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Automated testing for automotive infotainment systems
NING YIN
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
With the development of automotive industry, the complexity of infotainment sys-
tems is increasing due to the growing number of electronic control units (ECUs).
In-vehicle infotainment (IVI) is gradually becoming one of the main features in high-
class vehicles nowadays. Automotive companies find it a challenge to test these
complex functions for ensuring product quality before start of production. There-
fore, it is highly demanded to carry out high volume of infotainment tests by test
automation to shorten test cycles, improve the quality and save resources.

To address this challenge, one purpose of this thesis is to investigate a suitable
area for test automation within the infotainment area. In the first part, a testing
framework of an ECU diagnosis functionality is introduced. Test cost and effort
estimation is also considered in this part. The second part is to develop a Python
script which is applied in an ECU test for communication and surveillance purposes.
The outcome of the first task can be utilized as a background material for ÅF busi-
ness in related areas while the Python script can be employed in a future in-house
development project.
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1
Introduction

Automotive infotainment systems are a combination of “information” and “enter-
tainment” [1]. Although a fault in infotainment systems can hardly threaten people’s
lives, they still influence drivers’ user experience in the car. For example, an incom-
ing phone call should not be blocked by a radio function; the Bluetooth function
should enable external devices (e.g. phone, iPad) connected to the vehicle to con-
trol music, answering calls from the phone; an unexpected low operating voltage
should be reported to the driver and shown on the display screen. From research
released by GFK Automotive (Gesellschaft für Konsumforschung), five out of top
ten purchasing decisions for cars are associated with infotainment features [2, 3].
With an increasing complexity and diversity of electric and electronic systems, con-
ventional manual testing has a hard time meeting quality and time requirements.
Therefore, test automation comes into the picture to improve the efficiency and re-
duce required human resources. However, it is worth noting that manual testing
cannot be replaced completely with automated testing. Short-term projects, judg-
ing requirement from human intuition and thinking are possible reasons behind this
phenomenon.

1.1 Project Background

ÅF is an engineering and consulting company that delivers consulting service in the
automotive field. One of the main tasks in the automotive department is to explore
the next generation of vehicle infotainment systems. Due to the advancement of au-
tomotive electronics technology and rising of personalized requirements on customer
service, functions such as climate control, wireless communication, digital video and
navigation are integrated into today’s IVI systems [4]. The design of infotainment
systems is gradually becoming one of the key-areas in the automotive industry.
Infotainment systems are composed by numerous ECUs connected through in-car
network. Different protocols can communicate with each other through gateway
ECUs. How to ensure correct functionality of these ECUs is the root of having a
flawless and seamless connectivity IVI system.

The testing of infotainment systems is conventionally carried out by experts manu-
ally. This approach has significant limitations because the testing takes a long time
while still having limited test coverage [5]. In addition, the accuracy requirement is
difficult to meet along with continuous tests and shorter delivery in a sprint (or iter-
ation), which is a basic development unit in an agile project framework. Therefore,
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1. Introduction

test automation with support of proprietary tools and scripts is highly demanded
by car manufacturers. An automated testing system would decrease the need of
human resources and the intervention of experts as well as lead to enhancement of
efficiency, performance and shorter lead time [6].

1.2 Motivation
The customer expectations on new entertainment application and services in their
cars forces the automobile infotainment industry to evolve continuously. Meanwhile
increasing complexity of in-vehicle electronics makes infotainment system integration
difficult. In today’s superb vehicles, the infotainment system works as a distributed
system and integrated system, where hardware and software components interact
by means of in-vehicle network. The typical problems such as interruption from
another feature, concurrency and consistency usually occur in service interaction.
Functional testing, regression testing and robustness testing need to be performed
on these features against erroneous action. Hence, new testing methods should be
adopted for replacing old hardware or software test approaches with more flexibility.
For instance, a new testing method for supporting multiple kinds of input/output,
such as GPS data from navigation, information from advanced driver assistance
systems (ADAS) in a single IVI system. Another example is finding a common
solution to ever-increasing types of infotainment standards and connectivity proto-
cols [7]. If a tester wants to check car performance under circumstance of running
multiple tasks, i.e. a driver uses GPS while connecting the phone to Bluetooth and
adjusting indoor temperature at the same time, testing environment needs to be
simulated involving all task features. This means that the combination of naviga-
tion system, Bluetooth connectivity and communication network must have correct
synchronization. Therefore, new tests should take this into account and analyze the
exact occurrence timing when these tasks are carried out.

The operation of infotainment systems depends on different embedded software ca-
pabilities. Due to frequent development and change of software before production, it
is essential to validate changes and test features after each update. Moreover, regres-
sion test has to be performed to ensure all previous functions are intact. Therefore, a
challenge is introduced for adapting new changes fast while securing other functions
remain intact. It can be tedious and error prone with manual work and thus test
automation is needed through development to reduce time and improve quality.

Another challenge lies in the automation oracle problem, which is also known as
automatic generation of test cases [8]. When applying automated testing in an agile
project, efforts need to be made to quickly react to consecutive changes to the sys-
tem requirements. New test cases are invoked correspondingly and should be added
to the existing test automation in parallel with the development of the project. For
example, tests will fail if the order of two buttons in test case is changed while this
change has not been generated as a new test case. The test-generation problem
becomes more intractable when part of the testing environment is out of engineers’
control or the testing environment is indeterminate [9].

2



1. Introduction

The decision of what tests to automate should be taken at the inception stage
and based on the comparison between the value of test automation and effort to
produce them. The initial phase of assessing different testing goals within the in-
fotainment area is vital since it gives the direction where testing is laborious and
time consuming to perform manually. Other challenges such as architecture of test
code, test code language and test environment specification must also be considered
in this project [10].

1.3 Project Goals

With a planning stage and literature study phase in the beginning, sufficient back-
ground knowledge within automotive infotainment field is acquired. The project
itself can be generally divided into two parts, which correspond to two goals respec-
tively.

• The first aim is to analyze a suitable area using automated test for IVI system.
The chosen area should be agreed on based on motivation and rationale of the
domain. Afterwards, the area deemed as suitable needs further investigation
regarding how automation should be applied and consider test effort estima-
tion.

• The second goal is to create a small useful Python script which can be applied
to an ECU test in an automotive system. The validation of the script will be
achieved by comparing test results with expected behavior of the application
in the vehicle test environment.

1.4 Limitations

In this project, the limitations are:

• In the first part of this thesis, the author will not have access to the real
infotainment systems and hence this part work is a purely theoretical imple-
mentation.

• The coverage of infotainment systems will be provided by ÅF engineers, which
means the scope of test automation discussed in this thesis project is confined,
even if the study would show boundless viable areas can be investigated.

• By the time the author finishes the thesis, the script has not be performed on
the complete automotive system due to the project progress in the company.
However, the test principle is the same and the existing testing result proves
that the method can be applied to future ECU test when the hardware is ready.
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1. Introduction

1.5 Ethical Aspects
Due to the automated testing features and characters of IVI in this project, it is
necessary to take into account ethical implications. First, the sustainable develop-
ment should be considered. A good choice of an infotainment automated testing
area should always take into account the durability and frequency of the test. A
manual testing is recommended when the test is not performed often so as not to
waste the resource. Second, a trade-off between the quality and cost of test au-
tomation is necessary to be made. Third, the coverage of test automation must be
borne in mind that automated testing may cover other areas not done by manual
testing and vice versa. As a result, it comes to ethics if the testing is thorough to
assure the system related with human drivers reliable. Fourth, the thesis project will
receive support from engineers at ÅF company, however, the work should be done
individually and comply with the privacy policy within the company. Regarding to
the safety standard for electrical and electronic systems, ISO 26262 is not especially
required in this project.

1.6 Report Layout
The thesis report is composed of following chapters:

Chapter 2 starts with an introduction to the domain of automotive electronics.
In-car infotainment as a part of automobile electronics application is then expanded
to details regarding its architecture, network used for realizing entertainment fea-
tures, the gateway function and diagnosis function inside ECUs. This chapter also
includes information on test automation technology.

Chapter 3 describes the methodology used for conducting the thesis work and
outlines the research questions.

Chapter 4 demonstrates the testing framework for ECU diagnosis. A new test
cost estimation model is also presented in this chapter.

Chapter 5 illustrates the implementation and execution of an ECU test automa-
tion with communication and surveillance purpose .

Chapter 6 analyzes the result achieved and answers the research questions from
Chapter 3.

Chapter 7 arrives at the conclusion made from this project and proposes areas
to investigate in future.
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2
Technical Background and

Current Situation

This chapter introduces background knowledge related to the thesis work. The
first section refers to automotive electronics, especially automotive infotainment
system. Relevant understanding includes diagnosis functionality, various network
communication and network gateway. Next comes the state of automated testing
technology. The comprehension of these two sections will ease the implementation
of automated test framework raised in the later chapter of this thesis.

2.1 Automotive Electronics Technology
Automotive electronics are organized as distributed system and developed for con-
trolling vehicles by various embedded computer units. These embedded computer
units are known as ECUs. Today, there are typically more than 100 ECUs integrated
in a modern car via in-vehicle network for different kinds of purposes. The purposes
can be mainly classified into: Active and Passive Safety, Powertrain and Chassis
Control, Passenger Comfortableness, Infotainment System and Engine Electronics.
In the following parts, infotainment system will be explained in detail.

2.1.1 Automotive Infotainment
Automotive infotainment, which is also known as IVI or in-car entertainment (ICE),
it is a multi-functional interactive hardware and software system that provides in-
formation services, communication services and entertainment services [11]. Enter-
tainment services include audio/video, radio, rear-seat entertainment etc. Commu-
nication services such as phone calling using voice control technology allow drivers
to have hands-free answering. Another well-known communication service is offered
by Bluetooth, which realizes information interchange with the vehicle by wireless
predefined communication [12]. When the driver gets a call, all other audio related
services are turned mute and the calling from phone gets transmitted to car stereo
system. Rear parking assistance from information services can detect the presence
of vehicles and warn drivers of danger. This vehicle-to-vehicle communication intro-
duces an innovative method for traffic safety and should be utilized without potential
risk of distracting the drivers. The objects at the rear part of vehicle are recorded by
a camera and displayed on the central display. Other information services provide
vehicle related information such as the overall distance the vehicle can cover with
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2. Technical Background and Current Situation

the fuel level, door security, traffic information and weather forecasts are required
by sensors and shown on the display screen.

Generally, IVI systems must have the help of human machine interface (HMI) to de-
liver and process the services mentioned above. The usability of HMIs has increased
considerably due to the features of IVI systems. The correctness of a user interface
is essential to have a faultless experience of IVI system. A typical HMI consists of
central touchscreens, control unit, keypads, multi-function buttons, etc. Figure 2.1
shows an infotainment system example of Volvo V60.

Figure 2.1: Infotainment system of Volvo S90, where 1. Voice control unit 2.
Touch screen and 3. Keypads. Photograph taken by author.

2.1.2 IVI architecture
The applications such as navigation system and audio/visual function are accessed
by either hardkey buttons or via a panel display located in the center console [13].
The design of tactual modalities, such as touch-screen and key-console for human-
computer interaction, is optimized towards simple one-hand manipulation in order
to prevent the driver from being distracted as much as possible. IVI systems are
regarded as modal systems that support interaction among human, exterior environ-
ment and circumstances inside the vehicle. The complexity of IVI systems increases
not only due to growing number of infotainment features but also caused by multi-
haptic modalities (e.g. knobs, buttons, touchscreens), which must be synchronized
correctly and consistently to present the system status to the driver. The connec-
tion between IVI systems and other vehicle functions, for instance engine control
or driver assistance systems, also identify a need of a reliable IVI system to facili-
tate the information acquisition. Figure 2.2 shows three main structural parts of an
infotainment system and their interaction. The detailed explanation is shown below:

• The user interface provides all input modalities such as touching screen and
haptic buttons for entering command from drivers. The output modalities like
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speaker are integrated into user interface as well.

• Applications can be divided into two groups generally. One is called head unit
that offers driver control over the vehicle’s entertainment media [14]. It is usu-
ally integrated in the center of the dashboard. The other is electronic instru-
ment cluster unit which includes a set of instrumentation such as speedometer,
odometer and instrument.

• Management part refers to administration functions such as management of
external devices. The connection master has a table containing information
about all existing connections [15]. The file system stores social media docu-
ments such as photos, musics and videos.

Figure 2.2: Infotainment system structure

In each part, different embedded ECUs interact via one or more communication
buses such as media oriented systems transport (MOST) and controller area net-
work (CAN) shown in Fig. 2.3. The amplifiers are to increase the signal amplitude
provided by the head unit [16]. The head unit communicates with other functions
inside the vehicle through the CAN bus.

2.1.3 In-vehicle Networks
To realize the features of IVI system and architecture mentioned in the last two
sections, in-vehicle networks are required for exchanging information among ECUs.
The development of automotive networks started in the early 90’s. Before that,
point-to-point communication connection was adopted by in-vehicle ECUs. (N2-
N)/2 links are needed for N ECUs. Therefore, the number of ECUs and links
in this strategy has exponential relationship, which cannot be used to deal with
growing number of ECUs [17]. This becomes the motivation of using multiplexed
communication mechanism over a shared medium.

Different communication network protocols are used to meet requirements of band-
width and implementation of distributed systems throughout the car. For example,
around 40 ECUs are integrated in Volvo XC90 by interconnection of a MOST bus,
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2. Technical Background and Current Situation

C
A

N
 B

U
S

MOST

Media PlayerNavigation

External Devices

Amplifiers

Other vehicle functions

Head Unit

Figure 2.3: Infotainment system interaction architecture

both low-speed and high-speed CAN bus and a local interconnect network (LIN) bus.
Rodelgo-Lacrus et al. [18] classified networks into several levels based on data rate
and functions. LIN is an example of Class A network, which is used for simple data
transmission with a speed lower than 10 kbit/s. It is the cheapest among automotive
networks and used when there is no high versatility needed. Class B network such as
low-speed CAN offers transmission rates up to 125 kbit/s. Together with high-speed
CAN belonging to Class C network which operates from 125 kbit/s to 1 Mbit/s it
composes the CAN bus network. CAN is also called multi-master broadcast serial
bus since each node can transmit and receive messages with fault tolerance. Class D
networks such as MOST, are designed for speed exceeding 1 Mbit/s, mainly serving
as gateways between subsystems and carriers for audio, video or other media data.
In the following part, a more detailed introduction for CAN, MOST and Ethernet
is presented.

CAN Network

CAN is an event-triggered bus system for real-time nodes such as temperature sen-
sors, driver door module. It was first released in 1986 by Robert Bosch GmbH and
applied in vehicles. After that other application areas, for instance trams, under-
grounds and aircraft, started adopting it for many applications. The CAN network
provides a single interface for ECUs instead of having several input nodes on the
device. The broadcast communication feature of CAN makes every device linked to
the network notice the transmitted messages and decide if the message should be

8



2. Technical Background and Current Situation

accepted or neglected [20]. Therefore, the additional nodes can be added without
changing the topology of the network. CAN offers non-interrupted transmission
of messages that frames with the highest priority get access to the CAN bus and
transmitted in broadcast. Another advantage of CAN network is error-detection
capabilities supported by cyclic redundancy check (CRC) to detect global and local
transmission errors. The topology of CAN network with both high speed and low
speed bus is illustrated in Figure 2.4.

CAN

Issuer: [Johnny Liu] [XLIU77]; [CRD, EESE, 87410]; [PowerPoint]; Security Class:[Proprietary] 9-May-18 6

Node

High/low CAN bus

Figure 2.4: CAN topology

CAN message has four types denoted as: data frame, remote frame, error frame and
overload frame [19]. Data frame, as the name suggests, is used for transmitting data
to other nodes in the network. Remote frame is similar to data frame except that
the remote transmission request (RTR) bit and missing of data field. Error frame
is generated when a node detects an error and triggers all other nodes to send error
frame as well. The purpose of overload frame is to require more time for a busy
node which causes extra delay between messages [21][22].

MOST Network

MOST network is used for multimedia and infotainment applications such as videos,
radios and other GPS navigation in the car. The using of plastic optic fiber (POF)
cables offers a better performance against electromagnetic interference (EMI). It has
a ring topology which can manage up to 64 devices (nodes). The MOST networking
technology eases the way of connecting multiple devices in today’s infotainment sys-
tems by plug and play functionality. MOST25, MOST50 and MOST150 are three
versions of MOST network. The bandwidth is 25 Mbit/s for MOST25, 50 Mbit/s
and 150 Mbit/s for MOST50 and MOST150. Not only the bandwidth is improved
from the first generation of MOST, but also the frame length is increased to 3072
bits. Thus, MOST becomes more efficient when handling the increasing streaming
of audio and video data.

In a MOST ring, the distance distance between two nodes is 20 meters. The com-
munication direction is one-way transmission as shown in Figure 2.5. A time master
sends MOST frames to the next node in the logical ring with a consistent frame rate
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2. Technical Background and Current Situation

(44 kHz-48 kHz) and all other time slaves with different sampling rates synchronize
their operation with the frame preamble [23]. The data can be sent through syn-
chronous, asynchronous and control channel by different bandwidths [24]. The data
is called synchronous data, asynchronous data and control data correspondingly.

• Synchronous data: Transmission of multimedia data without error detection.

• Asynchronous data: Transmission of multimedia data with high data rate and
error handling.

• Control data: Management of commands and diagnostic information between
network ports with error detection.

Head Unit
NAV/Radio/Audio etc

SpeakerDisplay

Timing Slave Timing Slave Timing Slave

Console

Timing Master

Max 20m

POFHead Unit
NAV/Radio/Audio etc

SpeakerDisplay

Timing Slave Timing Slave Timing Slave

Console

Timing Master

Max 20m

POF

Figure 2.5: MOST timing master and slaves

FlexRay

FlexRay is a time-triggered communication network having a fixed delay when trans-
mitting data. In contrast to unpredictable latency in CAN network, FlexRay is
intended for use in safety-related and fault-tolerant systems (e.g. brake-by-wire).
The protocol provides both synchronous and asynchronous data transfer. Moreover,
both static and dynamic communication segments are provided in a communication
cycle with a pre-defined space for static and dynamic data [25][26]. In this way, the
static communication segment provides bounded delay for deterministic data while
dynamic segment adjusts bandwidth requirement to meet the demand of event-based
data without determinism.

FlexRay has versatile topologies such as passive bus and active star type. Figure 2.6
shows two basic layouts of FlexRay. In Figure 2.6a a node can connect to one or
both of the channels. Node A, Node C and Node E are connected to both channels
while Node B and Node D only connected to either Channel A or Channel B. The
active star structure shown in Figure 2.6b is free from closed ring. The received
signal from one node can be transmitted to all other nodes connected. Similarly, a
node can link to any other channel in the topology. FlexRay can be implemented
as a combination of communication bus system which improves the flexibility and
adaptivity for more applications. Figure 2.7 is an example of hybrid configuration
of FlexRay.
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(a) Passive bus topology (b) Active star topology

Figure 2.6: Basic FlexRay layout

Star 
1A

Node A

Node B

Node C

Node J

Node H Node I

Node GNode E Node F

Star 
2A

Passive Star Network

Active Star Network

Figure 2.7: Hybrid configuration of FlexRay topology

Ethernet

Ethernet is a high-speed system with data rate 100 times higher than that of a
CAN bus, which is necessary for infotainment and active safety application. The
low-cost and specific quality of Service (QoS) are also the motivation for Ethernet.
Ethernet is also widely used in diagnostics [27] by using local area networking (LAN)
technology.

Two common Ethernet topologies are depicted in Figure 2.8. In a bus style config-
uration, all the nodes connected to the bus share one channel under Carrier-sense
Multiple Access with Collision Detection (CSMA/CD) method. In infotainment
systems, with the help of Ethernet switch, the messages from head unit can be
broken down into small packets and sent to the target address. The transmission
is simultaneous and bidirectional. The example in Figure 2.9 shows that there are
two frames in flight on the bus between display and console node. No frame exists
between head unit and speaker node since they are not involved in the transaction.
The function of switch also makes Ethernet more flexible and scalable than other
network topologies.
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Node
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Node 
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Figure 2.8: Two common Ethernet topologies: bus and star based

Figure 2.9: The transaction of packets by Ethernet switch [28]

Comparison of In-vehcile network

Table 2.1 gives an overview of typical networks used in today’s vehicles. The CAN
network has high flexibility, compared with Ethernet, multi-master mechanism en-
ables ECUs to be added to the CAN network easily without requiring a port for
each switch. However, CAN has low performance due to limited “short” messages
(max message size is 8 bytes) and low maximum speed.

Although MOST has long been regarded a wise option for infotainment systems,
it is on the way out due to less flexibility and expensive cost of optical fiber. The
ring topology of MOST leads to disconnected connection if a problem found in one
node. Volvo and Geely, for example, have reduced the number of MOST bus for
modern vehicles.

The main advantage of FlexRay is that it has built-in redundancy by two chan-
nels while Ethernet needs to add additional switch path (extra cost) to achieve the
same performance. However, the drawback of FlexRay is low versatility. FlexRay
lacks the bandwidth and protocols to support the purposes other than X-by-wire
and safety-critical applications.

Ethernet is well suited to the rising number of advanced infotainment applications
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due to its high bandwidth. Moreover, the configuration is easy to change based
on different requirements. Nevertheless, the restriction that every node must ren-
dezvous at switch-point makes it less flexible and incurs significant costs for the
added switches for a complex network configuration.

From the comparison, it can be concluded that the benefit of Ethernet in future
automotive electronic market outweighs other automotive networks. The lack of
bandwidth network CAN can be solved by Ethernet, which makes it more adapt-
able to ever-increasing functionality and performance controlled by ECUs in future
vehicles. Furthermore, Ethernet enables emerging driving-related features in a car,
for example, autonomous driving with a real-time video camera and ADAS. The
broadened applications supported by Ethernet become an attraction for consumers
and a battleground for car manufactures as well. However, it is not easy to adopt
a new networking technology. Transitioning Ethernet into vehicles means the test
method should also be changed accordingly. The existing data analysis tools used
among different networks cannot meet the requirement of Ethernet. The special
physical and IP protocol layer of Ethernet call for new test tools for verifying the
correct integration between Ethernet and other protocols.
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2.1.4 Gateway ECU
For satisfying heterogeneous networks used for in-vehicle applications, a gateway
ECU is necessary to be implemented for these protocols communication. The au-
tomotive gateway is an ECU for linking different communication interfaces and it
realizes the control of information exchange of one or multiple protocols.

Gateways are similar to routers but have more complex configuration. A gate-
way can be applied on the networks with more than one protocol technology. The
data frame format of one protocol needs to be translated to another protocol before
it can be read. For network using the same protocol, the role of gateway is to trans-
late traffic between multiple buses of the same protocol, for example, whether the
transfer speed is too fast or there is traffic congestion on the bus.

Figure 2.10 is an example of an automotive gateway. Both high and low speed
CAN, FlexRay, LIN and MOST can be connected together by a central gateway.
All the protocol translation is performed by only one gateway ECU, thus this ar-
chitecture has low fault-tolerance, which means the communication will be off if the
central gateway fails. FlexRay or Ethernet backbone gateway can be used to share
the load of central gateway. Figure 2.11 shows a combination of ECUs and network
mentioned in this chapter.

Central 
Gateway

Low speed 
CAN

High speed
CAN

LIN

MOST

FlexRay

Figure 2.10: Central gateway layout

The basic function of gateway includes diagnostics, routing and network manage-
ment etc. The detailed description of main function is presented as below:

• Diagnostic tester: A gateway can be equipped with a self-diagnostic connector
to detect any error occurs during the data transmission. For example, if the
message sent is received correctly by the target node. This functionality can
also prevent the error propagate through the networks.

• Message Routing: The message routing ensures the message goes to the correct
network bus. For example, one engineer determines the message path coming
from MOST bus by certain algorithm to the CAN bus with frame identifier 4.

• Packet Routing: The gateway sends the data packet to the destination node
by a routing table. The routing table mainly contains network ID, the desired
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Infotainment 
Head Unit

Gateway

Driver Information 
System

Central Screen Display
MOST LIN

Telematics

Audio

FlexRay

Video
High CAN

USB

Speaker

Speaker

Ethernet

Diagnostic port

Figure 2.11: A typical infotainment ECUs and network topology

address and cost. Thus the gateway can have the record and keep track of
how the data packets are transferred [29].

• Network Management: This enables to handle send or receive requests that
appear on the network.

• Message Translator: The most important function of a gateway is the real-
ization of translating message between two different protocols [30]. By this
feature, the gateway can divide long message into several small sections based
on the requirement of protocols.

2.1.5 ECU Diagnosis
In the infotainment system, it is essential to ensure the status of different ECU
modules whether they work as expected and prevent any malfunction in future [31].
Diagnosis function in a vehicle refers to a vehicle’s self-diagnostic capability to iden-
tify faults and initiate appropriate countermeasures as well as record the fault. The
record offers maintenance with access to the status. There are three diagnosis pro-
cedure in a vehicle [32]:

1. The current vehicle behavior is compared with the expected performance. When
there is any deviation and abnormal conditions detected, the observed discrepancies
are noted as symptoms.

2. Analyze underlying fault based on the symptoms.

3. If the fault is defined, the driver should be informed with an alert. (e.g. warnings
shown on the central panel)
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Diagnostic Protocol

International Standard ISO 14229, unified diagnostic service (UDS) protocol has
been established on the fifth and seventh layers of open systems interconnection
(OSI) model for requirements of diagnostic services. This model allows a diagnostic
tester (client) to control diagnostic functions in an on-vehicle ECU (server) [33].
The action from ECU is represented by service identifiers (SID) and Sub-function
ID. The diagnostic protocol uses “request-respons” model for checking. As shown in
Figure 2.12 , the request is composed of SID, sub-function and request parameter.
The response is different to the request with and without sub-function, the detailed
requirement can be found in protocol ISO14229-1.

Service ID 
SID

SID+0x40

Error ID 7F

Sub-function

Sub-function

SID

Request Parameters

Request Parameters

Error Code

Byte 1 Byte 2 Byte 3

Service Request

Service Positive Response

Service Negative Response

Message DataMessage Data

Service ID 
SID

SID+0x40

Error ID 7F

Sub-function

Sub-function

SID

Request Parameters

Request Parameters

Error Code

Byte 1 Byte 2 Byte 3

Service Request

Service Positive Response

Service Negative Response

Message Data

Figure 2.12: UDS Diagnostic Protocol [34]

2.2 Test Automation
Test automation is a way of using software to manage the test execution [35]. The
process mainly includes: test automation feasibility analysis, appropriate tool selec-
tion, automation framework development, test scripts building, test execution and
result analysis [36]. Test automation requires less human resources and results in
higher efficiency and resource-savings compared with manual test. By taking advan-
tage of test tools and framework, testers can complete execution of basic test cases
in a short time and thus realize integration test as early as possible. However, the
decision should be made whether to carry tests automatically or manually for each
test suite. Generally, maintenance effort and upfront costs (test tools, environment
setting) outweigh the other features when making a choice. Quality and time spent
are also considered as important factors.

2.2.1 Scope of test automation
Some prerequisites need to be considered for making decision of taking test automa-
tion. First, the change of software should not be too frequent. The stability of
test script influences the expenditure of automated test maintenance, which can be
regarded as a new code development. In this case, modification, debug and test
framework improvement are required during maintenance, which cost a lot of hu-
man resource and money. Therefore, the investment is higher than what can be
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saved from automated test. Second, the project cycle should be long enough. The
time spent on determination of test requirements, test framework development, test
script building and debug ought to be guaranteed during the project development.
Generally, the benefit of test automation will not be observed immediately. Third,
test scripts ought to be re-utilized. Low rate usage of test scripts will lead to huge
cost put on script development becoming wasted, and thus losing the meaning of
test automation. Flexibility and compatibility should be taken into account when
developing test scripts. Fourth, tests with low cost-benefit should not be automated.
The following guidance summarizes the typical test types suitable for automated test
and manual test.

Tests suitable for automated test

• Regression tests: To ensure that a recent modification in the system does
not have adverse affection on existing behaviors, the regression testing is per-
formed. Test automation is a perfect solution for regression tests since the
same testing process is needed until a fault is fixed [37]. Due to the fact that
the test cases of regression test and expected result are decided in advance,
the efficiency of conducting this type of test is enhanced by reducing execution
time and labor cost.

• Continuous integration tests: During an agile project development, feedback
associated with integration errors should be given after each test building.
There are usually multiple integration events carried out daily since different
engineers have different projects to integrate each day. By using automated
tests along the project iteration, the test time frame is decreased and testers
can get results after each new commit. Moreover, running test automation
for each integration makes less impact on overall systems when there is a se-
rious issue to fix. This is because that fast execution of test automation gives
immediate result for testers, which prevent to solve all problems at the end
of the project. By test automation, continuous integration tests can also be
executed during night, which gives more time for testers to analyze the issue
during day time.

• Monkey tests: Random inputs are used during the testing and testers check
the performance of system accordingly. Test automation is deemed as prof-
itable way for stochastic input data and enormous steps in these tests.

• API based tests: Application Program Interface (API) specifies the interac-
tion methods among software components. A range of requests and extreme
inputs are utilized in testing to verify if the responds from software is correct.
Test automation is recognized as suitable for API based tests. Unit testing
and functional testing are involved in API based tests.

Tests suitable for manual test
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• Maintenance, installation and setup tests: Usually these tests require hu-
man intervention when re-configuring system architecture and installing soft-
ware/hardware is need.

• Localization tests: If the test target related with specific language or culture,
only a specialist can judge whether the translation is reasonable and without
culture biased.

Although at first glance there are more areas where automated test can be em-
ployed, manual test still plays an important role when tests require human sense,
thinking and knowledge. Moreover the goal of having tests is to improve the qual-
ity of product. Automated test only verifies the relation between test result and
expected outcome without showing how to enhance accuracy and project quality.
Even the test result is the same as anticipated behavior, test cases can be improved
by imagination and creativity of human and thus need further verification. Other
tests need high maintenance cost and have low utilization frequency should also be
performed manually.

2.2.2 Advantage and Disadvantage of Automated Test

From literature review, pros and cons of automated testing have been found. In the
first place, the main merit of test automation is high speed of test execution, which
in turn saves time to run tests. Conducting tests by a computer is much faster
than by a tester, which means the number of tests performed by automation is more
than a manual test in the same period of time. Automated test can be applied to
tests which need to run twenty-four hours or over weekend without tester’s opera-
tion [38]. On the other hand, the reliability has not been reduced by the fast speed
of automated test. For instance, a tester can hardly find the difference of responding
time of 0.3s and 0.5s. However, if carried out by software, every nuance will not be
missed and finally captured by computers. Third, the repeatability of test execu-
tion is another advantage of test automation. Since the procedure and content of
each test execution are the same, testers do not need to worry about human error,
forgetting action steps and other negligence during the execution. The quality of
testing process is therefore increased and manpower can be utilized more effectively.
At last, reusable automated scripts also make automated testing productive. Good
scripts with compatibility can be used in different projects for the same purpose.

However, automated test has limitation in tests which only need one-time effort
and involve human thought, which means manual testing cannot fully replaced by
automated testing [38]. Another drawback is enormous cost of buying tools and
investment of how test automation can be done at early stage. Third, due to the
fact that the performance of test automation relies largely on the quality of scripts,
there will be higher technical requirement on engineers to develop test cases and
framework [39]. The education time for new testers will also add cost to automated
test.
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2.2.3 Test Automation Framework
Test automation framework is an integration of test design thinking and test method
that sets the rules of automation for a specific system under test (SUT). The frame-
work combines test object, test libraries and test cases into an architecture, where
the communication is controlled by arguments transmission. Different open-source
test automation frameworks are available for different purposes. For example, Red-
woodHQ and Sahi are frameworks target for web application tests. Another frame-
work called Citrus is applied to communication protocol testing such as HTTP.

The common test automation frameworks can be classified into record and play-
back, data-driven and keyword-driven in terms of approach. There is also a new
technology of testing software which relies on model-based testing (MBT) frame-
work. The right choice of test automation framework should be based on reusability,
maintainability, extensibility, repeatability and stability. Moreover, the framework
should also be easy to understand by non-testers such as customers and business
stake holders. An effective test framework results in a success of test automation,
otherwise it can cause deviation of test objective.

Common Test Framework

Record and playback is the first generation of linear test automation framework
which is based on the concept of simulation. It captures the users’ action on PC
and replay it. The main problem is that it is difficult to have any change on the
system due to strong dependency on system environment. Therefore the framework
is hard to maintain because of large amount of separate test scripts and non-reusable
modules. The test execution cannot be iterative.

Data-driven testing (DDT) framework is also known as “table driven” type of test.
The tests are executed in terms of data tables, which provide test input and output
values from data files. The test table is then loaded into variables in the driver test
scripts. DDT allows the same test to be executed multiple times with different data-
set. The creation of test cases is no longer dependent on systems as well as becomes
more flexible to fix bugs. The conception of DDT is shown in Figure 2.13. However,
new driver test scripts are required for new kinds of tests to be understood. That
means adaption is needed when either changing driver test scripts or introducing
new test data files.

Keyword-driven testing framework is an extension of DDT by increasing reusability
and maintainability of the framework. The biggest limitation of DDT is removed
by feeding both test data and directives into a driver script. The directives, i.e.
keywords or action words, direct how to execute the test data parsed from test
scripts [40]. The keywords can be created by Python, Java, .Net or through own
scripting language. The driver script interprets these keywords and execute test
by assigned arguments [40]. Figure 2.14 shows the architecture of keyword-driven
framework. However testers need to deal with more complicated frameworks and
more complex test cases due to the increased flexibility, which is time consuming as
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Figure 2.13: Data-driven testing framework

well as needs great effort for development.

Test Case Steps General Function 
Library Application Function Library

Keyword-driven Script

Initialization Script

Start Execution

Test Case List Test Input Data Test Result

User Input

Figure 2.14: Keyword-driven testing framework

Compared to script-based test automation framework, a new approach MBT comes
to the stage in recent years. The working flow of MBT is shown in Figure 2.15. The
core of this testing framework is the model of system behavior illustration, which
is done by manual. In order to make sure that the system description is consistent
with machine-level model, a feedback from model to original requirements is needed.
The next step is to generate test suites containing test sequences and test oracle,
which are also regarded as input and expected outputs. The test sequences are
used for controlling the execution steps of SUT while test oracle observes the results
from the implementation. Afterwards, the results obtained by test oracle will be
compared with the expected outputs and give a pass or fail conclusion. The failure
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information is sent back to implementation stage as well as system model and initial
system requirements stage to find reason of failure.

System Model

SUT Requriements and specification

Inputs

(Test Sequences)

Expected Outputs

(Test Oracle)

Generate

Test suites

Implementation

Result: Pass or Fail?

Create Feedback

FeedbackObserve

Control

Feedback

FeedbackFeedback

Figure 2.15: Model-based testing conception

In conclusion, a testing framework is an independent system from application under
test (AUT). With the help of libraries, common tools, assumptions in the framework,
make it easier for the testers to develop test cases. Supposing that each application
has a new automation environment, the testing framework not only allows testers
to expand specification from one application to another, but also avoids duplicated
test cases among different applications.

The Robot Framework

Based on literature review, a keyword-driven testing framework called Robot Frame-
work is chosen. It is used for acceptance level testing [41], which is also known as
acceptance test-driven development (ATDD). The aim of acceptance testing is to
evaluate the system’s performance and check if it is available to be delivered ac-
cording to the business requirements. The Robot Framework principle is based on
table-driven keywords, which define each step of execution in advance. Figure 2.16
shows the architecture of Robot Framework. Test data layer is presented in tabular
format as a dictation of test execution. Different tabular syntax can be used de-
pends on the context, such as plain text, tab-seprated values (TSV) and hypertext
markup language (HTML). Plain text format is chosen in this project since it is
easy to edit by editors. Test data contains settings, variables, test cases and key-
words. Figure 2.17 is an example of test data file. Table 2.2 lists functionality of
each element in test data. The test data will be processed by the framework when
it starts.

22



2. Technical Background and Current Situation

Figure 2.16: Robot Framework architecture [42]

Figure 2.17: Robot Framework test data file

Table 2.2: Robot Framework test data elements

Table element Functionality

Settings 1) Importing test libraries, resource files
2) Managing test setup

Variables Defining argument described in test case and keywords
Test Case Generating test cases
Keywords Creating user keywords based on existing keywords

Test libraries work as a communication bridge between the framework and appli-
cation under test AUT. The interaction is handled by test library keywords from
both standard and external test libraries supported by Python or Java. Standard
libraries contain methods of dealing with operating system, string manipulation and
verification, telnet communication etc. [43]. In this way the framework can access
system under test without knowing the details, which makes it easier for non-testers
to understand tests. The communication can either be direct or indirect access by
test tools. Robot Framework provides four built-in tools, i.e., Rebot, Testdoc, Lib-
doc and Tidy to ease building tests.
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Features of the Robot Framework

• Easy-to-use: Test cases can be created in the same style due to tabular syntax.

• Reusability: High-level keywords can be derived from existing keywords [43].

• Independence: The Robot Platform is separated from the test application.

• Automatic report generation: The result and log are generated automatically
and provided in HTML format.

• High adaptability: The Robot Framework is suitable not only for acceptance
level testing but also cater to web testing, GUI testing, Telnet etc.

• Resourceful built-in function: Variables for testing different environments and
a simple library of API are offered [43].

2.3 Chapter Summary
This chapter is divided into two sections which are the foundation of this thesis
project.

First, automotive electronics especially automotive infotainment systems were in-
troduced. For supplementing the understanding of IVI system, different in-vehicle
networks were discussed in detail. The comparison between these networks was
presented in this chapter as well. Second, the knowledge of test automation was
provided, which laid the background of the usage of test automation and test frame-
work.
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3
Methodology

This chapter introduces the methodology used for conducting research. The project
begins in a planning stage and followed by a literature study phase, which give
sufficient background knowledge within infotainment-related areas. A detailed de-
scription of research method and study method is explained in the following.

3.1 Research Questions
In the initial step of a research project, having clear and well organized research
questions within a reasonable scope will facilitate the subsequent study. The re-
search questions determine the area will be looked into and identify the specific
inquiry or objectives the project will answer.

Since the existing studies and surveys on testing methods used in automotive in-
dustry are limited, the following research questions are essential for the future test
automation and ÅF business:

• Why is implementing test automation for automotive infotainment systems
difficult?

The answer of this question could be helpful and interesting for the engineers
in ÅF. By analyzing the challenges behind automated testing in vehicle info-
tainment system, the company can get enough information to decide whether
or not to expand their business in the market of interest.

• How to decide whether to automate a test or run it manually within the con-
sidered systems?

Due to the wide coverage of in-vehicle systems, some tests require a test
automation method to enhance the efficiency while others need manual in-
tervention. It is a perennial challenge to find a balance between these two
approaches and to decide when to focus on test automation. A standard in-
cluding cost-benefit analysis and quality assurance need to be made during
the project to solve this question.
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3.2 Research Method
Research method shows the way of getting and analyzing collected information and
data during the project. The procedure of completing the thesis and methods used
are summarized as below:

• Planning. The initial planning stage determines the thesis research question,
limitations, motivation and timing plan.

• Literature study (Prestudy). Gathering information about automotive info-
tainment systems including architecture, in-vehicle network and test automa-
tion workflow etc. The outcoming from online literature studies and previous
publications lay solid foundation for solving tasks afterwards.

• Down-scoping. Investigating and determining test areas that benefit from
automation. It is impossible to automate all tests since some are hard to au-
tomate and may require manual attention. The suitability of test automation
depends on several factors such as system architecture, how many times the
given tests will be performed, the cost and quality of automation etc.

• Analysis. Discussing the chosen automation method and determined auto-
mated areas (Diagnosis) with ÅF engineers in more details. For instance, the
way of how automation will be done with regard to cost, timing and quality.

• Implementation. Developing an automated test based on Python script which
will be applied in further development. The test results will be compared with
expected behavior of the application. The performance (e.g. time-, cost- effi-
ciency) will be taken into account.

• Evaluation. The study results is continuously held along with the thesis project
to make sure the requirements are met.

3.3 Tools and resources
In the first theoretical part of thesis project, no special tools were needed. However,
the author had continuous supervision and feedback from engineers at infotainment
team in ÅF. In the second implementation part, one laptop with access to Robot
Framework, Gerrit and Jenkins was provided.
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4
Diagnosis Test Automation and

Automation Cost

In this chapter, the implementation of the first goal in this thesis is introduced. Info-
tainment ECUs diagnosis testing is selected for test automation based on motivation
and feasibility. A framework of how diagnosis function test should be done is illus-
trated from a theoretical perspective. During the first phase of thesis project, the
automated test estimation especially in terms of money is also one of the concerns.
Based on literature review, a revised way of calculating test automation benefit is
provided in this chapter as well.

4.1 Motivation of Diagnostic Automated Testing

As mentioned in the introduction chapter, electronic functions such as navigation,
Bluetooth, audio/video are booming in today’s IVI systems. Increasing functional-
ity of each ECU on account of customer entertainment and comfort needs is one of
the challenges within automobile industry [44]. It naturally becomes of the essence
to report malfunctional communication inside the car and give drivers warning in-
dication. The exceptions that occur due to incorrect data transmission should be
analyzed and captured by self-diagnostic function in a vehicle. A popular way of
ECU diagnosis is through on-board diagnostics (OBD). It not only reports the vehi-
cle problems to drivers but also stores the trouble code and gives access to technician
later for repairing the error subsystems. The execution of OBD relies on a digital
connector to transfer the ECU’s message together with standard diagnostic trouble
codes (DTC), which is also known as fault code [45]. By reading these DTCs the
engineers are able to identify the particular ECU problem.

In order to make ECUs implemented with correct diagnosis function, testers must
test diagnosis services during the product development. However, current in-car di-
agnosis testing technology has technical bottlenecks in several aspects. For example,
different diagnosis protocols and data formats among various ECUs; test coverage of
diagnosis testing; low efficiency when testing large amount of ECUs etc. Hence, au-
tomated diagnostic testing facilitates the improvement of diagnosis features among
on-vehicle ECUs.
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4.2 Infotainment ECUs Diagnosis Test
The diagnosis test of infotainment ECUs mainly contains two sections: diagnosis
protocol test and diagnosis functionality test. In this project, the research focus is
put on diagnosis functionality.

4.2.1 Diagnostic Protocol Test
Diagnostic protocol is a formalized standard to regulate ECU diagnosis services,
such as what should be sent to the ECU when reading DTC or data message. The
diagnostic protocol for CAN bus is called UDS. The purpose of ECUs diagnosis pro-
tocol test is to verify if the protocol communicating mechanism operates correctly
and reliably according to the ISO standard. The test mainly relies on CANdelaStu-
dio, CANoe.Diva and CANoe.

The first step of ECU diagnostic protocol test is gathering ECU diagnosis speci-
fication such as ECU configuration data or DTC [46]. The data is sent to CANde-
laStudio, which is a tool provided by Vector for editing ECU diagnostic description,
to generate .cdd files. The output files are added together to become a diagnosis
database. CANoe.Diva is an extension of CANoe which can support different in-
vehicle networks and is used for generating test cases based on a diagnosis database.
CANoe is used for generating testing environment. Testers can select wanted test
cases in CANoe as well as determine test flow. In the final step of a protocol test,
a report is produced automatically with analysis and comparison between expected
result and actual outcome. The test flow is shown in Figure 4.1.

ECU diagnosis 
specification CANdelaStudio CANoe.Diva CANoe

.cdd File Test Case

Result

Figure 4.1: Diagnosis protocol automation test flow

4.2.2 Diagnosis Function Test
In contrast to ECU diagnosis protocol test, diagnosis function test needs special
stimulus of input and output from ECUs. In order to validate the performance of
ECU diagnosis function under erroneous conditions, testers need to insert errors
on ECUs in advance. The fault injection was usually done manually in the early
days. However, this approach has poor repeatability and low test coverage when it
comes to complicated setting procedure. Moreover, it has high possibility to destroy
ECUs due to misoperation during the test. Thus having automated testing for ECU
diagnosis function is necessary to enhance the test accuracy, efficiency and stability
with the help of software.

Based on the characteristics of diagnosis service, four basic categories of testing
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(test cases) can be defined as below, however, it is important to mention that ECU
function test cases vary from ECUs to ECUs.

Test cases for diagnosis function test

• Input/output DTC test: The test case is used to evaluate if ECUs could set
correct DTC when there is a short circuit to power supply or ground between
input/output node of ECUs. Alternatively, if DTC will be set when there is
an open circuit or other damaged electrical wiring. The test is also intended to
check whether the function recovers according to the ECU specification after
faults have been solved.

• Abnormal-state DTC set test: The purpose of this test is to inspect whether
ECUs can set DTC as required in diagnosis strategy under abnormal working
operation (e.g. too low voltage).

• State reading test: The aim of examining ECU state reading is to check that
ECU function status records is the same as ECU current working condition.

• Input/output control test: This type of test is to detect if the input/output of
ECU can be enabled or disabled by diagnostic system based on the diagnosis
standard.

Framework of diagnosis function test

For investigating diagnosis function in ECUs, it is essential to have similar working
environment for the ECUs and their peripherals. The working environment setup
includes power supply, stimulation, load and fault simulation. After that, fault in-
jection is applied to the inputs and outputs of ECUs.

Figure 4.2 shows a conceptual framework for the diagnosis functional test based
on the four test cases above. The main facilities are: The PC, VT system created
by the company Vector, CANcase XL, programmable power supply and direct cur-
rent (DC) power supply. PC works as a control interface including both hardware
and software applications such as CANoe. ECUs under test can either be virtual or
real by editing configuration in CANoe. Vector system consists of different modules
which simulate diverse digital and analogue inputs/outputs. The transmission and
generation of CAN messages can be done through CANCase XL who has two CAN
controllers. The CAN message can use either 11 bit or 29 bit identifiers [47].

Modules of Vector system selected for the test

• VT8012A: Backplane. Supplying voltage of 12V for at most twelve modules on
VT system and communicating with computer. The communication is sup-
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Figure 4.2: Architecture of a test automation for diagnostic function test.

ported by Ethernet interface on backplane. Another option of backplane is
VT8006A, which can support at most six Vector VT modules.

• VT7001: Power Supply Module. It has two output sections used for up to two
ECUs with different voltage levels. The supporting voltage for ECU under
test comes from internal power supply by VT7001. VT7001 also can be used
for current measurement.

• VT1004: Load and Measurement Module. The module simulates loads to
ECUs and measures the output voltage of ECUs. It has four channels which
can generate short circuits to ground or battery voltage [48].

• VT2004: Simulation Module. The utility of this module is to simulate resis-
tance and short circuit stimulation.

• VT6104/VT6204: Network Module. Both modules provide common inde-
pendent network interface, i.e. CAN, LIN for ECUs while VT6204 supports
FlexRay additionally.

• VN2610: MOST Interface Module. The module is specially for connecting
MOST bus from ECUs to VT system.

• VT6011: Real-time Module. The module has two USB2.0 ports which can
support interface of module VN2610. VT6011 is regarded as a PC module on
VT system for real-time execution of CANoe [48]. The module is connected
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with PC via Ethernet port.

• VT2816: General Purpose Analog I/O Module. The module provides 12 input
channels for voltage measurement and 4 output channels. Eight out of twelve
channels can also be used for current measurement by shunt.

• VT2516: Digital Module. The modules involves 16 channels, which can sim-
ulate digitally used I/Os of ECUs, short circuit between input and ground or
power supply.

Similar with the choice of test cases, alternative VT system modules can be selected
other than what has been mentioned above according to certain ECU diagnosis
function test.

Detailed implementation of test framework

For the test cases discussed before, the detailed implementation of VT system is:

• Input/output DTC test: The module VT2004 can be used as an analog input
while VT2516 can be utilized as an input for digital signal. Module VT1004
is used for output load and can connect four outputs of ECUs at most. When
faults are injected on Vector system either to input signal or output load, DTC
should be set according to the error type. Otherwise, the diagnosis test fails.

• Abnormal-state DTC set test: Generally, the test modules are the same as
the first test except that programmable power supply is needed for changing
voltage level of VT7001. The successful tests should have right DTC if the
power is lower than normal.

• State reading test: As the same for input/output DTC test, input signals
should be simulated for detecting the current of data. Moreover, the CAN
message needs to be generated by CANcase XL if the output is triggered by
CAN network signal. The analog input is emulated from VT2004 and VT2516
for digital input. Both VT2816 and VT2516 modules can be used as an output
of and ECU.

• Input/output control test: VT1004 or VT2516 can be used for simulation of
ECUs output load.

Procedure of diagnosis functional test

1. Choosing suitable VT system modules and connect each module with input/out-
put of ECUs.

2. Writing diagnostic test cases in CANoe using communication access program-
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ming language (CAPL)based on predefined test steps.

3. Making configuration in CANoe by selecting real or virtual ECUs.

4. Running test cases in CANoe and generating testing report.

5. Analyzing report from step 3 and finding fault reasons. In this step, revision
could be done for test cases and test environment.

4.3 Test Automation Cost
In the previous chapters, the advantages and necessity of having test automation
are discussed. However, the automation process should take costs and risks into
account. The usual way of evaluating the automated test value is by calculating
return on Investment (ROI). ROI is a mathematical way of identifying how much
benefit we can get from investing in an automated test. By understanding ROI
factor, testers can evaluate the value of the project and adjust test plan to achieve
higher gain. It has been used widely at early planning stage for test automation.
Utilizing ROI before starting test automation testers can judge how it pays off as well
as to decide the percentage of areas for which to employ automated test. The basic
principle is to divide benefit by investment cost. In test automation, the benefit
comes from both tangible and intangible factors. The cost of tangible factors such
as labor cost and equipment purchasing cost are easy to calculate. However, there
is no agreement on how to calculate the intangible benefit and expenditure since
many elements are not quantifiable and oversimplified. An inaccurate calculation
leads to improper implementation of test automation and thus causes huge losses
ranging from individual to the whole project.

4.3.1 Previous Work on ROI Calculation
From literature study, we find that there are some previous work related to ROI cal-
culation. In the following part, two representative calculation methods are analyzed
in detail to show that earlier work on ROI calculation is not perfect.

In his “Test Automation ROI” paper, Dion Johnson proposed three ways of cal-
culating ROI [49]. In “Simple ROI”, the calculations are considered in terms of
monetary savings. It takes fixed costs such as tools, training, machines into account
and converts the time factor of automated testing into the form of money. The merit
of “Simple ROI” calculation is that it makes the project investment more intuitive
to the upper level management. However, this method assumes that automated test
can completely replaced manual tests, which oversimplifies the cases when tests are
done with a combination of manual and automated test. In contrast, “Efficiency
ROI” only considers time investment and calculates the benefit from that to assess
test efficiency. The way of calculating is only suitable when test tools are used long
enough to be neglected. “Efficiency ROI” allows testers to estimate the project ‘bud-
get’ and present benefits of doing test automation in terms of days. Nevertheless,
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the method is based on the assumption that full regression can be performed during
test cycles even without test automation, which is rarely true. At last, Dion intro-
duced a “Risk Reduction ROI” which assesses the risk of not having test automation
and calculates the loss caused by the risk. For example, doing automated test saves
a huge amount of time for execution while providing more time to do analysis and
test framework development. This could help to increase the test coverage and thus
reduces the risk of project failures. One disadvantage of this model is that it is
hard for testers to estimate how much money will be lost. Moreover, the lack of
comparison between manual and automated test cannot answer of the reason for
choosing automated test instead of manual test.

En = Aa

Am

= (Va + n×Da)
(Vm + n×Dm) (4.1)

En‘ = Aa

Am

= (Va + n1 ×Da)
(Vm + n2 ×Dm) (4.2)

ROIautomation = Ba

Ca

(4.3)

ROIautomation‘ = 4Ba

4Ca

(4.4)

Douglas Hoffman once introduced four equations for calculating ROI, which are
listed in equations 4.1 to 4.4 [50]. However, each equation has several drawbacks
so that it is not accurate enough to show the cost benefits from test automation.
In equations 4.1 and 4.2, Aa stands for automated costs and Am is manual costs.
The expenditure for preparation before manual tests is expressed as Vm; Va is noted
as implementation cost for automated test. Analysis work after automated test is
represented by Da and Dm means the execution of manual tests. In equation 4.1
and 4.2, test automation is regarded suitable to implement when ratios are smaller
than one. The difference between these two equations is the test time for automated
and manual tests, which is the same in equation 4.1 while different in the other.
Nevertheless, the assumption is often not applicable in real situation. Moreover,
overhead spend such as hardware and software expenditure and maintenance cost
for test automation are not included in any of these two equations. Equations 4.3
and 4.4 are calculated basically the same, which takes the ratio of benefit from
automation over cost of automation. The improvement of equation 4.4 is using
added benefit and added cost of automation over manual instead. The shortcoming
of both equations lies in its practicality, which means it is hard to compute the
benefit in figures absolutely. All four equations are too general to show what should
be considered when calculating the cost-benefit. In addition, when comparing two
ROI figures with the same number, the hasty decisions to automate both projects
can be made without taking time into account. Therefore, the time factor should
be included to make calculation more reliable.

33



4. Diagnosis Test Automation and Automation Cost

4.3.2 New calculation model for ROI
In order to improve the accuracy of existing ROI computation model, a more ad-
vanced model is presented in this section. The basic idea behind the new ROI
calculation is to take the ratio of gain and investment of test automation, which is
shown in equation below:

ROIautomation = Gain
Investment = Cm − Ca

Ca

(4.5)

In the equation, Cm represents cost of manual testing and Ca represents cost of test
automation. The unit of both factors is man-hour. Manual testing cost is composed
of manual test cases creation cost, Cmcc and manual tests execution cost, Cme, as
described by equation 4.6. The overall execution cost consists of expenditure for
the first-time testing and afterwards regression testing. The automated testing cost
contains more elements:

Chs: It can be regarded as a fixed cost of hardware and software used for auto-
mated testing. Machine, tool license and acquisition costs are counted in this item.
The unit is man-hour. The depreciation factor of Chs can be noted as k.

Ct: The notation is the cost spent on training. When the new test automation plat-
form, tools, framework etc. are introduced, testers need to spend time on mastering
these new technology. For an already-existed and familiar testing environment, this
term can be ignored. The unit is man-hour.

Cafc: It is the measurement of research, design and creation cost for the first-
time test automation framework development. This item generally accounts for a
bulk of expenditure during the initial stage of an automated test while it goes down
in subsequent executions. The unit is man-hour.

Cacc: The item stands for cost of creating test cases in automated testing. It
depends on the number of automated test cases, Nac and average cost of individual
automated test case development cost Cacca. During the test cases development,
testers need to write test scripts and debug them. The unit for this term is man-hour.

Cae: This notation represents the overall execution cost for automated test. Gen-
erally, test automation is introduced after several iterations of manual testing and
is applied from M round. Therefore, the execution cost of automated test is calcu-
lated from round M to the end of test round N rather than from the first test. The
number of automated tests for calculating ROI can be expressed by N −M + 1.

After replacing these notations into Cm and Ca, we get:

Cm = Cmcc + Cme (4.6)

Ca = Chs · k + Ct + Cafc + Cacc + Cae (4.7)
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The number of test cases varies for manual and automated test due to the capabil-
ity of the two test methods. Before exploring detailed of equations, there are three
assumptions for this calculation model [51]:

• First, the number of errors is exponentially suppressed as the test times in-
crease. Suppose that there are 40 check points and error rate is 50%, in
consequence there are 20 errors found and need to be fixed after the first test.
For the second test, 10 errors (40*0.5*0.5) will be checked out of 20. After
the third test, only 5 errors will remain. The test will go on until the errors
are all fixed. If d% is average error probability, then the number of fault is
d%*Np for Np checkpoints. The number of error-prone points after i-times
test automation is Np*di, where i is the test order. The illustration is shown
in Figure 4.3.

• Second, assuming that the same number of errors, d%*Np, can be found either
from a manual test or an automated test. This assumption holds even though
the time spent on manual test is longer than that on automated test.

• Third, since analyzing after test execution is needed for both test ways, the
average cost of analyzing a fault, Cepa_sa, after test is the same. Combining
with previous assumptions, the overall erroneous problems (erroneous check-
points) analysis cost, Cepa, is the same for both test methods.
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d%*d%*Np ErrorsFirst test
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Figure 4.3: Error-prone check points after the ith test iteration

Manual Test Cost

In equation 4.6, the manual test cases creation cost, Cmcc, is determined by the
number of test cases, Nmc, and the average cost of a test case design Cmcca. When
it comes to manual test execution cost, Cme, it depends on the number of tests,
single-test execution cost, Cmce, and single-test maintenance cost, Cmsm. For sim-
plicity, problem analysis cost, Cepa, is also counted in the term Cme. It is calculated
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by multiplying number of fault check-points with the average unit analysis cost,
Cepa_sa. After each test, manual test cases need to be maintained due to require-
ment changes and modifications in the test. Thus, maintenance cost is the product
of quantity of test cases, Nmc, and the average single-test-case maintenance cost,
Cmsm_sa. Similarly, The single manual test execution cost is calculated by multi-
plying Nmc with the average cost of single-test-case execution cost, Cmse_sa.

As a result, the manual test cases creation expenditure Cmcc is:

Cmcc = (Number of test cases) · (Average single test case design cost)
= Nmc · Cmcca

(4.8)

In order to compare with cost of automated test, manual test execution cost, Cme,
is calculated with the same period as automated test. It can be expressed as:

Cme = (Number of manual tests) · [(Single manual test execution cost)
+ (Single manual test maintenance cost)] + (Problems analysis cost)
= (N −M + 1) · (Cmse + Cmsm) + Cepa

(4.9)

After replacing equation 4.6 with equations 4.8 and 4.9, the cost of manual testing
can be expressed as:

Cm = Nmc · Cmcca + (N −M + 1) · (Cmse + Cmsm) + Cepa (4.10)

Automated Test Cost

To expand the automated test cost in equation 4.7, detailed form of test case cre-
ation cost, Cacc, and test cases execution cost, Cae need to be investigated. The
automated test cases creation can be calculated when average unit cost of test case
design, Cacca, and the number of test cases, Nac, are provided. The total cost of au-
tomated test cases execution is derived from five variables: the number of test cases,
single-test automated framework maintenance cost, Cafsm, single-test automated
test cases maintenance cost, Cacsm, single-test automated test cases execution cost,
Cacse and overall problem analysis cost, Cepa.

Therefore, automated test cases creation cost Cacc is represented as:

Cacc = (Number of automated test cases) · (Average single test case design cost)
= Nac · Cacca

(4.11)

and the expense of automated test execution starting from the Mth to the Nth test
is indicated as:

Cae = (N −M + 1) · (Cafsm + Cacsm + Cacse) + Cepa

= (N −M + 1) · [Cafsm + Nac ∗ Cacsm_sa + Nac ∗ Cacse_sa] + Cepa

(4.12)
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where Cacsm_sa is average maintenance cost for individual automated test case and
Cacse_sa is average execution cost for each automated test case.

Final expression

The expansion of equation 4.5 considering the manual testing time factor, hm, and
automated testing time factor, ha, is shown in equation 4.13, which can be regarded
as an ultimate form of new ROI calculation described above. It shows the key factors
which influence the test automation and manual test cost computation. The bigger
the value of ROI is, the higher the benefit got from test automation. In order to
make the value big, the nominator needs to be positive and as big as possible while
the denominator should be as small as possible. The prerequisite is that all the cost
associated with manual test cannot be increased, which is reasonable in industry.
Table 4.1, 4.2 and 4.3 list the notations used in this calculation model.

ROI = Cm−Ca

Ca

= (Cmcc+Cme)·hm−(Chs·k+Ct+Cafc+Cacc+Cae)·ha

(Chs·k+Ct+Cafc+Cacc+Cae)·ha

= Cmcc·hm−(Chs·k+Ct+Cafc+Cacc)·ha+(Cme·hm−Cae·ha)
(Chs·k+Ct+Cafc+Cacc+Cae)·ha

= [Cmcc·hm−(Chs·k+Ct+Cafc+Cacc)·ha]+(N−M+1)·[(Cmsm+Cmse·hm−(Cafsm+Cacsm+Cacse)·ha]
(Chs·k+Ct+Cafc+Cacc)+(N−M+1)·(Cafsm+Cacsm+Cacse)·ha+Np·Cepa_sa· M·d%(1−d%)(N−M+1))

1−d%

(4.13)

General
Term Notation Denoting
Cm Manual test overall cost
Ca Automated test overall cost
N Number of overall test times
M Number of automated test starts point
Np Number of check points
d% Error Rate
Cepa_sa Average cost of single error-checkpoints analysis
Cepa Total error-checkpoints analysis cost

Table 4.1: Summary of general notation for the model

Discussion

For enlarging nominator part, four elements related with test automation (i.e. Chs,
Ct, Cafc, Cacc) need to be decreased. That means, testers need to improve resources
using efficiency and use familiar automated environment as much as possible to re-
duce the front-cost. In addition, automated framework creation cost can be reduced
by avoiding using too complicated test framework. The test cases are supposed to
be simple but effective to reduce the script debugging time. On the other hand,
three contributors (i.e. Cafsm, Cacsm, Cacse) indicate that the development of test
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Automated Test
Term Notation Denoting
Nac Number of automated test cases
Chs Hardware and software equipment cost
Ct Automation training cost
Cafc Automated test framework creation cost
Cacc Automated test case creation cost
Cacca Average cost of single test case creation cost
Cae Automated test execution cost
Cafsm Automated test framework single-time maintenance cost
Cacsm Automated test cases single-time maintenance cost
Cacse Automated test case single-time execution cost
Cacsm_sa Average cost of single test case maintenance cost
Cacse_sa Average cost of single test execution maintenance cost

Table 4.2: Summary of automated test cost notation

Manual Test
Term Notation Denoting
Nmc Number of manual test cases
Cmcc Manual test case creation cost
Cmcca Average cost of single manual test case creation cost
Cme Manual test execution cost
Cmsm Manual test single-time maintenance cost
Cmsm_sa Average cost of single test-case maintenance cost
Cmse Manual test case execution cost
Cmse_sa Average cost of single-test-case execution cost

Table 4.3: Summary of manual test cost notation

framework and test cases should be flexible so that it is easy to change them when
modifications are required. Executing test cases in batch can abate the expenditure
spent on test cases execution in a single test. Moreover, increasing the number of
automated tests (N −M + 1) is another important way of increasing nominator. It
can be concluded that if the execution number of test cases is low, it is not suggested
to have automated test due to low ROI result.

For denominator part, the first two polynomials are reduced by the strategies men-
tioned above. Cost of analysis in the last term, shows that the automated test
cannot be started too early. Too small value of M makes too much cost on the
problem analysis.

For the reason that manual test takes longer time to finish the same amount of
tests than test automation does, hm is larger than ha. Therefore, time elements
result in even larger nominator and smaller denominator, which makes ROI fac-
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tor bigger. Although it cannot be seen directly from the equation that automated
testing runs more tests per day, since the time spent on the same number of tests
is shorter by test automation, it can be inferred that automated testing outweighs
manual testing in terms of quantity of test execution.

With the new ROI equation, although sometimes it is hard for testers to know each
item unit cost, it benefits testers in several aspects. First, the equation shows that
the testers can make trade-off between test automation and manual test running
hours. Second, the manager can build a better budget plan and divided monthly
budget more reasonably since the formula gives overall expected investment in terms
of one-time cost and continuous input. In this way, the project manager is able to
have rational resource distribution in different period of the project. ROI value
reflects the task scheduling so that the test leader can give feedback or adjust on
testing cycle and weigh the amount of time. In addition, ROI formula calculation
tells the bottom line of getting benefit so engineers have more confidence about
testing strategy.
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5
Automated Test for an ECU

In this chapter, the implementation of an automated test of a vehicle ECU will be
illustrated.

5.1 System Description

The electronic control unit going to be tested is integrated in a vehicle for com-
munication and surveillance purpose. It connects to other systems in the vehicle
through several electrical interfaces. The main feature provided by the electronic
control unit is to route eight inputs to any of eight analog video outputs. The en-
closure of the ECU, shown in Figure 5.1, consists of a milled aluminum box and an
aluminum top cover. The unit is mainly composed of a computer module, DC/DC
modules, internal cable harness, connectors for external power, video and data sig-
nals interface. The computer module contains a CPU module, video interfaces and
data bus interfaces. The primary function of the computer module is to interface
with and communicate data through different data buses as well as perform a video-
multiplexer function.

Figure 5.1: Electronic unit hardware enclosure
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5.2 Automated Test Scope and Setup

Among several interfaces, there are three types of logical input and outputs: GPIO,
DRU enable and presence check. The automated test area in this project focuses on
DRU enable and presence check.

The DRU enable is a relay output from the computer module. If the electronic
unit activates this signal, the relay will short the two output pins connected to one
of the connectors. The presence check input of the computer module serves as a
detection input of a specific IRV camera connected to the electronic unit. One of the
two different cameras has a jumper inside that will pull the presence check signal
low to indicate a connection. If the other camera is connected lacking of jumper,
the presence signal will return 1.

Instead of testing the function of the DRU enable and presence check inside the
electronic unit, data acquisition (DAQ) is used for testing the relay itself without
access to the real hardware. The test principle is the same for the real electronic
unit, which is shown in Figure 5.2. The DAQ board can be divided into two parts:
switch control and switch check, which corresponds to the DRU enable and presence
check function. The computer PC works as a test controller to set switch commands
to the DAQ board. The python script running on the PC can send commands and
read data automatically from the DAQ board to check the status of the relay. Test
cases are shown in table 5.1.

 A165 Unit

DAQ Board (LABJACK U3-HV)

Switch Control

Switch Check

DAC0
GND

Voltage x
DI

PC (Python)

USB 
Cable

Relay

Set Switch

Read status

DAQ Board

(a) (b)

VS

FIO4

Figure 5.2: Test principle of real hardware and DAQ itself

Table 5.1: Test cases for the electronic unit test

Step Description Expected Result
1 Send ‘open’ signal from PC to DAQ output Relay is opened
2 Check DAQ input of the received signal The status of relay is low
3 Send ‘close’ control signal to DAQ output Relay is closed
4 Check DAQ input of the received signal The status of relay is high
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The DAQ used in this project is called LabJack U3-HV. The equipment and the pin
illustration are shown in Figure 5.3. LabJack U3-HV has 8 flexible I/O (FIO), 4
analog input (AIN), 2 analog output called DAC0 and DAC1. Each analog output
can be set to a voltage up to 4.95 volts. The first four FIO can only be configured
as analog inputs. FIO4 is selected to be a digital input pin to check the relay
status. DAC0 is set to be an analog output with voltage either 5V or 0V, which
corresponds to closing or opening the relay. The VS terminal is connected to the
positive control of the relay to support the operating voltage of the PCB board. The
physical connection is shown in Figure 5.4. The LabJack U3-HV is connected to
the computer by an USB cable. A simple circuit diagram is depicted in Figure 5.5.
The signal relay used is from TE connectivity which has 3V coil voltage. It provides
high dielectric and surge capability depends on different contacts.

Figure 5.3: LABJACK U3-HV

5.3 Test Automation Setup
In this section, how the test automation of electronic unit is done is explained.

5.3.1 Tools
The software tools needed for test automation are Git, Gerrit, Jenkins, Python
and JIRA. During an agile software development project, developers need to make
changes for each build. With Git, a version control system, these changes are
recorded and the files are saved in a version database [52]. The developers can
recall a specific version at any time on any computers as well as prevent the sit-
uation of script missing. Gerrit is a code-review system which is built on the Git
system [53]. The function of Gerrit is to review code file before it is committed.
All committed files are saved at a central source repository, which is regarded as
an authoritative copy of the project content [54]. The illustration of how Gerrit
works is shown in Figure 5.6. There are two developers called Pumbaa and Timon,
both of them can fetch the code from authoritative repository separately and edit
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Figure 5.4: Connection of Labjack U3-HV and relay
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the script on their local computer. After the changes made, they push the modified
scripts, which will be temporarily stored until another developer (reviewer) reviews
the code. The reviewer should leave a verdict to either approve or reject in order
to make the pending changes to be submitted to the final repository. Jenkins is a
build management system used for continuous integration [55]. The main function
of Jenkins is to trigger testing build automatically and give the test report. JIRA is
a task management system, which is a development tool used for planning, tracking,
test and issue management [56].
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Figure 5.6: Gerrit workflow

5.3.2 Test Automation Implementation

The flowchart of test automation is shown in Figure 5.7. The developer first gets a
task from the JIRA system and fetches the source code file from the Gerrit reposi-
tory. The developer then updates code on the local computer and pushes the code
to Gerrit. Afterwards, another software developer who is regarded as a reviewer
fetches the code file from Gerrit, reviews the code and leaves a verdict. The code is
also sent to Jenkins and given a test verdict back from it in parallel. If and only if
two verdicts are postive, the code can be merged to Gerrit central repository and is
public for everyone. The verdict mechanism is depicted in Figure 5.8.

The Python script for test cases, described in table 5.1, is executed in a test rig
and the robot test automation framework discussed in section 2.2.3.1 is applied as
a bridge between Jenkins and the Python script. The relation between Jenkins, the
Python script and the robot framework is displayed in Figure 5.9. After the test is
triggered in Jenkins, it sends command to robot framework to run tagged test cases
on selected test application. The Robot framework executes the Python script based
on the characteristic of keywords defined in the robot test data file. Afterwards, the
feedback is given from the Python script and robot framework. Test results will be
presented as a html report by Jenkins automatically. Finally, the report is handled
by testers for checking the outcome.
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5.3.3 Test Automation Result
The command and window terminal of robot framework execution is presented in
Figure 5.10. The test report generated by the robot framework is shown in Fig-
ure 5.11. It can be concluded that all test cases pass. The test framework input
library is the python script. “Send command to control switch” and “Read switch
status” are two keywords set in the robot framework file. The variable called “COM-
MAND_to_SWITCH” is used to send command to the relay.

With the keywords defined in the robot file, it is straightforward for testers and
other people who are not programmers to understand the function without knowing
the details of the scripts. The revision control system Git makes it possible to track
all changes to perform merge operations and revert changes that go wrong. The
introduction of Jenkins facilitate new tests to be integrated in a project continuous
integration pipeline. The comprehensive reports generated by Jenkins simplifies the
analysis and allows stakeholders and testers to quickly understand the result. Jenk-
ins also saves all the execution history to provide a better view of product testing
process.

Figure 5.10: Command terminal of robot framework execution

Figure 5.11: Successful test report generated by test framework
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6
Analysis and Discussion

This chapter discusses the outcomes mentioned in the previous chapter and answers
the research questions raised in section 3.1.

6.1 Answer to Research Question 1

RQ1 - Why is implementing test automation for automotive infotainment systems
difficult?

The diverse functionality of infotainment ECUs is the main reason that makes auto-
mated test execution hard to realize. The ECU function can either be independently
implemented or mutually related with other ECUs to provide more features, which
in case challenge the integration testing. Another difficulty lies in simulating the
complex user interface such as mobile device and center display console.

In this project, the implementation of ECU diagnosis test is one of the examples of
test cases suitable for test automation. This is because the input and output signals
can be simulated with the help of software tools and test cases can be easily decided.
The execution includes neither the cognition nor the creativity of humans. However,
this is not true for the other test areas within infotainment systems, for example,
Apple carplay compatibility test, bluetooth devices compatibility test, media sys-
tem test, hands-free performance test, over-the-air update test etc. The reason for
the first two is that there are different infotainment platforms, networks and soft-
ware releases in different targeted markets. In addition, the essence of an excellent
infotainment system is good user experience. The user experience can sometimes
only be acquired by testing the infotainment system manually. Examples of this are
media system test and hands-free performance test. HMI, sound and display are
the elements required for media system test. In order to define the types of HMI
errors which test automation should face, it is necessary to find out all HMI errors
happening in real situations. However, it is not easy to locate faults in HMI, for
instance, just for menu navigation, there are probably hundreds of errors caused by
inconsistency, language problem, wrong pop-up dialog windows, overlap text, erro-
neous next-level menu etc.
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6.2 Answer to Research Question 2
How to decide whether to automate a test or run it manually within the considered
systems?

Based on the answer to research question 1 and the literature study mentioned in
the previous chapter, we can concluded that if a test is frequently needed and does
not need human intervention, it is suggested to have test automation. However, it
is also important to make sure that the project time range is long enough to develop
test automation framework and scripts. In the second place, if a test frequency is
high and needs human interaction, it is recommended to have a combination of au-
tomated test and manual test. The starting time of automated test can be decided
by calculating M factor, which is the beginning point of test automation, in the
new ROI calculation model mentioned in equation 4.13. In contrast, suppose that a
test frequency is low and needs human interaction, it is generally not suggested to
conduct test manually.
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7
Conclusions

This chapter lists the achievements in this thesis project and future work which can
be done.

7.1 Achievements

In the beginning of the thesis project, two objectives were set:

• Analyze suitable areas for automated test of vehicle infotainment systems.
The chosen areas should be agreed on based on motivation and rationale of
the domain.

• Create a Python script which can be applied to an ECU test in an automotive
system.

This thesis first considered suitable areas for test automation within infotainment
field. ECU diagnosis test has been further investigated and a theoretical imple-
mentation of test automation is demonstrated. However due to lack of supporting
equipment, it can not be concluded that the test framework is valid for a real situ-
ation.

In this thesis, a new more detailed ROI calculation model used to calculate cost-
benefit factor is provided based on predecessor research results. From the feedback
and evaluation of ÅF engineers, it can be concluded that the model is good for show-
ing all the elements need to be taken care but not very easy to conduct in industry.
The challenge is that it is quite hard to define the cost of each unit described in
the final equation, for example, average cost of single manual test case development
cost. Nevertheless, the calculation model is effective if the unit price can be defined
to some extent.

Another achievement in this thesis is realizing a test automation of an electronic
unit for communication and surveillance purpose. Although there was no hardware
support during the time I carried out this task, the test result is approved that the
same test framework and test principle can be applied to later hardware version.
With the combination of Jenkins, Gerrit and Robot Framework, the test process
can be executed automatically and a test report is generated in HTML format.
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7. Conclusions

7.2 Future Work
After reviewing the achievements, there are some which can be further developed
after this projects.

First, the theoretical test framework can be applied in a real infotainment ECU
test for validation purpose. Vector system modules need to be changed for different
infotainment ECUs. The test cases defined need transition to language in CANoe,
which is known as CAPL. The configuration of testing environment is necessary to
be built in CANoe to emulate the ECUs working situation. The testers need to
decide whether using real ECUs or simulated ECUs by CANoe.

Second, the new ROI calculation model can be used in real projects to calculate the
cost-benefit factor. Based on the ROI factor and analysis discussed in section 6.2,
testers can make a choice between manual test and automated test. In addition,
since ROI calculation plays an important role of making decision for test automation
availability, the accuracy should be improved in future work. Future research focus
can be put on the factors that influence ROI calculation accuracy; the accuracy level
of investment and benefit separately; a framework to estimate the erroneousness of
ROI calculations etc.

Third, the simple test framework developed in section 5.2 can be used for a real
hardware ECU test. The real outcome can be compared with the model testing
method.
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