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Coupling Algorithms for Fluid Structure Interaction at Low Density Ratios
Accuracy and Stability Analysis of Weak Coupling Algorithms in Partioned Codes
Martin Ottosson

Department of Mechanics and Maritime Science

Chalmers University of Technology

Abstract

In recent years the interest of numerical predictions of fluid-structure interaction has
grown in industrial applications as well as in the research of the phenomenon due to
the increase in computational power. Numerical predictions of fluid-structure inter-
action typically suffers from instability when the solid-to-fluid density ratio becomes
small. The instability issues are most severe when weak coupling, without coupling
iterations within each time step, methods are used. Further, the weak coupling
introduces the so-called artificial added mass effect, that introduces an error in the
coupling.

At Fraunhofer-Chalmers Centre a state-of-the-art multiphase solver, IBOFlow, and
a structural solver, LaStFEM, are developed. IBOFlow handles moving boundaries
using the mirroring immersed boundary method with adaptive grid refinements.
The incompressible Navier-Stokes equations together with the boundary conditions
at the structural interface are solved on a KEulerian grid using the finite volume
method. LaStFEM solves the structural equations together with the forces acting
on the structural interface on a Lagrangian grid using the finite element method.
In previous work, a strong coupling, with coupling iterations within each time step,
and a simple weak coupling procedure has been implemented and validated.

In this thesis different weak coupling procedures are implemented, compared and
analyzed in the existing frame work. The accuracy and stability of the weak coupling
algorithms are investigated and compared to the existing strong coupling procedure.
The investigation is done by the usage of three benchmarking cases: A rigid sphere
attached to an undamped spring in Stokes flow, a rigid cylinder attached to a damped
spring in a laminar flow and an elastic beam attached to a rigid cylinder in a laminar
flow. The temporal and spatial accuracy are both found to be of second-order. The
lowest solid-to-fluid density ratio where a stable solution was achived using a weak
coupling algorithm is well below one and much smaller than what has been found
in the literature.

Keywords: Fluid structure interaction, FSI Benchmark, Weak coupling method,
Partitioned approach, Low density ratio, Immersed boundary method.
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1

Introduction

This chapter will introduce the studied subject and give some motivations why it is
of interest to study this phenomenon using computational tools.

1.1 Background

Fraunhofer-Chalmers Research Centre (FCC) develops computational tools for solv-
ing demanding industrial problems. At the department of Computational Engineer-
ing and Design a multiphase flow solver, IBOFlow [1], and a structural solver, LaSt-
FEM, have been developed. IBOFlow efficiently handles moving boundaries using
the mirroring immersed boundary method with adaptive grid refinements.

1.1.1 Fluid Structure Interaction

Fluid Structure Interaction (FSI) is a phenomenon which occurs in all systems where
both a fluid and one, or multiple, structures are present. In many cases the struc-
tural deformation does not affect the overall system that is being studied and can
therefore be neglected. In other cases it may be the driving mechanism and is there-
fore of great interest to study.

For most FSI problems an analytic solution to the governing equations cannot be de-
rived due to the multidisciplinary and nonlinear nature of the phenomenon. Hence,
the investigation of the phenomenon is limited to either laboratory experiments or
numerical simulations. Accurate numerical simulations are in many cases superior
to laboratory experiments in terms of understanding, optimization and economy. If
the phenomenon is to be understood in detail the only option is numerical simulation
since laboratory experiments always are limited in terms of what details that can
be studied. The use of numerical simulations enables a greater possibility for opti-
mization of both processes and products. Efficient numerical algorithms decreases
the need for physical testing which reduces both costs and time for development.

With increasing computational capability it has in recent years become possible
to solve complex and nonlinear mathematical problems to improve processes, im-
prove functionality of products and understand different phenomena. Computation
of systems which include F'SI have become the subject of interest for a wide range of
applications such as aircrafts [2, 3], wind turbines[4, 5], tall buildings [6], bridges[7],
sloshing tanks [8] and various biomechanical applications [9] (Blod flow through the

1



1. Introduction

compliant arteries [10], human vocal folds [11], flying [12] and swimming [13]) .

FCC has previously implemented and validated a framework for FSI where the flow
solver, IBOFlow, and the structural solver, LaStFEM, have been coupled [14, 15].

1.1.2 Hemming

Hemming is a frequently used joining procedure in todays industry. Traditionally,
welding has been the given joining method in industry. But as the demand on
lighter weight grows, alternative methods must be used. Hemming enables the
joining of different materials, which is needed in order to reach the demand on
lighter weight. Currently the design of the hemming process is cumbersome since
the process parameters are based on empirical formulas, experience and trial and
error during laboratory experiments. Hence it is desirable to make more accurate
predictions of the process parameters using computational tools. During hemming,
an adhesive is squeezed between deformable parts, which creates both thin channels
and multiple cavities. The process creates large fluid forces and the final deformation
of the structure is highly dependant on the adhesive, meaning that the fluid and the
structure is heavily coupled. At FCC the process has previously been studied using
numerical simulations in cooperation with industrial manufacturing companies. One
way coupled simulations, where the fluid forces acting on the structure interface is
neglected, has successfully been performed. But due to the strong coupling, the
two-way coupled simulations have become unstable. It is therefore of interest to
implement and investigate the stability of different coupling algorithms.

1.2 Aim

The aim of this thesis is to review previous work within the area of fluid struc-
ture interaction and implement and analyze the stability and accuracy of different
coupling methods.

1.3 Structure of Report

Following this introduction some basic theory is given in the next section. In the
Methodology the methodology of both IBOFlow and LaStFEM is given and followed
by the used coupling methods. The chapter is finished with a short description of
the criterion when choosing suitable benchmarking cases and the approach for the
stability analysis. The results are presented and discussed in chapter 4. Finally the
thesis is concluded and recommended future work is discussed.



2

Theory

In the following chapter the theory used in this thesis is described.

2.1 Fluid Dynamics

In this section, a brief introduction to the basics of fluid dynamics and the numerical
approaches used in this project is given.

2.1.1 Governing Equations

When studying a fluid, which can be observed as a continuum, the motion is gov-
erned by conservation equations. The governing equations are conservation of mass,
conservation of momentum and conservation of energy. For a flow that can be con-
sidered as incompressible, meaning that the density remain constant, the equation
of conservation of mass and conservation of momentum becomes decoupled from the
conservation of energy.

For an incombressible flow the equation for conservation of mass is given by

(9ui
0@-

~0 (2.1)

and the equation for conservation of momentum is given by

Pot "%, T o, 0w, Y

(2.2)

For a Newtonian fluid, the stress tensor, 7;;, becomes

8ui 3uj

2.1.2 Handling of Arbitrary Boundaries

In fluid dynamics there exists two major approaches when dealing with arbitrary
boundaries. The most common one is the conforming mesh method. Using this
approach yields a more straightforward method regarding implementation of the
boundary conditions. The drawback is that a new spatial discretization needs to
be constructed each time a boundary moves or deforms which is computationally
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expensive [16]. It exists several methods to decrease the computational cost when
generating a new spatial discretization. But a common problem for all of them is
that at big boundary movements, badly shaped cells are created which can under-
mine both the accuracy and stability of the solution. Even if an efficient and stable
algorithm would be developed for handling the deformation of the spatial discretiza-
tion there would still exist problems for colliding boundaries.

The other approach is so called non-conforming mesh methods. Using this approach
is not as computationally expensive as a conforming mesh method regarding mesh
generation, since there is no need for remeshing. Since there is no need for remeshing
the method is more efficient and stable for a wide variety of problems. The drawback
is that setting the boundary conditions is not as straight forward as for the conform-
ing mesh methods. There exist several methods to enforce the boundary conditions
at the correct position. Figure 2.1 shows an example of a problem discretized using
either a conforming mesh method or non-conforming mesh method.
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(a) Conforming mesh. (b) Non-conforming mesh.

Figure 2.1: FExample of a conforming mesh and a non-conforming mesh.

The most common approach for non-conforming mesh methods are immersed bound-
ary methods, in which a regular Eulerian grid is used for the fluid flow and a La-
grangian grid to represent the boundary. Immersed boundary methods can be di-
vided into distributive methods and non-distributive methods. The distributive
methods employ an external Lagrangian force in the presence of a boundary which
is distributed onto the Fulerian grid over several cells. Since the representation of a
boundary is distributed over several cells the interface of the boundary gets smeared.
Hence, the non-distrubutive methods were developed where the boundary condition
is enforced either via an external force. Derived from the momentum equation which
ensures that the velocity at the location of the interface is the same for the fluid as
for the immersed boundary or via an implicitly formulated boundary condition.
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2. Theory

Originally the distributive Immersed Boundary Method were proposed by Peskin
[17] where it was used to simulate the flow in a heart valve. The method used a dis-
crete delta function to distribute the Lagrangian force onto the Eulerian grid in the
presence of an immersed boundary. Since the Lagrangian force is distributed over
several cells on the Eulerian grid, a large number of computational cells near the
boundaries where needed in order to get a somewhat accurate representation of the
interface. The proposed method was first-order accurate. Later Lai and Peskin [18]
proposed an improved version of the method where the numerical diffusion was re-
duced and therefore performed better at higher Reynolds numbers. The distributive
Immersed Boundary Method has since it where originally proposed been developed
in several fashions to fit different problems. What is common for all of them is that
the interface of the boundary is smeared out.

In order to remedy this problem, Mohd-Yousof [19] proposed a non-distributive
approach where a force was introduced into the momentum equations in the pres-
ence of a immersed boundary. This approach ensures a correct boundary condition
exactly at the location of the interface. The approach has further been investigated
in [20], [21] and [22]. But since the method creates a fictitious reversed velocity field
inside the immersed body instabilities issues was encountered since fluxes over the
interface exists and the continuity equation cannot be fulfilled. Kim [23][24] intro-
duced a new term into the continuity equation in order to ensure that continuity
was fulfilled. The method has been validated and good agreement with previous
results where obtained. The momentum forcing method, developed in [19], where
extended to a boundary condition on the velocity by Majumdar and co-workers in
[25]. Tseng and co-workers [26] developed a ghost-cell immersed boundary method
which extrapolates the velocity on a point inside the IB in order to constrain the
velocity at the immersed boundary. Both of these methods showed promising results
but a nonphysical massflux over the interface is generated which causes oscillations
in the solution.

Mark [16] developed an non-distributive immersed boundary method which exactly
fulfills the velocity boundary condition at the interface of the immersed body and
do not sacrifice mass continuity. The method is called The Mirroring Immersed
Boundary Method. The method creates a fictitious velocity field inside the immersed
boundary. The boundary condition may be written as

Wiy + Ue

2

where u;, is the velocity at a point on the immersed boundary, u. is a velocity
outside of the immersed body in a point normal to the surface of the point on the
immersed boundary and u;;, is the velocity inside of the immersed body in a point
normal to the surface of the point on the immersed boundary. The velocities inside
the immersed body, in the fictitious velocity field, is excluded when discretizing the
mass conservation equation and the pressure correction equation and hence it is

= Uyp (24)
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ensured that there is no mass fluxes over the immersed boundary. The method has
been validated in [27, 28].

2.2 Structural Dynamics

The motion of a rigid body is governed by Newton’s second law and Euler’s rotation
equations. If the rigid body is prohibited from rotating the governing equation of
motion reads

Xsms = > F, (2.5)

where X, is the acceleration of the rigid body, m, is the mass of the rigid body and
F; is the forces acting on the rigid body.

A deformable body is modeled as an elastic continuum and the motion and deforma-
tion is governed by balance of linear momentum. The balance of linear momentum
in a continuum point is given by

V.o+ Ps8 — ps}“(s =0, (26>

where V- is the divergence operator, ¢ is the Cauchy stress, p, is the density of the
object, g is the gravity force and X, is the acceleration of the contiuum point.

2.3 Fluid Structure Interaction

Fluid Structure Interaction (FSI) problems can be solved using two different nu-
merical approaches. One can either use a monolithic approach or a partitioned
approach. With a monolithic approach the fluid and the structure are treated in
the same mathematical framework. This forms a single system of equations, and
therefore a single matrix, which can be solved in a single unified algorithm. In a
partitioned approach the two fields are treated separately and has their own math-
ematical and numerical framework. The two fields communicate explicitly or semi
implicitly.

A monolithic approach can potentially achieve a higher accuracy and better sta-
bility but since everything is done in a unified algorithm the code requires a great
deal of expertise and resources. Using an monolithic approach forms a single matrix
which contains all the unknown variables. Even for quite simple problems this ma-
trix becomes very large and the off-diagonal terms, also called coupling terms, will
vary in size. Due to the multidisciplinary nature of fluid structure problems, differ-
ent solving algorithms are suited for the different part of the matrix. This causes
a problem when developing an efficient solving algorithm for the system. Since all
of the unknowns are treated in the same matrix the possibility of an ill-conditioned
system also increases.

Using a partitioned approach requires less development since separate fluid and
structural codes can be employed and the challenge instead becomes to develop a

6
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suitable algorithm for how the information should be communicated between the two
codes. Since existing approaches within each field can be used in a partitioned ap-
proach, state-of-the-art codes, modeling and numerical algorithms within each field
can be used. Meaning that a successfully implemented partitioned FSI approach has
greater potential when it comes to using sophisticated fluid and structure physics.
The drawback of using a partitioned approach is to develop an efficient method for
exchanging information between the two computational fields.[29]

2.3.1 Partitioned Approaches

When using a partitioned approach the idea is that the separate solvers for the fluid
field and the structural movement is treated as "black-boxes". These approaches can
be divided into two different classifications, strong coupling methods and weak cou-
pling methods. Strong coupling methods are algorithms where equilibrium at each
time step is ensured through coupling iterations, with or without under-relaxation.
In contrast to strong coupling methods, in weak coupling methods the fluid field and
the structural movement/deformation is only solved once in each time step. This
greatly decreases the computational power needed when solving a problem. But
since equilibrium is not enforced at each time step, weak coupling methods suffers
from from a miss match in time and space and increased instability[30].

2.3.2 Literature Review

In the following section a selection of interesting work made within the area of FSI
has been reviewed.

He and co-workers [31] developed a non-linear structural solver to couple with an
existing flow solver based on a non-distributive immersed boundary method. Both
a strong coupling and a weak coupling method were implemented and validated
against an existing numerical benchmark case. The implemented procedures showed
good agreement with previous results for both the strong and the weak coupling
method. But as the solid-to-fluid density ratio decreased the weak coupling became
unstable while the strong coupling procedure still gave a stable solution with good
agreement compared to other studies. The weak coupling was performed by letting
the fluid domain advance from time ¢ to t + At assuming that the interface is as
calculated at time t. This was followed by calculating the forces acting on the struc-
ture from the fluid and solving the structural deformation/movement, which ends
one time step. The strong coupling method were performed using Gauss-Seidel itera-
tions between the flow solver and the structural solver without any under-relaxation
of the structural displacement. The iterations were performed until the interface
location did not change more than a specified criteria between the iterations.

In [32] Huang and Sung developed a distributive immersed boundary method which

was coupled with a structural solver. They implemented a weak coupling method
where the interface of the immersed boundary at the next time-step was estimated

7
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as
X" =x""1 4+ Atx" ! (2.7)

where X" is the predicted position of the interface at time step n, x" ! is the position
and x" ! is the velocity of the interface at time step n — 1 and At is the size of the
time step. The method was validated against various biological cases and showed
good agreement with previous studies. The temporal and spatial convergence rate
was showed to be between first order and second order. The stability of the method
was not investigated.

In order to increase the stability when using computationally efficient weak cou-
pling methods Kim and Choi [33] proposed a new interface predictor method with
a free parameter. The interface were predicted according to

X" = X" 4 A (G 4+ (1- %72

% = X" A

(2.8)

The proposed weak coupling method was compared with a strong coupling based
on Gauss-Seidel iterations together with Aitken under-relaxation of the interface
motion. Both coupling methods showed good agreement with previous results and
second-order spatial accuracy. Stable solutions for both methods were obtained for
solid-to-fluid density ratios well below one. The weak coupling method became most
stable when the free parameter were set to & = 3/4. The weak coupling method
needed 4-7 times less computational time compared to the strong coupling method.

In [34] Dettmer and Peric proposed a new weak coupling method where the forces
excerted on the structure by the fluid is predicted and underrelaxed over time in-
stead of a prediction of the interface position, which is the most common approach.
The proposed method can be divided into four parts

1. Predict fluid forces on the structure as

F" = 2F"~ ! — F2 (2.9)

where F"~! and F"~2 are the fluid forces from the previous time step.
2. Load structure with the predicted fluid force F™ and solve structural deforma-
tion/motion.

Solve fluid flow.
4. Average the fluid force as

w

F" = GF" + (1 — B)F™ (2.10)

where F is the actual force exerted by the fluid on the structure.
The proposed method showed good agreement with previous studies and by lower-
ing (3 stability could be achieved. Setting § to a small value decreased the methods
capability of capturing high frequencies. For some cases = 0.005 was needed in
order to achive stable solutions. It was concluded that the proposed method had
the same range of applicability as a Gauss-Seidel method for the studied problems,
but at a much lower computational cost.

8
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Forster and co-workers [30] investigated the so-called artificial added mass effect
which often is responsible for instability issues when conducting numerical simula-
tion of fluid structure interaction in a incompressible flow using interface predictors.
It was concluded that a decreasing solid-to-fluid density ratio increased the instabil-
ity issues. Higher order schemes for both temporal discretization of the fluid domain
and interface predictors, decreasing time step, increasing fluid viscosity and decreas-
ing structural stiffness also had a negative effect on the stability. Three different
interface predictors were studied. The zeroth order accurate is given by

X" =x%x""1 (2.11)
the first order is given by
X" =x""1 4+ At (2.12)
and
an n—1 3 . n—1 1 e n—2
X" =x"""4+ At X — o : (2.13)

is a second order accurate interface predictor. It was concluded that all weak cou-
pling methods become unstable at a certain density ratio. Hence, for problems which
suffers from major instabilities a strong coupling need to be used in order to enforce
stability. Even though the artificial added mass effect is most pronounced when
using a weak coupling, strong coupling methods also suffer from instabilities due to
this effect and a large number of iterations between the solvers may be needed to
achieve stable solutions.
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3

Methodology

In the following chapter the methods used in this thesis are explained.

3.1 Fluid Solver: IBOFlow

The fluid solver used in this project is an Immersed Boundary Octree multiphase
Flow solver, IBOFlow, and is developed at Fraunhofer-Chalmers Centre. IBOFlow
solves the governing equations on a co-located dynamic octree grid. In order to
obtain the correct pressure the SIMPLEC [35] method is employed. To prevent de-
coupling of the pressure and velocity field, pressure weighted flux interpolation by
Rhie and Chow [36] is used. Immersed objects are accounted for by using the mirror-
ing immersed boundary method. IBOFlow has been previously used to study conju-
gated heat transfer [37] together with geometry optimization [38, 39]. In automotive
industry the solver have been successfully used to efficiently simulate robot applica-
tion of sealing material [40, 41], adhesives [42] and painting [43, 44, 45, 46, 47, 48|.
A new emerging and interesting field is 3D bioprinting, where the solver has been
used to predict the printability of nanofibrillar inks [49].

3.1.1 The Mirroring Immersed Boundary Method

The mirroring immersed boundary method is developed and validated in [28] by
Mark and co-workers and creates a fictitious velocity field inside the immersed body
in order to constrain the velocity to an exact value at the exact position of the
immersed boundary. To ensure that no fluxes exists over the immersed boundary
the fictitious velocity field is excluded from the continuity equation.

The method firstly determines if the cell centers lies outside the immersed bound-
ary, inside and near the immersed boundary (IIB node) or far inside the immersed
boundary. The IIB node is mirrored over the immersed boundary to create a ficti-
tious point in the flow field. The velocity at the fictitious point in the flow field is
determined as

Bin Tl (3.1)

2

where u;, is the velocity at a point on the immersed boundary, u, is a velocity
outside of the immersed body in the fictious exterior point and ug; is the fictitious
velocity in the IIB node. This is done for every IIB point. To determine the velocity
in the actual nodes outside, but near the immersed boundary trilinear interpolation
is used.
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3.1.2 Calculation of the Surface Forces

IBOFlow is given the shape and position of the solid from LaStFEM each time the
shape or position is updated. In IBOFlow geometries are represented as triangulated
surfaces. Hence, LaStFEM creates a triangulation of surface and transfers it to
IBOFlow. The total force, F; is given by the surface integral of the stress tensor
over the immersed boundary (IB) as

8ui 8Uj
Fi= /IB (—p&j — iy (8% + a%)) n;ds. (3.2)

The stress tensor,

(3.3)

6ui 8Uj
7= i g T )
i 7

is calculated in the center of each triangle. This is done by trilinear interpolation
from all surrounding exterior points. Interior points are excluded from the interpo-
lation. The stress tensor, o, is then integrated in each triangle and summation of
the forces in all triangles yields the total surface force.

3.1.3 Convective and Time Schemes

The choice of convective scheme is important in terms of stability and accuracy. A
lower order scheme usually yields better stability but also causes numerical diffusion.
The convective scheme is used to discretize the convective terms (0/0x;) in the gov-
erning equations. For all studied cases in this thesis the ULTIMATE QUICKEST
scheme developed in [50] hase been used.

For temporal discretization the implicit Euler scheme has been used.

3.2 Structural Solver: LaStFEM

3.2.1 Time scheme

The temporal discretization of the governing equation for a solid object is done with
Newmark’s time stepping scheme developed in [51]. The method reads

X7 = %07 AL (1= 7))+ K]

S

v€[0,1] and p€][0,1/2].

1
X = X7 AT AR ((1—2p)%7" +28%7) (3.4)

In structural dynamics it is often of interest to solve for the static deformation of an
object. Meaning that the acceleration becomes zero. In these cases it is unpractical
to solve for acceleration and therefore the governing equations are reformulated so
that instead of primarily solving for acceleration, displacement is primarily solved

12
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for. Hence, Newmark’s time stepping scheme is rewritten as

xgzﬁlt@g—g}Q+<1—g>ﬁ}tﬂu<1—%9xg1
X! = 5it2 ((xr=x071) = AtI = AP(0.5 - B)x1 1)

(3.5)

The same choice of v and 8 has been used through out the thesis and were chosen
as

=05
; = 0.25 (3.6)

known as the constant average acceleration method.

3.2.2 Elasticity model

The elasticity model used for deformable objects has been the St. Venant-Kirchoff
hyperelastic material model. The model accounts for large deformations and the
second Piola-Kirchoff stress is given by [52]

S = \tr(E))] +2ukE (3.7)

where A and p are the Lamé constants, E is the Lagrangian Green strain and [ is
the second-order unit tensor. The relation between the Cauchy stress, o, and the
second Piola-Kirchoff stress, S, is given by

oc=J'F-S . F" (3.8)

where F' is the deformation gradient and J = det F'. The Green strain, E, can be
expressed as

E = ;(FT CF—1) (3.9)

3.3 Coupling Methods

In the following section the coupling methods used and investigated in this project
are presented. A method used when coupling two separate solvers, which each solves
a specific type of problem, is called a weak coupling method if each solver is used
only once in each time step. Hence, equilibrium is not enforced at each time step.
Due to this fact weak coupling method often suffer from instabilities. The aim
when using a weak coupling method is to lower the computational cost needed to
solve a problem at the cost of both accuracy and stability. In contrast to this, a
strong coupling method iterates between the two different solvers until equilibrium
is enforced at each time step.

13
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3.3.1 Weak Coupling Methods

In this thesis the weak coupling methods implemented has been divided into three
different categories. The categories are interface predicting methods, force predict-
ing methods and force smoothing methods. Since all the weak coupling methods
needs the same number of solutions for each separate solver the only difference in
computational power needed is the difference which arise from the algebraic expres-
sions within the algorithms. Hence, the difference in computational cost needed
within different weak coupling methods are negligible. The most simple version of
a weak coupling method is presented in algorithm 1 and will henceforth be called
the explicit coupling.

Algorithm 1: Ezplicit coupling method.
At time step n
1. Advance fluid domain to time step n with the boundary condition at the
interface of the structure as calculated at time step n — 1.
2. Calculate the forces acting on the structural interface.
. Advance structural domain to time step n.
4. Advance to next time step.

w

3.3.1.1 Interface Predicting Method

When using the interface predicting method the idea is to predict the position, ve-
locity and acceleration of the structural interface at time step n depending on the
state of the interface at previous time step. Hence, increasing the stability and ac-
curacy of the numerical approach. The method is presented in algorithm 2.

Algorithm 2: Interface predicting coupling method.
At time step n
1. Predict position, velocity and acceleration of interface at time step n by
using information from previous time steps.
2. Advance fluid domain to time step n with the boundary condition at the
interface of the structure as predicted in 1.
3. Calculate the forces acting on the predicted structural interface.
Advance structural domain to time step n from time step n — 1.
5. Advance to next time step.

e~

The next step is to decide how the interface should be predicted. In this thesis
three different approaches suggested in the literature has been used. The first is a
simple first order predictor where one assumes that the velocity of the interface will
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remain constant throughout the time step. The prediction is given by

— )“(n_l,
m=x"l (3.10)

n _ anl + Atxnfl

n

M M

b

where the superscript indicates time step, () indicates time derivative, x is the
location of the interface and () indicates a predicted value. The second approach is
a second order accurate predictor which accounts not only for the most recent time
step but the two most recent time steps.

. 1
X" = X" - X" (3.11)
2 2

X = X" AL

The third approach is also a second order accurate predictor but instead of predicting
the velocity of the interface dependant on the previous time steps the acceleration
of the interface is predicted. It may be written as

b3l

T (1R,
x" = %" + Atx", (3.12)

X" =x""" 4+ Atx".

In [33] the effect on the stability of the free parameter { was investigated. It was
found to achieve the best stability if the free parameter was set to & = % and therefore
this has been used in this thesis.

3.3.1.2 Force Predicting Method

The force predicting method may be seen in a similar way as the interface predictor
methods. The idea is the same, that one may predict the behaviour of the structure
dependant on previous time steps. But instead of predicting the position, velocity
and acceleration of the interface the aim is to achieve a more accurate prediction and
therefore better stability by predicting the forces acting on the structural interface.
The method is shown in algorithm 3.
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Algorithm 3: Force predicting coupling method.
At time step n
1. Predict the forces exerted on the structure by the fluid as

F" = 2F"~ ! — F2 (3.13)

where F*~! and F"~2 are the forces exerted on the structure by the fluid at
previous time steps.

2. Advance structural domain to time step n from time step n — 1 with the
predicted force.

3. Advance fluid domain to time step n with the boundary condition at the
interface of the structure as predicted in 2.

4. Calculate the forces acting on structural interface, .

5. Filter the forces as

F" = gF" + (1 — B)F" (3.14)

6. Advance to next time step.

The method have been proposed in [34] and which parameter § that was needed
in order to a obtain stable solution was highly dependent on what case that were
simulated. For some cases a [ = 0.005 were needed. Decreasing [ sacrifices the
accuracy of the calculation in order to achieve stability.

3.3.1.3 Force Smoothing Method

As an outcome of this thesis a new coupling method for fluid structure interaction is
proposed. The method is mainly inspired from the force predictor method. The idea
is mainly to incorporate the filtering of forces exerted by the fluid on the structure
into the explicit coupling since white noise in these forces has been found to often
be the reason for instabilities. The method is shown in algorithm 4.

Algorithm 4: Force smoothing coupling method.
At time step n
1. Advance fluid domain to time step n with the boundary condition at the
interface of the structure as calculated at time step n — 1.
2. Calculate the forces acting on structural interface, F™.
3. Filter the forces as

F" = BF" 4+ (1 — )F" ! (3.15)

4. Advance structural domain to time step n by letting F™ act on the structural
interface.
5. Advance to next time step.

By setting 8 = 1 the algorithm becomes identical with a explicit coupling and
by setting S = 0 the influence of the fluid on the structure is completely neglected.
Meaning that the the coupling can always be made stable by lowering $ but at the
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expense of accuracy. In problems where one only wants to study frequencies that
are much bigger than the needed time step the procedure is suitable. But if a low
enough [ is used the simulation will not be able to capture the actual behaviour of
the system.

3.3.2 Strong Coupling Method

To be able to determine the accuracy of the implemented weak coupling methods
a reference solution is needed. This is achieved by using a strong coupling method
which iterates between the two solvers within every time step until equilibrium is
achieved. In this thesis a Gauss-Seidel method has been used. In order to increase
the convergence rate Aitken[53] under relaxation of the structure has been used.
The coupling method is shown in algorithm 5.

Algorithm 5: Strong coupling method.

At time step n

1. Let the structure remain at the same state as calculated at time step n — 1.

2. Advance fluid domain to time step n.

3. Calculate the forces acting on the structural interface.

4. Advance structural domain to time step n in order to obtain intermediate
displacement, X™*, velocity, x™*, and acceleration, X™*, where k is the
iteration index.

5. Under relax the structure motion using Aitken under relaxation as

x"F = xmhml g gk (f{”k — X"’k_l) (3.16)

where the under-relaxation factor at the kth iteration, w™", for k > 2 is given

by

T
- (Xn,k—l _ Xn,k—2> ((Xn,k _ Xn,k—l) _ (Xn,k—l _ Xn,k—Z))
n,k—

’(&nk _ Xn,kq) _ ()A(n,kfl _ Xn,k72>’2

wn,k

= —w

(3.17)
and

Xn,() — anl’ Xn,(] — )-cnfl’ }--Cn,O — }"cnfl and wn,l = max <Wn717 1)

(3.18)
6. Check convergence:
. R
if — > Go back to step 2
g(? (3.19)
if —* <& Proceed to step 7

Ry

where the sub index indicates iteration.
7. Advance to next time step.

The residual, R;, is calculated by taking the relative off balance from the governing
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equations. Meaning that how it is defined is different from a rigid body compared
to an elastic body. For a rigid body the residual is calculated as

3
Ry =) X yms — Z F | (3.20)
J

k=1

and for a elastic body the residual is calculated as in a similar manner, but as a
balance of the internal and the external forces over all nodes.

The method is well known within the field of FSI and is often used for comparison
when studying weak coupling methods. The implemented version has been validated
in [14] and [15]. The method is superior to weak coupling methods in terms of sta-
bility but may increases the computational cost needed with several magnitudes[34].
It exist several quasi-Newton methods within the literature which has been proven
superior to this method in both terms of computational power needed and stability
but those have not been the focus of this thesis.

3.4 Benchmarking Cases

When implementing new methods into an existing code it is important to use well de-
signed benchmarking cases to validate and investigate the robustness of the method.
The cases should be demanding in terms of the part of the code that one is interested
in and not "push" the rest of the code to the limit. Therefore the validation cases
chosen in this thesis does not include complex flow fields or demanding structural
motion or deformation. All of the cases occur at rather low Reynolds numbers and
is therefore laminar and no complex turbulence models are needed. The fluid in all
cases are a single phase fluid. Regarding the structural solver the idea has been to
gradually increase the complexity from rigid objects to deformable objects since the
implementation in the code regarding the two differ. It is also important that the
case has been used to validate several other codes in order to deem what may be
seen as an accurate result when solving this problem and to exclude the possibility
that the published result may not be accurate.

In the present thesis the first benchmarking case has been a rigid body immersed
in a low Reynolds number flow. For this case an analytic solution exist which the
numerical solution can be compared to. The second case still consists of a rigid body
immersed in a laminar flow but at a higher Reynolds number, where a analytic solu-
tion do not exist. Due to the higher Reynolds number the behaviour of the system
is transient and one can analyze the stability of different coupling algorithms. The
third case consists of a deformable body immersed in a laminar flow which also
creates an unsteady system.
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3.5 Stability Analysis

As discussed in the theory chapter, decreasing solid-to-fluid density ratios increases
instability issues when numerically solving fluid structure interaction problems. The
stability analysis in this thesis has therefore been conducted by decreasing the solid-
to-fluid density ratio until instability has been reached. This approach has been
used in previous work by [33] and [30] among others.
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4

Results and Discussion

In the following section the results from the project are presented and discussed.
The implemented coupling methods have been validated and analyzed using three
different cases.

4.1 Analytic Case: Rigid Sphere Attached to a
Spring in Stokes Flow

To ensure that the implementation is correct it was tested against a case which has
been solved analytically. The case consists of a rigid sphere in a three dimensional
stokes flow, Re < 1, which is attached to an undamped spring. The case is solved
using three different approaches. Firstly a analytic solution is derived. Secondly
the problem is solved using different coupling methods in a one dimensional solver.
Lastly the problem is solved using different coupling methods between the three-
dimensional solvers IBOFlow and LaStFEM.

4.1.1 Parameters and Analytical Solution

The sphere is only allowed to move in the direction of the flow and the equation of
motion therefore reads

Ml = Z F= FDrag - FSpM'ng- (41)

The spring force is determined by the spring constant k& and the sphere’s offset from
its original position as
Fopring = k. (4.2)

Since Stokes flow is assumed, the drag force acting on the sphere can be determined
analytically [54]. The expression for the drag force may be written as

Fprag = 6mrspipUy (4.3)

where 7y is the radius of the sphere,uy is the dynamic viscosity and Uy = U — @
is the slip velocity which is the difference between the free stream velocity, U and
the velocity of the sphere, & . Inserting the expression of the spring force and the
drag force into the equation of motion the governing equation for the system may
be written as

67rrsufjc +£$ _ 6mrsu U

4.4
My Mg Mg (44)

Ts+
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Since it is of interest to study how well the implemented coupling algorithms perform
compared to the analytic solution one want to create a moderate damped system.
Meaning that the parameters should be chosen so that some initial oscillations occur
before the steady state solution is reached. This may be done by setting criteria
on the parameters so that the characteristic equation to the homogeneous part of
the governing equation gives complex roots. The characteristic equation to the
homogeneous part of the governing equation is given by

671 k
A2 RN T, (4.5)
Mg M
The roots to this equation becomes
67Ty 2 Lk
N \/(Ww) _k (46)
2 mg mes

If the roots are to be complex then the criterion is given by

2 27 2
(6WS’”‘ ! ) b LY (4.7)

- — <0
Mg Mg 4psrs
Before one proceeds, lets recall that Stoke’s flow has been assumed. Meaning that
it also exists a restriction on the Reynolds number

Up2ry  psU2r,
Re = PI70s  PIZETs (4.8)
n n

Lets choose the parameters to be
Re=0.1, U=1, p;=1, ps=300 and r=0.5. (4.9)

Which leads to
pr=10 and k> 4.57. (4.10)
Through some trial and error £ = 300 were deemed to give an desirable behaviour.

A summation of the choosen parameters is given in table 4.1.

Table 4.1: Used parameters for the elastically mounted sphere.

Re[l] | Ulm/s] | piy [kg/ms] | pslkg/m’] | pkg/m’] | rs [m] | & [N/m]
0.10 | 1.00 10.0 1.00 300 0.50 | 300

Lets separate the roots into the real part and the imaginary part as
A=a=tbi (4.11)
the analytic solution to the problem may be written as

6mrsp U

z4(t) = Cre™ cos bt + Cye™ sin bt + k

(4.12)
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4. Results and Discussion

The sphere is starting from rest, z5(t = 0) = 0 m and #4(t = 0) = 0 m/s, meaning
that the constants in the expression becomes

iU d oy =~y (4.13)

¢ = k b

The analytic solution is shown in figure 4.1. The sphere behaves as expected. Some
oscillations occurs before it reaches steady state and by studying the expression of
the drag coefficient,

2F, 24 24
o, — 2rag _ _ = 4.14
P U2 ’)J’Z& Re (4.14)
s

it is easy to realize that the drag coefficient should converge towards C'p = 240 since
the Reynolds number was chosen to Re = 0.1. Regarding the displacement of the
sphere, once steady state is reached both the acceleration and velocity goes to zero,
T, = &, = 0, and the governing equation may be written as

67rsp U
py = LMY g1 (4.15)
k

which also is confirmed by the solution.
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Figure 4.1: Analytic solution of drag coefficient and displacement for an elastically
mounted sphere.

4.1.2 One Dimensional Solver

The one dimensional solvers is based on solving equation 4.1. The fluid solver
is represented by the calculation of the drag force, as in equation 4.3 while the
structural solver is represented by the calculation of

o FDrag - FSpring
M '

T (4.16)
The time step is set to At = 40 ms since it is the same as what was used during
the three dimensional calculations described in next section. Firstly the problem is

solved using the coupling method presented in algorithm 1. The result is shown in
figure 4.2
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Figure 4.2: Drag coefficient of an elastically mounted sphere. Comparison between
the analytic solution (—) and the explicit coupling method (---) used in a one
dimensional solver.

As can be seen in the figure the simulated and analytic solution are virtually iden-
tical. The same goes for all of the interface predictor methods, as can be seen in
figure 4.3. Meaning that conceptually none of them would give an inaccurate result.
It can also be seen that the higher order predictors, —and —, give a more accurate
result, which is also expected since the prediction of the position at the following
time step should be more accurate.
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Figure 4.3: Drag coefficient to the left and zoomed part to the right of an elastically
mounted sphere. Comparison between the analytic solution (—) and the interface
predicting coupling method with interface predicted according to equation 3.10 (—),
equation 3.11 (—) and equation 3.12 (— ) used with a one dimensional solver.

Regarding the force predictor method presented in algorithm 3 it is expected that the
results should to decrease in accuracy with decreasing 5. A decreasing § undermines
the ability to capture correct amplitudes during an oscillation, since the filtering of
the forces causes the solution to "remember" previous forces. The result is presented
in figure 4.4 and confirms the hypothesis. When g is set to 0.1 an accurate solution
is still obtained but as 3 decreases to 0.01 the accuracy is sacrificed.
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Figure 4.4: Drag coefficient to the right and displacement to the left of an elasti-
cally mounted sphere. Comparison between the analytic solution (—) and the force
predicting coupling method with 5 = 0.1 (—) and § = 0.01 (—) used with a one
dimensional solver.

The force smoothing method presented in algorithm 4 lacks in motivation why it
should increase accuracy compared to the simpler explicit method presented in al-
gorithm 1. Instead the motivation for this coupling is that it should increase the
stability of the numerical simulation by making the transferred information between
the two solvers more smooth over time. One should expect approximately the same
behaviour from this coupling procedure as for the force predictor method. The re-
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sult are presented in figure 4.5 and a similar behaviour as for the force predictor
method is observed.
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Figure 4.5: Drag coefficient of an elastically mounted sphere. Comparison between
the analytic solution (—) and the force smoothing coupling method with § = 0.1
(—) and B = 0.01 (—) used with a one dimensional solver.

4.1.3 Numerical Results with IBOFlow and LaStFEM

In order to verify that the coupling methods has been properly implemented, the
problem is also solved using the multiphase flow solver IBOFlow and the structural
solver LaStFEM. Since Stokes flow has been assumed it is of importance that the
numerical flow domain is chosen to be big enough so that the flow near the sphere is
not affected from the external boundaries. Otherwise, the solution is not expected
to agree with the analytic solution. In this thesis a domain size of (100D x 100D x
100D), where D is the sphere diameter, was found to be big enough. The aim of this
case has mainly been to validate that the implementation of the different coupling
methods are correctly implemented and to study some tendencies in the solution
obtained with the different coupling methods. Hence, no time step dependency or
grid dependency study has been included in the thesis. Since this case consists of
a three dimensional computational domain, the computational cost of conducting
these dependency studies would have been quite high. The size of the cells near
the boundaries of the sphere were set to 0.04D and the time step were chosen to
be 0.04s, which corresponds to a Courant—Friedrichs—Lewy number of CFL ~ 1. A
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slice of the computational domain with the grid for the fluid flow shown can be seen
in figure 4.6.

Figure 4.6: Computational grid for the fluid flow around a elastically mounted
sphere.

Firstly the problem were solved using a the strong coupling method presented in
algorithm 5. The result is shown in figure 4.7. The convergence criteria was set to
e = 107* and an average of 4 iterations were needed in order to reach convergence,
meaning that the computational cost is around 4 times greater compared to any
weak coupling method. The numerical prediction has a good agreement with the
analytic solution. Some white noise occurs in the drag force which indicates that
averaging of the forces over time steps might be a good idea. The strong coupling
method is the only coupling method included in this thesis that enforces equilibrium
in each time step and is therefore the one that is expected to yield the most accurate
result.
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Figure 4.7: Drag coefficient of an elastically mounted sphere. Comparison between
the analytic solution (—) and the strong coupling method (— ) used with the three
dimensional solvers.

Secondly the explicit coupling method presented in algorithm 1 was compared to the
solution using the strong coupling algorithm 5. The result can be seen in figure 4.8
and the agreement between the two approaches is quite good. Some of the accuracy
has been sacrificed in order to lower the computational cost, which was decreased
with a factor of approximately 4. One can also observe that the amplitude of the
white noise on the force has not decreased or increased, but remains approximately
the same.
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Figure 4.8: Drag coefficient to the left and displacement to the right of an elas-
tically mounted sphere. Comparison between the strong coupling method (—) and
the explicit coupling method (— ) used with the three dimensional solvers.

In figure 4.9 the results are shown for the interface predicting method presented in
algorithm 2 and compared to the one computed with the strong coupling. Excel-
lent agreement for all of the coupling procedures can be be observed. Hence, it is
concluded that for this specific problem it is much more efficient to use an interface
predictor method compared to a strong coupling procedure, since barely no accu-
racy are sacrificed and the computational cost needed decreases with a factor of
approximately 4.
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Figure 4.9: Drag coefficient to the right and zoom to the left of an elastically
mounted sphere. Comparison between the strong coupling method (—) and the in-
terface predicting coupling method with interface predicted according to equation 3.10
(—), equation 3.11 (—) and equation 3.12 (—) used with the three dimensional
solvers.

Recall the result shown in figure 4.4 where the force predicting method presented in
algorithm 3 was investigated using the one dimensional solvers. Since the time step
used for both the one dimensional solver and the three dimensional solvers are the
same, a similar behaviour regarding which g may be used before the accuracy are
sacrificed should be expected. It was previously concluded that g = 0.1 gave a good
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agreement while § = 0.01 undermined the solution. In figure 4.10 the hypothesis
is confirmed. The solution is undermined when S decreases to § = 0.01. The
oscillations becomes even bigger for § = 0.01 when using the three dimensional
solver instead of the one dimensional solver. It can be explained by the small white
noise that occurs on the forces in the three dimensional simulations. The force
predicting method extrapolates forces from previous time steps in order to predict
the acting force. If disturbances occur the extrapolation will increase these.
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Figure 4.10: Displacement of an elastically mounted sphere. Comparison between

the strong coupling method (— ) and the force predicting coupling method with f =
0.1 (—) and = 0.01 (—) used with the three dimensional solvers.

In the force smoothing method presented in algorithm 4 the forces are not ex-
trapolated but only averaged over several time steps. Hence the force smoothing
procedure is not expected to increase the oscillations as much as the force predictor
methods at § = 0.01. The results are shown in figure 4.11. Regarding g = 0.1 a
similar behaviour as for the force predicting method is observed. But as 3 decreases
to 0.01 the oscillations has still increased compared to the one dimensional solution
shown in figure 4.5 but not as severe as for the force predicting method.
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Figure 4.11: Drag coefficient to the left and displacement to the right of an elasti-
cally mounted sphere. Comparison between the strong coupling method (—) and the
force smoothing coupling method with = 0.1 (—) and B = 0.01 (—) used with
the three dimensional solvers.
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It can be observed that the amplitude of the oscillation of both the forces and
the displacement increases over the complete simulation time when using the force
smoothing method with g = 0.01. Intuitive, this is not an expected result since the
only manipulation of forces is that they are filtered over time. But lets discuss this
phenomenon. When using the force smoothing method a miss match between the
fluid forces and the position and velocity of the sphere is created. When the filtering
variable is set to 8 = 0.01, the acting force consists of 1% from the actual fluid force
at the current time step and 99% from fluid forces at previous time steps. Stokes
flow is assumed. Meaning that if the displacement of the sphere is decreasing (when
the sphere is traveling in a opposite direction of the mean flow) the drag coefficient
should be C'p > 240 and if the displacement is increasing C'p < 240. Since the force
is filtered over time this is not true at all times for the sphere. Meaning that, even
though the sphere is traveling down stream the force coefficient seen by the sphere
can be C'p > 240. When this occurs, the turning point of the sphere occurs further
down stream than what is actually physical. The opposite occurs when the sphere
is traveling up stream. This causes the oscillations to increases over time. It should
be noted that no extensive investigation has been done of this phenomenon, but the
reasoning above has been made to provide some clarity for the interested reader.

4.1.4 Summary

In this section the proposed and implemented coupling methods has been validated
and analyzed against a case where an analytic solution can be derived. All of
the coupling methods showed good agreement with the analytic solution, which
suggest that the implementation is correct and that the coupling methods have good
potential. All of the weak coupling methods where approximately four times more
efficient than the strong coupling method. The interface predicting methods slightly
increased the accuracy compared to the explicit coupling method. Neither one of
the force predicting or force smoothing methods increased the accuracy compared
to the explicit coupling procedure. But since the aim of these methods is not to
increase accuracy but increase stability, this was not expected. If 5 is decreased too
much the accuracy of the solution is undermined.

4.2 Numerical Case: Rigid Cylinder Attached to
a Damped Spring in an Incompressible Lam-
inar Flow

In order to study the accuracy and the stability of the different coupling algorithms

a rigid cylinder attached to a damped spring in a moderate Reynolds number flow
is studied. The case has previously been studied in [33], [55] and [56].

The equation of motion for the cylinder may be written in non-dimensional quanti-
ties as )
. 2\ 2T 2
E+2 () &+ () &= —C (417)
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L1
D

the cylinder, x4 are the displacement vector. ( ) = afé /)D is the dimensionless time
derivative, ¢ is the time and U is the free stream velocity. { = ¢/2v/kmg is the damp-
ing ratio, ¢ is the damping coefficient, k is the spring constant and my is the mass of
the cylinder. U* = U/(fyD) is the reduced velocity and fy = 1/(27)/k/ms is the
natural frequency. p = p,/py is the solid-to-fluid density ratio, p; is the solid density
and py is the fluid density. C = 2F/(p;U?D) is the fluid force coefficient and F is the
fluid force. The dimensionless material parameters are ( = 0.01, U* = 5,p = 4/7
and the Reynolds number is 200.

where £, = =X, is the dimensionless displacement vector, D is the diameter of

In order to set up an actual simulation, which would correspond to an physical
problem, some parameters needs to be chosen. The parameters that needs to be
determined are the free stream velocity, U, fluid density, p;, dynamic viscosity, zs,
cylinder diameter, D, solid density, ps, damping coefficient, ¢, and spring constant,
k. Meaning that there are four constraints and seven parameters. Lets choose

U=1m/s, D=1m and p;=1kg/m’ (4.18)

and the rest of the parameters can be calculated as

_pUD
:uf - Re
Ps = PP
D\? U \? (4.19)
b= pem (2) (27TU*D)

D 2
c=2C\/kpsm <2>

The parameters are summarized in table 4.2.
Table 4.2: Used parameters for an elastically mounted cylinder with p = 4/m.

U m/s] | py [kg/m’] | py [ke/ms] | D [m] | p; [kg/m’] | & [N/m] | c [Ns/m)]
1 1 1/200 1 i/r A72/25 | /125

The computational domain, the cylinders initial position and the boundary condition
is shown in figure 4.12. The cylinder is initially placed in (z,y) = (0,0), the lower
corner of the computational domain is placed in (x,y) = (—10D,—10D) and the
upper corner is placed in (z,y) = (30D,10D). At the inlet, z = —10D, a uniform
velocity profile is applied and at the outlet, x = 30D, a zero pressure boundary
condition is applied. At y = —10D and y = 10D no slip boundary conditions are
applied with the same velocity as at the inlet. At the interface of the cylinder a no
slip boundary condition is applied.
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Figure 4.12: A schematic diagram of the computational domain for an elastically
mounted cyliner with the boundary condition and initial placement of the cylinder.
Note that the diagram is not to scale.

The computational domain is discretized in space using quadratic cells and a con-
stant time step in time. The spatial discretization is rebuild at each time step so
that the smallest cells are placed at the interface between the solid and the fluid.
The baseline grid can be seen in figure 4.13 which consists of approximately 36000
cells and the smallest cell size is Ax = Ay = 0.005D.

Figure 4.13: Computational grid for an elastically mounted cylinder with Ax,;, =
AYmin = 0.005D and approzimately 36000 cells. Complete domain to the left and
zoom near the cylinder to the right.

In order to avoid instabilities and large fluid forces that might occur during the first
time steps, when the flow field undergo large changes and might be nonphysical,
the corresponding stationary cylinder problem was first solved using only the fluid
solver. When a fully developed, periodic, flow field was obtained, the FSI problem
was solved. In order to reduce the computational time needed for each problem the
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stationary cylinder problem was solved on a coarser grid and interpolated onto the
grid used for the specific case. This also allowed each FSI simulation to be started
from the exactly the same flow field, meaning that the dynamic behaviour before
the periodic state was reached could also be included in the analysis of different
couplings and spatial and temporal dependencies. The end time for the simulations
was determined by when a periodic steady state behaviour was reached and had
occurred for at least a couple of periods.

4.2.1 Validation for Strong Coupling Method

The aim of the analysis is to compare accuracy and stability of different weak cou-
pling methods. The result will both be compared between different coupling methods
and to previous work. Hence, it is of interest to reassure that temporal and spatial
convergence is reached, meaning that the solution has a "small enough" dependency
on the grid and on the time step. This is done by conducting a time step depen-
dency study and a mesh dependency study using the most stable coupling method,
the strong coupling method. The variable which has been chosen for comparison be-
tween the different computations is the amplitude of the oscillations in y—direction.
The different combinations of time step and smallest cell size that has been used are
presented in table 4.3

Table 4.3: Simulated combination, marked by x, of spatial discretization and tem-
poral discretization for a elastically mounted cylinder with p = 4/m.

At [ms]
6432|116 |8 |4
40 X
A:L'min 20 =
[mm] 10 X
5 | x| x| x |x|x
2.5 X

In order to assure that equilibrium is reached at each time step a convergence criteria
of e = 107* was set. An average of 4 iterations were needed at each time step to
fulfill this criteria. The temporal and spatial convergence can be seen in figure 4.14.
Both the temporal and spatial convergency ratio approaches second order as the
time step and the cell size decreases, which indicates that the results only has a
small dependecy on the discretization used at these sizes. Hence, a time step of
At = 4 ms and a smallest cell size of Az,,;, = 5 mm is chosen to be used during
the accuracy and stability analysis with the weak coupling algorithms.

34



4. Results and Discussion

10’ 10’
E 7
—e—error I./" —e—earror /
—---First order 7 —---First order i
---Second order R -—-Second order
S ¢ S 1¢'
L) L)
2 - ; 107 - : ‘
%07 10° 10’ 10° 107 10’
dt CIXmin

Figure 4.14: Temporal convegence to the left and spatial convergence to the
right of a elastically mounted cylinder with p = 4/n. The error were deter-
mined as error = (Uy(Atrer, Alminref) — Uy (AL, AZyin)) /Uy (Atref, Ay re ) where
AZminrer = ALy, = 5 mm and Aty = 4 ms for the temporal convergence and
Atpey = At = 4 ms and AZpmin rer = 2.5 mm for the spatial convergence.

In figure 4.15 the results obtained are compared to the results from previous studies.
After some time the cylinder’s trajectory reaches a periodic state where the trajec-
tory draws a figure of eight, which is shown in the figure. The trajectory of this
periodic state agree well with both [55] and [33] but the trajectory of [56] is shifted
slightly downstream due to a 3% difference in drag force.
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Figure 4.15: Trajectories of the center of an elastically mounted cylinder with
p = 4/7 when the periodic state is reached. Result computed with the strong coupling

method (—) and results from previous studies (—) [55], (—) [33] and (—) [56].
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In figure 4.16 the trajectory of the cylinder during the complete simulation time
is shown. As expected some transient oscillation occur before the periodic state is
reached. The same phenomenon can also be observed by studying the displacement
over time which is shown in the same figure.
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Figure 4.16: Trajectory to the left and displacement in both x- and y-direction over
time to the right of an elastically mounted cylinder with p = 4/m computed with the
strong coupling method.

The drag coefficient and lift coefficient can be seen in figure 4.17. Here one may
observe the white noise occurs in the force signal. Furthermore both the drag and
lift coefficient behaves as expected.
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Figure 4.17: Drag and lift coefficient acting on the cylinder over time to the left
and a zoom to the right of an elastically mounted cylinder with p = 4/ computed
with the strong coupling method.

In figure 4.18 the contours of the vorticity in the flow field is shown. One can observe
the characteristic vortex street which is created down stream of a cylinder, which is
expected at moderate Reynolds numbers. At some vorticies a discountinuity may
be observed, which can be explained by the fact that the grid size changes in size in
those regions and some parts of the vortices can not be resolved by the grid anymore.
The vortex shedding creates two single vortices in each period and agree well with
the vortex shedding shown in both [33] and [56].
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Figure 4.18: Countours of the instantaneous vorticity of an elastically mounted
cylinder with p = 4/7. (— ) indicates negative vorticity while (— ) indicates positive
vorticity.

In total one can state that the result obtained using the strong coupling agrees well
with those of previous studies. Temporal and spatial convergence was reached and
the convergency ratio has been deemed as second order both in space and time. The
spatial discretization which was chosen to proceed with consists of approximately
36000 cells and the smallest cell has the size Ax = Ay = 5 mm. The time step were
chosen to 4 ms and at this density ratio a simulation time of 40 s was needed in
order to reach the periodic state. An average of 4 iterations was needed in order to
reach the convergence criteria. In the following accuracy and stability analysis this
coupling will be used as the baseline case and assumed to give the accurate result.

The stability of the coupling method will be investigated by decreasing the den-
sity of the structure. As has been discussed in the theory section, a decreasing
solid-to-fluid density ratio is a well known cause of instabilities when dealing with
fluid structure interaction problems. Hence, the stability analysis is conducted by
decreasing the density ratio until instability is reached. The result at the lowest
density ratio is also compared to the result obtained by using the strong coupling
method to be able to determine the accuracy of the coupling at the brink of insta-
bility.

In practice the solid-to-fluid density ratio, p, is changed and the new parameters
are calculated so that equation 4.18 and 4.19 are still fulfilled. A decreasing solid-
to-fluid density ratio, p, causes a decreasing solid density, ps, which causes a decreas-
ing spring constant, k£, and a decreasing damping coefficient, c¢. The drag coefficient
will not experience any large changes since the Reynolds number remains constant,
meaning that the displacement in x-direction, u,, will increase as the solid-to-fluid
density ratio decreases. At some density ratio the displacement will become so large
that the cylinder will pass through the outlet and leave the domain. Meaning that
there exist a limitation on how far this case can be used regarding stability analysis
based on a decreasing solid-to-fluid density ratio. However, to the authors knowl-
edge, this limit has not been reached when using weak coupling algorithms by any
previous analysis. [56] reached a solid-to-fluid density ratio of p = 1.08 using a
weak coupling algorithm before stability issues were encountered and [33] reached a
solid-to-fluid density ratio of p = 0.21 using a weak coupling algorithm.
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4.2.2 Explicit Coupling Method

The explicit coupling presented in algorithm 1 is the most simple method included
in this thesis. The method do not consist of any predictions or manipulations of
the forces exerted by the fluid on the structure interface. Hence, the accuracy and
stability of this coupling will be investigated and discussed first. In figure 4.19 the
trajectories and the displacement over time is compared to the ones calculated with
the strong coupling method. The agreement between the explicit coupling method
and the strong coupling method are excellent. The only difference that can be
observed regarding the displacement are that the explicit coupling method seem to
slow down the frequency of the oscillations, but just marginal.
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Figure 4.19: Trajectories to the left and displacement against time to the right
of an elastically mounted cylinder with p = 4/m. Comparison between the explicit
coupling method (—) and the strong coupling method (—).

In figure 4.20 the calculated force coefficients are shown and compared to the ones
calculated using the strong coupling. A similar white noise as has been observed
for the strong coupling still occurs but it can be observed that the white noise has
increased in amplitude compared to the strong coupling, but only marginally. The
behaviour of the forces are in excellent agreement for both coupling methods, hence
the conclusion that the explicit coupling is suitable for this case at this density ratio
is drawn.

Regarding the computational cost an average of 4 iterations were needed in or-
der to achieve convergence for the strong coupling method, meaning that using the
explicit coupling method yielded an accurate result using only one fourth of the
computational cost.
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Figure 4.20: Force coefficients plotted over time to the left and a zoomed part to
the right of an elastically mounted cylinder with p = 4/m. Comparison between the
explicit coupling method (—) and the strong coupling method (— ).

The method was found to be equally stable as the strong coupling method down to
a solid-to-fluid density ratio of 0.46. In figure 4.21 the results from explicit coupling
method is presented and compared to those computed using the strong coupling
method. By studying the difference in the computed displacement it can be con-
cluded that the agreement between the strong coupling method and the explicit
method is excellent for all solid-to-fluid density ratios where the explicit coupling is
still stable. But if one studies the force coefficients, the white noise has increased
drastically when using the explicit coupling algorithm. It is even difficult to deter-
mine anything from the signal. But since the agreement between the displacements
are excellent the mean signal of the force coefficients must follow the signal com-
puted by using the strong coupling. However, the reason for instabilities at smaller
density ratios is due to this white noise in the force signal. Regarding the computa-
tional cost an average of a little over four iterations were needed in order to reach
convergence.
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Figure 4.21: Force coefficients plotted over time to the left and displacement
in both x- and y-direction to the right of an elastically mounted cylinder with p =
0.46. Comparison between the explicit coupling method (— ) and the strong coupling
method (— ).
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The explicit coupling method has been proven to yield accurate results at the density
ratios where it is still stable. The explicit coupling method was approximately four
times more efficient compared to the strong coupling method.

4.2.3 Interface Predicting Method

When using a weak coupling based on an interface predicting method the idea is to
predict the position, velocity and acceleration of the interface at the current time
step depending on the position, velocity and acceleration at the previous time step,
or time steps. The hypothesis is that this will increase the accuracy and hence, the
stability of the computations. In figure 4.22 the problem has been solved using the
interface predicting method, presented in algorithm 2, with the interface predicted
according to equation 3.10. The result is clearly affected by the coupling method,
but not in the way that one would hope for. The accuracy has been seriously
undermined. The explicit coupling method, analyzed in the previous section, gave
an excellent agreement with the strong coupling algorithm while this method results
in a considerable offset in both displacement and forces.
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Figure 4.22: Force coefficients plotted over time to the left and displacement in
both x- and y-direction to the right of an elastically mounted cylinder with p = 4/.
Comparison between the interface predictor coupling method (—) with interface
predicted as equation 3.10 and the strong coupling method (— ).

In figure 4.23 the result computed using the interface predicting method with the
three different implemented predictions (equation 3.10, 3.11 and 3.12) are all pre-
sented. The results are virtually identical. Meaning that regardless of which pre-
diction that are used an offset in both displacement and forces are created.
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Figure 4.23: Force coefficients plotted over time to the left and displacement in
both x- and y-direction to the right of an elastically mounted cylinder with p = 4/7.
Comparison between the interface predicting coupling method with interface predicted
as equation 3.10 (—), 3.11 (— ) and 3.12 (—).

Lets discuss the three different coupling methods that has been used to solve this
problem so far in the thesis. Firstly the problem was solved using the strong cou-
pling presented in algorithm 5. The algorithm basically consists of "guessing" that
the structure is at the same position as at the previous time step, solving fluid field,
calculating the stresses acting on the structural interface, let the forces act on the
interface and solving structural equations and iterate between the solvers until equi-
librium is reached and the final position of the structure is obtained. The explicit
coupling method may be summarized as "guessing' the position of the structural
interface as the same as at the previous time step, solving fluid field, calculating
fluid forces and let the forces act on the structure and solve structural equations
in order to obtain the final position. When using the interface predicting method
presented in algorithm 2 the position of the interface is firstly "guessed" according
to equation 3.10, 3.11 or 3.12, the fluid field is solved, the fluid forces are calculated
and applied to the structural interface in order to obtain the final position.

All three of these methods consists of a "guessed" position and a final position.
Hence, it is of interest to investigate if the guessed position is more accurate when us-
ing an interface predicting coupling method compared to a explicit coupling method.
Since all three of the interface predictor methods yielded virtually identical results,
only the prediction according to equation 3.10 will be investigated.

The result computed by using the strong coupling method is assumed to be the cor-
rect one and the "guessed" position, X", at the current time step is computed using
both the explicit coupling method and interface predictor method. The deviation,e™,
from the equilibrium state,x™ (the one computed through iterations by the strong
coupling), is then calculated as

e = ||x" — %"]. (4.20)

The deviation,e”, of the explicit coupling method and the interface predicting method
with the interface predicted according to equation 3.10 is shown in figure 4.24.
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Figure 4.24: Deviation, €", in "quessed" position, X", from correct one, X", to the
left and zoom to the right of an elastically mounted cylinder with p = 0.46. Com-
parison between the explicit coupling method (—) and interface predicting coupling
method with interface predicted as equation 3.10 (— ).

The deviation of the interface predicting method is much smaller than the one for
the explicit coupling method. Hence, the interface predictor method should yield
a more accurate result. One could also note that it can be seen in the figure that
the place where the deviation is the smallest for the explicit method, the deviation
reaches its larges values for the interface predicting method. This can be explained
by the fact that when using the explicit coupling method the guessed value would be
identical with the correct one if the velocity is zero, which occurs at the maximum
displacement in y-direction while the guessed position for the interface predicting
method would be the correct one if the velocity is constant, which occurs at the
minimum displacement in y-direction.

The problem persists, the cause of the error in accuracy when using the interface
predictor methods remains unknown. The author has investigated the code and the
result in order to reach a conclusion, but has not succeeded in providing an answer.
The implementation has been validated in section 4.1, where the expected increase,
compared to the explicit coupling method, in accuracy were achieved.

However, even though the method seems to undermine the accuracy it is still of
interest to investigate how the interface predicting method affects the stability of
the simulations. All three of the implemented prediction models (equation 3.10, 3.11
and 3.12) were stable down to solid-to-fluid density ratio of p = 0.46, which is the
same as for the explicit coupling method. The results are still virtually identical for
all prediction models. Hence, only the results computed with the interface predicted
according to equation 3.10 is shown and compared to the results computed with the
strong coupling method in figure 4.25. A similar offset in displacement as for the
solution with p = 4/7 can be observed. Regarding the force coefficient the white
noise has increased as the solid-to-fluid density ratio decreased, as it did for the ex-
plicit coupling algorithm. If one would compare the results in figure 4.25 computed
with the interface predicting method at p = 0.46 with the one computed with the
explicit coupling at the same density ratio in figure 4.21 it may be observed that the
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white noise in the force signal has increased less when using a interface predicting
method. If the displacement computed with the two methods would have been the
same, this would be an indication of increased stability. But since this is not the
case, no conclusions can be drawn from this observation.
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Figure 4.25: Force coefficients plotted over time to the left and displacement in
both x- and y-direction to the right of an elastically mounted cylinder with p = 0.46.
Comparison between the interface predictor coupling method (—) with interface
predicted as equation 3.10 and the strong coupling method (— ).

The interface predicting method yielded a virtually identical result regardless of how
the interface was predicted. The agreement in result between the method and the
strong coupling method was much lower compared to the explicit coupling method.
The method were stable down to a solid-to-fluid density ratio of p = 0.46, which is
the same as for the explicit coupling method.

4.2.4 Force Predicting Method

Setting / = 1 when using the force predicting method presented in algorithm 3
means that no filtering over time of the forces is performed, only an extrapolation
of forces in time. Due to the white noise in the force signal this could prove prob-
lematic. The force predicting method has been used together with § =1, g = 0.33
and § = 0.1. At the solid-to-fluid density ratio p = 4/7 both =1 and 5 = 0.33
became unstable and p needed to be increased in order to achieve stable solutions.
However, for § = 0.1 a stable solution could be produced for p = 4/m. The results
are shown in figure 4.26. The results experience a considerable offset in both fluid
forces and displacement.

Since this method yielded instabilities at much higher density ratios compared to
other methods and poor solutions when stable solutions could be produced only a
small amount of time was dedicated to investigating the method. With § = 1 the
stability limit was reached at density ratio of p = 1.5, with § = 0.33 the stability
limit was reached at density ratio of p = 1.4 and with 5 = 0.1 the stability limit
was reached at density ratio of p = 1.1.
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Figure 4.26: Force coefficients plotted over time to the left and displacement in
both x- and y-direction to the right of an elastically mounted cylinder with p = 4/7.
Comparison between the force predictor coupling method (— ) with 5 = 0.1 and the
strong coupling method (— ). Note that the showed force coefficients are as computed
by the fluid solver and not the force coefficients seen by the structure.

Lets study what happens if we take the data produced by using the strong coupling
and predict the fluid forces at the next time step depending on the previous ones,
as proposed in algorithm 3. The result is shown in figure 4.27 where it can be seen
that using this predictor model increases the amplitude of the white noise in force
signal. This is the reason why this method has more stability problems compared
to other models.
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Figure 4.27: Force coefficients plotted over time to the left and zoom to the right

of an elastically mounted cylinder with p = 4/m. Strong coupling method with actual
force coefficient (— ) and force coefficient predicted according to the force predicting

method (— ) with § = 1.

4.2.5 Force Smoothing Method

The force smoothing method presented in algorithm 4 becomes identical with the
explicit coupling method if § is set to one. Hence the analysis will only cover
smaller values. The analyzed values has been f = 0.33, 5 = 0.1, § = 0.033 and
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B = 0.01. The results for § = 0.33 is presented in figure 4.28 and compared to
the ones obtained with the strong coupling method (p = 4/7). The agreement is
excellent. Hence, it can be concluded that with g = 0.33 the filtering of forces does
not undermine the result.
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Figure 4.28: Force coefficients plotted over time to the left and displacement in
both x- and y-direction to the right of an elastically mounted cylinder with p = 4/7.
Comparison between the force smoothing method (— ) with 8 = 0.33 and the strong
coupling method (—). Note that the showed force coefficients are as computed by
the fluid solver and not the force coefficients seen by the structure .

It is obvious that if 3 is chosen too small the solution will be inaccurate. In order to
investigate how the solution depends on 3 the solution at the solid-to-fluid density
ratio p = 4/m has been compared with the different choices of §. The error in
both oscillation amplitude, u, pq; and z-position of where the sphere crossed u, = 0
when the periodic state was reached, u,(u, = 0) has been compared. The error was
calculated as

Uy strong Coupling(uy - O) — Uz (Uy — 0)

error, =
* Uz strong coupling (uy = 0) (421)

Uy maz,strong coupling — Uz, maz,s

error, =
Uy maz,strong coupling

and the result can be seen in figure 4.29. As expected, the offset in displacement
increases as [ decreases. For this particular case the offset of the trajectory of the
center of the cylinder, shown in figure 4.29a, becomes large when 8 has decreased
to 0.01. For g = 0.033 the offset of the trajectory of the cylinder is still within the
difference that has been obtained by previous work (compare to figure 4.15). Both
error, and error, defined in the equation above and shown in figure 4.29b decreases
as [ increases in a similar manner.
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(a) Trajectory of the center of the cylin- (b) Error in amplitude of oscillations
der. Comparison between force smooth- (—) and x-position, u,, where the center
ing method with f = 0.01 (—), 8 = of the sphere crosses u, = 0 (—) when
0.033 (—), f =0.1 (—), B = 0.33 (—) the periodic state is reached at different
and strong coupling method (—) .

Figure 4.29: Accuracy of force smoothing method while solving the motion of an
elastically mounted cylinder with p = 4 /7.

Lets study the difference in the force calculated by the fluid and the force seen by
the structure. In figure 4.30 the force coefficients are shown for the solution when
using the force smoothing method with 5 = 0.1 (p = 0.1). The amplitude of the
white noise in the force seen by the structure has been drastically reduced while still
preserving a good agreement with the solution obtained with the strong coupling
method.
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Figure 4.30: Force coefficients plotted over time to the left and zoom to the right
of an elastically mounted cylinder with p = 4/w. Force predictor method with =
0.1. Force coefficient calculated by the fluid (—) and force coefficient seen by the
structure (— ).

It has been established that the method produces a solution with good agreement to
the solution produced by using the strong coupling method, if 5 is not to small. The
next subject of interest is the stability of the method. Lets recall that setting § =1
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corresponds to the explicit coupling method, which has already been investigated
and the stability limit of the solid-to-fluid density ratio were found to be p = 0.46.
The force smoothing method with 5 = 0.33 was stable down to a density ratio of p =
0.17 and the results are presented and compared with the strong coupling method
in figure 4.31. The agreement between the displacement and dynamic behaviour
obtained by using the two different methods is excellent.
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Figure 4.31: Displacement in both x- and y-direction to the left and trajectories to
the right of an elastically mounted cylinder with p = 0.17. Comparison between the
force smoothing method (— ) with f = 0.33 and the strong coupling method (— ).

In figure 4.32 the force coefficients calculated by the fluid solver is shown together
with the force seen by the structure when using the force smoothing method and
compared to the force coefficient obtained with the strong coupling method.
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Figure 4.32: Force coefficients plotted over time to the left and zoom to the right
of an elastically mounted cylinder with p = 0.17. Comparison between the force
smoothing method with = 0.33, force coefficients calculated by fluid solver (—)
and force coefficients seen by the structure (—), and the strong coupling method

(—)-

The amplitude of the white noise of the force calculated by the fluid solver has in-
creased compared to the strong coupling method. But by studying the filtered force
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signal, seen by the structure, the white noise has decreased to approximately the
same amplitude. The agreement between the force coefficient seen by the structure
when using the force smoothing method and the strong coupling method is in good
agreement. At the solid-to-fluid density ratio the strong coupling needed an average
of 4.9 iterations in order to reach convergence. Meaning that the computational cost
has decreased by a factor of approximately five by using the force smoothing method.

As expected, decreasing [ further yielded even better stability. Setting § = 0.1
yielded a stable solution down to a solid-to-fluid density ratio of p = 0.06 and the
result is presented in figure 4.33. The same phenomenon as for § = 0.33 can be
observed. The amplitude of the white noise in the forces calculated by the fluid has
increased compared to the strong coupling method but regarding the filtered forces,
seen by the structure, the white noise has a similar amplitude and are in good agree-
ment with the forces obtained by using the strong coupling method. At this density
ratio an average of 6.2 iterations was needed in order to reach convergence, meaning
that the computational cost has decreased with a factor of approximately six by
using the force smoothing method.
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Figure 4.33: Force coefficients plotted over time to the left and displacement to the
right of an elastically mounted cylinder with p = 0.06. Comparison between the force
smoothing method with 8 = 0.1, force coefficients calculated by fluid solver (—) and
force coefficients seen by the structure (—), and the strong coupling method (— ).

Decreasing 8 to 8 = 0.033 yielded a stability limit of a solid-to-fluid density of
p = 0.02. But at this density ratio, the displacement in x—direction becomes larger
than the distance between the initial position of the sphere to the outlet. Meaning
that the stability at this 5 is better than the benchmarking case is designed for.
The same goes for decreasing (3 further.

4.2.6 Summary

The accuracy and stability of different weak coupling methods has been investigated
using a case where a cylinder is elastically mounted in a laminar flow. Firstly a time
step and a mesh dependency study was performed using the existing strong coupling
method. The results showed good agreement with previous study and the spatial and
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temporal convergence ratio approached second order accuracy. The explicit coupling
method showed good agreement with the strong coupling method. The interface pre-
dicting method did not improve the stability compared to the explicit coupling and
caused an offset in displacement compared to the strong coupling method. The
force predicting method increased stability issues compared to the explicit coupling
due to the extrapolation of forces which increased the white noise that occurs in
the force signal. The force smoothing method showed promising results. The ac-
curacy depended on the choice of 3, if 3 is chosen to = 1 the method becomes
identical with the explicit coupling method and if 3 is decreased too much an offset
in displacement can be observed. Decreasing § increased the stability of the method.

The smallest density ratio where a solution could be obtained was well below those
that has been achieved in previous work, and even lower than the lowest density ra-
tio that could be investigated by using this benchmark case. Kim and co-workers[33]
obtained a stable solution down to a solid-to-fluid density ratio of p = 0.21 by using
a weak coupling algorithm and Yang et al. [56] were able to obtain a stable solution
down to p = 1.08. The lowest density ratio where a stable solution could be obtained
using the force smoothing method in this thesis were p < 0.02.

In table 4.4 a summation of the simulated cases is given and compared to results
obtained in [33]. The accuracy is given as the z—position, u,, of where u, = 0
and an x indicates that a stable solution could not be achieved. The agreement in
displacement with those of the previous study is excellent.
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Table 4.4: Summation of stability and accuracy in displacement in x—direction
of an elastically mounted rigid cylinder. The values in the table represents the
x—position where the center of the cylinder passes the x — axis, (u,(u, =0)), and =
indicates that a stable solution could not be produced. For reference the results from
a previous study is also given to the right.

Strong

Weak couplings . (33]
coupling
Explicit | Interface Predicting Force Predicting Force Smoothing
Equation 15} 5
3.10 311 3.12 1 0.33 0.1 0.33 0.1  0.033
1.5 0.616
1.4 X 0.666
1.3 X X
4/7 | 0.618 | 0.540 0.540 0.540 X X 0.741 | 0.617 0.611 0.598 0.620 0.622
1.1 X X 0.875
1.0 X X X
0.7 X X X 1.14 1.14
0.5 X X X 1.60 1.61
p | 0.46 1.73 148 148 148 X X X 1.73 1.72 1.70 1.74

0.45 X X X X X X X
0.4 X X X X X X X 2.00 2.02
0.21 X X X X X X X 2.87
0.20 X X X X X X X X
0.17 X X X X X X X 4.70  4.68 4.71 X
0.17 X X X X X X X X X
0.06 X X X X X X X X 13.3 13.4 X
0.05 X X X X X X X X X b'd
0.02 X X X X X X X X X >30 >30 X
0.01 X X X X X X X X X X - X

The number of iterations needed in order to reach convergence for the strong cou-
pling method varied between four and six depending on the chosen density ratio.
Meaning that the computational cost needed in order to solve the case decreased
with a factor of between four and six when using weak coupling method instead of
a strong coupling method.

In figure 4.34 the movement of the vorticity contours during one period when the
periodic state is reached is shown. The vorticity behaves as expected. During one
period two vortices are created and are transported down stream where the intensity
of them decreases and dissipates into the mean flow.
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Time: 38.800000 Time: 40.000000

Figure 4.34: Countours of the instantaneous vorticity of an elastically mounted
cylinder with p = 4/m during approzimately one period. (—) indicates negative
vorticity while (— ) indicates positive vorticity.

4.3 Numerical Case: Flexible Beam Attached to a
Rigid Cylinder in an Incompressible Laminar
Flow

So far in this thesis only cases where the structures consists of rigid bodies have been
treated. It is also of interest to study fluid structure interaction where the structures
consists of elastic bodies. This case consists of an elastic beam attached to a rigid
cylinder in an incompressible laminar channel flow. It wwas originally proposed by
Turek and Hron in [57] and has since then been used to validate and investigate the
stability of fluid structure interaction solvers in a wide variety of articles [31], [58]
and [33] among others.

The domain is illustrated in figure 4.35. The inlet is treated as a velocity inlet
where a parabolic velocity profile is prescribed according to

a(t) = 150720 =Y)

SO (4.22)

where U is the mean velocity. The boundaries at y = 0 and y = H are treated as
no-slip walls and the outlet is prescribed as a pressure outlet with zero pressure.
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The size of the domain and the immersed objects are as follows:
e The domain has the length L = 2.5 m and height H = 0.41 m and the left
lower corner is placed in (z,y) = (0,0).
« The rigid cylinder center is placed in (z,y) = (0.2,0.2) m and the radius is set
tor =0.05 m.
o The elastic bar has the length [ = 0.35 m and the height A = 0.02 m.
o The point A, shown in the figure, is initially placed in (z,y) = (0.2,0.6) m.

Inlet Outlet

#.:\,k A /Walls H

Cylinder Bar

L

Figure 4.35: A schematic diagram of the computational domain for an elastic beam
attached to a rigid cylinder and initial shape of the structure. Note that the diagram
s mot to scale.

Turek and Hron [57] proposed three cases where the inlet velocity and the stiffness
of the beam is varied. The first one, called FSI1, resulted in a steady state solution
while the two others, FSI2 and FSI3, resulted in a periodic behaviour. The different
parameters for the three cases are presented in figure 4.5

Table 4.5: Used parameters for an elastic beam attached to a rigid cylinder.

FSI1 | FSI2 | FSI3
inlet mean velocity U [m/s] 0.2 1 2
fluid density pr [10%kg/m3] | 1 1 1
fluid viscosity wr [kg/ms] 1 1 1
solid density ps [10%kg/m3] | 1 10 1
Poission’s ratio Vs |-] 0.4 0.4 0.4
Young’s modulus E, [10°Pa] 14 14 5.6

In this thesis only FSI2 and FSI3 has been investigated. A stable solution which
were in agreement with previous studies could only be produced with the strong
coupling method. Hence, a grid and time step dependency study is given and fol-
lowed by some analysis and comparison with solutions obtained with the different
weak coupling methods.

In order to compare the results with previous studies some quantities needs to be
compared. The quantities for comparison has been chosen as
o The displacement of the point A on the structure, see figure 4.35, over time in
both streamwise direction, u, (), and vertical direction, w,(t).
e The force exerted by the fluid on the immersed body both in streamwise
direction, F,(t), and vertical direction, Fj(t).
o The frequency of the displacement.
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In order to reassure that spatial convergence has been reached the size of the fluid
cells has been varied. The smallest cell size has been Az,,;, = Aymin = 0.004 m,
AZpin = AYpin = 0.002828 m, Axpin = AYmin = 0.002 m and Az, = AYmin =
0.01414 for the different fluid grids. In fig 4.36 an example of one of the fluid grids
is given. This particular grid has a smallest cell size of Az, = AYmin = 0.002 m.

Figure 4.36: FExample of fluid grid, with Az, = AYmin = 0.002 m, for an elastic
beam attached to a rigid cylinder.

Regarding the elastic beam the same spatial discretization has been used for all
simulations. The spatial discretization consists of 446 elements and is shown in
figure 4.37.

Figure 4.37: Spatial discretization of the structure for an elastic beam attached to
a rigid cylinder.

The time step has also been varied and the different used time steps has been At = 4
ms, At =2 ms, At = 1 ms and At = 0.5 ms.

4.3.1 Validation

In the following section the strong coupling procedure has been validated using the
cases FSI2 and FSI3. The convergence criteria has been set to e = 1073.
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4.3.1.1 FSI2

The case has been solved with three different time steps and three different grids.
The time steps have been At = 4 ms, At = 2 ms and At = 1 ms. The results
for the different time steps are shown in figure 4.38. The results are obtained with
a grid which has the smallest cell Az,;, = Aymin = 0.002 m. The agreement
in displacement between all three time steps are good and the difference between
At = 2 ms and At = 1 ms are very small. Hence, a time step of At = 1 ms are
deemed small enough. The mean value, amplitude and frequency of the displacement
is summarized in table 4.6.

8:5 9 9:5 1IO 8:5 9 9:5 16
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Figure 4.38: Displacement in both x- and y-direction for point A of an elastic

beam attached to a rigid cylinder (FSI2). Comparison between different time steps.
At =4 ms (—), At =2 ms (—) and At =1 ms (—).

Table 4.6: Mean value, amplitude and frequency of the displacement for point A of
an elastic beam attached to a rigid cylinder (FSI2). Different time steps.

ug(A) [ mm uy(A) [ mm]|

A [ —13.67 + 11.25[3.846] | 1.355 & 73.91[1.923]
At [ms] |2 ] —14.88 & 12.05[3.871] | 1.198 + 78.00[1.935]
1| —15.52 £ 12.44[3.901] | 1.039 + 80.01[1.951]

In order to reassure that the used spatial discretization of the fluid domain was
fine enough the problem was solved with three different fluid grids. The cell size
was varied by decreasing the size of the biggest cells and keeping all refinements,
meaning that decreasing the length of one cell by two would increase the number of
cells in the domain by approximately four. The three different grids had a smallest
cell size of Az = AYmin = 0.004 m, Axin = AYpin = 0.002828 m and Ax,;, =
AYpmin = 0.002 m and the time step used for all grids was set to At = 1 ms. The
results are shown in figure 4.39. The grids with Az, = AYmin = 0.002828 m
and A% = AYmin = 0.002 m are in excellent agreement. Hence, the grid with
AZpin = AYmin = 0.002 m is deemed fine enough. In table 4.7 the mean value,
amplitude and frequency of the displacement obtained with the different grids is
summarized.
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Figure 4.39: Displacement in both x- and y-direction of point A of an elastic beam
attached to a rigid cylinder (FSI2). Comparison between different grids. Az, =
AYpmin = 0.004 m (—), Azpin = AYpmin = 0.002828 m (— ) and Azpin = AYmin =
0.002 m (—).

Table 4.7: Mean value, amplitude and frequency of the displacement for point A of
an elastic beam attached to a rigid cylinder (FSI2). Different fluid grids.

Uy (A) [ mm] uy(A) [ mm]

0.004 | —14.32 + 11.64[3.881] | 1.891 % 76.85[1.940]
AZpmin = Aymin [m] | 0.002828 | —15.23 + 12.29[3.904] | 1.440 % 79.21[1.952]
0.002 | —15.52 + 12.44[3.901] | 1.039 % 80.01[1.951]

It is shown that by using a time step of At = 1 ms and the spatial discretization
where the smallest cell has a size of Az, = AYpmin = 0.002 m temporal and spatial
convergence is ensured.

In figure 4.40 the displacement is compared to the one obtained in [57]. The agree-
ment between the two are excellent.
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Figure 4.40: Displacement in both x- and y-direction for point A of an elastic

beam attached to a rigid cylinder (FSI2). Comparison between obtained results with
AZpmin = AYmin = 0.002 m and At =1 ms (—) and results from [57] (—).
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In figure 4.41 the drag force and the lift force is shown and compared to the one
obtained in [57]. The overall behaviour is similar for both forces, but a small increase
in mean value of the drag force has occurred. The, previously discussed, white noise
in the force signal can still be observed. The amplitude of the white noise in the
lift force is slightly higher compared to the amplitude of the white noise in the drag
force.
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Figure 4.41: Drag and lift force of an elastic beam attached to a rigid cylinder
(FSI2). Comparison between obtained results with Az, = AYmin = 0.002 m and
At =1 ms (—) and results from [57] (—).

The vorticity contours during one period is shown in figure 4.42. Two vortices are
created in each period and the vorticity behaves as expected.

S 4
Time: 9.900000 * Time: 10.000000

Figure 4.42: Countours of the instantaneous vorticity of an elastic beam attached
to a rigid cylinder during approzimately one period(FSI2). (— ) indicates negative
vorticity while (— ) indicates positive vorticity.
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In contrast to the vorticity around the elastically mounted sphere, shown in figure
4.34, vorticity occurs along the upper and the lower boundaries. This is due to the no
slip boundary conditions along these boundaries, which is different in the other case.

In average 11 coupling iterations were needed in order to reach convergence. Mean-
ing that by successfully applying a weak coupling method to solve this case the
computational cost would decrease with a factor of 11.

4.3.1.2 FSI3

A similar time step and grid dependency study has been made for the FSI3 case
as for the FSI2 case. Firstly the case was simulated with three different time steps
at the same grid, with a smallest cell size of Az,in = AYmin = 0.002 m. The
different time steps were At = 2 ms, At = 1 ms and At = 0.5 ms and the obtained
displacement for point A is shown in figure 4.43. An offset in the displacements
occurs with the longest time step, At = 2 ms, while the two shorter ones, At = 1
ms and At = 0.5 ms, are in excellent agreement. In table 4.8 the mean value,
amplitude and frequency of the displacements obtained with the different time steps
are summarized.
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Figure 4.43: Displacement in both x- and y-direction for point A of an elastic
beam attached to a rigid cylinder (FSI3). Comparison between different time steps.
At =2 ms (—), At =1 ms (—) and At = 0.5 ms (—).

Table 4.8: Mean value, amplitude and frequency of the displacement for point A of
an elastic beam attached to a rigid cylinder (FSI3). Different time steps.

ug(A) [ mm] uy(A) [ mm]
—2.115 + 2.355[10.64] | 4.201 + 28.86[5.319]
At [ ms] 1 | —2.565 % 2.623[10.64] | 2.744 + 31.72[5.319]
0.55 | —2.64 & 2.677[10.73] | 2.847 & 32.4[5.367]

For the grid dependency study three different grids were used with a smallest cell
size of Axpin = Aymin = 0.002828 m, Az, = AYmin = 0.002 m and Az,,;, =
AYpmin = 0.001414 m. The time step was kept as At = 0.5 ms for all three grids.
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4. Results and Discussion

The results are shown in figure 4.44. The obtained displacement while using the
two finer grids, Az,in = AYmin = 0.002 m and Az, = AYmin = 0.001414 m, are
in excellent agreement. In table 4.9 the mean value, displacement and frequency of
the displacements are summarized.
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Figure 4.44: Displacement in both x- and y-direction for point A of an elastic beam
attached to a rigid cylinder (FSI3). Comparison between different grids. Az, =
AYpmin = 0.002828 m (— ), AZpin = AYmin = 0.002 m (—) and AZpin = AYmin =
0.001414 m (—).

Table 4.9: Mean value, amplitude and frequency of the displacement for point A of
an elastic beam attached to a rigid cylinder (FSI3). Different fluid grids.

uy(A) [ mm] uy(A) [ mm]

0.002828 | —2.953 =+ 3.02[10.59] | 1.654 % 34.14[5.296]
AZpin = Aymin [m] [ 0.002 | —2.64 £ 2.677[10.73] | 2.847 £ 32.4[5.367]
0.001414 | —2.648 £ 2.63[10.8] | 2.259 % 32.62[5.401]

In figure 4.45 the obtained displacement is compared to the the one obtained in [57].
A small offset in displacement can be observed, but the two are still in good agree-
ment. For every time u, reaches a local maximum or minimum value u, reaches a
local maximum or minimum value two times. In the obtained solution the difference
between these two local minimum values for u, is bigger compared to the the dis-
placement obtained in [57]. The reason for this difference has not been investigated
in the thesis.
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Figure 4.45: Displacement in both x- and y-direction for point A of an elastic
beam attached to a rigid cylinder (FSI3). Comparison between obtained results with
AZpmin = AYmin = 0.001414 m and At = 0.5 ms (—) and results from [57] (—).

In figure 4.46 the obtained fluid forces are compared to those from [57]. A white
noise of a similar amplitude as for the forces obtained for the FSI2 case can be seen.
Aside from this the behaviour of the lift forces, F),, are in good agreement. The drag
force, F,, has a similar behaviour, amplitude and frequency but the mean value has
an offset of approximately 20 N compared to the drag force in [57].
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Figure 4.46: Drag and lift force of an elastic beam attached to a rigid cylinder

(FSI3). Comparison between obtained results with Az, = AYmi = 0.001414 m
and At = 0.5 ms (—) and results from [57] (—).

In figure 4.47 the vorticity countours are shown during one period. As for the FSI2
two vortices are created in each period. But the distance to where the shedding
occurs from the structure is further down stream. This is due to the increased
velocity and decreased displacement, which is caused by the increased stiffness.
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Figure 4.47: Countours of the instantaneous vorticity of an elastic beam attached
to a rigid cylinder during approzimately one period (FSI3). (— ) indicates negative
vorticity while (— ) indicates positive vorticity.

In average 21 coupling iterations were needed in order to reach convergence. Meaning
that successfully solving this case with a weak coupling method would decrease the
computational cost with a factor of 21.

4.3.2 Force Smoothing Method

The force smoothing method presented in algorithm 4 was the only weak coupling
able to produce a stable solution for the elastic beam attached to a rigid cylinder.
But in order to achieve a stable solution a § = 0.0004 was needed. The solution
has been calculated for § = 0.0004 and 8 = 0.0002 and the obtained displacement
in y—direction is compared to the one obtained with the strong coupling in figure
4.48. Setting [ to such a small value creates an big offset in both displacement and
frequency. Recall that the domain only stretches from y = —0.2 to y = 0.21 meaning
that the amplitude of the oscillations are even bigger than the domain itself, which
is nonphysical. As 3 decreases the force smoothing method should be less capable
of capturing high frequencies. This is confirmed in figure 4.48, where the frequency
of the obtained oscillations are bigger with g = 0.0004 compared to f = 0.0002.
The frequency of the displacement in y—direction was calculated to 1.951 Hz, 1.182
Hz and 1.1215Hz with the strong coupling method and the force smoothing method
with § = 0.0004 and S = 0.0002, respectively. Meaning that the frequency was
captured with a deviation of 40 %. This was not possible with the explicit coupling
method and might be useful in some industrial applications.
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Figure 4.48: Displacement in y-direction for point A of an elastic beam attached
to a rigid cylinder (FSI2). Comparison between the strong coupling method (—)
and the force smoothing method with f = 0.0004 (— ) and § = 0.0002 (—).

4.3.3 New Ideas for Increased Stability

When studying the reason for the severe stability issues when solving the elastic
beam attached to a rigid cylinder using weak coupling methods it was found that
oscillating velocities of the structural interface caused big problems. Hence, a fil-
tering of the velocities of the interface was tested in order to investigate the effect
on the stability. The method is basically equivalent with the interface predicting
method presented in algorithm 2 and the only difference is how the acceleration,
velocity and position of the interface is predicted. The prediction is done according
to

;(n _ Xn—l’
x" = pBx" + (1 - B)x", (4.23)
)~(n — anl

In order to achieve a stable solution a 3 of 0.06 were needed. The obtained dis-
placement by using this prediction with § = 0.06 and S = 0.05 is compared to the
obtained displacement by using the strong coupling method is shown in figure 4.49.
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Figure 4.49: Displacement in y-direction for point A of an elastic beam attached
to a rigid cylinder (FSI2). Comparison between the strong coupling method (—)
and the interface predicting method with the interface predicted according to equation

4.23 8=0.06 (—) and 8 = 0.05 (— ).

With this method it also exist a displacement in both frequency and displacement.
But it would be of interest to further investigate what could be done about the ve-
locity of the interface in order to increase the stability of weak coupling algorithms.

4.3.4 Summary

The strong coupling method has been validated using the two case FSI2 and FSI3.
Both temporal and spatial convergence was achieved for both cases. The number
of coupling iterations needed in order to reach convergence were found to be 11
in average for FSI2 and 21 for FSI3. The mean value, amplitude and frequency
are summarized and compared to results from previous studies in table 4.10. The
only one of the proposed weak coupling methods that was able to produce a stable
solution was the force smoothing method. But a very small g was needed, which
caused a big offset in both amplitude and frequency of the displacement compared
to the displacement obtained by using the strong coupling method. A small analysis
of the impact of filtering the velocity in a weak coupling method of the interface
was given, which yielded an increase in stability but decreased the accuracy in both
amplitudes and frequency of the displacement.
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Table 4.10: Summation of mean value, amplitude and frequency of the displacement
for point A of an elastic beam attached to a rigid cylinder (FSI2 and FSI3) and
comparison with previous studies.

uy(A) [ mm]

Obtained results

—15.52 + 12.44[3.901]

1.039 £ 80.01[1.951]

[
S Turek and Hron[57] 14.58 £ 12.44[3.8) 1.23 £ 80.6[2.0]
He and co-workers[31] —13.56 £+ 11.96[—] 1.2+ 77.5]—]
Deegroote and co-workers[58] | —14.07 £ 12.37[3.7] 1.18 + 76.5[1.9]
Obtained results —2.648 +2.63[10.8] | 2.259 £+ 32.62[5.401]
FSI3 Turek and Hron[57] —2.60 £ 2.5310.0] | 1.48 £ 34.38[5.3]

He and co-workers[31]

—2.40 £ 2.30[—]

1.35 + 32.33[]
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Conclusion and Future Work

In this section the conclusions drawn from the present work is presented and what
possible future work could consist of is proposed.

5.1 Conclusion

The present work has consisted of a literature review, implementation of known
coupling methods and one new method in an existing frame work for fluid structure
interaction. An accuracy and stability analysis of existing coupling methods and
the implemented ones was performed.

In the literature review three different weak coupling methods were found, which
has been called the explicit coupling method, the interface coupling method and the
force predictor method in this thesis. Beyond these a fourth one has been developed
in the thesis called the force smoothing method. The coupling methods has been
investigated and compared to a strong coupling method, which enforces equilibrium
at each time step.

Three cases has been investigated. The first one consisted of a rigid sphere at-
tached to an undamped spring in Stokes flow, the second one consisted of a rigid
cylinder attached to a damped spring in a laminar flow and the last one consisted of
an elastic bar attached to a rigid cylinder in a laminar flow. All coupling methods
have been tested on all cases.

With the first case, a quite limited analysis of the accuracy was conducted. The
strong coupling method showed good agreement with the analytic solution. All three
of the explicit coupling method, the force predicting method and the force smooth-
ing method showed a similar degree of agreement with the strong coupling method
while the interface predictor method showed excellent agreement with the strong
coupling method. By using a weak coupling method the computational power was
decreased with a factor of approximately four.

In the second case, the strong coupling method showed second-order accuracy for
both temporal and spatial convergence rate and the result was in excellent agreement
with previous studies. The explicit coupling method showed excellent agreement
with the strong coupling method and was stable down to a solid-to-fluid density ra-
tio of p = 0.46. The interface predictor method and the force predictor method both
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caused a considerable offset in both fluid forces and displacement. The interface pre-
dictor method had the same stability limit as for the explicit coupling method while
the force predictor method caused instabilities at a considerable higher solid-to-fluid
density ratio. The force smoothing method showed good agreement with the strong
coupling method as long as the filtering variable, 3, was not chosen to a too small
value. The stability of the force smoothing method was superior compared to the
other weak coupling methods. At § = 0.1 the force smoothing method was stable
down to a density ratio of p = 0.06 and the displacement of the solution deviated
with less than 1% from the solution obtained with the strong coupling method. At
B = 0.033 the stability of the method exceeded the stability limit of which could be
investigated with the current case. The weak coupling methods decreased the com-
putational cost with a factor of four to six, depending on the density ratio. It should
be noted that the lowest solid-to-fluid density ratio where a stable solution has been
obtained by using a weak coupling method found in the literature is p = 0.21.

The only weak coupling method that was able to produce a stable solution for
the third case was the force smoothing method. But in order to achieve a stable so-
lution a 8 = 0.0004 was needed, which caused a considerable offset in displacement
of the structure. The strong coupling method showed good agreement with previous
results and both temporal and spatial convergence was reached. A small analysis
and discussion of the effect on stability of filtering the velocity of the fluid-solid
interface was also given.

5.2 Future Work

In future work it would be interesting to spend greater effort on investigating how
stable solutions can be achieved with weak coupling methods for problems consisting
of elastic bodies. In the thesis it has been showed that the stability can be enhanced
by filtering the velocity of the interface, it would be interesting to perform a study
how this can be done without sacrificing accuracy.

It would also be of interest to study how different filtering schemes affect the sta-
bility and accuracy for the force smoothing method. Regarding the force predicting
method it would be interesting to investigate which effect different filtering and ex-
trapolation schemes has on the stability and accuracy.

Lastly it would be interesting, and very useful, to investigate the convergence rate
and stability of different strong coupling methods. In the present work the only
strong coupling method has been a Gauss-Seidel method with Aitken under relax-
ation. In the literature there exist a wide variety of different quasi-Newton methods
which has been proven to increase the convergence rate, compared to a Gauss-Seidel
method, and therefore decreasing the computational cost. It has also been proven
that the quasi-Newton methods has better stability compared to a Gauss-Seidel
method.
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