
Ultra-Low-Latency Wireless Networking
for Mission-Critical Applications

Implementation of a Quorum Protocol on Chaos

Master’s thesis in Computer Systems and Networks

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Ultra-Low-Latency Wireless Networking for
Mission-Critical Applications

Implementation of a Quorum Protocol on Chaos

BEENISH SHAUKAT

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Ultra-Low-Latency Wireless Networking for Mission-Critical Applications
Implementation of a Quorum Protocol on Chaos
BEENISH SHAUKAT

© BEENISH SHAUKAT, 2018.

Supervisor: Olaf Landsiedel, Computer Science and Engineering
Examiner: Magnus Almgren, Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Implementation of a quorum protocol on Chaos
BEENISH SHAUKAT
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In a Wireless-sensor network (WSN), low-power sensor devices are connected wire-
lessly to perform distributed tasks. Such type of networks require low-power wire-
less networking (LPWN). LPWN provides efficient all-to-all communication and the
nodes transmit and receive periodically. Cyber-physical systems (CPSs) are an-
other example of the systems that need LPWN. CPSs also consist of small devices
that are connected together to sense the environmental changes, such as heat sen-
sors, motion sensors and light sensors. Both WSN and CPS can also be examples
of mission-critical systems. Mission-critical systems require low latency and high
reliability.

Usually in a WSN and CPS, the devices have a limited source of energy and
they rely on small batteries. As the devices are wirelessly connected, they consume
most of their energy in radio-transmissions. Traditional LPWN provides centralized
processing, and enables all-to-one and one-to-all communications. In such commu-
nications, data is first collected at the sink, the sink processes the data and sends
the results to all nodes. Such type of communication schemes consume a lot of
energy in sending data towards the sink and receiving back from the sink. Chaos
is a new LPWN scheme that allows distributed processing of the data. Chaos pro-
vides in-network processing, efficient all-to-all communications and a network-wide
agreement using Two-Phase Commit (2PC) and Three-Phase Commit (3PC).

In this thesis, we design and implement a quorum protocol on Chaos. The protocol
enables the Single-Writer/Multiple-Reader (SWMR) and Multiple-Writer/Multiple-
Reader (MWMR) protocols using a majority quorum configuration. We implement
the protocols on the Contiki operating system using Chaos communication primi-
tives. The SWMR/MWMR protocols act as emulators of the shared-memory sys-
tems, and provide highly reliable wireless communications with low-latency. The
protocols also significantly improve the energy-consumption in LPWN.

Keywords: WSN, CPS, Contiki, LPWN, SWMR, MWMR, Chaos.

v

Acknowledgements
I, the author of this thesis, would like to take this opportunity to thank the supervisor
of this thesis, Olaf Landsiedel at Chalmers University of Technology, for his help
and support during this thesis. Also a great thanks to the examiner of this thesis,
Magnus Almgren at Chalmers University of Technology, for providing a valuable
feedback during this thesis.

Beenish Shaukat, Gothenburg, August 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Drawbacks of Traditional Networking 1
1.2 Chaos: A new Approach . 2
1.3 Thesis Contribution . 2
1.4 Thesis Organization . 2

2 Background 3
2.1 Chaos Communication Primitive . 3
2.2 Communication Models . 4
2.3 Commit Protocols . 6

2.3.1 2PC . 6
2.3.2 3PC . 7

2.4 Quorum Protocol . 7
2.4.1 SWMR Register . 7
2.4.2 MWMR Register . 8

3 Related Work 9
3.1 Agreement on Air . 9

3.1.1 Synchrotron . 9
3.1.2 Communication Primitives of A2 10
3.1.3 Group Membership in A2 . 10
3.1.4 Network Wide agreement . 11
3.1.5 Results . 12

4 Design 15
4.1 Synchronous All-to-All Communication 15
4.2 Communication Primitive . 15
4.3 The Majority Quorum Configurations on Chaos 16
4.4 Mapping of SWMR, Quorum protocol on Chaos 16
4.5 Mapping of MWMR, Quorum protocol on Chaos 18
4.6 Packet Format . 19
4.7 Summary of Design . 21

ix

Contents

5 Implementation 23
5.1 Initiating the Read/write . 24

5.1.1 The Read/Write in SWMR 24
5.1.2 The Read/Write in MWMR 24

5.2 Transmit and Receive Policy . 26
5.3 Concurrent read/write . 26
5.4 Concurrent Writes . 28
5.5 Completion policy . 29
5.6 Summary of Implementation . 29

6 Evaluation 31
6.1 Evaluation Setup . 31
6.2 Quorum in Action . 33

6.2.1 SWMR Round . 33
6.2.2 MWMR Round . 33

6.3 Latency . 34
6.3.1 Latency in SWMR . 34
6.3.2 Latency in MWMR . 36

6.4 Energy Consumption . 37
6.4.1 Energy Consumption in SWMR 37
6.4.2 Energy Consumption in MWMR 38

6.5 Long-term Performance . 39
6.5.1 Reliability in SWMR/MWMR 39

6.6 Discussion of Results . 40
6.6.1 Impact of Network Size . 40
6.6.2 Comparison between SWMR and MWMR 41
6.6.3 Comparison with the State of the Art 41

7 Conclusion and Future Work 43
7.1 Ethics and Sustainability . 43

Bibliography 45

x

List of Figures

2.1 An example of the Chaos round, where nodes A, B and C compute
the maximum value, from [1]. 5

2.2 Chaos ensures synchronous transmissions; the variable interrupt delay
and processing time are compensated by introducing a wait loop, from
[1]. 6

3.1 Layered Architecture of A2; Synchrotron provides the base layer ser-
vices. A2 relies on the basic Chaos communication primitives and
provides a network wide agreement. Figure copied from [2]. 10

3.2 Network-wide voting [2]: A initiates the proposal in Slot 1. B votes
for the proposal and transmit in Slot 2. C votes against the proposal,
C completes and transmit in Slot 3. A and B complete in Slot 5 and
4 respectively. Figure is taken from [2]. 11

3.3 Two-phase Commit [2]: in Slot 1, the initiator, node A proposes value
42. Node B agrees on the value and votes for it in Slot 2. Node C
disagree and vote against the proposal. In Slot 5, the initiator receives
feedback from all nodes and decides to abort the transaction. The
initiator’s decision propagates through the network, and at the end of
second phase, all nodes reach the consensus to abort. Figure is taken
from [2]. 12

3.4 Performance comparison between A2 and LWB : LWB achieves the
lowest duty cycle but it is least reliable, from [2]. 13

4.1 Layered architecture of SWMR/MWMR: Synchrotron is the base
layer. Chaos primitives are collect, voting, dissemination and ag-
gregation. 16

4.2 An SWMR Read Round: node A initiates an RR packet. In Slot 2,
all nodes knows the latest value and time. Node B and C learns
something new in Slot 2, therefore, both transmit in Slot 3. Node B
transmits in Slot 2, therefore it listens in Slot 3. 17

4.3 An SWMR write round: Node A initiates a WR packet in Slot 1.
Upon receiving the WR packet, nodes B and C update their times-
tamp and value, add their flag bit and transmit the merge packets.
All nodes update their data in Slot 2. 18

xi

List of Figures

4.4 An MWMR write round: Node A wants to initiates a WR packet,
therefore, it starts an RR packet in Slot 1. Upon receiving the RR
packet, nodes B and C update their flag bit and transmit the merge
packets. In Slot 2 node A completes the read-prior-to-write and it
initiate a WR packet in Slot 3. All nodes update their data in Slot 4
and write completes. 19

4.5 Concurrent writes in MWMR: Assuming that both B and C already
have performed the read-prior-to-write and they initiate the WR
packets in Slot 1 concurrently, node B receives a packet from node
C and it sets its flag bit and retransmit the packet. When node A
receives the packet, it discards its packet and proceed with the WR
packet that initiated by node C. All nodes achieve the majority of
flags in Slot 4, hence the write completes 20

4.6 The packet format of SWMR: the header of the paket specifies the
message type, read or write. The latest packet has the highest times-
tamp. 21

4.7 The packet format of MWMR: the header, timestamp, flags and pay-
load fields are same as SWMR. ID field of the packet contains the
node-id of the writer. 21

6.1 Network topology for Flocklab, all nodes do not have direct commu-
nication with each other [3]. 32

6.2 Network topology for 32 nodes in Cooja. The nodes are in range of
each other. 32

6.3 Nodes activity during a single SWMR round, for 6 nodes in Cooja.
Node 3 is initiator and starts the round with a read/write request. . . 33

6.4 Average activity of the nodes in SWMR for a 6-node network and
24-node network. 34

6.5 Average activity of nodes in MWMR for the networks of 6 and 25
nodes. 35

6.6 Nodes activity during a single MWMR round, for 6 nodes in Cooja. . 35
6.7 Latency comparison between the reads and writes in the SWMR pro-

tocol. 36
6.8 Latency comparison between the reads and writes in MWMR protocol. 37
6.9 Energy consumption as % duty-cycle in SWMR. The highest duty-

cycle is 0.016 % for an interval of 12 seconds in a network of 24 nods
in Flocklab. 38

6.10 Energy consumption as % duty-cycle in MWMR. The highest duty-
cycle is 0.03 % for an interval of 12 seconds in a network of 24 nods
in Flocklab. 39

6.11 Latency comparison between SWMR and MWMR. 40
6.12 Radio-on-time comparison between SWMR and MWMR. 41

xii

List of Tables

6.1 Test results for latency in SWMR. Latency is presented in the number
of slots, a slot is ≈4ms. 36

6.2 Test results for latency in MWMR. Latency is presented in the num-
ber of slots, a slot is ≈4ms. 37

6.3 Radio-on time in SWMR. Slot length: 4ms. Flocklab shows the
highest radio-on time of 30 slots. 38

6.4 Radio-on time in MWMR. Slot length: 4ms. Flocklab shows the
highest radio-on time of ≈ 50 slots. 38

6.5 Reliability in SWMR protocols: the results show that the protocols
are highly reliable with 0 loss-rate. 39

6.6 Reliability in MWMR protocols: the results show that the protocols
are highly reliable with 0 loss-rate. 40

xiii

List of Tables

xiv

Chapter 1

Introduction

Low-power wireless networking (LPWN) provides efficient wireless communication
and keeps the energy cost low. LPWN is required when devices have a limited
energy source. The two most popular examples of LPWN are Wireless-Sensor Net-
works (WSNs) and Cyber-Physical Systems (CPSs). A WSN can be defined as a
network of sensing devices (nodes) that monitor environmental conditions such as
temperature, pressure and vibration. A CPS also consists of sensing devices that
are used to control and get feedback from the physical environment. Usually, the
sensing devices in WSNs and CPSs rely on small batteries and energy efficiency is
a big challenge. These devices are equipped with a low-power processor, on-board
memory and a radio transceiver. In such networks, most of the energy is consumed
by radio transmissions. Therefore, it is essential to minimize the radio transmis-
sions. Both CPS and WSN could be examples of mission critical systems. Many
mission critical systems require a reliable wireless communication with low-latency
and high availability. However, it is critical to reduce latency and provide efficient
wireless communication with high reliability.

1.1 Drawbacks of Traditional Networking

Many low-power wireless applications require data sharing and processing. For
example, industrial control systems compute the control-law in a fully distributed
fashion, where all sensor nodes share their readings [4]. A typical approach for data
sharing in low-power wireless applications is all-to-all communication. A traditional
all-to-all communication scheme follows three steps: data collection and aggregation,
centralized processing, and dissemination [5, 6, 7]. In the centralized processing
scheme, data is collected and aggregated towards a central entity called sink. The
sink collects data from all nodes, processes data and disseminates results in the
network. A major drawback of this scheme is the presence of single-point of failure;
the system fails when the sink fails. Other issues in centralized processing are
high power consumption and latency; sending data back and forth towards the sink
consumes energy and time.

1

Chapter 1. Introduction

1.2 Chaos: A new Approach
Chaos [1] is a new protocol stack that overcomes the drawbacks of traditional net-
working. Chaos provides all-to-all data sharing and enables in-network computa-
tions [1]. Compared to other approaches, Chaos provides the ability to perform data
aggregation, processing, and dissemination, in parallel. Hence, Chaos improves the
energy-efficiency and reduces the latency.

In Chaos, nodes synchronously transmit when they want to share data [1]. Upon
receiving, nodes merge received data with their own data by applying a user-defined
merge operator. Nodes in the network are distinguished by unique identifiers (IDs).
The very first node in a group is named as initiator and provides the information for
synchronization. In a group, nodes send/receive packets to communicate with each
other. Usually, a packet contains a set of flags equivalent to the number of nodes.

Chaos provides several network primitives, where the voting primitive is used to
reach an agreement in a group. When a node agrees on a value, it votes for the
value by setting its corresponding flag bit to 1. Each time a node receive a packet,
it merges the flags and transmits if it learns something new from the last received
packet.

In contrast to Glossy [8] and LWB [5], nodes in Chaos synchronously send different
data. The nodes transmit when they learn something new from the packet received.
When the nodes receive all votes on a value, they repeatedly re-transmit their data
and sleep until the next round.

1.3 Thesis Contribution
This thesis work makes the following contributions:

• Design, implementation and evaluation of the SWMR (Single-Writer/Multiple-
Reader) register [9], using the majority quorum configurations. The protocol
allows only one writer and handles the concurrent read-write conflicts [10].

• Design, implementation and evaluation of the MWMR (Multiple-Writer/Multiple-
Reader) register [11], using the majority quorum configurations. The protocol
allows multiple writers and handles the read-write and write-write conflicts.

1.4 Thesis Organization
We discuss the LPWN, traditional networking and Chaos in Chapter 1. Chapter 2
provides the background material that helps to fully understand the thesis topic.
We present the work relevant to this thesis in Chapter 3. Chapter 4 provides the
design choices for SWMR and MWMR protocols. The implementation details of the
SWMR and MWMR protocols are presented in Chapter 5. Chapter 6 presents how
we evaluate the performance of our SWMR and MWMR algorithms. Discussion on
the results is presented in Chapter 7.

2

Chapter 2

Background

In this chapter, we discuss Contki OS, where we implement our protocols. This
chapter provides more details on the Chaos. We also discuss the communication
models and the quorum protocol that we implement on Chaos.

2.1 Chaos Communication Primitive
Chaos [1] is the first primitive that provides all-to-all data sharing in LPWN and
supports in-network computations. Chaos is built on two fundamental mechanisms:
synchronous transmissions and user-defined-merge operator. Chaos propagation pol-
icy says, “spread the unknown and suppress the known”. The nodes in the network
transmit data when they want to share data. Upon receiving, nodes merge the
received data with their own data and transmit the merged data in the next slot.
The nodes receive the data with high probability, due to the capture effect [2]. The
nodes synchronously share the data until all nodes in the network have the same
data. The user-defined-merge operator allows users to program the merge opera-
tor freely. The nodes only transmit when they learn something new from the last
received packet. The goals are to make the communications efficient, increase the
reliability and minimize the numbers of synchronous transmissions.

Figure 2.1 shows an example of a max round on Chaos. The network consists of
three nodes: A, B and C. Node A, B and C can directly communicate with each
other, as shown in Figure 2.1 (a). Each node proposes a value and the goal is to
determine the maximum value among the nodes. Therefore each node prepares a
packet, where the packet consists of a set of progress flags and payload, as shown in
Figure 2.1 (b). A specific node (node A in this example), called initiator, starts the
transmissions. Node A inserts its value to the packet, sets its flag-bit and transmits
the packet. Both B and C receive the packet in Slot 1 and they determine the
maximum value using the max(a, b) operator and transmit the merged packets in
Slot 2. Due to the capture effect, node A receives B’s packet with high probability.
Node A merges the flags, updates its value and transmits in Slot 3. Node C learns
something new and transmits in Slot 4. Node B does not learn anything new in
Slot 3. Hence, node B listens in Slot 4. In Slot 4, both A and B receive the packet
form C. In Slot 4, all nodes receive the maximum value and the Chaos round ends.

3

Chapter 2. Background

Nodes may have different processing time due to different conditional statements
in the merge operator and the payload size. The time after receiving a packet
till the time the micro-controller unit (MCU) starts to serve the interrupt is also
variable. However, despite of having a variable processing time and interrupt delay,
Chaos ensures the synchronous transmissions by letting the nodes execute the same
number of MCU clock cycles. Chaos introduces a wait loop to compensate the
variable interrupt delay and processing time, as shown in the Figure 2.2.

Chaos minimizes the radio usage to maximize the energy efficiency. When the
nodes complete their tasks, they turn off their radio and sleep until the next round.
To make sure everyone is on one page, the nodes aggressively share their final results
before they switch to sleep.

2.2 Communication Models
In distributed systems, failures may occur due to communication failures and pro-
cessor failures, e.g., crash failures or stop failures. A processor may crash at any
point in time. Crash failures are detectable in synchronous systems, e.g., by imple-
menting time-out schemes. However, in asynchronous systems, it is not possible to
distinguish between a processor failure and a processor that is just slow to respond.
A processor may restart later at some point during a computation. If a processor
restart in a well-defined state, the restart is noticeable. The restart is unnoticeable
when a processor restarts in the same state it fails. In asynchronous systems, the
processors restart time is arbitrary. In synchronous systems, only correct processors
proceed with the same clock rate [12].

There are two commonly used communication models in the distributed systems:
message-passing and shared-memory [9]. In a shared-memory model, processors
communicate by reading/writing the shared registers. In a message-passing model,
processors are connected through links and exchange messages to communicate.

In a shared-memory system, the presence of shared registers makes the system
more robust. If a processor writes a value to a shared register, every future read on
this value is always available regardless of processor failures [9]. In message-passing
systems, processors rely on the information that is obtained from the messages re-
ceived. The message passing systems are more prone to failures, for example, the
message-loss due to link failures or processor failures can produce inconsistencies in
the local-views of different processors. However, it is possible to implement emula-
tors of the shared memory systems in the message-passing systems. Any wait-free
protocol that works in a shared-memory system can be implemented as an emulator.

In their work, Attiya, Noy and Dolev [9] present an emulator of a shared-memory
model, Single-Write/Multiple-Read atomic register. In the message-passing sys-
tems, a global coordination is required to avoid the inconsistencies in the opera-
tion. However, the inconsistencies may still occur due to an adversary. An adver-

4

Chapter 2. Background

(a) Node A, B and C are in range of each other.

(b) The nodes add their payload and set their flags.

(c) Node A is initiator and starts the round by transmitting a packet. Upon receiving
the packet, node B and C merge the flags and payload and transmit in the next
slot. Node A receive the packet from B, merges flags and transmit. Node C learns
something new and transmits in Slot 4. In Slot 4, all nodes have the maximum value
and the Chaos round ends.

Figure 2.1: An example of the Chaos round, where nodes A, B and C compute
the maximum value, from [1].

5

Chapter 2. Background

Figure 2.2: Chaos ensures synchronous transmissions; the variable interrupt delay
and processing time are compensated by introducing a wait loop, from [1].

sary can split a group into smaller groups, operate them separately and produce
inconsistencies. To overcome this problem, the nodes that are disconnected are
considered faulty and blocked permanently [9]. A dynamic quorum protocol for
the Multiple-writer/multiple-reader (MWMR) registers, is discussed by Nancy and
Alexander [11]. Attiya, Noy and Dolev [9] discuss two properties of linearizability
in atomic registers:

• A read operation R must return the value that is written by either the most
recent write-operation or a concurrent write-operation [9].

• If a read-operation R1 reads a value from a write-operation W1, and another
read-operation R2 reads a value from a write-operation W2, if R1 precedes R2
then W2 does not precede W1 [9].

2.3 Commit Protocols
Two-Phase Commit (2PC) and Three-Phase Commit (3PC) are two types of commit
protocols. Achieving consensus or reaching on an agreement is sometimes crucial in
a distributed system. Both the 2PC ans 3PC protocols can be used as consensus
protocols[2].

2.3.1 2PC
In 2PC, there exists a single static coordinator and a number of participants called
cohort. 2PC consists of two phases: proposal and decision. In the proposal phase,
the coordinator broadcasts a proposal to cohort. Each participant of the cohort
replies with a vote either yes or no. In the decision phase, based on the votes
received, the coordinator decides either to commit or abort. If all participants vote
for yes, the coordinator decides to commit otherwise it aborts. Then the coordinator
broadcasts its decision to cohort.

2PC is simple and less complicated as compared to 3PC. However, it has a major
drawback as being a blocking protocol. If a node fails, other nodes wait for its
response and block until the node responds. Recovery schemes can be considered but
they cannot handle two or more failing nodes. For example, if both the coordinator

6

Chapter 2. Background

and a node fail during the decision phase, other nodes might be in an uncertain
state.

2.3.2 3PC
3PC decouples the decision and commit by introducing a pre-commit phase. There-
fore, there are three phases in 3PC: proposal, pre-commit and do-commit. The
proposal phase is same as in 2PC. If all nodes vote yes, the coordinator decides
to move in the pre-commit phase; otherwise, it aborts. When the nodes switch to
the pre-commit phase, they acknowledge the coordinator. When the coordinator
receives acknowledgements from all nodes, it broadcasts a do-commit and all nodes
perform commit.

3PC is non-blocking when there is a single node failure. If a single node fails,
rest of the nodes time-out and recover independently. It can handle the failure of
multiple nodes and the coordinator. If the coordinator or multiple nodes fail, the
nodes can terminate safely using a recovery protocol. However, in case of complex
network partitioning, the nodes can still have inconsistencies.

2.4 Quorum Protocol
A quorum is comprised of two non-empty subsets that intersect each other at least
at one point, e.g., a quorum Q for N number of nodes is parameterized as R∗N +1,
where R is the ratio. A minimum ratio that is required to form a quorum is 0.5. For
a majority quorum the ratio R varies between 0.5 to 1. In his paper, Thomas [13]
presents a quorum-based approach to achieve the concurrency goals in a replicated
database. In a quorum-based system, for each operation (read/write), at least a
quorum should be ready to respond. It is a non-blocking protocol. For example,
in case of processor failures, a reader/writer does not wait for the acknowledgments
from all nodes or a specific node. Thus, the protocol provides a reliable, fault-
tolerant and highly available service. However, a quorum protocol only works when
at least majority of servers are alive or non-faulty.

One drawback of the commit protocols (2PC/3PC) is that they are slow, the
coordinator can only proceed with a transaction when it receives votes from all
nodes. As compared to 2PC/3PC, in majority quorum protocols, only a majority
number of nodes are required to perform a task. Hence, quorum-based algorithms
are more efficient and reliable. We discuss two types of atomic registers: Single-
Writer/Multiple-Reader (SWMR) and Multiple-Writer/Multiple-Reader (MWMR).

2.4.1 SWMR Register
In an SWMR protocol, only one specific processor can perform the write operations,
but more than one processors may read a register. Every read operation must return
the value that is written by the most recent preceding write-operation [9]. To avoid
the read-write conflicts [10] [14], a write gets preference over the concurrent read [9].

7

Chapter 2. Background

SWMR reader’s protocol:
The reader’s protocol for SWMR consists of two phases: query and propagation.

Query phase:
• The reader sends a read query to all processors for the latest timestamp.
• Upon receiving the responses from the majority of processors, the reader com-

putes the latest timestamp.
Propagation Phase:

• The reader transmits the results to all processors.
• Upon receiving acknowledgments from a majority of processors, the reader

returns the read.

SWMR writer’s protocol:
The writer’s protocol for SWMR protocol is comprised of four steps as follows:

• The writer computes a new value and increments the timestamp by one.
• The writer then sends the updated value and timestamp to all processors.
• Upon receiving acknowledgments from a majority of processors, the writer

acknowledges the user.

2.4.2 MWMR Register
In the MWMR registers, more than one writer exist. So, a register can be accessed by
any of the available writers to perform a write operation. However, only one writer
can perform a write operation at a time to avoid the write-write conflicts [10] [14].

The reader’s protocol for an MWMR register is same as for the SWMR register.
However, in the MWMR registers, the writer’s protocol requires an additional query
phase [11].

MWMR writer’s protocol:
In the MWMR registers, the writer does not know about the latest timestamp,
therefore the writer performs a read operation before every write.
Query phase:

• The writer sends a read query to all servers for the latest timestamp.
• When the writer receives responses from a majority of processors, it updates

its local timestamp with the highest timestamp received.
Propagation Phase:

• The writer computes a new value and increments the timestamp.
• For the concurrent writes, a writer with the highest timestamp and the highest

writer’s ID gets preference. For example, if there are more than one writers
with the same timestamp then the writer with the highest ID performs the
write operation.

• The writer transmits the timestamp and value to all processors.
• Upon receiving acknowledgments from a majority of processors, the writer

acknowledges the user.

8

Chapter 3

Related Work

Most of the convention and newer approaches, such as TSCH [15] and Orchestra [16]
relies on the routing protocols to provide best-effort low power routing. Achieving
end-to-end reliability on a best-effort low power routing protocol is crucial. Some
solutions implement the rate-control protocols on top of best-effort protocols to
achieve end-to-end reliability. However, these protocols increase latency. Group
communication is also challenging. Group communication protocols that rely on
the best-effort protocol, do not provide end-to-end reliability.

Most of the research in LPWN, covers only distributed data processing and ag-
gregation. In practice, many conventional approaches are limited to single-hop net-
working [17], such as JAG [18] that provides reliable agreement between neighboring
nodes. Another example of single-hop networking is 6P protocol [19], provides trans-
actions between pairs of neighbors. In this section, we discuss one of the most recent
developments in Chaos, Agreement on Air A2 [2].

3.1 Agreement on Air
A2 [2] introduces a distributed consensus in low-power devices. A2 is developed on
Synchrotron, a robust kernel that provides synchronous transmissions. A2 provides
a network wide agreement based on commit protocols: two-phase Commit (2PC)
and Three Phase Commit (3PC).

3.1.1 Synchrotron

Synchrotron is based on a time-slotted design, the smallest unit of time is a slot.
Usually, a slot is few milliseconds long, but long enough that the nodes can re-
ceive, process and transmit. A certain number of slots group up to form a round.
The nodes should complete their task within a round. Synchrotron provides in-slot
energy-saving mechanism, a node can either transmit or receive in one slot, and
radio is remained off during the processing time. The radio is turned on only for
the transmission or when the node expects to receive data from neighbors.

9

Chapter 3. Related Work

Figure 3.1: Layered Architecture of A2; Synchrotron provides the base layer ser-
vices. A2 relies on the basic Chaos communication primitives and provides a network
wide agreement. Figure copied from [2].

A layered architecture of A2 is shown in the Figure 3.1. A Virtual High-Definition
(VTH) timer is used to achieve the synchronization goals. The effect of interference
is reduced by introducing the parallel channels. The nodes pick a channel randomly.
Each time, the nodes transmit on a different frequency. A scheduler is used to run
multiple applications of A2. It schedules the tasks according to their priorities and
deadlines. The cryptographic functions are used to provide hardware-based integrity
check.

3.1.2 Communication Primitives of A2

Collect, disseminate and aggregate are the basic primitives of Chaos. In addition to
these primitives, A2 also provides the voting primitive. The voting primitive allows
the nodes to vote for or against a proposal. Figure 3.2 illustrates the network wide
voting in A2; the initiator starts a round and suggests a value. Upon receiving, the
nodes vote for commit/abort, merge the flags and transmit the packet in the next
time slot. A node only transmits when it learns something new. Eventually, the
initiator receives votes from all nodes. If everyone votes for the commit, the initia-
tor proceeds with the commit, otherwise it aborts. The initiator disseminates the
results in the network. Upon receiving, the nodes commit/abort based on initiator’s
decision. After that the nodes turns off their radio and sleep until the next Chaos
round.

3.1.3 Group Membership in A2

The information regarding synchronization is enclosed in the header of the packet.
The nodes wishing to join, start listening the channel. Upon receiving an A2 packet,

10

Chapter 3. Related Work

Figure 3.2: Network-wide voting [2]: A initiates the proposal in Slot 1. B votes
for the proposal and transmit in Slot 2. C votes against the proposal, C completes
and transmit in Slot 3. A and B complete in Slot 5 and 4 respectively. Figure is
taken from [2].

the node learns about the next scheduled round, length of the round, slot length
and size of the packet. The nodes, set their join flag to 1 and transmit the packet
in next time slot. Upon receiving the join requests, the coordinator starts a join
operation. The join operation runs in two phases: collect and disseminate. In the
collect phase, the new nodes add their IDs to the list, already joined nodes show their
participation by setting up their flag. The coordinator monitors the progress flags
of already joined nodes, to decide whether to switch or not to the next phase. If all
flags are up, the coordinator assigns flag indexes to the new nodes and disseminate
the new list of flags in the group. When a node wants to leave the group, the
coordinator schedules a leave round. The coordinator removes flag index of the
node and disseminates the new list.

3.1.4 Network Wide agreement

A2 provides network-wide agreement based on 2PC and 3PC protocols. The nodes
reach an agreement within a single round. 2PC requires two phases of synchronous
transmissions. In first phase, the nodes propose, vote and send feedbacks to the
coordinator. In the second phase, the coordinator decides whether to commit or
abort, and disseminates the results. Figure 3.3 illustrates an example of a 2PC
round. 2PC is a blocking protocol. If a node vote for the commit and coordinator
fails, the node blocks until the coordinator recovers and start responding. However,
if a node fails before voting, the coordinator aborts after the time-out. If a node
votes for no and time-outs, it safely aborts after recovering.

11

Chapter 3. Related Work

Figure 3.3: Two-phase Commit [2]: in Slot 1, the initiator, node A proposes value
42. Node B agrees on the value and votes for it in Slot 2. Node C disagree and
vote against the proposal. In Slot 5, the initiator receives feedback from all nodes
and decides to abort the transaction. The initiator’s decision propagates through
the network, and at the end of second phase, all nodes reach the consensus to abort.
Figure is taken from [2].

To overcome the blocking drawback of 2PC, 3PC decouples the proposal-phase
from the decision-phase and introduces a pre-commit phase between them. The
coordinator proposes a value and collects votes from the cohort. After the proposal
phase, the coordinator decides whether to enter the pre-commit phase or abort. If
all nodes in a cohort vote for the commit, the coordinator moves to the pre-commit
phase. If the coordinator time-outs or if it receives one or more votes against a
proposal, it aborts. There is no voting required after the proposal phase; the nodes
only send acknowledgments (ACKs) to the coordinator. When the nodes move to
the pre-commit phase, they send ACKs to the coordinator. When the coordinator
receives acknowledgments from all nodes, it moves to the commit phase. Otherwise,
it aborts to avoid inconsistencies. If a node time-outs after receiving a do-commit, it
proceeds with commit after recovery. If the coordinator fails after pre-commit phase,
the nodes proceed with the commit. After the recovery, the nodes can only proceed
with commit if the state before the time-out is pre-commit or commit otherwise
they abort.

3.1.5 Results
The performance of A2 is measured on four metrics: reliability, availability, radio
duty cycle and radio on time. Figure 3.4 shows the results of the comparison between
A2, LowWireless Buss (LWB) and LWB with Forwarder Selection(FS). As compared
to Chaos, LWB splits all-to-all interactions into sequential collection, processing, and
dissemination phases, thus it is inefficient and produces high latency. In terms of
reliability, A2 achieves the lowest loss rate. However, 2PC and 3PC shows a higher
values for latency and duty as compared to Max, Disseminate and Collect, because
each phase of 2PC and 3PC involves voting or feedback from the cohort.

12

Chapter 3. Related Work

Figure 3.4: Performance comparison between A2 and LWB : LWB achieves the
lowest duty cycle but it is least reliable, from [2].

13

Chapter 3. Related Work

14

Chapter 4

Design

In this chapter we present our design choices for the SWMR and MWMR protocols.
We begin with discussing the basic communication, followed by the communication
primitives. Then we present our quorum configurations. Later in this chapter, we
discuss how the SWMR and MWMR quorum protocols work together with Chaos
primitives, sections 4.4 and 4.5.

4.1 Synchronous All-to-All Communication
Chaos relies on synchronous all-to-all transmissions and in-network processing. In
our quorum algorithms, the nodes synchronously perform the read/write requests
and transmit the results to other nodes in the network. A node initiates a read/write
request and transmits the request in the network. Upon receiving a read/write
request, the nodes process the request and retransmit. Figure 4.1 presents a layered
architecture of our design. We develop our algorithm on the Synchrotron in the
similar way as A2. The minimum unit of time in our setup is a slot. A slot is long
enough that the nodes can transmit, receive and process a request during one slot.

4.2 Communication Primitive
We adapt the basic communication primitive from Chaos, collect, disseminate and
aggregate. For each read/write, the nodes read/write to a majority of nodes, process
the read/write requests and disseminate the results in the network. The nodes
always share the latest copy of data they have. In addition to Chaos communication
primitive, the vote primitive is inherited from A2 [2]. Whenever a node proceeds
with a read/write request, it votes for the request. We modify the Vote primitive
according to our majority quorum configurations.

In SWMR and MWMR, the nodes start a round with read/write request. When a
node wants to start a read/write request, it disseminates the request in the network
and collects votes from at least a majority of the nodes. Other nodes, upon receiving
the request, decide whether to proceed or discard the request. When a node decides
to proceed with a request, it adds its vote, perform the read/write operation and

15

Chapter 4. Design

Figure 4.1: Layered architecture of SWMR/MWMR: Synchrotron is the base layer.
Chaos primitives are collect, voting, dissemination and aggregation.

transmit the results. When a read/write request achieves at least a majority of
votes, results of the request are returned to the user.

4.3 The Majority Quorum Configurations on Chaos
In this thesis, we aim to implement a majority quorum on Chaos. In our majority
quorum configurations, a read/write request is considered successful when it achieves
at least a majority of votes. The progress flags are used for the voting purpose.
Each node has its unique entry in the flags. Whenever a node initiates a read/write
request it adds its flag bit and transmits the request. Upon receiving, if the nodes
agree to proceed with the request, they set their corresponding flag bit in the flags,
merge the flags with received flags and retransmit the request with the resultant
flags. The transmission policy of SWMR and MWMR is the same as in Chaos, the
nodes transmit whenever they learn something new from the last received request.

The nodes continuously monitor their flags. The nodes move towards the com-
pletion procedure when they achieve a majority of flags on a read/write request. In
the completion procedure, the nodes perform a final flood before sleep. In the final
flood, the nodes aggressively transmit their results a specific number of times. After
finishing the final flood, the nodes sleep until next round.

4.4 Mapping of SWMR, Quorum protocol on Chaos
The SWMR protocol allows only one specific writer to initiate the write requests.
The same writer performs all write operation, therefore, the writer is aware of the
latest timestamp. A basic SWMR protocol is presented in Section 2.4.

Whenever the writer wants to write, it initiates a packet with a WR header, com-
putes a new value, increments the timestamp by 1, sets its flag bit, and transmits.

16

Chapter 4. Design

Figure 4.2: An SWMR Read Round: node A initiates an RR packet. In Slot 2,
all nodes knows the latest value and time. Node B and C learns something new in
Slot 2, therefore, both transmit in Slot 3. Node B transmits in Slot 2, therefore it
listens in Slot 3.

Figure 4.6 presents the packet format of SWMR protocol, details on the packet for-
mat are given in Section 4.6. Upon receiving a write request, the nodes compare
the timestamp of the received packet with their local timestamp. If the timestamp
is smaller, the nodes discard the packet. If a node receives a WR packet for the
first time, it updates its data and transmits in next possible slot. Otherwise, the
nodes just merge the flags. The nodes compare the merged flags with the flags of
received packet and transmit if there are differences. Figure 4.3 presents a write
round of our SWMR quorum protocol. In Slot 1, node A initiates a write request
and transmits to node B. Upon receiving, node B updates its timestamp, value and
flags and transmits in Slot 3. In Slot 3, node C receives the packet for the first
time, therefore, it updates its data and flags. Node A (the writer), receives the first
response on the write in Slot 2 from B and merges the flags. Both A and C transmit
in Slot 3. Node B transmits in Slot 2, therefore, it listens in Slot 3.

To read the latest value, the reader initiates a packet with an RR header, its
local value and timestamp. Upon receiving the RR packet, the nodes compare
the timestamp of the received packet with their local timestamp. If the received
timestamp is smaller, the nodes transmit a packet with their local timestamp and
value. Figure 4.2 present a read round of the SWMR quorum protocol. Node A
starts an RR packet in Slot 1. Upon receiving the packet, node B adds its flag-bit,
merges the flags and transmits in next slot. In Slot 2, node A receives back the RR
packet it initiated in Slot 1. Node A merges the flags and transmits the merged
packet in Slot 3. Node C merges the flags in Slot 2 and transmits in Slot 3. Due
to the capture effect [2], node B receives the packet from node A with a higher
probability.

Eventually, a read/write request achieves a majority of flags. The time slot, upon
which more than half of the flag bits are set, is called the completion slot. Reaching
the completion slot, the nodes aggressively transmit their results a specific number
of times. After completing the transmissions, the nodes sleep until the next round.

17

Chapter 4. Design

Figure 4.3: An SWMR write round: Node A initiates a WR packet in Slot 1.
Upon receiving the WR packet, nodes B and C update their timestamp and value,
add their flag bit and transmit the merge packets. All nodes update their data in
Slot 2.

If a read/write operation is failed to obtain a majority of flag bits within a round,
the algorithm indicates a read/write failure to user.

The condition for atomicity is discussed in Section 2.2 and says if a read occurs
concurrently with a write, the read returns the value that is written by the concurrent
write. A round may begin with more than one read/write requests. To avoid read-
write conflicts the write always gets preference over the reads. Therefore, if one of
the requests is the write, the nodes only proceed with the write request. If a node
initiates a read-request and it receives a write request later, the node discards its
read request and proceeds with the write request.

4.5 Mapping of MWMR, Quorum protocol on Chaos
As compared to SWMR, MWMR allows multiple writers. Any node in the network
can initiate the write requests. The read protocol of MWMR is the same as in
SWMR but the write protocol requires a read prior to the write. A basic MWMR
protocol is presented in Section 2.4. The read protcol of MWMR works exactly
like the SWMR’s read protocol. Any node in the network can initiate a read/write
request. Other nodes upon receiving, merge the information and return the latest
version of timestamp and value. However, the MWMR packet also carries the node-
id of the sender. Figure 4.7 presents the packet format of our MWMR protocol.
Section 4.6 presents the details of different fields of the packet. The purpose of
including the node-id in the packet is to resolve the write-write conflicts due to
concurrent writes. The read protocol of MWMR does not care about the node-ids.

In the MWMR protocol, when a node wants to perform a write request, first
it initiates a read request and runs the MWMR read algorithm. When the node
obtains a majority of flags on that read, it switches to the write phase. In the write
phase, the node resets its flags, changes the header from RR to WR, increments the
timestamp, updates its value and sends the packet to other nodes in the network.

18

Chapter 4. Design

Figure 4.4: An MWMR write round: Node A wants to initiates a WR packet,
therefore, it starts an RR packet in Slot 1. Upon receiving the RR packet, nodes
B and C update their flag bit and transmit the merge packets. In Slot 2 node A
completes the read-prior-to-write and it initiate a WR packet in Slot 3. All nodes
update their data in Slot 4 and write completes.

Upon receiving the WR packet, the node update its timestamp and value, merges
the flags and retransmits the packet. Figure 4.4 illustrates a write round of our
MWMR protocol. Node A wants to perform a write, therefore, the node starts a
read request prior to the write. Node A initiates an RR packet in Slot 1. Upon
receiving the packet, node B merges the flags and transmit the packet in Slot 2. In
Slot 2, node C receives the RR packet, node C adds its flag bit and transmits in
Slot 3. Node A receives a majority of flags in Slot 2, hence it moves to the write
phase. It computes a new timestamp and value from the received RR packet. Node
A initiates a WR packet in Slot 3 and sends it to the node B. Upon receiving the
WR packet, node B adds its flag bit and transmit the packet in Slot 4. In Slot 4,
all nodes achieve the majority of flags, hence the write request completes.

In the MWMR protocol, one or more nodes may start a write request at the
same time that produce the write-write conflicts [10]. The MWMR protocol solves
the problem by using the node-ids. If a node receives more than one WR packet
with the same timestamp but different node-ids, the node only proceeds with the
write request that has the higher node-id. Figure 4.5 presents an example of the
concurrent write scenario, both the node B and C wants to write (we suppose the
node already have performed a read prior to the write). Node A receives a WR
packet from node B in Slot 1. Node A updates its timestamp, value and ID, then it
adds its flag bit and retransmit the packet. Due to the capture effect, node B only
receives the packet from node C. When node B receives the packet from node C,
it realizes that the received packet has a higher ID. Therefore, it discards it packet
and proceeds with the packet received. Node B adds its flag bit and transmits the
packet in Slot 3. Upon reaching Slot 3, all nodes achieve the majority flags. All
node proceed with the same packet initiated by node C.

4.6 Packet Format
We use two different type of packets for SWMR and MWMR protocol. The packets’
format of SWMR and MWMR are presented in the figures 4.6 and 4.7. Both packets

19

Chapter 4. Design

Figure 4.5: Concurrent writes in MWMR: Assuming that both B and C already
have performed the read-prior-to-write and they initiate the WR packets in Slot 1
concurrently, node B receives a packet from node C and it sets its flag bit and
retransmit the packet. When node A receives the packet, it discards its packet
and proceed with the WR packet that initiated by node C. All nodes achieve the
majority of flags in Slot 4, hence the write completes

carry a header, timestamp, a set of flag-bits and payload. The header field is 32
bits long and it specifies whether the packet is a read packet or a write packet. The
payload field carries a 32 bits long value, written by the writer. An integer number
timestamp is attached to each value to keep track of the latest value. The packet
also carries a set of flags, the length of flag field depends on the total number of
nodes. In addition to these fields, an MWMR packet also carries an ID field. The
ID field contains the node-id of the writer.

Payload

The nodes perform all read/write operations on a single object called value. It is
an unsigned integer number. In the SWMR protocol, only a specific writer can
make changes to the value, therefore, the writer knows the latest value. However,
in MWMR there are multiple writers, hence a writer performs a read prior to write.

Header

We specify two types of headers: write-request (WR) and read-request (RR). The
header field specifies whether to proceed with a read or a write. When the writer
initiates a write, it sets the header of the packet as WR. When other nodes receive
that packet, they update their timestamp and value. When a node wants to initiate
a read, it sets the header of the packet as RR. Upon receiving an RR packet, the
nodes merge the packet and retarnsmit.

Timestamp

The timestamp is an integer number and specifies the version of data, e.g., the
highest timestamp indicates the most recent value written by the writer. By looking
at the timestamp, the nodes decide whether to accept, merge or discard a packet.
When a node receives a packet with a comparatively lower timestamp, it discards
the packet. If a node receives a packet with the same timestamp, it merges the

20

Chapter 4. Design

Figure 4.6: The packet format of SWMR: the header of the paket specifies the
message type, read or write. The latest packet has the highest timestamp.

Figure 4.7: The packet format of MWMR: the header, timestamp, flags and pay-
load fields are same as SWMR. ID field of the packet contains the node-id of the
writer.

flags. The nodes update their flags and data when they receive a packet with a
higher timestamp.

Flags

Each node has its unique entry in the flags, called flag-bit. If there are n number of
nodes then at least n bits are required to represent the n nodes. For example for a
network of six number of nodes, a set of 8 flag bits is required. The flags are used to
make important decisions such as to assess the confirmations/approvals for a value,
or to determine the completion of a read/write.

ID

In the MWMR protocol, two or more writers may initiate a write request with
the same timestamp. Therefore, to break the tie between concurrent writes, an
MWMR packet carries an ID field that contains the node-id of the writer. When a
node receives two or more concurrent write requests with the same timstamp and
different writer’s IDs, it proceeds the one that have the highest ID.

4.7 Summary of Design
The WSMR and MWMR protocols are designed on the top of Synchrotron together
with Chaos and A2 communication primitives. The reader’s protocol in SWMR and
MWMR is same. However, the writer’s protocol of MWMR consists of two phases,
read and write. Due to multiple concurrent writes MWMR is prone to write-write
conflicts. Therefore, an ID field is included in the MWMR packet, to distinguish
between the concurrent writes.

21

Chapter 4. Design

22

Chapter 5

Implementation

We implement our algorithms on Contiki OS [20] using the C programming language.
We choose the max application for the basic settings such as clock rate and slot
length. We disable the join and enable the static node mapping. In the static node
mapping, the number of nodes are fixed and defined by the user before running
the algorithms. It is very important to correctly define the exact number of nodes.
However, the algorithm are adaptive to different number of nodes and calculates
the length of flags and the quorum parameters according to the number of nodes
defined by user.

We implement two different applications for the SWMR and MWMR quorum
protocols. The basic configurations such as slot_length and the length of a round
are the same for both protocols. However, the packets and implementation of algo-
rithms are different for each protocol. In this chapter we discuss the implementation
of the five most important elements of our SWMR and MWMR algorithms:

• Initiating read/write
• Transmission policy
• Concurrent read-write policy
• Concurrent Write-Write policy
• Completion policy

We start by discussing how our SWMR and MWMR algorithms initiate the reads
and writes. As the two algorithms have different policies for initiating the reads
and writes, therefore, we discuss them separately under Section 5.1. Chaos aims
to minimize the number of transmissions to reduce the energy consumption. We
follow the same trend set by Chaos. The nodes transmit when they learn something
new or when they realize that the neighboring nodes have less information. Sec-
tion 5.2 presents the details on the implementation of the transmission policy. It is
already highlighted in the earlier section of this report that the SWMR and MWMR
protocols are prone to read-write conflicts. In addition to read-write conflicts, the
MWMR protocol is also prone to write-write conflicts. Sections 5.3 and 5.4 discuss
how we implement our solution for these conflicts. The nodes observe three phases,
first they initiate read/write requests in the proposal phase, after receiving a major-
ity of flags on a proposal they move to the completion phase. In completion phase,

23

Chapter 5. Implementation

nodes aggressively transmit their results a specific number of times. When the nodes
finish the completion phase they move to the sleep phase. Section 5.5 presents how
we implement the completion policy for our algorithms.

5.1 Initiating the Read/write
We use a flip-coin method to choose between the read and write. To implement the
flip-coin function, we use the rand() function to randomly generate a value between
0 and 1.

5.1.1 The Read/Write in SWMR
In the SWMR protocol, only one specific node can act as a writer and the rest of
the nodes only read. In our algorithm, the initiator is a single writer. Each round
initiator chooses between reading and writing. If the initiator starts a write round,
all nodes proceed with the write.

Algorithm 1 Initiating a read/write request in SWMR
if Initiator Node then

Flip Coin
if Heads then

Set Header = Write Request
Timestamp = Local_timestamp +1
Value = Local_value +1
Transmit

else
Query = Read
Set Header = Read Request
Timestamp = Local_timestamp
Value = Local_value
Transmit

end
else

Choose Read and follow the same steps as mention above for the Read Request.
end

5.1.2 The Read/Write in MWMR
As compared to SWMR, there are multiple writers in MWMR. In MWMR, a node
starts a round by initiating a read/write with a probability of 0.5. In the beginning of
each round there may exist more than one write request but only one write request
proceeds in a round. The write procedure of MWMR are different than SWMR.

24

Chapter 5. Implementation

However, the read procedure is the same as in SWMR. The write procedure follows
two phases, read query and write query. In the read query phase, the writer starts
a read request and performs a read prior to the write. When the writer achieves
a majority of flags on the read request, it moves to the write query phase. In the
write query phase, the writer computes a new timestamp and value from the data it
received during the read query phase. After computing the timestamp and value, the
writer prepares a write packet with the WR header, inserts the computed timestamp
and value, adds its flag bit, and transmits the packet.

Algorithm 2 Initiating a read/write request in MWMR
if Initial_State then

Flip Coin
if Heads then

Query = Write
Set Header = Read Request
Timestamp = Local_timestamp
Value = Local_value
ID = node-id
Transmit

else
Query = Read
Set Header = Read Request
Timestamp = Local_timestamp
Value = Local_value
ID = node-id
Transmit

end
end
else if Query = Write and current header == read request and Flags == majority
then

Set Header = Write Request
Timestamp = Local_timestamp +1
Value = Local_value +1
ID = node-id
Transmit

end

25

Chapter 5. Implementation

5.2 Transmit and Receive Policy
The nodes can either transmit or receive during a slot. The nodes only transmit,
(i) when they learn something new either by themselves or from a packet received,
(ii) when they realize that the neighbors know comparatively less. If a node trans-
mits successfully in a slot, the next slot it receives. At the beginning of the algorithm,
the initiator transmits, and everybody else receives. If a node fails to transmit, the
node retransmits that packet with a retransmit index. If a node fails to receive, the
node retransmit with an invalid-receive index. After reaching the completion slot,
the nodes aggressively transmit the results a specific number of times and sleep until
the next round.

Algorithm 3 Transmit/receive policy in SWMR/MWMR
if Received Successfully then

if Received Timestamp = Local Timestamp then
Flags = Local_Flags OR Received_Flags

end
else if Received Timestamp > Local Timestamp then

Update Local Information
Transmit

end
end
else if Transmitted Successfully then

Receive In Next Slot
end
else if Transmit Failed then

Fail_Transmit_Count ++
if Fail_Transmit_Count = Retransmit_Index then

Transmit
Fail_Transmit_Count = 0

end
end
else if Receive Failed then

Fail_Receive_Count ++
if Fail_Receive_Count = Invalid_Receive_Index then

Transmit Fail_Receive_Count = 0
end

end

5.3 Concurrent read/write
Each node maintains a local version of the information, such as timestamp, header,
value, and flags. Upon receiving, the nodes compare the information in the received
packet with their local information and decide whether to update, merge or discard.
A node may receive a packet with a different header, for example, a node starts with
an RR packet and it receives a WR packet. If a node receives a packet with the

26

Chapter 5. Implementation

same header but with a higher timestamp, the node updates its timestamp, value,
and flags according to the packet received. When a node receives a packet with
a lower timestamp, the node transmits its local version of information, so that the
other nodes can catch up. The pseudo code below presents how our algorithm works
with the headers and timestamps.

Algorithm 4 Handling the concurrent read-write requests
if Received_Header 6= Local_header then

if Received_Header=Write_request and Received_Timestamp>Local_Timestamp
then

Header = Received_Header
Timestamp = Received_Timestamp
value = Received_Value
Reset Local_Flags
Set Flag_bit
Merge Flags
Transmit

end
else if (Received_Header=Read_request) and (Received_Timestamp < Lo-
cal_Timestamp) then

Transmit

end
end
else if Received_Header = Local_Header then

if Received_Timestamp = Local_Timestamp then
Set Flag_bit
Merge Flags
Transmit

end
else if Received_Timestamp > Local_Timestamp then

Timestamp = Received_Timestamp
value = Received_Value
Reset Local_Flags
Set Flag_Bit
Merge Flags
Transmit

end
else if Received_Timestamp < Local_Timestamp then

Transmit
end

end

27

Chapter 5. Implementation

5.4 Concurrent Writes
The concurrent writes in MWMR may produce write-write conflicts. The writer’s
algorithm in MWMR consist of two phases, read query and write query. In the read
query phase, all nodes wishing to initiate a write learns the latest time stamp and
value. In the write query phase, the nodes compute a new timestamp and value.
Then they initiate a write request packet with the newly computed timestamp and
value. It is possible that two or more nodes start a write request packet with the
same timestamp. This might be problematic if each node (writers) computes a
different value but all of them have the same timestamp. In such a situation, the
nodes may have inconsistency in their data, e.g, the nodes may have different values
but the same timestamps.

The algorithm solves the write-write conflicts by introducing the ID field to the
packet. The nodes add their node-id in the ID field of the packet. When more than
one WR packets arrive at a node, the node only proceed with the request that have
the highest ID.

Algorithm 5 Handling the concurrent write requests
if Received_Header = Write_header then

if Received_Timestamp = Local_Timestamp then
if Received_ID = Local_ID then

Set Flag_bit if not set earlier
Flags = Local_Flags OR Received_Flags
if Local_Flags 6= Received_Flags
Transmit
end
if Received_ID > Local_ID then

Reset Local_Flags
Set Flag_bit in Local_flags
Flags = Local_Flags OR Received_Flags
Transmit

end
end

end

28

Chapter 5. Implementation

5.5 Completion policy
The flags play an essential role, e.g., the nodes get to know about the status of the
other nodes. The nodes continuously monitor their flags to determine the completion
slot. The nodes reset their flags when they receive a packet with a higher timestamp.
Upon reaching the completion slot, the nodes start their final flood. During the
aggressive flooding, the nodes repeatedly transmit the results. A node may learn
new flags during the final flood because the nodes transmit in one slot and receive in
the other slot. So, the nodes transmit, receive, merge the flags and transmit again.
Below we show the pseudocodes for the completion and final flood.

Algorithm 6 Completion of a read/write request, final flood and sleep state
if Received successfully then

if Flags_bits > Total_nodes/2 then
Completion = 1

end
if Completion then

Transmit_count ++
Transmit

end
if Transmit_count ≥ Aggressive_transmit_index then

Transmit_count = 0
Completion = 0
Turn of Radio and Sleep

end
end
if Transmited successfully then

Do Receive in next Slot
end

5.6 Summary of Implementation
We implement the SWMR and MWMR algorithms on a static node mapping. In
SWMR and MWMR, nodes start their round by initiating the read/write requests.
However, in SWMR, only the initiator can perform the write operations. The nodes
transmit when they learn something new from the last received packet. When a
read/write request occurs concurrently, the write always gets preference over the
read. In case of concurrent writes, nodes always choose a packet with the highest
node-id. Nodes perform an aggressive flood before switching to the sleep phase.

29

Chapter 5. Implementation

30

Chapter 6

Evaluation

In this section we evaluate the SWMR and MWMR protocols. We evaluate our
algorithms both on a simulator and a testbed. We start by discussing the evaluation
setup, then we present a single round of each SWMR and MWMR to provide a
detailed view of the inner workings of these protocols. Next, we evaluate the latency
and energy consumption in the SWMR and MWMR protocols. Last we evaluate
the long-term performance of the SWMR and MWMR protocols.

6.1 Evaluation Setup

We test our algorithms on the Cooja simulator [21] and Flocklab [3] hardware. For
each setup, we run tests on a minimum 6 number of nodes. The network topologies
for Cooja and Flocklab are slightly different. As compared to Flocklab, the nodes
in the Cooja simulator are placed closer to each other. The network topologies for
Flocklab and Cooja are presented in Figure 6.1 and 6.2.

In our test setups, the slot length is ≈ 4ms and the interval is ≈ 12s. We run our
algorithms on Synchrotron with 2PC/3PC and max. However, we choose a static
network policy. We evaluate the performance of our algorithms on the following four
metrics.

• Radio-on-time estimates the amount of energy consumed by the radio. It
measures the total duration of time the radio is on, during a round. It is the
total time the radio transmits and receives in a round.

• Latency estimates the efficiency of SWMR and MWMR. This is the average
time each node takes to complete a read/write request.

• Radio-duty-cycle measures energy-efficiency and provides the percentage of
time the radio is on during a time interval.

• End-to-end loss rate measures the reliability of the protocol. A round is
considered reliable when at least majority of nodes contain the latest version
of the value.

31

Chapter 6. Evaluation

Figure 6.1: Network topology for Flocklab, all nodes do not have direct commu-
nication with each other [3].

Figure 6.2: Network topology for 32 nodes in Cooja. The nodes are in range of
each other.

32

Chapter 6. Evaluation

Figure 6.3: Nodes activity during a single SWMR round, for 6 nodes in Cooja.
Node 3 is initiator and starts the round with a read/write request.

6.2 Quorum in Action
In the first evaluation, we monitor the activity of each node during a representative
round, both for SWMR and MWMR.

Scenario: We divide the activity of each node into three phases, proposal, com-
pletion and sleep. The proposal phase starts when a node initiates a read/write
request. The completion phase presents two activities: completion of a read/write
and aggressive final flood of the results. The sleep phase starts after the nodes finish
with the aggressive transmissions. We run our algorithms for SWMR and MWMR
in Cooja and Flocklab on at most 32 nodes.

6.2.1 SWMR Round
Figure 6.3 presents a network of 6 nodes and shows the activity of each node during
an SWMR round. Node 3 is the initiator and starts the round by initiating a
read/write request. All nodes obtain majority of flags after at most 11 slots. The
aggressive final flood takes at most 8 slots. After ≈ 14 slots, all nodes move to the
sleep phase. Figure 6.4 shows the average activity of the nodes during an SWMR
round. We observe that the proposal phase of the 24-node network is longer than
the 6-node network.

6.2.2 MWMR Round
Figure 6.6 presents a network of 6 nodes and shows the activity of each node during
an MWMR round. Nodes 1,2 and 6 start the round by initiating a write request.

33

Chapter 6. Evaluation

Figure 6.4: Average activity of the nodes in SWMR for a 6-node network and
24-node network.

Other nodes start their round by initiating a read request. The results show that
that the nodes take at most 14 slots in the proposal phase. In the proposal phase,
the nodes initiate different read/write requests, converges to one write request and
obtain a majority of flags on that request. The nodes take at least 30 slots on average
to finish their task and begin the sleep phase. Figure 6.5 present an average activity
of nodes during 30 rounds in MWMR. The figure also compares the average activity
of a 6-node network and 25-node network. The results show that the network of 25
nodes takes more time slots to finish the tasks.

6.3 Latency
This section provides the evaluation results for the latency in SWMR and MWMR
protocols.

Scenario To estimate the latency, we setup different test scenarios, both for
SWMR and MWMR, and measure the number of slots that are required to complete
a read/write request. Chaos provides a facility to measure the total number of slots
on a current time instance. It starts counting the slots from the beginning of a
round and stores the current number of slots in a variable. We run our algorithms
on Flocklab and Cooja, for at least 30 rounds.

6.3.1 Latency in SWMR
Table 6.1 shows the latency results for the SWMR protocol. The results show that
the latency increases when the number of nodes increases. For example, in a network
of 6 nodes, at least 4 nodes are required to complete a quorum for a read/write

34

Chapter 6. Evaluation

Figure 6.5: Average activity of nodes in MWMR for the networks of 6 and 25
nodes.

Figure 6.6: Nodes activity during a single MWMR round, for 6 nodes in Cooja.

35

Chapter 6. Evaluation

Platform Cooja Flocklab
Nodes 6 32 6 24
Rounds 80 35 60 60

Latency (Slots) 7 17 10 17
Standard deviation 1.5 2.7 4.1 5.1

Table 6.1: Test results for latency in SWMR. Latency is presented in the number
of slots, a slot is ≈4ms.

Figure 6.7: Latency comparison between the reads and writes in the SWMR
protocol.

request. On the other hand, in the 32-node network, the quorum size increases
approximately four times. Hence a node needs at least 17 flags upp to complete a
read/write request. As compared to Cooja, Flocklab shows higher number of slots for
latency. This is because of different network topologies and nodes inter-connectivity.
Figure 6.7 shows the latency results for the read and write rounds explicitly. The
results show that both the reads and writes take almost equal number of slots.
However, we notice the network size affects the latency as we explain above.

6.3.2 Latency in MWMR
Table 6.2 shows the latency results for the MWMR protocol. The results from Cooja
and Flocklab show that the highest average latency is 27 slots for a 24-node network
in Flocklab. Figure 6.8 show the latency results for the read and write rounds in
MWMR. The figure shows that the latency results of write rounds are twice higher
the read rounds. This is because for each write request the nodes need to perform a
read prior to write. Therefor, the write requests run in two phases, the nodes take
first ≈ 15 slots to read and further ≈ 15 slots to perform the write, hence the nodes
take ≈ 30 slots to complete a write request.

36

Chapter 6. Evaluation

Platform Cooja Flocklab
Nodes 6 32 6 24
Rounds 60 35 60 60

Latency (Slots) 13 25 15 27
Standard deviation 5.01 11.09 7.1 11.2

Table 6.2: Test results for latency in MWMR. Latency is presented in the number
of slots, a slot is ≈4ms.

Figure 6.8: Latency comparison between the reads and writes in MWMR protocol.

6.4 Energy Consumption

In this section, we evaluate the energy consumption in SWMR and MWMR.

Scenario We estimate the energy efficiency by measuring the energy consumed
by the radios. The energy consumed by the radio is estimated on two metrics:
radio-on-time and radio-duty-cycle. To estimate the radio-on-time, we count the
number of slots from the beginning of a round till a node sleeps. We utilize the
facility provided by Chaos to measure the radio-duty-cycle.

6.4.1 Energy Consumption in SWMR

Table 6.3 presents the results for average radio-on-time in SWMR. The results show
that the maximum radio-on time is 30 slots. Figure 6.9 presents the results for
% duty-cycle in Flocklab and Cooja. The results show that the highest duty-cycle
is 0.016 % for the 32-node network in Cooja.

37

Chapter 6. Evaluation

Platform Cooja Flocklab
Nodes 6 32 6 24
Rounds 80 35 60 60

Radio-on time (Slots) 20 29 23 30
Standard deviation 0.06 0.11 4.1 5.1

Table 6.3: Radio-on time in SWMR. Slot length: 4ms. Flocklab shows the highest
radio-on time of 30 slots.

Figure 6.9: Energy consumption as % duty-cycle in SWMR. The highest duty-
cycle is 0.016 % for an interval of 12 seconds in a network of 24 nods in Flocklab.

Platform Cooja Flocklab
Nodes 6 32 6 24
Rounds 80 35 60 60

Radio-on time (Slots) 35 50 36 52
Standard deviation 7.3 9.3 9.7 10.1

Table 6.4: Radio-on time in MWMR. Slot length: 4ms. Flocklab shows the highest
radio-on time of ≈ 50 slots.

6.4.2 Energy Consumption in MWMR

Table 6.4 presents the results for radio-on-time in MWMR. The results show that
the highest radio-on-time is ≈ 50 slots. Figure 6.10 shows the results of average
duty-cycle in the MWMR protocol. The results show that the highest duty-cycle is
0.03 % for 24 nodes in Flocklab.

38

Chapter 6. Evaluation

Figure 6.10: Energy consumption as % duty-cycle in MWMR. The highest duty-
cycle is 0.03 % for an interval of 12 seconds in a network of 24 nods in Flocklab.

Application Cooja Flocklab
Nodes Total 6 32 6 24

Alive 4 29 4 21
To Completion 4 29 4 21

Losses 0 0 0 0

Table 6.5: Reliability in SWMR protocols: the results show that the protocols are
highly reliable with 0 loss-rate.

6.5 Long-term Performance

In this section we evaluate the reliability of our algorithms.

Scenario To estimate the reliability, we run each application in the presence of
node failures. We run SWMR/MWMR over several rounds and measure the end-
to-end loss rate.

6.5.1 Reliability in SWMR/MWMR

Tables 6.5 and 6.6 present the results for end-to-end loss rate in the SWMR and
MWMR protocols. The results shows that both the SWMR and MWMR protocols
are highly reliable and able to tolerate node-failures.

39

Chapter 6. Evaluation

Application Cooja Flocklab
Nodes Total 6 32 6 24

Alive 4 29 4 21
To Completion 4 29 4 21

Losses 0 0 0 0

Table 6.6: Reliability in MWMR protocols: the results show that the protocols
are highly reliable with 0 loss-rate.

Figure 6.11: Latency comparison between SWMR and MWMR.

6.6 Discussion of Results
In this section we discuss the results of our evaluation. We start by discussing the
impact of network size on the results. Then we compare the results of SWMR and
MWMR. Lastly we compare the protocols to the state of the art.

6.6.1 Impact of Network Size
We have seen in Chapter 6 that latency increases when the number of nodes in-
creases. Figure 6.11 shows the latency results for SWMR and MWMR. The results
show that the latency of a 6-node network in SWMR is 7 slots and it is 17 slots for
a 32-node network. The results show that latency increases two times if the net-
work size increase five times. The same trend is followed by the MWMR protocol.
Figure 6.11 shows that the latency of a 6 node network in MWMR is 13 slots and
it increases approximately two times, 25 slots.

The size of network also affect the radio-on-time and energy consumption. Fig-
ure 6.12 shows the impact of network size on energy consumption. The figure shows
that radio-on-time for a 6-node network in SWMR is 20 slots and it is 29 slots for

40

Chapter 6. Evaluation

Figure 6.12: Radio-on-time comparison between SWMR and MWMR.

a 32-nodes network. However, the impact of network size is smaller in radio-on-
time as compared to latency. By observing the radio-on-time results of SWMR and
MWMR, we conclude that the radio-on-time increases 0.5 times when the size of
the network increases 5 times.

6.6.2 Comparison between SWMR and MWMR
Figure 6.11 shows the latency results for SWMR and MWMR. The results show
that the latency and energy consumption in MWMR are higher than SWMR. This
is because the write protocol in MWMR runs in two phases, read query phase
and write phase. Figure 6.8 presents a comparison between the reads and writes in
MWMR. The results show the latency for the writes is almost two times higher than
the reads, in MWMR. Due to the two phase write protocol, energy-consumption in
MWMR is also higher than SWMR, as shown in Figure 6.12. However, the read
protocol of SWMR and MWMR shows similar results, as shown in Figure 6.7 and
Figure 6.8.

6.6.3 Comparison with the State of the Art
We compare the performance of SWMR and MWMR with other Chaos applications,
such as max, 2PC and 3PC. We compare the performance on latency, energy con-
sumption and reliability. Figure 3.4 shows the results of duty-cycle, latency and loss
rate in max, 2PC, 3PC and LWB [2]. Max shows a minimum latency of ≈ 100 ms.
The SWMR and MWMR protocols show the latency of 68-100 ms. Max, Dissemi-
nate and LWB-FS have lower duty cycle when comparing to 2PC, 3PC, Collect and
LWB-Collect, ≈ 0.12. Radio duty-cycle for the SWMR and MWMR protocols is
0.015% to 0.03%. Figure 3.4 shows that Max, Disseminate, 2PC and Collect are
highly reliable with zero loss rate. Both the SWMR and MWMR protocols are

41

Chapter 6. Evaluation

highly reliable and show zero loss rate (Section 6.5). Hence, the comparison of the
results shows that both SWMR and MWMR have the lowest latency, duty-cycle
and loss-rate.

42

Chapter 7

Conclusion and Future Work

Chaos provides efficient all-to-all sharing of data in low-power wireless devices. As
compared to traditional networking, Chaos enables in-network processing in an ef-
ficient and reliable way. One of the recent development in Chaos is A2 [2]. A2 is
implemented on Synchrotron, it provides network-wide agreement and enables 2PC
and 3PC protocols on Chaos. In this thesis, we focus on a less demanding problem
than agreement which is implementation of the shared memory emulator on the
message passing system [9]. Therefore, we implement a quorum protocol on Chaos.

We design and implement the SWMR and MWMR, quorum protocols on Chaos.
SWMR allows only one specific writer to perform the write operations. The results
of SWMR show latency of ≈ 68ms (1 slot is ≈4ms), and radio duty-cycle of 0.015%
for the period of 12 seconds. Compared to SWMR, MWMR allows multiple writers,
any node in the network can initiate a write request. Write protocol of MWMR
consists of two phases, read query and write. Due to two phase write-protocol,
MWMR shows comparatively higher values of latency and radio duty-cycle than
SWMR, 108ms and 0.03%. However, both SWMR and MWMR show the lowest
values of latency and radio duty-cycle when comparing to other Chaos applications.

We implemented a majority quorum which is the simplest form of quorum. How-
ever, we suggest to implement a more complex type of quorum for the future work,
dynamic quorum protocol [11]. In this thesis, SWMR and MWMR can handle only
one single object (value). However, it is possible to handle multiple objects by
including the object IDs in the packet [22] [23].

7.1 Ethics and Sustainability
Energy consumption has a direct or indirect impact on our environment because
most of the energy produced, does not originated from Eco-friendly sources. It is
a fact that information and communication technologies (ICT) industry consumes
6% of the energy worldwide, and the wireless communication industry consumes a
major part of it [24]. ICT industry generates 0.3%− 0.4% of global CO2 and other
greenhouse gases [24] which directly correlate with the global warming phenomenon
and air pollution. These amounts are expected to grow even more in the years to

43

Chapter 7. Conclusion and Future Work

come. Hence, it is very important to reduce the energy consumption and emphasis
more on the energy efficient communications. In this thesis, we focus a lot on
lowering the energy consumption in the LPWN. Energy efficient communications in
LPWN not only increase the life of a network device but it is also important for the
sake of a healthy environment.

44

Bibliography

[1] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and effi-
cient all-to-all data sharing and in-network processing at scale,” Proceedings
of the 11th ACM Conference on Embedded Networked Sensor Systems, pp. 1–
14, November 2013.

[2] O. Landsiedel, S. Duquennoy, and B. A. Nahas, “Network-wide consensus uti-
lizing the capture effect in low-power wireless networks,” 15th ACM Conference
on Embedded Networked Sensor Systems, pp. 1–14, November 2017.

[3] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,
“Flocklab: A testbed for distributed, synchronized tracing and profiling of wire-
less embedded systems,” Proceedings of the 12th International Conference on
Information Processing in Sensor Networks, pp. 153–166, 2013.

[4] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam, “The wireless control
network: A new approach for control over networks,” IEEE Transactions on
Automatic Control, vol. 56, pp. 2305–2318, October 2011.

[5] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power Wireless
Bus,” Proceedings of the 10th ACM Conference on Embedded Network Sensor
Systems, pp. 1–14, 2012.

[6] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection Tree
Protocol,” Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, pp. 1–14, 2009.

[7] G. Tolle and D. Culler, “Design of an application-cooperative management sys-
tem for wireless sensor networks,” Proceeedings of the Second European Work-
shop on Wireless Sensor Networks, pp. 121–132, 2005.

[8] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network flooding
and time synchronization with Glossy,” Proceedings of the 10th ACM/IEEE In-
ternational Conference on Information Processing in Sensor Networks, pp. 73–
84, 2011.

[9] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in message-
passing systems,” Journal of the Association For Computing Machinery
(JACM), vol. 42, pp. 124–142, Jan 1995.

[10] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and
D. C. Steere, “Coda: a highly available file system for a distributed workstation
environment,” IEEE Transactions on Computers, vol. 39, no. 4, pp. 447–459,
1990.

[11] N. A. Lynch and A. A. Shvartsman, “Robust emulation of shared memory using
dynamic quorum-acknowledged broadcasts,” In Proceedings of the 27th Inter-

45

Bibliography

national Symposium on Fault-Tolerant Computing system(FTCS), pp. 272–281,
1997.

[12] C. Georgiou and A. A. Shvartsman, “Cooperative task-oriented computing: Al-
gorithms and complexity,” Synthesis Lectures on Distributed Computing The-
ory, vol. 2, no. 2, p. 167, 2011.

[13] R. H. Thomas, “A majority consensus approach to concurrency control for
multiple copy databases,” ACM Trans. Database Syst., vol. 4, pp. 180—-209,
1979.

[14] B. Kemme and G. Alonso, “A suite of database replication protocols based on
group communication primitives,” pp. 156–163, 1998.

[15] S. Duquennoy, A. Elsts, A. Nahas, and G. Oikonomou, “TSCH and 6TiSCH for
Contiki: Challenges, design and evaluation,” DCOSS 2017 - 13th International
Conference on Distributed Computing in Sensor Systems, pp. 1–8, 2017.

[16] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra: Ro-
bust mesh networks through autonomously scheduled TSCH,” Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems, pp. 337–
350, 2015.

[17] M. Demirbas, O. Soysal, and M. Hussain, “TRANSACT: A transactional
framework for programming wireless sensor/actor networks,” Proceedings of the
7th International Conference on Information Processing in Sensor Networks,
pp. 295–306, 2008.

[18] C. A. Boano, M. A. Zúñiga, K. Römer, and T. Voigt, “Jag: Reliable and
predictable wireless agreement under external radio interference,” 2012 IEEE
33rd Real-Time Systems Symposium, pp. 315–326, 2012.

[19] Q.Wang, X.Vilajosana, and T.Watteyne, “IETF draft-ietf-6tisch-6top protocol-
04, WiP,” 2017.

[20] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible
operating system for tiny networked sensors,” 29th Annual IEEE International
Conference on Local Computer Networks, pp. 455–462, 2004.

[21] F. Österlind, “A sensor network simulator for the Contiki OS,” In: SICS Re-
search Report, 2006.

[22] M. Herlihy, “A quorum-consensus replication method for abstract data types,”
ACM Trans. Comput. Syst., vol. 4, no. 1, pp. 32–53, 1986.

[23] A. Kumar, “Performance analysis of a hierarchical quorum consensus algorithm
for replicated objects,” Proceedings of the 10th International Conference on
Distributed Computing Systems, pp. 378–385, 1990.

[24] T. Chen, Y. Yang, H. Zhang, H. Kim, and K. Horneman, “Network energy
saving technologies for green wireless access networks,” IEEE Wireless Com-
munications, vol. 18, Oct 2011.

I

	List of Figures
	List of Tables
	Introduction
	Drawbacks of Traditional Networking
	Chaos: A new Approach
	Thesis Contribution
	Thesis Organization

	Background
	Chaos Communication Primitive
	Communication Models
	Commit Protocols
	2PC
	3PC

	Quorum Protocol
	SWMR Register
	MWMR Register

	Related Work
	Agreement on Air
	Synchrotron
	Communication Primitives of A2
	Group Membership in A2
	Network Wide agreement
	Results

	Design
	Synchronous All-to-All Communication
	Communication Primitive
	The Majority Quorum Configurations on Chaos
	Mapping of SWMR, Quorum protocol on Chaos
	Mapping of MWMR, Quorum protocol on Chaos
	Packet Format
	Summary of Design

	Implementation
	Initiating the Read/write
	The Read/Write in SWMR
	The Read/Write in MWMR

	Transmit and Receive Policy
	Concurrent read/write
	Concurrent Writes
	Completion policy
	Summary of Implementation

	Evaluation
	Evaluation Setup
	Quorum in Action
	SWMR Round
	MWMR Round

	Latency
	Latency in SWMR
	Latency in MWMR

	Energy Consumption
	Energy Consumption in SWMR
	Energy Consumption in MWMR

	Long-term Performance
	Reliability in SWMR/MWMR

	Discussion of Results
	Impact of Network Size
	Comparison between SWMR and MWMR
	Comparison with the State of the Art

	Conclusion and Future Work
	Ethics and Sustainability

	Bibliography

