
u1

1

2

u2

3

4

5

u1

1

2

u2

3

4

5

u1

1

2

u2

3

4

5

t

t+ 1α1,2

α2,5

α3,4

α4,5

α1,2

α2,5

α3,4

α4,5

α1,2

α2,5

α3,4

α4,5

α1

α3

α1

α3

α1

α3

at = u1

Efficient Solving Methods for
POMDP-based Threat Defense
Environments on Bayesian Attack Graphs

Master’s thesis in Computer Science – Algorithms, Languages and Logic

JOHAN BACKMAN
HAMPUS RAMSTRÖM

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Efficient Solving Methods for POMDP-based
Threat Defense Environments on Bayesian Attack

Graphs

JOHAN BACKMAN
HAMPUS RAMSTRÖM

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

The Author grants to Chalmers University of Technology the non-exclusive right to
publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet. The Author warrants that he/she is the author to the Work, and
warrants that the Work does not contain text, pictures or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary per-
mission from this third party to let Chalmers University of Technology store the
Work electronically and make it accessible on the Internet.

Efficient Solving Methods for POMDP-based Threat Defense Environ-
ments on Bayesian Attack Graphs

Johan Backman
Hampus Ramström

© JOHAN BACKMAN, 2018.
© HAMPUS RAMSTRÖM, 2018.

Supervisor: Christos Dimitrakakis, Department of Computer Science and Engineer-
ing
Examiner: Devdatt Dubhashi, Department of Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: An example computer system modeled as a Bayesian Attack Graph and
formulated as a POMDP defense problem. First in time-step t, then in two different
potential states at t + 1, after performing a countermeasure action u1 in t. Full
details in Section 3, Figure 3.1.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Efficient Solving Methods for POMDP-based Threat Defense Environ-
ments on Bayesian Attack Graphs
JOHAN BACKMAN
HAMPUS RAMSTRÖM
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In this work, we show how to formulate a threat defense environment as a Partially
Observable Markov Decision Process (POMDP) that allows for fast approximate
defense algorithms against multiple attackers. It is done through an action exten-
sion, coined the Inspect action, which allows the agent to reveal the true state of
the environment, thereby reducing the problem into a traditional Markov Decision
Process (MDP) for the current time-step. The work is an extension of previous def-
initions of the same problem. Furthermore, based on the new definition we define
and show the optimal policy, as well as two new solving algorithms, n-Myopic and
n-Lookahead. To evaluate their performance, we show and compare the results of
these new algorithms to more standard solving algorithms, such as Q-learning and
Policy Gradients.

The experimental results show that the new algorithms perform better than previous
attempts and allows for larger scale threat environments thanks to the approximate
MDP reduction. Additionally, to facilitate future research, two OpenAI Gym envi-
ronments were developed and are publicly available for new research to build upon.
We encourage new research with similar problem description to use this software
library, opening up to standardized performance results.

Keywords: Reinforcement Learning, POMDP, Bayesian Attack Graphs, Security,
Defense Policies, OpenAI Gym, Threat Defense

v

Acknowledgements
First and foremost we would like to thank our supervisor, Christos Dimitrakakis, for
his invaluable knowledge, insights and ideas throughout the whole project. Another
thanks goes out to Christos together with the whole CSE Institution at Chalmers
for being so flexible, allowing us to work on the project from remote locations.

We also would like to thank Devdatt Dubhashi for making the time and effort acting
as examiner for this thesis project.

Special thanks to Johan Ek, for the rewarding cooperation and peer-reviewing, as
well as for being the appointed opponent for this thesis as a whole.

Sincere thanks to our friends and family providing feedback on the content, format-
ting and language. Special mention goes out to: Sune Ramström, Trina Vana and
Alexander Wong. You made this report a hundred times better!

Thank You,
Johan Backman & Hampus Ramström

Gothenburg, Aug 2018

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Aim . 1
1.2 Problem . 3
1.3 Related work . 3
1.4 Contributions . 5
1.5 Overview . 5

2 Theory 7
2.1 POMDP . 7
2.2 Conflict environment model . 8

2.2.1 Bayesian Attack Graphs . 9
2.2.2 Attackers . 10
2.2.3 Defender . 11
2.2.4 POMDP-formulated defense problem 13

2.3 Reinforcement learning algorithms . 14
2.3.1 Q-learning . 14
2.3.2 Policy Gradient . 15

3 Environments 17
3.1 Assumptions . 17
3.2 Minimal environment . 20

3.2.1 Attributes . 20
3.2.2 Actions . 21
3.2.3 Cost function . 21
3.2.4 State space . 22
3.2.5 Observation space . 22
3.2.6 Parameters . 22
3.2.7 Time maximum . 23

3.3 Inspect Environment . 23
3.4 Cost function analysis . 24

3.4.1 Time of cost . 26
3.5 OpenAI Gym . 26

ix

Contents

4 Algorithms 29
4.1 Optimal policy . 29

4.1.1 Minimal and Inspect environment 32
4.2 Q-learning . 33

4.2.1 Windowed Q-learning . 34
4.3 Policy Gradient . 35
4.4 n-Myopic . 37
4.5 n-Lookahead . 39

5 Results 45
5.1 Performance evaluation . 45
5.2 Optimal policy . 45
5.3 Q-learning . 46
5.4 Policy Gradient . 48
5.5 n-Myopic . 49
5.6 n-Lookahead . 50
5.7 Comparison . 52

6 Conclusion 55
6.1 Summary . 55
6.2 Discussion . 55

6.2.1 Future work . 57
6.2.2 Ethical considerations . 59

References 61

A OpenAI Gym Environments I
A.1 Requirements . I
A.2 Installing . I
A.3 Usage . II
A.4 Example . II

x

List of Figures

2.1 An example network at time t = τ where node l ∈ N∧ ∩ NC is an
AND attribute and a critical attribute, k ∈ N∨ is an OR attribute
and i, j, k, n ∈ {1}, i.e. the nodes with an inner red circle, are enabled.
Given this it can be observed that k is enabled without the enabling
of m, which is possible since k is an OR attribute. The dotted lines
indicate that what we observe is solely a part of the graph as a whole. 10

2.2 Example illustrating the difference in cost for some potential coun-
termeasures that the defender can choose to perform. 12

3.1 An example network, first at time-step t and then with the two po-
tential states at time-step t+ 1, after performing the countermeasure
action at = u1 ∈ U at time-step t. All nodes are AND attributes,
following our assumption, with the critical attribute NC = {5}, the
leaf attributes NL = {1, 3} and that there exists two binary actions
u1, u2 ∈ U . As can be observed, critical attributes are indicate by its
double outer circles, leaf attributes by the dotted line with the at-
tack probability as they are the entry-points for the attacker(s) into
the network, and the colored outer strips the set of attributes Wum

disabled by the binary action um where m ∈ {1, 2}. At time-step t,
attribute 1, 2, 3 ∈ {1}, i.e. the nodes with an inner red circle, are en-
abled. At time-step t+1, after deploying countermeasure u1, attribute
1, 2 ∈ Ru1 are disabled, i.e. unavailable for both authorized users and
adversaries, as attribute 2 is the successor of the disabled attribute
1. However, attribute 3 ∈ {1} is still enabled as it is unaffected by
u1, and 4 ∈ {1} is enabled with probability α3,4. 19

3.2 The sample network given by Miehling, Rasouli, and Teneketzis (2015).
All nodes are considered to be AND attributes and α to be the ex-
ploit probabilities. There exists two leaf attributes NL = {1, 5}, one
critical attribute NC = {12} and two binary actions u1, u2 ∈ U . Thus
the set of countermeasure actions are U = {∅, {u1}, {u2}, {u1, u2}}
where ∅ is the countermeasure action of doing nothing, i.e. applying
no countermeasure. 20

xi

List of Figures

4.1 An example network on which the general optimal policy in Algo-
rithm 3 is applied upon, where the critical attributes are NC = {5, 6}
, the leaf attributes are NL = {1, 2}, the nodes with an inner red
circle are enabled and there exist two binary actions u1, u2 ∈ U . We
can observe the three possible states s2, s3, s4 ∈ S that on average
is reached after τ̄ 5

u time-steps, depending on the countermeasure u1

or u2 deployed when all the direct predecessors D̄5 = {1, 3} are en-
abled to the subset of critical attributes {5} ⊆ NC in state s1 ∈ S.
The optimal countermeasure u ∈ U thus depends on which one that
maximizes τ̄5

u/D(u). 32
4.2 The fully connected neural network configuration of the adapted Pol-

icy Gradient method. The input layer takes a observation o ∈ Ô and
feeds that through, where the output layer outputs a corresponding
countermeasure u ∈ U , which are sampled using a multinomial dis-
tribution. The updates are done through gradient descent, with a
softmax policy function. 36

4.3 An overview of the n-Myopic algorithm, which can be found with all
its details in Algorithm 8. In the flowchart a ∈ A, s ∈ S, o ∈ Ô
where E is the empirical matrix, ε is the number of episodes used for
tuning, #episode is the current episode and npred is the number of
predecessors from a direct predecessor to a critical attribute that we
monitor to see if any has been enabled. 40

4.4 An overview of the n-Lookahead algorithm, which can be found with
all its details in Algorithm 9. In the flowchart a ∈ A, s ∈ S, o ∈ Ô
where E is the empirical matrix, Υ is the transition matrix, ε is the
number of episodes used for tuning, #episode is the current episode
and λ is the threshold used to determine if the probability for an
adversary to be in a state s, where all direct predecessors to a critical
attribute are enabled, in nfuture time-steps is large enough. 43

5.1 The average episodic cost and time over 100 simulations, for 1000
episodes with the Optimal Policy implementation seen in Algorithm
4, on the MDP version of the Minimal environment. The filled area
indicates the standard deviation, meanwhile the thick line denotes
the actual average cost and time. 46

5.2 The average episodic cost and time over 100 simulations, for 1000
episodes, the discount factor γ = 0.7 and the exploration factors
δ = 0.1, 0.01, 0.001, 0.0001 with the Q-learning implementation seen
in Algorithm 5 on the Minimal environment. 47

5.3 The average episodic cost and time over 100 simulations, for 1000
episodes, the discount factor γ = 0.7 and the exploration factor
δ = 0.1 with the Q-learning implementation seen in Algorithm 5
on the Minimal environment. The filled area indicates the standard
deviation, meanwhile the thick line denotes the actual average cost
and time. 47

xii

List of Figures

5.4 The average episodic cost and time over 100 simulations, for 1000
episodes, with a batch size of nbatches = 10, 50, 100 for the Policy
Gradient implementation seen in Algorithm 7. 48

5.5 The average episodic cost and time over 100 simulations, for 1000
episodes, with a batch size of nbatches = 100 for the Policy Gradi-
ent implementation seen in Algorithm 7. The filled area indicates
the standard deviation, meanwhile the thick line denotes the actual
average cost and time. 49

5.6 The average episodic cost and time over 100 simulations, for 1000
episodes, the number of predecessors to npred = 0 and the tuning
parameters ε = 1, 10, 100, 500 with the n-Myopic implementation seen
in Algorithm 8 on the Inspect environment. 50

5.7 The average episodic cost and time over 100 simulations, for 1000
episodes, the number of predecessors to npred = 0, 1, 2, 3 and the
tuning parameter to ε = 1 with the n-Myopic implementation seen in
Algorithm 8 on the Inspect environment. 51

5.8 The average episodic cost and time over 100 simulations, for 1000
episodes, the number of predecessors to npred = 0 and the tuning
parameter to ε = 1 with the n-Myopic implementation seen in Al-
gorithm 8 on the Inspect environment. The thick lines denotes the
average cost and time. 51

5.9 The average episodic cost and time over 100 simulations, for 1000
episodes, the threshold set to λ = 0.4, the number of predecessors
to nfuture = 0 and the tuning parameters ε = 1, 10, 100, 500 with
the n-Lookahead implementation seen in Algorithm 9 on the Inspect
environment. 52

5.10 The average episodic cost and time over 100 simulations, for 1000
episodes, the threshold set to λ = 0.4, the number of time-steps
to nfuture = 0, 1, 2, 3 and the tuning parameter to ε = 1 with the
n-Lookahead implementation seen in Algorithm 9 on the Inspect en-
vironment. 53

5.11 The average episodic cost and time over 100 simulations, for 1000
episodes, the threshold set to λ = 0.4, the number of time-steps to
nfuture = 0 and the tuning parameter to ε = 1 with the n-Lookahead
implementation seen in Algorithm 9 on the Inspect environment. The
filled area indicates the standard deviation, meanwhile the thick line
denotes the actual average cost and time. 53

5.12 The average episodic cost and time over 100 simulations, for 1000
episodes, for all the algorithms with the best performing parameters.
I.e., Q-learning, Policy Gradient, n-Myopic and n-Lookahead. 54

xiii

List of Tables

3.1 The parameters for the toy numerical example given by Miehling et
al. (2015). 22

3.2 Average cost of a data breach in millions of dollars for mid- to large-
size companies in the United States in 2017 (Ponemon Institute LLC,
2017). 24

3.3 The cost of each countermeasure in both environments. 25

xv

1
Introduction

As more and more devices connect to the internet and utilize its services, the needs
for robust security and auditing solutions are growing. There is a wide range of at-
tacks targeting computer systems, such as malware, zero-day exploits, and network
worms. In 2016, the Internet Complaint Centre at the Federal Bureau of Investi-
gation (FBI) received almost 300 000 reports of cyber-crime, which totalled $1.3
billion in losses in the United States alone (Federal Bureau of Investigation, 2016).

The traditional way of performing security revolves around locking down the network
and the operating system. When any kind of event happens that falls outside normal
behavior, a response team of operators investigate the incident (Krutz & Vines,
2010). But as software is growing in size and complexity every year, the number
of potential security incidents is growing with it. In most cases it is impossible
for a security team to audit every single event, validating that the traditional way
is insufficient, and that new automated methods needs to be explored. By having
a security system that monitors an environment and suggests or handles incidents
automatically, the human effort can be alleviated.

The introduction is divided into five sections: aim, problem, related work, the con-
tribution to the field, and a general overview of the whole thesis. This pattern is
applied throughout the thesis where an organizational introduction is presented in
each chapter followed by more detailed sections.

1.1 Aim

The aim of the project is to formulate a threat defense environment as a POMDP-
model, that allows for fast approximate defense algorithms to detect security vulner-
abilities in a computer system. The model has to scale well for a system of increasing
size. Previous attempts have shown the complexity of solving large POMDP-based
models. Therefore, finding trade-offs and optimizations in the model to make it solv-
able within a usable time frame is of high relevance (Shmaryahu, Shani, Hoffmann,
& Steinmetz, 2017).

1

1. Introduction

The system has to be fully automated. Many attacks are carried out at such a fast
pace that a human operator would not be able to interpret the data and act fast
enough. Additionally, the scale and cost of operating human inspection on security
events is not feasible due to the scale and complexity of modern systems.

By modeling the threat defense environment and developing fast approximate de-
fense algorithms, the thesis tries to answer the following question:

"Can an automated system be modeled as a POMDP in such a way
that it works in a real-time context to find and efficiently respond to
simultaneous attacks against a computer system?"

There is previous research showing how to model this problem. Early work done by
Liu and Man (2005) and Poolsappasit, Dewri, and Ray (2012), show the viability
of attack graphs. They are a special case of scenario graphs, where each path in
an attack graph is a series of exploits that leads to an undesirable state (Sheyner,
2004). In recent years, advancements in the field were made by Miehling et al.
(2015), by deploying defense policies in attack graphs. The limitation of previous
work is the constraint to small attack graphs, i.e. to solely model small systems,
and the focus on restrictive defensive actions, temporally shutting down parts of the
system, instead of information gathering defensive actions. This thesis addresses
the research question through several criteria:

1. Model multiple attackers in a system, and implement reinforcement learning
algorithms such that a defender chooses defensive actions to counter the at-
tacks. The actions will be based on imperfect information yielded from the
environment, regarding the state of the network, i.e. if an attack is taking
place or not.

2. Extend the set of defensive actions from solely availability restricting to incor-
porate an information gathering action. It will consist of an expert inspecting
the state of the network.

3. Model and self-develop new reinforcement learning algorithms utilizing the
new defensive action.

4. Implement the models to prove their viability.

5. Evaluate the implementations.

Since finding optimal policies for POMDP is PSPACE-complete (Papadimitriou &
Tsitsiklis, 1987), we need approximate strategies to make it feasible to deploy the
model in any system, regardless the size of the system. This can be approached from
several different angles, e.g. by finding approximations through Policy Gradient
methods (Aberdeen & Baxter, 2002) or work on the attack graph generation of the
system, such that more efficient models are created (Ou, Boyer, & McQueen, 2006).

2

1. Introduction

In comparison to Miehling et al. (2015), we interpret how the defensive countermea-
sures affect the environment, and the definition of the optimal policy differently.
Thus, a comparison between our results would not be justifiable. Instead, we will
compare the developed, and applied algorithms to each other, as well as to the
self-defined optimal policy.

1.2 Problem

An operator wants to defend its environment of a computer system from external
attacks. The preventive actions have to happen in real-time to make sure no sen-
sitive data leaves the system. The attacks are assumed to happen faster than the
operator manually can respond to. With this in mind the problem involves modeling
a system as a POMDP, that can be used to analyze the vulnerabilities and exploits
posed to the operator’s environment. Using this analysis of imperfect information
of the attacker(s), the system chooses appropriate countermeasures. Either by, if
necessary, disabling services that the vulnerabilities and exploits depend upon, or
by investigating the state of the network by applying expertise. The defense system
should also lean upon the more secure option, i.e. take no unnecessary risks, where a
partial shutdown is favored to a scenario in which the attacker has partial control of
the system. However, the cost of countermeasure deployment has to be considered,
as we want to maintain accessibility to the system without having a force of experts
continuously monitoring it, which for large systems would be unfeasible.

The problem is divided into two parts; modeling the attackers capabilities and spread
throughout the environment as a Bayesian Attack Graph, and determining the op-
timal defense strategy as a POMDP for the defender observing said attacks, and
take appropriate action(s). The formulation of the problem, and the notations and
definitions utilized, generally follows the work done by Miehling et al. (2015).

1.3 Related work

The idea of attempting to detect attacks and vulnerabilities automatically is not
new within the security research community. The general term used to describe the
problem is Intrusion Detection. Researched solutions range from using fixed signa-
tures of malicious code, to anomaly detection models, utilizing advanced machine
learning techniques. The different approaches all have trade-offs and challenges.
Signature-based solutions are efficient and easy to implement, but fail to detect un-
known attacks. Meanwhile, anomaly-based solutions offer a way to detect unknown
attacks, but adds computational complexity, false positives, and in turn makes it
harder to trigger events in real-time due to the delay in processing (Liao, Lin, Lin,
& Tung, 2013).

3

1. Introduction

A related research topic is the detection of security vulnerabilities in a system by
exposing it to friendly attacks, so called penetration testing, where the objective is to
obviate potential paths of intrusion. Network security has successfully been targeted
for this type of evaluation, by generating friendly attacks and then automatically
running them against an environment (Sarraute, Buffet, & Hoffmann, 2012). One of
the more advanced platforms utilize Partially Observable Markov Decision Processes
(POMDP) to model the problem. This area faces the same kind of challenges as
intrusion detection, it should be done with minimal intervention from human oper-
ators, and needs to accurately find vulnerabilities (Hoffmann, 2015). The problem
with using POMDP as a modeling strategy is the computational complexity when
scaling to larger graphs (Shmaryahu et al., 2017).

Finding optimal policies for POMDP is PSPACE-complete (Papadimitriou & Tsit-
siklis, 1987), but recent research results on the issue of scalability show great promise.
Silver and Veness (2010) introduced POMCP, a Monte-Carlo algorithm for online
planning that has successfully scaled up to very large POMDPs. Following, Somani,
Ye, Hsu, and Lee (2013) introduced R-DESPOT that avoids POMCP’s poor worst-
case behaviour by evaluating policies on a small number of sampled scenarios in-
stead. They further show through theoretical analysis and experiments that their
new approach outperforms two of the fastest online POMDP planning algorithms to
that date, including POMCP. In addition to showing strong results, both projects
are open source.

Much less research focuses on the actual defense when an attack or vulnerability
has been found. Some early research by Wells, Pazandak, Nodine, and Cassandra
(2004), show promise using a POMDP as basis for an automatic intervention system.
They implement a full software solution that proves they can assess and intervene
in a multi-agent environment. This furthermore highlight the demand for trade-offs
between accuracy and evaluation time. Some more recent research by Miehling et
al. (2015) has shown promise in using a POMDP-based model to model attacks
and their corresponding defense strategies. Using previously mentioned penetration
testing ideas, they build a model with a planner that looks at potential threats,
with the addition of a defender that can take actions, and alter the possible attack
vectors.

In the research done by Miehling et al. (2015), solely defensive actions of restricting
the availability by disabling services that vulnerabilities and exploits depend upon
are considered. Thus, we chose to extend the set of actions by adding an information
gathering defensive action, where an expert investigates the state of the computer
system. It is not the first time that an action of this kind is implemented (Hansen
& Feng, 2000), but to the best of our knowledge, it is the first time that it is
implemented in these specific settings.

4

1. Introduction

When performing a study of the current literature within the subject, we found
that it was hard to reproduce, and compare results due to little standardization on
the metrics used by researchers. Leading to the development of two OpenAI gym
environments, to facilitate better and easier peer reviews within this specific topic
(Brockman et al., 2016).

1.4 Contributions

There are three major contributions that will be presented in this thesis, each enu-
merated below. The code for each contribution is publicly available, see Appendix
A for details.

1. An attack graph model that improves on previous work, by introducing an
additional information gathering action. Additionally, two model specific al-
gorithms, based on the new action, to solve the environment.

2. Definition of the optimal policy strategy, and experimental results with com-
parisons.

3. Standardization of the evaluation of two attack graph-based reinforcement
learning models through two OpenAI gym environments.

1.5 Overview

The thesis is organized into five main chapters. The first chapter details funda-
mental theory that the rest of the thesis builds upon. A reader familiar with the
reinforcement learning field should focus on the part denoting theory related to the
threat environment definition, but can skip the section on reinforcement learning
solving algorithms.

The problem has two parts: modeling the environment and defining solving algo-
rithms for said environment. Therefore, the presentation of results is organized into
a chapter about the environments, and a separate chapter detailing the solving algo-
rithms, Chapters 3 and 4 respectively. The specific parameters of each environment
and algorithm, with experimental results are presented in Chapter 5. Finally, the
last chapter 6 Conclusion, contains discussion of the results, future work and ethical
considerations.

5

2
Theory

This chapter covers the fundamental theory required to define the two attack graph-
based models, also incorporating used definitions from previous work. Furthermore,
this section details the theory of the standard solving algorithms in Chapter 4, used
in the experimental results in Chapter 5.

2.1 POMDP

As a POMDP is a generalization of a MDP, we first introduce the definition of a
MDP in Definition 2.1.1, followed by the definition of a POMDP in Definition 2.1.2.

Definition 2.1.1 (Markov Decision Process). A Markov Decision Process (MDP)
is defined by a 5-tuple 〈S,A, Ta, Ra, γ〉, where

• S is the set of states.

• A is the set of actions.

• Ta(s, s′) = P (st+1 = s′|st = s, at = a), is the transition probability that action
a ∈ A in state s ∈ S will lead to s′ ∈ S.

• Ra(s) is the scalar reward received by taking action a ∈ A in state s ∈ S.

• γ ∈ [0, 1] is the discount factor, denoting the difference in how much immedi-
ate and distant reward should affect the agent.

Definition 2.1.2 (Partially Observable Markov Decision Process). A Partially Ob-
servable Markov Decision Process (POMDP) is a generalization of a MDP. In this
generalization the 5-tuple is extended to a 7-tuple 〈S,A,O, Ta, Oa, Ra, γ〉, where in
addition to the previous MDP definition in 2.1.1

• O is the set of observations.

7

2. Theory

• Oa(s′) = P (ot+1 = o|st+1 = s′, at = a) is the observation probability that
action a ∈ A resulting in state s′ ∈ S will lead to the observation o ∈ O.

At each time-step, the process is in a state s ∈ S. The environment updates its state
when an agent performs an action a ∈ A. By taking the action the environment
transitions from state s to state s′ based on the transition probability Ta(s, s′).
When performing action a in state s, the agent receives a reward r = Ra(s). In
the case of a POMDP, the true state s′ is unknown to the agent, instead the agent
receives an observation o ∈ O based on the observation probability Oa(s′), which
can be action dependent (Smallwood & Sondik, 1973).

In both cases of a MDP and a POMDP, the goal of an agent is to find an optimal
policy π∗. A policy π is the agent’s behaviour function. It is a mapping from state
to action, which can both be deterministic and stochastic, dictating what action
a ∈ A to take given a particular state s ∈ S (Silver, 2015a). It can be defined as

π(s) = a if deterministic,
π(s|a) = P (at = a|st = s) if stochastic.

In the optimal case, π∗ should maximize the agent’s expected future discounted re-
ward, which can be defined as

V ∗ = V π∗(b0) = maximize
π

Eπ
[∞∑
t=0

γtrt|b0

]
,

where b0 is the initial probability distribution over states (Dimitrakakis & Ortner,
2018).

2.2 Conflict environment model

The formulation of the problem, notations, and definitions utilized in this thesis
generally follows the work done by Miehling et al. (2015). The problem is divided
into two parts; modelling the attackers capabilities and spread throughout the en-
vironment as a Bayesian Attack Graph and determining the optimal defense policy
as a POMDP for the defender observing said attacks and based on the policy take
appropriate action(s).

8

2. Theory

2.2.1 Bayesian Attack Graphs

In a Bayesian Attack Graph the nodes are denoted attributes, and the edges are
denoted exploits. The attributes are attacker capabilities, or vulnerability probabil-
ities from the defender’s viewpoint. Some example attributes could be the level of
permission the attacker has on a given machine, information leakage, or a specific
vulnerability in a service or a system. Exploits on the other hand are events that
allow the attacker to use their current set of capabilities (attributes) to obtain fur-
ther capabilities. The formal definition of a Bayesian Attack Graph is defined in
Definition 2.2.1 (Miehling et al., 2015).

Definition 2.2.1 (Bayesian Attack Graph). A Bayesian Attack Graph, G, is defined
as the tuple G = 〈N , θ, E ,P〉, where

• N = {1, . . . , N} is the set of nodes, termed attributes.

• θ is the set of node types. Each non-leaf attribute (a node that has at least
one predecessor) is assumed to be one of two types, θ = {∧ (AND),∨ (OR)}.
The respective sets of nodes are denoted by N∧ and N∨.

• E is the set of directed edges, termed exploits.

• P is the set of exploit probabilities associated with edges. Each exploit (directed
edge), e = (i, j) ∈ E , has an associated probability P(e) = αij ∈ [0, 1].

An assumption made is that each attribute i ∈ N can either be enabled, i.e. the
attacker hold attribute (capability) i, or disabled, i.e. attribute i is not held by
the attacker. Thus, the network state is defined, at time t, as a binary vector
st = (s1

t , . . . , s
N
t) ∈ S := {0, 1}N , where sit is the state of attribute i at time t and

denoted as

sit ∈ {0 (disabled), 1 (enabled)}.

The Bayesian Attack Graph G contain both leaf nodes NL ⊆ N , defined as nodes
with no predecessors, and root nodes NR ⊆ N , which are nodes with no succes-
sors. The leaf nodes, NL, can be viewed as the bridges connecting to the external
world. These nodes are assumed to be the entry-points into the attack graph for
the attacker(s). Conversely, root nodes, NR, are the attributes found at the deepest
exploit level. Among these, there is a subset of root nodes that are viewed by the
defender as the most crucial and important attributes to protect, NC ⊆ NR. Fol-
lowing the notation defined in Definition 2.2.1, the state of a subset of attributes,
e.g. NC, from a state st, at time t, is denoted as

9

2. Theory

sNC
t ∈ {0 (disabled), 1 (enabled)}.

The node types θ, are assigned to non-leaves i ∈ N \ NL, that are either of type
AND, i ∈ N∧, or of type OR, i ∈ N∨ which sets the condition that the attribute’s
direct predecessors need to satisfy if the attribute is to become enabled. If i ∈ N∧,
then there exist a non-zero probability of attribute i being enabled at t + 1 iff all
direct predecessors, denoted by D̄i = {j ∈ N|(j, i) ∈ E} (with D̄i = ∅ for i ∈ NL),
are enabled at time t. If |D̄i| = 1, i.e. there exist solely one direct predecessor to i,
then i is classified as an AND attribute as well. If i ∈ N∨, then if any attribute
D̄i is enabled at time t there exist a non-zero probability that attribute i will be
enabled at time t + 1. An example of a network containing both AND and OR
attributes can be viewed in Figure 2.1.

l∧

Slτ = 0
Siτ = 1

i

j

k∨

n

m

αil

αjl

αkl

αnk

αmk

Figure 2.1: An example network at time t = τ where node l ∈ N∧∩NC is an AND
attribute and a critical attribute, k ∈ N∨ is an OR attribute and i, j, k, n ∈ {1}, i.e.
the nodes with an inner red circle, are enabled. Given this it can be observed that k
is enabled without the enabling of m, which is possible since k is an OR attribute.
The dotted lines indicate that what we observe is solely a part of the graph as a
whole.

All exploits that can be found in a system may not be straightforward to utilize.
They may be difficult to carry out, or even bypassed, such that the capabilities to
perform an exploit is possessed by an attacker, but not carried out. These uncer-
tainties are captured by the exploit probabilities, where a probability is assigned to
each exploit representing the probability of success.

2.2.2 Attackers

As previously described in Section 2.2.1, the gateway for an attacker into the network
is through the leaf nodes, NL, thus it is assumed in accordance of probabilistic

10

2. Theory

dynamics that the contagion (attributes enabled by the attacker, i.e. the spread of
its capabilities) has its first step at NL. The probability αi ∈ [0, 1] that attribute
i ∈ NL is enabled at time-step t is then defined as

αi := P (sit+1 = 1|sit = 0), i ∈ NL

and denoted as the probability of attack. The steps of contagion spread that continues
are described by the so called predecessor rules, coined by Miehling et al. (2015),
that describe how the process spreads to an attribute as a function of three factors:
i) the attribute’s type, ii) the states of the attribute’s direct predecessors, and iii)
the exploit probabilities. It is denoted as the probability of spread, and for the AND
attributes, i ∈ N∧, we can mathematically define the probability of i transitioning
from the disabled state, 0, at time t to the enabled state, 1, at t+ 1 as

P (sit+1 = 1|sit = 0, st) =


∏
j∈D̄i

αji if sjt = 1 ∀ j ∈ D̄i

0 otherwise

and for the OR attributes, i ∈ N∨, as

P (sit+1 = 1|sit = 0, st) =


1−

∏
j∈D̄i

(1− αji) if ∃ j ∈ D̄i s.t. sjt = 1

0 otherwise

where the probabilities are fixed during the whole time span of the decision prob-
lem. Worth mentioning, is that these probabilities are unknown to the defender.
This follows from the problem description, where the goal is to model a real-world
situation as closely as possible. In other words the specific probabilities to enable
an attribute is unknown to the security operators.

2.2.3 Defender

As the attacker(s) propagate through the system, the defender will receive observa-
tions at each time step t in the form of a vector ot ∈ O = S. The defender will not
have perfect information, but instead limited surveillance of the network and thus
the defender is not aware of the capabilities that the attacker(s) possess in any given
time-step. This is modelled as a probability of detection, where at each time step t
the defender will observe attribute i as enabled with the probability

βi := P (oit = 1|sit = 1).

11

2. Theory

Low HighCost of action

Blo
ck
po
rt

Ki
ll p

roc
ess

De
let
e fi
le

Te
rm
ina
te
sys
tem

Ca
ll o
pe
rat
or

Figure 2.2: Example illustrating the difference in cost for some potential counter-
measures that the defender can choose to perform.

The defender will thereby be forced to form a belief of the current state of the
network. As with the exploiting probabilities α, the probability of detection is
unknown to the defender following the same reasoning.

In order to keep the network secure, the defender will counter the attacker(s) at-
tempts and remove its capabilities by utilizing countermeasures. The defender will
have access to M binary actions that forms the countermeasures, i.e. all possible
subsets (the power set P) of binary actions constitutes the space of countermeasure
actions U := P({u1, . . . , uM}). Each binary action um in countermeasure u ∈ U
will disable a set of attributes, denoted by Wum ⊆ N , and each countermeasure will
have a cost C(s, u) for state s ∈ S. The cost will try to mirror the negative and
positive effect that the action have on the system, i.e. how effective it is at keeping
the critical attributes out of the attacker’s control and how it affects authorized
users ability to utilize the system. Intuitively, we can define accessibility as if all
the system parts are available, i.e. if no attributes are disabled by a countermeasure
for a specific amount of time. Our interpretation in this thesis is that it is for one
time-step. However, it is far from being a definitive interpretation and is discussed
later in Section 3.4.

Some examples of countermeasures and their relative cost can be viewed in Figure
2.2. A defender is not required to perform a countermeasure, where choosing the
empty set u = ∅ implies that the defender is allowing the system to operate unin-
terrupted. In other words do nothing to gather more observations that can yield a
better understanding of the environment.

The history of all the countermeasures performed by the defender up to and including
time t− 1, as well as the observations up to and including time t, can be formulated
as

Ht = (b0, u0, o0, u1, o1, . . . , ut−1, ot),

where bt ∈ S is the defender’s current belief of the state at time t, where it exist
a function T that updates the defender’s current belief bt with the new (realized)
information obtained, i.e. {ot+1, ut}, between time-steps t and t+ 1, such that

12

2. Theory

bt+1 = T (bt, ot+1, ut).

A summary of the history can then be formulated as an information state, It, which
satisfies the conditions that it can be evaluated from Ht, and that there exist a
function, Ft, such that It+1 = Ft(It, ot+1, ut) where ot+1 and ut composes the new
information received between time t and t+ 1. It is not certain however that these
two conditions constitutes enough information to make an optimal decision. One
alternative is to simply use the belief itself, i.e. the probability mass function

bst = P (st = s|Ht)

of being in a certain state, where s ∈ S, and with the drawback that Ht is unbounded
in time.

2.2.4 POMDP-formulated defense problem

Based on the problem definition and the attack graph environment in Sections 1.2
and 2.2.1, the problem for the defender becomes to determine an appropriate (op-
timal) defense policy, π : S → U , that map the current belief of the defender bt
at each time-step t to a countermeasure action ut ∈ U . With the constraints that
the countermeasure should make critical attributes out of control of the attacker(s),
while concurrently preserving availability of the system. A realization from this fact
is that the defender’s policy should not solely rely on the current belief of the net-
work, but also take into account on how the system will change due to action(s) of
attackers and the effects of deployed countermeasures. The defender attempts to for-
mulate an optimal defense policy π∗ that minimizes the infinite-horizon discounted
expected cost V ∗, defined as

V ∗ = V π∗(b0) = minimize
π

Eπ
[∞∑
t=0

γtC(bt, ut)|b0

]
subject to ut = π(bt)

bt+1 = T (bt, ot+1, ut),

where Eπ[·] denotes the expectation with respect to the probability measure induced
by policy π. The discount factor γ ∈ [0, 1] models the fact that an immediate cost
is more certain than a cost in the future, and the expected instantaneous cost is
defined as

C(bt, ut) =
∑
s∈S

bstC(s, ut),

13

2. Theory

where C(s, u) is the instantaneous cost of performing counter measure u ∈ U in state
s ∈ S. Dynamic programming is used to obtain a solution to the infinite-horizon
discounted expected cost problem that V ∗(b) constitutes. As it satisfies the dynamic
programming (Bellman) optimality equation,

V ∗(b) = min
u∈U

Q∗(b, u),

where Q∗(b, u) is defined as

Q∗(b, u) := C(b, u) + γ
∑
o∈O

P b,u
o V ∗(T (b, o, u)),

with P b,u
o = P (ot+1 = o|bt = b, ut = u) = ∑

s∈S b
sP (ot+1 = o|st+1 = s, ut = u)

(where P (ot+1 = o|st+1 = s, ut = u) is the observation probability), we can define
an optimal defense policy by taking

π∗(b) = argmin
u∈U

Q∗(b, u).

2.3 Reinforcement learning algorithms

Two well-known solving algorithms for reinforcement learning problem are presented
in this section. These are later used in the experimental results and comparisons
detailed in Chapters 4 and 5 respectively. The definitions follow descriptions from
the book "Decision Making Under Uncertainty and Reinforcement Learning" written
by Dimitrakakis and Ortner (2018) if not stated otherwise.

2.3.1 Q-learning

One of the simplest, but also well-known, reinforcement algorithms is Q-learning.
The algorithm is an off-policy reinforcement learning algorithm, where the goal is to
learn the optimal behaviour by approximating a Q-function based on the immediate
reward given by taking an action.

The algorithm (Algorithm 1 where µ is the environment, εttot is the exploration
parameter, αttot is the learning rate and vttot is the value function at time ttot =
(i−1) ·tmax+t, i.e. the total time since the simulation began) easily be implemented
using a table to store the Q-function. However, despite its simplicity, it appears to
show good performance in practice (Dimitrakakis & Ortner, 2018).

14

2. Theory

Algorithm 1 Q-learning
Input: µ,S,A, εttot , αttot , γttot

1: Initialize Q0 ∈ V
2: for i = 1, 2, . . . , nepisodes do
3: Initialize st ∈ S
4: for t = 1, 2, . . . , tmax do
5: at ∼ π∗εttot (a|st, Qttot)
6: st+1 ∼ Ta(st, s′)
7: Qttot+1(st, at) = (1− αttot)Qttot(st, at) + αttot [Rat(st) + γttotvttot(st+1)],

where vt(s) = max
a∈A

Qt(s, a)
8: end for
9: end for

2.3.2 Policy Gradient

In contrast to Q-learning, where the policy function is inferred from a learned Q-
function, the policy function is inferred directly in Policy Gradient methods. Gen-
erally, policy-based methods find the optimal policy by optimizing for long term
reward directly, employing gradient ascent on the expected utility to find a locally
maximizing policy (Dimitrakakis & Ortner, 2018).

In practice there are several different approaches to policy gradient methods. A
widely used one is Monte Carlo Policy Gradient, also called REINFORCE, which
is defined in Algorithm 2. This method is unbiased but suffers from high variance
(Silver, 2015b).

The policy gradient is defined as

5θJ(θ) = Eπθ [5θ log πθ(st, at)Qπθ(st, at)],

where the long-term value ofQπθ(st, at) replaces the instantaneous reward r = Ra(s).
The goal is to find the optimal θ for a stochastic policy π given each state s ∈ S
and action a ∈ A pair. In the REINFORCE algorithm in Algorithm 2, vt is used
as an unbiased sample of Qπθ(st, at) and αt denotes the learning rate. The gradient
for this particular algorithm is then defined as

4θt = αt5θ log πθ(st, at)vt,

15

2. Theory

Algorithm 2 REINFORCE
Input: µ,S,A, α

1: Initialize st ∈ S, set θ arbitrarily
2: for each episode 〈s1, a1, r2, ..., sT−1, aT−1, rT 〉 ∼ πθ do
3: for t = 1, 2, . . . , T do
4: θ ← θ + αt5θ log πθ(at, st)vt
5: end for
6: end for

16

3
Environments

This chapter details the implementation of each environment. In addition, the
assumptions and limitations are stated which applies to both of the environments.
Furthermore, both environments are based on the theoretical definitions in Chapter
2.

The chapter is organized into four sections, where first the assumptions are stated
and justified. Following, each environment is detailed in a separate section respec-
tively, where the Inspect environment in Section 3.3, is based on the minimal envi-
ronment in Section 3.2. Lastly, an analysis of the reward (cost) function is detailed
in Section 3.4.

3.1 Assumptions

Several assumptions are imposed on the attacker to simplify the problem. All as-
sumptions can be removed but requires changes to each solving algorithm and in-
creases complexity. Each assumption and justification is detailed below where some
of them are inherited from work by Miehling et al. (2015).

1. An attacker is assumed to not follow any specific intelligent behaviour, but
instead propagate randomly throughout the network attempting to reach the
critical attribute(s). It can be viewed as an adversary applying trial and
error to succeed, where a more sophisticated strategy would add unwanted
complexity to the model. Thus, with this assumption, we may model it as a
probabilistic spreading process.

2. No false positives can occur, i.e. excluding the possibility that the defender
observes that an attribute is enabled (oit = 1) when actually disabled (sit = 0).
As the defender already acts under imperfect information, adding additional
uncertainty is undesirable. Mathematically, this can be defined as P (oit =
1|sit = 0) = 0.

17

3. Environments

3. All leaf attributes, NL, are covered by a binary action. That is, for each
attribute i ∈ NL there exists a countermeasure u ∈ U containing action um

that disables i, i.e. i ∈ Wum . This follows from the extreme case of using the
countermeasure of shutting down the system completely, blocking all entry
points to the system, i.e. the leaf nodes NL.

4. If all binary actions u = {u1, . . . , uM} are deployed as a countermeasure the
simulation ends. As we have assumed that all leaf attributes, NL, are cov-
ered by a binary action deploying all countermeasures will result in a full
system shut down. Thus, ending the simulation with the instantaneous cost
of C(u, s) = C({u1, . . . , uM}, s) where s ∈ S.

5. The attack graph only contains AND attributes, i.e. N∧ = N \ NL and
N∨ = ∅. This assumption is justified in the remaining assumptions.

6. The only feasible states are monotone, denoted by the set S. A state s =
{s1, . . . , sN} ∈ S ⊆ S is monotone, if for every attribute i that is enabled
in an attack graph that solely is built up by AND attributes, all of i’s pre-
decessors j ∈ Di are enabled, i.e. si = sj = 1. In other words we make
the assumption that attacker’s behave with monotonicity and thereby elimi-
nating cycles present in the attack graph. Conceptually speaking we assume
that attackers will never give up previous capabilities gained while increas-
ing its control over the network. The justification for this follows the argu-
ments made by Poolsappasit et al. (2012), and by the fact that informally it
makes logical sense from the goals of an attacker that they would not willingly
give up anything gained. With this limitation, we restrict ourselves to the
|S| = K ≤ |S| = 2N feasible states instead of all 2N states in space S. Thus,
the probability mass function need solely to concern K possible states and we
can redefine the belief as

Πs
t = P (st = s|Ht, s ∈ S).

7. An adversary can enable attributes while countermeasure u ∈ U is applied, if
the attributes and their predecessors are unaffected by u, i.e not in the reach
of u. It can in turn be defined as the set of nodes that are disabled as a result
of deploying a countermeasure action u ∈ U

Ru := {i ∈ N|i ∈ Sj, j ∈ Wu},

where Sj is the set of successors of j. It follows from intuition that if an adver-
sary is about to enable an attribute at time-step t, and that a countermeasure
u is simultaneously deployed that affects another part of the system, the ad-
versary should be able to continue and enable the attribute as it is unaffected.

18

3. Environments

An example is presented in Figure 3.1, to highlight this behaviour. Worth not-
ing and illustrated in Figure 3.1, is that an adversary can exclusively enable
attributes that are direct successors to itself and that has all of it predecessors
enabled in a single time-step, following the monotonicity assumption.

u1

1

2

u2

3

4

5

u1

1

2

u2

3

4

5

u1

1

2

u2

3

4

5

t

t+ 1α1,2

α2,5

α3,4

α4,5

α1,2

α2,5

α3,4

α4,5

α1,2

α2,5

α3,4

α4,5

α1

α3

α1

α3

α1

α3

at = u1

Figure 3.1: An example network, first at time-step t and then with the two poten-
tial states at time-step t+1, after performing the countermeasure action at = u1 ∈ U
at time-step t. All nodes are AND attributes, following our assumption, with the
critical attribute NC = {5}, the leaf attributes NL = {1, 3} and that there exists two
binary actions u1, u2 ∈ U . As can be observed, critical attributes are indicate by its
double outer circles, leaf attributes by the dotted line with the attack probability as
they are the entry-points for the attacker(s) into the network, and the colored outer
strips the set of attributes Wum disabled by the binary action um where m ∈ {1, 2}.
At time-step t, attribute 1, 2, 3 ∈ {1}, i.e. the nodes with an inner red circle, are
enabled. At time-step t+ 1, after deploying countermeasure u1, attribute 1, 2 ∈ Ru1

are disabled, i.e. unavailable for both authorized users and adversaries, as attribute
2 is the successor of the disabled attribute 1. However, attribute 3 ∈ {1} is still
enabled as it is unaffected by u1, and 4 ∈ {1} is enabled with probability α3,4.

19

3. Environments

3.2 Minimal environment

To understand bottlenecks and problem areas, as well as to have a model and ex-
periments to use for comparisons to our later self-developed new model, a baseline
had to be created. As the work done on defense policies for partially observable
spreading processes on Bayesian attack graphs by Miehling et al. (2015) is the most
relevant related to this thesis, we chose to use it as the foundation.

In their work, a toy numerical example is implemented which can be viewed in
Figure 3.2. Being of an ideal size, we made the decision to use the network as the
main framework in the implementations to come.

u1

1 2

3

4

u2

5
6

7

8
9

10
11

12

α1,2

α2,3
α3,4

α4,9

α5,6

α6,7

α7,8α8,9

α8,11

α9,10

α10,11

α11,12

α1

α5

Figure 3.2: The sample network given by Miehling et al. (2015). All nodes are con-
sidered to be AND attributes and α to be the exploit probabilities. There exists two
leaf attributes NL = {1, 5}, one critical attribute NC = {12} and two binary actions
u1, u2 ∈ U . Thus the set of countermeasure actions are U = {∅, {u1}, {u2}, {u1, u2}}
where ∅ is the countermeasure action of doing nothing, i.e. applying no counter-
measure.

The following sections define the different components of the 29-state/observation,
4-action POMDP defense problem for the sample network in Figure 3.2.

3.2.1 Attributes

The sample network is constituted of 12 attributes, where two leaf attributes exist
NL = {1, 5} and one critical attribute NC = {12}. To give the network a more
realistic appearance, Miehling et al. interpret the attributes, i.e. the vulnerabilities
of a computer system, as follows:

1. Vulnerability in WebDAV on machine 1

20

3. Environments

2. User access on machine 1
3. Heap corruption via SSH on machine 1
4. Root access on machine 1
5. Buffer overflow on machine 2
6. Root access on machine 2
7. Squid port scan on machine 2
8. Network topology leakage from machine 2
9. Buffer overflow on machine 3
10. Root access on machine 3
11. Buffer overflow on machine 4
12. Root access on machine 4

3.2.2 Actions

The defender is assumed to have access to the two following actions:

u1: Block WebDAV service
u2: Disconnect machine 2

With these two binary actions, we have a set of 22 = 4 countermeasures, i.e. U =
{∅, {u1}, {u2}, {u1, u2}} where ∅ is the countermeasure action of doing nothing, i.e.
applying no countermeasure.

3.2.3 Cost function

In the minimal example, the cost function is assumed to be additively separable, i.e
C(s, u) = C(s) + D(u) for all s ∈ S, u ∈ U where C(s) is the state cost and D(u)
the availability cost of a countermeasure. The state cost C(s) is defined as

C(s) =
1 if s12 = 1 where 12 ∈ NC

0 otherwise.

The availability cost of a countermeasure D(u) is in the sample network defined to
be proportional to the number of attributes that the countermeasure action disables.
In other terms, it can be defined as the countermeasure with largest reach Ru with
u ∈ U . Since |Ru1| = |Ru2|, D(u1) and D(u2) are set to be equal, i.e. D(u1) =
D(u2) = 1. D({u1, u2}) = 5, i.e. a higher cost since this reduces availability to zero
by resetting all attributes in the graph.

21

3. Environments

3.2.4 State space

Without any assumptions on attribute types and attacker behaviour, the state space
would be |S| = 212 = 4096. However, with the restriction of AND attributes and
monotone states, the state space is greatly reduced to |S| = 29, which is a reduction
of over 140 times.

3.2.5 Observation space

The same reduction can be applied to the observation space as a result of the as-
sumptions made. Not that the dimensionality of the observations can be reduced, as
we still will observe any of the |O| = 212 possible combinations of enabled attributes
in the observation set O, but rather how to interpret the observations. Since we
assumed that there are no possibility of false positives, we know that a given obser-
vation is always a subset of the true underlying state s ∈ S. Thus, the observation
space can be reduced to Ô ⊆ O observations that exclusively give useful information
by mapping a given observation o ∈ O to ô ∈ Ô.

3.2.6 Parameters

For the network sample problem, Miehling et al. set the parameters to the values
defined in Table 3.1.

Network sample problem parameters

Probabilities of detection
β = (0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.7, 0.6, 0.7,
0.85, 0.95)

Attack probabilities α1 = 0.5 and α5 = 0.5

Spread probabilities

α1,2 = 0.8, α2,3 = 0.8,
α3,4 = 0.9, α4,9 = 0.8,
α5,6 = 0.8, α6,7 = 0.9,
α7,8 = 0.8, α8,9 = 0.8,
α8,11 = 0.8, α9,10 = 0.9,
α10,11 = 0.8, α11,12 = 0.9

Table 3.1: The parameters for the toy numerical example given by Miehling et al.
(2015).

22

3. Environments

3.2.7 Time maximum

Also necessary, is to define the maximum time for an episode tmax, as it was not done
by Miehling et al. (2015). We have already made the assumption that a simulation
will end if all binary actions {u1, u2} are deployed, but in order to compare results
we need to define a maximum time for a simulation. A prerequisite to take into
consideration is that the maximum time must be of a size such that all attributes N
can be reached in the specified time frame. By intuition, there must be a possibility
to visit these as the defender has to take the whole system into consideration when
building its defensive strategies.

When running the Minimal environment with the parameters defined, we observe
that the average time it takes for an adversary to enable all attributes is approxi-
mately tavg ∼ 12. Thus, a sufficient amount of time is added to define tmax = 100.
The reason is that we want the choice of a bad defensive strategy to respectively
show bad performance in the results and not be hidden due to a short ending of
the simulation. If we then choose to solely perform the countermeasure of doing
nothing at each time-step, i.e. at = ∅ for t = 1, . . . , tmax, an average total cost of
100 · C(s) − tavg = 100 · 1 − 12 = 88 will be received for the whole episode where
s12 ∈ {1}.

3.3 Inspect Environment

The Inspect Environment was created by taking the minimal environment and ex-
tending it with an additional action u3 ∈ U , Inspect. The new action allows the agent
to inspect and retrieve the true state st ∈ S in parallel to the observation ot ∈ Ô at
time step t. Performing this action has a small penalty D(u3). Basically, reducing
the POMDP into a MDP for a single time-step. It can be viewed as the action of
letting an expert examine a computer system, in a fashion where it is assumed that
the expert possesses such knowledge that he or she always will discover potential
intrusions into the system. Enabling the possibility to approximate the detection
and the attack and spread probabilities, β and α, and use these to perform better
informed actions.

Another alternative implementation of the Inspect action would be to solely retrieve
the true state of attribute i ∈ N at time step t, i.e. sit ∈ Si. However, as we
were interested in implementing and evaluating algorithms that would empirically
approximate the spread and attack probabilities α and use these, we made the
decision to implement the Inspect action such that the true state of all attributes
are retrieved. In addition, algorithms relying on retrieving sit can be implemented
in an environment where the inspection action corresponds to retrieving st.

23

3. Environments

The new action space with the addition of Inspect:

u1: Block WebDAV service
u2: Disconnect machine 2
u3: Inspect

With the addition of the new action the set of countermeasure actions is now U =
{∅, {u1}, {u2}, {u3}, {u1, u2}}, where the Inspect action, u3, cannot be combined
with the other two actions u1 and u2. The reasoning behind this decision is that
the inspect action distinguishes itself from the others as an information gathering
action in contrast to an availability restricting action. The size of the action space
is now |U| = 1 + 22 = 5.

3.4 Cost function analysis

When the defense agent performs a countermeasure there is an associated cost at-
tached to it, in the context of reinforcement learning this is what defines the cost
function. Since the application of the research is security, and that the goal was to
have an agent that performs actions in an environment that attempts to approx-
imately mimic a real setup, an analysis on the actual real-world cost of scenarios
was used to define the cost function for the new Inspect action u3. The method of
finding the cost was based on previous research and statistics, in order to find the
real world money value of breaches, human intervention and system down time.

Gathering data from research papers on the cost of a multitude of attacks and
availability issues in computer systems, we ended up with the data in Table 3.2.
The table denote the cost in millions of dollar for data breaches and the response to
them in the United States in 2017. The data verified that the relative cost of actions
were realistically set by Miehling et al. (2015). Therefore, the same cost values were
used with the exception of the Inspect action, which was inferred by picking a value
that had a reasonable relative cost to the initial actions based on the security data.

Average Real-world cost of security issues
Data breach $3.62
Breach recovery $1.07
Response team labor $0.905

Table 3.2: Average cost of a data breach in millions of dollars for mid- to large-size
companies in the United States in 2017 (Ponemon Institute LLC, 2017).

The cost of each countermeasure in both environments is defined in Table 3.3. As
can be observed, performing nothing obviously does not have a cost associated with
it. But we need to keep in mind that there is a penalty for letting an attacker take

24

3. Environments

over critical nodes in the graph. Meanwhile, the special Inspect action has a minimal
cost associated with it, due to the time aspect of this countermeasure. The Inspect
action will gather information about the true state of the environment, which in a
real system would account to time spent querying for this information. Basically,
there has to be a cost associated with it even if the countermeasure itself does not
directly affect the attacker and its capabilities. At the same time, it is resources
used and time for an attacker to unopposed progress within the system. Thus, in
relation to doing nothing, it is more expensive as resources connected to the defence
of the system is used.

The last countermeasures u1 and u2 denote actions directly impacting an attacker.
But they also impact the availability of the system by forcing resources to be un-
available. Countermeasure u2 might seem like an countermeasure that has severe
impact, but in the model, they both impact the usage of the system equally, i.e. a
user of the system loses as much connectivity.

Action Cost
∅ 0
u3: Inspect 0.2
u2: Disconnect Machine 1
u1: Block service 1
{u1, u2} 5

Table 3.3: The cost of each countermeasure in both environments.

In a scenario where the availability is modelled more precisely, the cost for each
countermeasure that changes the availability of the system is dependent to the time
of lowered accessibility. Currently, countermeasures affecting the availability of the
system, e.g. u1, only affects the availability for one time-step and the cost received
is not time-dependent. A more realistic scenario would be that the simulation will
continue after countermeasure is deployed, as implemented now, and that the cost
then should accrue over the time of lowered availability. For example, the counter-
measures u1 and u2 in this setting would have the costs

D(u1) = tu1 · ku1 + 1
D(u2) = tu2 · ku2 + 1

where tun is the time Run is unavailable to authorized users due to the deployment
of un ∈ U , and the weight kun acts as the availability cost over time for the specific
countermeasure, i.e. also dependent on the reach Run . Likewise, the cost of high
impact countermeasures such as the union of u1 and u2 could be defined with a
weight that penalizes taking multiple binary actions extra

25

3. Environments

D({u1, u2}) = ku1,u2(D(u1) +D(u2)),

as well as giving a built in negative cost over time due to the previous definition
where the countermeasure is penalized over time. Formally, we can generalize this
into

D({u1, u2 . . . , un}) = ku1,u2...,un

n∑
i=1

D(ui)

As one can see, there is some significant improvements that can be made to the
cost function to make it more closely match something in an actual real system. A
realization of adding a time cost for unavailability, is that there should probably be a
way for the agent to reverse an countermeasure. In other words each countermeasure
can be reset, so in the case of shutting down a machine, the agent can bring it back
up and stop the cost adding up over each time-step. However, these suggested
improvements are not implemented, but rather highlighted and specified as areas of
future work.

3.4.1 Time of cost

In the implementation of the environments described in this thesis, the cost is given
at each time-step of the simulation. In other words an action gives instantaneous cost
to the agent. This allows algorithms such as Q-learning and to some degree Policy
Gradient Methods to learn directly from the cost, which is required in the case of
Q-learning. Policy Gradient methods could probably work with a non-instantaneous
cost, but would exhibit a long training time.

Modelling it in such a way where the cost is given after a full simulation, allows for
more accurate representation. But it complicates and increases the convergence time
of most algorithms. This comes from the fact that the agent now has to correlate a
series of observations with a single action. It is nonetheless an area of high interest,
as it would take steps towards a more realistic model. Therefore, labeled as future
work where a deeper analysis is conducted in Section 6.2.1.

3.5 OpenAI Gym

When reviewing previous research within the field and with our specific application
in mind we found that no standardized comparison benchmark existed. To perform
fair and hopefully allow for future performance comparisons within the research

26

3. Environments

community we decided to develop two OpenAI Gym environments, one for the
Minimal environment and one for the Inspect environment. These were based on
the environment definitions and used for all experimental results.

OpenAI Gym is a toolkit for developing and comparing reinforcement learning al-
gorithms (Brockman et al., 2016). It contains a vast and growing collection of envi-
ronments with a shared interface, allowing users to write general algorithms and run
them across several different domains. More details on the specific implementation
of the software library in Appendix A.

27

4
Algorithms

Solving POMDP:s is a computationally heavy task. Some efficient approximate
solving algorithms exist but none has proven to scale to thousands of nodes. By using
the addition of Inspect in the environment as explained in Section 3.3, we can use
simpler algorithms that can perform well. This chapter details the implementation of
each of the developed algorithms as well as implementation details for some standard
algorithms used in the experimental comparisons in Chapter 5.

The first section details the actual optimal policy for each environment. The im-
plementation for standard algorithms are then detailed and in the last two sections,
Section 4.4 and 4.5, two new algorithms are introduced, n-Myopic and n-Lookahead.

4.1 Optimal policy

In the work done by Miehling et al. (2015) they define the optimal policy as:

"The optimal policy is intuitive. It can be seen ... that optimal counter-
measure is the one that disables the attributes that have a sufficiently
high probability of being enabled..." (Miehling et al., 2015)

They do not declare the specific probability required, but if we reflect over the
parameters defined for the Minimal environment, the probability to enable one of
the leaf nodes s1, s5 ∈ NL are

P (s1
t+1 = 1|s1

t = 0) = P (s5
t+1 = 1|s5

t = 0) = α1 = α5 = 0.5.

After two time-steps the probability for them being enabled respectively is

P (s1
t+2 = 1|s1

t = 0) = P (s5
t+2 = 1|s5

t = 0) = 1− α1 · α1 = 1− α5 · α5 = 0.75

29

4. Algorithms

which already is a high probability. The result would be that the optimal policy
would deploy binary actions heavily and in an early stage leading to a high cost.
At the same time, the defender is not punished if an adversary enables non-critical
attributes i ∈ N \ NC, or oppositely, penalized if enabled non-critical attributes
are disabled. Hence, we chose to define optimality differently and put emphasis on
protecting the critical attributes NC and not all attributes N . If the case however
is to protect all attributes, it can simply be done by redefining critical attributes
NC * NR and making all attributes critical, i.e. NC = N . It can be discussed if
this is the correct stance to it, as an owner of a system does not want any adversary
to have unauthorized access to any part of the system, and should be further looked
into in future work.

The desired property of a policy is to maintain availability while preventing any ad-
versary from enabling any critical attribute i ∈ NC, and simultaneously minimizing
the cost of doing so. Thus, all of these three properties need to be fulfilled for a
policy to be optimal. To exemplify, in the Minimal environment defined in Section
3.2, the optimal policy is not to directly apply both countermeasures and thereby
ending the episode. While ensuring that no critical attribute is enabled and mini-
mizing the cost to 5 for an entire episode, it fails to maintain the availability of the
system as it is online for 1 time-step of tmax = 100 possible time-steps. This reveals a
contradiction, as the goal defined in Section 2.2.4 is to minimize the infinite-horizon
discounted expected cost V ∗, not to maintain the availability of the system. How-
ever, both can be accomplished by appropriate selection of the discount factor γ,
as it determines how much immediate and distant costs affect the agent. I.e., if
the discount factor is set to γ = 1 it will take all future costs into consideration,
and thus terminate the simulation directly by applying both countermeasures as it
will minimize the expected cost. On the contrary, if gamma is set to γ = 0, it will
consider the action that minimizes the expected immediate cost, which in general
will be to do nothing. Thus, by tuning we can chose an appropriate γ that will
accomplish both minimization of the expected cost and availability of the system.
It is nonetheless further discussed in Section 6.2, as tuning the discount factor is not
the singular path to achieve the defined optimality.

A general optimal policy can instead be described as the one seen in Algorithm 3,
where we provide the environment µ, the set of states S and the set of counter-
measures U as input. If all the direct predecessors D̄c to a subset of the critical
attributes c ⊆ NC is enabled in the current state st ∈ S, we deploy the countermea-
sure action u ∈ U . It should disable at least one of the direct predecessors to each
critical attribute in c and maximize

τ̄ cu
D(u) ,

where τ̄ cu is the average time it takes from being in a state where all the direct
predecessors D̄c to c ⊆ NC are enabled until being in a state where all the direct

30

4. Algorithms

predecessors D̄c′ to c′ ⊆ NC are enabled, by deploying the countermeasure u ∈ U .
Thus, we want to maximize the ratio of the average time τ̄ cu to the cost of deploying
u. Otherwise, we deploy the countermeasure ∅ of doing nothing.

In Figure 4.1, we can observe an example on how the general optimal policy in
Algorithm 3 is applied on a network. In the network, the critical attributes are
NC = {5, 6} , the leaf attributes are NL = {1, 2}, the nodes with an inner red circle
are enabled and there exist two binary actions u1, u2 ∈ U . As can be observed, in
time-step t, the network is in state s1 ∈ S, where the direct predecessors D̄5 = {1, 3}
are enabled to the subset of critical attributes {5} ⊆ NC. Thus, the defender
should deploy a countermeasure action u ∈ U , that should disable at least on of
the attributes in D̄5 = {1, 3}, and maximize τ̄5

u/D(u). If we further assume that the
cost of u1 and u2 are equal, i.e. D(u1) = D(u2), it all depends on the average
time τ̄ 5

u to reach a new state where all the direct predecessors D̄c′ to c′ ⊆ NC are
enabled. For this, there exists three different scenarios, i.e. three subsets c′. The
direct predecessors D̄c′ can respectively be found enabled in s2, s3 and s4 in Figure
4.1. Thus, a countermeasure u should be chosen such that one of these states are
reached as late as possible, i.e. maximizing τ̄ 5

u . Noteworthy, is that s2 and s4 can be
reached by deploying either u1 or u2, but s3 only through u1. Furthermore, it may
seem natural to deploy u2 as it disables more attributes than u1, i.e. have a larger
reach Ru1 < Ru2 , but that may not be the optimal choice. If α1 � α2, α2,3, then
u1 probably is the better choice as the expected time to enable attribute 1 will be
larger than to enable attributes 2 and 3.

The optimal policy requires to have full knowledge of the state to be aware if the
current state has all the direct predecessors to a subset of critical attributes enabled.
Thereby the policy is not applicable to our POMDP problem at hand, but to a MDP
version of it. However, its performance is optimal.

Algorithm 3 General optimal policy for MDP environments
Input: µ,S,U

1: for i = 1, 2, . . . , nepisodes do
2: Initialize st = 0
3: for t = 1, 2, . . . , tmax do
4: if ∃ c ⊆ NC s.t. ∀ j ∈ c : sD̄jt ∈ {1} then
5: at = argmax

u∈U

τ̄cu
D(u) s.t. ∀ j ∈ c : sD̄jt ∩Wu 6= ∅

6: else
7: at = ∅
8: end if
9: st+1 ∼ Tat(st, st+1)

10: end for
11: end for

31

4. Algorithms

u1

1

u2

2

3

4

5

6s1

u1

1

u2

2

3

4

5

6s2

u1

1

u2

2

3

4

5

6s3

u1

1

u2

2

3

4

5

6s4

α1,5

α2,3

α2,4

α3,5

α3,6

α4,6

α1,5

α2,3

α2,4

α3,5

α3,6

α4,6

α1,5

α2,3

α2,4

α3,5

α3,6

α4,6

α1,5

α2,3

α2,4

α3,5

α3,6

α4,6

α1

α2

α1

α2

α1

α2

α1

α2

τ̄5
u1 τ̄5

u2 τ̄5
u1

τ̄5
u1 τ̄5

u2

Figure 4.1: An example network on which the general optimal policy in Algorithm
3 is applied upon, where the critical attributes are NC = {5, 6} , the leaf attributes
are NL = {1, 2}, the nodes with an inner red circle are enabled and there exist two
binary actions u1, u2 ∈ U . We can observe the three possible states s2, s3, s4 ∈ S
that on average is reached after τ̄ 5

u time-steps, depending on the countermeasure
u1 or u2 deployed when all the direct predecessors D̄5 = {1, 3} are enabled to the
subset of critical attributes {5} ⊆ NC in state s1 ∈ S. The optimal countermeasure
u ∈ U thus depends on which one that maximizes τ̄5

u/D(u).

4.1.1 Minimal and Inspect environment

As the Minimal and Inspect environment are equivalent with the exception that
the Inspect environment has an additional countermeasure, i.e. the Inspect action,
they share the same optimal policy for the MDP version of the problem. It can
be viewed in Algorithm 4, where we provide the environment µ, the set of states
S, and the set of countermeasures U as input. It solely performs an action, as
described earlier in the general optimal policy in Algorithm 3, when all the direct
predecessors, D̄12 = {11}, to a critical attribute, 12 ∈ NC, are enabled. The ratio
τ̄12
u /D(u), is equivalent for u1 and u2. It follows from the fact that the size of the reach
for the two available actions u1 and u2 are equivalent, |Ru1 | = |Ru2|, that the joint
probability for the two reaches are equal, α1 · α1,2 · ... · α11,12 = α5 · α5,6 · ... · α11,12 ,
and that they share the same cost D(u1) = D(u2) = 1, as well as they both disable

32

4. Algorithms

the enabled direct predecessor 11 for the critical attribute 12. Thus, we randomly
chose one of the actions with probability P (at = u1) = P (at = u2) = 0.5. As
the policy maintains availability, by not closing down the system by applying the
countermeasure {u1, u2}, while preventing any adversary from enabling the critical
attribute 12 and simultaneously minimizing the cost, it is optimal.

Algorithm 4 Optimal policy for the MDP Minimal and Inspect environment
Input: µ,S,U

1: for i = 1, 2, . . . , nepisodes do
2: Initialize st ∈ 0
3: for t = 1, 2, . . . , tmax do
4: if s11

t = 1 then

5: at ∼

u1 w.p. 0.5
u2 w.p. 0.5

6: else
7: at = ∅
8: end if
9: st+1 ∼ Tat(st, st+1)

10: end for
11: end for

4.2 Q-learning

The implementation of Q-learning on the Minimal environment can be seen in Al-
gorithm 5, where we need to provide the environment µ, the set of states S, the
set of countermeasures U , the learning rate α, the discount factor γ and the explo-
ration factor δ as input. Noteworthy, is that U(0, 1) defines a random value from
the standard uniform distribution with minimum 0 and maximum 1.

33

4. Algorithms

Algorithm 5 Defender Q-learning
Input: µ,S,U , α, γ, δ

1: Initialize Qttot = 0
2: for i = 1, 2, . . . , nepisodes do
3: Initialize ot = 0
4: for t = 1, 2, . . . , tmax do
5: at ∼ ChooseAction(ot, Qttot , i, δ)
6: ot+1 ∼ Oat(st+1)
7: Qttot+1(ot, at) = (1− α)Qttot(ot, at) + α[Rat(st) + γvttot(ot+1)],

where vt(o) = max
u∈U

Qt(o, u)
8: end for
9: end for

10:
11: function ChooseAction(ot, Qttot , i, δ)
12: ε = 1− δ · i
13: if U(0, 1) < ε then
14: return A random countermeasure u ∈ U
15: else
16: return argmax

u∈U
Qttot(ot, u)

17: end if
18: end function

4.2.1 Windowed Q-learning

To improve the results of Q-learning, an additional version was implemented on the
Minimal environment, named windowed Q-learning. The workings of it is to keep
a window denoted w, a buffer, of the last nwindow observations, actions and costs.
Every time an action is executed the buffer is filled up, and then the buffer is used to
do multiple updates of the Q-function in each time-step. Details of this algorithm can
be seen in Algorithm 6, where we provide the environment µ, the set of states S, the
set of countermeasures U , the learning rate α, the discount factor γ, the exploration
factor δ and the size of the window nwindow as input. The work showed little impact
on the result compared to the simpler Q-learning implementation. Thus, it was
omitted in the experimental results.

34

4. Algorithms

Algorithm 6 Defender Windowed Q-learning
Input: µ,S,U , α, γ, δ, nwindow

1: Initialize Qttot = 0, w = empty queue
2: for i = 1, 2, . . . , nepisodes do
3: Initialize ot = 0
4: for t = 1, 2, . . . , tmax do
5: at ∼ ChooseAction(ot, Qttot , i, δ)
6: ot+1 ∼ Oat(st+1)
7: if |w| ≥ nwindow then
8: w.pop()
9: end if

10: w.push({ot+1, Rat(st+1), at})
11: for o′, Ra′(s′), a′ ∈ w do
12: Qttot+1(o′, a′) = (1− α)Qttot(o′, a′) + α[Ra′(s′) + γvttot(o′)],

where vt(o) = max
u∈U

Qt(o, u)
13: end for
14: end for
15: end for
16:
17: function ChooseAction(ot, Qttot , i, δ)
18: ε = 1− δ · i
19: if U(0, 1) < ε then
20: return A random countermeasure u ∈ U
21: else
22: return argmax

u∈U
Qttot(ot, u)

23: end if
24: end function

4.3 Policy Gradient

In the Minimal environment we use an adaptation of Monte Carlo Policy Gradient
using a single hidden layer neural network and Softmax

softmax(z)i = exp (zi)∑
j exp (zj)

,

as policy function, where z is some vector for i = 1 . . . j. The chosen policy function
is well suited for a discrete action space, as in the environments we are trying to
solve. An overview of the network configuration can be viewed in Figure 4.2. For
each batch b the network is sequentially fed all observations o ∈ Ô in that batch,
and the weights are updated using the corresponding countermeasure actions u ∈ U
together with the costs C(s, u), where s ∈ S.

35

4. Algorithms

o ∈ O

o1

o2

o3

o4

o12

u ∈ Uu ∈ U

Hidden
Layer(s)Input Output

Figure 4.2: The fully connected neural network configuration of the adapted Policy
Gradient method. The input layer takes a observation o ∈ Ô and feeds that through,
where the output layer outputs a corresponding countermeasure u ∈ U , which are
sampled using a multinomial distribution. The updates are done through gradient
descent, with a softmax policy function.

At the core of the algorithm we perform batch updates of the network in size of
nbatches. Each of these batch updates a full simulation is run and all observations,
actions and costs are collected. The costs are normalized, and then all three of these
collected sets are used to run and update the neural network. For each simulation
step, the current best action sampled from the network is performed, and then we
gradually improve. Given this fact, the current method of evaluating could perform
decent on a configuration of the environment where costs are given at the end of
a full simulation rather than at each action. With this current configuration the
algorithm should intuitively converge much faster on an optimal policy.

The algorithm, as a whole, can be examined in Algorithm 7, where we provide the
environment µ, the set of states S, the set of countermeasures U , a small constant ε,
and the batch size nbatches as input. In the algorithm the neural network is denoted
by ξ.

36

4. Algorithms

Algorithm 7 Defender Policy Gradient
Input: µ,S,U , ε, nbatches, ξ

1: Initialize st ∈ S
2: for i = 1, 2, . . . , nepisodes do
3: ν = ∅, O = ∅, A = ∅
4: for b = 1, 2, . . . , nbatches do
5: for t = 1, 2, . . . , tmax do
6: O ∪ ot
7: at ∼ ChooseAction(ot, ξ)
8: A ∪ at
9: ν ∪ rt

10: end for
11: end for
12: Z ∼ ∑ ν− 1

|ν|
∑

ν

σν+ε
13: Update(Z,A,O, ξ)
14: end for
15:
16: function ChooseAction(ot, ξ)
17: return u ∈ U ∼ feeding ot into ξ
18: end function
19:
20: function Update(Z, A, O, ξ)
21: Update ξ using Z, A and O given our loss function
22: end function

4.4 n-Myopic

The n-Myopic solving algorithm works on the Inspect environment by creating an
empirical matrix, E, through the usage of the inspect countermeasure, i.e. u3, to
create an informed view of the real state of the environment. By inspection, the
agent will retrieve the true state st ∈ S as well as the observation ot ∈ Ô at time-
step t. Thus, we can create the so called empirical matrix E, that contains an
approximation of the probability of being in state s ∈ S when receiving observation
o ∈ Ô, P (st = s|ot = o).

The empirical matrix is built by defining the number of episodes ε to utilize for
tuning the matrix. Then during each episode, we perform the countermeasure in-
spection action u3 for each time-step t, and update the empirical matrix according
to the received state and observation. However, if all the direct predecessors D̄c to
a subset of the critical attributes c ⊆ NC are enabled, we perform a random coun-
termeasure u ∈ U , excluding the countermeasures of doing nothing, ∅, inspecting,
u3, or shutting down the system entirely, {u1, u2}. We then measure the time τ cu it
takes after performing the randomly chosen action u when the direct predecessors

37

4. Algorithms

D̄c to a subset c ⊆ NC are enabled, for an adversary to yet again enable the direct
predecessors D̄c′ to a subset c′ ⊆ NC of the critical attributes, and store it in the
time matrix, L. Thus, after performing ε episodes, we can determine an optimal
countermeasure to deploy for each possible subset of c ⊆ NC, by comparing the
ratio of the average time τ̄ cu to reach a new state where all the direct predecessors
D̄c′ to c′ ⊆ NC are enabled after performing the countermeasure u to the cost of
deploying u. Hence, the length tmax of an episode affects the approximation quality
of the tuning, as larger tmax implies that more information is gathered by the Inspect
action in contrast of a smaller tmax.

In the episodes following after ε, we check for each observation received what the
probability is for the adversary to be in one of the n-predecessors npred from the
direct predecessors D̄c to a subset c ⊆ NC of the critical attributes defined as Y c

npred
.

If the maximum probability is to be in one of these n-predecessors, we perform
the optimal countermeasure found during the tuning of the empirical matrix for
the specific subset c ⊆ NC of the critical attributes. It can be viewed as we make
the assumption that all attack and spread probabilities αi and αjk, where i ∈ NL,
j ∈ N and k ∈ N \ NL, are equal to 1. I.e., that adversaries will enable all
available attributes at each time-step with probability 1. Thus, by setting npred we
determine the time buffer that we want to use, as if the adversaries would have
absolute knowledge of the system. Additionally, if an observation ot ∈ Ô is received
at time-step t containing enabled critical attributes ∃oct ∈ {1} we deploy the optimal
countermeasure for the specific subset c ⊆ NC found during the tuning. It follows
from our assumption made previously; that no false positives can occur, thus we can
be certain that the critical attributes in c are enabled. The state that we now are in
is however different from the one used in the tuning, as we deployed countermeasures
when all the direct predecessors to a subset of critical attributes were enabled, but as
it were for the direct predecessors, the optimal countermeasure learned from tuning
should still be the optimal with a high certainty.

In Algorithm 8, we can see the Myopic solving algorithm, where the input environ-
ment µ, the set of states S, the set of countermeasures U , the tuning parameter ε
and the number of predecessors npred is provided as input. For a more high level
description, n-Myopic can be found represented as a flowchart in Figure 4.3.

38

4. Algorithms

Algorithm 8 n-Myopic
Input: µ,S,U , ε, npred

1: Initialize Et = 0, Aoptimal = 0, Lt = ∅
2: for i = 1, 2, . . . , nepisodes do
3: Initialize st = 0, ot = 0, τ cu = 0
4: for t = 1, 2, . . . , tmax do
5: at ∼ ChooseAction(st, ot, Aoptimal, Et, i, ε, npred)
6: ot+1 ∼ Oat(st+1)
7: if at = u3 then
8: st+1 ∼ Tat(st, st+1)
9: Et+1(ot+1, st+1) = Et(ot+1, st+1) + 1

10: τ cu = τ cu + 1
11: else if at ∈ U\{∅, u3} and i < ε then
12: Lt+1(acu, c) = Lt(acu, c) ∪ τ cu
13: τ cu = 0
14: else if i = ε and t = 1 then
15: Aoptimal(c) = argmax

u∈U

1
|Lt(u,c)|

∑
x∈Lt(u,c) x

D(u) , ∀c ⊆ NC

16: end if
17: end for
18: end for
19:
20: function ChooseAction(st, ot, Aoptimal, Et, i, ε, npred)
21: if i < ε then
22: if ∃ c s.t. sD̄ct ∈ {1} then
23: return A random countermeasure a ∈ U\{∅, u3, {u1, u2}}
24: else
25: return u3
26: end if
27: else
28: if ∃ c s.t.

[
argmax

s∈S
E(ot, s)

]Y cnpred /∈ {0} or ∃ c s.t. oct ∈ {1} then
29: return Aoptimal(c)
30: else
31: return ∅
32: end if
33: end if
34: end function

4.5 n-Lookahead

The n-Lookahead algorithm works on the Inspect environment in a similar fashion
to the n-Myopic algorithm in Section 4.4. In addition to the previously defined

39

4. Algorithms

Initialize model

Is
#episode < ε?

Deploy Inspect
countermea-
sure. Update
Et(ot+1, st+1)

Is all pre-
decessors

to a critical
attribute
enabled?

Log time
since last

countermeasure
deployed

Deploy a
random

countermeasure
u1 or u2

Has
argmax
s∈S

Et(ot, s)

a npred + 1
predecessor
to a critical

attribute
enabled?

Deploy learned
optimal

countermea-
sure for s

yes

yes

no at = ∅

no

no
at = ∅

yes

Figure 4.3: An overview of the n-Myopic algorithm, which can be found with
all its details in Algorithm 8. In the flowchart a ∈ A, s ∈ S, o ∈ Ô where E is
the empirical matrix, ε is the number of episodes used for tuning, #episode is the
current episode and npred is the number of predecessors from a direct predecessor to
a critical attribute that we monitor to see if any has been enabled.

empirical matrix, E, and the time matrix, L, a transition matrix Υ is created,
denoting the transition probabilities P (st+1 = s′|st = s, at = a). As before, these
are built by defining the number of episodes ε to utilize for tuning by deploying the
Inspect action u3. The transition matrix is built by deploying the inspect action
in two consequent time-steps, i.e. t and t + 1, and observing the states st and
st+1 to approximate the transition probabilities. Using the learned state of the
environment the probability of the next state st+1 ∈ S is a state s′ ∈ S where all
the direct predecessors D̄c to a subset of the critical attributes c ⊆ NC, given the
current observation ot ∈ Ô, is calculated by using the empirical and the transition
matrix, i.e.

P (st+1 = s′|ot = o) ∼
∑
s∈S

E(o, s)Υ(s, s′).

With the calculated transition matrix, we can chose freely in how many time-steps
nfuture into the future that we want compute the probability to be in a state s′ ∈ S
with all direct predecessors to critical attributes enabled, i.e.

P (st+nfuture = s′|ot = o) ∼
∑
s0∈S

∑
s1∈S
· · ·

∑
snfuture−1∈S

E(o, s0)Υ(s0, s1)Υ(s1, s2) . . .Υ(snfuture−1, s
′).

As we already have the possibility to compute the probability that the current state

40

4. Algorithms

is s′ ∈ S, through the usage of the empirical matrix

P (st = s′|ot = o) ∼ E(o, s′),

we may calculate the probability that we have visited state s′ in nfuture time-steps
as

P (s′ ∈ {st, . . . , st+nfuture}|ot = o) = 1− P (s′ /∈ {st, . . . , st+nfuture}|ot = o)

= 1−
nfuture∏
n=0

P (st+n 6= s′|ot = o)

= 1−
nfuture∏
n=0

(1− P (st+n = s′|ot = o))

The optimal countermeasure for each subset of critical attributes are calculated in
similar fashion as in Section 4.4. When ε episodes of tuning has passed the received
observations are used to approximate the probability of an adversary to be in a state
where all predecessors to a subset of critical attributes are enabled in nfuture time-
steps. If the probability is over a specified threshold λ to be in one of these states,
the optimal countermeasure is performed, found during the tuning. Following the
no false positives assumption discussed in the previous n-Myopic Section 4.4, if an
observation ot ∈ Ô is received at time-step t, containing enabled critical attributes
∃ oct ∈ {1}, the optimal countermeasure is deployed for the specific subset c ⊆ NC
found during the tuning as well.

The n-Lookahead algorithm is denoted in Algorithm 9, where the environment µ,
the set of states S, the set of countermeasures U , the tuning parameter ε and the
number of time-steps nfuture are provided as input. To obtain a more comprehensive
view, a flowchart representation of n-Lookahead is provided in figure 4.4.

41

4. Algorithms

Algorithm 9 n-Lookahead
Input: µ,S,U , ε, nfuture, λ

1: Initialize Et = 0, Aoptimal = 0, Υt = 0, Lt = ∅
2: for i = 1, 2, . . . , nepisodes do
3: Initialize st = 0, ot = 0, τ cu = 0
4: for t = 1, 2, . . . , tmax do
5: at ∼ ChooseAction(st, ot, Aoptimal,Υt, i, ε, nfuture, λ)
6: ot+1 ∼ Oat(st+1)
7: if at = u3 then
8: st+1 ∼ Tat(st, st+1)
9: Et+1(ot+1, st+1) = Et(ot+1, st+1) + 1

10: Υt+1(st, st+1) = Υt(st, st+1) + 1
11: τ cu = τ cu + 1
12: else if at ∈ U\{∅, u3} and i < ε then
13: Lt+1(acu, c) = Lt(acu, c) ∪ τ cu
14: τ cu = 0
15: else if i = ε and t = 1 then
16: Aoptimal(c) = argmax

u∈U

1
|Lt(u,c)|

∑
x∈Lt(u,c) x

D(u) , ∀c ⊆ NC

17: end if
18: end for
19: end for
20:
21: function ChooseAction(st, ot, Aoptimal, Et, i, ε, nfuture, λ)
22: if i < ε then
23: if ∃ c s.t. sD̄ct ∈ {1} then
24: return A random countermeasure a ∈ U\{∅, u3, {u1, u2}}
25: else
26: return u3
27: end if
28: else
29: if ∃ c, s′ s.t. P (s′ ∈ {st, . . . , st+nfuture}|ot = o) > λ and s′D̄c ∈ {1}
30: or ∃ c s.t. oct ∈ {1} then
31: return Aoptimal(c)
32: else
33: return ∅
34: end if
35: end if
36: end function

42

4. Algorithms

Initialize model

Is
#episode < ε?

Deploy Inspect
countermea-
sure. Update
Et(ot+1, st+1)

and
Υt(ot+1, st+1)

Is all pre-
decessors

to a critical
attribute
enabled?

Log time
since last

countermeasure
deployed

Deploy a
random

countermeasure
u1 or u2

Is the prob-
ability to be

in s ∈ S,
where all direct

predecessors
to a critical

attribute
are enabled,
in nfuture
time-steps

larger than λ?

Deploy learned
optimal

countermea-
sure for s

yes

yes

no at = ∅

no

no
at = ∅

yes

Figure 4.4: An overview of the n-Lookahead algorithm, which can be found with
all its details in Algorithm 9. In the flowchart a ∈ A, s ∈ S, o ∈ Ô where E is the
empirical matrix, Υ is the transition matrix, ε is the number of episodes used for
tuning, #episode is the current episode and λ is the threshold used to determine if
the probability for an adversary to be in a state s, where all direct predecessors to
a critical attribute are enabled, in nfuture time-steps is large enough.

43

5
Results

In this chapter each of the experimental simulation results of each algorithm, detailed
in previous chapters, are presented. Each algorithm is dedicated its own section and
then lastly a section that compares the results between each algorithm is presented.
A deeper discussion of the results can be viewed in Section 6.2.

5.1 Performance evaluation

To evaluate and compare the performance of the applied and developed algorithms,
we followed a consistent path. First, if necessary, by performing hyper-parameter
optimization through grid search, also know as parameter sweep. I.e. a simple
exhaustive search on a manually specified subset of the hyper-parameter space of the
algorithm. It is followed by running the algorithm for a predefined number of 1000
episodes, where an average cost is computed over 100 simulations for each episode.
An interesting benchmark is obviously the average episodic cost. It is however not
the sole interesting metric, as the average episodic length has key importance and
the convergence and stability of the algorithm have high relevance. Noteworthy, is
that for both environments the cost is instantaneous which is further discussed in
Section 6.2.

5.2 Optimal policy

In Figure 5.1, the average episodic cost and time over 100 simulations, for 1000
episodes with the Optimal Policy implementation seen in Algorithm 4, on the MDP
version of the Minimal environment is illustrated. The averages are denoted by the
the thick lines, while the filled area indicate the standard deviation. The standard
deviation in Figure 5.1b can however not be observed due to that it is 0, i.e. the
episodic time is always tmax = 100, which is expected as it is the optimal policy.

45

5. Results

0 200 400 600 800 1,000

−9.5

−9

−8.5

−8

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000

90

100

110

120

episode

a
v
er
a
g
e
ti
m
e

(b) The average episodic time.

Figure 5.1: The average episodic cost and time over 100 simulations, for 1000
episodes with the Optimal Policy implementation seen in Algorithm 4, on the MDP
version of the Minimal environment. The filled area indicates the standard deviation,
meanwhile the thick line denotes the actual average cost and time.

5.3 Q-learning

In Figure 5.2 the average episodic cost and time over 100 simulations, for 1000
episodes, with the learning rate α = 0.1, the discount factor γ = 0.7 and the
exploration factors δ = 0.1, 0.01, 0.001, 0.0001 in the Q-learning implementation
seen in Algorithm 5 on the Minimal environment can be observed. The amount of
exploration seems to have little effect on the average episodic cost, where they all
converge towards the same point with the exception of δ = 0.0001 as it continues
exploration and thereby acting randomly until the end. It may seem odd that before
converging, the result revolves around a better value, i.e. −7. The reason however is
as it chooses countermeasures randomly, it also chooses the counter measure {u1, u2}
that effectively terminates the simulation which is undesirable. Similarly, it may
seem strange that the algorithm narrows in on approximately −13 before converging.
The reason follows from how the randomness is applied, i.e. gradually decreased
through ε = 1−δ ·i where δ is the exploration factor and i the current episode. Thus,
near convergence the agent is closing in on behaving non-randomly and behaves
quasi-random, thereby yielding even worse result in contrast to behaving completely
random or non-random.

In a similar manner the average episodic time converges towards the same value,
i.e. the optimal one tmax except δ = 0.0001 due to its continuous randomness.
Therefore, δ = 0.1 is considered to be the optimal exploration factor, as it converges
to the optimal average episodic time tmax = 100 and to the same average episodic
cost as the others but faster. Noteworthy, is that the variance seen regarding the
average episodic time is low after the exploitation phase, where we only observe

46

5. Results

0 200 400 600 800 1,000

−12

−10

−8

−6

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000
0

20

40

60

80

100

episode
a
v
er
a
g
e
ti
m
e

Optimal
δ = 0.1
δ = 0.01
δ = 0.001
δ = 0.0001

(b) The average episodic time.

Figure 5.2: The average episodic cost and time over 100 simulations, for
1000 episodes, the discount factor γ = 0.7 and the exploration factors δ =
0.1, 0.01, 0.001, 0.0001 with the Q-learning implementation seen in Algorithm 5 on
the Minimal environment.

small outliers.

0 200 400 600 800 1,000

−15

−10

−5

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000
0

20

40

60

80

100

episode

a
v
er
a
g
e
ti
m
e

Optimal
δ = 0.1

(b) The average episodic time.

Figure 5.3: The average episodic cost and time over 100 simulations, for 1000
episodes, the discount factor γ = 0.7 and the exploration factor δ = 0.1 with the
Q-learning implementation seen in Algorithm 5 on the Minimal environment. The
filled area indicates the standard deviation, meanwhile the thick line denotes the
actual average cost and time.

47

5. Results

5.4 Policy Gradient

The Policy Gradient implementation is evaluated on the Minimal environment,
where the results show a near optimal cost. For our application the network was
configured with 30 hidden layer nodes, and the output layer consisted of a vector
of size 1× |U|. Additionally, for each experiment the learning rate was set to 0.01.
The graph in Figure 5.4, shows that the algorithm tries to optimize based on the
countermeasures first and goes for a low cost which would be to do both action u1

and u2. Thereby, further into the simulation the agent starts optimizing for the
availability of the system and achieves a longer simulation time, and the cost closes
in on the optimal value.

The difference in convergence comes from the varying batch size being used. Having
a larger batch size lowers the variance and improves convergence slightly. Though,
the training time increases exponentially with increases in batch size. Clearly, we
can make the conclusion that a larger batch size increases the performance on this
problem.

0 200 400 600 800 1,000
−50

−40

−30

−20

−10

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000
0

20

40

60

80

100

episode

a
v
er
a
g
e
ti
m
e

Optimal
nbatches = 10
nbatches = 50
nbatches = 100

(b) The average episodic time.

Figure 5.4: The average episodic cost and time over 100 simulations, for 1000
episodes, with a batch size of nbatches = 10, 50, 100 for the Policy Gradient imple-
mentation seen in Algorithm 7.

Looking at the cost and time for batch size nbatches = 100, in Figure 5.5, where the
thick lines display the averages.

48

5. Results

0 200 400 600 800 1,000
−50

−40

−30

−20

−10

0

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000
0

20

40

60

80

100

episode

a
v
er
a
g
e
ti
m
e

Optimal
nbatches = 100

(b) The average episodic time.

Figure 5.5: The average episodic cost and time over 100 simulations, for 1000
episodes, with a batch size of nbatches = 100 for the Policy Gradient implementation
seen in Algorithm 7. The filled area indicates the standard deviation, meanwhile
the thick line denotes the actual average cost and time.

5.5 n-Myopic

In Figure 5.6 we can observe the average episodic cost and time over 100 simula-
tions, for 1000 episodes, the number of predecessors to npred = 0 and the tuning
parameters ε = 1, 10, 100, 500 with the n-Myopic implementation seen in Algorithm
8 on the Inspect environment. The amount of tuning seems to have little effect on
the average episodic cost, where they all converge towards the same result which is
near optimal. Thus, the empirical matrix E seems to contain sufficient information
after one episode of information gathering. Nonetheless, not lowering the tuning
parameter any further to ε = 0 is beneficial as E then would not contain any infor-
mation at all and the algorithm would thereby act randomly. However, with larger
tuning parameters, we receive more episodes with the episodic tuning cost, which
lowers the average episodic result to approximately −27. The reason follows from
the cost of performing the Inspect action, which lies at 0.2 and is performed nearly
at each time-step in the episode.

Noteworthy, is that the average episodic time for the different tuning parameters
are equivalent, fixed at tmax for all episodes. The reason follows from the design
choice of n-Myopic, as it is constructed such that no countermeasures are deployed
that terminates the simulation. Thus, ε = 1 is considered to be the optimal tuning
parameter as it has the fastest convergence rate to the optimal average episodic time
tmax = 100 and to the same average episodic cost as the others.

49

5. Results

0 200 400 600 800 1,000

−25

−20

−15

−10

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000

90

100

110

120

episode
a
v
er
a
g
e
ti
m
e

Optimal
ε = 1
ε = 10
ε = 100
ε = 500

(b) The average episodic time.

Figure 5.6: The average episodic cost and time over 100 simulations, for 1000
episodes, the number of predecessors to npred = 0 and the tuning parameters ε =
1, 10, 100, 500 with the n-Myopic implementation seen in Algorithm 8 on the Inspect
environment.

Following, we investigate the effect of the number of predecessors npred taken into
account, for ε = 1. In Figure 5.7, we can respectively observe the average episodic
cost and time over 100 simulations, for 1000 episodes, with the number of predeces-
sors set to npred = 0, 1, 2, 3. The result is degraded when taking more predecessors
into account, thus we consider npred = 0 to be the optimal number of predecessors.

In Figure 5.8, the average episodic cost and time over 100 simulations for 1000
episodes with the number of predecessors to set npred = 0 and the tuning parameters
ε = 1 can be viewed. This is the set of parameters that were identified as optimal.

5.6 n-Lookahead

In Figure 5.9, we can respectively observe the average episodic cost and time over 100
simulations, for 1000 episodes, the threshold set to λ = 0.4, the number of time-steps
to nfuture = 0 and the tuning parameters ε = 1, 10, 100, 500 with the n-Lookahead
implementation seen in Algorithm 8 on the Inspect environment. Yet again as with
the n-Myopic implementation, we can observe that the amount of tuning seems to
have little effect on the average episodic cost, where they all converge towards the
same result. Also, the result is affected similarly of the episodic tuning cost brought
by a larger tuning parameter, where we witness the same average episodic result of

50

5. Results

0 200 400 600 800 1,000

−25

−20

−15

−10

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000

90

100

110

120

episode
a
v
er
a
g
e
ti
m
e

Optimal
npred = 0
npred = 1
npred = 2
npred = 3

(b) The average episodic time.

Figure 5.7: The average episodic cost and time over 100 simulations, for 1000
episodes, the number of predecessors to npred = 0, 1, 2, 3 and the tuning parameter
to ε = 1 with the n-Myopic implementation seen in Algorithm 8 on the Inspect
environment.

0 200 400 600 800 1,000

−25

−20

−15

−10

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000

90

100

110

120

episode

a
v
er
a
g
e
ti
m
e

Optimal
npred = 0

(b) The average episodic time.

Figure 5.8: The average episodic cost and time over 100 simulations, for 1000
episodes, the number of predecessors to npred = 0 and the tuning parameter to ε = 1
with the n-Myopic implementation seen in Algorithm 8 on the Inspect environment.
The thick lines denotes the average cost and time.

approximately −27 for episodes used for tuning.

51

5. Results

Thus we consider ε = 1 again to be the optimal exploration factor, as it converges
to the optimal average episodic time tmax = 100 and to the same average episodic
cost as the others, but as before, faster. We also note, as earlier, that the average
episodic times are equivalent for the different tuning parameters, where the reason
is the same as before, i.e. through the design of the algorithm.

0 200 400 600 800 1,000

−25

−20

−15

−10

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000

90

100

110

120

episode

a
v
er
a
g
e
ti
m
e

Optimal
ε = 1
ε = 10
ε = 100
ε = 500

(b) The average episodic time.

Figure 5.9: The average episodic cost and time over 100 simulations, for 1000
episodes, the threshold set to λ = 0.4, the number of predecessors to nfuture = 0
and the tuning parameters ε = 1, 10, 100, 500 with the n-Lookahead implementation
seen in Algorithm 9 on the Inspect environment.

Continuing, in Figure 5.10, we can respectively observe the average episodic cost
and time over 100 simulations, for 1000 episodes, where we investigate the effect of
the different number of time-steps nfuture = 0, 1, 2, 3. As with n-Myopic, we can
observe that the result worsen with the increase of time-steps.

Thus, we can conclude that the optimal parameters are with the tuning parameter
set to ε = 1 and the number of time-steps to nfuture = 0, where we in Figure 5.11
can respectively observe the average episodic cost and time over 100 simulations, for
1000 episodes.

5.7 Comparison

In Figure 5.12, a comparison of all the algorithms is presented. Each algorithm
entry is based on the best performing parameters from previous sections. Based
on these plots, we can see that all of the algorithms perform close to the optimal

52

5. Results

0 200 400 600 800 1,000

−25

−20

−15

−10

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000

90

100

110

120

episode
a
v
er
a
g
e
ti
m
e

Optimal
nfuture = 0
nfuture = 1
nfuture = 2
nfuture = 3

(b) The average episodic time.

Figure 5.10: The average episodic cost and time over 100 simulations, for 1000
episodes, the threshold set to λ = 0.4, the number of time-steps to nfuture = 0, 1, 2, 3
and the tuning parameter to ε = 1 with the n-Lookahead implementation seen in
Algorithm 9 on the Inspect environment.

0 200 400 600 800 1,000

−25

−20

−15

−10

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000

90

100

110

120

episode

a
v
er
a
g
e
ti
m
e

Optimal
nfuture = 0

(b) The average episodic time.

Figure 5.11: The average episodic cost and time over 100 simulations, for 1000
episodes, the threshold set to λ = 0.4, the number of time-steps to nfuture = 0
and the tuning parameter to ε = 1 with the n-Lookahead implementation seen in
Algorithm 9 on the Inspect environment. The filled area indicates the standard
deviation, meanwhile the thick line denotes the actual average cost and time.

53

5. Results

solution. A difference however lies within the convergence of the result. For n-
Myopic and n-Lookahead, we solely require one episode of tuning, but which brings
the high episodic result of approximately −27. Simultaneously, for Policy Gradient
and Q-learning, we respectively approximately require 50 and 100 episodes before
converging, where Policy Gradient have its trough with average episodic results as
low as approximately −47. Thus a consideration is needed in order to decide if a
fast convergence with a low average episodic cost is more desirable than a slower
convergence with a more modest average episodic cost.

An even larger difference however comes in the availability metric, where Policy
Gradient and Q-learning, exhibits high variance and significantly more episodes until
time convergence, compared to n-Myopic and n-Lookahead. In fact, the Policy
Gradient implementation never reaches an average maximum time of tmax = 100
during the trial runs of 1000 episodes. For the two remaining algorithms, n-Myopic
and n-Lookahead, the average episodic time is equivalent, which has its cause in
their design. Thus, these can be viewed as near equal, in terms of optimality, as
they both share similar average episodic costs and times.

0 200 400 600 800 1,000
−50

−40

−30

−20

−10

episode

a
v
er
a
g
e
co
st

(a) The average episodic cost.

0 200 400 600 800 1,000
0

20

40

60

80

100

episode

a
v
er
a
g
e
ti
m
e

Optimal
Q-learning

Policy Gradient
n-Myopic

n-Lookahead

(b) The average episodic time.

Figure 5.12: The average episodic cost and time over 100 simulations, for 1000
episodes, for all the algorithms with the best performing parameters. I.e., Q-
learning, Policy Gradient, n-Myopic and n-Lookahead.

54

6
Conclusion

This chapter discusses the results in comparison to each of the algorithms developed
and presented in this thesis, but also from the perspective of previous definitions
of this problem. Additionally, a section about future research and improvements as
well as ethical considerations is presented.

To help the reader follow along in the discussion, the first section, Section 6.1, is a
short summary of the paper.

6.1 Summary

The goal of this thesis was to develop a model of an attack environment for a
computer system. Additionally, based on this environment model, develop defense
strategies to protect against attackers. We have presented two formulations of threat
environments based on a POMDP. Where the first one follows previous research by
Miehling et al. (2015), and the second environment improves on it by introducing a
new action, that allows an agent to approximately reduce the problem into a MDP.
The reduction allows for fast and simple solving algorithms. Given this feature, we
have presented several solving algorithms, based on traditional approaches, as well
as introducing two new algorithms. The traditional approaches of using Q-learning
and Policy Gradient showed good results, but the new introductions, n-Myopic and
n-Lookahead, outperformed both.

6.2 Discussion

The thesis tried to answer if an automated system could be designed to respond to
computer threats. We have shown that the problem can be formulated and solved
as a POMDP, using different solving algorithms. The work improves on previous
definitions such as the one made by Miehling et al. (2015), by adding a new formu-
lation of the environment. The new formulation allows for fast solving algorithms

55

6. Conclusion

by approximately reducing the problem into a MDP for a set of time steps. Based
on both the previous definition and the new formulation, two OpenAI Gym envi-
ronments were developed to help future research develop new solving agents with
the same environments. This contribution allows for equal comparisons between
this, and future research. We have shown two new solving algorithms proving that
fast and simple algorithms can be formulated to solve the problem. Furthermore,
by defining the optimal solution, and comparing to some traditional reinforcement
learning algorithms, we have shown a baseline for future research.

On the flip side, the research still has a long way to go, and we do not think this is
applicable to a production system yet. There is several improvements that needs to
made, and how much it can be scaled has to be formally proven. More details on
future directions in Section 6.2.1.

There are aspects with the model and environment that are inherited from the work
of Miehling et al. (2015) which could be improved to approach real-word scenarios
further. One of these are how we embody the desire of keeping the system available
as long as possible. Currently we use the discount factor γ to map this behaviour
on the agent, as explained in Section 4.1. However, an alternative method which
could prove to be more fruitful is by implying a reward for each time-step that the
system is kept online, i.e. changing the cost of doing nothing as a countermeasure
to a positive value C(∅) > 0. That said, we also create an additional tuning factor,
potentially rewarding up-time too much could lead to never taking any action and
not shutting attackers out, since it is more rewarding to just keep the system up.
Nonetheless, it is an area which should be explored and address as future work.

An intended design choice to be mentioned and discussed is that a simulation solely
ends when all available binary actions are deployed as a countermeasure. I.e., if
solely a part of the system is temporally shut down, the simulation will continue.
One may argue that if an adversary has enabled a number of attributes, i.e. found
and exploited a number of vulnerabilities in a computer system, that the adversary
would learn how to use these vulnerabilities. Thus if a countermeasure was applied
that disabled the enabled attributes, the adversary would enable them again at a
faster pace. Our reasoning however, is that the defender, i.e. the operators of the
computer system, would resolve the weaknesses while the specific part of the system
is disabled. The eventuality of these weaknesses happening should not be removed
from the model, as the adversary could learn to bypass the defensive changes made or
that another superior adversary with a different skill set could use a similar method
to make breaches. How the probabilities should change for a set of attributes after
defensive changes have been made while being disabled is another area for future
work.

What also need to be considered, is the limitations of the environment defined
by Miehling et al. (2015). As could be observed in Figure 5.12, the result of all
algorithms with the best performing parameters, was close to the optimal solution
once converged. A reason for this could be that the environment can be viewed as

56

6. Conclusion

quite simple. It is constituted of solely 12 attributes, where two are leaf attributes
and one is a critical attribute, with two binary actions. Further, the detection
probabilities β ≥ 0.5, are high, where they are even higher for the most crucial
attributes, i.e. the critical attribute and its direct predecessor, βi ≥ 0.85 where
i ∈ {11, 12}. Thus one can more or less apply the optimal policy for the Minimal
and Inspect environment in Algorithm 4 directly on the POMDP environment, as
the probability to witness the correct state at the direct predecessor to the critical
attribute D̄12 ∈ {11} is close to 1. Therefore, all the algorithms applied to the
environment achieves good result, as the problem is close to a MDP when in close
distance to the critical attribute in the Minimal and Inspect environment.

An example where we can observe the result of this, is the choosing of parameters
yielding best result for n-Myopic and n-Lookahead. As the best number of prede-
cessors for n-Myopic, and the best number of time-steps for n-Lookahead, are both
zero, i.e. npred = nfuture = 0, the algorithms are equivalent with the difference that
n-Myopic observes if the maximum probability when receiving an observation is to
be in the state where s11 ∈ {1}, where n-Lookahead instead examines if the proba-
bility to be in the same state is over the specified threshold, i.e. λ = 0.4. I.e., both
algorithms solely uses the built empirical matrix, to see if they in the current time-
step is at the direct predecessor to the critical attribute, as the success probability
of doing such is high.

Also to highlight, is if the cost was not instantaneous, and instead yielded at the
end of the simulation, Q-learning and Policy Gradient would not achieve the same
result, as they are dependent on receiving direct feedback for deploying a specific
action for a specific observation. At the same time, the result of n-Myopic and n-
Lookahead would be unchanged, as they solely rely on the empirical and transition
matrix built.

To remember is that the self-developed algorithms n-Myopic and n-Lookahead are
model-specific to the contrary of Q-learning and Policy Gradient, i.e. that n-Myopic
and n-Lookahead can not be applied to any general problem environment. However,
as the developed algorithms solely were intended for the area of computer security,
and that we have a method to create a model of a computer system, it is not viewed
as an issue.

6.2.1 Future work

The environments presented in this thesis are static, manually constructed, and
would be considered small formulations of the problem. A first step of improvement
would be to automatically develop environments constituting of real-world sized
systems, that in turn would require large Bayesian attack graphs. Thus, future re-
search would focus on having a dynamic data-stream that defines the environment,
actions, and the corresponding cost function. The challenge constitutes to automat-

57

6. Conclusion

ically identify vulnerabilities in a system and create a Bayesian attack graph with
these, as well as accurately set the spread and attack probabilities before and after
defensive changes in system have been performed. Additionally, find a way to trans-
late data from for example a vulnerability database into an accurate probabilistic
representation of how hard it is to carry out and its likelihood.

The simulation currently stops if the action of shutting down, u1, as well as doing the
block action, u2, are performed. It would be valuable to explore having a cost for the
amount of time a node is shut down. Potentially allowing the agent to bring it back
up again when the vulnerability(s) is resolved. Some analysis and formulation of a
cost function for this type of problem is presented in Section 3.4, but deeper analysis
and experimental results are missing. Furthermore, we have discussed the difference
in having instantaneous cost versus giving the cost at the end of a simulation. The
algorithms deployed in this paper abuses the instantaneous cost to achieve good,
and comparative results. But, forcing a cost at the end of simulation, would achieve
a more realistic formulation of the problem, and would therefore be of interest to
investigate further. Additionally, adding a explicit positive reinforcement for system
availability, in other word a reward for every time-step the system is alive, could
more closely match the real world.

To receive a more truthful result, a more complex environment should be developed
with more attributes, containing more critical and leaf attributes, and thus more
binary actions. The detection probabilities β should be minimized, and a larger
variety of attack and spread probabilities should be used. Applying the algorithms
at hand on this new and more complex environment, would give more varying results,
where it should be clearer to identify the optimal algorithm. And if the cost was
reconfigured from being instantaneous, one would see even higher variance between
the results of the different algorithms.

As discussed in Section 4.1, it should further be looked into if the definition of the
problem is correct and represents the real world. Currently, a cost is not received if
an adversary enable attributes that are not considered critical, i.e. i ∈ N \ NC. It
it is doubtful however, if an owner of a system would be indifferent to any kind of
unauthorized access to any part of the system, but would rather see it as a security
failure.

Naturally, it would be interesting to lift the assumptions made in Section 3.1, in
order to approach real-word scenarios even further. As an example, we currently
look at the problem without a notion of false positives. Future work would include
defining it and coming up with a way to measure it.

Our work has focused on using simple solving algorithms for this complex environ-
ment definition. It would be of high value looking into combining more advanced
POMDP solving algorithms with the addition of the Inspect action. A limitation
we found during the literature study was that these algorithms scaled poorly to
larger formulations of environments. But, with the reduction to an approximate

58

6. Conclusion

MDP that Inspect gives us, we have fast and stable solving methods that could be
deployed in conjunction with advanced POMDP algorithms to achieve larger scale.
Examples of such potential algorithms would be POMCP (Silver & Veness, 2010)
and R-DESPOT (Somani et al., 2013) that both have showed strong performance
on large-scale POMDP problems as well as being open source projects. Additionally,
we provide no convergence guarantees or analysis of the algorithms, which would
help in more theoretical comparison.

The way the relative cost for each action is defined based on real-world data is done
in a somewhat hand-wavy fashion. There could be interesting results in doing a
deeper analysis and developing a framework for a general environment.

Currently, the hyper-parameter optimization is quite crudely performed through a
grid search with a sufficient distance between each tested hyper-parameter tested,
limited by our time and computing power. As an example, the learning rate α and
the discount factor γ combinations for Q-learning is evaluated with a distance of
0.1, i.e. α, γ ∈ {0, 0.1, 0.2, . . . , 1}. This can obviously be improved by evaluating
with a shorter distance of 0.1, requiring more time and computing power. Another
option would be to consider other hyper-parameter optimization methods, e.g. ran-
dom search (Bergstra & Bengio, 2012), Bayesian optimization (Snoek, Larochelle,
& Adams, 2012), gradient based optimization (Bengio, 2000) or evolutionary opti-
mization (Friedrichs & Igel, 2005).

It could also be further investigated on how to deduce if the probability is suffi-
cient for being at a specific state, to make the decision to deploy an appropriate
countermeasure or not. At the time being, e.g. for n-Myopic, we investigate if the
maximum probability is to be in one of the n-predecessors defined by Y c

npred
, and if so

deploy the optimal countermeasure. Following, for n-Lookahead, we do not rely on
the maximum probability but instead of a threshold λ, found through grid search,
where we deploy an optimal countermeasure if the probability to be in a specific
state bypasses the threshold. Thus it could be further looked into what strategy
yields best result, and if using the threshold, consider different hyper-parameter
optimization methods as discussed earlier.

6.2.2 Ethical considerations

In any type of automation there is going to potentially be people losing a job that
existed before the automation. New technology usually introduces a new set of pro-
fessions to support the technology, but the number of positions and the educational
level changes. Eventually, finding oneself in a situation where knowledge about the
fundamental issues have dissipated. Furthermore, only a few individual know how
to operate and maintain the system.

59

6. Conclusion

Having an automated AI that potentially takes action in an real-world environment
there is a concern around who is responsible if something goes wrong. Imagine this
system being deployed in an environment serving a health care related application
that patients rely on for medication or management of a condition. In this scenario if
the system decides to shut down servers in a false positive scenario, and patients loses
access to the service. It might be simple to put responsibility on the entity running
the infrastructure and the defense system, which is probably correct. However, it
results in a situation where the administrative entity can argue no blame, because
having a breach would be of a worse severity, and therefore would have taken the
best action to their knowledge.

Having knowledge about the workings of any security system can allow you to abuse
it, and thus become undetectable. Additionally, knowing how the system deploys
actions could lead to a new set of denial-of-service attacks, where an attacker pur-
posely reveals its attacks, so that the system shut down resources that are essential
to the overall service.

Trusting an automated system for security can lead to decisions that are hard to
explain and motivate. In general machine learning/AI systems tend to lead to
situation where a result is hard to backtrack. In other words the system performs
actions or gives results we have a hard time explaining. An interesting direction to
expand the research would be to create a co-existing policy AI, that connects all
the information of the decision-making AI, and tries to explain it as a human would
interpret it.

One way of alleviate the concerns that are associated with the automated AI re-
sponse to breaches is to transform the system into a recommendation engine. The
difference would be that no countermeasures are deployed directly by the AI. In-
stead, the AI solely performs the calculations and thereafter presents its choice of
viable countermeasures to the operators, which will perform the countermeasures if
deemed fit. In other words a human operator is now the final decision-maker, but
with access to fast and reliable information from the security system.

60

References

Aberdeen, D., & Baxter, J. (2002). Scaling internal-state policy-gradient methods
for pomdps. In Proc. icml-02 (pp. 3–10).

Bengio, Y. (2000). Gradient-based optimization of hyperparameters. Neural com-
putation, 12 (8), 1889–1900.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13 (Feb), 281–305.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., &
Zaremba, W. (2016). Openai gym.

Dimitrakakis, C., & Ortner, R. (2018). Decision making under uncertainty
and reinforcement learning. Retrieved from http://www.cse.chalmers.se/
~chrdimi/downloads/book.pdf

Federal Bureau of Investigation. (2016). 2016 internet crime report. Retrieved from
https://pdf.ic3.gov/2016_IC3Report.pdf

Friedrichs, F., & Igel, C. (2005). Evolutionary tuning of multiple svm parameters.
Neurocomputing, 64 , 107–117.

Hansen, E. A., & Feng, Z. (2000). Dynamic programming for pomdps using a
factored state representation. In Aips (pp. 130–139).

Hoffmann, J. (2015). Simulated penetration testing: From" dijkstra" to" turing
test++". In Icaps (pp. 364–372).

Krutz, R. L., & Vines, R. D. (2010). Cloud security: A comprehensive guide to
secure cloud computing. Wiley Publishing.

Liao, H.-J., Lin, C.-H. R., Lin, Y.-C., & Tung, K.-Y. (2013). Intrusion detection
system: A comprehensive review. Journal of Network and Computer Appli-
cations, 36 (1), 16 - 24. Retrieved from http://www.sciencedirect.com/
science/article/pii/S1084804512001944 doi: https://doi.org/10.1016/
j.jnca.2012.09.004

Liu, Y., & Man, H. (2005). Network vulnerability assessment using bayesian net-
works. In Data mining, intrusion detection, information assurance, and data
networks security 2005 (Vol. 5812, pp. 61–72).

Miehling, E., Rasouli, M., & Teneketzis, D. (2015). Optimal defense policies for
partially observable spreading processes on bayesian attack graphs. In Pro-
ceedings of the second acm workshop on moving target defense (pp. 67–76).
New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/
2808475.2808482 doi: 10.1145/2808475.2808482

Ou, X., Boyer, W. F., & McQueen, M. A. (2006). A scalable approach to attack

61

http://www.cse.chalmers.se/~chrdimi/downloads/book.pdf
http://www.cse.chalmers.se/~chrdimi/downloads/book.pdf
https://pdf.ic3.gov/2016_IC3Report.pdf
http://www.sciencedirect.com/science/article/pii/S1084804512001944
http://www.sciencedirect.com/science/article/pii/S1084804512001944
http://doi.acm.org/10.1145/2808475.2808482
http://doi.acm.org/10.1145/2808475.2808482

References

graph generation. In Proceedings of the 13th acm conference on computer
and communications security (pp. 336–345). New York, NY, USA: ACM.
Retrieved from http://doi.acm.org/10.1145/1180405.1180446 doi: 10
.1145/1180405.1180446

Papadimitriou, C., & Tsitsiklis, J. N. (1987, August). The complexity of markov
decision processes. Math. Oper. Res., 12 (3), 441–450. Retrieved from http://
dx.doi.org/10.1287/moor.12.3.441 doi: 10.1287/moor.12.3.441

Ponemon Institute LLC. (2017, Sep). 2017 cost of cyber crime study. Accenture.
Retrieved from https://www.accenture.com/t20170926T072837Z__w__/us
-en/_acnmedia/PDF-61/Accenture-2017-CostCyberCrimeStudy.pdf

Poolsappasit, N., Dewri, R., & Ray, I. (2012). Dynamic security risk management
using bayesian attack graphs. IEEE Transactions on Dependable and Secure
Computing, 9 (1), 61–74.

Sarraute, C., Buffet, O., & Hoffmann, J. (2012). Pomdps make better hackers:
Accounting for uncertainty in penetration testing. In Aaai.

Sheyner, O. M. (2004). Scenario graphs and attack graphs (Unpublished doctoral
dissertation). US Air Force Research Laboratory.

Shmaryahu, D., Shani, G., Hoffmann, J., & Steinmetz, M. (2017). Partially observ-
able contingent planning for penetration testing. In Iwaise: First international
workshop on artificial intelligence in security (p. 33).

Silver, D. (2015a). Lecture 1: Introduction to reinforcement learning. UCL. Re-
trieved from http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching
.html

Silver, D. (2015b). Lecture 7: Policy gradient methods. UCL. Retrieved from
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

Silver, D., & Veness, J. (2010). Monte-carlo planning in large pomdps. In Advances
in neural information processing systems (pp. 2164–2172).

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially ob-
servable markov processes over a finite horizon. Operations Research, 21 (5),
1071-1088. Retrieved from https://doi.org/10.1287/opre.21.5.1071 doi:
10.1287/opre.21.5.1071

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization
of machine learning algorithms. In Advances in neural information processing
systems (pp. 2951–2959).

Somani, A., Ye, N., Hsu, D., & Lee, W. S. (2013). Despot: Online pomdp planning
with regularization. In Advances in neural information processing systems (pp.
1772–1780).

Wells, D., Pazandak, P., Nodine, M., & Cassandra, A. (2004, aug). Adaptive defense
coordinator for multi-agent systems. In Proceedings of the first ieee symposium
on multi-agent security and scalability.

62

http://doi.acm.org/10.1145/1180405.1180446
http://dx.doi.org/10.1287/moor.12.3.441
http://dx.doi.org/10.1287/moor.12.3.441
https://www.accenture.com/t20170926T072837Z__w__/us-en/_acnmedia/PDF-61/Accenture-2017-CostCyberCrimeStudy.pdf
https://www.accenture.com/t20170926T072837Z__w__/us-en/_acnmedia/PDF-61/Accenture-2017-CostCyberCrimeStudy.pdf
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
https://doi.org/10.1287/opre.21.5.1071

A
OpenAI Gym Environments

A.1 Requirements

• Python 2.7

• Git

• OpenAI Gym

• Numpy

A.2 Installing

Github repository: https://github.com/hampusramstrom/gym-threat-defense

Fetch the public source code from Github:
1 $ git clone git@github .com: hampusramstrom /gym -threat - defense .git
2 $ cd gym -threat - defense /

Then, to globally install the library run:
1 $ pip install -e .

The library can now be imported into any Python 2.7 project. The next sections
detail how to use the library in a project. Furthermore, there is a fully functioning
example agent based on Q-learning in Section A.4.

I

https://github.com/hampusramstrom/gym-threat-defense

A. OpenAI Gym Environments

A.3 Usage

The goal of the Gym project is to make it easy to run and create agents for several
reinforcement learning domains by having a consistent interface. The three required
functions are:

• reset()

• step()

• render()

The reset() function resets the environment to the starting state, and the render()
function makes it possible to render a graphical representation of observations. The
interesting detail here is the step() function that progresses the environment based
on an action being passed as an argument to the function. For each step t in the
Minimal environment the agent receives a reward rt+1, and an observation ot+1
based on the action at that was taken. The important difference in the second
implementation of the environment is that when a step is taken the agent receives
a tuple containing the observed state, and the true state (ot+1, st+1), but only if the
action taken was Inspect. In any other cases, the environment behaves just as the
Minimal implementation, where the result of a step is an observation.

A.4 Example

The example below shows how a simple Q-learning agent could be implemented and
run with the Gym environment.

1 " " "
2 A simple example on how to use the Threat Defense environment ,
3 app l y ing Q−l e a rn ing where a t a b l e i s used to s t o r e the data .
4

5 Authors :
6 Johan Backman − johback@student . chalmers . se
7 Hampus Ramstrom − hampusr@student . chalmers . se
8 " " "
9

10 import numpy as np
11 import random
12 import gym
13 import gym_threat_defense # noqa
14

15

16 def choose_act ion (env , observat ion , q , i) : # noqa
17 " " "
18 Chooses a new act ion , e i t h e r randomly or the one wi th

II

A. OpenAI Gym Environments

19 max va lue in the Q tab l e , depending on the amount o f randomness .
20

21 Arguments :
22 env −− the Threat Defense gym environment .
23 ob s e r va t i on −− an ob s e r va t i on as i t s numeric index in the s t a t e s

matrix ,
24 con ta in ing a l l s t a t e s .
25 q −− the Q tab l e , con ta in ing the data .
26 i −− the current ep i sode in the s imu la t i on .
27

28 Returns :
29 An ac t ion con ta in ing a numeric va lue [0 , 3] .
30 " " "
31 dec = 0.01
32 eps = 1 − i ∗ dec
33

34 i f random . uniform (0 , 1) < eps :
35 return env . act ion_space . sample ()
36 else :
37 return np . argmax (q [obse rvat i on])
38

39

40 def get_index_in_matrix (env , obse rvat i on) :
41 " " "
42 Ret r i e v e s the index o f an ob s e r va t i on in the STATES matrix ,
43 con ta in ing a l l s t a t e s .
44

45 Arguments :
46 env −− the Threat Defense gym environment .
47 ob s e r va t i on −− an ob s e r va t i on as a b inary vec t o r o f l e n g t h 12.
48

49 Returns :
50 A numeric index .
51 " " "
52 for i in range (env . a l l _ s t a t e s . shape [0]) :
53 i f np . array_equal (observat ion , env . a l l _ s t a t e s [i]) :
54 return i
55

56

57 def q_learning (env) :
58 " " "
59 Runs Q−l e a rn ing wi th a s imple t a b l e f o r s t o r i n g the data and p r i n t s

the
60 mean reward f o r the l a s t 100 ep i sode s as w e l l as p r i n t i n g the Q−t a b l e

a t the
61 end o f the s imu la t i on .
62

63 Arguments :
64 env −− the Threat Defense gym environment .
65 " " "
66 q = np . z e ro s ([env . observat ion_space . n , env . act ion_space . n])
67 alpha = 0 .1
68 gamma = 0.7
69 num_episodes = 2000
70

71 rewards = []

III

A. OpenAI Gym Environments

72

73 for i in range (num_episodes) :
74 o _ l i s t = env . r e s e t ()
75 o = get_index_in_matrix (env , o _ l i s t)
76 done = False
77 r_a l l = 0
78

79 while True :
80 a = choose_act ion (env , o , q , i)
81

82 on_l i s t , r , done , _ = env . s tep (a)
83 on = get_index_in_matrix (env , on_l i s t)
84 q [o , a] = q [o , a] + alpha ∗ (r + gamma ∗ np .max(q [on]) − q [

o , a])
85 o = on
86 r_a l l += r
87

88 i f done :
89 break
90

91 rewards . append (r_a l l)
92 i f i % 100 == 0 and i > 0 :
93 print ' Episode : %s ' % i
94 print " Score over the l a s t 100 ep i s ode s : " + \
95 str (sum(rewards [(i − 100) : i]) / 100)
96

97 print " Score over time : " + str (sum(rewards) / num_episodes)
98 print " F ina l Q−Table va lue s "
99 print q

100

101

102 env = gym . make(' threat−defense−v0 ')
103 q_learning (env)

IV

	List of Figures
	List of Tables
	Introduction
	Aim
	Problem
	Related work
	Contributions
	Overview

	Theory
	POMDP
	Conflict environment model
	Bayesian Attack Graphs
	Attackers
	Defender
	POMDP-formulated defense problem

	Reinforcement learning algorithms
	Q-learning
	Policy Gradient

	Environments
	Assumptions
	Minimal environment
	Attributes
	Actions
	Cost function
	State space
	Observation space
	Parameters
	Time maximum

	Inspect Environment
	Cost function analysis
	Time of cost

	OpenAI Gym

	Algorithms
	Optimal policy
	Minimal and Inspect environment

	Q-learning
	Windowed Q-learning

	Policy Gradient
	n-Myopic
	n-Lookahead

	Results
	Performance evaluation
	Optimal policy
	Q-learning
	Policy Gradient
	n-Myopic
	n-Lookahead
	Comparison

	Conclusion
	Summary
	Discussion
	Future work
	Ethical considerations

	References
	OpenAI Gym Environments
	Requirements
	Installing
	Usage
	Example

