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Abstract

Collective behaviour is a phenomenon that often occurs in systems of many in-
teracting individuals. Common macroscopic examples of collective behaviour
are flocks of birds, swarms of insects and crowds of people. On the microscopic
scale, it is often observed in so-called active systems, constituted by self-propelled
particles, also known as active particles. Motile bacteria or synthetic microswim-
mers are among the most commonly studied active particles.

The potential applications of collective behaviour and understanding thereof en-
compass multiple disciplines, ranging from robotics and medicine to algorithms,
like ant colony optimization. However, the apparent complexity makes under-
standing an intimidating task. Despite this, simple models have proven successful
in capturing the defining characteristics of such systems.

This thesis examines a well-known model of active matter and expands it to in-
corporate necessary components to explore the effects a complex environment has
on this pre-existing model. Additionally, a new model is proposed and explored
in purely active systems as well as in complex environments. Simulations show
that a phase transition between a gaseous state and the formation of metastable
clusters occurs as the level of orientational noise decreases. Furthermore, they
show that this model describes the formation of metastable channels in a crowded
environment of passive particles.



Sammanfattning

Fenomenet kollektivt beteende uppkommer ofta i system av många, interagerande
individer. Vanliga makroskopiska exempel på kollektivt beteende är fågelflockar,
insektssvärmar och folkmassor. På den mikroskopiska skalan observeras ofta kol-
lektivt beteende i aktiva system, bestående av självdrivna partiklar, s.k. aktiva
partiklar. Till de mest studerade aktiva partiklarna hör rörliga bakterier och syn-
tetiska mikrosimmare (“microswimmers” i litteraturen).

Potentiella applikationer baserade på kollektivt beteende sträcker sig över ett
flertal discipliner, däribland robotik och medicin samt algoritmer, som myrkolo-
nioptimering. Komplexiteten dessa system uppvisar gör dock att det kan kännas
som en skrämmande uppgift att försöka förstå och beskriva dem. Trots detta har
mycket enkla modeller visat sig fånga flera av de karakteristiska drag kollektivt
beteende har.

Det här arbetet undersöker en välkänd modell av aktiv materia och bygger vidare
på den, för att fånga nödvändiga aspekter då modellen studeras i en mer komplex
miljö. Dessutom presenteras en ny modell som utforskas, med hjälp av simule-
ringar, i helt aktiva system liksom i komplexa miljöer. Simuleringarna visar att en
fasövergång sker, mellan ett gaslikt tillstånd och bildandet av metastabila kluster,
då mängden orienteringsbrus minskar. Ytterligare visar de att modellen beskriver
bildandet av metastabila kanaler i en miljö fylld av passiva partiklar.
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Chapter 1

Introducing Collective Dynamics
and Active Particles

This first chapter introduces the subject of collective behaviour, its applications
and some key principles when modelling collective behaviour and complex sys-
tems. It also introduces active particles, or self-propelled particles, as a means to
study and apply collective behaviour on the microscopic scale. If you, the reader,
have prior knowledge on the subject, feel free to skip ahead to Chapter 2.

1.1 Introduction to Collective Dynamics
and Complex Systems

Collective behaviour occurs on many length and time scales, with many examples
from everyday life, such as herds of animals, flocks of bird, swarms of insects or
bacteria and human crowds (Vicsek and Zafeiris, 2012; Gautrais et al., 2012).
Typically, collective behaviour emerges in systems of interacting individuals cap-
able of motion. The resulting behaviour displays a high degree of complexity,
despite the constituent individuals often being very simple by themselves.

Collective behaviour in nature can have specific tasks. These tasks are often car-
ried out with very high efficiency, such as that of ants gathering food, despite
the lack of inherent leaders or individuals being aware of an overall plan (Wahde,
2008). For this reason, collective behaviour has inspired a wide range of optim-
ization algorithms, e.g. ant colony optimization (Wahde, 2008). Apart from in
algorithms, knowledge of collective behaviour has contributed in fields like medi-
cine, swarm robotics, autonomous vehicles and computer graphics (Wang and
Gao, 2012; Brambilla et al., 2013; Reynolds, 1987).

The first model of collective behaviour was created by Reynolds (1987) to simulate
something looking like a flock of birds in computer graphics. It proved very
successful, despite its simplicity. Later, Vicsek et al. (1995) built upon this to
create a very well-known model in the field. The same model will be used later
in this thesis.
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The complexity of collective behaviour poses a daunting task for our understand-
ing, but as shown by Reynolds (1987) and Vicsek et al. (1995), the defining
characteristics can often be captured by very simple models. This has become
one of the main principles for modelling complex systems. In fact, simple models
have several advantages. Firstly, simpler models often mean that they are less
computationally intensive, which in turn means that numerical simulations can
be done faster and larger systems can be simulated within feasible time frames. It
is also cost efficient and better suited for real-world implementations. Secondly,
simpler models often describe phenomena more concisely, due to necessity. This
naturally leads to the third major point; simple models are easier to understand
and therefore more can be gained from studying them, as they encompass the
“purest” description of underlying mechanisms.

1.2 Active Matter: Collective Dynamics on the
Microscale

On the microscopic scale collective behaviour is observed in active systems, con-
sisting of active particles, also commonly known as self-propelled particles (Bechinger
et al., 2016). Active particles are capable of converting energy from their envir-
onment to propel themselves, hence the name.

As a result of the self-propulsion, active particles operate far from thermal equilib-
rium, giving rise to many interesting phenomena not displayed by passive systems.
For example, active particles are able to form clusters without having attracting
forces between them, as shown in simulations by Peruani et al. (2006). The most
commonly studied active particles are motile bacteria and fabricated microswim-
mers and many such systems exhibiting collective behaviour have been realised
experimentally. Motile bacteria have been known to form vortices and other spa-
tial patterns (Czirók et al., 1996) and artificial active particles have been shown
to cluster and form crystal-like structure (Theurkauff et al., 2012; Palacci et al.,
2013; Ginot et al., 2015).

In the future, possible applications in medicine for collective behaviour and active
particles could be personalised medical care with highly accurate cancer treat-
ments, where the active agents target and kill cancer cells selectively, or drug
delivery systems via active particles, for increased precision and efficiency. Be-
fore this can become a reality, however, suitable biocompatible active systems
must be developed for use in the human body, as pointed out by Bechinger et al.
(2016). Furthermore, we need a better understanding of their behaviour in com-
plex and crowded environments and how to exploit it (Bechinger et al., 2016).
The aim of this thesis is to study collective behaviour in complex environments,
which is done via numerical simulations.
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Chapter 2

The Vicsek Model

This second chapter will introduce the Vicsek model, a well-known model of
self-organization in active particles. After explaining it in detail, a modification
incorporating important aspects for examining it in a complex environment will
also be presented and compared to the original model. This modification gives
each particle a finite size and is then used in later parts of the work to study the
collective behaviour in complex environments.

2.1 Original Model

The original model was presented in the paper “Novel Type of Phase Transition
in a System of Self-Driven Particles” by Vicsek et al. in 1995 and concerns self-
propelled particles, or active particles. In a very simple way, Vicsek’s model man-
ages to capture important characteristics of collective behaviour using aligning
interactions between self-propelling particles similar to the famous Boids model
by Reynolds (1987). In these models, each particle’s behaviour is based on its
perception of the local environment (Reynolds, 1987; Bechinger et al., 2016).

The Vicsek model considers a set of N active particles moving continuously in
a two-dimensional, square space with periodic boundaries. In the particle in-
teraction dynamics proposed by Vicsek et al., each particle is propelled with a
constant speed v and tends to align its direction with the local neighbours. The
local neighbours are defined as all particles (including the particle itself) that are
found within a circle of radius r centred on the particle in question. Other works
have explored other options, such as using a “vision cone” (Barberis and Peruani,
2016), where the full circle of the Vicsek model is a special case.

For a set of N particles with positions xi and velocities vi = v(cos θi, sin θi)T ,
i = 1, . . . , N , the orientation and position of each particle are updated from one
timestep to the next according to

θi(t+ 1) = 〈θ(t)〉r + ξ

xi(t+ 1) = xi(t) + vi (θi(t+ 1)) ,
(2.1)
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Figure 2.1: 400 particles have been simulated on a square with the side L = 10 and
periodic boundary conditions using the Vicsek model. The panels, left to right, corres-
pond to times 20, 100, 500 and 1 000. Noise levels in the simulations shown above are
(a) η = 0.03π, (b) η = 0.15π, (c) η = 0.3π and (d) η = 0.6π respectively. Increasing the
noise, a transition from macroscopic order to varied but correlated movement occurs.
Particles are marked by red dots and particle trails are shown in blue.

Figure 2.2: 100 particles have been simulated on a square with the side L = 10 and
periodic boundary conditions using the Vicsek model. The panels, left to right, cor-
respond to times 20, 100, 500 and 1 000. Noise levels in the simulations shown above
are (a) η = 0.03π, (b) η = 0.15π, (c) η = 0.3π and (d) η = 0.6π respectively, as in
Figure 2.1. For lower densities, as noise increases, macroscopic order or large clusters
transitions to smaller clusters, where clusters merge and break off more frequently than
at higher densities. Again, particles are marked in red and particle trails are shown in
blue.
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where ξ is a white noise term uniformly distributed on the interval [−η/2, η/2]
and

〈θ〉r = arctan
(
〈sin θ〉r
〈cos θ〉r

)
. (2.2)

Here, 〈·〉r denotes the average taken over all particles within a radius of r.

Vicsek et al. (1995) found that, depending on the level of noise η and the particle
density, different behaviours were observed. Mainly, four regions were identi-
fied. With low noise levels and high concentration of particles the system reaches
a macroscopic, system-wide order where all particles move in a spontaneously
chosen direction. For higher levels of noise the order is broken and varied but
correlated motion emerges, where particles move in large clusters. Figure 2.1
shows computer simulations for different noise levels at high particle concentra-
tion.

At lower concentrations, particles tend to move in clusters in random directions
that occasionally merge with other colliding clusters. Since groups of particles are
very unlikely to break off from the cluster, this system also reaches an “ordered”
state, but after much longer times. Increasing the noise levels at lower densities
increases the likelihood of particles breaking off from clusters and consequently
the clusters are smaller and shorter-lived. Additionally, clusters more frequently
change direction. Figure 2.2 shows simulation results for such systems.

The system reaches some ordered state at sufficiently low levels of noise, regardless
of density-regime. This is characterized by a system-wide direction of motion.
This contrasts with a maximally unordered system where all particles’ directions
of motion are completely uncorrelated. To quantify how ordered a system is, the
observable order parameter va, the averaged normalized velocity (Vicsek et al.,
1995), is defined as

va = 1
Nv

∣∣∣∣∣
N∑

i=1
vi

∣∣∣∣∣ . (2.3)

By design, a maximally ordered system will have an order parameter of unity and
the completely disordered system will have va = 0. All other systems will have a
va ∈ (0, 1).

Comparing the average normalized velocity va for different noise levels η, a clear
phase transition from ordered to unordered is observed. This is shown in Fig-
ure 2.3.
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Figure 2.3: The normalized average velocity va is used as an order parameter for the
Vicsek particle system. Studying the relation between it and the noise level, η, a
clear phase transition from highly ordered to disordered is observed. The four curves
show va for 50, 100, 200 and 500 particles respectively, all at the same particle density
(2 particles/unit area). Despite having the same density, the different systems reach
different levels of order in the unordered phase. These results are consistent with the
ones obtained by Vicsek et al. when the model was first proposed (Vicsek et al., 1995).
The error bars show one standard deviation for the block averages of va, taken from 20
blocks of 500 samples each.

2.2 Vicsek Model with Finite-Sized Particles

In the original Vicsek model, each particle is treated as a point particle. In
systems where the interaction distance between particles is many orders of mag-
nitude larger than their physical size, this approximation will affect the result very
little as mostly far-away interactions matter, e.g. the electromagnetic interaction
between the nucleus and the electrons. However, for other systems where these
length scales are more similar, such as for bacteria or people moving through a
crowd, effects of close-range interaction are not negligible. Very common forms of
close-range interaction in many systems are friction and force arising from contact
or collisions with other particles.

xi

xj

2R− 2d

d

d

2R

Figure 2.4: If two particles violate the volume exclusion condition and overlap, they
will be equally displaced half the overlap length, along the center-to-center axis. The
new particle positions, after displacement, are given by Equation (2.6).
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Therefore a modified version of the Vicsek model will now be presented, with
finite particle size. The modified model adds short-range interactions as a res-
ult of the finite extension in space of the particles, adding a volume exclusion
condition. All particles are treated as hard spheres with radius R < r; for the
model to work, it requires that the long-range interaction distance r is larger
than the radius of the particles. The long-range interaction in Equation (2.2) is
unaffected by this expansion. But if two particles, after being updated according
to Equation (2.1), are close enough that they overlap, they will symmetrically
be displaced half of the overlap length along the center-to-center axis. This is
illustrated in Figure 2.4.

In further detail, this means that if |xi − xj| < 2R, i 6= j, particles i and j have
collided. Both particles will then be displaced by d in opposite direction, where
|xi − xj| = 2R− 2d. Explicitly this yields

2R− |xi − xj| = 2d⇒ d

|xi − xj|
= 1

2

(
2R

|xi − xj|
− 1

)
(2.4)

and

xi → xi + d

|xi − xj|
(xi − xj)

xj → xj + d

|xi − xj|
(xj − xi).

(2.5)

Combining (2.4) and (2.5), the positions of the particles will be updated to

xi →
1
2

(
2R

|xi − xj|
+ 1

)
xi −

1
2

(
2R

|xi − xj|
− 1

)
xj

xj → −
1
2

(
2R

|xi − xj|
− 1

)
xi + 1

2

(
2R

|xi − xj|
+ 1

)
xj.

(2.6)

Ideally, the displacements from the volume exclusion (Figure 2.4) should be small.
Otherwise there is a risk of displacing particles into other particles, resulting
in impossible intermediate states and unstable and unreliable simulations, from
which no conclusions can be drawn. As a result, this imposes the condition d� R.
In the worst-case scenario, the overlap between two particles is 2d = 2v∆t. With
∆t = 1 in the Vicsek model, particle speeds that can reliably be simulated are
restricted by v � R. Alternatively, the volume exclusion condition may be
checked and enforced for interpolated times in numerical simulations, but since
there is no explicit speed dependence in the model and Vicsek et al. (1995) found
no qualitative change from varying v, this has the same effect as simulating the
system for a lower speed.

2.2.1 Finite-size Vicsek Simulations

The additions to the Vicsek model proposed here are not expected to affect defin-
ing characteristics of such active systems. In fact, the desired outcome is the op-
posite, only systems where r ≈ R should be affected to a larger extent. To verify
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Figure 2.5: 400 particles simulated according to the finite-size model for different noise
levels in a square space with side L = 10. The size of the particles is set to 0.1, so
that R � r = 1. Similar to Figure 2.1, the panels show snapshots of the system at
times 20, 100, 500 and 1,000. Above, simulations for noise levels (a) η = 0.03π, (b)
η = 15π, (c) η = 0.3π and (d) η = 0.6π are shown. Comparing the results above to
those of Figure 2.1 we see that the system dynamics (at high particle concentration)
are not noticeably affected by the finite size of the particles. Particles appear less
tightly packed than in the original model for high densities, which is expected from the
finite-size addition.

Figure 2.6: 100 particles simulated according to the finite-size model for different noise
levels in a square space with side L = 10. The particle size R = 0.1, so that R� r = 1.
The panels show snapshots of the systems at time 20, 100, 500 and 1 000. The noise
levels in the simulations are (a) η = 0.03π, (b) η = 0.15π, (c) η = 0.3π and (d)
η = 0.6π respectively. At low particle concentrations the result also seems unaffected
by the finite size of the particles compared with Figure 2.2.

8
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Figure 2.7: The normalized average velocity va is used as an order parameter for the
Vicsek model with finite-sized particles. Comparing the result to the phase diagram in
Figure 2.3, deviations from the phase diagram have clearly appeared and there seems
to be a greater variance in the order parameter for the mid regions. For the most part,
it seems the finite size of the particles has increased the order parameter in this region.
Likely, this is an effect of particles being forced to be more spread out, mediating the
interactions further in the system to a larger extent than in the original model. Despite
this, the overall behaviour is preserved. The error bars show one standard deviation
for the block averages of va taken from 20 blocks of 500 samples each.

that the behaviour has not been drastically altered, simulations where R� r for
systems similar to those in Figures 2.1 and 2.2 have been done, visualised in Fig-
ures 2.5 and 2.6. Qualitatively, no observable characteristics of the systems have
changed. In the case of higher densities (Figure 2.5), the particles appear less
tightly packed than in the original model (Figure 2.1). This is an expected result
of the finite-size addition, but its effect on the system-wide qualitative behaviour
is close to negligible.

Although, a side-effect of particles being more spaced out is an increased distance
over which the aligning interactions are mediated over. This is more noticeable
when comparing the order parameter of the two models (Figures 2.3 and 2.7).
The overall look is the same, but the addition of finitely-sized particles appear to
have increased the order parameter for the system in the mid-noise regions. The
effect is only marginal however.

With these results, we draw the conclusion that the model has not been altered
significantly, but with this addition can be examined in a complex environment,
constituting active and passive particles.
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Chapter 3

Active Particles in a Complex
Environment

In this chapter, the expanded Vicsek model in Section 2.2 is examined in more
complex environments and results from such simulations are presented and dis-
cussed. In light of these results, the self-organizing laning behaviour is compared
to channel formation, leading to the development of a novel model for active
particles. This model is presented in the next chapter.

3.1 Defining the Complex Environments

Whether collective behaviour of active particles or that of macroscopic agents
is considered, the environment in which it takes place is an important aspect.
Typically for active colloids, their interaction range is roughly in the order of
magnitude of their size, which is why they cannot be described by point particles
when studying their interactions with each other and the environment.

In Section 2.2 we modified the existing Vicsek model accordingly in order to
apply it in a complex environment, rather than studying the inherent complexity
of the system it describes. Two types of complex environments are considered
here: a mixed system with a passive background and systems with two distinct
“species” of active particles. The intrinsic scientific interest in the former is easy
to motivate, as this type of system naturally occurs and it has been the subject
of study in previous works, experimentally (Wu and Libchaber, 2000; Koumakis
et al., 2013; Kümmel et al., 2015; Pinçe et al., 2016; Argun et al., 2016) and
theoretically (Grégoire et al., 2001; Schwarz-Linek et al., 2012; Stenhammar et al.,
2015).

The latter case, with two species of particles, has not been given the same at-
tention to date. While no examples of naturally occurring colloidal systems de-
scribed by this phenomenon are known, engineering similar behaviour for robotics
is straightforward, if such systems exhibit desired behaviour.
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Figure 3.1: Snapshots at different times from a simulation of the modified Vicsek
model in an environment of passive particles, showing the emergence of self-organizing
lanes. The frames (left to right) correspond to times 20, 100, 500 and 1 000 in the
same simulation. Orange circles denote the active Vicsek-particles. Grey ones denote
passive, zero-speed particles that only interact via the close-range volume exclusion
interaction of the modified Vicsek model, described in section 2.2. With a low level of
noise (η = 0.03π), a lane-like structure emerges over time. The direction of the lanes
is chosen spontaneously and differs between simulations. The particles (400 active and
400 passive) have a radius of R = 0.1 where the interaction range r = 1 is used as the
characteristic length scale, and the square arena has a side of length L = 10.

3.2 Vicsek-like Particles in a Passive Environ-
ment

To model the passive environment, without interfering with the modified Vicsek-
model used, together with the N active particles we place M passive ones. These
are treated as zero-speed particles of the same size as the active ones. This means,
that the aligning interactions of the Vicsek-model does not affect the passive
particles and in turn, they do not affect the active ones. The volume exclusion
condition (see Figure 2.4) still applies between passive-passive and active-passive
particles though. Consequently, the presence of passive particles has no real
impact on the order parameter examined in Chapter 2, which has been verified
by simulations.

Running simulations for a crowded system at low noise levels, self-organizing lan-
ing behaviour emerges (Figure 3.1). This is reminiscent of results reported by
Glanz and Löwen (2012), where passive particles driven in opposite direction by
an external field form lanes. The direction of the lanes depends on the spontan-
eously chosen direction of motion of the active particles.

Moving into the high-noise regime these lanes vanish and no self-organization
takes place. This is visualized in Figure 3.2.

3.3 Two “species” of Vicsek-particles

Exactly what a systems of distinct “species” of active particles means is not
inherently clear. It could consist of particles interacting through vastly different
mechanisms, mathematically modelled as well as physically. It could also refer to
groups of particles interacting only within the group, effectively perceiving other

12



Figure 3.2: Snapshots from simulations of the modified Vicsek model in an environment
of passive particles. Snapshots from simulations with noise levels (a) η = 0.03π, (b)
η = 0.15π, (c) η = 0.3π and (d) η = 0.6π are shown above. As the noise increases the
lanes break down and vanish. Orange circles denote active particles and particle trails
are shown in blue. Grey circles denote passive particles.

Figure 3.3: Snapshot from simulation of two “species” of active particles (denoted with
different colours), which only interact with their own species, apart from volume exclu-
sion. For low levels of noise, self-organizing laning occurs similar to that of Figure 3.1.

groups as passive. To really raise the complexity, we could imagine a system in
which particles are allowed to transition to other species. In this thesis, the latter
multi-species systems, without species-transitions, are considered.

Similarly to the result in a crowded environment, in the previous section, the two
species will self-organize into forming lanes. Figure 3.3 shows this. Similar to
the systems treated in Section 3.2, this only occurs in the low noise-regime and
laning vanishes in the high noise-regime.

3.4 Self-organizing Behaviour

As the two previous sections showed, several examples of complex environments
give rise to self-organizing laning, in active and passive systems alike, taking
the results of Glanz and Löwen (2012) into account. This way, active particles
could be used to improve the structuring of passive systems which do not reliably

13



respond to the effect of external fields. However, since it is not a phenomenon
exclusive to active systems, its intrinsic scientific interest is somewhat diminished,
in regards to theoretical models and descriptions of active matter.

A more interesting topic for studies of active matter would instead be the channel-
ling behaviour displayed by e.g. biological systems. Looking at for example blood
vessels, a type of biological channel, their physical appearance suggests there are
more dynamic interactions at work than in these straight lanes. From the results
presented here (Figures 3.1, 3.2 and 3.3), it appears that this is not accomplished
without further interaction between active and passive particles and requires act-
ive particles being more “aware” of their environment. The Vicsek model does
however not capture such mechanisms properly and the—probably—extensive
modifications needed push the model too far from its original formulation to be
desirable, likely with poor results. Moving too far from the simplicity of the Vic-
sek model goes against one of the main principles for modelling complex systems.
A far better approach would be to formulate a new Vicsek-like model, that better
incorporates such mechanisms in a concise way.
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Chapter 4

A Novel Model of Active
Particles

In this chapter a novel model of active particles is presented and explored. Some-
what inspired by the hydrodynamic interactions between active particles like
microswimmers and bacteria suspended in fluid, torque-like aligning interactions
are used. This particular model has not been used before in the literature and it
exhibits a rich emergent behaviour, despite its simplicity. It is studied in purely
active systems as well as mixed systems, constituted of both active and passive
particles.

A scientific paper written on this particular model in connection with this thesis is
available at http://arxiv.org/abs/1706.01326 (Nilsson and Volpe, 2017).

4.1 Model Motivation

Many studies on active systems concern motile bacteria or microswimmers sus-
pended in fluid, e.g. works by Wu and Libchaber (2000); Grégoire et al. (2001);
Theurkauff et al. (2012). Hence, it is not unlikely that taking hydrodynamics
into account would be fruitful in reproducing some of the effects observed. How-
ever, this approach goes against many of the principles of modelling collective
behaviour mentioned in Chapter 1. Instead, inspiration has been drawn from hy-
drodynamics when constructing the aligning interactions constituting the model,
to capture the essential elements of the mechanisms behind the complex beha-
viours observed in a simple way. The inter-particle interactions here have taken
a torque-like form, dependent on the positions of neighbouring particles. Further
details on these interactions are given in the next section.

The original Vicsek model uses velocity dependence for the local aligning in-
teractions, but there are advantages to using position-dependent interactions,
however. This is something also explored by Barberis and Peruani (2016). One
of the advantages is the cheaper computational cost for measuring relative dis-
tance compared to computing relative or absolute velocity, when moving from
simulations to real-world implementations, such as robotics. Additionally, de-
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pending on the interaction-strength drop-off for larger distance, it is also more
easily translated to natural sensory input, such as light intensity (Mijalkov et al.,
2016) or concentrations of chemicals.

4.2 Mathematical Description of the Model

We consider N active particles moving continuously in 2 dimensions. The arena
in which they are located is square-shaped and periodic boundary conditions
are used. Similar to the case of the finite-sized Vicsek model in Section 2.2, we
consider systems where the interaction range is roughly the order of magnitude
of the particle size. Again, we consider them to be hard spheres; consequently
the volume exclusion condition applies (see Section 2.2 and Figure 2.4 for de-
tails).

The particles reorient their direction of motion based on torque-like aligning in-
teractions, which from now on will be referred to as “torque”. The strength of
the torque decreases with distance, so the importance of local interactions vastly
outweighs that of those emanating from the global state of the system. The form
of the applied torque is inspired by that of a hydrodynamic interaction. It is im-
portant to note, however, that no attempt to model a hydrodynamic interaction
is made.

Let xn(t) denote the position of particle n = 1, . . . , N , at time t. Like the models
presented by Vicsek et al. (1995); Barberis and Peruani (2016); Cambui et al.
(2017) the particles are assumed to move with constant speed v, in the direction
θn(t). Between times t and t+ 1, each particle n is updated according to

θn(t+ 1) = θn(t) + Tn + ξ

xn(t+ 1) = xn(t) + vn(t+ 1)
= xn(t) + v (cos θn(t+ 1), sin θn(t+ 1))T .

(4.1)

Here, ξ is a white-noise term, uniformly distributed on the interval [−η/2, η/2]
and Tn is the torque exerted on the particle. The torque Tn is given by

Tn = T0
∑
i 6=n

v̂n · r̂ni

r2
ni

(v̂n × r̂ni)z , (4.2)

where rni is the relative position vector from particle n to particle i and rni ≡
|rni|. A vector with a “hat” ·̂ denotes a vector of unit length and (·)z the z-
component of a vector. T0 is a parameter related to the strength of the aligning
interaction, with T0 = 0 corresponding to no aligning interactions, resulting in
active Brownian motion. Active Brownian motion is also known as run-and-
tumble dynamics, where the particles move in a straight line, followed by sudden,
random reorientation after which they move again, and so on.

A visualization of this interaction can be found in Figure 4.1a. Figure 4.1b-
i shows particle behaviour in a few simple cases, in the absence of orientational
noise (η = 0). In general, we note that particles will tend to turn towards particles
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Figure 4.1: A visual representation of the interactions described in Eqs. (4.1) and (4.2).
(a) The torque (red arc) exerted on a moving particle (black) by another particles (red)
for different relative positions. Black arrows denote direction of motion. (b)-(i) Show
particle behaviour for simple configurations in the absence of noise (η = 0). Coloured
particles are part of a cluster; colour denotes cluster size. (b) Two particles starting
facing each other will move in a straight line and form a 2-cluster. (c) Particles facing
away will continue moving radially away from each other. (d) Particles oriented in the
same direction continue moving in that direction in a straight line. (e) Particles with
opposite orientation turn until they align and move apart, in a straight line. (f) Two
particles turn towards each other until contact and form a 2-cluster. (g) Three particles,
initially oriented towards a single point, move to form a 3-cluster. (h) Similar to (g)
but with different initial velocities. (i) In a 4-cluster, one particle initially oriented 90◦
away from the centre leaves the cluster, while the remaining particles form a 3-cluster.
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in front of them and away from those behind (4.1a). Additionally, we see that
two particles oriented towards each other move to form a cluster of 2 particles
(4.1b). If the are oriented away from each other or in the same direction (while
in a line) they do not form a cluster (4.1c-d), instead they move apart radially or
continue moving in a straight line, respectively. If the two particles are oriented
in opposite directions, they will either form a 2-cluster or turn until they move
apart in a straight line (4.1e-f). Figure 4.1g-h shows two initial conditions where
three particles form a 3-cluster. Finally, a 4-cluster with one particle oriented at
90◦ away from the centre will lose that particle, but remain as a 3-cluster.

4.2.1 Cluster Detection

As noted from Figure 4.1b-i, this model describes the formation of clusters of
particles. Clustering of active particles and the formation of crystal-like struc-
tures, as a phenomenon, has been observed experimentally by e.g. Theurkauff
et al. (2012)and Palacci et al. (2013).

To properly analyse the formation, lifetime and, in particular, the existence of
said clusters in simulations, clusters were identified using a “connected subgraph”
approach. In further detail, this means that a snapshot of the system is taken at
time t and a graph, with nodes ni, i = 1, ..., N placed at the particles’ positions,
is created. Node ni and nj are connected via an edge if and only if particle i and
particle j are within 1.1 diameters (center-to-center).

This is compared to the result at a delayed time t+ ∆t. All connected subgraphs
with at least one edge (at least two particles) are classified as clusters, given
that they survive until t+ ∆t. The purpose of the delay is to not falsely classify
particles as part of a cluster due to randomly being close at time t.

The connected subgraphs were found using the graph adjacency matrix A, which
is defined with elements

Aij =
{

1 if ni and nj within 1.1 diameters and i 6= j,
0 otherwise. (4.3)

In turn, a cluster matrix C is computed using A. The elements of C are given
by

Cij = h

( ∞∑
k=1

Ak

)
ij

 , where h(x) =
{

1 if x > 0,
0 otherwise. (4.4)

This means that Cij = 1 if ni and nj are connected, and 0 otherwise. Clusters
are found as the unique rows (or columns) of C with non-zero elements. In nu-
merical simulations, mainly two options for computing C exist: using a truncated
approximation

C̃ij = h


kmax∑

k=1
Ak


ij

 , (4.5)

corresponding to allowing a maximum number of steps between nodes in the
graph, or evaluating C̃ for increasing kmax and stopping when the graph stops
becoming more connected, or is fully connected. The former was used in this
project, with a kmax of 5.
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4.2.2 Cluster stability

From Figure 4.1 we concluded that there are circumstances where particles fol-
lowing the aligning interactions in Equations (4.1) and (4.2) form clusters, in the
absence of noise (η = 0). Naturally, the question arises whether clusters form in
a noisy system (η > 0), and if they are intrinsically stable once formed.

A maximally noisy system (η = 2π) has the orientation of each particle completely
randomised at each timestep, resulting in active Brownian motion. Clustering
is not observed in simulations of active Brownian motion without any further
interactions (Volpe et al., 2014; Bechinger et al., 2016). Thus, we do not expect
clusters to appear in a maximally noisy system. Consequently, we expect to see
a behavioural phase-transition at some intermediary noise level.

Disregarding the particle speed v for now, the parameters of the model are η, T0
and R (the particle radius). The speed will be discussed in the next section. How-
ever, regarding the cluster stability they are all coupled. Looking at Equation 4.2,
it is easy to realise that torque between two particles is strongest at contact, i.e.
in a cluster. Considering only the interaction between those particles, the torque
becomes

Tn = T0
v̂n · r̂ni

4R2 v̂n × r̂ni = T0

4R2 sinϕ cosϕ, (4.6)

ϕ being the angle between the velocity and the relative position. The maximum
value of sinϕ cosϕ is easily found as 1/2, yielding

Tn ≤
T0

8R2 = Tmax. (4.7)

From Equation (4.7), a critical level of noise can be found where the noise is
capable of cancelling the effect of any single particle,

ηc

2 = Tmax ⇒ ηc = T0

4R2 . (4.8)

At this noise level, we expect clusters to potentially destabilize. Following this
reasoning, the expected phase-transition is likely to take place in this region,
since for η > ηc the more likely clusters are to destabilize the larger the difference
is.

4.3 Simulations of Purely Active Systems

The model described above has been explored using numerical simulations in Mat-
lab. The main focus has been the expected phase-transition between clustering
and non-clustering behaviour. As explained in Section 4.2.2, this couples most of
the parameters of the model (see Equation (4.8)). Therefore, both T0 nd R have
been fixed: T0 = 1, R = 1. The model is not expressed in any particular length
or time scale, which should be evaluated on a implementation-to-implementation
basis. Hence, all parameters are considered only numerically in these results and
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Figure 4.2: Snapshots from simulations of N = 100 active particles for different noise
levels. The noise levels are η = 2π, η = 0.2π and η = 0.002π respectively. Particles in
clusters are coloured depending on the size of the cluster: 2 (red), 3 (orange), 4 (light
green), 5 (green), 6 (dark green) and 7 (blue). (a) In a maximally noisy system, we
see that clusters do not form and instead the system exhibits a gas-like behaviour, or
gaseous state. Due to randomness, particles will sometimes get close enough to form
a 2-cluster. However, they do so rarely and the clusters are extremely short-lived and
dissolve almost immediately. (b) As noise decreases, most particles form clusters. The
smaller clusters of two or three particles are by far the most common. Larger clusters
are also present, but with lower frequency. (c) At very low levels of noise, almost every
particle is part of a cluster. The larger clusters have become more frequent and as a
result, the smaller clusters have decreased in number slightly.

discussions. Although, the focus on colloids and microswimmers in its develop-
ment and motivation suggests “typically short” length and time scales.

The only parameter left uncoupled by Equation 4.8 is the particle speed v. The
speed itself is not present in the formulation of the aligning interactions (Equa-
tion (4)) and within reasonable boundries, it does not qualitatively affect the
behaviour of the system in any interesting way, as reported by Vicsek et al.
(1995). In our case, due to the time-discrete nature of the model, we speculate
that a larger v would result in a smaller effective T0, since particles would move
further along any particular direction before their orientation is altered. For this
reason, v has also been fixed.

Due to the volume exclusion constraint being enforced with particle displacements
at every timestep, this requires that the displacement d� R (see Figure 2.4). In
the worst case scenario d = v∆t = v, in turn requiring that v � R. Therefore,
v = 0.05 has been used in all simulations.

Using the parameter values above, for varying η, behaviour like that presented
in Figure 4.2 is observed. For very noisy systems, like Figure 4.2a, motion is
almost gaseous and clusters don’t tend to form, as expected from the reasoning
in Section 4.2.2. Due to randomness, particles will sometimes come close enough
to form a cluster, but they very quickly move apart again and the cluster vanishes.
Lowering the noise level a bit, smaller clusters start to form, typically 2- and 3-
clusters. Decreasing the noise further, the larger clusters start appearing and less
particles move around on their own. The lower the noise, the more frequent the
larger clusters become and as a consequence, the frequency of the smaller clusters
also decreases. This is visualized in Figure 4.3b.
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Figure 4.3: The clustering coefficient (defined as the fraction of particles that are part
of clusters) clearly shows the transition between a clustering state and the more gaseous
one in Figure 4.2a. (a) The mean clustering coefficient, taken from simulations of 105

timesteps, is shown for different values of η. The standard deviation is shown by the
shaded area. This is compared to the baseline case, where T0 = 0, i.e. no align-
ing interaction takes place (the yellow dashed line). The baseline case is significantly
lower, indicating that clustering indeed is a result of the aligning interactions in Equa-
tions (4.1) and (4.2). The critical noise level ηc (Equation (4.8)) is also marked as the
vertical dashed line. As expected, for η > ηc a steep decline in the clustering coefficient
is observed. (b) Cluster size distribution as a function of η. The colours correspond
to the sizes of the clusters shown as insets. We see that the first clusters to form, and
also the most frequent, are 2- and 3-clusters. Larger clusters begin to form later, and
at lower levels of noise they increase in frequency, naturally lowering the frequency of
smaller clusters.
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Figure 4.4: The lifetime of different clusters varies depending on their size. Lifetime dis-
tributions are shown for η = 0.003π. Clusters are shown as insets in the corresponding
distribution.

Looking at the fraction of particles that are part of a cluster, we get a suitable
measure for the degree of clustering in the system. This clustering coefficient is
used as our order parameter to study the phase-transition in Figure 4.3. As shown
in the figure, a clear transition occurs as η varies. Also noteworthy is the fact
that for η > ηc there is a steep decline. It appears that clusters rapidly become
less and less stable, which agrees with the reasoning in Section 4.2.2.

Looking closer at the evolution and lifetime of different clusters, lifetime distribu-
tions can be found in Figure 4.4. The most common transitions between different
cluster sizes are also visualized as a transition network in Figure 4.5.

4.4 Exploring the Model in a Crowded, Mixed
Environment

So far, all systems explored have been purely active, consisting of only active
particles. Many systems in reality, however, are constituted of active as well
as passive particles. It has also been shown that a few active particles in an
otherwise passive system, or vice versa, can alter or affect the behaviour of the
system by Wu and Libchaber (2000) among others. Several other works have
also explored this experimentally (Koumakis et al., 2013; Kümmel et al., 2015;
Pinçe et al., 2016; Argun et al., 2016) and theoretically (Grégoire et al., 2001;
Schwarz-Linek et al., 2012; Stenhammar et al., 2015).

In this section we look at the how the model has been explored in a crowded,
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Figure 4.5: A cluster size transition network. The most common transitions are repres-
ented by arrows. The most stable clusters are those of size 2, 3, 6 and 7; in particular,
they appear to be stable in the absence of external perturbations, i.e. collisions with
other particles. Two-way transitions can often be observed between clusters of size 3-4
and 7-8, as shown by the double arrows between them.

complex environment of passive particles. For this reason, systems of N active
particles together withM passive particles have been simulated. Passive particles
only display diffusive motion, modelled by adding Gaussian white noise to their
current position, but otherwise interact with other particles (active and passive)
via volume exclusion. The variance of the Gaussian noise is set to σ = 0.1v, so
that each timestep their displacement is much smaller than that of the active
particles. The passive particles are assumed to be spherical and of the same size
as active particles.

With model formulation from Section 4.2, the model does not incorporate any
possibility for active particles to interact with the passive environment, disreg-
arding the volume exclusion. The interplay between active and passive particles
is not a phenomenon that can be completely neglected, though. We will there-
fore extend the model to account for active-passive interactions. Equation (4.1)
remains unchanged, but Tn is instead given by

Tn = T0
∑
i 6=n

v̂n · r̂ni

r2
ni

(v̂n × r̂ni)z − T0
∑
m

v̂n · r̂nm

r2
nm

(v̂n × r̂nm)z , (4.9)

where m = 1, ...,M is the index of the passive particles and rnm is the relative
position between the active particle n and the passive particle m. The sign of the
torque due to passive particles is negative so that active particles tend to avoid
the passive ones. This “obstacle avoidance” behaviour is observed, for example,
in the motion of people across a stationary crowd, shown by Helbing et al. (2005),
and in the motion of microswimmers in the presence of obstacles (Takagi et al.,
2014; Spagnolie et al., 2015). Additionally, obstacle avoidance is an important
aspect of many robotic applications.

At low concentrations of passive particles (M < N) and at low packing fractions,
the overall qualitative behaviour of the active particles is largely unaffected; active
particles still form clusters as explained previously.

The effects of passive particles are more interesting at very high concentrations
(M � N) and packing fractions, giving rise to phenomena such as channel form-
ing. This is shown in Figure 4.6. The motion of the active particles is quantitat-
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Figure 4.6: In crowded, mixed systems, channels form at lower levels of noise. Systems
of 20 active particles (orange circles) and 900 passive (grey circles) have been simulated
for for different values of η: (a) η = 2π, (b) η = π, (c) η = 0.5π and (d) η =
0.03π. Particle trails for the preceding 25 000 timesteps are shown in blue. The frames
correspond to times 25 000, 50 000, 75 000 and 100 000 (left to right). In (d), we observe
the formation of metastable channels.
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Figure 4.7: The mean square displacement of the active particles in systems like in
Figure 4.6. Diffusive motion results in a mean square displacement evolution following
a linear trend, while the trend for ballistic motion closer resembles τ2 in the short term
(Volpe et al., 2014; Bechinger et al., 2016; Howse et al., 2007).

ively examined using their mean square displacement,

MSD(τ) =
〈
|xn(t+ τ)− xn(t)|2

〉
n
, (4.10)

in Figure 4.7. In previous works, authors Volpe et al. (2014); Bechinger et al.
(2016); Howse et al. (2007) have looked at motion transition utilizing that for dif-
fusive motion MSD(τ) ∝ τ , while ballistic motion results in MSD(τ) ∝ τ 2.

Again, in a maximally noisy system (η = 2π, Figure 4.6a) the motion of the active
particles is essentially diffusive, as they are hindered by the presence of passive
particles. This is indicated by the mean square displacement of the particles,
shown in Figure 4.7 (the green line). It has a slope close to 1 at all times, which
is indicative of diffusive motion. The active particles compress the passive ones
creating some voids within the background of passive particles, within which they
are effectively confined. As a consequence, the active particles have few chances of
encountering each other and forming clusters. This behaviour is similar to that of
microswimmers in experiments conducted by Kümmel et al. (2015), where their
presence in a passive bath, even at very low numbers, could help the crystallisation
of the system.

Decreasing the noise to η = π (Figure 4.6b), the active particles are able to move
more, but remain confined within depletion regions created in the background
of passive passive particles. Even though they can make some straight runs,
they quickly become blocked by the passive particles and their movement quickly
becomes diffusive. This is reflected by the MSD shown by the purple line in
Figure 4.7, which after a brief superdiffusive stage for short times quickly becomes
diffusive. Also in this case, the passive particles present in the background prevent
encounters between active particles and the formation of clusters.

A similar behaviour takes place even for lower noise levels (η = 0.5π, Figure 4.6c).
However, we can now observe the formation of some proto-channels. These
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proto-channels permits active particles to occasionally meet and form 2-particle
clusters.

Decreasing the noise level even further to η = 0.03π (Figure 4.6) leads to the
formation of fully-fledged channels, whose presence are clearly shown by the blue
particle trails. These are areas free of passive particles where the active particles
can propagate unhindered. Comparing the different panels of Figure 4.6d, which
correspond to non-overlapping time frames, one can see that the channels are
quite stable over time. The reason for this is that, once a channel is opened by
some active particles, additional active particles use it leading to its dynamical
stabilisation. This transition towards the formation of channels is driven by the
increase of characteristic length of the directed runs the active particles in the
background of passive particles. As can be seen from the blue line in Figure 4.7,
the MSD is now ballistic over a longer time range. Once channels are open
the particles can encounter each other and form some small (2- or 3-particle)
clusters.
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Chapter 5

Concluding Remarks

This thesis has studied collective behaviour in complex environments. At first
the well-known Vicsek model was considered and expanded to allow for its use in
systems where interaction range and particle size are roughly of the same order
of magnitude. Exploring the modified Vicsek model in complex environments,
self-organizing lane patterns were discovered. Not an inherent phenomenon of
only active systems, attention was instead directed towards dynamical channels
rather than straight lanes. To accommodate for the interactions between active
and passive particles, the Vicsek model was abandoned in favor of a new Vicsek-
like model developed during this thesis. This particular model manages to capture
clustering behaviour and, with a slight modification, the forming of channels in
a crowded, complex environment.

How well the model in Chapter 4 describes any real systems of active particles
or collective behaviour remains to be seen. Nevertheless it has, in its current
formulation, clearly captured some important aspect, or aspects, of how or why
clustering and channelling occurs. If future research chooses to build upon this
or take on a new approach only time can tell.

Regarding engineered systems, such as in robotics or specialised microswimmers,
whether the result is identical to anything existing becomes less relevant and
instead we look for potential applications. For example, real-time modulation
of model parameters, such as noise or interaction strength, in a robotic system
could utilize the behavioural phase-transition to switch between aggregation and
exploration. This is achievable in what we refer to as purely active systems
as well as mixed systems (Figures 4.2 and 4.6 respectively). Similarly, external
fields could be used to modulate the stability of clusters of microswimmers locally
as a method of manufacturing crystal-like structures. Alternatively, this kind
of microswimmers could be used to design blood-vessel networks for bio-tissue
printing, or similar.

In Chapter 3 we were quick to abandon the Vicsek model for these types of
complex environments, but I don’t believe that area of research is exhausted even
if, within the scope of this thesis, a different approach was chosen. Furthermore,
the newly developed model has, as it stands, not been explored fully. In the future,
further study of this model in larger and more complex systems would be an
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interesting research project. The concept of particle species or types, in particular,
is something not currently found in the literature, even for successful models like
the Vicsek model. Looking at active biological systems like the immune system,
where its different agents are separated to perform specific tasks, it’s an approach
that I believe could be fruitfully explored. It is also possible to expand the model
to 3 dimensions.

To conclude, the model developed in this thesis would be interesting to study
further and the study of active particles in complex environments is an important
area of research for many applications of active particles, e.g. nanorobotics and
in medicine. Collective behaviour on the macroscopic scale is a growing field as
well, with many potential applications, and research on collective behaviour may
prove crucial for tackling many of today’s or tomorrow’s problems.
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