
Creating Initial Solutions for the Tail
Assignment Problem
Master’s thesis in Computer Science — Algorithms, Languages and Logic

ELIN BLOMGREN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Creating Initial Solutions for the
Tail Assignment Problem

ELIN BLOMGREN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Creating Initial Solutions for the Tail Assignment Problem
ELIN BLOMGREN

© ELIN BLOMGREN, 2018.

Supervisor: Birgit Grohe, Department of Computer Science and Engineering
Supervisor: Ann-Brith Strömberg, Department of Mathematical Sciences
Advisor: Viktor Almqvist, Jeppesen
Examiner: Devdatt Dubhashi, Department of Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Creating Initial Solutions for the Tail Assignment Problem
ELIN BLOMGREN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
One of many optimization problems in the airline industry is the tail assignment
problem, i.e. to decide which aircraft operate which flight. Initial solutions can be
used to warm-start optimization algorithms. In this thesis, the optimization algo-
rithm uses a time window heuristic together with column generation. This thesis
investigates different methods to create initial solutions for the tail assignment prob-
lem. The chosen methods consist of greedy algorithms and other simple heuristics.
The goal was that the methods should assign at least 95% of the flights and this
is achieved by most methods and test cases. Also, when using the produced initial
solutions as input to the optimization algorithm, the value of the objective function
is improved for some of the test cases.

Keywords: airline optimization, heuristics, greedy, initial solution, tail assignment,
aircraft routing, column generation, warm-start of algorithms.

v

Acknowledgements
Firstly, I want to thank Jeppesen for letting me do my thesis at their office and for
providing me with the necessary resources. I especially want to thank my supervisor
Viktor Almqvist for the meaningful discussions about my work and for always tak-
ing the time to help me. I also want to thank Mattias Grönkvist who has supported
me during the thesis.

I want to thank the optimization teams as well as everyone else at the Jeppesen
office who have shown interest in the project and to my roommate at Jeppesen,
Emily Curry, for keeping me company and cheering me up when the thesis work was
hard.

At Chalmers, I want to thank my examiner Devdatt Dubhashi and my two super-
visors Birgit Grohe and Ann-Brith Strömberg for their feedback on my thesis work
and especially on the writing of the report.

Elin Blomgren, Gothenburg, June 2018

vii

Glossary

Task A flight, a maintenance, a sequence of tasks or some other
activity that should be assigned to an aircraft

Roster A sequence of tasks that is assigned to an aircraft

Pre-assigned task A task that is locked to a specific aircraft

Free task A task that is not pre-assigned to any aircraft

Acronyms

AFR Aircraft First Random method

AFS Aircraft First Sort method

AFM Aircraft First Maintenance method

TFR Task First Random method

TFS Task First Sort method

TFM Task First Maintenance method

IMP IMProvement method

DFS Depth First Search

LP Linear Program

ILP Integer Linear Program

MP Master Problem

RMP Restricted Master Problem

ix

Notation

A The set of all aircraft

C The set of all cumulative rules

f ∈ F A task in the set of all tasks

r ∈ R The roster in the set of all rosters

Fr ⊆ F The set of tasks in roster r

ar ∈ A The aircraft assigned to roster r

tstart
f The starting time of task f

tend
f The ending time of task f

pstart
f The starting position of task f

pend
f The ending position of task f

x

Contents

1 Introduction 1
1.1 Aim and Limitations . 2
1.2 Literature Review . 2
1.3 Thesis Outline . 3

2 Theory 5
2.1 Integer Linear Programs . 5
2.2 Column Generation . 6
2.3 Greedy Algorithms . 7

3 Tail Assignment 9
3.1 Problem Description . 9

3.1.1 Tasks and Notation . 9
3.1.2 Constraints and Maintenance 10
3.1.3 Objective . 11

3.2 Optimization Models . 12
3.3 Solving Tail Assignment Using Time Windows 13

4 Heuristics to Create Initial Solutions 15
4.1 Legal Connections . 16
4.2 Fill Gaps Between Pre-assigned Tasks 17
4.3 Greedy methods . 18

4.3.1 Aircraft First . 19
4.3.2 Tasks First . 20

4.4 Methods for Hard Cumulative Constraints 21
4.4.1 Aircraft First with Hard Cumulative Constraints 21
4.4.2 Task First with Hard Cumulative Constraints 22

5 Tests and Results 25
5.1 Results for Test Cases Without Hard Cumulative Constraints 26
5.2 Results for Cases With Hard Cumulative Constraints 28

6 Discussion and Conclusion 33

Bibliography 37

xi

Contents

xii

1
Introduction

There are many decisions to be made at an airline. One important problem is to
decide which aircraft should operate which flight. To do this, one has to consider op-
erational constraints such as maintenance, airport curfews, and aircraft restrictions.
This problem is called tail assignment [1]. In addition to satisfying all rules and
constraints, the problem can be modeled to minimize fuel consumption, maximize
aircraft utilization, increase robustness, etc., in order to find savings and increase
the reliability of the airline’s operation.

This thesis is done in collaboration with Jeppesen in Gothenburg. Jeppesen is a
subsidiary of The Boeing Company and provides planning and optimization tools
for airlines. One of their products is a tail assignment optimizer which is the starting
point for this thesis.

Aircraft operating costs are the by far biggest operating cost for airlines [2, Chapter
6]. The single largest cost in this category is fuel. Further, the total cost of delayed
flights in US in 2007 was estimated to be $31.2 billion [2, Chapter 10]. Making
robust schedules that minimize the delays and their consequences is therefore an
important way to find savings for airlines. Different airlines prioritize costs and ro-
bustness differently. By modeling robustness and other qualities as costs, Jeppesen’s
products allow the airlines to choose which qualities that are most important and
the optimizer finds a solution targeted to minimize the cost.

The tail assignment problem is an NP-hard optimization problem [1, Section 4.2],
which means that it can sometimes be very computationally demanding to find good
solutions. To find good enough solutions as quickly as possible, Jeppesen’s optimizer
uses a hybrid column generation and local search solution approach. The problem’s
planning period is divided into time windows, and the problem is solved using column
generation in a sequence of time windows which ’slide’ over the planning period to
gradually cover the full period.

To improve the performance of the currently in use optimizer at Jeppesen, an initial
solution that covers the entire planning period can be used as input to the optimizer.
Producing solutions fast is also good because the user of the system gets feedback
almost immediately and the user can also see if the problem data and rules work
correctly. This thesis will investigate methods to create initial solutions and evaluate
them on real problems from different airlines.

1

1. Introduction

1.1 Aim and Limitations

The goal of this thesis is to find and implement a method that can be used to
create initial solutions to warm start an improvement method. Since it can be
hard to assign all flights for complex problem instances, the goal is that the initial
solutions should have at least 95% of the flights assigned. All other hard constraints
(explained in Section 3.1.2) must be satisfied. The aim is that the current optimizer
at Jeppesen can produce better solutions if given an initial solution produced with
the developed method, than without an initial solution. The method also needs to
be fast and scalable to be able to support large airlines.

The main limitation of this thesis is that the methods developed in this thesis do
not aim at finding the optimal solution. Since the produced solutions will be used
as initial solutions to an improvement method, it is enough that it is a legal solution
covering the whole planning period (but with some flights unassigned).

The testing will be limited to a few problem instances from Jeppesen’s test suite.
The final aim is that the method should work for all possible instances, but for the
scope of this thesis there will be a smaller selection of problem instances for the
evaluation.

1.2 Literature Review

Grönkvist [1] presented a constraint programming approach as well as a column
generation approach to solve the tail assignment problem. Later, Gabteni and
Grönkvist [3] combined these approaches to quickly find initial solutions as well as
to improve the solution quality. Two difficulties with their approach are that it does
not work if there is no feasible solution and that it does not consider maintenance
or other cumulative constraints.

One of the most recent publications on tail assignment is Khaled et al. [4]; it presents
a compact model of tail assignment which is solved to optimality. The bigger in-
stances are, however, not solved to optimality when the maintenance constraints are
added. There is only one type of maintenance considered in [4]. and their biggest
instance only has 40 aircraft and 1494 flights.

Sarac et al. [5] present a branch-and-price method to the operational aircraft main-
tenance routing problem. A problem that is similar to tail assignment, but with
the main difference that the planning horizon is shorter. In [5] only one day was
used and their objective was to minimize the number of unused legal flying hours.
However, the first steps in their method for creating initial solutions are similar to
the ones presented in this thesis in the way that the aircraft are sorted and that the
first possible connection is chosen iteratively.

Another solution method for aircraft maintenance routing proposed by Safaei and

2

1. Introduction

Jardine [6] includes a connection network Integer Linear Program (ILP) that handles
various maintenance tasks. They only solve the problem for one week at a time for a
fleet with up to 18 aircraft. Another difference is that they allow non-revenue flights
to transport aircraft to maintenance locations.

Column generation is a frequently used approach for many airline problems [1], [5],
[7], [8]. However, Amin Jamili [9] and Deng and Lin [10] are two examples of the
use of stochastic optimization algorithms [11].

A similar problem to tail assignment is railway rolling stock assignment, the problem
of assigning train-sets to utilization paths. Lai et al. [12] focused on the maintenance
for rolling stock and showed good results with a heuristic approach. Among other
techniques, their algorithm start with the trains that need maintenance the soonest.
However, their routes are already aggregated into trips that all begin and end at the
same location which makes the problem easier to solve.

Creating initial feasible solutions for different operations research problems is often
a domain specific task. Several articles on initial solutions are published in different
domains. For example, Juman and Hoque [13] for the transportation problem and
Joubert and Claasen [14] for the constrained vehicle routing problem. Also, Guedes
and Borenstein [15] show that a good initial solution improved the running times
significantly for the multiple-depot vehicle type scheduling problem.

Tail assignment can be modeled as an integer multi-commodity network flow prob-
lem with resource constraints [1, Model 4.1]. Dai et al. [16] proposed several ap-
proaches to initial solutions for the multi commodity network flow problem. These
will, however, not work very well in the tail assignment setting since the authors
in [16] focus on problem instances with more commodities than nodes, which would
correspond to more aircraft than flights. Also, the resource constraints and the
integrality constraints would have to be relaxed.

1.3 Thesis Outline

In Chapter 2 the theory used for both Jeppesen’s current solver as well as for the
methods proposed in this thesis is explained. After that follows a more in-depth
problem definition in Chapter 3. In Chapter 4, the methods developed in this thesis
are presented, followed by the tests and results in Chapter 5. Finally, the thesis is
concluded in Chapter 6.

3

1. Introduction

4

2
Theory

This chapter describes the theory used for different solution methods for the tail
assignment problem. Section 2.1 describes a common way to model integer linear
optimization problems and Section 2.2 describes one way to solve these optimization
problems. These techniques are currently in use at Jeppesen. Section 2.3 describes
the theory behind the main algorithm proposed in this thesis.

2.1 Integer Linear Programs

Linear Programs (LP) are a way to model optimization problems with continuous
variables, linear constraints and linear objective function [17, Chapter 4.3]. Let
x be a vector of n variables and c be a vector with corresponding costs for each
variable. The m number of linear constraints for the variables x are expressed in
the constraint matrix A ∈ Rm×n together with the vector b ∈ Rm with the bound
for each constraint. Then a standard LP is of the form

min cᵀx, (2.1a)
s.t. Ax = b, (2.1b)

x ≥ 0. (2.1c)

The goal is to minimize the cost (2.1a) subject to a set of linear equality (or inequal-
ity) constraints (2.1b), where constraint i is defined as Aix = bi.

One of the most widely used methods to solve LPs is the Simplex method [18]. Even
though the worst case complexity of the Simplex method is exponential in theory,
it has been proved that the so called smoothed complexity is polynomial [19], [20].
Examples of other solution methods are the ellipsoid method and interior point
methods [21].

Integer Linear Programs (ILP) are special kinds of LPs where the variables must
have integer values. Therefore, there is also a constraint on the form x ∈ X, where

5

2. Theory

X ⊆ Zn. For a binary ILP, X = {0, 1}n and a standard binary ILP is of the form

min cᵀx, (2.2a)
s.t. Ax = b, (2.2b)

x ∈ {0, 1}n. (2.2c)

In contrast to LP, which can be solved efficiently, ILPs are generally NP-hard and
no efficient algorithm is known [22]. An ILP can be relaxed to allow continuous
values of the variables. Such a re-formulated problem is called an LP-relaxation of
the ILP. The LP-relaxation can be solved efficiently (e.g. by the Simplex method)
but this will of course in general produce continuous solutions that is not feasible
for the ILP.

One common exact method to solve ILP is Branch-and-bound [23, Section 8] where
relaxed problems are solved repeatedly in a tree-structure. In each node, the feasible
region is divided into two parts, which becomes two branches. Both the lower and
upper bound are stored in each node and a branch is pruned if it is not possible
(calculated by the bounds) that the optimal solution can be found in a sub-branch
of the node.

2.2 Column Generation

Column generation is a method that can be used to solve large scale LPs and
ILPs [24]. To apply column generation, it is necessary to first reformulate the
problem into two problems. These are a master problem (MP) and one or more
sub problems (also called pricing problems). For example, the resource constrained
shortest path problem [25] can be modeled with a decision variable for each edge.
When reformulated, a decision variable in the MP will instead represent a possible
path through the network. Each decision variable in the MP is associated with a
path through the network and is represented by a cost coefficient in the objective and
a column in the constraint matrix. The number of paths is typically very large and
therefore only a subset of the paths are generated. The sub-problems are then used
to generate new possible paths (columns) with negative reduced cost (i.e. columns
that can improve the objective) to the restricted master problem (RMP). This is
repeated for a predefined number of iterations or until the sub-problems do not find
any improving columns.

During the iterations, the RMP passes new (dual) information to the sub-problems
and the sub-problems passes new improving columns to the RMP. But to initialize
the iterations, a set of initial feasible columns is needed [26]. These can be defined
using so-called artificial variables [27], one for each constraint, each with a high cost,
or, one can find initial solutions in other ways.

The RMP is solved as an LP. If the actual problem is an ILP one has to use some
fixing heuristic to find an integer solution. Barnhart et al. [28] combine column

6

2. Theory

generation with branch-and-bound to solve large-scale ILP and the resulting method
is called branch-and-price.

2.3 Greedy Algorithms

Greedy algorithms always make the choice that is best (according to some criteria)
at the moment [29]. In general, greedy algorithms are not guaranteed to find an
optimal solution, but for some problems there exists greedy algorithms that always
find optimal solutions. For other problems, greedy algorithms can be used to find
good feasible solutions.

Generally, one can define a greedy algorithm with three sets and four functions [30].
The starting point is a set C of all possible candidates and two empty sets, one for
the solution S and one with discarded candidates D. As the algorithm proceeds,
candidates from the set C will be moved to S or D. A selection function decides
which candidate c ∈ C is most promising and a feasibility function checks if a set of
candidates can form a solution by adding more candidates. There is also a function
that checks if a set of candidates form a complete solution and finally an objective
function that gives a solution an objective value. A scheme of a general greedy
algorithm is shown in Algorithm 1.

Algorithm 1: Greedy scheme
1 S ← ∅
2 D ← ∅
3 while C 6= ∅ and not isSolution(S) do
4 x← select(C)
5 C ← C \ {x}
6 if isFeasible(S ∪ {x}) then
7 S ← S ∪ {x}
8 else
9 D ← D ∪ {x}

10 end
11 end
12 if isSolution(S) then
13 return (S, objective(S))
14 end

The algorithm selects in each iteration the best candidate c ∈ C according to the
selection function. This candidate is removed from C and if it is feasible to add to
the solution S, it is added. Otherwise it is discarded and placed in D. After each
iteration, the algorithm checks whether or not the set S forms a complete solution.
When either the set of candidates is empty or the set S forms a complete solution,
the algorithm terminates and returns S as the solution, optionally together with the
objective value of the solution.

7

2. Theory

8

3
Tail Assignment

Aircraft are identified by their tail-number, which is why the problem studied in this
thesis is called tail assignment. Tail assignment is an optimization problem and the
goal is to assign aircraft to all flights while optimizing some objective. Section 3.1
describes the tail assignment problem and Section 3.2 describes different models
used when solving tail assignment.

One of the main differences between Jeppesen’s optimizer and others seen in liter-
ature is that Jeppesen’s optimizer has a very flexible way to model the constraints
and the objective function. Therefore, it is hard to make a specific definition of the
components of the problem since these tend to vary between airlines. This chapter
aims at describing the components in general.

3.1 Problem Description

Tail assignment is solved for a specific planning period, which means that there is a
start and end date. Typically this is about a month but it can be both shorter and
longer.

3.1.1 Tasks and Notation

Flights and maintenance checks are modeled as tasks, denoted by f . A task can also
be a composite of other tasks. The set F consists of all tasks f that are scheduled
in the planning period. Each task f ∈ F has a start time tstart

f and an end time tend
f .

Each task f also has a starting position pstart
f and an end position pend

f . In principle,
a task can be anything possessing these attributes.

A roster is a sequence of tasks that belong to a specific aircraft. Let A be the set
of all aircraft and R the set of all rosters. Then, the aircraft assigned to the roster
r ∈ R is denoted by ar ∈ A. The sequence of tasks belonging to roster r is Fr ⊆ F .
Since a roster is simply a sequence of tasks and a task can be a composite of tasks,
the same notation as for tasks is used for the roster attributes, i.e. tstart

r etc.

9

3. Tail Assignment

Some tasks are pre-assigned, which means that they are locked to a specific aircraft.
There are two types of pre-assigned tasks. The first type is carry-ins, which are
the tasks that are scheduled before the planning period begins and states where the
aircraft is in the beginning of the planning period. The second type is pre-scheduled
maintenance, typically the bigger ones that lasts for at least one week. Different
maintenance types are explained in the next section.

An example solution to tail assignment is illustrated in Figure 3.1. The example
consists of four aircraft and a planning horizon of four days. The gray tasks are
pre-assigned and locked to the aircraft. The blue tasks are so-called free tasks, for
which it is up to the optimizer to decide which aircraft the task should be assigned
to. The pre-assigned task at day 3 is an example of pre-assigned maintenance which
is described below.

X Y Pre-assigned task X Y Free task

Day 1 Day 2 Day 3 Day 4

A
ir

cr
af

t/
R

o
st

er

1

2

3

4

C A

C D

B B

D AA D

D C

D CA C C A

C AB C

A D

A C

A B

D A A D D A

B A

A BC B

A D D A

B A

C AB C

C DA C

Figure 3.1: An example of a solution to a tail assignment problem. The tasks are
boxes with a starting position and an ending position.

Pre-assigned tasks may result in gaps in the roster between the pre-assigned tasks.
For example, the roster for aircraft 3 in Figure 3.1 had a gap between the pre-
assigned tasks at day 1 and 3, before the free tasks were assigned to the aircraft.

3.1.2 Constraints and Maintenance

At Jeppesen, all rules concerning flights, airports, tasks, aircraft, maintenance etc.
are written in Rave [31]. Rave is a domain specific language developed at Jeppesen.
The optimizer has access to a general interface to Rave where certain questions can
be asked. For example, if a task is legal for a specific aircraft or to get the connection
cost between two tasks.

There are different kinds of maintenance for aircraft. The most extensive kind of
maintenance is done every one to three years and can take up to a month. The
smallest maintenance might be performed every day (night) and may take about
an hour. Between these extreme cases, there are a lot of intermediate maintenance
levels. The maintenance regulations vary between airlines and countries and multiple
maintenance levels can be used by the same airline.

10

3. Tail Assignment

When modeling tail assignment, there are two ways to model the maintenance rules.
The first way is as pre-assigned tasks, which means that the maintenance’s time and
place are not decided by the optimization process but instead decided on before-
hand. Usually, it is the bigger and less frequent maintenance that is modeled in
this way. The second way is with cumulative constraints, which are usually used
for the more frequent maintenance types that are performed several times during
the planning period. The same problem instance can have both kinds of rules for
different maintenance levels.

Cumulative constraints are the most complex rules since they depend on the history
of the aircraft (e.g. it is needed to keep track of when the aircraft last had mainte-
nance of a certain type). Cumulative constraints are modeled as resource constraints
where the resource for example can be time, flight hours, or number of landings. If
the consumption of the resource exceeds a defined limit, the constraint is violated.
The most common way to reset the consumption of the resource is to make sure
that the aircraft spends a number of hours on the ground at one in a subset of the
airports (e.g. at which it is possible to perform maintenance). The set of cumulative
constraints are denoted by C.

There are both soft and hard constraints. The hard constraints simply state that
something is impossible and that a solution that breaks any hard constraint is illegal.
The soft constraints are modeled with a penalty cost (in the objective) for violating
the constraint.

Since tail assignment can be solved simultaneously for multiple fleets, it can some-
times be cost-worthy to re-fleet a flight. Re-fleeting means that a flight is assigned
to an aircraft of a different type than it was originally planned for. Re-fleeting can
be modeled as a soft constraint where the penalty for violating the constraint is the
cost of changing aircraft type.

Sometimes there are also global constraints, which apply when something is depen-
dent on more than one aircraft. The most recurring global constraint is to have
a limit on the number of aircraft that receive maintenance simultaneously at the
same airport. Another example is to require a minimum number of aircraft on the
ground, to use if disturbances occur.

3.1.3 Objective

Different objectives can be used when solving the tail assignment problem. The
objective can be to minimize actual costs, such as fuel consumption, or fictive costs,
which for example will favor robust solutions or other qualities that the airline
desires. Often both actual and fictive costs are used in combination.

The objective function is also modeled in Rave and is to be defined by the user of
the system. If the problem instance does not have a solution covering all flights, the
cost of unassigned tasks is often the biggest part of the total cost. Another part

11

3. Tail Assignment

that often influences the cost is fuel consumption and the connection time between
flights. An example of a connection cost function that can be used to reduce medium
length connections is found in [1, Section 13.1]. When soft constraints are employed,
the penalty for violating these are also part of the cost.

3.2 Optimization Models

There are multiple ways to model the tail assignment problem. Grönkvist [1]
presents three main models. First, there is an integer multi-commodity network
flow problem formulation [1, Model 4.1]. This is perhaps the most intuitive formula-
tion but it is not used very often when solving the tail assignment problem. Further,
there is a set partitioning formulation [1, Model 4.2]. This is a very useful model
that can be solved by column generation and is explained below. The last model is
a constraint satisfaction problem model [1, Model 9.2] that Grönkvist later uses for
accelerating the column generation [32]. This can be done since all three of these
models express the same problem in different ways and a solution to one formulation
can always be transformed into a solution to the others.

Let R be the set of all legal aircraft rosters, xr be the decision variable of whether
or not roster r ∈ R is taken and cr be the cost of roster r. Further, the constant
αfr is 1 if task f is covered by roster r and 0 otherwise. Then, tail assignment can
be modeled as a set partitioning problem [1, Model 4.2]

min
∑
r∈R

crxr, (3.1a)

s.t.
∑
r∈R

αfrxr = 1, ∀f ∈ F, (3.1b)

xr ∈ {0, 1}, ∀r ∈ R. (3.1c)

The goal as specified in (3.1a) is to choose xr, r ∈ R such that the total cost is
minimized. In this problem formulation there are two sets of constraints. In (3.1b)
we ensure that each task is covered by a an aircraft and the integrality constraints
in (3.1c) ensure that xr is binary.

The complicating property of this formulation is that the set R is very large (expo-
nential in the number of tasks) and also hard to find [1, Section 4.4 and 5.2]. The
current approach to solve this is to use column generation (see Section 2.2). The
RMP is the LP-relaxed (i.e. (3.1c) changed to xr ≥ 0) version of (3.1) but with
the subset R′ ⊆ R instead of R. The pricing problem is then used to generate new
rosters to R′ (i.e., new columns, consisting of αfr, f ∈ F , and cr). This problem is
modeled in a graph as a resource constrained shortest path problem [1, Section 5.3]
to ensure that the generated rosters satisfy all the constraints. Some constraints are
enforced by the connections between nodes. The cumulative constraints (e.g. main-
tenance) are modeled with the resources in the pricing problem. For more details,
see [1, Section 5.3–5.4].

12

3. Tail Assignment

3.3 Solving Tail Assignment Using Time Windows

At Jeppesen, most problem instances are divided into multiple smaller so-called
time windows for which column generation is performed individually [1, Section
12.3]. Usually the size of the windows are between one and seven days. One sweep
through the planning period goes through all time windows once in order. The time
windows have some overlap that is decided per customer. After one sweep, the time
windows can be altered so that the breakpoints occurs at different places in the next
sweep.

For each time window, there are some locked tasks in the beginning and in the end.
The rosters generated in the column generation only cover this time window and
consists of a path between the start task and end task. If there is no initial solution,
each time window only has one fixed task in the beginning, the end task is up to
the column generation to decide.

13

3. Tail Assignment

14

4
Heuristics to Create Initial

Solutions

This chapter presents the developed methods to create initial solutions to the tail as-
signment problem. The methods use heuristics to find solutions fast. The heuristics
used are greedy algorithms and depth first search (DFS) [33, Section 3.2].

The general method is divided into two stages. First, the gaps between pre-assigned
tasks are handled using a method called FillGaps and then, in the second stage,
the rosters are appended with more tasks using the method AppendRosters. An
example that illustrates these stages are found in Figure 4.1. This means that
AppendRosters will assign tasks (if possible) after the last pre-assignment in each
roster. The general algorithm is presented in Algorithm 2.

Algorithm 2: General scheme
1 Initialize A,F,R
2 shuffle(R)
3 FillGaps(R,F)
4 AppendRosters(R,F)

The first row in Algorithm 2 is the initialization steps. First, the data (tasks F and
aircraft A) is collected. Then, for each aircraft a ∈ A, a new roster r is created
with only the pre-assigned tasks for ar. The rosters form the set R. The set F is
ordered by ascending start time. After that, the rosters are shuffled to avoid getting
the same arbitrary order for each run of the algorithm. In this way, we can run
the algorithm multiple times and then choose the best solution. Row 3 handles the
gaps between pre-assigned tasks and is explained in detail in Section 4.2. Finally,
the method AppendRosters on row 4 is done in several different ways, which are
described in Sections 4.3 and 4.4. Section 4.1 describes how to determine whether
a connection is legal, something that is used in many of the developed methods.

15

4. Heuristics to Create Initial Solutions

X Y Pre-assigned task X Y Free task

Day 1 Day 2 Day 3 Day 4

A
ir

cr
af

t/
R

o
st

er

1

2

3

4

B B

A D

D C

A C

B A

(a) The initial four rosters with only pre-
assigned tasks.

Day 1 Day 2 Day 3 Day 4

A
ir

cr
af

t/
R

o
st

er

1

2

3

4

C A B B

A D

D C

A C

A B

B A

(b) The four rosters resulting from the
application of the method FillGaps.

Day 1 Day 2 Day 3 Day 4

A
ir

cr
af

t/
R

o
st

er

1

2

3

4

C A

C D

B B

D AA D

D C

D CA C C A

C AB C

A D

A C

A B

D A A D D A

B A

A BC B

A D D A

B A

C AB C

C DA C

(c) The four rosters resulting from
the application of the method
AppendRosters has been performed.

Figure 4.1: An example of how a solution is formed by the stages in the general
scheme.

4.1 Legal Connections

In many situations, there is a need to check if the connection between two tasks is
legal. To see if the connection is legal, there are a number of conditions to check. We
define the function isLegal(f, g, a) to check the legality of the connection between
tasks f and g with respect to aircraft a. Note that the first task can be either a
roster or a task. The following legality checks are performed:

1. Is the position pend
f = pstart

g ?

2. Is the time tend
f ≤ tstart

g ?

3. Does aircraft a has the necessary requirements needed for task g?

16

4. Heuristics to Create Initial Solutions

4. Is task g is allowed for aircraft a according to the Rave model?

5. Is the connection between task f and g legal for aircraft a according to the
Rave model?

For a connection to be legal, all these checks must be true. The checks are performed
in increasing order, so that the more time-consuming checks (which depend on the
Rave model) are only done if the previous checks were legal.

For check number 2, we assume a connection time of 0. In practice, a longer connec-
tion time is needed, but since this depends on the task, the airport, and the aircraft,
this is handled in Rave (check 5).

4.2 Fill Gaps Between Pre-assigned Tasks

Pre-scheduled maintenance create gaps in the rosters between the pre-assigned tasks
in the beginning of the planning period and the later maintenance. This is one of
the more difficult parts for the current optimizer. Therefore, it is important to find
an algorithm that can fill these gaps efficiently.

The method FillGaps is shown in Algorithm 3. The algorithm loops through the
tasks in each roster. The next task after f is denoted f + 1. For each task f in the
roster r, a DFS inspired algorithm is used to find a sequence of tasks that fill the
gap between tasks f and f +1. The tasks represent the nodes in the graph searched
by the DFS. The only difference from an ordinary DFS is that it only checks if the
goal is reached if there are no more possible tasks to add. The set V of visited nodes
(tasks) is used to avoid visiting the same node more than once.

For each gap in the roster at hand, the algorithm will check all tasks g ∈ F , for
which tstart

g is between tend
f and tstart

f+1 , whether it is legal to assign task g after task
f . The algorithm also check that the task is uncovered and whether the inequality
tend
g ≤ tstart

f+1 holds. If legal, the task g is appended to the roster r. When there are
no more tasks to consider, the algorithm checks if the new connection in the roster,
i.e. between f and f + 1, is legal. If it is not, the task f is removed from the roster
and put in the set of visited nodes V ← V ∪ {f}. Let f be the previous task in the
roster and go through the steps again.

If there are two pre-assigned tasks for each roster, one in the very beginning of the
planning period and one in the very end, there are |A| gaps to fill with |F | − |A|
potential tasks. These are considered by DFS, for which the time complexity is
O(|nodes|+ |edges|); the nodes correspond to the potential tasks |F |−|A|, and there
are at most (|F | − |A|)2 edges. The resulting complexity is O(|A|(|F | − |A|)2) =
O(|A||F |2 − 2|F ||A|2 + |A|3). Since |A| � |F |, this means that |A|3 < |A||F |2 and
the complexity can be written as O(|A||F |2). Note that this is a worst case analysis
and this will probably not be the case for real problems.

17

4. Heuristics to Create Initial Solutions

Algorithm 3: FillGaps
1 foreach r ∈ R do
2 f ←first(r)
3 V ← ∅
4 while f 6= null do
5 foreach g ∈ {g : g ∈ F ∧ tend

f ≤ tstart
g ≤ tstart

f+1 } do
6 if isLegal(f, g, ar) ∧ g /∈ V ∧ tend

g ≤ tstart
f+1∧ isUncovered(g) then

7 insert(r, g)
8 f ← g

9 end
10 end
11 if isLegal(f, f + 1, ar) then
12 f ← f + 1
13 else
14 remove(r, f)
15 V ← V ∪ {f}
16 f ← f − 1
17 end
18 end
19 end

4.3 Greedy methods

The methods to be presented in this section do not consider hard cumulative con-
straints but only the ones checked in the function isLegal. The reason for this is
to be able to use a fast greedy approach for the problem instances that does not
have hard cumulative constraints (see Section 4.4 for the corresponding algorithms
for those cases). The four methods are all quite similar. These are Aircraft First
Random (AFR), Aircraft First Sort (AFS), Task First Sort (TFS) and Task First
Random (TFR). For the complete run of Algorithm 2, one of these is chosen as the
method AppendRosters.

Recall the notation used for the general greedy algorithm in Section 2.3. The candi-
date set C is here the set of pairs (a, f) ∈ A× F (the Cartesian product of aircraft
and tasks), the solution set S corresponds to R, in which the rosters are accumu-
lated, and the set D of discarded candidates is accumulated implicitly by the way
new candidates are selected.

The selection function is implicit by the looping through the set of candidates. The
looping order differs between the methods. The feasibility function is the function
isLegal and there is no explicit function checking if the solution is complete, since
all the candidates will be considered. Finally, the objective function is the one
defined in the Rave model (as explained in Section 3.1.3).

18

4. Heuristics to Create Initial Solutions

4.3.1 Aircraft First

Each of the two methods AFR and AFS consists of a nested loop where the outer
loop iterates through the aircraft/rosters and the inner loop iterates through the
tasks.

Before these loops are executed, the aircraft are ordered in some way. For AFR,
the aircraft are listed in random order and is therefore called Aircraft First Random
(AFR), see Algorithm 4.

Algorithm 4: Aircraft First Random (AFR)
1 shuffle(R)
2 foreach r ∈ R do
3 foreach f ∈ F do
4 if isLegal(r, f , ar) ∧ isUncovered(f) then
5 append(r, f)
6 end
7 end
8 end

The other method AFS sorts the aircraft based on the number of restrictions (de-
creasing) which is called Aircraft First Sort (AFS). Note that the solution produced
by the method can differ between runs if multiple aircraft have the same number of
restrictions, since ties are broken randomly.

Algorithm 5: Aircraft First Sort (AFS)
1 sort(R)
2 foreach r ∈ R do
3 foreach f ∈ F do
4 if isLegal(r, f , ar) ∧ isUncovered(f) then
5 append(r, f)
6 end
7 end
8 end

The shuffle step in AFR takes linear time (O(|A|)) and is done only once in the
beginning. Since the outer loop goes through each roster once, and there is one
roster for each aircraft, this loop consists of |A| iterations. The inner loop consists
of |F | iterations, where each iteration takes constant time. Hence, the resulting time
complexity is O(|A||F |).

For AFS, the algorithm starts by sorting the aircraft/rosters which is done in
O(|A| log(|A|)). However, to obtain the number of restrictions used for the sorting,
O(|A||F |) computations are required. The resulting complexity is thenO(|A| log(|A|)+
|A||F |). For practical problems, there are a lot more tasks than aircraft (i.e.

19

4. Heuristics to Create Initial Solutions

|A| � |F |). Therefore, the first term can be ignored and the complexity is the
same as for AFR, i.e. O(|A||F |).

4.3.2 Tasks First

The Aircraft First methods typically assign a lot more tasks to the first rosters
compared to the later rosters. Therefore, we present two methods that aim to
distribute the tasks more evenly.

The difference between the Tasks First and Aircraft First methods is that the inner
and outer loop have been swapped. Instead of looping over the rosters and for
each roster loop over all tasks, the algorithms loop over all tasks once and for each
task over all the rosters. In this way, the inner loop may be exited when a legal
assignment is found since only one aircraft should cover each task. To distribute the
tasks evenly, the order of the rosters are shuffled for each task; see Algorithm 6.

Algorithm 6: Tasks First Random (TFR)
1 foreach f ∈ F do
2 shuffle(R)
3 foreach r ∈ R do
4 if isLegal(r, f , ar) ∧ isUncovered(f) then
5 append(r, f)
6 break
7 end
8 end
9 end

An alternative is to re-sort the aircraft for each task. In this case, the sorting is
based on the number of tasks (ascending) in each roster to even better balance the
load on each aircraft. This is shown in Algorithm 7; note that the only difference
from Algorithm 6 is on row 2.

Algorithm 7: Tasks First Sort (TFS)
1 foreach f ∈ F do
2 sort(R)
3 foreach r ∈ R do
4 if isLegal(r, f , ar) ∧ isUncovered(f) then
5 append(r, f)
6 break
7 end
8 end
9 end

20

4. Heuristics to Create Initial Solutions

For TFR, the outer loop consists of |F | iterations and in each iteration, the shuffle
step takes O(|A|) time and the inner loop contains at most |A| iterations. Hence,
the time complexity is O(|A||F |), the same as for AFR and AFS. For TFS, on
the other hand, the sorting is done in O(|A| log(|A|)) and the total complexity is
O(|A||F | log(|A|)). As mentioned in the previous section, |A| � |F | and this extra
log(|A|) factor should not influence the practical running time much.

4.4 Methods for Hard Cumulative Constraints

When the problem instance possesses hard cumulative constraints, the greedy algo-
rithms described in the previous section will most often generate illegal solutions. We
present two methods that can handle these constraints: Aircraft First Maintenance
(AFM) and Task First Maintenance (TFM). For problem instances with hard cumu-
lative constraints, one of AFM and TFM is chosen as the method AppendRosters
in Algorithm 2.

To check if a roster r violates any of the cumulative constraints in the set C, the
whole roster has to be considered. This takes at most O(|C||Fr|) time, where |Fr|
denotes the number of tasks in the roster r.

4.4.1 Aircraft First with Hard Cumulative Constraints

AFM is inspired by the method FillGaps and uses a similar DFS algorithm. How-
ever, the goal here is to find a path that is as long as the planning period and
therefore a heuristic parameter Tmax is introduced.

The general idea is that legal tasks are appended as long as they do not violate any
hard cumulative constraint. If a constraint becomes violated by a task, it is not
added. The parameter Tmax is used to determine (heuristically) whether it is likely
that the roster can further be appended. If the time between the end time tend

r of
the roster and the start time tstart

f of the potential task f to add exceeds the time
Tmax (i.e. tstart

f − tend
r > Tmax), it is considered unlikely that a legal task to append

to the roster will ever be found. Therefore, the last task in r is removed and set the
task f to the task closest to tend

r and try again to append the roster. All tasks that
have ever been in the current roster are forbidden to be added again. This is kept
track of this using the set V of visited tasks. See Algorithm 8.

In the worst case, the algorithm exceeds the maximum time Tmax once for each task,
and all tasks are added at some point, but all are also removed. Therefore, the check
for violation of cumulative constraints may be performed at most |A||F |2 times and
each check has a worst case of O(|C||F |) computations since the roster can consist
of at most |F | tasks. Hence, the complexity of Algorithm 8 becomes O(|C||A||F |3).
This is a lot higher than for AFR, AFS, TFR, and TFS but since this is a worst
case analysis, in practice, no rosters consist of |F | tasks, and since the cumulative

21

4. Heuristics to Create Initial Solutions

Algorithm 8: Aircraft First Maintenance (AFM)
1 foreach r ∈ R do
2 V ← ∅
3 f ← first(F)
4 while f 6= null do
5 if tstart

f − tend
r > Tmax then

6 removeLast(r)
7 f ← min f ∈ F : tstart

f ≤ tend
r

8 if isLegal(r, f , ar) ∧f /∈ V ∧ isUncovered(f) then
9 if isCumulativeLegal(r, f, ar) then

10 append(r, f)
11 V ← V ∪ f
12 end
13 end
14 f ←next(F, f)
15 end
16 end

constraints are only evaluated if the connection is legal in all other aspects, the
algorithm will be faster in most practical settings.

AFM provides a simple way to handle all kinds of possible cumulative constraints. It
does not matter what resources are consumed in which tasks and how the resource is
reset for each constraint (see Section 3.1.2). The only assumption is the maximum
time Tmax, which is a heuristic parameter whose value must be higher than the
maximum reset time of any hard cumulative constraint and lower than an acceptable
connection time between tasks. Because of the way tail assignment is modeled at
Jeppesen, such detailed information about rules is not available in the interface to
the rule model. Instead, Tmax is manually set to one day.

4.4.2 Task First with Hard Cumulative Constraints

The method TFM is a naive approach that uses the same algorithm as TFR but
in addition to the isLegal check, it also checks the hard cumulative constraints;
see Algorithm 9. This approach does not always create rosters that cover the whole
month, since the aircraft might be stuck at an airport where maintenance is not
possible to perform.

For the complexity analysis, the worst case occurs when all tasks are possible to
assign to the last roster that is tried. As previously stated, the worst case for the
check for cumulative constraints violation has a complexity of O(|C||F |). This is
tried at most |F ||A| times and the resulting time complexity is O(|C||A||F |2).

22

4. Heuristics to Create Initial Solutions

Algorithm 9: Tasks First Maintenance (TFM)
1 foreach f ∈ F do
2 shuffle(R)
3 foreach r ∈ R do
4 if isLegal(r, f , ar) ∧ isUncovered(f) then
5 if isCumulativeLegal(r, f, ar) then
6 append(r, f)
7 break
8 end
9 end

10 end
11 end

23

4. Heuristics to Create Initial Solutions

24

5
Tests and Results

The methods described in Chapter 4 have been implemented in C++ in Jeppesen’s
development environment. The testing has been done on a machine with Intel(R)
Xeon(R) CPU E5-2667 v2 @ 3.30GHz. It has two times eight cores but only 8 are
used per optimization run.

The different methods in Chapter 4 are evaluated on the test cases presented in
Table 5.1. These differ in size in several ways. Cases 3 and 4 have the shortest
planning period, of one week, while the others have a planning period of just over a
month. They also differ in number of aircraft. Case 8 includes seven aircraft while
case 5 includes 112 aircraft. Case 5 is also the largest in terms of number of tasks.

The first six cases have none or only soft cumulative constraints while cases 7 and
8 have hard cumulative constraints.

The test cases have other differing characteristics, not shown in the table. For
example, they have different rules, pre-assignments, and airports. They also have
different objective functions. Case 2 possesses only the unassigned task cost while
cases 3, 4, and 8 also have connection costs. The cases 1, 5, 6, and 7 have these
costs as well as penalties for violating soft cumulative constraints.

#aircraft #tasks #days UB LB
Case 1 15 2231 37 424 904 205
Case 2 46 7730 36 740 775 0
Case 3 71 3096 7 30 254 1 344
Case 4 17 727 7 70 822 1 656
Case 5 112 23825 32 2 372 428 64
Case 6 65 6191 36 121 636 51
Case 7 27 4388 34 16 407 766
Case 8 7 1151 39 138 885 4 801

Table 5.1: Test cases with some basic characteristics. The columns represent the
number of aircraft, the number of tasks, the length of the planning period, the upper
bound (UB) (the cost of the initial solution with only pre-assigned tasks) and a lower
bound (LB) (see description in the text).

The lower bounds (LB) presented in Table 5.1 are calculated using a network flow

25

5. Tests and Results

model according to [1, Section 4.6]. This lower bound considers neither aircraft
specific connection rules nor aircraft specific costs. If everything can be assigned
without these aircraft specific rules, the only cost in the lower bound will be the
connection cost since penalties for soft constraints (cumulative or global) cannot be
handled efficiently in the network flow model. For all the test cases in Table 5.1
except case 7, the lower bound solutions have all tasks assigned. Therefore, the
lower bound consists of the connection cost only. The quality of the lower bound
differs a lot between the test cases. For example, the lower bound for case 5 is much
lower than the optimal solution since the costs differ between aircraft and since no
penalties are included.

Our main focus has been on comparing the methods with each other but also with
the improvement method (IMP) developed by Jeppesen. IMP goes through the
planning period once, divided in time windows (as explained in Section 3.3). The
size of the time windows varies between test cases but is the same for a single case
when run with and without an initial solution.

Since all the methods described in Chapter 4 have some random components, each
method has been run 49 times each per test case in the evaluation. The greedy
methods Aircraft First Random (AFR), Aircraft First Sort (AFS), Task First Sort
(TFS), and Task First Random (TFR) are evaluated in Section 5.1 on test cases
1–6. The methods Task First Maintenance (TFM) and Aircraft First Maintenance
(AFM) are evaluated in Section 5.2 on test cases 7 and 8.

5.1 Results for Test Cases Without Hard Cumu-
lative Constraints

The percentages of assigned tasks resulting from the test runs are shown in table 5.2
for the different algorithms and test cases. Generally, the methods perform well,
as compared to the goal of generating solutions having at least 95% of the tasks
assigned. All the methods achieve this for all test cases except for case 3.

AFR AFS TFS TFR
med max med max med max med max

Case 1 99.5 99.7 99.7 99.7 99.5 99.7 99.5 99.7
Case 2 99.5 99.6 99.2 99.2 99.4 99.5 99.2 99.5
Case 3 89.5 93.2 90.0 93.4 89.3 92.7 89.5 92.6
Case 4 97.7 97.9 97.7 97.7 97.7 97.7 97.7 97.9
Case 5 99.4 99.4 99.4 99.4 99.1 99.1 99.4 99.7
Case 6 98.9 99.5 99.0 99.0 98.9 99.6 98.8 99.5

Table 5.2: The percentage of assigned tasks for different test cases and methods.
The best and median are presented. Underlined values are best in their category
(med/max) per case.

26

5. Tests and Results

The costs for the initial solutions generated by the different methods are presented
in Table 5.3. For different test cases, different methods are best. If we look at the
best found solutions (with minimum cost), the results show that TFR and AFR are
best on two cases each while TFS and AFS are best on one each. On the other
hand, AFS is best on four cases if we look at the median cost.

AFR AFS TFS TFR
med min med min med min med min

Case 1 3 418 2 339 2 349 2 300 2 668 2 064 2 626 1 998
Case 2 3 800 2 850 5 500 5 500 4 350 3 200 5 775 3 750
Case 3 4 825 3 716 4 619 3 666 4 837 3 813 4 755 3 806
Case 4 3 375 3 160 3 364 3 357 3 407 3 394 3 412 3 215
Case 5 3 061 3 046 3 060 3 046 3 132 2 939 2 943 2 269
Case 6 2 338 1 438 2 275 2 182 2 345 1 189 2 401 1 374

Table 5.3: The median and minimum costs of the solutions received for the different
test cases and algorithms

The average computation times are presented in Table 5.4. The time is separated
between the appending methods (AFR, AFS, TFR, and TFS) and FillGaps. To
form a complete solution both FillGaps and one of the appending methods have
to be run and the total running time is the sum of the corresponding computation
times. As can be seen, TFR is the fastest for all the cases, and for some cases TFS is
equally fast. The randomizing variants (AFR, TFR) are also generally faster since
shuffling is faster than sorting.

AFR AFS TFS TFR FillGaps
Case 1 0.50 0.64 0.30 0.30 0.22
Case 2 2.98 4.70 1.14 0.54 2.34
Case 3 0.82 1.36 0.16 0.10 0.64
Case 4 0.04 0.04 0.02 0.02 0.02
Case 5 14.36 20.18 16.28 2.68 10.22
Case 6 5.70 7.30 2.78 2.44 3.18

Table 5.4: The average computation time in CPU seconds for the different algo-
rithms and test cases.

To set the running times in perspective, test case 5 takes almost one hour for the
method IMP, while test case 4 only takes a few seconds. Over all the methods take
no more than 1–2% of the running time as compared to that of IMP.

The average running times increase with the number of tasks and aircraft. As
described in Section 4.3, the time complexity for AFR, AFS and TFR is O(|A||F |)
and for TFS it is O(|A||F | log |A|). Even though TFS has a slightly higher theoretical
complexity, in practice, it is still generally faster than AFR and AFS.

Since the running time increases with both number of aircraft and tasks, it is rea-
sonable that test case 5 has a lot longer running times than the other test cases.

27

5. Tests and Results

However, it is remarkable that TFR succeeds with that instance a lot faster than
the other methods do.

The running times should only give a hint of the performance of the methods since
there have been just a minimal effort to improve the running time by implementation
details. However, there are a couple of reasons why TFR and TFS are faster than
AFR and AFS. The main reason is that the loop over aircraft is exited whenever a
feasible assignment is found. AFS also calculates the number of restrictions, which
requires a call to the Rave model (explained in Section 3.1.2) for each task/aircraft
pair.

In Figure 5.1, the cost results are presented as bar charts. The costs are divided
into connection cost, cost of unassigned tasks and the penalty for violating cumu-
lative constraints. The labels indicates the cost components of each test case. The
connection cost varies very little between the methods but the cost of unassigned
tasks varies more.

The quality of the lower bound is not very good for test cases 1, 5, and 6, since all
other solutions have much higher connection cost than the lower bound.

For each case, the four first bars represent the cost components of the median so-
lution, as well as the 10th and 90th percentile (the black interval). The percentile
values show that there is sometimes a big variation of results even if the minimum
and median cost are similar, particularly the AFR and AFS for case 4 have a much
higher 90th percentile than both the median and 10th percentile.

In Figure 5.1, the results for the methods are compared with Jeppesen’s method
IMP, running IMP with initial solutions and the lower bound. The best found
initial solution by each method is used as input to IMP. As can be seen, the results
when using an initial solution is about the same or better as without an initial
solution.

Recall, from Table 5.2, that test case 3 has a lower percentage of assigned flights
than the other cases. Still, the method IMP is able to find a solution with about the
same cost as the LB when running IMP with the ’bad’ initial solutions (Figure 5.1,
Case 3).

The aircraft in test case 3 and 4 have almost all the same number of restrictions.
Therefore, the result is very similar for AFS and AFR for these cases.

5.2 Results for Cases With Hard Cumulative Con-
straints

The methods AFM and TFM (see Section 4.4) are evaluated on test cases 7 and 8
from Table 5.1.

28

5. Tests and Results

C
o

st

0

1000

2000

3000

4000

5000

6000

AFR AFS TFS TFR AFR

&

IMP

AFS

&

IMP

TFS

&

IMP

TFR

&

IMP

IMP LB

C
o

st
Case 1

Penalty

Unassigned

Connection

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

AFR AFS TFS TFR AFR

&

IMP

AFS

&

IMP

TFS

&

IMP

TFR

&

IMP

IMP LB

C
o

st

Case 2

Unassigned

Unassigned

0

1000

2000

3000

4000

5000

6000

AFR AFS TFS TFR AFR

&

IMP

AFS

&

IMP

TFS

&

IMP

TFR

&

IMP

IMP LB

C
o

st

Case 3

Unassigned

Connection

0

1000

2000

3000

4000

5000

6000

AFR AFS TFS TFR AFR

&

IMP

AFS

&

IMP

TFS

&

IMP

TFR

&

IMP

IMP LB

C
o

st

Case 4

Unassigned

Connection

0

500

1000

1500

2000

2500

3000

3500

4000

AFR AFS TFS TFR AFR

&

IMP

AFS

&

IMP

TFS

&

IMP

TFR

&

IMP

IMP LB

C
o

st

Case 5

Penalty

Unassigned

Connection

0

500

1000

1500

2000

2500

3000

3500

AFR AFS TFS TFR AFR

&

IMP

AFS

&

IMP

TFS

&

IMP

TFR

&

IMP

IMP LB

C
o

st

Case 6

Penalty

Unassigned

Connection

Figure 5.1: Bar plots of the result from the different greedy methods for six
test cases, the solution with the median total cost is shown with the different cost
components. The black interval represents the 10th and 90th percentiles, respectivly,
of the total cost. The cost is also compared with Jeppesen’s method IMP; see
description in the text.

The naive method TFM shows a huge variation in solution quality. This is shown
both in the percentages of assigned flights (Table 5.5) and the solution cost (Table
5.6).

Both TFM and AFM achieve the goal of assigned tasks for both test cases with
respect to the best solution. For test case 8, AFM achieve the goal also with the
median solution.

The running times are presented in Table 5.7. The results from the two methods

29

5. Tests and Results

TFM AFM
med best med best

Case 7 91.1 95.4 93.8 96.4
Case 8 58.4 97.9 98.3 98.8

Table 5.5: Percentage of assigned flights achieved for test cases 7 and 8. The values
for the median and best solutions are presented.

TFM AFM
med min med min

Case 7 2 170 1 496 1 764 1 335
Case 8 51 085 11 192 6 789 6 291

Table 5.6: Solution costs for test cases 7 and 8. The values for the median and
best solutions are presented.

are similar for case 7 but differs more for case 8. For both cases, TFM is faster than
AFM. However, TFM seems to take a lot longer to run for the same problem sizes
than TFR. Therefore, it must be the evaluation of the cumulative constraints that
accounts for most of the increase since this is the only difference between TFM and
TFR.

AFM TFM FillGaps
Case 7 12.80 11.18 0.40
Case 8 2.14 1.60 0.02

Table 5.7: The average computation time in CPU seconds for AFM and TFM for
test cases 7 and 8.

In Figure 5.2 both the median and best results are shown and compared with the
results achieved by the method IMP. The best solutions from AFM and TFM,
respectivly, are used as input to IMP when run with an initial solution. Even
though AFM finds a solution with lower cost than TFM for both test cases, it is
when the solution produced by TFM is used in initial solution that the lowest cost
after the optimization is achieved for case 8. However, the initial solutions from
both methods fails to improve the final solution objective. Note that test case 7 has
a penalty cost but it is too small to be visible in the figure.

Figure 5.2 shows that the 10th percentile for TFM is quite a bit higher than the
objective value of the best solution for both test cases. This indicates that good
solutions are rare and may not be found if the methods are only run a few times.

30

5. Tests and Results

0

500

1000

1500

2000

2500

3000

med min med min TFM

&

AFM

&

TFM AFM IMP IMP IMP LB

C
o

st

Case 7

Penalty

Unassigned

Connection

0

10000

20000

30000

40000

50000

60000

med min med min TFM

&

AFM

&

TFM AFM IMP IMP IMP LB

C
o

st

Case 8

Unassigned

Connection

Figure 5.2: Bar plot with the different methods for test cases 7 and 8, the black
interval represents the 10th and 90th percentiles, respectivly, of the total cost; see
description in the text.

31

5. Tests and Results

32

6
Discussion and Conclusion

This thesis presents some variations of fast heuristics to create initial solutions to the
tail assignment problem. These solutions can be used to warm start an improvement
method as well as to produce legal solutions fast for other use cases.

The developed methods consist of first applying the method called FillGaps that
assigns tasks between pre-assignments and then applying one of the appending meth-
ods Aircraft First Random (AFR), Aircraft First Sort (AFS), Task First Sort (TFS),
Task First Random (TFR), Task First Maintenance (TFM), and Aircraft First Main-
tenance (AFM). FillGaps and AFM use variants of heuristic version of Depth First
Search (DFS) and the other methods use greedy algorithms.

The methods are chosen with short running time as the main criteria. Since the
produced solutions are to be improved by an existing improvement method, there is
no need to develop an own improvement algorithm. If some more complex technique
than greedy algorithms and DFS was used, even more tasks could probably be
assigned but it would be to the detriment of running time. This thesis focused on
the fastest possible approaches.

The evaluation was performed on eight test cases, six without hard cumulative
constraints and two with cumulative constraints. The methods performed well with
respect to the percentage of tasks assigned. The goal was to assign 95% of the
tasks and this was achieved with some method for all except one test case. On
the other hand, the results of actually using the solutions as initial solutions to the
improvement method (IMP) showed that it is not always better to use an initial
solution. For the cases for which IMP produced a solution with all tasks assigned
without an initial solution, using an initial solution may even produce a worse final
solution. However, for the cases where IMP without initial solution did not assign
all of the tasks, the results of using an initial solution improved the final solution.
It should, however, be noted that more test cases are needed before this kind of
conclusions can be drawn with certainty.

The objective value was not improved for the cases with hard cumulative constraints.
Therefore, the methods for hard cumulative constraints need to be improved to be
useful. However, AFM reached the goal for percentage of tasks assigned both for
the minimum and median cost solution found for one test case and TFM reached
the goal for both test cases with the minimum cost solution. Since the methods

33

6. Discussion and Conclusion

achieve a high number of assigned tasks, it might be possible to tune Jeppesen’s
optimizer (using another improvement method than IMP) so that good results can
be obtained with these methods as well.

For the improvement method to benefit from an initial solution, it might not be
enough to have a high number of assigned tasks in the initial solution. Instead,
there seems to be some other criteria. From the results presented in this thesis it is
hard to draw any conclusions about why the final solution is not always improved by
using an initial solution. But since the planning period is divided into time windows,
it is possible that there is no way to cover all tasks in the interval with the fixed
start and end positions that comes from the initial solution, while it may be possible
to cover all tasks if the end position is not fixed. Therefore, it might be necessary
to consider some other criteria while constructing the initial solutions.

The method IMP is just one out of many ways to run Jeppesen’s optimizer. For
example, IMP sweeps through the planning period only once, while it is more com-
mon to do several sweeps through the planning period. There might also be other
configurations for the column generation part of the optimizer that can make better
use of the initial solutions.

The solutions generated by the methods proposed in this thesis could also be used
as initial solutions to other methods. For example, stochastic methods like Simu-
lated Annealing and Particle Swarm Optimization, which Jamili et al. [9] use for
other airline optimization problems, can benefit from the solutions produced by the
methods proposed in this thesis. The solutions can also be used when designing the
rules for a new airline customer to quickly get an idea of how the different rules and
costs influence the solution.

Our methods are very fast, all of them are run in less than half a minute even for an
instance with 112 aircraft. This indicates that it is possible to use our methods also
for even larger instances. It also opens up for the possibility to run several different
methods and to run each method several times.

Our results show that the orders of tasks and aircraft are important, and to get the
best out of these methods, they should be run multiple times with different orderings.
A possible improvement in the future is to find a sorting/ordering principle that
works well for all cases or at least for a well defined set of problem instances. Some
sorting schemes were not included in this thesis, since the preliminary results showed
that they did not work very well. For methods based on the task-first principle, this
includes sorting on arrival time, using the reverse order every second iteration, and
choosing the task with the lowest connection cost.

The methods also need more testing in order to determine which method that per-
forms best for which type of cases. There is also a need to test if there is a significant
difference in the quality of the final solution of using the best or worst solution found
by a method. Since the objective value of the final solution did not seem to corre-
late with the objective value of the initial solution, it might be the case that it is
unnecessary to run the initial methods multiple times if the improvement method

34

6. Discussion and Conclusion

ends up in a good solution also with a ”bad” initial solution.

Even though our evaluation has been focused on comparing the different append-
ing algorithms, one should not forget the important part played by the method
FillGaps. This method takes care of the pre-assigned tasks that the time window
heuristic sometimes can have difficulties with.

The final conclusion is that the methods developed in this thesis create solutions
with many assigned tasks fast, but more testing and analysis is needed to know how
and when these initial solutions should be used.

35

6. Discussion and Conclusion

36

Bibliography

[1] M. Grönkvist, “The Tail Assignment Problem”, PhD thesis, Chalmers Univer-
sity of Technology, 2005.

[2] P. Belobaba, A. R. Odoni, and C. Barnhart, The Global Airline Industry,
English, Second edition. Chichester, West Sussex, UK: John Wiley & Sons,
2015.

[3] S. Gabteni and M. Grönkvist, “Combining column generation and constraint
programming to solve the tail assignment problem”, Annals of Operations
Research, vol. 171, no. 1, pp. 61–76, 2009. doi: 10.1007/s10479-008-0379-
1.

[4] O. Khaled, M. Minoux, V. Mousseau, S. Michel, and X. Ceugniet, “A compact
optimization model for the tail assignment problem”, European Journal of
Operational Research, vol. 264, no. 2, pp. 548–557, 2018. doi: 10.1016/j.
ejor.2017.06.045.

[5] A. Sarac, R. Batta, and C. M. Rump, “A branch-and-price approach for op-
erational aircraft maintenance routing”, European Journal of Operational Re-
search, vol. 175, no. 3, pp. 1850–1869, 2006. doi: 10.1016/j.ejor.2004.10.
033.

[6] N. Safaei and A. K. Jardine, “Aircraft routing with generalized maintenance
constraints”, Omega, 2017. doi: 10.1016/J.OMEGA.2017.08.013.

[7] A. Kasirzadeh, M. Saddoune, and F. Soumis, “Airline crew scheduling: models,
algorithms, and data sets”, EURO Journal on Transportation and Logistics,
vol. 6, no. 2, pp. 111–137, 2017. doi: 10.1007/s13676-015-0080-x.

[8] S. Ruther, N. Boland, F. G. Engineer, and I. Evans, “Integrated Aircraft Rout-
ing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing
Problems”, Transportation Science, vol. 51, no. 1, pp. 177–195, 2017. doi:
10.1287/trsc.2015.0664.

[9] A. Jamili, “A robust mathematical model and heuristic algorithms for inte-
grated aircraft routing and scheduling, with consideration of fleet assignment
problem”, Journal of Air Transport Management, vol. 58, pp. 21–30, 2017.
doi: 10.1016/J.JAIRTRAMAN.2016.08.008.

37

https://doi.org/10.1007/s10479-008-0379-1
https://doi.org/10.1007/s10479-008-0379-1
https://doi.org/10.1016/j.ejor.2017.06.045
https://doi.org/10.1016/j.ejor.2017.06.045
https://doi.org/10.1016/j.ejor.2004.10.033
https://doi.org/10.1016/j.ejor.2004.10.033
https://doi.org/10.1016/J.OMEGA.2017.08.013
https://doi.org/10.1007/s13676-015-0080-x
https://doi.org/10.1287/trsc.2015.0664
https://doi.org/10.1016/J.JAIRTRAMAN.2016.08.008

Bibliography

[10] G.-F. Deng and W.-T. Lin, “Ant colony optimization-based algorithm for air-
line crew scheduling problem”, Expert Systems with Applications, vol. 38, no. 5,
pp. 5787–5793, 2011. doi: 10.1016/J.ESWA.2010.10.053.

[11] M. M. Wahde, Biologically inspired optimization methods : an introduction.
WIT Press, 2008, p. 218.

[12] Y.-C. Lai, D.-C. Fan, and K.-L. Huang, “Optimizing rolling stock assignment
and maintenance plan for passenger railway operations”, Computers & Indus-
trial Engineering, vol. 85, pp. 284–295, 2015.

[13] Z. A. Juman and M. A. Hoque, “An efficient heuristic to obtain a better ini-
tial feasible solution to the transportation problem”, Applied Soft Computing
Journal, vol. 34, pp. 813–826, 2015. doi: 10.1016/j.asoc.2015.05.009.

[14] J. Joubert and S. Claasen, “A sequential insertion heuristic for the initial
solution to a constrained vehicle routing problem”, ORiON: The Journal of
ORSSA, vol. 22, no. 1, pp. 105–116, 2006. doi: 10.5784/22-1-36.

[15] P. C. Guedes and D. Borenstein, “Column generation based heuristic frame-
work for the multiple-depot vehicle type scheduling problem”, Computers and
Industrial Engineering, vol. 90, pp. 361–370, 2015. doi: 10.1016/j.cie.
2015.10.004.

[16] W. Dai, X. Sun, and S. Wandelt, “Finding feasible solutions for multi-com-
modity flow problems”, in Chinese Control Conference, CCC, vol. 2016-Augus,
IEEE, 2016, pp. 2878–2883. doi: 10.1109/ChiCC.2016.7553801.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, United King-
dom: Cambridge University Press, 2004.

[18] T. C. Hu and A. B. Kahng, “Introduction to the Simplex Method”, in Linear
and Integer Programming Made Easy, Cham: Springer International Publish-
ing, 2016, pp. 39–60. doi: 10.1007/978-3-319-24001-5_4.

[19] D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time”, J. ACM, vol. 51, no. 3,
pp. 385–463, 2004. doi: 10.1145/990308.990310.

[20] R. Vershynin, “Beyond Hirsch conjecture: Walks on random polytopes and
smoothed complexity of the simplex method”, English, SIAM Journal on Com-
puting, vol. 39, no. 2, pp. 646–678, 2009.

[21] J. Matoušek and B. Gärtner, “Not only the simplex method”, in Understand-
ing and Using Linear Programming, Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2007, pp. 105–130. doi: 10.1007/978-3-540-30717-4_7.

[22] ——, “Integer programming and LP relaxation”, in Understanding and Using
Linear Programming, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 29–40. doi: 10.1007/978-3-540-30717-4.

[23] G. Nemhauser and L. Wolsey, “Integer programming”, in Handbooks in Op-
erations Research and Management Science: Optimization, G. Nemhauser, A.
Rinnooy Kan, and M. Todd, Eds. Amsterdam, The Netherlands: Elsevier Sci-
ence Publishers, 1989.

38

https://doi.org/10.1016/J.ESWA.2010.10.053
https://doi.org/10.1016/j.asoc.2015.05.009
https://doi.org/10.5784/22-1-36
https://doi.org/10.1016/j.cie.2015.10.004
https://doi.org/10.1016/j.cie.2015.10.004
https://doi.org/10.1109/ChiCC.2016.7553801
https://doi.org/10.1007/978-3-319-24001-5_4
https://doi.org/10.1145/990308.990310
https://doi.org/10.1007/978-3-540-30717-4_7
https://doi.org/10.1007/978-3-540-30717-4

Bibliography

[24] J. Desrosiers and M. E. Lübbecke, “A primer in column generation”, in Column
Generation, G. Desaulniers, J. Desrosiers, and M. M. Solomon, Eds. Boston,
MA: Springer US, 2005, pp. 1–32. doi: 10.1007/0-387-25486-2_1.

[25] S. Irnich and G. Desaulniers, “Shortest path problems with resource con-
straints”, in Column Generation, G. Desaulniers, J. Desrosiers, and M. M.
Solomon, Eds. Boston, MA: Springer US, 2005, pp. 33–65. doi: 10.1007/0-
387-25486-2_2.

[26] M. E. Lübbecke and J. Desrosiers, “Selected topics in column generation”,
Operations Research, vol. 53, no. 6, pp. 1007–1023, 2005. doi: 10 . 2307 /
25146936.

[27] “Artificial variables”, in Encyclopedia of Operations Research and Management
Science, S. I. Gass and M. C. Fu, Eds., Boston, MA: Springer US, 2013, pp. 83–
83. doi: 10.1007/978-1-4419-1153-7_200964.

[28] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance, “Branch-and-price: Column generation for solving huge integer
programs”, Operations Research, vol. 46, no. 3, pp. 316–329, 1998. doi: 10.
1287/opre.46.3.316.

[29] “Greedy algorithm”, in Encyclopedia of Operations Research and Management
Science, S. I. Gass and M. C. Fu, Eds., Boston, MA: Springer US, 2013,
pp. 666–667. doi: 10.1007/978-1-4419-1153-7_200276.

[30] G. Brassard and P. Bratley, “Greedy algorithms”, in Fundamentals of algo-
rithmics. Englewood Cliffs: Prentice Hall, 1996, vol. 33.

[31] E. Andersson, A. Forsman, S. E. Karisch, N. Kohl, and A Sørensson, “Problem
solving in airline operations”, Carmen Research and Technology Report CRTR-
0404, Carmen Systems AB, Gothenburg, Sweden, 2004.

[32] M. Grönkvist, “Accelerating column generation for aircraft scheduling using
constraint propagation”, Computers & Operations Research, vol. 33, no. 10,
pp. 2918–2934, 2006. doi: 10.1016/J.COR.2005.01.017.

[33] J. Kleinberg and E. Tardos, Algorithm Design, English, Pearson New Interna-
tional Edition. Harlow, United Kingdom: Pearson Education M.U.A, 2013.

39

https://doi.org/10.1007/0-387-25486-2_1
https://doi.org/10.1007/0-387-25486-2_2
https://doi.org/10.1007/0-387-25486-2_2
https://doi.org/10.2307/25146936
https://doi.org/10.2307/25146936
https://doi.org/10.1007/978-1-4419-1153-7_200964
https://doi.org/10.1287/opre.46.3.316
https://doi.org/10.1287/opre.46.3.316
https://doi.org/10.1007/978-1-4419-1153-7_200276
https://doi.org/10.1016/J.COR.2005.01.017

Bibliography

40

	Introduction
	Aim and Limitations
	Literature Review
	Thesis Outline

	Theory
	Integer Linear Programs
	Column Generation
	Greedy Algorithms

	Tail Assignment
	Problem Description
	Tasks and Notation
	Constraints and Maintenance
	Objective

	Optimization Models
	Solving Tail Assignment Using Time Windows

	Heuristics to Create Initial Solutions
	Legal Connections
	Fill Gaps Between Pre-assigned Tasks
	Greedy methods
	Aircraft First
	Tasks First

	Methods for Hard Cumulative Constraints
	Aircraft First with Hard Cumulative Constraints
	Task First with Hard Cumulative Constraints

	Tests and Results
	Results for Test Cases Without Hard Cumulative Constraints
	Results for Cases With Hard Cumulative Constraints

	Discussion and Conclusion
	Bibliography

