to improve performance. Such an algorithm could, for
example, take the best found schedule and try replacing all sites in that schedule
individually. If a better schedule is then encountered, the process can be repeated
with that schedule until it is not further improved by the local search algorithm.

6.3.2 Extension to several units per DA

A key assumption that has been made is that only one unit is used in each deploy-
ment area. Namely, disjoint deployment areas for each unit should be specified as
input to the mission planning. A benefit of this separation of deployment areas is
that changing conditions in one of the deployment areas only implies consequences
for one of the units. The simplification it implies, in that planning can be done
separately for each unit, is also a beneficial factor.
However, there could be advantages with allowing several units per DA. It could
enable larger mobility and behaviour that is less predictable for the enemy. Another
factor could be that different types of vehicles can be used in the same area. For
example, a track-based vehicle can be used at deployment sites that are unreachable
for a wheel-based vehicle, while wheel-based vehicles can be utilised at deployment
sites that are easily accessible but far apart.
Allowing such a setup with several units in the same DA should be possible within
the current schedule optimisation architecture. Routes can still be searched for just
as before, possibly with different properties that correspond to different types of
vehicles. For example, edges can be assigned one traversal time for vehicles of type
‘A’ and one traversal time for vehicles of type ‘B’.
The genetic algorithm can then be modified so that chromosomes correspond to all
units’ schedules at once, so that every n:th entry in the schedule corresponds to one
unit in a mission with n units, see Fig. 6.1. Checks would have to be performed
when applying genetic operators, so that several units are not present at the same
deployment site at once. This could be performed by simply checking that there
are at least n entries in the chromosome before successive occurrences of the same
deployment site.
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2 6 5 4

3 4 8 7

5 7 2 3

5 7 2 32 6 5 43 4 8 7

Figure 6.1: Illustration of how to combine the schedules of three units into a single
chromosome. Different backgrounds correspond to different units.

6.4 Alternative Approaches

This section discusses several alternative approaches that can replace parts of the
proposed method to achieve good deployment schedules. The first section concerns
alternative ways to obtain routes between deployment sites, while the second section
concerns alternative methods that could optimise sequences of deployment sites
during the planning of a mission.

6.4.1 Route searching alternatives

A naive approach to the problem of route finding is to generate a traversability
map and use the A* algorithm to search for routes directly between all pairs of
deployment sites. That would never yield routes that take longer time to traverse
than routes in the current application, but it would be computationally heavier.
The computation time would also increase more rapidly with growing distances
between deployment sites. Even though the A* algorithm is used in the current
implementation, the routes it is searching for are relatively short. As the execution
time of the A* algorithm typically scales with the square of the distance between
points, keeping these distances short is critical to maintain reasonable execution
times.
Additionally, using the A* algorithm to find routes directly between deployment sites
would mean that a smaller part of the procedure can be done before deployment
sites are known. In the current implementation, the computationally heaviest parts
of the route finding can be performed before deployment sites are known. It would
also mean that the application would not be as robust, since recalculation of routes
when obstacles are discovered would not be as efficient.

6.4.2 Schedule optimisation alternatives

A number of alternative approaches to using a GA were considered for schedule
optimisation in the beginning of the project. The two other approaches that were
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tested using Matlab was ant colony optimisation (ACO) and simulated annealing.

ACO methods are commonly used for solving optimisation problems with spatial de-
pendencies,[37]–[39] with probably the most famous being the Travelling Salesman
Problem.[40], [41] Therefore, such an implementation was initially thought to be a
good idea for optimising deployment schedules. However, testing using Matlab indic-
ated that genetic algorithms performed considerably better. In addition, simulated
annealing was tested with Matlab as a possible schedule optimisation method. The
performance levels were however similar to the ACO testing so simulated annealing
was discarded.

An intrinsic feature of the genetic algorithm is that it generally maintains well-
performing sequences of its chromosomes, which is important in planning a deploy-
ment schedule. In basic implementations of ACO and simulated annealing, this
is not the case, which is thought to be the primary reason that the methods are
outperformed by the GA. In order to create an ACO or simulated annealing imple-
mentation that outperforms the GA, some modification has to be done to make sure
that good sequences are exploited.

6.5 Schedule Quality Evaluation

The topic of this section is to discuss how the quality of obtained deployment sched-
ules is evaluated. Firstly, the choice of objective function to use in optimisation is
looked into. Then some additional aspects that the current evaluation model might
miss are discussed in the second part of the section.

6.5.1 Choice of objective function

Modelling a scalar objective function for a problem with as many desired properties
as in this case is intricate. Other choices for a scalar objective function than the
probability of a successful mission are certainly possible, but could come with the
downside that values of the objective function might not be easily interpretable,
which is a strength of the taken approach. Even for the case of prioritising survival or
full coverage in the optimisation process, the individual probabilities for survival and
full coverage can be displayed and aid in understanding the optimisation procedure.
The major downside is that it is difficult to define a realistic model for the probability.

One alternative approach is to define a number of properties to optimise and use
some technique for multi-objective optimisation[42] to simultaneously optimise those
properties. However, that would still yield the problem of choosing what properties
to include. In the current implementation, while it might not be clear in detail how
interaction between different properties impacts the model, individual properties
have a clear definition (see Sections 3.1 and 3.2) and can be adjusted easily depending
on what is desired for a mission.
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6.5.2 Additional aspects

A number of simplifications have been done during the project, which might give
non-accurate or non-optimal results. One such simplification is that it has been
assumed that the only relevant property of a deployment site with respect to the
TAI is the covered proportion qcov. In a real application, it cannot be stated that
this proportion is the only property that makes a deployment site good from a TAI
coverage perspective. Free line-of-sight to lower heights above ground in a larger
portion of the volume above the TAI is typically beneficial, among other things.
Another aspect that has not been covered is that vehicles can leave marks in the
terrain. Even though a vehicle is generally more difficult to spot in the terrain
compared to on a road, marks in the terrain might mean that it is dangerous to
return to places where marks have been left.

6.6 Limiting Assumptions

An important thing to consider when planning movement for radar units, which
has not been covered during the project, is the ability to communicate with own
troops and allies. As a unit is operating, it should have an established data link
to communicate information about detected missiles in the airspace. Essentially,
this means that the surroundings of a unit must allow radio communication with a
base station for the operation. In special cases, wired connection might be possible
but must be considered an exception. Voice communication with the operator is
a possible backup option that is typically not preferred. No matter what mode
of communication is used, it should be accounted for when choosing deployment
sites. However, since communication is a key factor for deployment sites, a simple
solution is to not present deployment sites where communication is insufficient to
the schedule optimisation algorithm.
Other requirements than to simply move between successive deployment sites might
exist as well. For example, the unit and its vehicle might have to refuel during long
missions. That can be done in one of two ways; either a tank truck can meet up with
the vehicle along some of its routes when it is necessary, or the vehicle have to move
to some given fuel station at given intervals. The former option would typically
mean less time consumption for the unit, but requires coordination between the
radar unit and the tank truck. What is clear is that either case should ideally be
accounted for in the planning stage of a mission. If it has to be integrated in the
current schedule planning or if it can be done in a separate stage afterwards is a
topic of further analysis.

6.7 User Communication

One important aspect of a completed mission planning is that it should be compre-
hensible for a user. The schedule visualisation GUI created to display deployment

50



6. Discussion

sites and routes on the map (see Section 5.2) is a step in this direction, but could be
further improved. For instance, features such as the ability to zoom in the map are
not present in the GUI, and some data is synthetic at present. Part of the problem
is that no proper deployment site interface has been available, so that some data is
synthetic, if it is present at all.
Additionally, an analysis should be done on what information is really relevant for
a user. Technical details should typically not be displayed for a user that cannot
understand the meaning behind such details. In general, presented information
should be prioritised so that the user can focus on what really matters. However,
since the method should be integrated into large planning applications for possible
future usage, the visualisation parts should probably be developed as a part of such
incorporating applications.
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A method, divided into the two main parts of route finding and schedule optimisa-
tion, for acquiring optimised deployment schedules have been proposed. The method
has furthermore been implemented in a proof-of-concept Java application that yields
reasonable and desirable results under the given circumstances. For further testing
and development of the proposed method, a number of suggestions are given, which
includes improvements of both the route finding part and the schedule optimising
part of the method. Also, what additional data that is required as input for testing
the method in a more realistic setting has been explained.
The used skeletonisation method (see Section 4.2.2) for creating a transportation
graph from raster data enables routes between deployment sites to be searched for
quickly, as soon as the more costly initial processing is completed. A number of
alterations are suggested for improving found routes in a future implementation.
Most notably, these suggestions include allowing varying the possible speed depend-
ing on road and terrain types, and enabling searching for several alternative (and
independent) routes to take between each pair of deployment sites. Improvements
that can possibly speed up execution of the method are additionally presented, such
as implementing bidirectional A* search. See Section 6.2 for a more comprehensive
explanation of such improvements.
For schedule optimisation, the genetic algorithm has been concluded to work well.
A number of possible improvements are however suggested for the schedule optim-
isation, with focus lying on methods to prevent the algorithm from getting stuck
in local minima (see Section 6.3.1). Furthermore, suggestions on how to extend
the genetic algorithm in order to allow several radar units to operate in the same
deployment area are given in Section 6.3.2.
How deployment schedules can be evaluated is another topic that has been covered
during the project. This, however, needs further investigation to ensure that the
utilised models resemble reality. Nevertheless, the implemented approach with op-
timising a modelled success probability does seem to yield reasonable results, and
the scalar-valued probability is easily interpretable. Furthermore, the implemented
prioritisation modes makes tweaking of resulting schedules according to desired prop-
erties of the mission simple, and the simulation results in Section 5.3 suggest that
the proposed method is efficiently optimising various objective functions. Therefore,
alterations of the objective function in a future implementation should be possible
without having to modify the optimisation method, except for the evaluation of
schedules.
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